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Abstract: We analyze the modular properties of D3-brane instanton corrections to the
hypermultiplet moduli space in type IIB string theory compactified on a Calabi–Yau
threefold. In Part I, we found a necessary condition for the existence of an isometric
action of S-duality on this moduli space: the generating function of DT invariants in
the large volume attractor chamber must be a vector-valued mock modular form with
specified modular properties. In this work, we prove that this condition is also sufficient
at two-instanton order. This is achieved by producing a holomorphic action of SL(2,Z)
on the twistor space which preserves the holomorphic contact structure. The key step
is to cancel the anomalous modular variation of the Darboux coordinates by a local
holomorphic contact transformation, which is generated by a suitable indefinite theta
series. For this purpose we introduce a new family of theta series of signature (2, n−2),
find theirmodular completion, and conjecture sufficient conditions for their convergence,
which may be of independent mathematical interest.
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1. Introduction

Determining the exact quaternion-Kähler (QK) metric on the hypermultiplet moduli
spaceMH in type II string theories compactified on a Calabi–Yau (CY) threefoldY is a
challenge whose importance can hardly be overestimated. Indeed, this metric incorpo-
rates a large class of topological invariants of Y such as its Euler number, intersection
numbers, Gromov–Witten (GW) and generalized Donaldson–Thomas (DT) invariants
into a tightly constrained structure. In particular, the existence of an isometric action of
the modular group SL(2,Z) [1], which descends from the S-duality symmetry of type
IIB string theory in 10 dimensions, imposes strong constraints on generalized DT in-
variants, which control both D-brane instantons to the metric onMH and degeneracies
of supersymmetric black hole micro-states. One may hope that this line of study will
lead to new strategies for determining these important invariants.

Major progress towards this goal was made in recent years by applying twistorial
methods and exploiting dualities (see e.g. [2,3] for a review). However, it is fair to say
that this goal has not been fully attained yet. The main missing piece are NS5-brane
instantons, which are currently understood only at linear order around the D-instanton
corrected metric [4] (see [5,6] for an attempt to go beyond this approximation). While
D-instantons are in principle completely specified by the twistorial construction of [7,8]
(which generalizes a similar construction in rigid quantum field theories [9]), their com-
patibility with S-duality is far from manifest. Indeed, this construction is formulated
using coordinates adapted to type IIA string theory, whereas the action of S-duality
on MH is fixed in terms of type IIB coordinates. Hence, understanding the modular
properties of the metric requires specifying the relation between these two sets of fields,
known as the mirror map, which itself receives quantum corrections. Furthermore, the
existence of an isometric action of SL(2,Z) on MH is equivalent to the existence of a
holomorphic SL(2,Z) action on the twistor space Z which preserves the holomorphic
contact structure. Thus the Darboux coordinates used to trivialize this contact structure
must transform according to a holomorphic contact transformation, but neither holo-
morphy, nor the contact property are obvious in the original formulation of [7,8]. This
issue was investigated first in the case of D1-D(-1) instantons in [10], where S-duality
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in this particular sector was made manifest by introducing a different set of Darboux
coordinates, which are related to the original ones by a local contact transformation and
which transform under S-duality in the same way as the classical Darboux coordinates.

In the case of D3-D1-D(-1) instantons, the issue of S-duality invariance is further
complicated by the fact that the generalized DT invariants which count these instantons
have a non-trivial dependence on the moduli of Y. In [11], the consistency of D3-D1-
D(-1) instantons with S-duality was studied in the large volume limit and one-instanton
approximation, where these wall-crossing phenomena can be ignored. It was shown that
the holomorphic contact structure on Z is indeed invariant under SL(2,Z), provided
the relevant DT invariants are Fourier coefficients of a vector-valued modular form, a
property which follows from the superconformal field theory description of these invari-
ants [12]. In particular, the contact potential (a function akin to a Kähler potential [13])
was shown to transform as a modular form of the correct weight. The Darboux coordi-
nates used in the construction of [7,8], on the other hand, do not transform covariantly
(like their classical, uncorrected counterparts), but have anomalous transformations. The
anomaly, however, like in the case of D1-D(-1) instantons, can be cancelled by a local
holomorphic contact transformation. The generating function for this contact transfor-
mation turned out to be an indefinite theta series of signature (1, b2 − 1) of the type
considered by Zwegers [14] (with an insertion of the difference of two sign functions),
which is holomorphic but not modular, whereas the contact potential was expressed in
terms of an ordinary non-holomorphic Siegel theta series.

In Part I of this work [15], we extended this analysis to second order in the multi-
instanton expansion, still in the large volume limit. In this case, to deal with the moduli
dependence of DT invariants, it is useful to trade them for the so called MSW invariants,
which are defined as the DT invariants in a particular chamber of the moduli space.
Then, at second order in the expansion in powers of these invariants, we showed that the
contact potential is again modular invariant, provided the MSW invariants for a fixed
D3-brane charge p = p1 + p2 are now Fourier coefficients of a certain vector-valued
mock modular form h p,μ, with a specific shadow constructed out of the MSW invariants
of the constituents with D3-brane charges p1 and p2. In the case where p cannot be
decomposed as a sum of two positive vectors, this statement reduces to the one already
found at one-instanton level. In contrast to that case, at two-instanton level, the contact
potential involves an indefinite theta series of signature (2, 2b2(Y) − 2), where one
dangerous direction is treated by the same mechanism as in Siegel theta series, while
the other is regularized in Zwegers’ fashion [16].

In the present work, we complete this investigation and show that under the same
assumptions, the holomorphic contact structure onZ is indeed invariant under SL(2,Z).
This guarantees that the QKmetric onMH carries an isometric action of the same group
(a statement which goes far beyond the modular invariance of the contact potential).
As in the one-instanton case, we show that the modular anomalous variation of the
Darboux coordinates at two-instanton order can be cancelled by a holomorphic contact
transformation, generated by a suitable holomorphic indefinite theta series of signature
(2, n − 2). In more detail, we proceed as follows:

1. First, we evaluate the instanton corrected holomorphic Darboux coordinates �I in
the two-instanton, large volume approximation and express them, using a suitably
quantum corrected mirror map, in terms of type IIB physical fields, which transform
in a fixed way under S-duality. The result turns out to be remarkably simple: the
D3-instanton corrections are all expressed as certain non-linear functionals FI of a
single function J̃ p on the twistor space,
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δ�I = FI [J̃ p]. (1.1)

Furthermore, the functionals FI are such that, if J̃ p transformed as a modular form
of weight (−1, 0), then the S-duality transformation of all �I would be manifestly
holomorphic and would preserve the contact structure, i.e. it would be a holomorphic
contact transformation.

2. The modular transformation of J̃ p can be deduced by expressing it in terms of the
partition function ofMSW invariants h p,μ. Unfortunately, even under the assumption
that h p,μ is a vector-valued mock modular form, the function J̃ p is not modular, so
additional steps are needed to achieve the proof. Therefore, in the next step, we show
that the action of a class of local contact transformations on the Darboux coordinates
is captured by a simple shift of the argument in (1.1),

ρhg : δ�I �→ FI [ ̂J p], ̂J p = J̃ p − 2π i h̃g
p, (1.2)

where h̃g
p is a function constructed in a simple way from the contact hamiltonian hg

generating the transformation.
3. Next, we look for a contact hamiltonian hg which cancels the modular anomaly of

J̃ p via (1.2), i.e. such that the shifted function ̂J p transforms as a modular function
of weight (−1, 0). To this end, we aim at representing ̂J p as (a sum of) product of the
partition function h p,μ (or rather, its non-holomorphic modular completion̂h p,μ =
h p,μ − 1

2 R p,μ) times a suitable indefinite theta series. Although the requirements of
convergence, holomorphy and modularity turn out to be very non-trivial, we manage
to solve them, thereby proving the modular symmetry of the instanton corrected
hypermultiplet moduli space.

It is important to note that our construction relies heavily on the existence of a rational
null vector belonging to the lattice used in the definition of theta series. In our previous
work on the one-instanton approximation [11], we implicitly assumed that the standard
lattice of charges� = H4(Y,Z) admits such a rational null vector. But in the course of
the present project it became clear that this is by nomeans guaranteed, e.g. CY threefolds
with b2 = 1 admit no null vectors except zero, and there are examples of CY threefolds
with b2 = 2 which do not admit any rational null vector (such as the examples in [17]).
Here we circumvent this problem by introducing an extended lattice �̌ which contains
the original lattice� but, thanks to the additional (convergent) directions, is guaranteed
to admit such a null vector.

Another important comment is that at two-instanton order, the contact transformation
removing the anomaly is generated by a holomorphic indefinite theta series of ‘confor-
mal’ signature (2, n − 2). This theta series is similar to the one that we introduced in
[18] (which was a spin-off of the present study), but it involves a more complicated
kernel. In “Appendix C” we conjecture a set of sufficient conditions for the convergence
of indefinite theta series of signature (2, n − 2) whose kernel consists of a cyclic sum
of products of sign functions, which may be of independent mathematical interest. Our
conjecture is supported by extensive numerical checks but we have not attempted to
prove it. Of course, these conditions are obeyed by the relevant theta series cancelling
the modular anomaly at two-instanton order.

The outline of this work is as follows. In Sect. 2 we briefly review the twistorial
construction of the D-instanton corrected hypermultiplet moduli space in type IIB string
vacua, and the modular properties of the DT andMSW invariants which count D3-brane
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instantons. In Sect. 3 we compute the corrections to the Darboux coordinates at two-
instanton order, and express them in the form (1.1). In Sect. 4, we determine the gauge
transformation which cancels the modular anomaly of the Darboux coordinates, and
show that the newDarboux coordinates have the correctmodular properties.We conclude
in Sect. 5 with a discussion of our main results. Various details of the computation are
relegated in “Appendix A”. In Sect. B, we review the construction of indefinite theta
series in Lorentzian and conformal signature, based on a theorem due to Vignéras [19]
which provides conditions for their modularity and plays a crucial role in our analysis.
We also introduce there several variants of modular theta series arising in the twistorial
construction. In Sect. C, we spell out our conjecture for the convergence of a class of
theta series of signature (2, n − 2) whose kernel consists of a cyclic sum of products
of sign functions, and apply it to the gauge transformation arising in Sect. 4. In Sect. D
we discuss the modifications which are needed to incorporate worldsheet and D1-D(-
1)-instantons into our construction.

2. Twistors, D-Instantons and Modularity

In this section we collect relevant facts about the hypermultiplet moduli space in type
IIB string vacua, the twistorial description of D-instanton corrections to its metric, the
action of S-duality and the modular properties of DT invariants which count D3-brane
instantons. A more extensive review of these issues can be found in [2,3] or in our
previous paper [15].

2.1. MH is the twistor formalism. In type IIB string theory compactified on a CY
threefold Y, the hypermultiplet moduli space MH is a quaternion-Kähler manifold of
dimension 4b2(Y)+4, which describes the dynamics of the ten-dimensional axio-dilaton
τ = c0 + i/gs , the Kähler moduli za = ba + ita (with a = 1 . . . b2 running over a basis
of H2(Y,Z)), the Ramond-Ramond (RR) scalars ca, c̃a, c̃0, corresponding to periods of
the RR 2-form, 4-form and 6-form on a basis of H even(Y,Z), and finally, the NS axion
ψ , dual to the Kalb–Ramond two-form B in four dimensions. At tree-level, the metric
onMH is obtained from the moduli spaceMSK of complexified Kähler deformations
via the c-map construction [20,21].MSK is a special Kähler manifold characterized by
the holomorphic prepotential F(X) where X� are homogeneous complex coordinates
on MSK such that X�/X0 = z� (with z0 = 1). Thus, the tree-level metric on MH is
completely determined by the prepotential.

Beyond the tree-level, the metric on MH receives quantum gs-corrections. At the
perturbative level there is only a one-loop correction, proportional to the Euler character-
istics χY. The corresponding metric is a one-parameter deformation of the c-map found
explicitly in a series of works [22–26]. At the non-perturbative level, there are correc-
tions from D-branes wrapped on complex cycles in Y (described by coherent sheaves
on Y), and from NS5-branes wrapped on Y, which we consistently ignore throughout
this paper.

The most efficient way to describe quantum corrections toMH is to work at the level
of its twistor space Z , a CP1-bundle overMH endowed with a canonical holomorphic
contact structure [27]. This contact structure is represented by a (twisted) holomorphic
one-form X , defined up to multiplication by a nowhere vanishing factor, holomorphic
along the fiber. Locally it can always be expressed in terms of holomorphic Darboux
coordinates {�I } = {ξ�, ξ̃�, α} as
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X [i] = dα[i] + ξ̃ [i]� dξ�[i] , (2.1)

where the index [i] labels the patches Ui of an open covering ofCP1. The global contact
structure on Z (hence, the QK metric on M) is then encoded in contact transforma-
tions between Darboux coordinate systems on the overlaps Ui ∩ U j [13]. In turn, these
transformations can be parametrized by holomorphic functions H [i j](�), which we call
contact hamiltonians [5]. Such a function defines the holomorphic vector field

X H =
(

−∂ξ̃�H + ξ�∂αH
)

∂ξ� + ∂ξ�H ∂ξ̃� +
(

H − ξ�∂ξ�H
)

∂α, (2.2)

the exponentiation of which generates the contact transformation ρH ,

ρH : �I �→ eX H ·�I . (2.3)

Thus, a set of such holomorphic functions associated to a covering of CP1 (satisfying
obvious consistency conditions on triple overlaps) uniquely defines a quaternion-Kähler
manifold.

In particular, the D-instanton corrections to MH were found to be generated by the
contact hamiltonians [7,8]

Hγ (ξ, ξ̃ ) = �̄γ

(2π)2
σγXγ , (2.4)

where γ = (p�, q�) is the D-brane charge (an element of H even(Y)), �̄γ is the rational
DT invariant, and σγ is a quadratic refinement of the intersection pairing on H even(Y),
a sign factor which we fix below. Using notation E(x) = e2π ix , we also defined

Xγ = E
(

p�ξ̃� − q�ξ
�
)

, (2.5)

an exponentiated version of Darboux coordinates. The contact hamiltonians Hγ generate
contact transformations connecting Darboux coordinates across the BPS rays

�γ = {t ∈ CP1 : Zγ /t ∈ iR−}, (2.6)

which, in terms of the standard stereographic coordinate t on the twistor fiber, extend
from t = 0 to t = ∞ along the direction fixed by the phase of the central charge function

Zγ (z) = q�z� − p�F�(z). (2.7)

Combining the gluing conditions (2.3) with certain regularity conditions on the Dar-
boux coordinates, one can derive integral equations which fix them in terms of coordi-
nates onMH and the coordinate t on CP1. The equations on ξ� and ξ̃� can be written
as

Xγ (t) = X sf
γ (t)E

⎛

⎝

1

8π2

∑

γ ′
σγ ′�̄γ ′ 〈γ, γ ′〉

∫

�γ ′

dt ′

t ′
t + t ′

t − t ′
Xγ ′(t ′)

⎞

⎠ , (2.8)

where 〈γ, γ ′〉 = q� p′� − q ′� p� and

X sf
γ (t) = E

(

τ2

2

(

Z̄γ (ū) t − Zγ (u)

t

)

+ p�ζ̃� − q�ζ
�

)

(2.9)
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are the Fourier modes of the tree-level (or ‘semi-flat’) Darboux coordinates valid in
the absence of D-instantons. In the weak coupling limit, these equations can be solved
iteratively, leading to a (formal) multi-instanton series for (ξ�, ξ̃�) in each angular
sector. This solution can then be used to compute the remaining Darboux coordinate α
[8]

α(t) = −1

2
(σ + ζ�ζ̃�) +

τ 22

8

(

ū�F� + u� F̄�
)− τ 22

4

(

t−2F + t2 F̄
)

−τ2ζ
�

2

(

t−1F� − t F̄�
)

−
iχŶ
48π

log t

−1

2

∑

γ

∫

�γ

dt ′

t ′

[

t ′ + t

t ′ − t

(

1

2π i
+ q�ξ

�(t ′)− π iq� p�Hγ (t
′)
)

Hγ (t
′)

+
τ2 p�

2

(

(t−1 + t ′−1)F�(u) + (t + t ′)F̄�(ū)
)

Hγ (t
′)
]

−1

8

∑

γ,γ ′∈�
p�q�

∫

�γ

dt ′

t ′
Hγ

∫

�γ ′

dt ′′

t ′′
Hγ ′ . (2.10)

Note that all instances of the prepotential F(X) in (2.9) and (2.10) are evaluated at
X� = (1, ua). Together with (τ2, ζ�, ζ̃�, σ ) appearing in these equations, they play
the role of coordinates on MH . They are adapted to the symmetries of the type IIA
formulation1 and therefore can be considered as natural coordinates on the moduli space
of type IIA string theory compactified on the mirror CY threefold Ŷ. In particular, ua

can be understood as the complex structure moduli of Ŷ. The relation between the type
IIA and type IIB fields will be explained in the next subsection.

2.2. S-duality. In the classical approximation (i.e. tree-level, large volume limit) the
metric on MH is known to be invariant under the action of SL(2,R), which descends
from the S-duality group of type IIB supergravity in 10 dimensions. On the coordi-

nates introduced in the beginning of the previous subsection, an element � =
(

a b
c d

)

∈
SL(2,R) acts by

� :
τ �→ aτ + b

cτ + d
, ta �→ ta |cτ + d| , c̃a �→ c̃a ,

(

ca

ba

)

�→
(

a b
c d

)(

ca

ba

)

,

(

c̃0
ψ

)

�→
(

d −c
−b a

)(

c̃0
ψ

)

.
(2.11)

To uncover this symmetry in the twistorial formulation of the previous subsection,
one should drop all terms involving an integral (tree level limit) and retain only the clas-
sical part of the prepotential (large volume limit), determined by the triple intersection
numbers κabc,

Fcl(X) = −κabc
Xa Xb Xc

6X0 . (2.12)

1 In particular, (ζ�, ζ̃�) and σ transform as symplectic vector and scalar, respectively, and so do (ξ�, ξ̃�)
and the coordinate α̃ = −2α − ξ�ξ̃� used in our previous papers.
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Then, one should lift the symmetry to the twistor space, i.e. supplement (2.11) with a
transformation of the fiber coordinate t , such that the combined transformation acts on
Z by a holomorphic contact transformation, i.e. a holomorphic transformation which
preserves the contact one-form X up to a non-vanishing holomorphic factor. The lift of
the action of SL(2,R) onMH was determined in [13] and is most easily formulated in
terms of a coordinate z related to t by

z = t + i

t − i
. (2.13)

Then it takes the simple form [11]

� : z �→ cτ̄ + d

|cτ + d| z . (2.14)

To check that this lifted action indeed generates a contact transformation, one has to
relate the type IIA fields, appearing in the expressions for the Darboux coordinates (2.9)
and (2.10), in terms of the type IIB ones. Such relation is known as classical mirror map
and is given by Böhm et al. [28]

ua = ba + ita , ζ 0 = τ1 , ζ a = −(ca − τ1ba) ,

ζ̃a = c̃a +
1

2
κabc bb(cc − τ1bc) , ζ̃0 = c̃0 − 1

6
κabc babb(cc − τ1bc) ,

σ = −(2ψ + τ1c̃0) + c̃a(c
a − τ1ba)− 1

6
κabc bacb(cc − τ1bc) .

(2.15)

It is straightforward to check that the classical Darboux coordinates, after the substitution
of (2.15), transform in the following way:

ξ0 �→ aξ0 + b

cξ0 + d
, ξa �→ ξa

cξ0 + d
, ξ̃a �→ ξ̃a +

c

2(cξ0 + d)
κabcξ

bξ c,

(

ξ̃0
α

)

�→
(

d −c
−b a

)(

ξ̃0
α

)

+
1

6
κabcξ

aξbξ c
(

c2/(cξ0 + d)
−[c2(aξ0 + b) + 2c]/(cξ0 + d)2

)

.

(2.16)

This shows that the transformation is holomorphic. Furthermore, applying it to the
contact one-form (2.1), one finds that

X �→ X
cξ0 + d

, (2.17)

which proves that it is indeed a contact transformation.
The continuous SL(2,R) isometry is broken by quantum corrections. However, a

discrete subgroup SL(2,Z) is expected to survive at the quantum level [1]. It is realized
by the same transformation (2.11), where all parameters are integer satisfying ad−bc =
1, except that the transformation law of c̃a must be slightly modified and given now by
[4,11]

� : c̃a �→ c̃a − c2,aε(�), (2.18)

where c2,a are the components of the secondChern class on a basis of H4(Y,Z) and ε(�)
is the logarithm of the multiplier system of the Dedekind eta function. In the absence
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of fivebrane instantons the lifted action of SL(2,Z) to the twistor space (2.14) also
remains unchanged [29]. In particular, the claim is that in this limit, which includes
D3-D1-D(-1)-instantons as well as α′-corrections, a combination of (2.11), (2.18) and
(2.14) acts by a contact transformation, after a suitable modification of the mirror map
(2.15). It is this claim that we would like to verify in this paper, restricting ourselves
to the two-instanton, large volume approximation. In the main text, for simplicity, we
ignore contributions from the one-loop gs and α′-corrections as well as from pure D1-
D(-1)-instantons. In “Appendix D”, generalizing the results of [10,11,29], we show how
they can be included consistently with S-duality.

2.3. D3-instantons in the large volume limit. In this subsection we specify the general
construction of D-instantons outlined in Sect. 2.1 to the case of D3-instantons in the type
IIB formulation. We also review the modular properties of the relevant DT invariants
and some of the results of [11,15] needed for the subsequent analysis. For brevity, we
shall extensively use the notation (lkp) = κabclakb pc and (kp)a = κabckb pc.

2.3.1. DT and MSW invariants An instanton corresponding to a bound state of D3-D1-
D(-1)-branes in type IIB is characterized by the charge vector γ = (0, pa, qa, q0) ∈ �
satisfying the following conditions [4]

pa ∈ Z, qa ∈ Z +
1

2
(p2)a, q0 ∈ Z− 1

24
pac2,a . (2.19)

We assume that the charge pa corresponds to an effective divisor in Calabi–Yau and
belongs to the Kähler cone, i.e.

p3 > 0, (r p2) > 0, ka pa > 0, (2.20)

for all effective divisors raγa ∈ H+
4 (Y,Z) and effective curves kaγ

a ∈ H+
2 (Y,Z),

where γa denotes an integer basis of� = H4(Y,Z), with γa being irreducible divisors,
whereas γ a an integer basis of�∗ = H2(Y,Z). The set of charges with such properties
will be denoted by �+. The charge pa gives rise to the quadratic form κab = κabc pc

on � ⊗ R � R
b2 of signature (1, b2 − 1). We use it to identify � ⊗ R and �∗ ⊗ R

and we use bold-case letters to denote the corresponding vectors. The lattice� can also
be identified with its image in the dual lattice �∗. Note that the map εa �→ κabε

b is in
general not surjective, since the quotient �∗/� is a finite ‘discriminant’ group of order
| det κab|.

The DT invariants �̄γ associated to charges γ ∈ �+ are invariant under the com-
bination of the shift of the Kalb–Ramond field, ba �→ ba + εa , and the spectral flow
transformation acting on the electric charges

qa �→ qa − (pε)a, q0 �→ q0 − εaqa +
1

2
(pεε). (2.21)

It is important to take into account the shift of ba because the DT invariants are only
piecewise constant as functions of the complexified Kähler moduli za = ba + ita and
jump across walls of marginal stability Wγ1,γ2 where the phases of the central charge
functions Zγ1(z) and Zγ2(z) become equal. At these walls some BPS bound states of
charge γ = m1γ1 + m2γ2 with m1m2 > 0 become unstable and decay into multi-
particle BPS states of charges γ1, γ2, hence explaining the jump in the BPS index.
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For our purposes, it is enough to restrict to the case of primitive wall-crossing, where
(m1,m2) = ±(1, 1).

To deal with this wall-crossing phenomenon, it is convenient to introduce so-called
‘MSW invariants’ �̄MSW

γ = �̄γ (z∞(γ )), defined as the DT invariants evaluated at the
‘large volume attractor point’ [11],

z∞(γ ) = lim
λ→+∞ (b(γ ) + iλt(γ )) = lim

λ→+∞ (−q + iλ p) . (2.22)

The MSW invariants are by definition independent of the moduli. The wall-crossing
behavior of the DT invariants is then captured by their expansion in terms of MSW
invariants. To second order in the �̄MSW’s, this expansion reads [16]

�̄γ (z) = �̄MSW
γ +

1

2

∑

γ1,γ2∈�+
γ1+γ2=γ

(−1)〈γ1,γ2〉〈γ1, γ2〉�t
γ1γ2

�̄MSW
γ1

�̄MSW
γ2

+ · · · ,

(2.23)

where �t
γ1γ2

is a ‘sign factor’

�t
γ1γ2

= 1

2

[

sgn(Iγ1γ2(t))− sgn〈γ1, γ2〉
]

, (2.24)

which vanishes near the large volume attractor point, but becomes non-vanishing after
crossing a wall of marginal stability into a region where a bound state of two constituents
of charges γ1 and γ2 becomes stable. Here Iγ1γ2 is defined by

Iγ1γ2 = − 2 Im(Zγ1 Z̄γ2)
√

(p1t2) (p2t2) (pt2)

� (p2t2)
(

q1,a + (bp1)a
)

ta − (p1t2)
(

q2,a + (bp2)a
)

ta

√

(p1t2) (p2t2) (pt2)
, (2.25)

where the second equality holds in the large volume limit.
An important property of the MSW invariants is that they are both independent of

the moduli and invariant under the spectral flow action (2.21) on the charges. As a
result, they only depend on pa, μa and q̂0, where we traded the electric charges (qa, q0)
for (εa, μa, q̂0). The latter comprise the spectral flow parameter εa , the residue class
μa ∈ �∗/� defined by the decomposition

qa = μa +
1

2
κabc pb pc + κabc pbεc, ε ∈ �, (2.26)

and the ‘invariant charge’

q̂0 ≡ q0 − 1

2
κabqaqb , (2.27)

which is invariant under (2.21). This allows to write �̄MSW
γ = �̄ p,μ(q̂0).

Given that the invariant charge q̂0 is bounded from above by q̂max
0 = 1

24 (p
3 +c2,a pa),

it is natural to introduce a generating function of the MSW invariants

h p,μ(τ ) =
∑

q̂0≤q̂max
0

�̄ p,μ(q̂0)E
(−q̂0τ

)

. (2.28)
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For an irreducible divisor paγa ∈ H+
4 (Y,Z), this function is known to be a vector-

valued holomorphicmodular form of negative weight (− b2
2 −1, 0) andmultiplier system

M(�) = MZ×Mθ
−1 where Mθ is themultiplier system of the Siegel-Narain theta series

and MZ = E(ε(�) c2 · p) with ε(�) defined below (2.18) [30–32]. However, in [15] it
was found that, if p is reducible and can be written as a sum of two effective divisors,
p = p1 + p2, then h p,μ is a mock modular function whose modular completion is
provided by

̂h p,μ = h p,μ − 1

2
R p,μ, (2.29)

where R p,μ is a non-holomorphic function of τ constructed out of the MSW invariants.
Its explicit expression can be found in [15, Eq.(1.3)] in the case where p is reducible into
at most two effective divisors. In this paper, we will only need the key property that for
any suitably decaying kernel �(x) : Rb2 → C, R p,μ satisfies the following identity2

∑

μ∈��/�
R p,μ ϑ p,μ[�(x), λ]

= − 1

4π
√
2

∑

p1+ p2= p

∑

μs∈��s/�s

h p1,μ1 h p2,μ2 ϑ p1, p2,μ1,μ2

[

|X|β 3
2

(

X2

(pp1 p2)

)

�(x1 + x2), λ + 1
]

, (2.30)

where s ∈ {1, 2}, ϑ p,μ[�,λ] is the theta series (B.1) for the lattice �, and
ϑ p1, p2,μ1,μ2 [�̃, λ̃] is the similar theta series for the doubled lattice �1 ⊕ �2 where
�s is the lattice with quadratic form defined by the charge ps . On the r.h.s. we intro-
duced the function βν(y) =

∫ +∞
y du u−νe−πu , so that for x ∈ R

β 1
2
(x2) = Erfc(

√
π |x |), β 3

2
(x2) = 2|x |−1e−πx2 − 2πβ 1

2
(x2), (2.31)

and used the notation X = x1 · p2 − x2 · p1.

2.3.2. Xγ at one-instanton order In the large volume limit, for γ ∈ �+, the absolute
value of the central charge function Zγ has the expansion

|Zγ | = 1

2
(pt2)− q0 + (q + b)2+ − (q +

1

2
b) · b + · · · , (2.32)

where we used the notation q+ = qata√
(pt2)

. The twistorial integrals along BPS rays �γ are

thus dominated by a saddle point at

z′γ ≈ −i (q + b)+
√

(pt2)
. (2.33)

For negative charge γ ∈ −�+, the saddle point is at z′−γ = 1/z′γ . This shows that in
all integrands we can send z′ either to zero or infinity keeping constant taz′ or ta/z′,

2 In [15] the identity with kernel � = e−πx2+ was taken as the defining property of R p,μ, but it is easy
to see that then it holds for a generic decaying kernel. The integer λ indicates the overall power of τ2 and
controls the weight of the theta series.



308 S. Alexandrov, S. Banerjee, J. Manschot, B. Pioline

respectively. This alsomotivates us to take the same limit for z in allDarboux coordinates,
i.e. to evaluate them around the point z = 0. This is sufficient to capture the metric on
MH and, since the locus z = 0 is invariant under S-duality, it also suffices to check
modular invariance [11].

In this combined limit, one finds the following result for the expansion of the Fourier
modes Xγ to the first order in the DT invariants [11]:

Xγ = X cl
γ

(

1 + X (1)
γ + · · ·

)

, (2.34)

where for γ ∈ �+ one has

X cl
γ = e−Sclp E

(

−q̂0τ − τ

2
(q + b)2− −

τ̄

2
(q + b)2+ + c · (q + 1

2 b) + iτ2(pt2)
(

z − z′γ
)2
)

,

X (1)
γ = 1

2π

∑

γ ′∈�+
σγ ′�̄γ ′

∫

�γ ′
dz′
(

(tpp′)− i〈γ, γ ′〉
z′ − z

)

X cl
γ ′ ,

(2.35)

and Scl
p is the leading part of the Euclidean D3-brane action in the large volume limit

Scl
p = πτ2(pt2)− 2π ipac̃a . (2.36)

Note that X cl
γ is the part of X sf

γ (2.9) obtained by using the classical mirror map (2.15),

whereasX (1)
γ has two contributions: one from the integral term in the equation (2.8) and

another from quantum corrections to the mirror map (A.8). For the opposite charge, the
results can be obtained via the complex conjugation and the antipodal map, X−γ (z) =
Xγ (−z̄−1).

Finally, we fix the quadratic refinement appearing in (2.4) and the above results
for the Darboux coordinates. We choose it to be σγ = E

( 1
2 paqa

)

σ p where σ p =
E
( 1
2 Aab pa pb

)

and Aab is a matrix of half-integers satisfying [4]

Aab p p − 1

2
κabc pb pc ∈ Z for ∀pa ∈ Z. (2.37)

It is easy to check that with this choice σγ satisfies the defining relation for quadratic
refinements σγ1σγ2 = (−1)〈γ1,γ2〉σγ1+γ2 .

3. D-Instanton Corrected Darboux Coordinates

In this section we compute the expansion of Darboux coordinates at two-instanton order
in the combined limit ta → ∞,z → 0 keeping zta fixed, and manifest the restrictions
imposed by modular symmetry on the instanton contributions.

3.1. Quantum corrections as modular forms. Recall that our aim is to verify that S-
duality acts on the twistor space by a holomorphic contact transformation. To this end,
one must first express all Darboux coordinates in terms of the type IIB fields using a
suitably corrected version of the classical mirror map (2.15), and then apply the combi-
nation of (2.11), (2.18) and (2.14) to the result. If the resulting transformation is indeed
holomorphic, it will have to coincide with (2.16), or be a small deformation thereof. But
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the transformation (2.16) is already highly non-linear and mixes classical and quantum
contributions as well as various Darboux coordinates between each other. This makes
the verification of the modular symmetry very complicated.

To overcome this problem, we split all Darboux coordinates into classical and quan-
tum pieces, �I = �I

cl + δ�
I , and introduce combinations of the quantum contributions

δ�I which are either invariant or transform as an elliptic variable under S-duality. More
precisely, we define3

δ̂ξa = (1− z2)δξa,

δ̂ξ̃a = δξ̃a + κabc

[

bb − iz

(

tb +
δ̂ξb

4τ2z

)]

δ̂ξ c

1− z2
,

δ̂+α = δα + τ δξ̃0 + κabc

(

ba − iz

(

ta +
δ̂ξa

4τ2z

))

[

cb − τbb − iτ2z2bb

1− z2

−τ2z(2− z2)

1− z2

(

tb +
δ̂ξb

4τ2z

)

]

δ̂ξ c

1− z2
+

i(2− z2)

48τ2(1− z2)2
κabcδ̂ξ

a δ̂ξbδ̂ξ c,

δ̂−α = δα + τ̄ δξ̃0 + κabc

(

ba − iz

(

ta +
δ̂ξa

4τ2z

))

[

cb − τ1bb − iτ2z2bb

1− z2

− τ2z

1− z2

(

tb +
δ̂ξb

4τ2z

)

]

δ̂ξ c

1− z2
+

i

48τ2(1− z2)2
κabcδ̂ξ

a δ̂ξbδ̂ξ c.

(3.1)

Then one can show that the Darboux coordinates transform under SL(2,Z) as in (2.16)
if and only if the combinations (3.1) undergo the following simple transformations

δ̂ξa �→ δ̂ξa

cτ + d
, δ̂ξ̃a �→ δ̂ξ̃a, δ̂+α �→ δ̂+α

cτ + d
, δ̂−α �→ δ̂−α

cτ̄ + d
. (3.2)

Thus, instead of the complicated transformation rules of quantum corrections toDarboux
coordinates,weneed to verify that their combinations introduced above,whichwedenote
collectively by δ̂�I , transform as ordinary modular forms of suitable weight.

3.2. Darboux coordinates at two-instanton order. In “Appendix A.2” we compute the
contributions δ̂�I in the following double approximation: i) in the large volume limit
combined with z → 0 keeping zta fixed, ii) up to second order of the expansion in the
DT invariants. Remarkably, all δ̂�I can be expressed only in terms of two functions,
which we denote by F̃ p and J̃ p, and a set of the modular-covariant derivative operators
introduced in “Appendix A.1”. Let us first define these functions.

To this end, we start from the two natural twistorial integrals

F =
∑

γ∈�+

∫

�γ

dz′Hγ , J (z) =
∑

γ∈�+

∫

�γ

dz′

z′ − z
Hγ . (3.3)

3 Recall that in the absence of fivebrane instantons, the Darboux coordinate ξ0 remains equal to its classical

value ξ0 = τ + 2iτ2z2

1−z2
at the quantum level, so δξ0 = 0. The definition (3.1) was arrived at by trying to find

a generalization of Eq. (4.5) in [11] which satisfies (3.2) to all orders in δ�I and z. It is straightforward, if
tedious, to check that (3.1) does the job.
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Substituting (2.4) and the expansion of Xγ (2.34), one can represent these functions as
a series in the DT invariants4

F =
∑

p

F (1)p +
∑

p1, p2

F (2)p1 p2 + · · · , J (z) =
∑

p

J (1)
p (z) +

∑

p1, p2

J (2)
p1 p2(z) + · · · .

(3.4)

The functions F̃ p and J̃ p are defined by halving the coefficient of the second order
terms, namely

F̃ p = F (1)p +
1

2

∑

p1+ p2= p

F (2)p1 p2 , J̃ p(z) = J (1)
p (z) +

1

2

∑

p1+ p2= p

J (2)
p1 p2(z). (3.5)

The first function F̃ p was already introduced in [15]. It was shown that in our approxi-
mation it transforms as a modular form of weight

(− 3
2 ,

1
2

)

. The second function J̃ p is a
natural extension of the former to twistor space. It will play a central role in determining
the modular behavior of the Darboux coordinates in what follows.

Next, let us introduce non-linear functionals FI [ f p] acting on a set of functions on
twistor space labeled by the charge vector pa , f p : Z → C. They read as

Fa[ f p] =
∑

p

pa f p

+
π i

2

∑

p1, p2

(pa
2 − pa

1 )
[(

pb
2 D

( p1)
b f p1

)

f p2 − f p1

(

pb
1 D

( p2)
b f p2

)]

,

F̃a[ f p] =
∑

p

D( p)a f p

+π i
∑

p1, p2

[(

pb
2 D

( p1)
b f p1

) (

D
( p2)
a f p2

)

− f p1

(

pb
1 D

( p2)
b D

( p2)
a f p2

)]

,

F+[ f p] =
∑

p

D
( p)
+ f p

+π i
∑

p1, p2

[(

pa
2 D

( p1)
a f p1

) (

D
( p2)
+ f p2

)

− f p1

(

pa
1 D

( p2)
a D

( p2)
+ f p2

)

+ 2τ2κ
ab
( p1+ p2)

κbcd td
(

pc
1

(

pg
2 D

( p1)
g f p1

) (

D
( p2)
a F̃ p2

)

−pc
2

(

pg
2 D

( p1)
g D

( p1)
a f p1

)

F̃ p2

−pc
1 f p1

(

pg
1 D

( p2)
g D

( p2)
a F̃ p2

)

+ pc
2

(

D
( p1)
a f p1

) (

pg
1 D

( p1)
g F̃ p2

))]

,

F−[ f p] =
∑

p

D
( p)
− f p + π i

∑

p1, p2

[(

pa
2 D

( p1)
a f p1

) (

D
( p2)− f p2

)

− f p1

(

pa
1 D

( p2)
a D

( p2)− f p2

)]

−iτ2z
∑

p

( p · t2)F̃ p , (3.6)

4 ∑

p
is always understood as a sum over charges satisfying (2.20).
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where κab
( p) is the inverse of the matrix κabc pc. Then the calculation in “Appendix A.2”

shows that the combinations (3.1) are expressed as follows5

δ̂�I = FI [J̃ p]. (3.7)

Given the modular properties of F̃ p and all derivative operators entering (3.6), it is
immediate to see that FI [J̃ p] would transform under SL(2,Z) precisely as required by
(3.2) provided J̃ p were a modular form of weight (−1, 0). However, as was found in
[11], this is not true even in the leading one-instanton approximation. In the next section
we explain how to cure this problem.

4. Gauge Transformation and Modularity

While the QKmetric onMH is uniquely specified by the holomorphic contact structure
on the twistor space, Darboux coordinates on Z are only defined up to a local holomor-
phic contact transformation. Upon performing such transformations in different patches
of Z , the contact hamiltonians relating these Darboux coordinates, and even the cov-
ering of Z , may change, but the global holomorphic contact structure stays invariant.
Nevertheless, this freedom plays an important role because different choices of covering
of Z may help in making different symmetries manifest: e.g. the manifestly S-duality
invariant twistorial construction of D1-D(-1)-instantons relevant in the type IIB formu-
lation was related to the type IIA construction presented in Sect. 2.1 by such a change
[10]. Therefore, one may expect that a similar trick will allow to remove the modular
anomaly of the D3-instanton contributions found in the previous section.

Keeping this idea inmind, let us study the effect of a class of local contact transforma-
tions, which we for brevity call ‘gauge transformations’, on the D-instanton corrected
Darboux coordinates. As was mentioned in Sect. 2.1, all contact transformations are
generated by contact hamiltonians. Then the class of transformations of interest are
described by the following holomorphic functions6

hg = 1

4π2

∑

p

e2π ip
a ξ̃a g p(ξ), (4.1)

where g p is any holomorphic function of ξ� regular in the neighborhood of z = 0. The
motivation for considering this class of functions comes from the fact that it is consistent
with the Heisenberg shift symmetry ξ̃a �→ ξ̃a+η̃a with ηa ∈ Z. In particular, the simplest
choice g p ∼ �̄γ e−2π iq�ξ� produces a linear superposition of the contact hamiltonians
Hγ (2.4) generating D-instanton corrections.

In “AppendixA.3”we show that the effect of the gauge transformation on theDarboux
coordinates is extremely simple: it affects only the instanton contributions and, when

5 The function J̃ p is discontinuous across BPS rays, which in the large volume limit correspond to the

straight lines Im z = − (q+b)·t
(pt2)

. Our manipulations are supposed to be valid only away from these rays so that

the delta functions on the twistor space, appearing formally from the action of the derivative operators, can be
safely ignored.

6 We will use capital H and small h to denote contact hamiltonians generating transformations between
Darboux coordinate systems in two different patches or in the same patch (i.e., a gauge transformation),
respectively.
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formulated in terms of the combinations (3.1), it amounts to a shift in the argument of
the functionals FI ,

ρhg : δ̂�I �→ δ̂g�
I = FI [ ̂J p] , ̂J p = J̃ p − 2π ih̃g

p , (4.2)

where the function h̃g
p is constructed in the way similar to J̃ p. Namely, one first expands

the contact Hamiltonian (4.1) using (2.34), thereby obtaining7

hg =
∑

p

hg(1)
p +

∑

p1, p2

hg(2)
p1 p2 + · · · , (4.3)

and then halves the second order contribution

h̃g
p = hg(1)

p +
1

2

∑

p1+ p2= p

hg(2)
p1 p2 . (4.4)

Thus, our problem is to find a holomorphic function g p(ξ) such that the resulting function
̂J p transforms as a modular form of weight (−1, 0). If it exists, then according to the
results of the previous section, S-duality will act on the gauge-transformed Darboux
coordinates by the classical map (2.16), which is a holomorphic contact transformation.

Hindsight from our earlier study of the one-instanton approximation8 suggests the
ansatz

hg =
∑

γ∈�+
�(1)γ Hγ +

1

2

∑

γ1,γ2∈�+
�(2)γ1γ2 Hγ1 Hγ2 , (4.5)

where �(1)γ and �(2)γ1γ2 are two piecewise constant functions of the moduli, which are
further assumed to be independent of the zeroth components of the electric charges. This
last condition allows to factorize the sum over electric charges and express the gauge
transformation as a sum of indefinite theta series. Indeed, using (2.23) to express the DT
invariants entering the contact hamiltonian Hγ (2.4) in terms of the MSW invariants, hg

can be rewritten as

hg = 1

4π2

∑

γ∈�+
�̄MSW
γ �(1)γ σγXγ +

1

32π4

∑

γ1,γ2∈�+
�̄MSW
γ1

�̄MSW
γ2

�̂(2)γ1γ2σγ1σγ2Xγ1Xγ2 ,

(4.6)

where �̂(2)γ1γ2 = �(2)γ1γ2 + 4�t
γ1γ2
�
(1)
γ , with �t

γ1γ2
the sign factor defined in (2.24). Then

due to the above property and the spectral flow invariance of �̄MSW
γ , both terms in (4.6)

can be represented in a factorized form

hg = 1

4π2

∑

p

∑

μ∈��/�
h p,μ ϑ̂ p,μ(�

(1)
γ , 0)

+
1

32π4

∑

p1, p2

∑

μs∈��s/�s

h p1,μ1 h p2,μ2 ϑ̂ p1, p2,μ1,μ2(
√
τ2�̂

(2)
γ1γ2
, 1), (4.7)

7 Note that this is not the expansion in powers of DT invariants which may appear explicitly as coefficients
in g p. Rather, the first term corresponds to the evaluation of (4.1) on the classical Darboux coordinates,
whereas the other terms arise by expanding in instanton corrections to these coordinates. See (A.14).

8 The study in [11] contained several errors that we shall rectify below.
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where h p,μ is the holomorphic generating function of the MSW invariants (2.28) and
the ϑ̂’s are the z-dependent theta series (B.14) with a quadratic term in the exponential
arising due to expressing the charge q0 in terms of the invariant charge q̂0 (2.27). In
particular, ϑ̂ p,μ(�

(1)
γ ) is a theta series for the lattice � with quadratic form κabc pc of

signature (1, b2 − 1), whereas ϑ̂ p1, p2,μ1,μ2(
√
τ2�̂

(2)
γ1γ2) is a theta series for the doubled

lattice�1⊕�2 of signature (2, 2b2−2). We shall now fix the piecewise constant factors
�
(1)
γ and �(2)γ1γ2 in turn.

4.1. Gauge transformation at one-instanton order, revisited. At one instanton order,
�
(1)
γ should be chosen so as to cancel the anomalous variation of

J (1)
p (z) = 1

4π2

∑

q�

σγ �̄
MSW
γ

∫

�γ

dz′

z′ − z
X cl
γ (z

′). (4.8)

It was recognized in [11] that, after expressing the charge q0 in terms of the invariant
charge q̂0 and factorizing the sum over electric charges as in (4.7), this object can be
written as an Eichler integral of a Siegel-type theta series for the lattice �. Since such
an Eichler integral arises naturally in the modular completion of Zwegers’ indefinite
theta series (see Sect. B.3), it was suggested to choose �(1)γ such that hg produces an
holomorphic theta series whose modular anomaly cancels that of the Eichler integral.
This motivated the choice9

�(1)γ = 1

2

[

sign
(

(q + b) · t + (pt2) Im z
)− sign

(

(q + b) · t ′ + 2(ptt ′) Im z
)

]

, (4.9)

where t ′ is an auxiliary null vector on the boundary of the Kähler cone, such that
(pt ′2) = 0 and (ptt ′) > 0. In this expression, the first sign has a simple interpretation.
Indeed, the line on CP1 where its argument vanishes coincides with the BPS ray �γ
(2.6) in the large volume limit. Therefore, the corresponding term in (4.5) just removes
the discontinuity in the Darboux coordinates along this BPS ray. This is a typical effect
of the gauge transformation mapping type IIA to type IIB twistorial construction (cf. the
gauge transformation (D.4) relevant for the description of D1-D(-1)-instantons).

The second term in (4.9), dependent on the null vector t ′, is needed for convergence of
the indefinite theta series. The vector t ′must be null because otherwisemodularitywould
require additional non-holomorphic terms that cannot be produced by a holomorphic
gauge transformation. But, unfortunately, for CY threefolds with b2 = 1, there are no
non-trivial null vectors. Moreover, as is explained in “Appendix B.3”, even when null
vectors exist, the convergence of the indefinite theta series requires that t ′ be a rational
null vector, since otherwise the theta series would diverge due to accumulation of lattice
points near the light cone leading to an infinite number of terms of the same strength.
But even when b2 > 1, rational null vectors may not exist in general, as can be seen on
the examples in [17].

In order to circumvent both problems,we propose tomodify the previous construction
by extending the charge lattice. First of all, let us choose an integer vector t ′ ∈ H4(Y,Q)
inside the Kähler cone, which implies in particular that (p1 p2t ′), (p1t t ′) are positive for
all effective divisors p1, p2 and Kähler parameters t . For example, t ′ could be chosen to
beoneof these divisors.Wenowsupplement the original lattice�with an auxiliary lattice

9 This differs from [11, 4.31] by the z-dependent shift in the argument of the sign, which was overlooked.
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of dimension N p = (pt ′2), parametrized by half-integers ni , with diagonal quadratic
form κ− = diag(−1, . . . ,−1), which we denote by �−N p

. The extended lattice �̌ =
�⊕�−N p

then carries a quadratic form

κ̌AB =
(

κab 0
0 −δi j

)

, (4.10)

where A = (a, i) and the indices i, j run over N p values. This quadratic form may be
obtained from an auxiliary intersection form κ̌ABC with

κ̌abc = κabc, κ̌abi = κ̌ai j = 0, κ̌i jk = −δi jδik (4.11)

by contracting it with the extended charge vector p̌A = (pa, 1, . . . , 1): κ̌AB = κ̌ABC p̌C .
The lattice �̌ possesses two crucial properties:

1. � and �̌ have the same discriminant group, so μ̌A ∈ �̌∗/�̌ can be chosen as
μ̌A = (μa, 0, . . . , 0) with μa ∈ �∗/�;

2. the lattice �̌ always admits an integer null vector, namely ť ′A = (t ′a, 1, . . . , 1), since
κ̌AB ť ′Ať ′B = 0.

Having introduced this extended lattice, we now take

�(1)γ = 1

2

⎛

⎜

⎝sgn(wγ (z))− 1

(∂vθ1(τ, 0))N p

∑

ni∈Z+ 1
2

⎡

⎣

N p
∏

i=1
(−1)ni 2π ini q

n2i
2

⎤

⎦ sgn(w′γ,n(z))

⎞

⎟

⎠ ,

(4.12)

where

wγ (z) = (q + b) · t + (pt2) Im z,

w′γ,n(z) = (q + b) · t ′ +
N p
∑

i=1
ni + 2(ptt ′) Im z,

(4.13)

and θ1(τ, v) is the usual Jacobi theta series (q = e2π iτ ), which is a holomorphic Jacobi
form of weight 1/2,

θ1(τ, v) =
∑

n∈Z+ 1
2

(−1)ne2π invq
n2
2 . (4.14)

To interpret �(1)γ in terms of the extended lattice, let us also introduce the auxiliary
components of the fields b, c and the Darboux coordinates

ξ i
cl = τbi − ci , ξ̃ cli = −1

2
bi (ci − τbi ). (4.15)

Then it is easy to see that the theta series for the lattice � with kernel �(1)γ can be
expressed in terms of a theta series on the extended lattice �̌. The precise relation is
given by
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ϑ̂ p,μ(�
(1)
γ ; τ, b, c, z)

= 1

2 (∂vθ1(τ, 0))N p

⎡

⎣

N p
∏

i=1
∂ci

⎤

⎦

(

V−1ϑ̂ p̌,μ̌(�
(s)
ť,ť ′ ; τ, b̌, č, z)

)

∣

∣

∣

∣

∣

∣

bi=ci=0
. (4.16)

Here ˇ indicates quantities living on �̌, ť A = (ta, 0, . . . , 0), and we defined

V = E

⎛

⎝

N p
∑

i=1
ξ̃ cli

⎞

⎠ (4.17)

as well as the kernel

�
(s)
ť,ť ′(x̌, y) = sgn (w(y))− sgn

(

w′(y)
)

, (4.18)

where w,w′ denote a rescaled version of the quantities (4.13), namely,10

w(y) = x̌+ + Im y, w′(y) = x̌ · ť ′ + 2ť ′+ Im y. (4.19)

Importantly, in the second sign function in (4.18) the charge vector is contracted with
the integer null vector ť

′
, which ensures convergence of the theta series in (4.16). It is

also worth noting that the derivatives with respect to the auxiliary fields ci in (4.16)
are needed because the sum over ni in all terms independent of the null vectors would
otherwise vanish, due to the vanishing of θ1(τ, v) at v = 0.

4.2. Gauge transformation at two-instanton order. Similarly, at two-instanton order we
introduce the extended version of the doubled lattice �̌12 = �̌1⊕�̌2 = �1⊕�2⊕�−N p

,
and choose

�(2)γ1γ2 =
π2〈γ1, γ2〉

(∂vθ1(τ, 0))N p

∑

ni∈Z+ 1
2

⎡

⎣

N p
∏

i=1
(−1)ni 2π ini q

n2i
2

⎤

⎦

×
(

sgn(Iγ1γ2)− sgn(w′γ1,n1)
) (

sgn(w′γ,n)− sgn(wγ2)
)

, (4.20)

where the vector n = (n1, n2) has N p1 + N p2 = N p components. From (4.7) it follows
that it leads to the two-instanton contribution which can be written in terms of a theta
series with the following kernel

�̂(2)γ1γ2 =
π2〈γ1, γ2〉

(∂vθ1(τ, 0))N p

∑

ni∈Z+ 1
2

⎡

⎣

N p
∏

i=1
(−1)ni 2π ini q

n2i
2

⎤

⎦

[

sgn(Iγ1γ2)
(

sgn(wγ )

− sgn(wγ2)
)

+ sgn(w′γ1,n1)
(

sgn(wγ2)− sgn(w′γ,n)
)

+ sgn〈γ1, γ2〉
(

sgn(w′γ,n)

− sgn(wγ )
)

]

. (4.21)

10 Note that the definition of ť A ensures that that for any extended vector x̌+ = x+.
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Proceeding as above, this theta series can then be recast as a theta series for the doubled
extended lattice �̌12 with signature (2, 2b2 − 2 + N p), with kernel given by X (see
(C.13)) times the factor in (4.21) involving sign functions. Although the resulting theta
series is formally the sum of two theta series of the type considered in [18], neither of
the two is separately convergent. Instead, it is an example of a more general type of
indefinite theta series which we introduce in “Appendix C”. In this appendix, relying on
a conjectural set of sufficient conditions for convergence, we argue that �̂(2)γ1γ2 does lead
to a convergent theta series.

Upon making these choices, it is clear that the contact hamiltonian (4.5) fits in the
class of contact transformations described by (4.1). Thus, we can apply the result (4.2)
for the effect of the gauge transformation on the Darboux coordinates, which is captured
by the function ̂J p. In the next section we compute this function explicitly and prove
that it transforms as a modular form of weight (−1, 0).

4.3. Modularity. Starting from (3.3) and (4.5), substituting the expansion (2.34), and
following the procedure leading to the definition of ̂J p (4.2), one arrives at the following
expression for this function

̂J p = 1

4π2

∑

q�

σγ �̄γ

[

∫

�γ

dz′

z′ − z
X cl
γ (z

′)− 2π i�(1)γ X cl
γ (z)

]

+
1

16π3

∑

γ1,γ2∈�+
p1+ p2= p

σγ1σγ2�̄γ1�̄γ2

{

(tp1 p2)

[

∫

�γ1

dz1
z1 − z

X cl
γ1
(z1)

−2π i�(1)γ1 X cl
γ1
(z)
]

∫

�γ2

dz2X cl
γ2
(z2)

−i
[

〈γ1, γ2〉
∫

�γ1

dz1
z1 − z

∫

�γ2

dz2
z2 − z1

X cl
γ1
(z1)X cl

γ2
(z2)

−2π i〈γ1, γ2〉�(1)γ1 X cl
γ1
(z)
∫

�γ2

dz2
z2 − z

X cl
γ2
(z2) +�

(2)
γ1γ2

X cl
γ1
(z)X cl

γ2
(z)

]}

.

(4.22)

Our aim here is to understand its modular properties. To this end, we rewrite ̂J p in
terms of the MSW invariants by means of the expansion (2.23). Then, using the spectral
flow invariance of �̄MSW

γ , one can represent all sums over charges in a factorized form, in
a similar way as was done in (4.7). Introducing further the extended lattice and auxiliary
components of the b and c fields as was explained in the previous section, one finds that
(c.f. (4.16))

̂J p = 1

(∂vθ1(τ, 0))N p

⎡

⎣

N p
∏

i=1
∂ci

⎤

⎦

(

V−1
̂J ext
p

)

∣

∣

∣

∣

∣

∣

bi=ci=0
, (4.23)
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where

̂J ext
p = 1

4π i

⎡

⎣

∑

μ∈�∗/�
̂h p,μ ϑ̂ p̌,μ̌(�̂

(1)
p̌ , 0)

+
1

8
√
2

∑

p1+ p2= p

∑

μs∈�∗s /�s

h p1,μ1 h p2,μ2 ϑ̂ p̌1, p̌2,μ̌1,μ̌2
(�̂

(2)
p̌1 p̌2

, 1)

⎤

⎦. (4.24)

Here the theta series ϑ̂ p̌,μ̌ (B.14) is defined on the extended lattice �̌, ϑ̂ p̌1, p̌2,μ̌1,μ̌2
is its

version for the doubled extended lattice �̌12, and the two kernels are given by

�̂
(1)
p̌ (x̌, y) = Ê1(x̌+, y)− sgn

(

w′) , (4.25)

�̂
(2)
p̌1 p̌2

(x̌1, x̌2, y) =
{

(tp1 p2)

π
√

(p2t2)
e−π(x̌2+−iy2)

2
�̂
(1)
p̌1
(x̌1, y1)

−XM̂2

(√

(p2t2)
(p1t2)

, x̌1+, x̌2+, y
)

−X
[

sgn(w1)− sgn
(

w′
1

)

]

M̂1(x̌2+, y2)

+X
[

sgn(I)− sgn(w′
1)
][

sgn(w′)− sgn(w2)
]

+X

[

sgn(I)− sgn(X)

(

1 +
1

2π
β 3

2

(

X2

(pp1 p2)

)

)]

�̂
(1)
p̌ (x̌1 + x̌2, y)

}

+(1↔ 2), (4.26)

where Ê1, M̂1, M̂2 are the y-dependent versions of the usual and double error functions
introduced in “Appendices B.3 and B.4”. Besides, we used rescaled versions of various
quantities, which after rescaling are all expressed in terms of x̌s = √

2τ2(q̌s + b̌),

y = √2τ2(pt2)z and ys =
√

2τ2(pst2)z =
√

(ps t2)
(pt2)

y (cf. (B.14)). In particular, X and

I are rescaled versions of 〈γ1, γ2〉 and Iγ1γ2 , respectively, defined in (C.13),w,w′ have
been already introduced in (4.19), and

ws(y) = x̌s+ + Im ys, w′
s(y) = x̌s · ť ′s + 2ť ′s+ Im ys, (4.27)

where ť
′
s is the null vector for the extended lattice �̌s .

Note that the first contribution in (4.24) is written in terms of the modular comple-
tion (2.29) of the generating function of the MSW invariants. The latter has a modular
anomaly at the two-instanton order and therefore the difference between h p,μ and̂h p,μ
must be taken into account here, leading to the very last contribution in (4.26) via the
property (2.30).

The representation (4.23) shows that ̂J p is a modular function of weight (−1, 0)
provided its extended version ̂J ext

p is modular with weight ( 12 N p − 1, 0). Indeed, let us

assume that ̂J ext
p is such a modular form. Then, we observe that the factor V affects only

the exponential part of the automorphy factor dependent on bi , ci and does not affect
the modular weight, so can be safely ignored.11 Moreover, it can be checked that the

11 In fact, this factor is absent in the standard definition of theta series found e.g. in [33].
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remaining function depends on the auxiliary components bi , ci only in the combinations
vi = ci − τbi (except the dependence on bi through the sign functions which is anyway
piecewise constant) so that taking the derivatives ∂ci and subsequently setting bi =
ci = 0 is equivalent to extracting the first coefficient of the Fourier expansion in all
vi . Since vi transform under SL(2,Z) homogenously with modular weight (−1, 0), the
corresponding Fourier coefficient is also modular with weight ( 32 N p−1, 0). Finally, due
to the same reason (or using the identity ∂vθ1(τ, 0) = 2π(η(τ))3), one concludes that
∂vθ1(τ, 0) has modular weight ( 32 , 0) which brings the total weight of (4.23) to (−1, 0).

Thus, it remains to understand the modular properties of ̂J ext
p . First, we concentrate

on the one-instanton term in (4.24). Since ť
′
is a null vector on the extended lattice, as

is shown in “Appendix B.3”, the kernel �̂(1)p̌ is annihilated by the generalized Vignéras’

operator V̂0 (B.15). Thus, ϑ̂ p̌,μ̌(�̂
(1)
p̌ ) is a modular theta series of weight ( 12 (b2+N p), 0).

Taking into account that̂h p,μ is amodular form of weight (− b2
2 −1, 0), we conclude that

the first term in (4.23) transforms as amodular form of the requisite weight ( 12 N p−1, 0).
To understand the modular properties of the second order contribution, we split the

kernel (4.26) into several pieces

�̂
(2)
p̌1 p̌2

= −�̂E
2,1 + �̂

(F)
p̌1 p̌2

+ �̂(E)p̌1 p̌2
+ (1↔ 2). (4.28)

The first term �̂E
2,1 is defined in (B.41). Although it is defined on the usual doubled

lattice �12, it can be trivially extended to �̌12 due to the property described in footnote
10. The other two terms are given by

�̂
(F)
p̌1 p̌2

= −F
(

X√
(pp1 p2)

)

�̂
(1)
p̌ (x̌1 + x̌2, y),

�̂
(E)
p̌1 p̌2

= sgn(w′
1)

[

X
(

Ê1(x̌2+, y2)− sgn(w′)
)

− e−π(x̌2+−iy2)
2

π
√

(p2t2)

]

, (4.29)

where we introduced the function

F(x) = |x |
(

1 +
1

2π
β 3

2
(x2)

)

= x Erf(
√
πx) +

1

π
e−πx2 , (4.30)

and used the following sum rule afforded by the linear dependence of the three hyper-
planes I = 0, w = 0, w2 = 0,

sgn(I) (sgn(w)− sgn(w2)) + sgn(w)sgn(w2) = 1. (4.31)

The contribution from 1 on the r.h.s. vanishes after multiplication byX and symmetriza-
tion.

If the above kernels were all annihilated by the generalized Vignéras’ operator V̂1
for the extended doubled lattice, obtained by replacing all vectors by their extended
counterparts in (B.42), then the theta series based on them will be modular forms of
weight (b2 + 1

2 N p + 1, 0). Then, after multiplication by the two generating functions of
MSW invariants appearing in the second term in (4.24), they will give rise to modular
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forms of weight ( 12 N p − 1, 0), as required. In “Appendix B.4” it is shown that �̂E
2,1 is

indeed annihilated by V̂1, whereas for the other kernels one finds

V̂1 · �̂(F)p̌1 p̌2
= 0,

V̂1 · �̂(E)p̌1 p̌2
= 4(p1 p2t ′) δ(w′

1) �̂
(1)
p̌2
(x̌2, y2).

(4.32)

Thus, the last kernel �̂(E)p̌1 p̌2
leads to an anomaly in the Vignéras’ equation, which is

proportional to a delta function localized at w′
1 = 0.

As we argue in “Appendix B.5”, such delta function anomalies do not always sig-
nify the breakdown of modular symmetry. Some of them lead to modular anomalies
in the theta series which are themselves localized on the codimension 1 loci in twistor
space where the delta functions are supported, which in our context correspond to the
boundaries between different patches. For such localization to happen, it is necessary
that the anomaly in Vignéras’ equation be an eigenfunction of Vignéras’ operator with
a different eigenvalue. Using the property xδ′(x) = −δ(x), it is immediate to see that
in our case this requirement does hold,

V̂−1 ·
(

V̂1 · �̂(E)p̌1 p̌2

)

= 0. (4.33)

This should come as no surprise because from the discussion below Eq. (4.9) it follows
that the equation w′ = 0 is expected to describe the position of discontinuities of the
Darboux coordinates after the gauge transformation, i.e. a boundary of the new patches.
Alternatively, we can view the kernel �̂(E)p̌1 p̌2

as the limit t ′2 → 0 of a continuous kernel
which does satisfyVignéras equation. In this limit, error functions become discontinuous
sign functions, butGaussian terms similar to the last term in (4.29) lead to delta functions.
The kernel �̂(E)p̌1 p̌2

is then obtained after dropping such delta function terms, which do
not contribute to the theta series away from the singular loci, at the expense of producing
an anomaly in Vignéras’ equation.

Thus, we conclude that the anomaly can be dropped and the full kernel (4.28) is
annihilated by V̂1,which implies that both functions ̂J ext

p and ̂J p possess correctmodular
properties. This proves that S-duality acts isometrically on the twistor space Z and its
quaternion-Kähler base, which is the instanton corrected hypermultiplet moduli space
MH .

5. Discussion

Our main result is a proof that, at two-instanton order and in the large volume approxi-
mation, D3-instanton corrections to the hypermultiplet moduli spaceMH are consistent
with the S-duality of type IIB string theory, provided the MSW invariants are Fourier
coefficients of a vector-valued mock modular form with specified modular properties.
To show that MH admits an isometric action of SL(2,Z), we produced a set of Dar-
boux coordinates for the holomorphic contact structure on the twistor space Z , which
transform under SL(2,Z) in the same way (2.16) as the Darboux coordinates for the
classical, uncorrected moduli space. These new Darboux coordinates were obtained by
finding appropriate quantum corrections (A.8) to the mirror map and by applying a local
holomorphic contact transformation (4.5) to theDarboux coordinates used in the original
type IIA formulation of the D-instanton corrected MH .
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Our twistorial construction makes it clear that at k−th order in the instanton expan-
sion, the local contact transformation, which is needed to cancel the modular anomaly,
is generated by an indefinite theta series of signature (k, n − k) for some n ≥ kb2; and
moreover, that the modular completion of such indefinite theta series involves a k-th
iterated integral over the twistor fiber. This physical input was key to our previous work
[18], where we developped a general machinery for dealing with such indefinite theta se-
ries, with particular emphasis on the ‘conformal’ case (k = 2). It is worth noting that the
twistorial construction of D-instantons automatically produces the modular completion
without any guesswork.

While in [18] we focused on indefinite theta series whose kernel is given by product
of difference of sign functions, in the course of this work we have encountered a more
general class of theta series, whose kernel is a cyclic sum of products of signs. Although
these theta seriesmaybe formally decomposed as a sumof series of the type considered in
[18], each term in this formal decomposition need not be separately convergent.We have
put forward a conjecture providing a set of sufficient conditions ensuring the convergence
of this more general class of theta series, which has passed extensive numerical tests.
It would be interesting to prove our conjecture, possibly along the lines of [34], or by
relating it to the theta series for polyhedral cones considered in [35].

To achieve convergence of the theta series, we had to extend the lattice of electric
charges by adding a number of auxiliary directions. A similar trick is often used in the
mathematics literature, where the modular properties of Ramanujan’s mock theta func-
tions are exposed by expressing them as the ratio of an indefinite theta series by a Jacobi
theta series [14,36]. Such extended lattices also arise geometrically from blowing-up a
two cycle in a four-manifold [37–39] or performing a flop transition in a Calabi–Yau
[40]. Note that the presence of auxiliary directions, and the fact that the number N p
scales linearly with the magnetic charge, was key for the cancellation of anomalies.12

Nevertheless, we admit that this construction leads to a complicated gauge transforma-
tion and, moreover, brings in an ambiguity in choice of the integer null vector t ′. The
physical meaning of this ambiguity and the geometric interpretation of the resulting
gauge transformation are not clear to us.

It is worth noting that, at the level of the one-instanton approximation, the extended
lattice construction is not strictly necessary. Indeed, while the indefinite theta series
defined by the kernel (4.9) diverges if the null vector t ′ is not rational, its variation
under a modular transformation is still convergent and holomorphic, given by a period
integral of a convergent Siegel-type theta series.While this fact is not enough for defining
Darboux coordinates which transform covariantly under modular symmetry, it suffices
to show that the modular anomaly at one-instanton level can be absorbed by a complex
contact transformation. It may be possible to use a similar strategy at the two-instanton
level, but we found it more convenient to use the extended lattice trick. While the
resulting construction might look somewhat ad hoc, as was emphasized above, it has the
advantage of producing a set of Darboux coordinates which transform like their classical
counterparts, with no modular anomaly. We hope that this feature will help in finally
determining the exact, fully corrected hypermultiplet moduli space.

12 For instance, if we chose a generic vector t ′ such that (pt ′2) = 0 as in (4.9), ignoring the divergence due
to its non-rationality, then t ′ would depend on the charge p in a non-linear way. As a result, we would lose
the orthogonality of C4 and C5 (see (C.14)) appearing in the theta series for the gauge transformation, which
in turn would spoil both modularity and convergence.
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A. Details of Computations

In this section,we collect technical details about the computation of instanton corrections
to the Darboux coordinates, and about the effect of local contact transformations.

A.1. Modular operators. Let us introduce the following derivative operators

Dh = 1

2π i

(

∂τ +
h

2iτ2
+

ita

4τ2
∂ta

)

, (A.1a)

D( p)a = 1

4πτ2

[

∂ba + τ̄ ∂ca − iπκabc pc(cb − τ̄bb)
]

, D̄( p)a = (D( p)a )�.

(A.1b)

They respect the modularity in the sense that, acting on theta functions of weight (h, h̄),
the operatorsDh, D( p)a , D̄( p)a preserve their form and raise the modular weight by (2,0),
(1,0), (0,1), respectively. Furthermore, we allow the modular derivative (A.1a) to act on
theta functions living on the twistor spaceZ in which case it acquires an additional term

D̂−1 = D−1 − z

8πτ2
∂z . (A.2)

Using these operators, we also define

D
( p)
+ = −2iτ2κab

( p)D
( p)
a D̄( p)b − b2 + 1

2π i
, (A.3a)

D
( p)
− = 2iτ2D̂−1 + (ca − τ̄ba)D( p)a . (A.3b)

A straightforward calculation shows that the action of the above operators on the
Fourier modes of the classical Darboux coordinates (2.35) is given by

DhX cl
γ = −

(

q̂0 +
1

2
(q + b)2 − iz

2

(

qata + (btp)
)

+
h

4πτ2

)

X cl
γ ,

D̂hX cl
γ = −

(

q̂0 +
1

2
(q + b)2 − iz

(

qata + (btp)
)− z2

2
(pt2) +

h

4πτ2

)

X cl
γ ,

D( p)a X cl
γ =

(

qa + κabc pc(bb − iztb)
)

X cl
γ ,

D̄( p)a X cl
γ = i

2τ2
κabc pc(cb − τbb − 2τ2ztb)X cl

γ ,

D
( p)
+ X cl

γ =
(

i

2π
+
(

ca − τba − 2τ2zta)
(

qa + κabc pc(bb − iztb)
)

)

X cl
γ ,

D
( p)
− X cl

γ =
(

i

2π
− 2iτ2q0 + qa

(

ca − τba − 2τ2zta)

+ κabc pc(bb − iztb)
(

ca − τ1ba − τ2zta)
)

X cl
γ . (A.4)
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In the case when the operator and the Darboux coordinates in the last relation depend
on different fiber coordinates, one finds instead

D
( p)
− X cl

γ (z
′)

=
(

i

2π
− 2iτ2q0 + qa

(

ca − τba − τ2z′ta) + κabc pc(bb − iz′tb)
(

ca − τ1ba)
)

X cl
γ (z

′).

(A.5)

Finally, it is useful to note the following two relations

pa
2

(

D
( p1)
a X cl

γ1

)

X cl
γ2
− pa

1

(

D
( p2)
a X cl

γ2

)

X cl
γ1

=
(

〈γ1, γ2〉 + i(z2 − z1)(tp1 p2)
)

X cl
γ1
X cl
γ2
, (A.6)

D
( p)
−
∫

dz′ K (z, z′)X (z′)

=
∫

dz′
[

K (z, z′)D ( p)
−

′
X (z′) + X (z′)

4π i

(

z∂z + ∂z′ z
′) K (z, z′)

]

, (A.7)

where aprimeonD ( p)
− indicates that it acts on thevariable z′.Note that

(

z∂z + ∂z′ z′
) 1

z′−z =
0.

A.2. Instanton contributions to Darboux coordinates. To evaluate the D3-instanton cor-
rections to Darboux coordinates in terms of the type IIB fields, we must first define the
quantum corrected mirror map. We borrow the results from [11] where the leading order
in the large volume expansion of the one-instanton corrections to the classical mirror
map (2.15) was found. The corrections are given by the following twistorial integrals

δua = − i

2τ2

∑

γ∈�+
pa

[

∫

�γ

dz (1− z) Hγ +
∫

�−γ

dz

z3
(1− z) H−γ

]

δζ a = −3
∑

γ∈�+
pa Re

(

∫

�γ

dz z Hγ

)

,

δζ̃a = κabctb
∑

γ∈�+
pc Im

(

∫

�γ

dz Hγ

)

,

δζ̃0 = −κabctb
∑

γ∈�+
pc Im

∫

�γ

dz

(

ba − i

2
taz

)

Hγ ,

δσ = −κabctb
∑

γ∈�+
pc Im

∫

�γ

dz

(

ca −
(

i

2
τ1 − τ2

)

taz

)

Hγ .

(A.8)

We assume13 that these relations continue to hold beyond the one-instanton approxi-
mation and use them in our two-instanton calculations. Substituting them into (2.8) and

13 The validity of this assumption is ensured a posteriori by the consistency of our construction.
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(2.10), and taking the combined limit ta → ∞, z → 0 and zta fixed, one finds that
D3-instanton contributions to the Darboux coordinates are given by

δξa =
∑

γ∈�+
pa
∫

�γ

dz′

z′ − z
Hγ ,

δξ̃a =
∑

γ∈�+

∫

�γ

dz′
(

qa

z′ − z
− iκabctb pc

)

Hγ ,

δξ̃0 =
∑

γ∈�+

[

∫

�γ

dz′
(

q0
z′ − z

+ κabctb pc
(

iba +
z′ + z

2
ta
))

Hγ

− z

2
(pt2)

∫

�−γ

dz′

(z′)2
H−γ

]

,

δα =
∑

γ∈�+

[

∫

�γ

dz′
(

−
1
2π i + q0τ + qa(τba − ca + 2τ2z′ta)

z′ − z

−1

2
κabc pc

(

2icatb + 4τ2batb + (τ1 − 3iτ2)
(

z + z′
)

tatb
)

)

Hγ

+
τ z

2
(pt2)

∫

�−γ

dz′

(z′)2
H−γ

]

− α(2). (A.9)

where

α(2)(z) = 1

32π4

∑

γ1,γ2∈�+
σγ1σγ2�̄(γ1)�̄(γ2)

∫

�γ1

dz1
z1 − z

∫

�γ2

dz2

( 〈γ1, γ2〉
z2 − z1

+
pa
1q2,a

z2 − z

)

X cl
γ1
X cl
γ2
. (A.10)

In Sect. 3.1, it was argued that the Darboux coordinates are not by themselves well-
suited to study the fate of S-duality. Instead, it is useful to consider the combinations
(3.1) which are expected to have very simple modular transformation properties. In our
combined large volume limit, they reduce to

δ̂ξa ≈ δξa,

δ̂ξ̃a ≈ δξ̃a + κabc

(

bb − iztb − iδξb

4τ2

)

δξ c,

δ̂+α ≈ δα + τ δξ̃0 + κabc

(

ba − izta − iδξa

4τ2

)[

cb − τbb − 2τ2ztb − 1

2
δξb
]

δξ c

+
i

24τ2
κabcδξ

aδξbδξ c,

δ̂−α ≈ δα + τ̄ δξ̃0 + κabc

(

ba − izta − iδξa

4τ2

)[

cb − τ1bb − τ2ztb − 1

4
δξb
]

δξ c

+
i

48τ2
κabcδξ

aδξbδξ c. (A.11)
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Substituting (A.9) into these expressions and restricting to the two-instanton order, one
obtains

δ̂ξa = 1

4π2

∑

γ∈�+
paσγ �̄(γ )

∫

�γ

dz′

z′ − z
Xγ , (A.12)

δ̂ξ̃a = 1

4π2

∑

γ∈�+
σγ �̄(γ )

∫

�γ

dz′

z′ − z

(

qa + κabc(b
b − iz′tb)pc

)

Xγ

− i

64π4τ2

∑

γ1,γ2∈�+
κabc pb

1 pc
2 σγ1σγ2�̄(γ1)�̄(γ2)

∫

�γ1

dz1
z1 − z

Xγ1
∫

�γ2

dz2
z2 − z

Xγ2

δ̂+α = 1

4π2

∑

γ∈�+
σγ �̄(γ )

∫

�γ

dz′

z′ − z

[

− 1

2π i

+(ca − τba − 2τ2z′ta)
(

qa + κabc pc(bb − iz′tb)
)]

Xγ − α(2)

− i (ca − (τ1 + 3iτ2)ba − 4τ2zta)

64π4τ2

∑

γ1,γ2∈�+
κabc pb

1 pc
2 σγ1σγ2�̄(γ1)�̄(γ2)

×
∫

�γ1

Xγ1dz1
z1 − z

∫

�γ2

Xγ2dz2
z2 − z

δ̂−α = 1

4π2

∑

γ∈�+
σγ �̄(γ )

{

∫

�γ

dz′

z′ − z

[

− 1

2π i
− 2iτ2q0 + qa(c

a − τba − 2τ2z′ta)

+ κabc pc(bb − iz′tb)(ca − τ1ba − τ2z′ta)

]

Xγ + iτ2z(pt2)
∫

�−γ

dz′

(z′)2
X−γ

}

− α(2)

− i (ca − τba − 2τ2zta)

64π4τ2

∑

γ1,γ2∈�+
κabc pb

1 pc
2 σγ1σγ2�̄(γ1)�̄(γ2)

×
∫

�γ1

Xγ1dz1
z1 − z

∫

�γ2

Xγ2dz2
z2 − z

.

Finally, substituting the instanton expansion ofXγ (2.34), one canverify that the resulting
expressions can be generated as in (3.7) by applying the modular operators, introduced
in “Appendix A.1”, to the function J̃ p (3.5). To perform this check, the relations (A.4)–
(A.7) are very helpful.

A.3. The effect of gauge transformation. Let us now find how the gauge transforma-
tion generated by the contact hamiltonian (4.1) affects the instanton corrected Darboux
coordinates calculated in the previous subsection. To this end, first, we obtain the expo-
nentiated action of the vector field (2.2), up to second order in g p. It reads as

eXhg · ξa ≈ ξa − i

2π

∑

p

e2π ip
a ξ̃a

⎡

⎣pag p

+
i

4π

∑

p1+ p2= p

pa
1

(

pb
1g p1∂ξb g p2 − pb

2g p2∂ξb g p1

)

⎤

⎦ ,
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eXhg · ξ̃� ≈ ξ̃� +
1

4π2

∑

p

e2π ip
a ξ̃a

⎡

⎣∂ξ�g p

+
i

4π

∑

p1+ p2= p

(

pa
1∂ξ�g p1∂ξa g p2 − pa

2g p2∂ξa∂ξ�g p1

)

⎤

⎦ ,

eXhg · α ≈ α +
1

4π2

∑

p

e2π ip
a ξ̃a

[

(

1− ξ�∂ξ�
)

g p

+
i

4π

∑

p1+ p2= p

(

pa
1

(

1− ξ�∂ξ�
)

g p1∂ξa g p2 + pa
2g p2 ξ

�∂ξa∂ξ�g p1

)

]

.

(A.13)

Next, we expand the contact hamiltonian as in (4.3). This gives (see footnote 7)

hg(1)
p = 1

4π2 e2π ip
a ξ̃ cla g p(ξcl),

hg(2)
p1 p2 = 2π i

(

hg(1)
p1

(

pa
1 D

( p2)
a J (1)

p2

)

−
(

pa
2 D

( p1)
a hg(1)

p1

)

J (1)
p2

)

,

(A.14)

where we have used that, to the first order in instantons,

2π ipa
1 δξ̃a g p1(ξcl) + δξ

a∂ξa g p1(ξcl)

=
∑

p2

[

2π ipa
1

(

D
( p2)
a − κabc(b

b − iztb)pc
2

)

J (1)
p2 + pa

2J (1)
p2 ∂ξa

]

g p1(ξcl)

(A.15)

and

D( p)a hg(1)
p =

(

i

2π
∂ξa + κabc pc(bb − iztb)

)

hg(1)
p . (A.16)

It is also useful to note similar identities for the other derivative operators

D
( p)
+ hg(1)

p =
(

i

2π
− ξa

clD
( p)
a

)

hg(1)
p ,

D
( p)
− hg(1)

p =
(

i

2π

(

1− 2iτ2∂ξ0 − ξa
cl∂ξa

)

+ κabc pc(bb − iztb)(ca − τ1ba − τ2zta)

)

hg(1)
p .

(A.17)

Then plugging the expansion (4.3) into (A.13) and using the above identities, by a
lengthy but straightforward calculation, one can show that all terms produced by the
gauged transformation result from a simple shift of the function J̃ p determining the
original Darboux coordinates, as described in (4.2).
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B. Indefinite Theta Series and Their Modular Properties

In this section we introduce several variants of indefinite theta series which appear in
the main text. These constructions are all based on Vignéras’ theorem [19], which we
recall for completeness.

B.1. Vignéras’ theorem. Let � be an n-dimensional lattice equipped with a bilinear
form (x, y) ≡ x · y, where x, y ∈ � ⊗ R, such that its associated quadratic form has
signature (n+, n−) and is integer valued, i.e. k2 ≡ k · k ∈ Z for k ∈ �. Furthermore,
let p ∈ � be a characteristic vector (such that k · (k + p) ∈ 2Z, ∀ k ∈ �), μ ∈ �∗/� a
glue vector, and λ an arbitrary integer. With the usual notation q = E(τ ), we consider
the following family of theta series

ϑ p,μ(�, λ; τ, b, c)
= τ−λ/22

∑

k∈�+μ+ 1
2 p

(−1)k· p�(√2τ2(k + b)) q−
1
2 (k+b)

2
E
(

c · (k + 1
2 b)
)

(B.1)

defined by a kernel �(x) such that the function f (x) ≡ �(x) e
π
2 x2 ∈ L1(� ⊗ R) so

that the sum is absolutely convergent. Irrespective of the choice of this kernel and of the
parameter λ, any such theta series satisfies the following elliptic properties

ϑ p,μ (�, λ; τ, b + k, c) = (−1)k· p E(− 1
2 c · k

)

ϑ p,μ (�, λ; τ, b, c) ,

ϑ p,μ (�, λ; τ, b, c + k) = (−1)k· p E( 12 b · k
)

ϑ p,μ (�, λ; τ, b, c) .
(B.2)

Now let us require that in addition the kernel satisfies the following two conditions:

1. Let D(x)be anydifferential operator of order≤ 2, and R(x) anypolynomial of degree
≤ 2. Then f (x) defined above must be such that f (x), D(x) f (x) and R(x) f (x) ∈
L2(�⊗ R)

⋂

L1(�⊗ R).
2. �(x) must satisfy

Vλ ·�(x) = 0, Vλ = ∂2x + 2π (x · ∂x − λ) . (B.3)

Then in [19] it was proven that the theta series (B.1) transforms as a vector-valued mod-
ular form of weight (λ+n/2, 0) (see Theorem 2.1 in [18] for the detailed transformation
under τ → −1/τ ). We refer to Vλ as Vignéras’ operator. The simplest example is the
Siegel theta series, which arises by choosing �(x) = e−πx2+ where x+ is the projection
of x on a fixed positive plane of dimension n+, which is annihilated by V−n+ .

B.2. Generalizations. In the main text we need various generalizations of Vignéras’
theorem, which allow to describe theta series of a more general form than (B.1).

First, we lift the theta series (B.1) to twistor space, i.e. we allow the kernel to depend
on theCP1 variable z and its complex conjugate z̄. To state the conditions formodularity,
note that the combinations

√
τ2z and z̄/

√
τ2 transform with modular weight (−1, 0) and

(1, 0), respectively. Therefore, expanding the kernel �(x, z, z̄), generating a modular
theta series of weight (h, 0), in a Laurent series around z = 0,

�(x, z, z̄) =
∑

k,l

�k,l(x)(
√
τ2z)k(z̄/

√
τ2)

l (B.4)
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the coefficients�k,l must define themselves modular theta series of weight (h+k− l, 0)
and hence satisfy Vignéras’ equation with λk,l = λ + k − l and λ = h − n/2. This
immediately implies that the full kernel�(x, z, z̄) should be annihilated by the following
twistorial extension of Vignéras’ operator,

Vλ ·�(x, z, z̄) = 0, Vλ = ∂2x + 2π (x · ∂x − z∂z + z̄∂z̄ − λ) . (B.5)

Second, let us introduce a shifted version of the operators D̄ defined in (A.1a),

D� = D̄ − i

2τ2
(c− τ b)

= 1

4πτ2
(∂b + τ∂c − iπ (c− τ b)) .

(B.6)

The motivation for this definition is that, upon acting on theta series (B.1), this new
operator, like D but in contrast to D̄, preserves their form, up to a factor of τ2. To avoid
this mismatch, let us introduce two vectors A and A�, which depend on τ and other
moduli so as to transform as modular forms of weight (−1, 0) and (0,−1), respectively
(see (B.10) below for a relevant example). Then the two operators, A · D and A� · D�,
act on the theta series (B.1) via

A · D : �(x) �→ 1

2π
√
2τ2

A · (∂x + 2πx)�(x),

A� · D� : �(x) �→ 1

2π
√
2τ2

A� · ∂x�(x).
(B.7)

In particular, if � satisfies (B.3) so that (B.1) is a modular form of weight (λ + n/2, 0),
then (A·D)ϑ p,μ(�, λ) and (A� ·D�)ϑ p,μ(�, λ) are alsomodular with the sameweight.

These operators canbeused to obtain yet another generalization ofVignéras’ theorem.
To this end, we introduce the following operator

D[A, A�] =
∞
∑

n=0

(2π)n

n!
(

A · D + A� · D�
)n
, (B.8)

which maps modular forms to modular forms of the same weight. Acting on theta series
(B.1), it changes the kernel into

D[A, A�] : �(x) �→ �A,A� (x)

=
∞
∑

n=0

1

n!(2τ2)n/2
(

A · (∂x + 2πx) + A� · ∂x
)n
�(x)

= exp

[

π

2τ2
A · (A + A�

)

+
2π√
2τ2

A · x
]

exp

[

1√
2τ2

(

A + A�
) · ∂x

]

�(x)

= exp

[

π

2τ2
A · (A + A�

)

+
2π√
2τ2

A · x
]

�

(

x +
A + A�√

2τ2

)

, (B.9)

where we summed the series and applied the Baker-Campbell-Hausdorff formula. This
result shows that the theta series with the kernel (B.9) is also modular with weight
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(λ+n/2, 0), provided the vectors A and A� transform with modular weight (−1, 0) and
(0,−1), respectively.14

As an important application, let us choose

A = −2iτ2z t, A� = 2iτ2 z̄ t⊥, (B.10)

where t is a timelike vector, |t| = √
t · t and

t⊥ = t − t · t
t · t ′ t

′ (B.11)

such that t · t⊥ = 0. Substituting (B.10) into (B.9), one concludes that the kernel

�A,A� (x, z) = e(x+,
√

2τ2 |t|z)�
(

x − i
√

2τ2 (z t − z̄ t⊥)
)

, (B.12)

where

e(x, y) = e−πy2−2π ixy, (B.13)

generates a modular theta series, consistently with the fact that it satisfies the generalized
Vignéras’ equation (B.5).

Since the exponential factor (B.13) arises repeatedly in our analysis, it is convenient
to absorb it into the definition of the theta series on twistor space. Further multiplying

by the modular invariant factor σ p e−Sclp , the theta series then take the form15

ϑ̂ p,μ(�̃, λ; τ, b, c, z)

= τ−λ/22

∑

k∈�+μ+ 1
2 p

σγ �̂
(
√

2τ2(k + b),
√

2τ2 |t|z
)

E
(

pa ξ̃ cla − kaξ
a
cl −

τ

2
k2
)

,

(B.14)

where ξ̃ cla , ξa
cl denote the classical Darboux coordinates in the double limit ta → ∞,

z → 0 with zta fixed. Eq. (B.14) transforms as a vector-valued modular form of weight
(λ + n

2 , 0) provided the new kernel �̂ satisfies a modified version of (B.5),

V̂λ · �̂(x, y) = 0, V̂λ = ∂2x + 2π
((

x − 2iy
|t| t
)

· ∂x − y∂y + ȳ∂ȳ − λ
)

,

(B.15)

where y = √
2τ2 |t|z.

14 In the derivation of (B.9) it was implicitly assumed that A and A� do not depend on b and c. But it is
easy to see that the above statement holds also in the presence of such dependence.
15 Quantities with (without) a hat correspond to the new (old) frame, respectively.
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B.3. Indefinite theta series of Lorentzian signature. We now discuss several important
examples of indefinite theta series of signature (1, n − 1), referring to [18] for more
details on this construction.

Let us first introduce the error and complementary error functions

E1(u) = Erf(
√
πu) , M1(u) = −sgn(u)Erfc (√π |u|) , (B.16)

such that E1(u) = M1(u) + sgn(u). It is straightforward to see that E1(u) is a smooth
solution ofVignéras’ equation onRwithλ = 0which asymptotes to sgn(u) as |u| → ∞,
while M1(u) is a solution of the same equation which is exponentially suppressed as
|u| → ∞ and smooth except at u = 0. The latter statements are most easily seen using
the integral representation

M1(u) = i

π

∫

�

dy

y
e−πy2−2π iuy, (B.17)

where the contour � = R − iu runs parallel to the real axis through the saddle point.
Indeed, the second equality in (B.16) follows by changing the integration variable,
y = y′ − iu, and using the identity

∫

R

dy′

y′ − iα
e−β2 y′2 = iπ sgn(Re (α)) eα

2β2Erfc(sgn(Re (αβ))αβ). (B.18)

In order to construct convergent theta series with signature (1, n−1), let us introduce
two vectors t, t ′ ∈ R

1,n−1 with positive norm, t2, t ′2 > 0, such that t · t ′ ≥ 0. Defining

x+ = x · t√
t · t , x ′+ =

x · t ′√
t ′ · t ′ , (B.19)

the kernel

̂�t,t ′(x) = E1(x+)− E1(x
′
+) =

[

sgn(x+)− sgn(x ′+)
]

+ M1(x+)− M1(x
′
+) (B.20)

satisfies the assumptions of Vignéras’ theorem. Indeed, it is a smooth solution of (B.3)
with λ = 0, and the square bracket in (B.20) vanishes whenever x+ lies in the dangerous

region x2 > 0, while the last two terms (multiplied by e
π
2 x2 ) decay exponentially.

Thus, the theta series ϑ p,μ(̂�t,t ′) is a vector-valued modular form of weight (n/2, 0)
[14]. However, it is non-holomorphic due to the last two terms in (B.20). In contrast, the
theta series with kernel

�t,t ′(x) = sgn(x+)− sgn(x ′+) (B.21)

is holomorphic but not modular. Since the theta series with kernels M1(x+) and M1(x ′+)
can be written as Eichler integrals of a Siegel-type theta series (see e.g. Remark 2.4 in
[18]), the modular anomaly of ϑ p,μ

(

�t,t ′
)

involves period integrals of these Siegel-type
theta series.

An important observation is that either of the last two terms in (B.20) canbe eliminated
by letting t ′ (or t) approach a rational null vector t ′r , i.e. a vector t ′r ∈ �/N for some
integer N with (t ′r )2 = 0. For generic values of b, the limit is smooth, and leads to a
theta series with kernel

̂�t,t ′r (x) =
[

sgn(x · t)− sgn(x · t ′r )
]

+ M1(x+). (B.22)
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It is worth noting that (B.22) is annihilated by Vignéras’ operator V0, despite the fact
that it is discontinuous at x · t ′r = 0. The series ϑ p,μ(̂�t,t ′r ) however diverges whenever

t ′r · (k + b) = 0 for some k ∈ � + μ + 1
2 p [14].

It is also crucial that the null vector t ′r be rational since, otherwise, ϑ p,μ
(

�t,t ′
)

will
diverge in the limit t ′ → t ′r . This point is best illustrated on an example: consider

∑

(k1,k2)∈Z2

1
2k1
(

sgn(k1)− sgn(2k1 −
√
2k2)

)

q−k2/2 (B.23)

corresponding to an indefinite theta series with quadratic form diag(2,−1) and with
t = (1, 0) and t ′ = (1,√2). For (B.23) to converge, the following “half” theta series

∑

k1>0, 2k1−
√
2k2<0

q−(2k21−k22)/2. (B.24)

should certainly converge. However, the subset of integers (k1, k2) = (�, ��
√
2�) in this

sum has norm 2k21 − k22 = 2�
√
2{−�√2} − {−�√2}2 ≡ −2n, where 0 ≤ {x} < 1 is

the rational part of x , and it appears that an infinite number of � contribute for any given

exponent n. For example, all � of the form �(r) = 1
2

(

(1 +
√
2)2r+1 + (1−√2)2r+1

)

for

any r > 0, contribute q1 to the sum leading to the divergence of the theta series. The
series �(r) is known as the Newman–Shanks–Williams series of primes.

Returning to the kernel (B.22), the result (B.12) from the previous subsection allows
to conclude that

�1(x, y) = e(x+, y)
[

E1 (x+ − iy)− sgn
(

x · t ′ + 2t ′+ Im y
)

]

(B.25)

is annihilated by V0 and generates a modular theta series of weight (n/2, 0). Note that
the argument of the sign function is nothing butw′(y) introduced in (4.19), whereas the
first term can be split as in (B.22),

Ê1(x+, y) ≡ Erf
[√
π (x+ − iy)

] = M̂1(x+, y) + sgn (x+ + Im y) , (B.26)

where the argument of the sign coincides with w(y) and we defined

M̂1(u, y) = −sgn(Re v)Erfc (sgn(Re v)√πv) , v = u − iy. (B.27)

Using again the identity (B.18), this function can be rewritten in the following integral
form

M̂1(u, y) = i

π

∫

�

dy′

y′ − y
eπ(y

2−y′2)+2π i(y−y′)u, (B.28)

which generalizes (B.17). After the coordinate change y = √
2τ2 |t|z, this is exactly the

integral which arises in our twistorial construction. Finally, note that the factor e(x+, y)
in (B.25) is the same as the one which was absorbed to define the rescaled theta series
(B.14). In this new frame, for the quadratic form κab = κabc pc, the kernel (B.25)
corresponds precisely to �̂(1)p (4.25), which shows that ϑ̂ p,μ(�̂

(1)
p ) is a modular theta

series of weight ( b2
2 , 0).
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B.4. Indefinite theta series of conformal signature. We now turn to the case of signature
(2, 2n − 2). Analogues E2(α; u1, u2) and M2(α; u1, u2) of the error functions (B.16)
satisfying Vignéras’ equation on R

2 were constructed in [18]. For the purposes of this
paper, it will be useful to introduce a one-parameter generalization of these functions,
namely16

M2(α; u1, u2, y) = − 1

π2

∫

�1

dy1
y1 − y√

1+α2

∫

�2

dy2
y2 − αy1

e−π(y21+y22 )−2π i(u1y1+u2 y2),

(B.29)

and

E2(α; u1, u2, y)

= M2(α; u1, u2, y) + eα(y)

[

sgn

(

u1 +
Im y√
1 + α2

)

M̂1

(

u2,
αy√
1 + α2

)

+ sgn(u2 − αu1) M̂1

(

u1 + αu2√
1 + α2

, y

)

+ sgn

(

u2 +
α Im y√
1 + α2

)

sgn

(

u1 + αu2√
1 + α2

+ Im y

)]

, (B.30)

where eα(y) = e
(

u1+αu2√
1+α2

, y
)

is the exponential factor (B.13) with a suitable choice

of the first argument. By acting with the operator Vλ and integrating by parts, it is
straightforward to check that both of these functions are solutions of Vignéras’ equation
with λ = 0. Analogously to M1(u), M2(α; u1, u2, y) is exponentially suppressed away
from the origin in the (u1, u2) plane, and is discontinuous across the lines u1 = − Im y√

1+α2
and u2 = αu1, where the zero of one of the denominators sits on the integration contour.
Across these loci, it behaves as

M2(α1, α2; u1, u2, y) ∼ −sgn
(

u1 +
Im y√
1 + α2

)

eα(y) M̂1

(

u2,
αy√
1 + α2

)

near u1 = − Im y√
1 + α2

,

M2(α1, α2; u1, u2, y) ∼ −sgn(u2 − αu1) eα(y) M̂1

(

u1 + αu2√
1 + α2

, y

)

near u2 = αu1.

The additional terms in (B.30) ensure that E2(α; u1, u2, y) is a smooth function of
(u1, u2), which asymptotes to

E2(α; u1, u2, y)→ eα(y) sgn

(

u2 +
α Im y√
1 + α2

)

sgn

(

u1 + αu2√
1 + α2

+ Im y

)

(B.31)

as u2
1 + u2

2 →∞.

16 These functions can be further generalized by making the coefficient in front of y arbitrary. However, this
coefficient can be reabsorbed into y since Vignéras’ equation is invariant under this rescaling. We used this
freedom to fix the coefficient to the value appropriate to our applications.
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Starting from these functions, we now construct solutions of Vignéras’ equation on
R
2,n−2 parametrized by two linearly independent timelike vectors17 C1, C2 such that
�12 ≡ C 2

1 C
2
2 − (C1,C2)

2 > 0, namely

�M
2 (C1,C2;X , y) = M2

(

(C1,C2)√
�12

; (C1⊥2,X )

|C1⊥2| ,
(C2,X )

|C2| , y

)

, (B.32)

�E
2 (C1,C2;X , y) = E2

(

(C1,C2)√
�12

; (C1⊥2,X )

|C1⊥2| ,
(C2,X )

|C2| , y

)

, (B.33)

where Ck⊥l is the projection of Ck on the subspace orthogonal to Cl . Both of these
functions are annihilated by V0, everywhere in the case of �E

2 , away from the loci

(C1⊥2,X ) = −C 2
1⊥2|C1| Im y and (C2⊥1,X ) = 0 in the case of �M

2 . At y = 0, they
reduce to the “boosted double error functions” introduced in [18].

Finally, one can upgrade the function (B.33) to a smooth solution of the Vignéras’
equation with λ = 1 parametrized by an additional vectorC3. To this end, one can act on
�E

2 by the operator (C3, (X + 1
2π ∂X )), which, as can be seen from (B.7), realizes the

action of the covariant derivative rising the holomorphic weight by 1. A straightforward
evaluation gives

�E
2,1(C1,C2,C3;X , y) = (C3, (X +

1

2π
∂X ))�

E
2 (C1,C2;X , y)

=
(

C3,X − iy
C1

|C1|
)

�E
2 (C1,C2;X , y)

+
(C2,C3)

π |C2| e
− π(C 2,X )2

C 2
2 E1

(

(C1⊥2,X )
|C1⊥2| ;

√
�12

|C1||C2| y
)

+
(C1,C3)

π |C1| e
− π(C 1,X )2

C 2
1 E1

(

(C2⊥1,X )
|C2⊥1|

)

. (B.34)

In order to compare the results with the main text, it will be convenient to introduce
an analogue of the theta series (B.14) with rescaled kernels. In this case the rescaling is
given by eα(y) so that we define

M̂2 = e−1α M2, Ê2 = e−1α E2, �̂
M,E
2 = e−1α �

M,E
2 , �̂E

2,1 = e−1α �E
2,1,

(B.35)

where in the last two relations the parameters α and ui of the exponential factor are
chosen as in (B.32), (B.33).

We are interested in the particular case of this general constructionwhere the signature
(2, n − 2) lattice is a direct sum�1 ⊕�2, with quadratic formX 2 = (p1x21 ) + (p2x22 )
whereX = (x1, x2). Moreover, the vectors determining the function �̂E

2,1 are given by

C1 = (t, t), C2 = (0, t), C3 = ( p2,− p1). (B.36)

The norms of these vectors are

C 2
1 = (pt2), C 2

2 = (p2t2), C 2
3 = (pp1 p2). (B.37)

17 We reserve bold letters for the vectors in a Lorentzian space and use calligraphic fonts such asX ,C for
vectors in R

2,n−2.
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In addition, one finds

C1⊥2 = (t, 0), C2⊥1 = 1

(pt2)

(−(p2t2)t, (p1t2)t
)

, (B.38)

(C1,C2) = (p2t2) , (C2,C3) = −(p1 p2t) , (C1,C3) = 0,

�12 = (p1t2)(p2t2) . (B.39)

Comparing (B.33) with (B.39), we see that in our case the arguments of the E2 function

are taken to be ui = xi+ and α =
√

(p2t2)
(p1t2)

, which implies that eα(y) = e(x+, y) where

x = x1+x2 so that x+ =
√

(p1t2)
(pt2)

x1++
√

(p2t2)
(pt2)

x2+. Substituting these results into (B.30)
and (B.34) and writing down the result using the rescaled kernels (B.35), one finds

�̂E
2 (x1, x2, y) = M̂2

(√

(p2t2)
(p1t2)

, x1+, x2+, y
)

+ sgn(w1(y))M̂1(x2+, y2)

−sgn(I) M̂1 (x+, y) + sgn(w2(y)) sgn(w(y)), (B.40)

�̂E
2,1(x1, x2, y) = X �̂E

2 (x1, x2, y)− (p1 p2t)

π
√
(p2t2)

e−π(x2+−iy2)2 Ê1(x1+, y1),

(B.41)

where we used notations from (4.19), (4.27), (C.13) and ys =
√

(ps t2)
(pt2)

y. By construction

these kernels satisfy V̂0 · �̂E
2 = 0 and V̂1 · �̂E

2,1 = 0 where V̂λ is the double lattice
version of (B.15) where x should be replaced by X = (x1, x2) and the vector t by
(t, t). Explicitly, the operator reads

V̂λ = ∂2x1 + ∂2x2 + 2π

((

x1 − 2iy t√
(pt2)

)

· ∂x1 +
(

x2 − 2iy t√
(pt2)

)

· ∂x2 − y∂y + ȳ∂ȳ − λ
)

.

(B.42)

B.5. Safe and dangerous anomalies. Now we would like to address the following ques-
tion: Let �an is a kernel satisfying Vignéras’ equation up to terms proportional to delta
functions and derivatives thereof. Does the corresponding theta series ϑ p,μ(�

an) nec-
essarily have an anomalous modular transformation? And, if so, is the kernel governing
the modular anomaly also proportional to a delta function, or can it have a more general
support?

These questions are important for our analysis of modularity because in our set-
up, delta function anomalies in modular transformations can be safely ignored. Indeed,
discontinuities in the Darboux coordinates and the gauge transformation, which lead
eventually to delta functions resulting from the action of Vignéras’ operator, always
correspond to boundaries between two patches on the twistor space. A typical example
is the discontinuity across a BPS ray corresponding to wγ (z) = 0. Since Darboux
coordinates are only defined away from these loci, such modular anomalies supported
on delta functions do not play any role (cf. footnote 5).

To discuss this issue, we allow the kernels defining theta series to be not necessarily
functions, but in general distributions with delta-function support on some codimension
one loci. To understand when a localized anomaly in the action of Vignéras’ operator
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leads to a localized anomaly in the modular transformation of the corresponding theta
series, let us assume that

Vλ ·�an =
∑

m

Am, (B.43)

where Am are given by a combination of delta functions and its derivatives, i.e.

Am(x) =
∑

l

[

am,l δ(wm,l(x)) + bm,l δ
′(wm,l(x))

]

, (B.44)

where wm,l(x) is a set of real linear forms. We claim that, if each of the Am(x)’s is
annihilated by Vignéras’ operator Vλm for some λm �= λ, then the anomaly appearing in
the modular transformation of ϑ p,μ(�

an) is localized at the zeros of wm,l(
√
2τ2(k + b))

for some k ∈ � + μ + 1
2 p. Indeed, it is easy to see that

̂� = �an +
∑

m

Am

2π(λ− λm)
(B.45)

is annihilated by Vλ and thus generates a modular theta series of weight (λ + n/2, 0).
Furthermore, the condition Vλm ·Am = 0 implies that the theta series constructed from
Am are also modular, but with different weights given by (λm + n/2, 0). Combining this
information, we can obtain the modular transformation of ϑ p,μ(�

an) which is found to
be18

ϑ p,μ(�
an, λ) �→ (cτ + d)λ+

n
2

[

ϑ p,μ(�
an, λ)

+
∑

m

τ
1
2 (λm−λ)
2

2π(λ−λm )

(

1− ( cτ+d
cτ̄+d

)
1
2 (λm−λ)

)

ϑ p,μ(Am, λm)

]

. (B.46)

Since the anomaly is a linear combination of ϑ p,μ(Am), it is localized at the zeros of
wm,l(

√
2τ2(k + b)). Let us illustrate this situation in two examples:

Example 1. First, we consider the theta series defined by the kernel (B.22) where both
vectors t and t ′ are taken to be timelike, which we denote by �an

t,t ′ . Then the action of
Vignéras’ operator gives

A ≡ V0 ·�an
t,t ′ = −2(t ′)2 δ′(x · t ′). (B.47)

In this case the anomaly A does not satisfy Vignéras’ equation for any λ. Instead, one
has

V−2 ·A = −2(t ′)4 δ(3)(x · t ′), (B.48)

where we used the property x δ(n)(x) = −n δ(n−1)(x). Continuing in this way, one
generates an infinite set of derivatives of δ(x · t ′). This infinite series can in fact be
resummed into a smooth solution of Vignéras’ equation. Indeed, let us consider

̂�t,t ′ =
∞
∑

n=0

1

(4π)nn!

[

n−1
∏

k=0
V−2k

]

·�an
t,t ′ . (B.49)

18 We ignored the possibility of having a non-trivial multiplier system which is irrelevant for the present
discussion.
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Proceeding as above, it is easy to show that

̂�t,t ′ = E1(x+)−∑∞
n=0 1

n!
(t ′)2n

(4π)n sgn
(2n)(x · t ′) = E1(x+)− e

(t′)2
4π ∂2x sgn(x)|x=x·t ′ .

(B.50)

Computing the action of the heat kernel operator acting on the sign function in Fourier
space, one sees that the second term is equal to E1(x ′+), so that ̂�t,t ′ coincides with
the kernel (B.20) which is smooth and annihilated by V0. Thus, despite the fact that the
anomaly A is proportional to the derivative of delta function, it becomes ‘delocalized’
by the iterated action of Vignéras’ operator, and the modular anomaly of the theta series
based on �an

t,t ′ is a theta series with a smooth kernel (which is itself a period integral of
a non-anomalous theta series).

Example 2. Now let us consider the following kernel

�′ ant,t ′ = x+̂�t,t ′ +
1

π
e−πx2+ , (B.51)

where t ′ is now taken to be null. This kernel satisfies

A′ ≡ V1 ·�′ ant,t ′ = −4t ′+ δ(x · t ′). (B.52)

In contrast to the previous case, due to the condition t ′2 = 0, the anomalyA′ is annihilated
by V−1. Then according to the general results (B.45) and (B.46), themodular completion
of �′ ant,t ′ is given by

̂�′t,t ′ = �′ ant,t ′ +
1

4π
A′. (B.53)

The anomaly in the transformationofϑ p,μ(�
′ an
t,t ′) is localized at solutions of (k+b)·t ′ = 0

and can be safely dropped. This should come as no surprise because the kernel (B.53)
is obtained by acting with the modular covariant derivative on the modular theta series
ϑ p,μ(̂�t,t ′) (see (B.7))

D+ = t · D√
t2

: ̂�t,t ′ �→ ̂�′t,t ′ . (B.54)

Dropping the delta function termencoded byA′ is in fact equivalent to ignoring the action
of the derivative operator on the sign functions in this theta series. This is precisely what
we did in our analysis of instanton corrected Darboux coordinates, see footnote 5.

The lesson from these examples is that delta-function anomalies in Vignéras’ equa-
tion can be ignored if they are themselves eigenfunctions of Vignéras’ operator with a
different eigenvalue.

C. Convergence of Indefinite Theta Series of Signature (2, n − 2)

Extended numerical tests suggest the validity of the following
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Conjecture. Let X ∈ R
n equipped with a bilinear form ( · , · ) of signature (2, n − 2)

as in “Appendix B.1”, {Ck} is a set of N vectors in R
n, {εk = ±1} is a set of N signs,

and

�(X ) = P(X )×

⎧

⎪

⎪

⎨

⎪

⎪

⎩

N
∑

k=1
εk sgn(Ck,X ) sgn(Ck+1,X ) for N even,

ε +
N
∑

k=1
εk sgn(Ck,X ) sgn(Ck+1,X ) for N odd,

(C.1)

where CN+1 ≡ C1, P(X ) is a function of at most polynomial growth, and the signs are
required to satisfy

⎧

⎪

⎪

⎨

⎪

⎪

⎩

N
∏

k=1
εk = (−1)N/2 for N even,

N
∏

k=1
εk = (−1)(N+1)/2ε for N odd.

(C.2)

Then provided the following three conditions are satisfied, the theta series defined in
(B.1) using the kernel (C.1) is convergent:

1) C 2
k ≥ 0,

2) �k,k+1 > 0 if C 2
k , C

2
k+1 > 0, or �k,k+1 = 0 if one of them is null,

3) εkεk+1(Ck⊥k+1,Ck+2⊥k+1) < 0,
(C.3)

where �kl = C 2
k C

2
l − (Ck,Cl)

2 and Ck⊥l is the projection of Ck on the subspace
orthogonal to Cl .

Some comments are in order:

• The statement for odd N follows from the one for even N . Let us assume for simplicity
that there are at least two consecutive timelike vectors (not null), which we label by 1
and N . Then we start from the kernel (C.1) for N + 1 where we specialize to the case
CN+1 = CN and rename εN → ε, εN+1 → εN . This produces the kernel for N odd
with the signs satisfying (C.2). Thus, it remains only to check the conditions (C.3).
They all follow immediately except

εN−1εN (CN−1⊥N ,C1⊥N ) < 0. (C.4)

To prove this condition, we start from the two original conditions for N + 1, which
after relabeling the signs εk , read

εN−1ε(CN−1⊥N ,CN+1⊥N ) < 0,

εεN (CN⊥N+1,C1⊥N+1) < 0.
(C.5)

Taking their product, we see that we need to show that in the limit CN+1 = CN ,
the scalar product (CN−1⊥N ,C1⊥N ) is of different sign than (CN−1⊥N ,CN+1⊥N )

(CN⊥N+1,C1⊥N+1). The problem is that both CN⊥N+1 and CN+1⊥N vanish in this
limit. To avoid this, let us take CN+1 = CN + δC where δC is infinitesimally small.
A straightforward calculation shows that

(CN−1⊥N ,CN+1⊥N )(CN⊥N+1,C1⊥N+1) ≈ −(CN−1⊥N , δC )(δC ,C1⊥N )

= −(CN−1⊥N , δC⊥N )(δC⊥N ,C1⊥N ).
(C.6)
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Note that the condition �N ,N+1 > 0 implies

�(CN , δC ) > 0 ⇒ δC 2⊥N > 0. (C.7)

Similarly, the positivity of �N+1,1 leads to the positivity of C 2
1⊥N . Finally, we can

take δC such that δC⊥N = εC1⊥N since both vectors are timelike and orthogonal
to CN . Here |ε| � 1 and sgn(ε) = −εεN so that the second condition in (C.5) is
fulfilled automatically. Then the r.h.s. of (C.6) becomes−ε2C 2

1⊥N (CN−1⊥N ,C1⊥N ),
which proves the desired property.

• In the case of even N , the signs εk can be brought to a standard form by changing
signs of the vectors Ck . To this end, let us redefine

Ck �→ (−1)
[

k−1
2

]

(

k−1
∏

l=1
εk

)

Ck . (C.8)

As a result, the kernel becomes

�(X ) = P(X )

N
∑

k=1
(−1)k−1sgn(Ck,X ) sgn(Ck+1,X ), (C.9)

whereas the third condition in (C.3) takes the form

(Ck⊥k+1,Ck+2⊥k+1) > 0. (C.10)

For N = 4, this reduces to the conformal theta series first considered in [18], whose
convergence conditions were clarified in [34]. The convergence conditions (C.3) are
natural generalizations of those in [34], and presumably allow to construct a compact
two-dimensional surface S in the space D of oriented positive 2-planes, bounded by
an N -sided polygon, such that S intersects the codimension 2 subspace X ⊥ ⊂ D if
and only if�(X ) �= 0. The compactness of S would then ensure the convergence of
the theta series. We have not tried to prove this rigorously, but we conducted extensive
numerical checks which give us confidence that these conditions are sufficient.

• For P = 1, the modular completion of the holomorphic theta series ϑ p,μ(�) is the
theta series ϑ p,μ(̂�) whose kernel is obtained by replacing each product of two signs
by the corresponding generalized error function (B.33),

̂�(X ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

N
∑

k=1
εk �

E
2 (Ck,Ck+1;X , 0) for N even,

ε +
N
∑

k=1
εk �

E
2 (Ck,Ck+1;X , 0) for N odd.

(C.11)

When P is a non-trivial homogeneous polynomial, the modular completion can be
obtained by applying the heat kernel operator as in Theorem 3.11 in [18].
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C.1. Application: convergence of the gauge transformation. Let us apply the above
conjecture to analyze the convergence of the second term in the contact hamiltonian
(4.7). Its convergence would follow from the convergence of a theta series with quadratic

form (X ,X ) = (p1x21 ) + (p2x22 )−
∑N p

i=1 n2
i , where X = (x1, x2, ni ), and kernel

�(X ) = X
[

sgn(I) (sgn((x1 + x2) · t)− sgn(x2 · t))
+sgn

(

x1 · t ′ + n1
) (

sgn(x2 · t)− sgn((x1 + x2) · t ′ + n)
)

+sgn(X)
(

sgn((x1 + x2) · t ′ + n)− sgn((x1 + x2) · t)
)

]

, (C.12)

where

X = x1 · p2 − x2 · p1,
I = (p2t2)x1 · t − (p1t2)x2 · t,

n1 =
N p1
∑

i=1
ni , n2 =

N p
∑

i=N p1+1

ni , n = n1 + n2.

(C.13)

The kernel (C.12) is nothing but the factor appearing in (4.21) with the charges replaced
by xs and taken to be large together with ni , which allows to drop z-dependent terms.

The expression (C.12) is of the form (C.1) for n = 2b2 + N p and N = 6 with the
vectors Ck given by

C1 = (t, t, 0, . . . , 0
︸ ︷︷ ︸

N p

), C2 = ((p2t2)t,−(p1t2)t, 0, . . . , 0
︸ ︷︷ ︸

N p

),

C3 = (0, t, 0, . . . , 0
︸ ︷︷ ︸

N p

), C4 = (t ′, 0, 1, . . . , 1
︸ ︷︷ ︸

N p1

, 0, . . . , 0
︸ ︷︷ ︸

N p2

),

C5 = (t ′, t ′, 1, . . . , 1
︸ ︷︷ ︸

N p

), C6 = ( p2,− p1, 0, . . . , 0
︸ ︷︷ ︸

N p

), (C.14)

where we indicated the number of repetitions of the same entry, and the signs fixed as
εk = (−1)k+1. Let us check now the conditions (C.3). First, the norms of the vectors are

C 2
1 = (pt2), C 2

2 = (p1t2)(p2t2)(pt2), C 2
3 = (p2t2), C 2

4 = 0, C 2
5 = 0,

C 2
6 = (pp1 p2). (C.15)

Since the magnetic charges are assumed to belong to the Kähler cone (2.20), all the
norms are non-negative so that the first condition is satisfied. Then

�12 = (p1t2)(p2t2)(pt2)2, �23 = (p1t2)(p2t2)3,

�34 = 0, �45 = 0, �56 = 0, �61 = (pt2)(pp1 p2)
(C.16)

ensures the second condition. Finally, to check the last one, note that

C1 ⊥ C2, C3 ⊥ C4, C4 ⊥ C5, C5 ⊥ C6, C6 ⊥ C1, (C.17)
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and

C2⊥3 =
(

(p2t2)t, 0, 0, . . . , 0
︸ ︷︷ ︸

N p

)

, C3⊥2 =
(

(p2t2)

(pt2)
t,
(p2t2)

(pt2)
t, 0, . . . , 0
︸ ︷︷ ︸

N p

)

.

(C.18)

This allows to compute

(C6,C2) = (pt2)(p1 p2t), (C1,C3⊥2) = (p2t2),
(C2⊥3,C4) = (p2t2)(p1t t ′), (C3,C5) = (p2t t ′),
(C4,C6) = (p1 p2t ′), (C1,C5) = (ptt ′).

(C.19)

All these expressions are positive which perfectly agrees with the third condition (C.3)
and the signs εk = (−1)k+1. Thus, the conjecture from the previous subsection ensures
the convergence of the theta series with the kernel (C.12) and thereby of the contact
hamiltonian generating the gauge transformation.

D. Modularity in the Presence of D1-D(-1)-Instantons

In this “Appendix” we include the contributions of D1-D(-1)-instantons to the geome-
try of MH and show that their combined effect with D3-instantons is consistent with
modular invariance. As in the main text, we restrict to the large volume approximation
but we take into account the following instanton contributions:

1. pure D1-D(-1)-instantons to all orders (computed in [10,29]);
2. the first order of D3-instantons mixed with all orders of D1-D(-1)-instantons;
3. the second order of pure D3-instantons (computed in the main text).

D.1. Twistorial description of D1-D(-1)-instantons. First, we recall the manifestly S-
duality invariant description of D1-D(-1)-instantons found in [10,29], which can be
achievedbyapplying agauge transformation to the twistorial constrictionofD-instantons
in the type IIA formulation presented in Sect. 2.1. To define this gauge transformation,
we introduce an ordering on the charge lattice according to the phase of the central
charge function:

γ > γ ′ if 0 < arg
(

Zγ Z−1
γ ′
)

< π. (D.1)

Then for each charge γ we define the associated set of D(-1)-brane charges whose BPS
rays lie in the same half-plane as �γ ,19

�(−1)γ = {γ̃ = (0, 0, 0, q̃0) : q̃0 Re Zγ > 0
}

, (D.2)

and another set of D1-brane charges for which the BPS rays are between �γ and the
imaginary axis,

�(1)γ =
{

γ̃ = (0, 0, q̃a, q̃0) ∈ H+
2 ∪ H−

2 : N (γ̃ ) = N (γ ) and
γ̃ > γ for N (γ ) odd
γ̃ ≤ γ for N (γ ) even

}

,

(D.3)

19 In this “Appendix” we will put a tilde on all D1 and D(-1)-brane charges and their components to
distinguish them from those of D3-brane charges.
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where H+
2 is the set of charges corresponding to effective homology classes onY, H−

2 is
the set of opposite charges, and N (γ ) ≡ ⌊ 2

π
arg
(

iZγ
)⌋

denotes the quadrant which �γ
belongs to. Note that both the ordering and the two charge sets �(±1)γ may change after
crossing a wall of marginal stability. Given these definitions, we define a holomorphic
function which generates the gauge transformation in the patch Uγ taken to lie in the
counterclockwise direction from the BPS ray �γ

hg
γ = (−1)N (γ )

⎡

⎢

⎣

1

2

∑

γ̃∈�(−1)γ

Hγ̃ +
∑

γ̃∈�(1)γ
Hγ̃

⎤

⎥

⎦
. (D.4)

This gauge transformation has a very simple geometric meaning: It simply rotates the
BPS rays corresponding to D1-instantons either to the positive or negative real axis
depending on which one is the closest to the given ray. On the other hand, the D(-1)-BPS
rays, which all go along the imaginary axis, are split into two “halves" which are also
rotated to the two real half-axes.

The gauge transformation (D.4) changes the covering of the twistor space and the
associated set of contact hamiltonians. Now, on top of the original BPS rays correspond-
ing to D3-instantons, which split CP1 into different angular sectors, one has an infinite
set of open patches Um,n centered around points zm,n

+ where

zm,n
± = ∓ mτ + n

|mτ + n| (D.5)

are the two roots of the equation mξ0(z) + n = 0. Note that Ukm,kn = Um,n for k > 0
and, in particular, U0,±k = U± are the patches around the two poles of CP1, t = 0 and
t = ∞. Nevertheless, it is convenient to distinguish all these patches because this allows
to make S-duality manifest. The contact hamiltonians associated with this covering are
given by

H+ = Fcl(ξ), H− = F̄cl(ξ),

Hm,n = − i
(2π)3

∑

q̃aγ a∈H+
2 (Y)∪{0}

n(0)q̃a

⎧

⎪

⎪

⎨

⎪

⎪

⎩

e−2π imq̃aξ
a

m2(mξ0 + n)
, m �= 0,

(ξ0)2
e2π inq̃aξ

a/ξ0

n3 , m = 0,

(D.6)

where Fcl(X) is the classical prepotential (2.12). Besides, we have set n(0)0 = −χY/2
and used that

�(γ̃ ) = n(0)qa
for γ̃ = (0, 0,±q̃a, q̃0), {q̃a} �= 0,

�(γ̃ ) = 2n(0)0 for γ̃ = (0, 0, 0, q̃0).
(D.7)

Note that the full holomorphic prepotential is obtained as F = Fcl + Fw.s. where
Fw.s. = ∑n>0 H0,n and, given the identifications between the patches, corresponds to
the full transition function to U+.
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Ignoring contributions of D3-instantons for the moment, the effect of D1-D(-1)-
instantons on Darboux coordinates can be described as follows. First, corrections to the
classical mirror map (2.15) are captured by

δD1ζ̃� = −1

2

∑

m,n

′ ∮

Cm,n

dt ′

2π it ′
1/t ′ − t ′

1/t ′ + t ′
∂ξ�Hm,n(t

′) + ζ Re Fw.s.
� (z

�),

δD1σ = −ζ�ζ̃D1� +
∑

m,n

′ ∮

Cm,n

dt ′

2π it ′
1/t ′ − t ′

1/t + t

(

1− ξ�∂ξ�
)

Hm,n(t
′)

+ζ�ζ Re Fw.s.
� (z

�), (D.8)

whereCm,n are small circles around tm,n
+ (pre-images of zm,n

+ under (2.13)) and the prime
on the sum means that the sum goes over all pairs of integers except m = n = 0. The
meaning of the first integral terms in (D.8) is to convert the standard kernel 1

2
t ′+t
t ′−t

dt ′
t ′

appearing in (2.8) into

K (t, t ′)dt ′

t ′
= (1 + t t ′)
(t ′ − t)(1/t ′ + t ′)

dt ′

t ′
= 1

2

z′ + z

z′ − z

dz′

z′
, (D.9)

which is invariant under S-duality transformations. Then the instanton contributions to
the Darboux coordinates read

δD1ξ̃� = −
∑

m,n

′ ∮

Cm,n

dt ′

2π it ′
K (t, t ′) ∂ξ�Hm,n(t

′),

δD1α = −
∑

m,n

′ ∮

Cm,n

dt ′

2π it ′
K (t, t ′)

(

1− ξ�∂ξ�
)

Hm,n(t
′),

(D.10)

while ξ� remain unaffected. Evaluating the integrals explicitly by residues using that

mξ0 + n = mτ̄ + n

z2 − 1

(

z − zm,n
+
) (

z − zm,n
−
)

, (D.11)

keeping only the leading terms in the large volume limit and computing the combinations
(3.1)20, the D1-D(-1)-instanton contributions to the Darboux coordinates are found to
be

δ̂D1ξ̃a = iτ2
8π2

∑

q̃a≥0
n(0)q̃a

q̃a

∑

m,n

′ e−Sm,n,q̃a

|mτ + n|2 ,

δ̂D1+ α =
iτ2
8π3

∑

q̃a≥0
n(0)q̃a

∑

m,n

′[
πτ2q̃ata mτ + n

|mτ + n|

+τ2
mτ + n

|mτ + n|2 + π q̃a
(

ca − τba − 2τ2zta)
]

e−Sm,n,q̃a

|mτ + n|2 ,

δ̂D1− α =
iτ2
8π3

∑

q̃a≥0
n(0)q̃a

∑

m,n

′[−πτ2 q̃ata mτ̄ + n

|mτ + n|
20 Since δD1ξa = 0, this step amounts just to form linear combinations of δD1ξ̃0 and δD1α.
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−τ2 mτ̄ + n

|mτ + n|2 + π q̃a

(

ca − τ̄ba + 2τ2
mτ̄ + n

mτ + n
zta
)]

e−Sm,n,q̃a

|mτ + n|2 ,
(D.12)

where

Sm,n,ka = 2πka |mτ + n| ta − 2π ika(mca + nba) (D.13)

is the instanton action. Note that all these contributions transform consistently with (3.2).

D.2. Adding D3-instantons. The previous subsection gave a description of the first type
of the instanton contributions mentioned in the beginning of this “Appendix”. The third
type is found in the main text. So it remains to understand only the mixed contributions
in which D3-instantons are restricted to the linear order, whereas D1-D(-1)-instantons
are taken into account to all orders. There are three sources for such contributions:

1. the effect of the gauge transformation (D.4) on the contact hamiltonians generating
D3-instantons;

2. corrections from D1-D(-1)-instantons to the Darboux coordinates used to calculate
the effect of D3-instantons;

3. corrections fromD3-instantons to theDarboux coordinates used to calculate the effect
of D1-D(-1)-instantons.

Let us take into account the first effect. It was found in [6] that the gauge transfor-
mation (D.4) affects the contact Hamiltonians (2.4) generating D-instantons and maps
them to

H g
γ (ξ, ξ̃ ) =

�̄γ

(2π)2
σγ E

(

p�
(

ξ̃� − ∂ξ�hg
γ (ξ)

)

− q�ξ
�
)

. (D.14)

But in our case this result simplifies enormously. Indeed, in the large volume limit the
BPS rays of all D1-instantons are close to the real axis because

| Im Z γ̃ | = |q̃ata | # |Re Z γ̃ | = |q̃aba + q̃0| for qaγ
a �= 0. (D.15)

On the other hand, the BPS rays of D3-instantons are close to the imaginary axis due to

| Im Zγ | ≈ |(qa + κabcbb pc)ta | � |Re Zγ | ≈ 1

2
(pt2). (D.16)

As a result, for a D3-brane charge γ , the set �(1)γ (D.2) is empty and hg
γ appearing in

(D.14) contains only the contribution of D(-1)-instantons. Geometrically, this happens
because the gauge transformation rotates the D1-BPS rays to the closest real axis, and
in the process this does not require to exchange their relative positions with any of
D3-BPS rays once we are in the large volume limit. Furthermore, the contribution of
D(-1)-instantons also drops out because it depends only on ξ0, but in our case p0 = 0
so that H g

γ = Hγ . Thus, the first effect is actually absent.
The second effect can be easily taken into account by adding the instanton corrections

(D.12) to X cl
γ computed in (2.35), which is to be replaced by

XD1
γ = X cl

γ E
(

pa δ̂D1ξ̃a

)

. (D.17)
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Since the additional factor does not depend on the electric charge q�, it simply modifies
the classical action adding to it amodular invariant term.Thus, it amounts to the following
replacement

Scl
p �→ SD1

p = τ2

2
pa

⎛

⎝κabctbtc +
1

4π2

∑

q̃a≥0
n(0)q̃a

q̃a

∑

m,n

′ e−Sm,n,q̃a

|mτ + n|2

⎞

⎠− ipac̃a .

(D.18)

Finally, the last effect appears due to the D3-instanton correction to the Darboux
coordinate ξa , which appears in the integrands of (D.10). The problem however is that
one cannot use the expression for this correction given in the main text because the
argument z of ξa , relevant for the computation of this effect, belongs to the contour
Cm,n and does not scale towards zero in the large volume limit, as was assumed in the
body of this paper. Instead, for finite z, using the freedom to adjust the mirror map, the
D3-instanton part of ξa can be brought to the following form (see [11, (B.11)])

δD3ξa

= 1

4π2

∑

γ∈�+
paσγ �̄(γ )

[

∫

�γ

dz′

z′ − z

1− z′2

1− z2
Xγ −

∫

�−γ

dz′

z′ − z

1− z′2

1− z2
z3

(z′)3
X−γ

]

.

(D.19)

Restricting to the linear order in D3-instantons and taking only the limit ta →∞, which
implies z′ → 0 or∞ depending on whether γ ∈ �+ or �−, while keeping z fixed, one
finds

δD3ξa = 1

4π2(z2 − 1)

∑

γ∈�+
paσγ �̄(γ )

[

1

z

∫

�γ

dz′ XD1
γ − z3

∫

�−γ

dz′

(z′)2
XD1−γ

]

= 1

z2 − 1

∑

p

pa
(

z−1F (1)p + z3F (1)p
)

,

where we used the functionF (1)p defined in (3.3), (3.4). Evaluating the correction (D.20)
and its first derivative at zm,n

+ , one obtains

xa
m,n ≡ mδD3ξa(zm,n

+ ) = i|mτ + n|3
2τ2

∑

p

pa

⎛

⎝

F (1)p
(mτ + n)2

+
F (1)p

(mτ̄ + n)2

⎞

⎠ , (D.20)

ya
m,n ≡ m2∂zδ

D3ξa(zm,n
+ ) = |mτ + n|2(mτ̄ + n)

τ 22 (mτ1 + n)

⎛

⎝

∑

p

pa ReF (1)p − im2τ 32

|mτ + n|3 xa
m,n

⎞

⎠ .

(D.21)

To find the corresponding instanton contributions to the Darboux coordinates, it is
sufficient to add the correction (D.20) to all instances of ξa appearing in (D.10), expand



344 S. Alexandrov, S. Banerjee, J. Manschot, B. Pioline

the resulting expressions to the first order in δD3ξa , and evaluate the integrals by residues.
This straightforward procedure leads to the following results

δ̂D3-D1ξ̃a = τ2

4π

∑

q̃a≥0
n(0)q̃a

q̃a

∑

m,n

′ q̃bxb
m,n

|mτ + n|2 e−Sm,n,q̃a ,

δ̂D3-D1+ α = τ2

8π2

∑

q̃a≥0
n(0)q̃a

q̃a

∑

m,n

′
⎡

⎣

2π q̃bxb
m,n

|mτ + n|2
(

ca − τba +
τ2ta(mτ + n)

|mτ + n|
)

− i

2

∑

p

pa mτ + n

|mτ + n|

⎛

⎝

F (1)p
(mτ + n)2

− 3F (1)p
(mτ̄ + n)2

⎞

⎠

⎤

⎦ e−Sm,n,q̃a , (D.22)

δ̂D3-D1− α = τ2

8π2

∑

q̃a≥0
n(0)q̃a

q̃a

∑

m,n

′
⎡

⎣

2π q̃bxb
m,n

|mτ + n|2
(

ca − τ̄ba − τ2ta(mτ̄ + n)

|mτ + n|
)

− i

2

∑

p

pa mτ̄ + n

|mτ + n|

⎛

⎝

3F (1)p
(mτ + n)2

− F (1)p
(mτ̄ + n)2

⎞

⎠

⎤

⎦ e−Sm,n,q̃a .

Since xa
m,n ismodular invariant, as follows from (D.20) and the fact thatF (1)p is amodular

form of weight
(− 3

2 ,
1
2

)

, it is easy to check that all contributions transform consistently
with (3.2). Note that we kept terms of different order in the large volume expansion: the
terms proportional to ta in (D.23) are of one order more comparing to all other terms.
This is important for verification of the modular symmetry because it does not mix the
terms depending on ta with other types of terms and hence their invariance must be
checked independently.

The full instanton contributions to Darboux coordinates, which comprise all types of
corrections we wanted to include, can be presented in the following form

δ̂�I = δ̂D1�I + δ̂D3-D1�I + FI [J̃ p], (D.23)

where FI are the functionals introduced in (3.6) and J̃ p is defined in (3.5). The only
difference of the last term comparing to the main text is that in the functions J̃ p and

F̃ p, when they are expressed in terms of theta series, the factor e−Sclp is replaced by

e−SD1p (see (D.18); equivalently, the factor E
(

pa δ̂D1ξ̃a

)

should be included into the

definition (B.14) of z-dependent theta series), and all differential operators commute
with this factor by definition.21 To achieve the modular covariance, one then performs
the same gauge transformation as in Sect. 4. It has exactly the same effect as before by
replacing J̃ p by ̂J p in the last term in (D.23). Since the first two terms have the right
transformation properties by themselves, the proof of modularity is identical to the one
given in Sect. 4.3.

Acknowledgements. Sibasish Banerjee thanks CEFIPRA for financial support.

21 After redefining them according to D( p)a �→ e−SD1p D( p)a eSD1p , etc.
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1. Robles-Llana, D., Roček, M., Saueressig, F., Theis, U., Vandoren, S.: Nonperturbative correc-
tions to 4D string theory effective actions from SL(2,Z) duality and supersymmetry. Phys. Rev.
Lett. 98, 211602 (2007). arXiv:hep-th/0612027

2. Alexandrov, S.: Twistor approach to string compactifications: a review. Phys. Rep. 522, 1–57 (2013).
arXiv:1111.2892

3. Alexandrov, S., Manschot, J., Persson, D., Pioline, B.: Quantum hypermultiplet moduli spaces in N =
2 string vacua: a review. In: Proceedings, String-Math 2012, Bonn, Germany, pp. 181–212, 16–21 July
2012 (2013). arXiv:1304.0766

4. Alexandrov, S., Persson, D., Pioline, B.: Fivebrane instantons, topological wave functions and hypermul-
tiplet moduli spaces. JHEP 1103, 111 (2011). arXiv:1010.5792

5. Alexandrov, S., Banerjee, S.: Fivebrane instantons in Calabi–Yau compactifications. Phys.
Rev. D90, 041902 (2014). arXiv:1403.1265

6. Alexandrov, S., Banerjee, S.: Dualities and fivebrane instantons. JHEP 1411, 040 (2014).
arXiv:1405.0291

7. Alexandrov, S., Pioline, B., Saueressig, F., Vandoren, S.: D-instantons and twistors. JHEP 03, 044 (2009).
arXiv:0812.4219

8. Alexandrov, S.: D-instantons and twistors: some exact results. J. Phys. A 42, 335402 (2009).
arXiv:0902.2761

9. Gaiotto, D., Moore, G.W., Neitzke, A.: Four-dimensional wall-crossing via three-dimensional field the-
ory. Commun. Math. Phys. 299, 163–224 (2010). arXiv:0807.4723

10. Alexandrov, S., Saueressig, F.: Quantum mirror symmetry and twistors. JHEP 09, 108 (2009).
arXiv:0906.3743

11. Alexandrov, S., Manschot, J., Pioline, B.: D3-instantons, Mock Theta Series and
Twistors. JHEP 1304, 002 (2013). arXiv:1207.1109

12. Maldacena, J.M., Strominger, A., Witten, E.: Black hole entropy in M-theory. JHEP 12, 002 (1997).
arXiv:hep-th/9711053

13. Alexandrov, S., Pioline, B., Saueressig, F., Vandoren, S.: Linear perturbations of quaternionic met-
rics. Commun. Math. Phys. 296, 353–403 (2010). arXiv:0810.1675

14. Zwegers, S.: Mock theta functions. Ph.D. dissertation, Utrecht University (2002)
15. Alexandrov, S., Banerjee, S., Manschot, J., Pioline, B.: Multiple D3-instantons and mock modular forms

I. Commun. Math. Phys. 353(1), 379–411 (2017)
16. Manschot, J.: Stability and duality in N=2 supergravity. Commun. Math. Phys. 299, 651–676 (2010).

arXiv:0906.1767
17. Hosono, S., Klemm, A., Theisen, S., Yau, S.-T.: Mirror symmetry, mirror map and applications to Calabi–

Yau hypersurfaces. Commun. Math. Phys. 167, 301–350 (1995). arXiv:hep-th/9308122
18. Alexandrov, S., Banerjee, S., Manschot, J., Pioline, B.: Indefinite theta series and generalized error

functions. arXiv:1606.05495
19. Vignéras, M.-F.: Séries thêta des formes quadratiques indéfinies. Springer Lecture Notes, vol. 627, pp.

227–239 (1977)
20. Cecotti, S., Ferrara, S., Girardello, L.: Geometry of type II superstrings and the moduli of superconformal

field theories. Int. J. Mod. Phys. A4, 2475 (1989)
21. Ferrara, S., Sabharwal, S.: Quaternionic manifolds for type II superstring vacua of Calabi–Yau

spaces. Nucl. Phys. B332, 317 (1990)
22. Antoniadis, I., Ferrara, S., Minasian, R., Narain, K.S.: R4 couplings in M- and type II theories on Calabi–

Yau spaces. Nucl. Phys. B 507, 571–588 (1997). arXiv:hep-th/9707013
23. Günther, H., Herrmann, C., Louis, J.: Quantum corrections in the hypermultiplet moduli space. Fortsch.

Phys. 48, 119–123 (2000). arXiv:hep-th/9901137
24. Antoniadis, I., Minasian, R., Theisen, S., Vanhove, P.: String loop corrections to the universal hypermul-

tiplet. Class. Quantum Gravity 20, 5079–5102 (2003). arXiv:hep-th/0307268
25. Robles-Llana, D., Saueressig, F., Vandoren, S.: String loop corrected hypermultiplet moduli

spaces. JHEP 03, 081 (2006). arXiv:hep-th/0602164
26. Alexandrov, S.: Quantum covariant c-map. JHEP 05, 094 (2007). arXiv:hep-th/0702203
27. Salamon, S.M.: Quaternionic Kähler manifolds. Invent. Math. 67(1), 143–171 (1982)
28. Böhm, R., Günther, H., Herrmann, C., Louis, J.: Compactification of type IIB string theory on Calabi–Yau

threefolds. Nucl. Phys. B569, 229–246 (2000). arXiv:hep-th/9908007
29. Alexandrov, S., Pioline, B.: S-duality in Twistor Space. JHEP 1208, 112 (2012). arXiv:1206.1341
30. Gaiotto, D., Strominger, A., Yin, X.: The M5-brane elliptic genus: Modularity and BPS

states. JHEP 08, 070 (2007). arXiv:hep-th/0607010
31. Boer, J.de , Cheng, M.C.N., Dijkgraaf, R., Manschot, J., Verlinde, E.: A farey tail for attractor black

holes. JHEP 11, 024 (2006). arXiv:hep-th/0608059

http://arXiv.org/abs/hep-th/0612027
http://arXiv.org/abs/1111.2892
http://arXiv.org/abs/1304.0766
http://arXiv.org/abs/1010.5792
http://arXiv.org/abs/1403.1265
http://arXiv.org/abs/1405.0291
http://arXiv.org/abs/0812.4219
http://arXiv.org/abs/0902.2761
http://arXiv.org/abs/0807.4723
http://arXiv.org/abs/0906.3743
http://arXiv.org/abs/1207.1109
http://arXiv.org/abs/hep-th/9711053
http://arXiv.org/abs/0810.1675
http://arXiv.org/abs/0906.1767
http://arXiv.org/abs/hep-th/9308122
http://arXiv.org/abs/1606.05495
http://arXiv.org/abs/hep-th/9707013
http://arXiv.org/abs/hep-th/9901137
http://arXiv.org/abs/hep-th/0307268
http://arXiv.org/abs/hep-th/0602164
http://arXiv.org/abs/hep-th/0702203
http://arXiv.org/abs/hep-th/9908007
http://arXiv.org/abs/1206.1341
http://arXiv.org/abs/hep-th/0607010
http://arXiv.org/abs/hep-th/0608059


346 S. Alexandrov, S. Banerjee, J. Manschot, B. Pioline

32. Denef, F., Moore, G.W.: Split states, entropy enigmas, holes and halos. JHEP 1111, 129 (2011).
arXiv:hep-th/0702146

33. Eichler, M., Zagier, D.: The Theory of Jacobi Forms, vol. 55 of Progress in Mathematics. Birkhäuser
Boston Inc., Boston (1985)

34. Kudla, S.: Theta integrals and generalized error functions. manuscripta math. 155(3–4), 303–333 (2018)
35. Westerholt-Raum, M.: Indefinite theta series on tetrahedral cones (2016). arXiv:1608.08874
36. Zagier, D.: Ramanujan’smock theta functions and their applications (after Zwegers andOno-Bringmann).

Astérisque (2009), no. 326, Exp. No. 986, vii–viii, 143–164 (2010). Séminaire Bourbaki. Vol. 2007/2008
37. Göttsche, L., Zagier, D.: Jacobi forms and the structure of Donaldson invariants for 4-manifolds with

b+ = 1. Sel. Math. (N.S.) 4(1), 69–115 (1998)
38. Göttsche, L.: Theta functions and Hodge numbers of moduli spaces of sheaves on rational surfaces. Com-

mun. Math. Phys. 206(1), 105–136 (1999)
39. Manschot, J.: Sheaves on P

2 and generalized Appell functions. Adv. Theor. Math. Phys. 21, 665–
681 (2017). arXiv:1407.7785

40. Toda, Y.: Flops and the S-duality conjecture. Duke Math. J. 164, 2293–2339 (2015). arXiv:1311.7476

Communicated by X. Yin

http://arXiv.org/abs/hep-th/0702146
http://arXiv.org/abs/1608.08874
http://arXiv.org/abs/1407.7785
http://arXiv.org/abs/1311.7476

	Multiple D3-Instantons and Mock Modular Forms II
	Abstract:
	1 Introduction
	2 Twistors, D-Instantons and Modularity
	2.1 mathcalMH is the twistor formalism
	2.2 S-duality
	2.3 D3-instantons in the large volume limit
	2.3.1 DT and MSW invariants
	2.3.2 mathcalXγ at one-instanton order


	3 D-Instanton Corrected Darboux Coordinates
	3.1 Quantum corrections as modular forms
	3.2 Darboux coordinates at two-instanton order

	4 Gauge Transformation and Modularity
	4.1 Gauge transformation at one-instanton order, revisited
	4.2 Gauge transformation at two-instanton order
	4.3 Modularity

	5 Discussion
	A Details of Computations
	A.1 Modular operators
	A.2 Instanton contributions to Darboux coordinates
	A.3 The effect of gauge transformation

	B Indefinite Theta Series and Their Modular Properties
	B.1 Vignéras' theorem
	B.2 Generalizations
	B.3 Indefinite theta series of Lorentzian signature
	B.4 Indefinite theta series of conformal signature
	B.5 Safe and dangerous anomalies

	C Convergence of Indefinite Theta Series of Signature (2,n-2)
	C.1 Application: convergence of the gauge transformation

	D Modularity in the Presence of D1-D(-1)-Instantons
	D.1 Twistorial description of D1-D(-1)-instantons
	D.2 Adding D3-instantons

	Acknowledgements.
	References




