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Abstract: In this paper, we prove a discrete version of the Bethe–Sommerfeld conjec-
ture.Namely,we show that the spectra ofmulti-dimensional discrete periodicSchrödinger
operators on Z

d lattice with sufficiently small potentials contain at most two intervals.
Moreover, the spectrum is a single interval, provided at least one of the periods is odd,
and can have a gap whenever all periods are even.

1. Introduction

Bethe–Sommerfeld conjecture states that for d ≥ 2 and any periodic function V : Rd →
R, the spectrum of the continuous Schrödinger operator:

−� + V

contains only finitely many gaps, so no gaps for large energies. This conjecture has been
studied extensively with many important advances [1,3,4,7–12]. Finally, Parnovski [6],
proved it in any dimension d ≥ 2, under smoothness conditions on the potential V (see
[13] for an alternative approach).

In this paper, we consider a discrete version of this conjecture. A discrete multi-
dimensional periodic Schrödinger operator on l2(Zd) is given by:

(HV u)(n) =
∑

|m−n|=1

u(m) + V (n)u(n), (1.1)

where |m − n| = ∑d
j=1 |m j − n j |. We assume V (·) is a bounded real-valued periodic

function on Z
d with period q = (q1, q2, . . . , qd), namely, V (n + q j b j ) = V (n), with

{b j }dj=1 being the standard basis for Rd .

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-018-3141-9&domain=pdf
http://orcid.org/0000-0002-0447-1892


206 R. Han, S. Jitomirskaya

Remark 1.1. The most general periodic case may seem to be V (n +w j ) = V (n), where
w j ∈ Z

d , j = 1, . . . , d, are linearly independent vectors. This however reduces to our
assumption because such operators are periodic with period q = (detW, . . . , detW ),
where W is the matrix with w j as columns.

In the high energy regime continuous Schrödinger operators can be viewed as small
perturbations of the free Laplacian. In this sense, the proper discrete analogy of the
Bethe–Sommerfeld conjecture is absence of gaps for small coupling discrete periodic
operators.

The discrete Bethe–Sommerfeld conjecture has been proved for d = 2 by Embree-
Fillman [2],with a partial result (for coprimeperiods) earlier byKrüger [5]. The approach
of [2] runs into combinatorial/algebraic difficulties for d > 2. Here we prove this
conjecture for arbitrary dimension:

Theorem 1.1. Let d ≥ 2 and a period q = (q1, q2, . . . , qd) be given. There exists a
constant cq > 0 such that the following statements hold:

(1) If ‖V ‖∞ ≤ cq , then the spectrum of HV contains at most two intervals.
(2) If at least one of qi is odd, and ‖V ‖∞ ≤ cq , then the spectrum of HV is a single

interval.

Remark 1.2. We should point out that our proof does not currently allow us to give a
quantitative estimate on cq .

Our result is sharp in the sense that if all the q j ’s are even, then there exists V
(see example in Sect. 6) with minimal period q, and arbitrarily small ‖V ‖∞ such that
�(HV ) contains exactly two intervals. The examplewe give is amodification ofKrüger’s
example [5], in which V (n) = δ(−1)|n| has minimal period (2, 2, . . . , 2).

It is well-known that in the one dimensional case, a generic q-periodic operator has
spectrum with q connected components. Also for d ≥ 2, for any positive integer q, one
can construct a periodic V with large ‖V ‖∞ such that the spectrum of HV consists of
q intervals. A simple example is to take V (n) = V (n1) with V (n1) = λn1(mod q)

for λ > 4(d − 1). Hence both d ≥ 2 and the smallness of ‖V ‖∞ are needed. It is
an interesting question to find the sharp threshold on ‖V ‖∞ for existence of periodic
potentials with q gaps (a slight modification of the above example gives 4(d − 1) q−1

2
as an upper bound for odd q).

The strategyof our proof relies on analysing the overlaps of adjacent bands of the spec-
trum.We refer the readers to [5] for a detailed background on discrete multi-dimensional
Schrödinger operators. Here we only introduce some notations and known results. Let
us denote the spectrum of H by �(H). By the Floquet–Bloch decomposition, �(HV )

can be decomposed into ∪θ∈��(H θ
V ), where � = {θ = (θ1, θ2, . . . , θd) : 0 ≤ θ j <

1
q j

, 1 ≤ j ≤ d} is a d-dimensional torus (by gluing 0 and 1
q j

together in the b j direction),

and H θ
V is the periodic Schrödinger operator with the following boundary condition:

un+q j b j = e2π iq j θ j un.

Each operator H θ
V clearly has Q = ∏d

j=1 q j eigenvalues, which we will arrange in

the increasing order and denote them by E1
V (θ) ≤ E2

V (θ) ≤ · · · ≤ EQ
V (θ). Let Fk

V =
∪θ∈�Ek

V (θ) be the k-th band of the spectrum. Theorem 1.1 is thus reduced to proving
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non-empty overlaps of arbitrary two adjacent bands, with only possible exception around
the point 0. Employing a standard perturbation argument (see Theorem 3.1), this is made
possible via proving non-empty overlaps of the interiors of adjacent bands of the free
Laplacian H0. Two of our key lemmas are as follows:

Lemma 1.2. If E ∈ (−2d, 2d) \ {0}, then E ∈ int(Fk
0 ) for some 1 ≤ k ≤ Q.

Lemma 1.3. If at least one of q j ’s is odd, then 0 ∈ int(Fk
0 ) for some 1 ≤ k ≤ Q.

We will prove Lemma 1.2 in Sect. 4 and Lemma 1.3 in Sect. 5. Different from
the existing two-dimensional proofs in [2,5], our argument proceeds by contradiction.
Namely, we assume Ek0

0 (θ̃) = max Fk0
0 = min Fk0+1

0 for certain k0, and then apply a
novel perturb-and-count technique. We perturb the phase θ̃ and count the number of
eigenvalues that move up and down. It is then argued that different chosen directions
lead to different numbers of up/down eigenvalues, hence a contradiction. The difficulty
of counting up/down eigenvalues along a given direction β arises in the situation when it
is perpendicular to the gradients of certain eigenvalues. We resolve this issue by finding
a particular β such that even in this case, the shifts of eigenvalues are still predictable.

2. Preliminaries

For θ , θ̃ ∈ �, let ‖θ − θ̃‖� be the torus distance between them, defined by

‖θ − θ̃‖2� =
d∑

j=1

‖θ j − θ̃ j‖2T j
,

where ‖θ‖T j := dist(θ, 1
q j
Z).

2.1. Spectrum of the free Laplacian. It is a well-known result that the spectrum of the
free Laplacian H0 is the whole interval:

�(H0) = [−2d, 2d]. (2.1)

By the Floquet–Bloch decomposition,

�(H0) = [−2d, 2d] = ∪θ∈��(H θ
0 ). (2.2)

Furthermore, each �(H θ
0 ) can be written down explicitly,

�(H θ
0 ) =

⎧
⎨

⎩el0(θ) := 2
d∑

j=1

cos 2π

(
θ j +

l j
q j

)⎫
⎬

⎭
l∈	

, (2.3)

where 	 = {l = (l1, l2, . . . , ld) ∈ Z
d : 0 ≤ l j ≤ q j − 1, 1 ≤ j ≤ d}.
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3. Proof of Theorem 1.1

We say the bands {Fk}Qk=1 of H are δ-overlapping if max Fk − min Fk+1 ≥ δ for any
1 ≤ k ≤ Q − 1. Theorem 1.1 follows from a quick combination of Lemmas 1.2, 1.3
with Hausdorff continuity of the spectrum. The form of continuity convenient to us is
presented in:

Theorem 3.1 [5, Theorem 3.8]. Let the bands of H be δ-overlapping. Then the bands
of H + V are δ − 2‖V ‖∞-overlapping. 	


4. Proof of Lemma 1.2

Our strategy is to prove by contradiction, namely we assume max Fk0
0 = min Fk0+1

0 �= 0
for some 1 ≤ k0 ≤ Q and try to get a contradiction. Without loss of generality, we
assume max Fk0

0 = min Fk0+1
0 > 0.

Wewill use the following elementary lemma,whose proof is included in the appendix.

Lemma 4.1. Let d ≥ 2. For any E ∈ (−2d, 2d), there exist θ = (θ1, θ2, . . . , θd) with
θ j ∈ [0, 1) such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑d
j=1 2 cos 2πθ j = E,

∑d
j=1 sin 2πθ j = 0,

∑d
j=1 sin

2 2πθ j �= 0.

Now let us prove Lemma 1.2.
First, by Lemma 4.1, there exist θ̃ = (θ̃1, θ̃2, . . . , θ̃d) ∈ � and l(1) = (l(1)1 , l(1)2 , . . . ,

l(1)d ) ∈ 	 such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max Fk0
0 = ∑d

j=1 2 cos 2π

(
θ̃ j +

l(1)j
q j

)
= e

l(1)j
0 (θ̃),

0 = ∑d
j=1 sin 2π

(
θ̃ j +

l(1)j
q j

)
,

0 �= ∑d
j=1 sin

2 2π

(
θ̃ j +

l(1)j
q j

)
.

(4.1)

Next, let us choose l(2), l(3), . . . , l(r) ∈ 	 (if any) be all the vectors in 	 such that

el
(1)

0 (θ̃) = el
(2)

0 (θ̃) = · · · = el
(r)

0 (θ̃).

Then clearly they are Ek0−s
0 (θ̃) = · · · = Ek0

0 (θ̃) = · · · = Ek0+r−s−1
0 (θ̃), for some

0 ≤ s ≤ r−1. And alsowe have Ek0−s−1
0 (θ̃) < Ek0−s

0 (θ̃), Ek0+r−s−1
0 (θ̃) < Ek0+r−s

0 (θ̃).
By the continuity of each eigenvalue, we could choose ε > 0 small enough, such that
for any ‖θ − θ̃‖� < ε, we always have

Ek0−s−1
0 (θ) < Ek0−s

0 (θ) and Ek0+r−s−1
0 (θ) < Ek0+r−s

0 (θ). (4.2)
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Let J0 ≥ 0 be the number of j’s such that ∇el
( j)

0 (θ̃) = 0. For β ∈ R
d , we also

introduce Jβ and J 0
β
: let Jβ be the number of j’s such that β · ∇el

( j)

0 (θ̃) > 0, and J 0
β
be

the number of j’s such that ∇el
( j)

0 (θ̃) �= 0 and β · ∇el
( j)

0 (θ̃) = 0.

Perturbing el
( j)

0 (θ̃) along the direction of β we get:

el
( j)

0 (θ̃ + tβ) = el
( j)

0 (θ̃) + tβ · ∇el
( j)

0 (θ̃) + O(t2) (4.3)

= el
( j)

0 (θ̃) + tβ · ∇el
( j)

0 (θ̃) +
t2

2

⎛

⎝−4π2
d∑

m=1

2β2
m cos 2π

(
θ̃m +

l( j)m

qm

)⎞

⎠ + O(t3).

(4.4)

Step 1 Let β̃ = 1√
d
(1, 1, . . . , 1). By (4.1), we have

β̃ · ∇el
(1)

0 (θ̃) = 0 and ∇el
(1)

0 (θ̃) �= 0, (4.5)

which implies J 0
β̃

≥ 1.

By (4.4) for j such that β̃ · ∇el
( j)

0 (θ̃) = 0 (in total J0 + J 0
β̃
many such j’s), we have

el
( j)

0 (θ̃ + t β̃) =
(
1 − 2π2

d
t2

)
el

( j)

0 (θ̃) + O(t3) < el
( j)

0 (θ̃), (4.6)

for |t | small enough. Let us mention that in (4.6), we used the fact that el
( j)

0 (θ̃) =
max Fk0

0 > 0.
Now combine (4.3) with (4.6). On one hand, we have, for t → 0+ (meaning t > 0

small enough),

• there are J
β̃
many j’s such that Ek0+r−s(θ̃ + t β̃) > el

( j)

0 (θ̃ + t β̃) > el
( j)

0 (θ̃) =
max Fk0

0 , thus these J
β̃
many eigenvalues el

( j)

0 (θ̃ + t β̃) must belong to the bands

Fk0+r−s−1
0 , Fk0+r−s−2

0 ,…, Fk0+1
0 . Hence by counting the numbers, we get J

β̃
≤

(k0 + r − s − 1) − k0 = r − s − 1.
• for the other r− J

β̃
many j’s, we have Ek0−s−1(θ̃ + t β̃) < el

( j)

0 (θ̃ + t β̃) < el
( j)

0 (θ̃) =
min Fk0+1

0 , so these r − J
β̃
eigenvalues must belong to the bands Fk0

0 , Fk0−1
0 ,…,

Fk0−s
0 . Hence we have r − J

β̃
≤ k0 − (k0 − s) + 1 = s + 1.

Thus

J
β̃

= r − s − 1. (4.7)

On the other hand, for for t → 0− (meaning t < 0 with |t | small enough), we have,

• there are r − J
β̃

− J 0
β̃

− J0 many j’s such that Ek0+r−s(θ̃ + t β̃) > el
( j)

0 (θ̃ + t β̃) >

el
( j)

0 (θ̃) = max Fk0
0 ,

• for the other J
β̃
+ J 0

β̃
+ J0 many j’s, we have Ek0−s−1(θ̃ + t β̃) < el

( j)

0 (θ̃ + t β̃) <

el
( j)

0 (θ̃) = min Fk0+1
0 .
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Thus

J
β̃
+ J 0

β̃
+ J0 = s + 1. (4.8)

Combining this with (4.7), we have,

2s − r = J 0
β̃
+ J0 − 2. (4.9)

Step 2 We choose β ∈ R
d , ‖β‖Rd = 1, such that β · ∇el

( j)

0 (θ̃) �= 0 for any 1 ≤ j ≤ r

with ∇el
( j)

0 (θ̃) �= 0, and satisfies the following:

d∑

m=1

2|β2
m − 1

d
| <

1

2d
min Fk0+1

0 . (4.10)

Inequality (4.10) means β is a small perturbation of β̃.
For j such that ∇el

( j)

0 (θ̃) = 0, we have, by (4.4), (4.10)

el
( j)

0 (θ̃ + tβ) = el
( j)

0 (θ̃)

+
t2

2

⎛

⎝−4π2

d
el

( j)

0 (θ̃) + 4π2
d∑

m=1

2

(
1

d
− β2

m

)
cos 2π

(
θ̃m +

l( j)m

qm

)⎞

⎠ + O(t3)

≤
(
1 − π2

d
t2

)
el

( j)

0 (θ̃) + O(t3) (4.11)

< el
( j)

0 (θ̃). (4.12)

Combining (4.3) with (4.12), on one hand, we have that for t → 0+,

• there are Jβ many j’s such that Ek0+r−s(θ̃ + tβ) > el
( j)

0 (θ̃ + tβ) > el
( j)

0 (θ̃) =
max Fk0

0 ,

• for the other r− Jβ many j’s, we have Ek0−s−1(θ̃ + tβ) < el
( j)

0 (θ̃ + tβ) < el
( j)

0 (θ̃) =
min Fk0+1

0 .

Thus

Jβ = r − s − 1. (4.13)

On the other hand, we have that for t → 0−,
• there are r− Jβ − J0 many j’s such that Ek0+r−s(θ̃+tβ) > el

( j)

0 (θ̃+tβ) > el
( j)

0 (θ̃) =
max Fk0

0 ,

• for the other Jβ + J0 many j’s, we have Ek0−s−1(θ̃ +tβ) < el
( j)

0 (θ̃ +tβ) < el
( j)

0 (θ̃) =
min Fk0+1

0 .

Thus

Jβ + J0 = s + 1. (4.14)

Combining this with (4.13), we have,

2s − r = J0 − 2. (4.15)

However, this contradicts (4.9), since J 0
β̃

≥ 1. 	
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5. Proof of Lemma 1.3

The spirit of this proof is similar to that of Lemma 1.2, but requires different choices of
θ̃ , l(1) and β, β̃.

Without loss of generality, we assume q1 is odd. We assume qm’s, m ≥ 2, are even,
since otherwise, we could simply replace qm with 2qm ,m ≥ 2. Throughout this section,
we will consider the case when max Fk0

0 = min Fk0+1 = 0.

5.1. d = 2. This result has already been proved in [2]. Here we give an alternative
self-contained proof.

We let θ̃ = ( 1
2q1

, 0), l(1) = (
q1−1
2 , 0), and observe that

{
0 = 2 cosπ + 2 cos 0 = el

(1)

0 (θ̃),

0 = ∇el
(1)

0 (θ̃).
(5.1)

Again, we let l(2), . . . , l(r) ∈ 	 (if any) to be all the vectors in	 such that el
(1)

0 (θ̃) =
el

(2)

0 (θ̃) = · · · = el
(r)

0 (θ̃) = 0. Let 0 ≤ s ≤ r−1 be such that Ek0−s−1
0 (θ) < Ek0−s

0 (θ) =
· · · = Ek0

0 (θ) = · · · = Ek0+r−s−1
0 (θ) < Ek0+r−s

0 (θ) for any ‖θ − θ̃‖� < ε.

Let l( j), 1 ≤ j ≤ r , be such that ∇el
( j)

0 (θ̃) = 0. Then sin 2π(θ̃1 +
l( j)1
q1

) =
sin 2π(θ̃2 +

l( j)2
q2

) = 0. Taking into account that el
( j)

0 (θ̃) = 0, this implies j = 1. Hence

the number of j’s such that ∇el
( j)

0 (θ̃) = 0 is equal to 1.
Now let β+ = (1, 0) and β− = (0, 1). Let Jβ± , J 0

β± be as in the proof of Lemma
1.2.

First, it is easy to see that J 0
β+ = J 0

β− = 0. Indeed, if there is j such that∇el
( j)

0 (θ̃) �= 0

andβ+·∇el
( j)

0 (θ̃) = 0, then sin 2π(θ̃1 +
l( j)1
q1

) = 0,which implies cos 2π(θ̃1 +
l( j)1
q1

) = ±1.

This in turn implies cos 2π(θ̃2 +
l( j)2
q2

) = ∓1, and hence ∇el
( j)

0 (θ̃) = 0, contradiction.

The case J 0
β− = 0 can be argued in the same way.

Secondly, by (4.4), we have that for |t | < ε small enough,

el
(1)

0 (θ̃ + tβ±) = ±4π2t2 + O(t3), (5.2)

so el
(1)

0 increases in the direction of β+ and decreases in the direction of β−.
Combining (4.3) with (5.2) for β+, on one hand, we have, for t → 0+,

• there are Jβ+ + 1 many j’s such that Ek0+r−s(θ̃ + tβ+) > el
( j)

0 (θ̃ + tβ+) > 0 =
max Fk0

0 ,

• for the other r − Jβ+ − 1 many j’s, we have Ek0−s−1(θ̃ + tβ+) < el
( j)

0 (θ̃ + tβ+) <

0 = min Fk0+1
0 .

Hence

Jβ+ + 1 = r − s − 1. (5.3)

On the other hand, for t → 0−, we have,
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• there are r − Jβ+ many j’s such that Ek0+r−s(θ̃ + tβ+) > el
( j)

0 (θ̃ + tβ+) > 0 =
max Fk0

0 ,

• for the other Jβ+ many j’s, we have Ek0−s−1(θ̃ + tβ+) < el
( j)

0 (θ̃ + tβ+) < 0 =
min Fk0+1

0 .

Hence

Jβ+ = s + 1. (5.4)

Thus combining (5.3) with (5.4), we have

r = 2s + 3. (5.5)

Similarly, combining (4.3) with (5.2) for β−, on one hand, we have, for t → 0+,

• there are Jβ− many j’s such that Ek0+r−s(θ̃+tβ−) > el
( j)

0 (θ̃+tβ−) > 0 = max Fk0
0 ,

• for the other r − Jβ− many j’s, we have Ek0−s−1(θ̃ + tβ−) < el
( j)

0 (θ̃ + tβ−) < 0 =
min Fk0+1

0 .

Hence

Jβ− = r − s − 1. (5.6)

On the other hand, for t → 0−, we have,

• there are r − Jβ− − 1 many j’s such that Ek0+r−s(θ̃ + tβ−) > el
( j)

0 (θ̃ + tβ−) > 0 =
max Fk0

0 ,

• for the other Jβ− + 1 many j’s, we have Ek0−s−1(θ̃ + tβ−) < el
( j)

0 (θ̃ + tβ−) < 0 =
min Fk0+1

0 .

Hence

Jβ− + 1 = s + 1. (5.7)

Thus combining (5.6) with (5.7), we have

r = 2s + 1. (5.8)

This contradicts (5.5). 	


5.2. d ≥ 3. Let us choose θ̃ , l(1) with θ̃1 = 1
2q1

, l(1)1 = q1−1
2 and θ̃m, l(1)m , 2 ≤ m ≤

d, be such that cos 2π(θ̃m + l(1)m
qm

) = 1
d−1 < 1 and sin 2π(θ̃m + l(1)m

qm
) > 0. Let β =

(1, 0, 0, . . . , 0), then clearly we have,

∇el
(1)

0 (θ̃) �= 0 and β · ∇el
(1)

0 (θ̃) = 0. (5.9)

Let l(2), . . . , l(r) ∈ 	 (if any) be all the vectors in 	 such that el
(1)

0 (θ̃) = el
(2)

0 (θ̃) =
· · · = el

(r)

0 (θ̃). Let 0 ≤ s ≤ r − 1 be such that Ek0−s−1
0 (θ) < Ek0−s

0 (θ) = · · · =
Ek0
0 (θ) = · · · = Ek0+r−s−1

0 (θ) < Ek0+r−s
0 (θ) for any ‖θ − θ̃‖� < ε.
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Let J0, Jβ , J 0β be as in the proof of Lemma 1.2. Then by (5.9), J 0
β

≥ 1.

Clearly, for J0+J 0β many j’s, we haveβ ·∇el
( j)

0 (θ̃) = 0,whichmeans sin 2π(θ̃1 +
l( j)1
q1

)

= 0. Since our θ̃1 equals 1
2q1

, we must have

cos 2π

(
θ̃1 +

l( j)1

q1

)
= −1. (5.10)

Thus, by (4.4) and (5.10), we have that for j (in total J0 + J 0
β
many) such that

β · ∇el
( j)

0 (θ̃) = 0, for |t | < ε small enough,

el
( j)

0 (θ̃ + tβ) = el
( j)

0 (θ̃) +
t2

2

(
−8π2 cos 2π

(
θ̃1 +

l( j)1

q1

))
+ O(t3)

= 4π2t2 + O(t3)

> 0. (5.11)

Hence, combining (4.3) with (5.11), on one hand, we have, for t → 0+,

• there are Jβ + J0 + J 0
β
many j’s such that Ek0+r−s(θ̃ + tβ) > el

( j)

0 (θ̃ + tβ) > 0 =
max Fk0

0 ,

• for the other r − Jβ − J0− J 0
β
many j’s, we have Ek0−s−1(θ̃ + tβ) < el

( j)

0 (θ̃ + tβ) <

0 = min Fk0+1
0 .

Hence

Jβ + J0 + J 0β = r − s − 1. (5.12)

On the other hand, for t → 0−, we have,

• there are r− Jβ many j’s such that Ek0+r−s(θ̃ + tβ) > el
( j)

0 (θ̃ + tβ) > 0 = max Fk0
0 ,

• for the other Jβ many j’s,wehave Ek0−s−1(θ̃+tβ) < el
( j)

0 (θ̃+tβ) < 0 = min Fk0+1
0 .

Hence

Jβ = s + 1. (5.13)

Thus combining (5.12) with (5.13), we have

r − 2s = J0 + J 0β + 2. (5.14)

Now we choose β̃ ∈ R
d , ‖β̃‖Rd = 1, such that β̃ · ∇el

( j)

0 (θ̃) �= 0 for any 1 ≤ j ≤ r

with ∇el
( j)

0 (θ̃) �= 0, and satisfies the following:

1 − β̃2
1 +

d∑

m=2

β̃2
m <

1

2
. (5.15)

This inequality essentially says β̃ is a small perturbation of β.
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With J
β̃
defined as before, by (4.4), (5.10) and (5.15), we have that for j (in total J0

many) such that ∇el
( j)

0 (θ̃) = 0, for |t | < ε small enough,

el
( j)

0 (θ̃ + t β̃) = t2

2

(
8π2 − 8π2(1 − β̃2

1 ) − 8π2
d∑

m=2

β̃2
m cos 2π

(
θ̃m +

l( j)m

qm

))
+ O(t3)

> 2π2t2 + O(t3) > 0. (5.16)

As before, combining (4.3) with (5.16), on one hand, we have, for t → 0+,

• there are J0+ Jβ̃ many j’s such that Ek0+r−s(θ̃ +t β̃) > el
( j)

0 (θ̃ +t β̃) > 0 = max Fk0
0 ,

• for the other r − J0 − J
β̃
many j’s, we have Ek0−s−1(θ̃ + t β̃) < el

( j)

0 (θ̃ + t β̃) <

0 = min Fk0+1
0 .

Hence

J0 + J
β̃

= r − s − 1. (5.17)

On the other hand, for t → 0−, we have,

• there are r− J
β̃
many j’s such that Ek0+r−s(θ̃ + t β̃) > el

( j)

0 (θ̃ + t β̃) > 0 = max Fk0
0 ,

• for the other J
β̃
many j’s,wehave Ek0−s−1(θ̃+t β̃) < el

( j)

0 (θ̃+t β̃) < 0 = min Fk0+1
0 .

Hence

J
β̃

= s + 1. (5.18)

Thus combining (5.17) with (5.18), we have

r − 2s = J0 + 2. (5.19)

This contradicts (5.14) since J 0
β

≥ 1. 	


6. Example with Exactly Two Intervals

Let all theqm’s be even and δ > 0 be any small positive number.We are going to construct
V with minimal period q, such that ‖V ‖∞ = δ and the spectrum of HV does not contain
the point 0. This example is a modification of Krüger’s example (see Theorem 6.3 in
[5]), where V is (2, 2, . . . , 2)-periodic.

Let us define

Vq(n) =
⎧
⎨

⎩

(1 − δ2/d)δ if n ≡ 0 (mod q)

δ(−1)|n| otherwise
(6.1)

It can be easily checked that Vq has minimal period q and ‖V ‖∞ = δ. The fact that the
spectrum of HV does not contain 0 will follow from the following lemma.

Lemma 6.1. There exists constant δ0 > 0 such that for any 0 < δ < δ0, we have

‖(H0 + Vq)u‖ >
1

2
δ

holds for any unit vector u ∈ l2(Zd).
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Proof of Lemma 6.1. Let us consider

‖(H0 + Vq)u‖2 = ‖H0u‖2 + ‖Vqu‖2 + 2(H0u, Vqu) ≥ ‖Vqu‖2 + 2(H0u, Vqu),

(6.2)

in which the first term obviously satisfies

‖Vqu‖2 =
∑

n∈Zd

|Vq(n)|2|u(n)|2 ≥ (1 − δ2/d)2δ2 ≥ (1 − δ2)2δ2. (6.3)

Let {bi } be the standard basis for Rd . The second term in (6.2) could be estimated in the
following way:

(H0u, Vqu) =
∑

n∈Zd

(
d∑

m=1

u(n ± bm)

)
Vq(n)u(n)

=
d∑

m=1

∑

n∈Zd

u(n + bm)u(n)(Vq(n) + Vq(n + bm)). (6.4)

Note that by our construction and the fact that qi ’s are even,

Vq(n) + Vq(n + bm) =
{−δ3/d if n ≡ −bm or 0 (mod q)

0 otherwise
(6.5)

Combining (6.4) with (6.5), we get

|(H0u, Vqu)| ≤ δ3

d

d∑

m=1

∑

n∈Zd

|u(n + bm)||u(n)| ≤ δ3. (6.6)

Now combining (6.2), (6.3) with (6.6), we get

‖(H0 + Vq)u‖2 ≥ (1 − δ2)2δ2 − 2δ3 >
1

4
δ2,

provided δ small. 	
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Appendix A.

Proof of Lemma 4.1. Without loss of generality we could assume E ≥ 0.
If d = 2d̃ is an even number, then we could take (0, 1/2) � θ1 = · · · = θd̃ = 1−θd̃+1 =
· · · = 1 − θ2d̃ be such that cos 2πθ1 = E

4d̃
�= ±1.

If d = 2d̃ + 1 is an odd number and E ∈ [2, 4d̃ + 2), then we could take θ2d̃+1 = 0 and
(0, 1/2) � θ1 = · · · = θd̃ = 1− θd̃+1 = · · · = 1− θ2d̃ be such that cos 2πθ1 = E−2

4d̃
�=

±1.
If d = 2d̃ + 1 is an odd number and E ∈ [0, 2), then we could take θ2d̃+1 = 1

2 and
(0, 1/2) � θ1 = · · · = θd̃ = 1 − θd̃+1 = · · · = 1 − θ2d̃ be such that cos 2πθ1 = E+2

4d̃
�=

±1. 	
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