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Abstract: We study disordered XXZ spin chains in the Ising phase exhibiting droplet
localization, a single cluster localization propertywe previously proved for randomXXZ
spin chains. It holds in an energy interval I near the bottom of the spectrum, known
as the droplet spectrum. We establish dynamical manifestations of localization in the
energywindow I , including non-spreading of information, zero-velocity Lieb–Robinson
bounds, and general dynamical clustering. Our results do not rely on knowledge of the
dynamical characteristics of the model outside the droplet spectrum. A byproduct of our
analysis is that for random XXZ spin chains this droplet localization can happen only
inside the droplet spectrum.
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1. Introduction

We study disordered XXZ spin chains in the Ising phase exhibiting droplet localization.
This is a single cluster localization property we previously proved for random XXZ spin
chains inside the droplet spectrum [16].

The basic phenomenon of Anderson localization in the single particle framework
is that disorder can cause localization of electron states and thereby manifest itself in
properties such as non-spreading of wave packets under time evolution and absence
of dc transport. The mechanism behind this behavior is well understood by now, both
physically andmathematically (e.g., [4,6,15,18,22,28]).Manymanifestations of single-
particleAnderson localization remain valid if one considers a fixed number of interacting
particles, e.g., [3,13,29].

The situation is radically different in the many-body setting. Little is known about
the thermodynamic limit of an interacting electron gas in a random environment, i.e.,
an infinite volume limit in which the number of electrons grows proportionally to the
volume. Even simplest models where the individual particle Hilbert space is finite di-
mensional (spin systems) pose considerable analytical and numerical challenges, due to
the fact that the number of degrees of freedom involved grows exponentially fast with
the size of the system.

The limited evidence from perturbative [5,9,20,24,27,42] and numerical [12,33,
37,38] approaches supports the persistence of a many-body localized (MBL) phase
for one-dimensional spin systems in the presence of weak interactions. The numerics
also suggests the existence of transition from a many-body localized (MBL) phase to
delocalized phases as the strength of interactions increases, [8,10,37,38,40].

Mathematically rigorous results on localization in a true many-body system have
been-until very recently-confined to investigations of exactly solvable (quasi-free) mod-
els (see [1,30,41]). More recent progress has been achieved primarily in the study of
the XXZ spin chain, a system that is not integrable but yet amenable to rigorous analy-
sis. The first results in this direction established the exponential clustering property for
zero temperature correlations of the André-Aubry quasi-periodicmodel [31,32]. The au-
thors recently proved localization results for the random XXZ spin chain in the droplet
spectrum [16]. Related results are given in [11].

In [16, Theorem 2.1], the authors obtained a localization result for the droplet spec-
trum eigenstates of the random XXZ spin chain in the Ising phase. This result can be
interpreted as the statement that a typical eigenstate in this part of the spectrum behaves
as an effective quasi-particle, localized, in the appropriate sense, in the presence of a
random field.

In this paper we study disordered XXZ spin chains exhibiting the same droplet lo-
calization property we proved in [16, Theorem 2.1], which we call Property DL. We
draw conclusions concerning the dynamics of the XXZ spin chain based exclusively on
Property DL.

For completely localized many-body systems, the dynamical manifestation of local-
ization is often expressed in terms of the non-spreading of information under the time
evolution.An alternative (and equivalent) description is the zero-velocityLieb–Robinson
bound. (See, e.g, [21].)

There is, however, some difficulty in even formulating our results for disordered
XXZ spin chains. Property DL has been established in [16, Theorem 2.1] only inside
the droplet spectrum, an interval at the bottom of the spectrum. In fact, Theorem 1
below shows that Property DL as stated can only hold inside the droplet spectrum for
random XXZ spin chains, showing the near optimality of the energy window where
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it was proven in [16, Theorem 2.1]. To resolve this issue, we recast non-spreading of
information and the zero-velocity Lieb–Robinson bound as a problem on the subspace
of the Hilbert space associated with the given energy window in which Property DL
holds. This leads to a number of interesting findings, formulated below in Theorem 2
(non-spreading of information), Theorem 3 (zero-velocity Lieb–Robinson bounds), and
Theorem 4 (general dynamical clustering).

As we mentioned earlier, our methodology in [16] is limited to the states near the
bottom of the spectrum and sheds light only on what physicists call zero temperature
localization. It is unrealistic to expect that this approach can yield insight about extensive
energies of magnitude comparable to the system size which is the essence of MBL.
In fact, numerical studies suggest the presence of a many-body mobility edge in the
random XXZ chain, at least for sufficiently small disorder [8,10,37,38]. Nonetheless,
we believe that the ideas presented here will be useful in understanding the transport
properties of interacting systems that have a mobility edge, such as the Quantum Hall
Effect [14,23,39].

Some of the results in this paper were announced in [17].
This paper is organized as follows: The model, Property DL, and the main theorems

are stated in Sect. 2. We introduce some useful tools and collect needed technical results
in Sect. 3, and a lemma about spin chains is presented in Appendix A. Section 4 is
devoted to the proof that Property DL only holds inside the droplet spectrum for random
XXZ spin chains (Theorem 1). Non-spreading of information (Theorem 2) is proven in
Sect. 5. Zero-velocity Lieb–Robinson bounds (Theorem 3) are proven in Sect. 6. Finally,
the proof of general dynamical clustering (Theorem 4) is given in Sect. 7.

2. Model and Results

The infinite disordered XXZ spin chain (in the Ising phase) is given by the (formal)
Hamiltonian

H = Hω = H0 + λBω, H0 =
∑

i∈Z
hi,i+1, Bω =

∑

i∈Z
ωiNi , (1)

acting on
⊗

i∈Z C
2
i , with C

2
i = C

2 for all i ∈ Z, the quantum spin configurations on the
one-dimensional lattice Z, where

(i) hi,i+1, the local next-neighbor Hamiltonian, is given by

hi,i+1 = 1
4

(
I − σ z

i σ z
i+1

) − 1
4Δ

(
σ x
i σ x

i+1 + σ
y
i σ

y
i+1

)
, (2)

where σ x , σ y, σ z are the standard Pauli matrices (σ x
i , σ

y
i , σ z

i act on C
2
i ) and

Δ > 1 is a parameter;
(ii) Ni = 1

2 (1 − σ z
i ) is the local number operator at site i (the projection onto the

down-spin state at site i);
(iii) ω = {ωi }i∈Z are identically distributed random variables whose joint probability

distribution is ergodic with respect to shifts in Z, and the single-site probability
distribution μ satisfies

{0, 1} ⊂ suppμ ⊂ [0, 1] and μ({0}) = 0; (3)

(iv) λ > 0 is the disorder parameter.
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If in addition {ωi }i∈Z are independent random variables we call Hω a random XXZ spin
chain.

The choice Δ > 1 specifies the Ising phase. The Heisenberg chain corresponds to
Δ = 1, and the Ising chain is obtained in the limit Δ → ∞.

We set e+ =
(
1
0

)
and e− =

(
0
1

)
, spin up and spin down, respectively. Recall

σ ze± = ±e±. Thus, if N = 1
2 (1 − σ z), we have N e+ = 0 and N e− = e−.

The operator Hω as in (1) with Bω ≥ 0 can be defined as an unbounded nonnegative
self-adjoint operator as follows: Let H0 be the vector subspace of

⊗
i∈Z C

2
i spanned

by tensor products of the form
⊗

i∈Z ei , ei ∈ {e+, e−}, with a finite number of spin
downs, equipped with the tensor product inner product, and let H be its Hilbert space
completion. Hω, defined in H0 by (1), is an essentially self-adjoint operator on H.
Moreover, the ground state energy of Hω is 0, with the unique ground state (or vacuum)
given by the all-spins up configuration ψ0 = ⊗i∈Ze+. Note thatNiψ0 = 0 for all i ∈ Z

and ‖ψ0‖ = 1.
The spectrum of H0 is known to be of the form [19,36] (recall Δ > 1):

σ(H0) = {0} ∪ [
1 − 1

Δ
, 1 + 1

Δ

] ∪ {[
2

(
1 − 1

Δ

)
,∞) ∩ σ(H0)

}
. (4)

We will call I1 = [1 − 1
Δ

, 2(1 − 1
Δ

)) the droplet spectrum. (Droplet states in the Ising
phase of the XXZ chain were first described in [36] (see also [19,35]); they have energies
in the interval

[
1 − 1

Δ
, 1 + 1

Δ

]
. The pure droplet spectrum is actually I1 ∩ σ(H0); we

call I1 the droplet spectrum for convenience.)
Since the disordered XXZ spin chain Hamiltonian Hω is ergodic with respect to

translation in Z, Bω ≥ 0, and Bωψ0 = 0, standard considerations imply that Hω has
nonrandom spectrum Σ , and

σ(Hω) = Σ = {0} ∪ {[
1 − 1

Δ
,∞) ∩ Σ

}
almost surely. (5)

(In the case of a random XXZ spin chain Hamiltonian Hω with a continuous single-site
probability distribution standard arguments yield Σ = {0} ∪ [

1 − 1
Δ

,∞)
.)

We consider the restrictions of Hω to finite intervals [−L , L], L ∈ N (We will write
[−L , L] for [−L , L]∩Z, etc., when it is clear from the context.)We letH(L) = H[−L ,L],
where HS = ⊗i∈SC2

i for S ⊂ Z finite, and define the self-adjoint operator

H (L) = H (L)
ω =

L−1∑

i=−L

hi,i+1 + λ

L∑

i=−L

ωiNi + β(N−L +NL) on H(L). (6)

We take (and fix) β ≥ 1
2 (1− 1

Δ
) in the boundary term, which guarantees that the random

spectrum of H (L)
ω preserves the spectral gap of size 1− 1

Δ
above the ground state energy:

σ(H (L)
ω ) = {0} ∪

{[
1 − 1

Δ
,∞) ∩ σ(H (L)

ω )
}

. (7)

The ground state energy of H (L)
ω is 0, with the all-spins up configuration state ψ

(L)
0 =

⊗i∈[−L ,L]e+ ∈ H(L) being a ground state, which is unique almost surely since
∑L

i=−L ωi

Ni �= 0 almost surely (which rules out the all-spins down configuration in H (L)
ω as a

ground state).
Given an interval I , we set σI (H

(L)
ω ) = σ(H (L)

ω ) ∩ I , and let

GI = {g : R → C Borel measurable, |g| ≤ χI } . (8)
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In this article we consider a disordered XXZ spin chain as in (1) for which we have
localization in an interval

[
1 − 1

Δ
,Θ1

]
in the following form, where ‖ ‖1 is the trace

norm.

Property DL. Let H = Hω be a disordered XXZ spin chain. There exist Θ1 > Θ0 =
1 − 1

Δ
and constants C < ∞ and m > 0, such that, setting I = [Θ0,Θ1], we have,

uniformly in L,

E

(
sup
g∈GI

∥∥∥Ni g(H
(L))N j

∥∥∥
1

)
≤ Ce−m|i− j | for all i, j ∈ [−L , L]. (9)

We proved in [16] that Property DL holds in the droplet spectrum for random XXZ
spin chains, and show in Theorem 1 below that it can only hold inside the droplet
spectrum, suggesting the name Property DL (for Droplet Localization). Property DL
is relevant only for the eigenstates that populate the droplet spectrum, an interval at
the bottom of the spectrum. These states are localized near energetically preferable
droplets (single cluster) configurations in the underlyingHilbert space, since non-droplet
(i.e., many-clusters) configurations always have energy above the droplet spectrum. In
addition to non-droplet configurations, large droplets will pick up enough field energy to
have total energy above the droplet spectrum. We make no assertions about eigenstates
with energies above the droplet spectrum.

If H = Hω is a randomXXZspin chain, then H (L) almost surely has simple spectrum.
A simple analyticity based argument for this can be found in [2, Appendix A]. (The
argument is presented there for the XY chain, but it holds for every random spin chain of
the form H0 +

∑L
k=−L ωkNk in

⊗
i∈[−L ,L] C

2
i .) Thus, almost surely, all its normalized

eigenstates can be labeled as ψE where E is the corresponding eigenvalue. In particular,
∥∥∥Ni P

(L)
E N j

∥∥∥
1

= ‖NiψE‖ ∥∥N jψE
∥∥ , (10)

where P(L)
E = χ{E}(H (L)) and ‖ ‖1 is the trace norm.

Given 0 ≤ δ < 1, we set

I1,δ = [
1 − 1

Δ
, (2 − δ)

(
1 − 1

Δ

)] ; (11)

note that I1,δ � I1 if 0 < δ < 1. The following result is proved in [16].

Droplet localization ([16, Theorem 2.1]). Let H = Hω be a random XXZ spin chain
whose single-site probability distribution is absolutely continuous with a bounded den-
sity. There exists a constant K > 0 with the following property: If Δ > 1, λ > 0, and
0 < δ < 1 satisfy

λ (δ(Δ − 1))
1
2 min {1, (δ(Δ − 1))} ≥ K , (12)

then there exist constants C < ∞ and m > 0 such that we have, uniformly in L,

E

⎛

⎜⎝
∑

E∈σI1,δ (H (L))

‖NiψE‖ ∥∥N jψE
∥∥

⎞

⎟⎠ ≤ Ce−m|i− j | for all i, j ∈ [−L , L], (13)
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and, as a consequence,

E

(
sup

g∈GI1,δ

∥∥∥Ni g(H
(L))N j

∥∥∥
1

)
≤ Ce−m|i− j | for all i, j ∈ [−L , L]. (14)

In particular, Property DL holds in the interval I1,δ .

The interval I1,δ in [16, Theorem 1.1] is close to optimal, as the following theorem
shows that for a random XXZ spin chain localization in the form of Property DL (as in
(9)) is only allowed in the droplet spectrum.

Theorem 1 (Optimality of the droplet spectrum). Suppose Property DL is valid for a
random XXZ spin chain H. Then Θ1 ≤ 2Θ0, that is, if I is the interval in Property DL,
then we must have I = I1,δ for some 0 ≤ δ < 1.

Let Hω be a disordered XXZ spin chain satisfying Property DL. We consider the
intervals I = [Θ0,Θ1] and I0 = [0,Θ1], where Θ0,Θ1 are given in Property DL. We
mostly omit ω from the notation. We write P(L)

B = χB(H (L)) for a Borel set B ⊂ R,

and let P(L)
E = P(L)

{E} for E ∈ R. It follows from (7) that P(L)
I0

= P(L)
0 + P(L)

I . Since

Ni P
(L)
0 = P(L)

0 Ni = 0 for all i ∈ [−L .L],GI may be replaced byGI0 in (9). Bym > 0
we will always denote the constant in (9). C will always denote a constant, independent
of the relevant parameters, which may vary from equation to equation, and even inside
the same equation.

Given an interval J ⊂ [−L , L], a local observable X with support J is an operator
on ⊗ j∈JC

2
j , considered as an operator onH(L) by acting as the identity on spins not in

J . (We defined supports as intervals for convenience. Note that we do not ask J to be the
smallest interval with this property, supports of observables are not uniquely defined.)

Given a local observable X , we will generally specify a support for X , denoted by
SX = [sX , rX ]. We always assume ∅ �= SX ⊂ [−L , L]. Given two local observables
X,Y we set dist(X,Y ) = dist(SX ,SY ).

Given � ≥ 1 and B ⊂ [−L , L], we set B� = { j ∈ [−L , L]; dist ( j, B)} ≤ �. In
particular, given a local observable X we let

SX,� = (SX )� = [sX − �, rX + �] ∩ [−L , L]. (15)

In this paper we derive several manifestations of dynamical localization for H from
Property DL. The time evolution of a local observable under H (L) is given by

τ
(L)
t (X) = ei t H

(L)

Xe−i t H (L)

for t ∈ R. (16)

(We also mostly omit L from the notation, and write τt for τ
(L)
t .)

For a completely localized many-body system (i.e., localized at all energies), dynam-
ical localization is often expressed as the non-spreading of information under the time
evolution: Given a local observable X , for all � ≥ 1 and t ∈ R there is a local observable
X�(t) with support SX,�, such that ‖X�(t) − τt (X)‖ ≤ C ‖X‖ e−c�, with the constants
C and c > 0 independent of X , t , and L . Since we only have localization in the energy
interval I , and hence also in I0, we should only expect non-spreading of information in
these energy intervals.

Thus, given an energy interval J ,we consider the sub-Hilbert spaceH(L)
J = Ran P(L)

J ,
spanned by the the eigenstates of H (L) with energies in J , and localize an observable
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X in the energy interval J by considering its restriction to H(L)
J , X J = P(L)

J X P(L)
J .

Clearly τt

(
X (L)
J

)
= (

τt
(
X (L)

))
J .

Property DL implies non-spreading of information in the energy interval I0.

Theorem 2 (Non-spreading of information). Let H = Hω be a disordered XXZ spin
chain satisfying Property DL. There exists C < ∞, independent of L, such that for all
local observables X, t ∈ R and � > 0 there is a local observable X�(t) = (X�(t))ω
with support SX,� satisfying

E

(
sup
t∈R

∥∥(X�(t) − τt (X))I0

∥∥
1

)
≤ C‖X‖e− 1

16m�. (17)

We give an explicit expression for X�(t) in (114). Note that XI = (
XI0

)
I , and hence

(17) implies the same statement with I substituted for I0.
Another manifestation of dynamical localization is the existence of zero-velocity

Lieb–Robinson (LR) bounds in the interval of localization. The following theorem states
a zero-velocity Lieb–Robinson bound in the energy interval I . If we include the ground
state, i.e., if we look for Lieb–Robinson type bounds in the energy interval I0, the
situation is more complicated, and the zero-velocity Lieb–Robinson bound holds for the
double commutator; the commutator requires counterterms. Note that [τt (XI ) ,YI ] �=
([τt (X) ,Y ])I . (We mostly omit ω and L from the notation.)

Theorem 3 (Zero velocity LR bounds). Let H = Hω be a disordered XXZ spin chain
satisfying Property DL. Let X,Y and Z be local observables. The following holds uni-
formly in L:

E

(
sup
t∈R

‖[τt (XI ) ,YI ]‖1
)

≤ C‖X‖‖Y‖e− 1
8m dist(X,Y ), (18)

E

(
sup
t∈R

∥∥[
τt

(
XI0

)
,YI0

] − (τt (X) P0Y − Y P0τt (X))I
∥∥
1

)

≤ C‖X‖‖Y‖e− 1
8m dist(X,Y ), (19)

E

(
sup
t,s∈R

∥∥[[
τt

(
XI0

)
, τs

(
YI0

)]
, ZI0

]∥∥
1

)

≤ C‖X‖‖Y‖‖Z‖e− 1
8mmin{dist(X,Y ),dist(X,Z),dist(Y,Z)}. (20)

Moreover, for the random XXZ spin chain the estimate (19) is not true without the
counterterms.

The proofs of these zero-velocity Lieb–Robinson bounds do not involve tricky can-
cellations from the commutators. Cancellations from the commutator are only used to
justify that it suffices to prove the zero-velocity Lieb–Robinson bounds for local observ-
ables Z satisfying

⊗
j∈SZ (1 − N j ) Z

⊗
j∈SZ (1 − N j ) = 0 (see Sect. 3.1 for details).

Under this assumption each term in the expansion of the commutators is shown to satisfy
the desired bound.

The counterterms in (19) are generated by the interaction between the ground state
and states corresponding to the energy interval I under the dynamics. Here, and also in
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Theorem 4 below, they are linear combinations of terms of the form (τt (X) P0Y )I and
(Y P0τt (X))I . Note that

‖(τt (X) P0Y )I ‖1 = ‖(τt (X) P0Y )I‖ = ∥∥PI Y ∗ψ0
∥∥ ‖PI Xψ0‖ ,

‖(Y P0τt (X))I ‖1 = ‖(Y P0τt (X))I ‖ = ∥∥PI X∗ψ0
∥∥ ‖PI Yψ0‖ , (21)

which do not depend on either t or dist(X,Y ).
Another manifestation of localization is the dynamical exponential clustering prop-

erty. Let B ⊂ R be a Borel set. We define the truncated time evolution of an observable
X by (H = H (L)

ω ),

τ B
t (X) = ei t HB Xe−i t HB , where HB = PBH. (22)

Note that
(
τ B
t (X)

)
B = (τt (X))B = τt (XB).

The correlator operator of two observables X and Y in the energy window B is given
by (P̄B = 1 − PB)

RB(X,Y ) = PB X P̄BY PB = (
X P̄BY

)
B . (23)

If E is a simple eigenvalue with normalized eigenvectorψE , we have, with RE (X,Y ) =
R{E}(X,Y ),

tr (RE (X,Y )) = 〈ψE , XYψE 〉 − 〈ψE , XψE 〉 〈ψE ,YψE 〉. (24)

The following result is proved in [16].

Dynamical exponential clustering ([16, Theorem 1.1]). Let H = Hω be a random
XXZ spin chain, and assume (13) holds in an interval I . Then, for all local observables
X and Y we have, uniformly in L,

E

⎛

⎝sup
t∈R

∑

E∈σI (H (L))

∣∣∣tr
(
RE (τ I

t (X) ,Y )
)∣∣∣

⎞

⎠ ≤ C‖X‖‖Y‖e−m dist(X,Y ), (25)

E

⎛

⎝sup
t∈R

∑

E∈σI (H (L))

|tr (RE (τt (XI ) ,YI ))|
⎞

⎠ ≤ C‖X‖‖Y‖e−m dist(X,Y ), (26)

and

E

(
sup
t∈R

∣∣∣tr
(
RI (τ

I
t (X) ,Y )

)∣∣∣
)

≤ C‖X‖‖Y‖e−m dist(X,Y ). (27)

The estimate (26) is not the same as (25), but it can be proven the same way; the
proof of [16, Lemma 3.1] is actually simpler in this case.

Since
tr

(
RI (τ

I
t (X) ,Y )

)
=

∑

E∈σI (H (L))

〈
ψE , τ I

t (X) P̄I YψE

〉
, (28)

(27) is a statement about the diagonal elements of the correlator operator RI (τ
I
t (X) ,Y ).

We will now state a more general dynamical clustering result that is not restricted to
diagonal elements. The result, which holds in an interval of localization satisfying the
conclusions of Theorem 1, requires counterterms.
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Theorem 4 (General dynamical clustering). Let H = Hω be a disordered XXZ spin
chain satisfying Property DL. Fix an interval K = [Θ0,Θ2], where Θ0 < Θ2 <

min {2Θ0,Θ1}, and α ∈ (0, 1). There exists m̃ > 0, such that for all local observables
X and Y we have, uniformly in L,

E

(
sup
t∈R

∥∥∥RK

(
τ K
t (X) ,Y

)
−

(
τ K
t (X)P0Y + τ K

t (Y ) P0X
)

K

∥∥∥
)

≤ C (1 + ln (min {|SX | , |SY |})) ‖X‖‖Y‖e−m̃(dist(X,Y ))α , (29)

and

E

(
sup
t∈R

∥∥∥
(
[[τ K

t (X) ,Y ]]
)

K

∥∥∥
)

≤ C (1 + ln (min {|SX | , |SY |})) ‖X‖‖Y‖e−m̃(dist(X,Y ))α , (30)

where

[[τ K
t (X) ,Y ]] = [τ K

t (X) ,Y ]
−

(
τ K
t (X) P0Y + τ K

t (Y ) P0X
)
+

(
Y P0τ

K
t (X) + X P0τ

K
t (Y )

)
. (31)

Moreover, for the randomXXZ spin chain the estimates (29) and (30) are not true without
the counterterms.

While it is obvious where the counterterms in (19) come from, the same is not true
in (29), where the time evolution in the second term seems to sit in the wrong place: it
is τ K

t (Y ) and not τ K
t (X). It turns out this term encodes information about the states

above the energy window K , and the appearance of τ K
t (Y ) is related to the reduction

of this data to P0, as can be seen in the proof.

Remark 1. One may wonder why the counterterms in (29) do not appear in (27). The
reason is that their traces obey decay estimates similar to (27) with α = 1, see Lemma 4.

3. Preliminaries

We make extensive use of the decomposition of a local observable with respect to the
projection on the ground state on its support, introduced in Sect. 3.1. This decomposition
will play a prominent role in Sect. 3.2, where it is used to establish several localization
properties of operators g(H) for g supported in the interval I where Property DL is
assumed. These technical lemmas are extensively used in the proofs of non-spreading
of information and zero-velocity LR bounds in Sects. 5 and 6 below.

The proofs of Theorems 1 and 4 will in addition require bounds on operators of the
form X f (H)Y , which will be established in Sect. 3.3 by using an argument of Hastings,
combining LR-bounds with the Fourier transform.

A final technical lemma in Sect. 3.4 provides several lower bounds which show that
σ x correlations in the local ground states do not decay. This will be the key ingredient
for the proofs of the non-triviality of the counterterms in Theorems 3 and 4.
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3.1. Decomposition of local observables. Given S ⊂ [−L , L] ⊂ Z, S �= ∅, we define
projections P±(S) by

P(S)
+ =

⊗

j∈S
1
2 (1 + σ z

j ) =
⊗

j∈S
(1 − N j ) and P(S)

− = 1 − P(S)
+ . (32)

Note that
P(S)

− ≤
∑

i∈S
Ni . (33)

In particular,

P(S)
− P0 = P0P

(S)
− = 0. (34)

We also set Sc = [−L , L] \ S, and note that

P(S)
+ P(Sc)

+ = P(Sc)
+ P(S)

+ = P [−L ,L]
+ = P0. (35)

Given an observable X , we set P(X)
± = P(SX )

± , obtaining the decomposition

X =
∑

a,b∈{+,−}
Xa,b, where Xa,b = P(X)

a X P(X)
b . (36)

Moreover, since P(X)
+ is a rank one projection on HSX , we must have

X+,+ = ζX P
(X)
+ , where ζX ∈ C, |ζX | ≤ ‖X‖. (37)

In particular,
(X − ζX )+,+ = 0 and ‖X − ζX‖ ≤ 2 ‖X‖ . (38)

We will use (38) to replace general local observables by local observables satisfying
X+,+ = 0 in the proofs of Theorems 2, 3, and 4.

3.2. Consequences of Property DL. Property DL is defined in terms of one type of local
observable, the local number operators Ni . For proving the theorems we need to apply
it to general local observables. Using the decomposition (36) it suffices to consider local
observables of the type P(S)

± as in (32). The following lemmas give the consequences of
Property DL we need for the proofs of the theorems.

Let Hω be a disordered XXZ spin chain satisfying Property DL.Wewrite H = H (L)
ω ,

and generally omit ω and L from the notation. The following results hold uniformly on
L .

Lemma 1. Let X,Y be local observables. Then

E

(
sup
g∈GI0

∥∥∥P(X)
− g(H)P(Y )

−
∥∥∥
1

)
≤ Ce−m dist(X,Y ), (39)

E

(∥∥∥P(Y )
− P(X)

− PI0

∥∥∥
1

)
≤ Ce− 1

2m dist(X,Y ). (40)
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Proof. It follows from (33) that setting Z = (∑
i∈S Ni

)−1
P(S)

− , we have ‖Z‖ ≤ 1 and

P(S)
− = (∑

i∈S Ni
)
Z = Z

(∑
i∈S Ni

)
, and hence we have

∥∥∥P(X)
− g(H)P(Y )

−
∥∥∥
1

≤
∑

i∈SX , j∈SY

∥∥Ni g(H)N j
∥∥
1 . (41)

The estimate (39) then follows immediately from from (9) using [16, Eq. (3.25)]
Similarly,

∥∥∥P(Y )
− P(X)

− PI0

∥∥∥
1

=
∥∥∥P(Y )

− P(X)
− PI

∥∥∥
1

≤
L∑

k=−L

∥∥∥P(Y )
− P(X)

− PINk

∥∥∥
1
. (42)

Since [P(Y )
− , P(X)

− ] = 0,
∥∥∥P(Y )

− P(X)
− PINk

∥∥∥
1

≤ min
{∥∥∥P(X)

− PINk

∥∥∥
1
,

∥∥∥P(Y )
− PINk

∥∥∥
1

}
, (43)

so it follows from (39) that

E

(∥∥∥P(Y )
− P(X)

− PINk

∥∥∥
1

)
≤ Ce−mmax{dist(k,SX ),dist(k,SY )}. (44)

Suppose, say, maxSX < minSY , and let K = 1
2 (maxSX + minSY ). Then,

E

(∥∥∥P(Y )
− P(X)

− PI
∥∥∥
1

)
≤

∑

k≤K

e−m dist(k,SY ) +
∑

k≥K

e−m dist(k,SX )

≤ Ce− 1
2m dist(X,Y ), (45)

where the last calculation is done as in [16, Eq. (3.25)], yielding (40). ��
Lemma 2. Let X and Y be local observables and � ≥ 1.

(i) We have

E

(
sup
I∈GI

∥∥∥P(X)
− g(H)P(SX,�)

+

∥∥∥
1

)
≤ Ce−m�. (46)

(ii) If � ≤ 1
2 dist(X,Y ), we have

E

(
sup
g∈GI

∥∥∥∥∥P
(
Sc
Y,�

)

+ g(H)P

(
Sc
X,�

)

+

∥∥∥∥∥
1

)
≤ Ce−m(dist(X,Y )−2�). (47)

Proof. Let � ≥ 1 and g ∈ GI . If Sc
X,� = ∅, (46) is obvious since P(SX,�)

+ = P0. If
Sc
X,� �= ∅, using (35) we get
∥∥∥P(X)

− g(H)P
(SX,�)
+

∥∥∥
1

=
∥∥∥∥P

(X)
− g(H)P

(Sc
X,�)

− P
(SX,�)
+

∥∥∥∥
1

≤
∥∥∥∥P

(X)
− g(H)P

(Sc
X,�)

−
∥∥∥∥
1
, (48)

and (46) follows from (48) and (39).
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Similarly, using (35) twice, we get
∥∥∥∥∥P

(
Sc
Y,�

)

+ g(H)P

(
Sc
X,�

)

+

∥∥∥∥∥
1

=
∥∥∥∥∥P

(
Sc
Y,�

)

+ P(SY,�)
− g(H)P(SX,�)

− P

(
Sc
X,�

)

+

∥∥∥∥∥
1

≤
∥∥∥P(SY,�)

− g(H)P(SX,�)
−

∥∥∥
1
. (49)

If � ≤ 1
2 dist(X,Y ), then dist(SX,�,SY,�) ≥ dist(X,Y ) − 2�. In this case (47) follows

from (49) and (39). ��
Lemma 3. Let X,Y be local observables with X+,+ = Y +,+ = 0. Then

E

(
sup
t∈R

sup
g∈GI

∥∥(τt (X) g(H)Y )I
∥∥
1

)
≤ C ‖X‖ ‖Y‖ e− 1

8m dist(X,Y ). (50)

Proof. Since ∥∥(τt (X) g(H)Y )I
∥∥
1 =

∥∥∥
(
Xe−i t H g(H)Y

)

I

∥∥∥
1
, (51)

it suffices to prove

E

(
sup
g∈GI

∥∥(Xg(H)Y )I
∥∥
1

)
≤ C ‖X‖ ‖Y‖ e− 1

8m dist(X,Y ). (52)

Let X,Y be local observables with X+,+ = Y +,+ = 0, and let 0 < 2� = dist(X,Y ).

Set S1 = Sc
X, �

2
, S2 = Sc

Y, �
2
. Given g ∈ GI , and inserting 1 = P(S j)

− + P(S j)
+ , j = 1, 2,

we get
Xg(H)Y =

∑

a=±;b=±
X P(S1)

a g(H)P(S2)
b Y. (53)

We estimate the norms of the terms on the right hand side separately. If one of the indices
a, b, say a = −, we get

∥∥∥
(
X P(S1)− g(H)P(S2)

b Y
)

I

∥∥∥
1

≤ ‖Y‖
∥∥∥PI X P(S1)− e−i t H g(H)

∥∥∥
1

≤ ‖Y‖
∥∥∥PI X P(S1)− PI

∥∥∥
1

= ‖Y‖
∥∥∥PI P(S1)− X P(S1)− PI

∥∥∥
1

≤ ‖X‖ ‖Y‖
(∥∥∥PI P(S1)− P(X)

−
∥∥∥
1
+

∥∥∥P(X)
− P(S1)− PI

∥∥∥
1

)
, (54)

where we have used the fact that [P(S1)− , X ] = 0, X+,+ = 0, and g ∈ GI . If a = b = +,
we bound the corresponding contribution as

∥∥∥
(
X P(S1)

+ g(H)P(S2)
+ Y

)

I

∥∥∥
1

≤ ‖X‖‖Y‖
∥∥∥P(S1)

+ g(H)P(S2)
+

∥∥∥
1
. (55)

Using (40) and (47) we get

E

(
sup
g∈GI

∥∥(Xg(H)Y )I
∥∥
1

)
≤ C ‖X‖ ‖Y‖

(
2e−m

4 � + e−m(dist(X,Y )−�)
)

≤ C ‖X‖ ‖Y‖ e− 1
8m dist(X,Y ). (56)

��
The following lemma justifies Remark 1.
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Lemma 4. Let X,Y be local observables. Then for all intervals K ⊂ I we have

E

(
sup
t∈R

∣∣∣tr
(
τ K
t (X)P0Y

)

K

∣∣∣
)

≤ C‖X‖‖Y‖e−m dist(X,Y ). (57)

Proof. Given K ⊂ I , we have

tr
(
τ K
t (X)P0Y

)

K
= tr PK τt (X)P0Y PK = tr P0Y PK τt (X)P0

= tr P0Y P(Y )
− PK e

i t H P(X)
− X P0, (58)

where we used (37), (34), and PK P0 = 0. It follows that
∣∣∣tr

(
τ K
t (X)P0Y

)

K

∣∣∣ ≤ ‖X‖‖Y‖
∥∥∥P(Y )

− PK e
i t H P(X)

−
∥∥∥
1
. (59)

The estimate (57) now follows from (39). ��

3.3. Estimates with Fourier transforms. Lemmas 5 and 6 below are used to prove The-
orems 1 and 4.

Let Hω be a disordered XXZ spin chain. Given a function f ∈ C∞
c (R), we write its

Fourier transform as

f̂ (t) = 1
2π

∫

R

ei t x f (x) dx, and recall f (x) =
∫

R

e−i t x f̂ (t) dt. (60)

The following lemma is an adaptation of an argument of Hastings [25,26], which
combines the Lieb–Robinson bound with estimates on Fourier transforms.

Lemma 5. Let α ∈ (0, 1), and consider a function f ∈ C∞
c (R) such that

∣∣∣ f̂ (t)
∣∣∣ ≤ C f e

−m f |t |α for all |t | ≥ 1, (61)

where C f and m f > 0 are constants. Then for all local observables X and Y we have
∥∥∥∥X f (H)Y −

∫

R

e−ir HY τr (X) f̂ (r) dr

∥∥∥∥

≤ C1 ‖X‖ ‖Y‖
(
1 +

∥∥∥ f̂
∥∥∥
1

)
e−m1(dist(X,Y ))α , (62)

where C1 and m1 > 0 are suitable constants (depending on C f , m f , and α), uniformly
in L.

Proof. We have

X f (H)Y = X

(∫

R

e−ir H f̂ (r) dr

)
Y =

∫

R

e−ir H τr (X) Y f̂ (r) dr

=
∫

R

e−ir H [τr (X) ,Y ] f̂ (r) dr +
∫

R

e−ir HY τr (X) f̂ (r) dr (63)
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The commutator in the first term can be estimated by the Lieb–Robinson bound (e.g.
[34]):

‖[τr (X) ,Y ]‖ ≤ C ‖X‖ ‖Y‖min
{
e−μ1(dist(X,Y )−v|r |), 1

}
, (64)

where C , μ1 > 0, v > 0 are constants, independent of L and of the random parameter
ω. We get

∥∥∥∥
∫

R

e−ir H [τr (X) ,Y ] f̂ (r) dr
∥∥∥∥

≤ C ‖X‖ ‖Y‖
(∫

|r |≤ dist(X,Y )
2v

e−μ1(dist(X,Y )−v|r |)
∣∣∣ f̂ (r)

∣∣∣ dr +
∫

|r |≥ dist(X,Y )
2v

∣∣∣ f̂ (r)
∣∣∣ dr

)

≤ C ‖X‖ ‖Y‖
(∥∥∥ f̂

∥∥∥
1
e− μ1

2 dist(X,Y ) +
∫

|r |≥ dist(X,Y )
2v

∣∣∣ f̂ (r)
∣∣∣ dr

)

≤ C ‖X‖ ‖Y‖
(∥∥∥ f̂

∥∥∥
1
e− μ1

2 dist(X,Y ) + C f e
−m f

2

(
dist(X,Y )

2v

)α ∫

R

e−m f
2 |r |α dr

)
, (65)

where we assumed dist(X,Y ) ≥ 2v. The estimate (62) follows. ��

Lemma 5 will be combined with the following lemma.

Lemma 6. Let K = [Θ0,Θ2] and f ∈ C∞
c (R) with supp f ⊂ [a f , b f ]. Then for all

local observables X and Y we have

∫

R

(
e−ir HY τr (X)

)

K
f̂ (r) dr =

∫

R

(
e−ir HY PK f τr (X)

)

K
f̂ (r) dr, (66)

where

K f = K + K − supp f ⊂ [2Θ0 − b f , 2Θ2 − a f ]. (67)

Proof. Let K = [Θ0,Θ2], f ∈ Cc(R) with supp f ⊂ [a f , b f ]. Then for all E, E ′ ∈ K
we have

PE

(∫

R

e−ir HY τr (X) f̂ (r) dr

)
PE ′ =

∫

R

PE e−ir HY eir H Xe−ir H PE ′ f̂ (r) dr

= PEY

(∫

R

eir(H−E−E ′) f̂ (r) dr

)
X PE ′ = PEY f (E + E ′ − H)X PE ′

= PEY PK f f (E + E ′ − H)X PE ′

= PE

(∫

R

e−ir HY PK f τr (X) f̂ (r) dr

)
PE ′ , (68)

where K f is given in (67). The equality (66) follows. ��
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3.4. Counterterms. The following lemma is used to prove the need for counterterms in
Theorems 3 and 4.

Given vectors ψ1, ψ2 ∈ H(L), we denote by T (ψ1, ψ2) the rank one operator
T (ψ1, ψ2) = 〈ψ2, ·〉 ψ1. Recall

‖T (ψ1, ψ2)‖ = ‖T (ψ1, ψ2)‖1 = ‖ψ1‖ ‖ψ2‖ .

Note that for all observables X and Y we have

X P(L)
0 Y = T

(
Y ∗ψ(L)

0 , Xψ
(L)
0

)
. (69)

Lemma 7. Let Hω bea randomXXZspin chain.Consider an interval K ⊂ [1− 1
Δ

, 1+ 1
Δ

].
Then there exist constants γK > 0 and RK such that for all i, j ∈ Z with |i − j | ≥ RK ,
we have

E

(
lim inf
L→∞

∥∥∥
(
σ x
i P

(L)
0 σ x

j

)

K

∥∥∥
)

≥ γK > 0, (70)

E

(
lim inf
L→∞

∥∥∥
(

σ x
i P

(L)
0 σ x

j ± σ x
j P

(L)
0 σ x

i

)

K

∥∥∥
2

2

)
≥ γK , (71)

and

E

(
lim inf
L→∞ lim

T→∞
1
T

∫ T

0

∥∥∥
(
A(L)(t) −

(
A(L)(t)

)∗)

K

∥∥∥
2

2
dt

)
≥ 2γK , (72)

where

A(L)(t) = τ
(L)
t

(
σ x
i

)
P(L)
0 σ x

j + τ
(L)
t

(
σ x
j

)
P(L)
0 σ x

i . (73)

Proof. Let H be a random XXZ spin chain, and let N = ∑
i∈ZNi denote the total

(down) spin number operator onH. The self-adjoint operatorN has pure point spectrum.
Its eigenvalues are N = 0, 1, 2, . . ., and the corresponding eigenspacesHN are spanned
by all the spin basis stateswith N down spins. Since [H,N ] = 0, the eigenspacesHN are
left invariant by H . The restriction HN of H toHN is unitarily equivalent to an N -body
discrete Schrödinger operator restricted to the fermionic subspace (e.g., [16,19]).

In particular, H1 = Hω,1 is unitarily equivalent to an one-dimensional Anderson
model:

Hω,1 ∼= − 1
2ΔL1 +

(
1 − 1

Δ

)
+ λVω on �2(Z), (74)

where L1 is the graph Laplacian on �2(Z) and Vω is the random potential given by
Vω(i) = ωi for i ∈ Z.

The same is true for restrictions to finite intervals [−L , L], where we have the unitary
equivalence

H (L)
ω,1

∼= − 1
2ΔL(L)

1 +
(
1 − 1

Δ

)
+ λVω +

(
β − 1

2 (1 − 1
Δ

)
) (

χ{−L} + χ{L}
)
, (75)

acting on �2([−L , L]), where now L(L)
1 is the graph Laplacian on �2([−L , L]) (e.g.,

[16]). Note that H (L)
ω,1 is the restriction of Hω,1 to �2([−L , L]), up to a boundary term.
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In what follows wewill consider these unitary equivalences as equalities. In this case,
if i ∈ [−L , L] we have σ x

i ψ
(L)
0 = δi ∈ �2([−L , L]), Note that for the infinite volume

Anderson model in (74) we have

σ (H1) ⊃ Σ1 := [1 − 1
Δ

, 1 + 1
Δ

] almost surely. (76)

The following holds for all ω ∈ [0, 1]Z: We have limL→∞ H (L)
1 = H1 in the strong

resolvent sense, and hence limL→∞ f
(
H (L)
1

)
= f (H1) strongly for all bounded con-

tinuous functions f on R. (For an interval J ⊂ Z, we consider �2(J ) as a subspace of
�2(Z) in the obvious way: �2(Z) = �2(J ) ⊕ �2(Z \ J ).) In particular, for f real valued
with ‖ f ‖∞ ≤ 1,

sup
L

∥∥∥ f (H (L)
1 )δu

∥∥∥ ≤ 1 and lim
L→∞ f

(
H (L)
1

)
δu = f (H1) δu for all u ∈ Z. (77)

Moreover,

lim
L→∞ E

(∥∥∥ f (H (L)
1 )δu

∥∥∥
2
)

= E

(
‖ f (H1)δu‖2

)
= E

(〈
δu, ( f (H1))

2 δu

〉)

= E

(〈
δ0, ( f (H1))

2 δ0

〉)
=

∫
f 2(t) dη(t), (78)

where η is the density of states measure for the Anderson model H1. It also follows from
(77) by bounded convergence that

lim
L→∞ E

(∥∥∥ f (H (L)
1 )δ j

∥∥∥
∥∥∥ f (H (L)

1 )δi

∥∥∥
)

= E
(∥∥ f (H1)δ j

∥∥ ‖ f (H1)δi‖
)
. (79)

We now fix a function f ∈ Cc(R) such that supp f ⊂ K ∩Σ1 and χK ′ ≤ f ≤ χK∩Σ1

for some nonempty interval K ′ ⊂ K ∩ Σ1. Note that

D :=
∫

f 2(t) dη(t) > 0, (80)

Given i, j ∈ Z, if i, j ∈ [−L , L], we have
∥∥∥

(
σ x
i P

(L)
0 σ x

j

)

K

∥∥∥ =
∥∥∥P(L)

K σ x
j ψ

(L)
0

∥∥∥
∥∥∥P(L)

K σ x
i ψ

(L)
0

∥∥∥

=
∥∥∥P(L)

K δ j

∥∥∥
∥∥∥P(L)

K δi

∥∥∥ ≥
∥∥∥ f (H (L)

1 )δ j

∥∥∥
∥∥∥ f (H (L)

1 )δi

∥∥∥ , (81)

and hence it follows from (77) that

lim inf
L→∞

∥∥∥
(
σ x
i P

(L)
0 σ x

j

)

K

∥∥∥ ≥ ∥∥ f (H1)δ j
∥∥ ‖ f (H1)δi‖ , (82)

Given u ∈ Z, let H (u,L)
1 denote the restriction of H1 to the interval [u − L , u + L] =

u+[−L , L], and note that (77) and (78) hold with H (u,L)
1 substituted for H (L)

1 = H (0,L)
1 .

In particular,

lim
L→∞ ε(u,L) = 0, where ε(u,L) = E

(∥∥∥
(
f (H (u,L)

1 ) − f (H1)
)

δu

∥∥∥
)

, (83)
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and note that εL = ε(u,L) ≤ 2 is independent of u ∈ Z. Moreover,

E (‖ f (H1)δu‖) ≥ E

(
‖ f (H1)δu‖2

)
. (84)

It follows that for all i, j ∈ Z and L ∈ N, with |i − j | ≥ 3L we have (recall
‖ f ‖∞ ≤ 1)

E
(∥∥ f (H1)δ j

∥∥ ‖ f (H1)δi‖
) ≥ E

(∥∥∥ f (H ( j,L)
1 )δ j

∥∥∥
∥∥∥ f (H (i,L)

1 )δi

∥∥∥
)

− 2εL

= E

(∥∥∥ f (H ( j,L)
1 )δ j

∥∥∥
)

E

(∥∥∥ f (H (i,L)
1 )δi

∥∥∥
)

− 2εL

≥ E
(∥∥ f (H1)δ j

∥∥)
E (‖ f (H1)δi‖) − 4εL

≥ E

(∥∥ f (H1)δ j
∥∥2

)
E

(
‖ f (H1)δi‖2

)
− 4εL

= E

(
‖ f (H1)δ0‖2

)2 − 4εL ≥ D2 − 4εL ≥ 1
2D

2, (85)

where we used (83), the fact that the collections of random variables {ωk}k∈[ j−L , j+L]
and {ωs}s∈[i−L ,i+L] are independent, used (83) again, used (84), and the last inequality
follows from (78), (80), and (83), taking L sufficiently large. In particular, there exists
R̃ such that (85) holds if |i − j | ≥ R̃.

It follows from (82) and (85) that for |i − j | ≥ R̃ we have

E

(
lim inf
L→∞

(∥∥∥P(L)
K σ x

j ψ
(L)
0

∥∥∥
∥∥∥P(L)

K σ x
i ψ

(L)
0

∥∥∥
))

≥ 1
2D

2, (86)

which is (70).
Note that

√
f ∈ Cc(R) and χK ′ ≤ f ≤ √

f ≤ χK∩Σ1 . Given an observable X we
have

‖XK ‖22 =
∥∥∥P(L)

K X P(L)
K

∥∥∥
2

2
= tr

(
P(L)
K X∗P(L)

K X P(L)
K

)

≥ tr
(
P(L)
K X∗ f (H (L))X P(L)

K

)
= tr

(√
f (H (L))X P(L)

K X∗√
f (H (L))

)

≥ tr
(√

f (H (L))X f (H (L))X∗√
f (H (L))

)
=

∥∥∥
√

f (H (L))X
√

f (H (L))

∥∥∥
2

2
. (87)

Thus, we can estimate

∥∥∥
(
σ x
i P

(L)
0 σ x

j ± σ x
j P

(L)
0 σ x

i

)

K

∥∥∥
2

2

≥
∥∥∥

√
f (H (L)

1 )
(
σ x
i P

(L)
0 σ x

j ± σ x
j P

(L)
0 σ x

i

) √
f (H (L)

1 )

∥∥∥
2

2

=
∥∥∥T

(√
f (H (L)

1 )δi ,
√

f (H (L)
1 )δ j

)
± T

(√
f (H (L)

1 )δ j ,
√

f (H (L)
1 )δi

)∥∥∥
2

2

= 2

(∥∥∥
√

f (H (L)
1 )δi

∥∥∥
2 ∥∥∥

√
f (H (L)

1 )δ j

∥∥∥
2 ± Re

(〈
δ j , f (H (L)

1 )δi

〉)2
)

≥ 2

(∥∥∥ f (H (L)
1 )δi

∥∥∥
2 ∥∥∥ f (H (L)

1 )δ j

∥∥∥
2 −

∣∣∣
〈
δ j , f (H (L)

1 )δi

〉∣∣∣
)

. (88)
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It follows from (88) and (77) that

lim inf
L→∞

∥∥∥
(
σ x
i P

(L)
0 σ x

j ± σ x
j P

(L)
0 σ x

i

)

K

∥∥∥
2

2

≥ 2
(
‖ f (H1)δi‖2

∥∥ f (H1)δ j
∥∥2 − ∣∣〈δ j , f (H1)δi

〉∣∣
)

. (89)

Given a scale � and |i − j | ≥ 3�, we have
∣∣〈δ j , f (H1)δi

〉∣∣ =
∣∣∣
〈
δ j ,

(
f (H1) − f (H (i,�)

1 )
)

δi

〉∣∣∣ ≤
∥∥∥

(
f (H1) − f (H (i,�)

1 )
)

δi

∥∥∥ (90)

Since E
(‖ f (H1)δi‖

∥∥ f (H1)δ j
∥∥) ≤

(
E

(
‖ f (H1)δi‖2

∥∥ f (H1)δ j
∥∥2

)) 1
2
, it follows from

(89), (90), (85) and (83), that there exists �1, such that for |i − j | ≥ 3�1 we have

E

(
lim inf
L→∞

∥∥∥
(
σ x
i P

(L)
0 σ x

j ± σ x
j P

(L)
0 σ x

i

)

K

∥∥∥
2

2

)

≥ 2
((

E
(‖ f (H1)δi‖

∥∥ f (H1)δ j
∥∥))2 − E

(∥∥∥
(
f (H1) − f (H (i,�1)

1 )
)

δi

∥∥∥
))

≥ 2
(
1
4D

4 − ε�1

)
≥ 1

4D
4. (91)

The estimate (71) is proven.
Now let A(L)(t) be as in (73) (we mostly omit L from the notation), and let

Z (L)(t) =
(
A(L)(t) −

(
A(L)(t)

)∗)

K

= ei t H
(
σ x
i P0σ

x
j + σ x

j P0σ
x
i

)

K
−

(
σ x
i P0σ

x
j + σ x

j P0σ
x
i

)

K
e−i t H

= ei t H AK − AK e
−i t H = Bt − B∗

t , (92)

where

A = A(L)(0) = σ x
i P0σ

x
j + σ x

j P0σ
x
i = A∗ and Bt = ei t H AK . (93)

We have
∥∥∥Z (L)(t)

∥∥∥
2

2
= ∥∥Bt − B∗

t

∥∥2
2

= tr
(
Bt B

∗
t

)
+ tr

(
B∗
t Bt

) − tr (Bt Bt ) − tr
(
B∗
t B

∗
t

)

= 2 ‖AK ‖22 − 2Re tr
(
PK e

i t H APK e
i t H APK

)
. (94)

Since

tr
(
PK e

i t H APK e
i t H APK

)
=

∑

E,E ′∈σK

ei t (E+E
′) tr (PE APE ′ APE ) , (95)

K ⊂ (0,∞), and limT→∞ 1
T

∫ T
0 ei ts dt = 0 if s �= 0,we conclude that

lim
T→∞

1
T

∫ T

0

∥∥∥Z (L)(t)
∥∥∥
2

2
dt = 2 ‖AK ‖22 = 2

∥∥∥
(
σ x
i P0σ

x
j + σ x

j P0σ
x
i

)

K

∥∥∥
2

2
. (96)

The estimate (72) now follows from (71) ��
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4. Optimality of the Droplet Spectrum

We are ready to prove Theorem 1.

Proof. (Theorem 1) Suppose Property DL is valid for a disordered XXZ spin chain H
withΘ1 > 2Θ0. Let K = [Θ0,Θ2],whereΘ0 < Θ2 < Θ1, and ε = min {Θ1 − 2Θ2,Θ0} >

0. We pick and fix a Gevrey class function h such that

0 ≤ h ≤ 1, supp h ⊂ (−ε, ε), h(0) = 1, and
∣∣∣ĥ(t)

∣∣∣ ≤ Ce−c|t | 12 for all t ∈ R,

in particular,
∥∥∥ĥ

∥∥∥
1

< ∞. Note that P0 = h(H).

Let X,Y be local observables with X+,+ = Y +,+ = 0. It follows from Lemmas 5 and
6 that

‖(X P0Y )K ‖ = ‖(Xh(H)Y )K ‖
≤ C ‖X‖ ‖Y‖ e−m1(dist(X,Y ))

1
2 + C ′ sup

r∈R

∥∥(
Y PKh τr (X)

)
K

∥∥ , (97)

where
Kh ⊂ [2Θ0 − ε, 2Θ2 + ε] ⊂ [Θ0,Θ1] = I. (98)

It follows from Lemma 3 that

E

(
sup
r∈R

∥∥(
Y PKh τr (X)

)
K

∥∥
)

≤ E

(
sup
r∈R

∥∥(
Y PKh τr (X)

)
I

∥∥
)

≤ C ‖X‖ ‖Y‖ e− 1
8m dist(X,Y ), (99)

so we conclude that

E (‖(X P0Y )K ‖) ≤ C ‖X‖ ‖Y‖ e−m2(dist(X,Y ))
1
2
, (100)

where m2 = min
{
m1,

1
8m

}
> 0.

For all k ∈ Z we have σ x
k = (

σ x
k

)∗,
(
σ x
k

)+,+ = 0, and
∥∥σ x

k

∥∥ = 1. Thus it follows
from (100) that for all i, j ∈ [−L , L] we have (we put L back in the notation)

E

(∥∥∥
(
σ x
i P

(L)
0 σ x

j

)

K

∥∥∥
)

≤ Ce−m2(|i− j |) 12 , (101)

uniformly in L .
If H is a random XXZ spin chain, (101) contradicts (70) in Lemma 7 if |i − j | is

sufficiently large. Thus we conclude that we cannot have Θ1 > 2Θ0, that is, we must
have Θ1 ≤ 2Θ0. ��

5. Non-spreading of Information

In this section we prove Theorem 2.
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Proof (Theorem 2). Let Hω be a disordered XXZ spin chain satisfying Property DL.
Let X be a local observable with support S = SX = [sX , rX ]. In view of (38) we can
assume X+,+ = 0.

We take � ≥ 1, and set (recall (15))

O = [−L , L] \ S �
2

= [−L , sX − �
2 ) ∪ (rX + �

2 , L]
T = S� ∩ O = [sX − �, sX − �

2 ) ∪ (rX + �
2 , rX + �] (102)

We start by proving that

E

(
sup
t∈R

∥∥∥∥
(
P(O)
+ τt

(
XI0

)
P(O)
+ − τt (X)

)

I0

∥∥∥∥
1

)
≤ C‖X‖e− 1

16m�. (103)

Given an observable Z , we write ZI0 = Z1 + Z2 + Z3 + Z4, where

Z1 = P0Z P0; Z2 = PI Z PI = ZI ; Z3 = P0Z PI ; Z4 = PI Z P0. (104)

Since (Xi )I0 = (
XI0

)
i = Xi and τt (Xi ) = (τt (X))i for i = 1, 2, 3, 4, X1 = X+,+

1 = 0,
and (X4)

∗ = (X∗)3, to prove (103) it suffices to prove

E

(
sup
t∈R

∥∥∥
(
P(O)
+ τt

(
XI0

)
P(O)
+

)

i
− τt (Xi )

∥∥∥
1

)
≤ C‖X‖e− 1

16m� (105)

in the cases i = 2, 3.
If i = 3, we have

∥∥∥τt (X3) −
(
P(O)
+ τt

(
XI0

)
P(O)
+

)

3

∥∥∥
1

=
∥∥∥

(
τt

(
XI0

) − P(O)
+ τt

(
XI0

)
P(O)
+

)

3

∥∥∥
1

=
∥∥∥

(
τt

(
XI0

)
P(O)

−
)

3

∥∥∥
1

=
∥∥∥P0X P(X)

− e−i t H PI P
(O)
− PI

∥∥∥
1

≤ ‖X‖
∥∥∥P(X)

− e−i t H PI P
(O)
−

∥∥∥
1
, (106)

where we used P0X = P0X P(X)
− since X+,+ = 0. Thus it follows from (39) that

E

(
sup
t∈R

∥∥∥τt (X3) −
(
P(O)
+ τt

(
XI0

)
P(O)
+

)

3

∥∥∥
1

)
≤ C‖X‖e− 1

2m�. (107)

If i = 2, recall that Z2 = ZI . Since PI P
(O)
+ P0 = PI P0 = 0, we have

(
P(O)
+ τt

(
XI0

)
P(O)
+

)

I
=

(
P(O)
+ τt (XI ) P

(O)
+

)

I
. (108)

Thus
∥∥∥τt (XI ) −

(
P(O)
+ τt

(
XI0

)
P(O)
+

)

I

∥∥∥
1

=
∥∥∥

(
τt (XI ) P

(O)
−

)

I
+

(
P(O)

− τt (XI ) P
(O)
+

)

I

∥∥∥
1

≤
∥∥∥

(
τt (XI ) P

(O)
−

)

I

∥∥∥
1
+

∥∥∥
(
P(O)

− τt (XI )
)

I

∥∥∥
1

=
∥∥∥

(
τt (XI ) P

(O)
−

)

I

∥∥∥
1
+

∥∥∥
(
τt

(
X∗
I

)
P(O)

−
)

I

∥∥∥
1
. (109)



Dynamical Localization in the Disordered XXZ Spin Chain 1103

Since
∥∥∥

(
τt (XI ) P

(O)
−

)

I

∥∥∥
1

=
∥∥∥

(
τt (X) PI P

(O)
−

)

I

∥∥∥
1
, (110)

it follows from Lemma 3 that

E

(
sup
t∈R

∥∥∥τt (XI ) −
(
P(O)
+ τt

(
XI0

)
P(O)
+

)

I

∥∥∥
1

)
≤ C‖X‖e− 1

16m�. (111)

This finishes the proof of (105), and hence of (103).
We now observe that for all observables Z we have

P(O)
+ Z P(O)

+ = Z̃ P(O)
+ = P(O)

+ Z̃ , (112)

where Z̃ is an observable with SZ̃ = S �
2
and ‖Z̃‖ ≤ ‖Z‖. To see this, we write the

Hilbert space as H(L) = HO ⊗ HS �
2
, and let ψO = ⊗i∈O e+ be the all spins up vector

in HO. We define T : HS �
2

→ H(L) by Tη = ψO ⊗ η and R : H(L) → HS �
2
by

P(O)
+ ϕ = ψO ⊗ Rϕ. i.e., P(O)

+ = T R. Note ‖T ‖ , ‖R‖ ≤ 1. Given an observable Z , we
define Ẑ : HS �

2
→ HS �

2
by Ẑ = RZT . Then Z̃ = IHO ⊗ Ẑ satisfies (112).

It follows from (103) and (112) that

E

(
sup
t∈R

∥∥∥∥∥

(
P(O)
+

˜τt
(
XI0

) − τt (X)

)

I0

∥∥∥∥∥
1

)
≤ C‖X‖e− 1

16m�. (113)

Since P(O)
+

˜τt
(
XI0

)
does not have support in S�, we now define

X�(t) = P(T )
+

˜τt
(
XI0

) = ˜τt
(
XI0

)
P(T )
+ for t ∈ R, (114)

an observable with support in S �
2

∪ T = S�. and claim that X�(t) satisfies (17).

To show that (17) follows from (113), we consider an observable Y with SY = Oc =
S �

2
, and note that

(
P(T )
+ − P(O)

+

)
Y = P(O\T )

− P(T )
+ Y. (115)

Since P0P
(O\T )
− = P(O\T )

− P0 = 0, we have

(
P(O\T )

− P(T )
+ Y

)

I0
=

(
P(O\T )

− P(T )
+ Y

)

I
. (116)

We now apply (115) and (116) with Y = ˜τt
(
XI0

)
. We have

P(O)
+

(
˜τt
(
XI0

))+,+

P(O)
+ = P(O)

+ P(Oc)
+

˜τt
(
XI0

)
P(Oc)
+ P(O)

+

= P(Oc)
+ P(O)

+
˜τt
(
XI0

)
P(O)
+ P(Oc)

+ = P(Oc)
+ P(O)

+ τt
(
XI0

)
P(O)
+ P(Oc)

+

= P0τt
(
XI0

)
P0 = P0X P0 = P0X

+,+P0 = 0, (117)
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wherewe used (112), P(O)
+ P(Oc)

+ = P0 and X+,+ = 0. Since ˜τt
(
XI0

)
is supported onOc,

we conclude that

(
˜τt
(
XI0

))+,+

= 0.Thusweonlyneed to estimate
(
P(O\T )

− P(T )
+ Ya,b

)

I
,

where Y = ˜τt
(
XI0

)
and a, b = ±, but either a = − or b = −. If a = −, we have

P(O\T )
− P(T )

+ Y−,b = P(O\T )
− P(T )

+ P(Oc)
− Y−,b = P(O\T )

− P(Oc)
− P(T )

+ Y−,b, (118)

and hence

E

(
sup
t∈R

∥∥∥
(
P(O\T )

− P((T ))
+ Y−,b

)

I

∥∥∥
1

)
≤ ‖Y‖ E

(∥∥∥PI P(O\T )
− P(Oc)

−
∥∥∥
1

)

≤ C ‖X‖ e− 1
4m�, (119)

using (40). Since the b = − case is similar we conclude from (115), (116), and (114)
that

E

(
sup
t∈R

∥∥∥∥∥

(
P(O)
+

˜τt
(
XI0

) − X�(t)

)

I0

∥∥∥∥∥
1

)
≤ C ‖X‖ e− 1

4m� (120)

Combining (113) and (120) we get (17). ��

6. Zero-Velocity Lieb–Robinson Bounds

In this section we prove Theorem 3.

Proof (Theorem 3). In view of (38), we can assume X+,+ = Y +,+ = 0, and prove
the theorem in this case. This is the only step where we use cancellations from the
commutator. The estimate (18) then follows immediately from Lemma 3.

To prove (19), recall PI0 = PI + P0, and note that since X+,+ = Y +,+ = 0 we have
P0X P0 = P0Y P0 = 0, so

[
τt

(
XI0

)
,YI0

] = [τt (XI ) ,YI ] + PI (τt (X) P0Y − Y P0τt (X)) PI

+ P0 (τt (X) PI Y − Y PI τt (X)) P0 + (τt (XI ) Y P0 − P0Y τt (XI ))

+
(
P0Xe

−i t HYI − YI e
i t H X P0

)
. (121)

Note that [τt (XI ) ,YI ] can be estimated by (18). We have

‖P0τt (X) PI Y P0‖1 = ∥∥P0τt
(
X+,−)

PI Y
−,+P0

∥∥
1

≤ ‖X‖ ‖Y‖
∥∥∥P(X)

− e−i t H PI P
(Y )
−

∥∥∥
1
, (122)

so it can be estimated by (39), with a similar estimate for ‖P0Y PI τt (X) P0‖1.Moreover,

‖τt (XI ) Y P0‖1 = ∥∥τt (XI ) Y
−,+P0

∥∥
1

≤ ‖X‖ ‖Y‖
∥∥∥P(X)

− e−i t H PI P
(Y )
−

∥∥∥
1
+ ‖Y‖

∥∥∥PI X−,+e−i t H PI P
(Y )
−

∥∥∥
1
. (123)
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The first term can be be estimated by (40). To estimate the second term, let � =
dist(X,Y ) ≥ 1. Then

∥∥∥PI X−,+e−i t H PI P
(Y )
−

∥∥∥
1

≤
∥∥∥∥PI X

−,+P
(S

Y, �
2
)

+ e−i t H PI P
(Y )
−

∥∥∥∥
1
+

∥∥∥∥PI X
−,+P

(S
Y, �

2
)

− e−i t H PI P
(Y )
−

∥∥∥∥
1

≤ ‖X‖
(∥∥∥∥P

(S
Y, �

2
)

+ e−i t H PI P
(Y )
−

∥∥∥∥
1
+

∥∥∥∥PI P
(S

Y, �
2
)

− P(X)
−

∥∥∥∥
1

)
, (124)

where we used [X−,+, P
(S

Y, �
2
)

− ] = 0. Thus the second term in last line of (123) can be
estimated by (46) and (40).

The remaining three terms in (121) can be similarly estimated. (Although (121) is
stated for the commutator, it could have been stated separately for each term of the
commutator. The above argument does not use cancellations from the commutator.)
Combining all these estimates we get (19).

It remains to prove (20). Let X,Y and Z be local observables. In view of (19), we
only need to estimate the commutator of the counterterms in (19) with ZI , that is,

E

(
sup
t,s∈R

‖[(τt (X) P0τs(Y ) − τs(Y )P0τt (X))I , ZI ]‖1
)

. (125)

If we expand the commutator, we get to estimate several terms, the first one being

E

(
sup
t,s∈R

‖PI τt (X) P0τs(Y )PI Z PI ‖1
)

≤ E

(
sup
s∈R

‖P0τs(Y )PI Z PI ‖1
)

(126)

This can be estimated as in (122) and (123), and the other terms can be similarly esti-
mated, yielding (20). In particular, there are no counterterms in (20) since the quantity
in (125) decays.

We will now show that for the random XXZ spin chain the estimate (19) is not true
without the counterterms. In fact, a stronger statement holds. Let now H be a random
XXZ spin chain, and assume that for all local observables X and Y we have

E

(
sup
t∈R

∥∥[
τt

(
XI0

)
,YI0

]∥∥
1

)
≤ C‖X‖‖Y‖ϒ (dist(X,Y )) , (127)

uniformly in L , where the function ϒ : N → [0,∞) satisfies limr→∞ ϒ (r) = 0.
Assume (19) holds with the same right hand side as (127).

It follows from (19) and (127) that

E
(‖(X P0Y − Y P0X)I‖1

) ≤ E

(
sup
t∈R

‖(τt (X) P0Y − Y P0τt (X))I‖1
)

≤ E

(
sup
t∈R

∥∥[
τt

(
XI0

)
,YI0

] − (τt (X) P0Y − Y P0τt (X))I
∥∥
1

)

+ E

(
sup
t∈R

∥∥[
τt

(
XI0

)
,YI0

]∥∥
1

)

≤ 2C‖X‖‖Y‖ϒ (dist(X,Y )) (128)
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In particular, taking X = σ x
i and Y = σ x

j we get (putting L back in the notation)

E

(∥∥∥
(
σ x
i P

(L)
0 σ x

j − σ x
j P

(L)
0 σ x

i

)

I

∥∥∥
1

)
≤ 2C ϒ (|i − j |) . (129)

Thus, using ‖A‖22 ≤ ‖A‖ ‖A‖1 and
∥∥∥σ x

i P
(L)
0 σ x

j − σ x
j P

(L)
0 σ x

i

∥∥∥ ≤ 2, we get

E

(∥∥∥
(
σ x
i P

(L)
0 σ x

j − σ x
j P

(L)
0 σ x

i

)

I

∥∥∥
2

2

)
≤ 2E

(∥∥∥
(
σ x
i P

(L)
0 σ x

j − σ x
j P

(L)
0 σ x

i

)

I

∥∥∥
1

)

≤ 4C ϒ (|i − j |) . (130)

Since (130) is not compatible with (71), we have a contradiction, so (127) cannot
hold. ��

7. General Dynamical Clustering

We now turn to the proof of Theorem 4. We will use the following lemma.

Lemma 8. Let Θ2 < Θ1. Given α ∈ (0, 1), there exist constants mα > 0 and Cα < ∞,
such that, given Θ3 ≥ Θ1, there exists a function f ∈ C∞

c (R), such that

(i) 0 ≤ f ≤ 1;
(ii) supp f ⊂ [Θ2,Θ3 + Θ1 − Θ2];
(iii) f (x) = 1 for x ∈ [Θ1,Θ3];
(iv)

∣∣∣ f̂ (t)
∣∣∣ ≤ Cαe−mα |t |α for |t | ≥ 1;

(v)
∥∥∥ f̂

∥∥∥
1

≤ Cα max {1, ln (Θ3 − Θ2)}.

Proof. Let θ = Θ1 − Θ2. Pick a Gevrey class function h ≥ 0 such that

supp h ⊂ [0, θ ];
∫

R

h(x) dx = 1; and
∣∣∣ĥ(t)

∣∣∣ ≤ Che
−mh |t |α for all t ∈ R,

where Ch and mh > 0 are constants. Let

k(x) =
∫ x

−∞
h (y) dy for x ∈ R,

then k ∈ C∞(R) is non-decreasing and satisfies

0 ≤ k ≤ 1, supp k ⊂ [0,∞), and k(x) = 1 for x ≥ θ.

Given Θ3 ≥ Θ1, we claim that the function

f (x) = k(x − Θ2) − k(x − Θ3) (131)

has all the required properties. Indeed, properties (i)–(iii) are obvious. To finish, we
compute

f̂ (t) =
∫

R

e−i t x
(∫ x−Θ2

x−Θ3

h(y) dy

)
dx . (132)
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Integrating by parts and noticing that the boundary terms vanish, we get

f̂ (t) = −i
t

∫

R

e−i t x (h (x − Θ2) − h (x − Θ3)) dx = −i
t

(
e−iΘ2t − e−iΘ3t

)
ĥ(t)

= −i
t e

−iΘ2t
(
1 − e−i(Θ3−Θ2)t

)
ĥ(t). (133)

Thus
∣∣∣ f̂ (t)

∣∣∣ ≤ 2Ch

∣∣∣∣∣
sin

(
1
2 (Θ3−Θ2)t

)

t

∣∣∣∣∣ e
−mh |t |α for all t ∈ R. (134)

Parts (iv) and (v) follow. ��
We are ready to prove Theorem 4.

Proof (Theorem 4). Let Hω be a disordered XXZ spin chain satisfying Property DL.
Let K = [Θ0,Θ2], where Θ0 < Θ2 < min {2Θ0,Θ1}. Since (9) holds for the interval
[Θ0,min {2Θ0,Θ1}], we assume Θ1 ≤ 2Θ0 without loss of generality. We set K ′ =
(Θ2,∞).

Let X and Y be local observables. In view of (38), we can assume X+,+ = Y +,+ = 0,
and prove the theorem in this case. For a fixed L (we omit L from the notation), we have

RK (τ K
t (X) ,Y ) =

(
τ K
t (X) P̄K Y

)

K
=

(
τ K
t (X) PK ′Y

)

K
+

(
τ K
t (X) P0Y

)

K
. (135)

Fix α ∈ (0, 1), let Θ3 ≥ 2Θ2, to be chosen later, and let f be the function given in
Lemma 8. We have

(
τ K
t (X) PK ′Y

)

K
=

(
τ K
t (X) (PK ′ − f (H)) Y

)

K
+

(
τ K
t (X) f (H)Y

)

K
. (136)

To estimate the first term, note that PK ′ − f (H) = g(H), where |g| ≤ 1 and
g(H) = g(H)PI + g(H)P̄(Θ3), where P(Θ3) = P(−∞,Θ3] and P̄(Θ3) = 1− P(Θ3). The
term with g(H)PI can be estimated by Lemma 3,

E

(
sup
t∈R

∥∥∥
(
τ K
t (X) g(H)PI Y

)

K

∥∥∥
)

≤ E

(
sup
t∈R

∥∥(τt (X) g(H)PI Y )I
∥∥

)

≤ C ‖X‖ ‖Y‖ e− 1
8m dist(X,Y ). (137)

The contribution of g(H)P̄(Θ3) is estimated by Lemma 9,
∥∥∥

(
τ K
t (X) g(H)P̄(Θ3)Y

)

K

∥∥∥ ≤ ‖Y‖
∥∥∥PK Xg(H)P̄(Θ3)

∥∥∥

≤ ‖Y‖
∥∥∥P(Θ2)Xg(H)P̄(Θ3)

∥∥∥ ≤ ‖Y‖
∥∥∥P(Θ2)X P̄(Θ3)

∥∥∥

≤ CF ‖X‖ ‖Y‖ e− mF|SX | (Θ3−Θ2)
. (138)

To estimate the second term on the right hand side of (136), we recall that HK = 0
on supp f , so

(
τ K
t (X) f (H)Y

)

K
= ei t HK (X f (H)Y )K . (139)
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it follows from Lemmas 5, 6 and 8 that
(
τ K
t (X) f (H)Y

)

K
= A + T (K f ), (140)

where

‖A‖ ≤ 2C1Cα ‖X‖ ‖Y‖max {1, ln (Θ3 − Θ2)} e−m1(dist(X,Y ))α , (141)

T (J ) = ei t HK

(∫

R

e−ir HY PJ τr (X) f̂ (r) dr

)

K
for J ⊂ R, (142)

and

[0, 2Θ2 − Θ1] ⊂ K f ⊂ [2Θ0 − Θ3 − (Θ1 − Θ2) , 2Θ2 − Θ2] ⊂ (−∞,Θ2]. (143)

In view of (7), PK f = PK ′
f
+ P0, where K ′

f = K f ∩ K , so T (K f ) = T (K ′
f ) + T ({0}).

We have

E

(
sup
r∈R

∥∥∥T (K ′
f )

∥∥∥
)

≤
∥∥∥ f̂

∥∥∥
1
E

(
sup
r∈R

∥∥∥
(
Y PK ′

f
τr (X)

)

K

∥∥∥
)

≤ C max {1, ln (Θ3 − Θ2)} ‖X‖ ‖Y‖ e− 1
8m dist(X,Y ), (144)

where we used Lemmas 3 and 8. In addition,

T ({0}) = ei t HK (Y P0X)K =
(
τ K
t (Y ) P0X

)

K
. (145)

To see this, let E, E ′ ∈ K . Proceeding as in (68),we have

PE

(∫

R

e−ir HY P0τr (X) f̂ (r) dr

)
PE ′ =

∫

R

PEe
−ir HY P0Xe

−ir H PE ′ f̂ (r) dr

=
(∫

R

e−ir(E+E ′) f̂ (r) dr

)
PEY P0X PE ′ = f (E + E ′)PEY P0X PE ′

= PEY P0X PE ′ , (146)

since f (E + E ′) = 1 as E + E ′ ∈ [2Θ0, 2Θ2] ⊂ [Θ1,Θ3].
Combining (135), (136), (137), (138), (140), (141), (144), and (145), we obtain
∥∥∥RK (τ K

t (X) ,Y ) −
(
τ K
t (X) P0Y

)

K
−

(
τ K
t (Y ) P0X

)

K

∥∥∥

≤ C ‖X‖ ‖Y‖
(
max {1, ln (Θ3 − Θ2)} e−m2(dist(X,Y ))α + e

− mF|SX | (Θ3−Θ2)
)

, (147)

where m2 = min
{
m1,

1
8m

}
> 0.

We now choose Θ3 = Θ2 + |SX | (dist(X,Y ))α , note that Θ3 ≥ 2Θ2 if dist(X,Y ) ≥
Θ

1
α

2 , obtaining
∥∥∥RK (τ K

t (X) ,Y ) −
(
τ K
t (X) P0Y

)

K
−

(
τ K
t (Y ) P0X

)

K

∥∥∥

≤ C ‖X‖ ‖Y‖ (1 + ln |SX |) e−m3(dist(X,Y ))α , (148)
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with m3 = 1
2 min {m2,mF } > 0, for dist(X,Y ) sufficiently large. Observing that the

argument can be done with Y instead of X , we get (29).
Since
(
[τ K

t (X) ,Y ]
)

K
= RK

(
τ K
t (X) ,Y

)
− RK

(
Y, τ K

t (X)
)
+ [τt (XK ) ,YK ], (149)

(30) follows immediately from (29) and (18).
To conclude the proof, we need to show that for a random XXZ spin chain H the

estimates (29) and (30) are not true without the counterterms.
Suppose (29) holds without counterterms, even in a weaker form: for all local ob-

servables X and Y we have

E

(
sup
t∈R

∥∥∥RK

(
τ K
t (X) ,Y

)∥∥∥
)

≤ C (min {|SX | , |SY |}) ‖X‖‖Y‖ϒ (dist(X,Y )) , (150)

uniformly in L , where the function ϒ : N → [0,∞) satisfies limr→∞ ϒ (r) = 0.
Assume (29) holds with the same right hand side as (150). Taking X = σ x

i and Y = σ x
j ,

and proceeding as in (128)-(129), we get (putting L back in the notation)

E

(∥∥∥
(
σ x
i P

(L)
0 σ x

j + σ x
j P

(L)
0 σ x

i

)

K

∥∥∥
)

≤ 4C ϒ (|i − j |) . (151)

Recall that (in the notation of the proof of Lemma 7, as in (69)),

Z :=
(
σ x
i P

(L)
0 σ x

j + σ x
j P

(L)
0 σ x

i

)

K
= T

(
P(L)
K δi , P

(L)
K δ j

)
+ T

(
P(L)
K δ j , P

(L)
K δi

)
.

(152)

Let V be the two dimensional vector space spanned by the vectors P(L)
K δi and P(L)

K δ j ,
and let QV be the orthogonal projection onto V . We clearly have Z = QV ZQV and
‖Z‖ ≤ 2, and hence

‖Z‖22 ≤ 2 ‖Z‖2 ≤ 4 ‖Z‖ , (153)

so it follows from (71) that there exist constants γK > 0 and RK such that

E

(∥∥∥
(
σ x
i P

(L)
0 σ x

j + σ x
j P

(L)
0 σ x

i

)

K

∥∥∥
)

≥ 1
4E

(∥∥∥
(
σ x
i P

(L)
0 σ x

j + σ x
j P

(L)
0 σ x

i

)

K

∥∥∥
2

2

)

≥ 1
4γK , (154)

for all i, j ∈ Z with |i − j | ≥ RK .
Since (151) and (154) establish a contradiction, we conclude that (150) cannot hold.
We show the necessity of the counterterms in (30) in a similar way. Note that the

counterterm for X = σ x
i and Y = σ x

j is given by Z (L)(t) as in (92). If we assumed the
validity of (30) without counterms, we would have

E

(
sup
t∈R

∥∥∥Z (L)(t)
∥∥∥

)
≤ 4C ϒ (|i − j |) , (155)

where the function ϒ is as in (151). Since Z (L)(t) is a rank 4 operator, we have
∥∥∥Z (L)(t)

∥∥∥
2

2
≤ 4 ‖Z‖2 ≤ 16 ‖Z‖ , (156)
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and hence

sup
t∈R

∥∥∥Z (L)(t)
∥∥∥ ≥ 1

16 sup
t∈R

∥∥∥Z (L)(t)
∥∥∥
2

2
≥ 1

16 lim
T→∞

1
T

∫ T

0

∥∥∥Z (L)(t)
∥∥∥
2

2
dt, (157)

so (155) and (72) give a contradiction, an hence (155) cannot hold. ��

A. A Priori Transition Probabilities for Spin Chains

The following lemma is an adaptation of [7, Lemma 6.6(2)] to our needs. It holds
for every spin chain with uniformly norm-bounded next-neighbor interactions (more
generally, for uniformly norm-bounded interactions of fixed finite range).

Given a spin chain Hamiltonian H (L) and an energy E ∈ R,we write P(E,L) =
χ(−∞,E](H (L)) for the Fermi projection, and let P̄(E,L) = 1 − P(E,L).

Lemma 9. Let H (L) = ∑L−1
i=−L Y

(L)
i,i+1 be a spin chain Hamiltonian on H(L) =

⊗i∈[−L ,L]C2
i , C

2
i = C

2 for i ∈ Z, where Y (L)
i,i+1 is a local observable with support

S
Y (L)
i,i+1

= [i, i + 1] for i ∈ [−L , L − 1]. Suppose

max
i∈[−L ,L−1]

∥∥∥Y (L)
i,i+1

∥∥∥ ≤ θ < ∞. (158)

Then there exists constants mF > 0 and CF < ∞, depending on θ , but and independent
of L, such that for any local observable X and energies E < E ′ we have

∥∥∥P(E,L)X P̄(E ′,L)
∥∥∥ ≤ CF ‖X‖ e− mF|SX | (E ′−E)

. (159)

Note that if H = Hω is a disordered XXZ spin chain, we can write (cf. (6))

H (L)
ω =

L−1∑

i=−L

Y (L)
ω;i,i+1, (160)

where Y (L)
ω;i,i+1 is a local observable with SY (L)

ω;i,i+1
= [i, i + 1], and

sup
ω∈[0,1]Z,L∈N

max
i∈[−L ,L−1]

∥∥∥Y (L)
ω;i,i+1

∥∥∥ ≤ θ = 1

2

(
1 + 1

Δ

)
+ 2λ + β < ∞. (161)

Proof (Lemma 9). Let E < E ′ and let X be a local observable.Without loss of generality
we take ‖X‖ = 1. We proceed as in [7, Proof of Lemma 6.6(2)]. For all r > 0 we have
(we omit L from the notation)

∥∥∥P̄(E ′)X P(E)
∥∥∥ ≤ e−r(E ′−E)

∥∥∥er H Xe−r H
∥∥∥ (162)

Hadamard’s Lemma gives

er H Xe−r H = X +
∞∑

n=1

rn
n! ad

n
H (X), where adH (·) = [H, ·], (163)
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and hence

∥∥∥er H Xe−r H
∥∥∥ ≤ 1 +

∞∑

n=1

rn
n!

∥∥ad n
H (X)

∥∥ . (164)

Letting S = SX = [sX , rX ], γ = |SX | = rX − sX + 1, and S j,k = [sX − j, rX + k] ∩
[−L , L] for j, k = 0, 1, 2, . . ., we can see that

adH (X) = [H, X ] =
J1∑

j=1

Z (1)
j , with J1 ≤ γ + 1, (165)

where each Z (1)
j = [Yi,i+1, X ] for some i ∈ S1,0, so

∥∥∥Z (1)
j

∥∥∥ ≤ 2θ and eitherS
Z (1)
j

⊂ S1,0

or S
Z (1)
j

⊂ S0,1, and we have

‖adH (X)‖ ≤ 2θ(γ + 1). (166)

Using induction, we can show that for n = 1, 2, 3, . . . (with J0 = 1)

ad n
H (X) =

Jn∑

j=1

Z (n)
j , with Jn ≤ (γ + n)Jn−1, (167)

where each Z (n)
j is a local observable with

∥∥∥Z (n)
j

∥∥∥ ≤ (2θ)n and S
Z (n)
j

⊂ Sk,k′ for some

k, k′ ∈ {0, 1, 2 . . .} with k + k′ ≤ n, and we have

∥∥ad n
H (X)

∥∥ ≤ (2θ)n Jn ≤ (2θ)n
n∏

k=1

(γ + k) ≤ (2θγ )n
n∏

k=1

(1 + k)

= (2θγ )n (n + 1)! (168)

We conclude that

∥∥∥er H Xe−r H
∥∥∥ ≤ Cr = 1 +

∞∑

n=1

(2rθγ )n (n + 1). (169)

Choosing r = (4θγ )−1, we get C̃ = C(4θγ )−1 < ∞, and it follows from (162) that

∥∥∥P̄(E ′)X P(E)
∥∥∥ ≤ C̃e−(4θγ )−1(E ′−E), (170)

proving the lemma. ��
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