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Abstract: We propose an extension of the recently-proposed volume conjecture for
closed hyperbolic 3-manifolds, to all orders in perturbative expansion. We first derive
formulas for the perturbative expansion of the partition function of complex Chern–
Simons theory around a hyperbolic flat connection, which produces infinitely-many
perturbative invariants of the closed oriented 3-manifold. The conjecture is that this
expansion coincides with the perturbative expansion of the Witten–Reshetikhin–Turaev
invariants at roots of unity q = e2π i/r with r odd, in the limit r → ∞. We provide
numerical evidence for our conjecture.
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1. Introduction and Summary

The goal of this paper is twofold:

A. We derive a perturbative expansion (4), around a hyperbolic flat connection, for
the partition function of SL(2, C) Chern–Simons theory [1,2] on a general closed
hyperbolic oriented 3-manifold. Our starting point is the finite-dimensional integral
expression (17) for the partition function.

B. Based on the perturbative expansion mentioned above, we present a new all-order
perturbative extension (5) of the recently-proposedvolumeconjecture [3] forWitten–
Reshetikhin–Turaev (WRT) invariants [4,5] for closed oriented 3-manifolds.

In the rest of this introduction, let us explain these two points in more detail.

1.1. Volume conjecture for knot complements. The celebrated volume conjecture [6–
8] (see [9] for review) states a surprising relation between two a-priori very different
objects.

The first is the colored Jones polynomial [10] of a link (or a knot)1 L in the three-
sphere S3. We denote this by JN (L; q), where N denotes the coloring (an integer spec-
ifying a representation of SU (2)), and q is a formal parameter.2

The second is the complex hyperbolic volume3 of the knot complement S3\L , which
is a combination of the hyperbolic volume together with the Chern–Simons invariant:
Vol(L) + iCS(L).

The volume conjecture [6–8] states that the asymptotic behavior of the root-of-unity
value of the former gives the latter:

lim
N→∞ JN (L; q = e

π i
N ) = exp

[
N

2π
(Vol(L) + iCS(L))

]
. (1)

1.2. Volume conjecture for WRT invariants. A natural extension of the volume conjec-
ture is to consider a closed hyperbolic oriented 3-manifold M , where the relevant quan-
tity replacing the Jones polynomial would be the WRT invariant, which was formulated
mathematically by Reshetikhin and Turaev [5] based on the physics idea of Witten [4].
This invariant is defined from a modular Hopf algebra, which can be obtained from a
quantum group Uq(sl2) when q is a primitive root of unity.4 For q = exp(π i/r) we

denote the associated invariant by τ
SU(2)
r (M), where r is an integer r ≥ 3.5 It is then

1 A link in general has several components. A link is called a knot if it has only one component.
2 The Jones polynomial referred here is the normalized Jones polynomial, namely an unknot has a trivial

Jones polynomial. Also, the colored Jones polynomial in our convention is a Laurent polynomial in q, and not
in q1/2. In the literature q here is sometimes denoted by q1/2.

3 More generally this is a simplicial volume (Gromov norm) [11].When L is a hyperbolic link, namelywhen
S3\L is hyperbolic, then the simplicial volume coincides with the hyperbolic volume. Since we are mostly
interested in the hyperbolic cases, we will hereafter mostly refer to this quantity as “hyperbolic volume”.

4 Contrary to the case of the colored Jones polynomial where q is a formal parameter, WRT invariant is
defined only for q being a primitive root of unity. If we try to construct and expression in q whose values
at root of unity reproduce the WRT invariants, we need to consider a certain cyclotomic completion of the
polynomial ring in q [12].

5 In the language of SU (2) Chern–Simons theory this integer r is the 1-loop corrected level r = k + 2,
where k is an integer known as the level and is a parameter in front of the classical Chern–Simons action.
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natural to consider the limit r → ∞, and expect that we again reproduce the complex
simplicial volume of the closed 3-manifold:

lim
r→∞ τSU(2)

r (M)
??= exp

[ r

2π
(Vol(M) + iCS(M))

]
. (2)

It turns out, however, this naive conjecture does not work;WRT partition function grows
in a power-law in r , and not exponentially.6

A new insight was brought by the recent work of Chen and Yang [3], who considered
the root-of-unity value q = e2π i/r with odd r . Let us denote the associated WRT
invariant by τ

SO(3)
r (M), since this invariant is known to be related to the group SO(3),

rather than SU (2). We will call this invariant the SO(3)-WRT invariant. This invariant
is discussed for example by Kirby and Melvin [16], and studied further by Blanchet et
al. [17] andLickorish [18] in the context of skein-theory reformulation ofWRT invariants
by Lickorish [19–21].7

Now the conjecture due to [3] states the following asymptotics:

lim
r∈2Z+1;r→∞ τSO(3)

r (M) = exp
[ r

2π
(Vol(M) + iCS(M))

]
. (3)

1.3. All-order generalization. We are now ready to state the main results of this paper.
First, we introduce a perturbative expansion for the state-integral model for complex

Chern–Simons theory on a closed hyperbolic oriented 3-manifold M , whose partition
function (whichwe denote by Z�(M)) is written as a finite-dimensional integral.We then
consider the�-expansion of this quantity around the complete hyperbolic flat connection:

Z�(M)
�→0−→ exp

[
1

�
Shyp0 (M) + Shyp1 (M) + �Shyp2 (M) + · · ·

]
. (4)

Here each of the expansion coefficient Shypn (M) is an interesting perturbative invariant
of the closed 3-manifold M . We will give a concrete prescription for computing these
invariants.8

We then claim that the expansion (4) coincides with the r → ∞ of theWRT invariant
τ
SO(3)
r (M):9

τSO(3)
r (M)

r∈2Z+1;r→∞
−−−−−→ exp

[
1

�
Shyp0 (M) + Shyp1 (M) + �Shyp2 (M) + · · ·

] ∣∣∣
�= 2π i

r

. (5)

Since thefirst coefficient S0(M) is shown to coincidewith the complexvolume iVol(M)−
CS(M), (5) contains and generalizes the conjecture (3).

6 See nevertheless [13–15] for related discussion, which applies a formal saddle point analysis to the WRT

invariant τSU(2)
r and obtained the complex volume.

7 τ
SO(3)
r (M) (r odd) was denoted by τ ′ in [16], and θr in [17]; they all coincide, up to overall normalization

factors [22]. Our normalization follows [18].
8 We can also consider non-perturbative evaluation of the state-integral along a proper converging integra-

tion cycle. The non-perturbative partition function can be identified as a Borel resummation of the perturbative
expansion [23]. Thanks to the so-called 3d–3d correspondence [24,25], the partition function can be interpreted
as a partition function of a three-dimensional N = 2 supersymmetric gauge theory on a curved background.

9 More precisely, the perturbative invariants Sn=0,1,2 has ambiguities as stated in (24), and the match is
meant to be modulo this ambiguity.
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The rest of the paper is organized as follows. In Sect. 2, we explain how to obtain
the integral formula for the partition function for the closed 3-manifold, as motivated
from complex Chern–Simons theory. In Sect. 3, we discuss the perturbative expansion
of the partition function around a hyperbolic flat connection. In Sect. 4, we check for
some examples the generalized conjecture (5) numerically. We also include appendices
for review materials.
Note added: After submission of the manuscript to arXiv, we have been noticed of the
preprint by Tomotada Ohtsuki [26], which also discusses asymptotic expansion of WRT
invariants.

2. State-Integral Model for Closed 3-Manifolds

In this section, we introduce a partition function Z�(M) for a closed oriented hyperbolic
3-manifold M . We then go on to discuss its perturbative expansion around a hyperbolic
flat connection.

2.1. Derivation. Our discussion of closed 3-manifolds relies on the famous mathemat-
ical theorem by Lickorish and Wallace [27,28], which states that any closed 3-manifold
can be obtained by a Dehn filling of the complement S3\L of a link L inside S3.

The task of deriving a partition function is therefore divided into two. The first is to
derive a formula for the partition function for a link complement S3\L . The second is
to study the effect of the Dehn filling on the partition function.

2.1.1. State-integral model for link complements. For a knot/link complement, there
are several developed state-integral models [29–31]. For our purpose, in particular, we
will use the state-integral model developed in [30,32] (see also [33–36] for discussion
of higher order terms for knot complements). This result was motivated from complex
Chern–Simons theory [1,2]; in our context this is natural since Jones polynomial is
nothing but the vacuum expectation value of the Wilson line in Chern–Simons theory
[4] and an interpretation for the volume conjecture (for a link complement) is provided
in [37].

Given a hyperbolic knot/link complement, we can consider its regular ideal trian-
gulation. Let us denote the number of ideal tetrahedra by k. The gluing rules of the
ideal tetrahedra are specified by the gluing datum {A, B,C, D, �ν, �ν′}. Here A, B,C, D
are k × k matrices, and �ν, �ν′ are k-vectors. For details, see “Appendix 4”. Then the
state-integral expression for the link complement is [30,32]

Z (Xα,Pα)
�

(M̂\L; Xα)

= 2√
det B

∫ k∏
i=1

dZi√
2π�

exp

(
1

�
Q( �Z , �X; {A, B,C, D, �ν, �ν′})

) k∏
i=1

��(Zi ). (6)

This finite dimensional integration can be interpreted as a SL(2, C) Chern–Simons
partition function on the link complement M̂\L with analytically-continuned Chern–
Simons level 2π i

�
.10 Let us explain this formula in detail. In order to compute the partition

10 It is known that this state-integral model does not capture reducible flat connections. We will, however,
be interested in the perturbative expansion of our partition function around a hyperbolic flat connection, which
is irreducible, and hence this subtlety is not important for the considerations of this paper.
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function we need to specify the choice of polarization on the boundary of M̂\L . In our
case, this is to choose a basis of H1(∂(M̂\L), Z), and if the link L has S components we
need to pick up S pairs of generators (Xα, Pα)Sα=1. For our later purposes it is actually
sufficient to restrict to the case M̂ = S3. Then we have a canonical choice

Xα = mα (merdian), Pα = lα (longitude). (7)

for each boundary torus labeled by α. Once we fix a polarization (Xα, Pα)Sα=1, the parti-
tion function depends non-trivially on the deformation parameters (boundary conditions)
(Xα)Sα=1; their effect is to modify the holonomy along the meridian cycles of the knot
complements (see (78) and (79) in “Appendix”). The integral (6) is over k parameters
{Zi }ki=1, one for each tetrahedron. For the integrand, the expression Q on the exponent
is a quadratic expression in �Z and �X :11

Q( �Z , �X; {A, B,C, D, �ν, �ν′}) := 1

2
�Z B−1A �Z + 2 �XDB−1 �X + (2π i + �) �f B−1 �X

+
1

2

(
iπ +

�

2

)2
�f B−1�ν − �Z B−1

((
iπ +

�

2

)
�ν + 2 �X

)
. (8)

The rest of the integrand is a product of the quantum dilogarithm function��(Z), which
is defined as (for Re(�) < 0) [38]12

��(Z) :=
∞∏
r=1

1 − (e�)r e−Z

1 −
(
e− (2π i)2

�

)r−1

e−2π i Z
�

. (9)

The parameter � is the expansion parameter of the partition function, which is to be
identified with the parameter of the same name in (5).

Given a knot complement, the choice of an ideal triangulation, as well as its gluing
datum, is far from unique. It can be shown, however, that the partition function (6) is
independent of such choices up to the following ambiguity [32]:13

exp

(
π2

6�
Z +

iπ

4
Z +

�

24
Z

)
. (10)

In the following � will be taken to be pure imaginary (see (20)), in which case the
ambiguity is only a phase factor.

2.1.2. Dehn-filling formula. The second ingredient is the Dehn-filling formula, which
specifies the change of the partition function under the Dehn filling (a similar formula
for compact-group Chern–Simons theory is well-known, see [4]).

Consider a 3-manifold obtained by performing (pα, qα)-Dehn filling (α = 1, . . . , S′)
for the knot complement M̂\L along S′(≤ S) components of a link L out of S compo-
nents. We denote this manifold as

(M̂\L){pαXα+qαPα}S′
α=1

. (11)

11 We did not include �f , �f ′′ in the arguments of Q since they are determined by other arguments (84).
12 This function has a symmetry under b → 1/b, where b is a parameter related to � by � = 2π ib2. This

symmetry, however, is not important for a perturbative consideration of this paper.
13 The π2

6 ambiguity at �
−1 can actually be lifted to 2π2 [39].
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where in the notation pαXα + qαPα denotes the cycle of the boundary torus which
becomes contractible after Dehn filling (see (72) in “Appendix”). Let us first assume
that qα 
= 0 for all α. Then our Dehn-filling formula is given by [23]14

Z
(Xα,Pα)S

α=S′+1
�

(
(M̂\L){pαXα+qαPα}S′

α=1
; {Xα}Sα=S′+1

)

=
∫ ⎛

⎝ S′∏
α=1

dXα√
2π� qα

Kpα,qα (Xα)

⎞
⎠ Z (Xα,Pα)

�
(M̂\L; Xα), (12)

where sα (and rα) is defined by the condition15

(
rα sα
pα qα

)
∈ PSL(2, Z), (13)

and the integral kernel for the Dehn filling is given by

Kp,q(X) := exp

[
s

q

(
π2

�
− �

4

)
+

pX2

q�

]

×
(
e
2π i X
�q sinh

(
X − iπs

q

)
− e− 2π i X

�q sinh

(
X + iπs

q

))
. (14)

When qα = 0, the formula (12) should be modified as

∫
dXα√
2π� qα

Kpα,qα (Xα)
qα=0

−−−−−→
∫

dYαdXα√
2π�

sinh(Yα) sinh

(
2π iYα

�

)
e− 2XαYα

� .

(15)

The resulting 3-manifold has (S − S′) cusp boundaries and its partition function Z�

depends on the same number of variables {Xα}Sα=S+1. When S = S′, the 3-manifold

(M̂\L){pαXα+qαPα}Sα=1
is a closed 3-manifold.

It is worth pointing out that a version of the Dehn-filling formula was proposed in
[29, Section 3]. The integral kernel there coincides with the leading semiclassical piece
of our integral kernel Kp,q ,

Kp,q

�→0
−−−−−→ 1

2
exp

[
1

�

(
p

q
X2 +

2π i

q
X +

π2s

q

)
+O(�0)

]
, (16)

where we assumed Re(X/q) > 0. This means that the two proposals give the same
result as far as the leading classical results are concerned. Leading classical part of the
state-integral model in [29] is shown to give the complex hyperbolic volume of M , so
does our state-integral model. However, the two proposals give different answers for
higher orders in �, and the difference will crucially affect the discussion of the volume
conjecture below.

14 See also [40] for recent discussion on Dehn fillings.
15 As discussed before sα is defined up to qαZ. This ambiguity does not change the formula (12) modulo

(10). The formula is also invariant under the sign flip of (p, q), which can be seen explicitly by noting that

Z (Xα,Pα)
�

(M̂\L; Xα) = Z (Xα,Pα)
�

(M̂\L; −Xα) by Weyl invariance andKpα,qα (Xα) = K−pα,−qα (−Xα).
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2.2. Main formula. We are now ready to give the final expression for the state-integral
model. Suppose that a closed 3-manifold M is obtained from the knot complement M̂\L
by (pα, qα)-Dehn surgeries on the α-th component: in our previous notation we have
M = (M̂\L){pαXα+qαPα}Sα=1

. For this 3-manifold, our formula is given by a concrete

finite-dimensional integral expression,16 which is obtained by (6) and (12):17

Z�(M) = 2√
det B

∫ S∏
α=1

Kpα,qα (X)dXα√
2π�qα

k∏
i=1

��(Zi )dZi√
2π�

× exp

(
1

�
Q( �Z , �X; {A, B,C, D, �ν, �ν′})

)
. (17)

The formula is only valid for qα 
= 0 and it should be modified as (15) when qα = 0. The
expressionof state-integral dependsbothonbasis choice (Xα, Pα)Sα=1 ofH1

(
∂(M̂\L), Z

)
and filling slopes (pα, qα)Sα=1. The final state-integral, however, turns out to depend only
on the combination {pαXα + qαPα}Sα=1 and invariant under following transformation:

(
X̃α

P̃α

)
=

(
aα bα

cα dα

)(
Xα

Pα

)
,

(
p̃α

q̃α

)
=

(
dα −cα

−bα aα

)(
pα

qα

)
,

with

(
aα bα

cα dα

)
∈ SL(2, Z). (18)

This is consistent with the obvious fact that the closed 3-manifold M is invariant under
the transformation. The gluing datum (A, B, �ν) and (C, D, �ν′) depends on the choice of
Xα and Pα respectively and let denote them as (AX, BX, �νX) and (CP, DP, �ν′

P
). Under

the transformation of (Xα, Pα), the matrices transforms as

(
(A

X̃
)αi (B

X̃
)αi (ν

X̃
)α

(C
P̃
)αi (D

P̃
)αi (ν′

P̃
)α

)
=

(
aα 2bα

cα/2 dα

)(
(AX)αi (BX)αi (νX)α
(CP)αi (DP)αi (ν′

P
)α

)
(19)

for α = 1, . . . , S and other components do not transform.
Notice that the Dehn-filling representation of a closed 3-manifold is far from unique,

and there are ambiguities associated with the Kirby moves [44]. While the connection
with complex Chern–Simons theory suggest that our partition function is invariant under
suchmoves (up to possibly overall ambiguities discussed in (10)), it would be interesting
to prove thismore directly from the formulas above.We leave the detailed proof for future
work.

16 Our partition function (17) can be thought of as finite-dimensional counterparts of the infinite-dimensional
path integral. Since the complex Chern–Simons theory has a complex gauge field, its action is also complex
and the precise definition of the path integral requires a subtle choice of the integration contour [2]. This is
reflected in the choice of integration contour in (17). These subtleties, however, are irrelevant for perturbative
expansions discussed in this paper.
17 We can also apply the Dehn filling prescription (12) to the cluster partition of [41–43]. It would be

interesting to study the resulting partition function.
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3. Perturbative Expansion

In this section, we work out the perturbative expansion of the partition function of the
state-integral model (17) for a closed hyperbolic 3-manifold M . For the expansion, we
always assume that

� = 2π ib2 ∈ iR+. (20)

Using the symmetry in (18) we can always make

qα 
= 0 (21)

and we assume it in the most discussions of this section. For the expansion, let us first
expand the integrand of the state-integral model in powers of �:

∫ S∏
α=1

dXα

k∏
i=1

dZi exp

( ∞∑
n=0

Wn( �Z , X)�n−1

)
. (22)

For this expansion we can use the �-expansion of the quantum dilogarithm function ��

(9) [45]:

log��(Z) ∼
∞∑
n=0

Bn�
n−1

n! Li2−n(e
−Z ), for 0 < Im[Z ] < π . (23)

where Bn is the n-th Bernoulli–Seki number with B1 = 1/2.
By evaluating (22) in the saddle point approximation (around a saddle point, whose

choice we will discuss momentarily), we will obtain an expansion of the form (4).
Each of the Sn(M) is a well-defined perturbative invariant of 3-manifolds, with curious
number-theoretic properties. For SU (2) Chern–Simons theory, such an expansion is
considered for example in [46,47]. For SL(2, C) Chern–Simons theory, see [32,45] for
similar perturbative invariants for knot complements.

Due the ambiguity in (10), the perturbative series {Sn(M)} is defined up to

S0 ∼ S0 +
π2

6
Z, S1 ∼ S1 + i

π

4
Z, S2 ∼ S2 +

Z

24
. (24)

Under the change of orientation M → M ,

Z�(M) = (Z�(M))∗ ⇒ Sn(M) = (−1)n+1(Sn(M))∗. (25)

In the rest of this section, we assume for simplicity of notation that S = S′ = 1;
namely, the closed 3-manifold M is obtained by a Dehn filling along a one-component
link (knot) L ,whichwealsodenote byK , tomatch standardnotation:M = (M̂\K )pX+qP.
It is straightforward to repeat the discussion for general values of S.
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3.1. Classical part: complex hyperbolic volume. As already mentioned above, to define
the perturbative expansion S(c)

n , we need to specify a saddle point (X (c), Z (c)). For
the formulation of the generalized volume conjecture for WRT invariants (5), we are
particularly interested in perturbative expansion Shypn around saddle points corresponding
to the hyperbolic structure of M .

To discuss this more explicitly, let us start wth the leading term of the integrand (22).
For which is given by (ε := Sign(Re[X/q]))

W0(X, �Z) = W0( �Z) +
p

q
X2 + ε

2π i

q
X +

δ

q
π2

+

(
2 �XDB−1 �X + (2π i) f B−1 �X − 1

2
π2 �f B−1�ν − �Z B−1(iπ �ν + 2 �X))

,

withW0( �Z) = 1

2
�Z B−1A �Z +

k∑
i=1

Li2(e
−Zi ). (26)

Here the vector �X is (X, 0, . . . , 0) as defined in Eq. (79). The formula (26) coincides
with the so-called Neumann–Zagier potential for a knot complement [48], and the for-
mula (26) recovers its transformation rule under the Dehn filling. Indeed, saddle point
equations with respect to Zi are

∂W0

∂Zi
= 0 ⇒ A �Z + B �Z ′′ = iπ �ν + 2 �X , (27)

where we defined Z ′′
i := log(1 − 1

zi
). This equation coincides with the gluing Eq. (77)

upon exponentiation and under the identification eZi = zi , eZ
′′
i = z′′i = 1 − z−1

i (see
also (76)). We also need to take into account the saddle point equation for X :

∂W0

∂X
= 0 ⇒ pX + qP = −π iε, (28)

where

P := (C �Z + D �Z ′′ − iπ �ν′)1. (29)

In the above expressions, we simplify the equations using the equation ofmotion (27) and
the symplectic property of gluing matrices (82). These saddle point Eqs. (27), (28), (29)
are equivalent to the gluing equations for closed 3-manifold studied by Neumann and
Zagier [48].

Generically a solution to these equations gives a PSL(2, C) flat connection on M .
We can explicitly construct Hom(π1(M) → PSL(2, C)) from the solution [43,49]. But
there are two subtle points as emphasized in [50]. First, some flatconnections on a closed
3-manifold M cannot be constructed from solutions of the gluing Eqs. (27) and (28).
This is because we are using a state-integral model based on ideal triangulations which
do not capture reducible flat connections on a knot complement, M̂\K . This means
flat connections on M that originated from a reducible flat connection on the knot
complement cannot be found as a saddle point in the state-integral model. Second, some
solutions of the gluing equations might not give a flat connection on M . The solutions of
the gluing Eqs. (27) and (28) are guaranteed to correspond to a flat connection on M̂\K
whose holonomy along pX + qP has eigenvalue ±1. If the holonomy is ±(identity),
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then it gives a PSL(2, C) flat-connection on M . But if the holonomy is conjugate

to ±(parabolic) = ±
(
1 1
0 1

)
, it does not give a flat connection on M . In the latter

case, the perturbative expansion around the parabolic solution cannot be interpreted
as a perturbative expansion of PSL(2, C) Chern–Simons theory on M . One simple
example is S3 = (S3\K )m with K a hyperbolic knot. In this case, there are at least
three flat-connections on S3\K whose meridian (m) holonomy has eigenvalue ±1. Two
of them can be constructed from the unique complete hyperbolic structure on the knot
complement, sayAhyp and its conjugateAhyp.18 The third flat connection is an Abelian
flat connection. General Abelian flat connection has trivial longitude holonomy and
its meridian holonomy can be an arbitrary element of PSL(2, C). The unique trivial
PSL(2, C) flat connection on S3 comes from this Abelian flat connection on the knot
complement which cannot be captured by an ideal triangulation. Therefore, for models
based on ideal triangulations, the solutions to the gluing equations correspond to the
flat-connectionsAhyp orAhyp which have ±(parabolic) as meridian holonomy and thus
do not give a flat connection on S3.

In the case that the resulting manifold M , after Dehn filling, is hyperbolic, the gluing
Eqs. (27) and (28) have a solutionAhyp corresponding to the conjugate of the complete
hyperbolic metric on M , satisfying

0 < Im[Zi ] < π for all i = 1, . . . k. (30)

This flat connection Ahyp has the maximal value (2Vol(M)) of Im[CS[A]] among all
PSL(2, C) flat connections A on M , where CS[A] is the holomorphic Chern–Simons
functional defined by

CS[A] :=
∫
M
Tr

[
A ∧ dA +

2

3
A3

]
. (31)

We can also consider perturbative series {Shypn } around a flat connectionAhyp which has
lowest value (−2Vol(M)) of Im[CS[A]]. The two expansions are related by complex
conjugation,

Shypn = (Shypn )∗ for all n ≥ 0. (32)

Coming back to the flat connectionAhyp, there is actually a twofold degeneracy as origi-
nated from theZ2Weyl-symmetryof SL(2); the two saddle points are (Xhyp,ε=1, Zhyp,ε=1)

and (Xhyp,ε=−1, Zhyp,ε=−1), with Xhyp,ε=1 = −Xhyp,ε=−1. Perturbative expansions
around two saddle points are expected to be equal to all orders

Shyp,ε=1
n = Shyp,ε=−1

n for all n ≥ 0. (33)

18 A complete hyperbolic 3-manifold M (knot complement or closed) with finite volume can be realized
as a quotient 3-dimensional hyperbolic upper half-plane, H

3/� with a discrete, torsion-free action �. The
action � gives a representation Hom

(
π1(M) → PSL(2, C) = Isom+(H3)

)
which defines a PSL(2, C)

flat-connectionAhyp. Its conjugate representation definesAhyp. In the language of three-dimensional gravity,
the flat connection Ahyp on hyperbolic 3-manifold can be written as Ahyp = ω + ie where ω and e are spin
connection and dreibein on M constructed using the unique complete hyperbolic structure. The conjugate flat

connection isAhyp = ω − ie.
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due to theWeyl-symmetry. The leading classical contributions from the two saddle points

Shyp,εn thus sum up to

exp

( ∞∑
n=0

Shypn �
n−1

)
= exp

( ∞∑
n=0

Shyp,ε=1
n �

n−1

)
+ exp

( ∞∑
n=0

Shyp,ε=−1
n �

n−1

)

�⇒ Shypn = Shyp,ε=1
n + δn,1 log 2. (34)

As stated above around (16), the classical part Shyp0 coincides with the complex hyper-
bolic volume of M :

Shyp0 (M) = −iVol(M) − CS(M) := −1

2
CS[Ahyp]. (35)

3.2. One-loop part: reidemeister torsion. Having specified the saddle point we can
now discuss the perturbative expansion (4). We define from the next O(�0) term in the
expansion a quantity

τ(M) := e−2Shyp1 (M). (36)

Then, as will be derived in Sect. 3.3

τ(M) = ±1

8
det

(
Az′′ + B−1

z − R · z′′
)

× p + 2q(DB−1)1,1

(sinh[ X−εiπs
q ])2

k∏
i=1

z
f ′′
i

i (z′′i )− fi

∣∣∣∣
(z,X)→(eZ ,X)hyp,ε

, (37)

where Ri j := 2q δi1(B−1) j,1

p+2q(DB−1)1,1
, t := diag(t1, . . . , tk) t ∈ {z, z′, z′′}.

Using the equations of motion, the factor sinh[ X−εiπs
q ]2 can be written in terms of

edge variables

sinh

[
(A �Z + B �Z ′′ − iπν)1 − 2εiπs

2q

]2

or equivalently,

sinh

[
(C �Z + D �Z ′′ − iπν′)1 − iεπr

p

]2

.

(38)

In the derivation we have assumed q is non-zero. Nevertheless, the formula gives the
correct answer even for q = 0, if we use the second expression above.

There is a useful trick for the evaluation of τ(M). Using the transformation (18) and
(19),we canmap [(X, P); (p, q)] to [(pX+qP,−rX−sP); (1, 0)]. After transformation,
the 1-loop is expressed as

τ(M) = ±1

8
det(ApX+qPz′′ + BpX+qPz−1)

1

(sinh[r X + sP])2
k∏

i=1

z
f ′′
i

i (z′′i )− fi

∣∣∣∣
(z,X)→(eZ ,X)hyp,ε

. (39)
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Where ApX+qP and BpX+qP are the A, B matrices corresponding to the polarization
pX + qP. As checked in [32], by overwhelming experimental evidence, is expected that

Tor(M̂\L; pX + qP)

= ±1

2
det(ApX+qPz′′ + BpX+qPz−1)

k∏
i=1

z
f ′′
i

i (z′′i )− fi

∣∣∣∣
(z,X)→(eZ ,X)hyp,ε

, (40)

where Tor(M̂\L; pX + qP) denotes the Reidemeister torsion of adjoint representation
twisted by the flat connectionAhyp on M̂\L associated to the boundary one-cycle pX +
qP. This means that under Dehn filling

τ(M) = Tor(M̂\L; pX + qP)
1

4 sinh[r X + sP]2 . (41)

This is exactly the same as the change of torsion under the Dehn filling (see, for example,
[51])

Tor
(
(M̂\L)pX+qP

) = Tor(M̂\L; pX + qP)
1

4 sinh[r X + sP]2 . (42)

We have therefore proven (modulo the assumption of (40)) that our 1-loop invariant
coincides with the Reidemeister torsion:

τ(M) = Tor(M). (43)

This is an expected result since the 1-loop part of Chern–Simons partition function is
given by the Reidemeister torsion [1].

3.3. Higher order results from Feynman diagrams. Let us now we will derive the Feyn-
man rules, which are useful for systematic computation of higher-order perturbative
invariants.

Our starting point is the formula (12). We are interested in the limit � → 0. As we
already discussed in Sect. 3.1, depending on the sign of Re(X/q), the dominant term
in the exponential of the integral kernel Kp,q(X) will be either p

q X
2 ± X

q . Under these

assumptions, the leading pice of (12) in the limit � → 0 yields to the potentialW0( �X , �Z)

(26). We have also seen in Sect. 3.2 that there is a twofold degeneracy in the saddle point
corresponding to the sign ε = +1 and ε = −1, with the same perturbative expansion to
all orders (12). This means we only need to focus on one choice of ε. We are then left
with the following integral:

εe
s
q

(
π2
�

− �

4

) ∫
dX√
2π�q

eε 2π i X
q�

+ pX2

q� sinh

(
X − iπsε

q

)
Z (X,P)

�
(M̂\L; X). (44)

Let us combine all the integration variables X and (Zi )i=1,...k together into a (k + 1)-
component vector y := (ya)a=1,...,k+1 = (X, �Z). Let us choose a critical point y(c) =
(Xc, �Zc) of W0. The integral we want to perform perturbatively is given by:
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Z (c),ε
pert (M) = 2ε√

detB
e�(0)

∫
[dy] e 1

2�
Hab ya yb sinh

(
X + Xc − iπsε

q

)
e( f B−1)1X

×
k∏

i=1

e
∑

s≥1 �
(s)
i /s!Zs

i

= 2ε√
detB

e�(0)
∫

[dy] e 1
2�

Hab ya yb
k+1∏
a=1

e
∑

s≥1 �
(s)
a /s!ysa . (45)

Here the measure is

[dy] := dX√
2π�q

k∏
j=1

dZ j√
2π�

, (46)

In the first line (45) we have defined some symbols, including the classical action:

�(0) = 1

�
W(y(c)) +

∑
i

∞∑
n=1

Bn
�
n−1

n! Li2−n(e
−Zc

i ) + ( f B−1)1X
c

+
i

2
(π +

�

4
) f B−1ν − 1

2
ZcB−1ν +

s

q

(
π2

�
− �

4

)
, (47)

the linear vertex:

�
(1)
i = −1

2
(B−1ν)i −

∞∑
n=1

Bn
�
n−1

n! Li1−n(e
−Zc

i ), (48)

the quadratic vertex:

�
(2)
i =

∞∑
n=1

Bn
�
n−1

n! Li−n(e
−Zc

i ), (49)

the Hessian matrix:

Hab := ∂W(y(c))

∂ya∂yb
,

Hi j = (B−1A)i, j + (z j z
′′
j )

−1δi, j , Hix = −2(B−1)i,1,

Hxx = 2
p

q
+ 4(DB−1)1,1,

(50)

and finally the higher order vertices:

�
(s)
i = (−1)s

∞∑
n=0

Bn
�
n−1

n! Li2−n−s(e
−Zc

i ) s ≥ 3. (51)

In the second line (45), the sine-hyperbolic piece has been expanded as

sinh

(
X + Xc − iπsε

q

)
= sinh

(
Xc − iπsε

q

)
exp

(
X

q
−

∞∑
s=1

Xs

s! Cs(X
c)

)
, (52)
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where

Cs(X
c) :=

(
− 2

q

)s

Li1−s

(
e
−2

(
Xc−iπsε

q

))
. (53)

We can then define the combined s-vertex �
(s)
a for y = (X, �Z) by combining (51), (52)

and the exponential linear term in X in (45):

Vertices: �(s)
a := (

( f B−1)1 + q−1)δs,1 − Cs(X
c), �

(s)
i

)
. (54)

With this information, we can obtain the perturbative expansion of (45):

Z (c),ε
pert (M) = exp

(
1

�
S(c),ε
0 +

∞∑
n=1

S(c),ε
n �

n−1

)
, (55)

where the index (c) in (55) is labelling the choice of critical point y(c). The first two
terms in the �-expansion (55) are given by

S(c),ε
0 = coeff[�(0), �

−1],
exp(S(c),ε

1 ) = 2ε sinh

(
Xc − iπsε

q

)
i k+1√

qdet(B)det(H)
ecoeff[�(0),�0].

(56)

Here for a given a Laurent series f (�) on �, coeff[ f (�), �
a] denotes the coefficient of

�
a in f (�). We can verify that the expression (56) reduces to

eS
(c),ε
1 = 2ε sinh

(
Xc − iπsε

q

) i k+1
∏

j z
− f ′′j

2
j (z′′j )

− f j
2√

(2p + 4q(DB−1)1,1)det(Az′′ + Bz−1−Rz′′ )
.

(57)

After including a factor 2 from (34) we can verify Eq. (37).
The higher order terms in the � expansion can be computed by the Feynman diagram

techniques. The situation is very analogous to [32], except here we have the sinh term
as in (52) and the vertex (54) is more involved. The terms Sn>1 will be extracted from
a sum of connected graphs. Consider a connected graph G� with vertices of valences
k ≥ 1. Then, we associate a weight to G�: to each k-vertex we associate a factor �

(k)
ti

and a label ti and to each internal line connecting two vertices with labels ti and t j a
factor �ti ,t j , where we defined the propagator:

Propagator: �a,b := −�(H−1)a,b , (58)

Then the weight associated to the graph G� is:

W�(G�) := 1

|Aut(G�)|
∑
labels

∏
v∈vertices

(−1)kv�
(kv)
tv

∏
e∈edges

�e, (59)

where |Aut(G�)| is the symmetry factor (the rank of the group of automorphisms of G�).
Given a connected graph G� then is easy to see thatW�(G�) is of order �

−V+E or higher,
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where E is the number of internal lines and V the number of vertices with valence k ≥ 3
in G� . After some computation one can show that E = V +L + V1 + V2 − 1 where L is
the number of loops and V1, V2 are the number of 1 and 2-vertices respectively.

The Feynman rule for the perturbative invariant is then

S(c),ε
n = coeff

⎡
⎣�(0) +

∑
G�∈Gn

W�(G�), �
n−1

⎤
⎦ n ≥ 2, (60)

where we defined

Gn := { Connected graphs G� such that L + V1 + V2 ≤ n}. (61)

For example, S(c),ε
2 is given by:

1

4

∑
i

Li0
(
e−Zc

i

)
+
i

8
f B−1ν − s

4q
+ coeff

[1
8
�(4)
a (�aa)

2 +
1

8
�aa�

(3)
a �ab�

(3)
b �bb

+
1

12
�(3)
a (�ab)

3�
(3)
b +

1

2
�(1)
a �ab�

(3)
b �bb +

1

2
�(2)
a �aa +

1

2
�(1)
a �ab�

(1)
b , �

]
.

(62)

3.4. Examples. Let us discuss an example of (S3\41)pm+ql. Here 41 denote the figure-
eight knot, the simplest hyperbolic knot. Since M̂ = S3 in this case, we can use the
canonical choices (7). In this choice the gluing datum (A, B,C, D, �ν, �ν′) for the figure-
eight knot complement (S3\41) are [52]

A =
(

1 0
−1 −1

)
, B =

(
0 −1
1 1

)
, C =

(−1 0
0 0

)
, D =

(
1 0
0 −1

)

�ν =
(
0
0

)
, �ν′ =

(
0
0

)
.

(63)

Using the gluing datum and the perturbative expansion developed in previous section,

we can compute Shypn
(
(S3\41)pm+ql

)
. The knot is amphichiral and thus topologically

(S3\41)pm+ql = (S3\41)−pm+ql for all (p, q)s. ForM = (S3\41)±5m+l, which is called
Thurston manifold, the saddle point (for ε = +1) is

(X, Z1, Z2)
hyp,ε=1

= (0.360784 − 0.575606i, 1.59632 + 0.348931i,−0.929172 + 1.23658i) ,

and the perturbative invariants are

Shyp0

(
M

) = 1.52067 − 0.981369i, Shyp1

(
M

) = − 0.343697 + 3.78189i,

Shyp2

(
M

) = − 0.512461 + 0.0155225i, Shyp3

(
M

) = 0.00927226 + 0.00617571i,

Shyp4

(
M

) = 0.00312943 + 0.00434039i, Shyp5

(
M

) = 0.00164586 + 0.00407186i.
(64)
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We compute the perturbative invariants for (p, q) = (5, 1) and the invariants for (p, q) =
(−5, 1) are simply related by the orientation change (25). As another example, for
M = (S3\41)−m+2l, we have

Shyp0

(
M

) = 4.86783 − 1.39851i, Shyp1

(
M

) = − 0.340874 − 3.9077i,

Shyp2

(
M

) = − 0.610686 + 0.0259448i, Shyp3

(
M

) = 0.0130034 + 0.00708517i.
(65)

4. Numerical Evidence for All-Order Volume Conjecture

Finally, let us present a numerical evidence for our conjecture (5) based on the technical
developments in the previous sections. The SO(3)-WRT invariant for the closed 3-
manifold (S3\K )pm+l is given by [18]19

τ SO(3)
r

(
(S3\K )pm+l

)

= 2

r
eπ i( 3+r

2
r − 3−r

4 )

( r−2∑
N=0

(
sin

2(N + 1)π

r

)2

(−e
π i
r )−p(N2+2N ) JN+1(K ; e 2π i

r )

)
.

(66)

where JN (K ; e 2π i
r ) is the value of N -th colored Jones polynomial of K at q = e

2π i
r with

a normalization JN (unknot) = 1.
Let us take the example M = (S3\41)−5m+l = (Thurston Manifold). The colored

Jones polynomial for the knot K = 41 is (this is due to Habiro [53], see also [54])

JN (41; q) =
N−1∑
k=0

k∏
i=1

(qN−i − q−N+i )(qN+i − q−N−i ). (67)

Combining this expression with (66), we can compute τr (M) for any r . Numerical value
for the perturbative expansions Shypn (M) up to n = 5 are given in (64) (see also Eq. (32)).
The numerical test for the generalized conjecture (5) is given in Fig. 1.

In these plots we defined

δk(r; M) := rk−1[ log τ SO(3)
r (M) −

k∑
n=0

�
n−1Shypn (M)

]
�= 2π i

r
, (68)

We see that both of Re δk(r; M) and Im δk(r; M) quickly decreases as we increase the
value of r .20 This is a highly non-trivial evidence for our conjecture.

19 This should be compared with

τ
SU (2)
r

(
(S3\K )pm+l

) =
√
2

r

1

sin( π
r )

exp(
(3 − 2p)π i

4
)

r−1∑
N=1

sin2(
πN

r
)e

π i pN2
2 JN (K ; e π i

r ).

20 For the imaginary part, we numerically fixed the phase ambiguity (10); once we fix the integers in (10)
the rest can be used to the numerical values for Im δk (r; M).
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Fig. 1. Graphs of real and imaginary part of δk (r; M) for k = 4, 5 and M = (S3\41)−5m+l. The expression
decreases quickly as r becomes large, especially for larger k

Fig. 2. Graphs of real and imaginary part of δk
(
r; M = (S3\52)−m+l

)
for k = 2, 3

As another example, let us consider a Dehn filling of the knot K = 52. Its colored
Jones polynomial is [54]

JN (52; q) =
N−1∑
k=0

ck

k∏
i=1

(qN−i − q−N+i )(qN+i − q−N−i ),

ck := (−1)kq3k
2+5k

k∑
i=0

qi
2−2i−3ki [k]!

[i]![k − i]! , [n]! :=
n∏

a=1

qa − q−a

q − q−1 . (69)
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For a manifold M = (S3\52)−m+l = (S3\41)−m+2l,21 numerical value for the perturba-
tive expansions Shypn (M) up to n = 3 are given in (65) (see also Eq. (32)). The numerical
test for the generalized conjecture (5) is given in Fig. 2.
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Appendix A. Review: Surgery Construction of Closed 3-Manifolds

In this appendixwe quickly summarize the concept ofDehnfilling, for readers unfamiliar
with the concept.
Suppose that K is a knot inside a closed 3-manifold M̂ , namely has only one component,
and consider a knot complement

M̂\K . (70)

The boundary of this 3-manifold is a two-torus T 2, which has two non-trivial one-cycles,
X and P

〈X, P〉 = H1
(
T 2 = ∂(M̂\K ), Z

) = Z ⊕ Z. (71)

Now a (p, q)-Dehn filling of M , which we denote as (M̂\K )pX+qP, is obtain by elim-
inating the boundary torus of the knot complement by filling in solid tori D2 × S1, so
that the combination pX + qP is contractible inside D2 × S1 :

(M̂\K )pX+qP := (D2 × S1)
⋃

ϕ∈Aut(T 2)

(M̂\K ). (72)

where an automorphisms ϕ on the two-torus is taken to be22

ϕ : H1(∂(M̂\K ), Z) → H1(∂(D2 × S1), Z),(
X

P

)
→ g ·

(
α

β

)
, with g := ±

(
r s
p q

)
∈ PSL(2, Z).

(73)

Here (α, β) is a basis of H1
(
∂(D2 × S1), Z

)
:

α ∼ (S1 in D2 × S1), β ∼ (S1 of ∂D2). (74)

21 The closed 3-manifold can be obtained by Dehn surgery on 521:=(Whitehead link), M =
(S3\521)m1+l1,−m2+2l2 . From surgery calculus [44,55], on the other hand, (S3\521)m1+l1 = (S3\41) and
(S3\521)−m2+2l2 = (S3\52), where K means the mirror of a knot K . Thus M = (S3\41)−m+2l =
(S3\52)m+l = (S3\52)−m+l.
22 The topological type of the resulting 3-manifold is invariant under continuous deformation of ϕ and hence

we can regard ϕ as an element of the PSL(2, Z).
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The definition (72) apparently depends on the choice of integers (r, s) in (73), in addition
to (p, q). Indeed, given (p, q) there is an ambiguity in the choice of (r, s) as (r, s) →
(r, s)+n(p, q), with n ∈ Z. However, this ambiguity is equivalent with the ambiguity of
the longitude inside a general 3-manifold, and keeps the topology of the manifold after
the Dehn filling (see e.g. discussion around Fig. 7 of [43]). Consequently this ambiguity
preserves the partition function of the complex Chern–Simons theory, possible up to
some overall pre-factors originating from framing anomaly. Note also that we also have
an overall sign ambiguity (p, q) ∼ (−p,−q), which we can eliminate by considering
a slope p/q.
In general, the link L has several (say S) connected components and we can choose
(pα, qα) Dehn-surgeries for the α-th component, for some value of α (1 ≤ α ≤ S).
The resulting 3-manifold is then a complement of a link with S − 1 components.
When do the Dehn filing on all the link complements we obtain a closed 3-manifold
(M̂\L)p1X1+q1P,...,pSXS+qSPS .

Appendix B. Review: State-Integral Model for Link Complement

Let us first review the state-integral model for a knot/link complement M̂\L , following
[30,32]. We consider a regular ideal triangulation of a link complement M̂\L:

M̂\L =
(

k⋃
i=1

i

)
/ ∼ . (75)

where eachi is an ideal tetrahedron (ideal heremeans that all the vertices are located on
the boundary). The symbol∼ denotes the gluing of the k tetrahedra. The shape of an ideal
tetrahedron can be parametrized by a shape parameter zi . This is a complexification of the
dihedral angles between two faces, and once we fix the choice of an edge the remaining
dihedral angles are given by

z′i = (1 − zi )
−1, z′′i = 1 − z−1

i , zi z
′
i z

′′
i = 1. (76)

In this parametrization, we fixed a choice of which dihedral angle to call zi (and not z′i
or z′′i ). Such a choice is called the ‘quad type’.
We next impose extra conditions originating from the gluing of tetrahedra. First we
have gluing conditions at each internal edge. It follows from vanishing of the Euler
number of the boundary tori that the number of edges is also given by k. We also need
to impose conditions on the cups boundaries, and we therefore have extra S conditions.
This naively means that we have k + S conditions. However, it turns out that only k − S
out of the k conditions from internal edges are linearly independent, leading to total of
(k − S) + S = k constraints.
To describe this gluing, let us denote by zi the shape parameter (modulus) of the i-th
ideal tetrahedron (i = 1, . . . , k). We can then express the constraint equation as [48]

k∏
j=1

z
Ai j
j z′′j Bi j = (−1)νi , i = 1, . . . , k, (77)
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where the matrices A = (Ai j ), B = (Bi j ) are k × k-matrices with integer entries, and
�ν is an k-component integer vector. When we consider deformations of the boundary
holonomy, the equations are modified to be

k∏
j=1

z
Ai j
j z′′j Bi j = e2Xi+iπνi , i = 1, . . . , k. (78)

Here a length-k vector �X = (Xi ) is defined by from a set of S parameters (Xα)Sα=1 to be

Xi :=
{
Xi if 1 ≤ i ≤ S
0 if S + 1 ≤ i ≤ k

, (79)

where we have chosen the indices I such that the first S conditions (i = 1, . . . , S)
come from cusp boundaries, and the remaining k − S conditions (i = S + 1 . . . , k)
from internal edges. The parameters (Xα)Sα=1 (or rather its exponential, to match with
the standard definition in literature) parameterize the boundary PSL(2, C)-holonomies
along S one-cycles Xα .

P exp

(∮
Xα

A
)

∼ ±
(
eXα ∗
0 e−Xα

)
(80)

with a conjugacy equivalence relation ∼. Similarly, we can introduce boundary holon-
omy variables Pα along S Pα and these variables also can be written in terms of shape
parameters

k∏
j=1

z
Ĉα j
j z

′′D̂α j
j = ePα+iπν̂′

α , α = 1, . . . , S. (81)

In general, the Ĉ, D̂ and ν̂′ are valued in half-integers. The partition function for the
state-integral model is given by (6) in the main text. As discussed in Sect. 3.1, in the
semiclassical limit, its saddle point value reproduces the shape modulus of the tetrahe-
dron by the relation eZi = zi . The matrices (Ĉ, D̂) can be extended to k × k matrices
(C, D) in a way that [48].

Ci j = Ĉi j , Di j = D̂i j for i = 1, . . . , S,

and

(
A B
C D

)
∈ Sp(2k, Q).

(82)

Similarly, the vector ν̂′ is extended to k-component vector �ν′:

�ν′ := (ν̂1, . . . , ν̂S, 0, . . . , 0). (83)

The vectors ( �f , �f ′′) = ( fi , f ′′
i )ki=1 are known as combinatorial flattening, and satisfy

the constraints

�ν = A · �f + B · �f ′′, �ν′ = C · �f + D · �f ′′. (84)
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