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Abstract: Westudy the large-scale behavior of the height function in the dimermodel on
the square lattice. Richard Kenyon has shown that the fluctuations of the height function
on Temperleyan discretizations of a planar domain converge in the scaling limit (as the
mesh size tends to zero) to the Gaussian Free Field with Dirichlet boundary conditions.
We extend Kenyon’s result to a more general class of discretizations. Moreover, we
introduce a new factorization of the coupling function of the double-dimer model into
two discrete holomorphic functions, which are similar to discrete fermions defined in
Smirnov (Proceedings of the international congress of mathematicians (ICM), Madrid,
Spain, 2006; AnnMath (2) 172:1435–1467, 2010). For Temperleyan discretizationswith
appropriate boundary modifications, the results of Kenyon imply that the expectation
of the double-dimer height function converges to a harmonic function in the scaling
limit. We use the above factorization to extend this result to the class of all polygonal
discretizations, that are not necessarily Temperleyan. Furthermore, we show that, quite
surprisingly, the expectation of the double-dimer height function in the Temperleyan
case is exactly discrete harmonic (for an appropriate choice of Laplacian) even before
taking the scaling limit.
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1. Introduction

Dimer model. The dimer model is one of the best known models of statistical physics,
first introduced to model a gas of diatomic molecules [14]. By modifying the underlying
graph, it can be used to study the Ising model (see Fisher’s approach [13]). Under the
name “perfect matchings”, it prominently appears in theoretical computer science and
combinatorics.

A dimer covering (or perfect matching) of a graph is a subset of edges that covers
every vertex exactly once. The dimer model is a random covering of a given graph by
dimers. We will be interested in uniform random coverings, that is, those chosen from
the distribution in which all dimer configurations are equally weighted.

In this paper, we work with dimers on finite subgraphs (also called domains) of the
square lattice. Such a dimer covering may be viewed as a random tiling of a domain of
the dual lattice by dominos 2 × 1. Thurston introduced the height function of a domino
tiling which uniquely assigns integer values to all vertices of the dual lattice. Moreover,
a domino tiling can be reconstructed from the values of the height function. Thus, one
can think of a random domino tiling as a random height function on the vertex set of the
domain.

The key question in the dimer model concerns the large-scale behavior of the expec-
tation of the height function and of its fluctuations. We are interested in studying the
scaling limit of the dimer model on planar graphs as the mesh tends to zero. One of
the main interesting features lies in the conformal invariance of such scaling limit. The
scaling limit is conformal invariant if its image under any conformal mapping has the
same distribution as an analogous object in the image of the domain.

For planar graphs, Kasteleyn [15] showed that the partition function of the dimer
model can be evaluated as the determinant of a signed adjacency matrix, the Kasteleyn
matrix. The local statistics for the uniform measure on dimer configurations can be
computed using the inverse Kasteleynmatrix, see [19]. The latter can be viewed as a two-
point function, called the coupling function [16]. The coupling function is a complex-
valued discrete holomorphic function. As such, its real and imaginary parts are discrete
harmonic, and the study of the local statistics of random tilings can be reduced to the
study of the convergence of discrete harmonic functions.

A Temperleyan discretization (see Fig. 5) is a discrete domain with special bound-
ary conditions. It is defined in Sect. 2.1. Temperleyan domains correspond to Dirichlet



Dimers in Piecewise Temperleyan Domains 191

boundary conditions or Neumann boundary conditions for the discrete harmonic compo-
nents of the coupling function.Kenyon [16,18] used this approach to prove the conformal
invariance of the limiting distribution of the height function in the case of Temperleyan
discretizations.

More precisely, if one considers Temperleyan discretizations of a given domain �,
Kenyon [16] showed that the limit of the expected height function is a harmonic function
with boundary values depending on the direction (the argument of the tangent vector)
of the boundary. In [18] Kenyon proved that, in the case of Temperleyan discretizations,
the fluctuations of the height function converge (as the mesh size tends to zero) to the
Gaussian Free Field [31] on � with Dirichlet boundary conditions. One of the main
results of the present paper is an extension of Kenyon’s result to a class of Piecewise
Temperleyan discretizations defined in Sect. 5.1. Note that for more general discretiza-
tions, with domains that are not necessarily Temperleyan, the large-scale behavior of
the expectation of the height function and its fluctuations is much more complicated,
see [3,7,21,22,27]. The exact nature of fluctuations is not established yet, but they
expected to be given by a Gaussian free field in appropriate coordinates, obtained from
solving the complex Burgers equation in [21]. In the particular case of a sequence of
domains whose boundary height functions are bounded by some constant, the new coor-
dinates coincide with the usual ones, and the fluctuations are expected to be given by
the Gaussian free field on the limiting domain with Dirichlet boundary conditions.

A different approach to showing the convergence of the fluctuations of the height
function to the Gaussian Free Field was introduced in [1]. The main tool here is the
Uniform Spanning Tree and the winding of its branches, which coincides with the dimer
model height function. In particular, this approach covers the case of Temperleyan dis-
cretizations, but not the case of Piecewise Temperleyan discretizations.

Double dimers. Let us now come to the second series of results of our paper, which deal
with the double-dimer model. Recall that a double-dimer configuration is a union of two
dimer coverings, or equivalently a set of even-length simple loops and double edges with
the property that every vertex is the endpoint of exactly two edges, see Fig. 1. Note that
there are two ways to obtain a given loop (on the dual graph). This can be interpreted
as a choice of orientation of the loop, see Fig. 1. Thus, the double-dimer model can
be represented as a random covering of the dual graph by oriented loops and double
edges [26]. The height function in the double-dimer model, which is the difference of
height functions for two dimer configurations, has a simple geometric representation:
if we cross a loop, then the height function changes by + 1 or − 1, depending on the
orientation of the loop.

There is a prediction that the loop ensemble of the double-dimer model converges
to the conformal loop ensemble CLE(4), see [30,32]. In the case of discretizations by
Temperleyan domains, Kenyon [17] and Dubedat [10] obtained results confirming this
prediction. The loop ensemble CLE(4) is a conformally invariant object. It corresponds
to level lines of the Gaussian Free Field. There is a gap of ± 2λ = ±√

π/2 between the
values of the Gaussian Free Field on the interior and the exterior side of each CLE(4)
loop [29,37]. This is similar to loops in the double-dimer model outlining the disconti-
nuities of the double-dimer height function, the gap being ± 1.

We will consider coverings of a pair of domains that differ by two squares, see Fig. 2.
In this case, in addition to a collection of loops and double edges, the superposition of
the coverings contains an “interface” (a simple path between these two squares). It is
expected that the interface converges to a conformally invariant random curve SLE(4)
as the mesh size tends to zero, see [28].



192 M. Russkikh

Fig. 1. Two different domino tilings of the same domain can be combined into a collection of loops and double
edges. Orienting the edges of the first covering from white to black, and the edges of the second one from
black to white, one gets an orientation of the resulting loops

Fig. 2. Left and center: the coverings of the domains that differ on two squares. Right: the interface between
these two squares and the collection of loops and double edges is the result of the composition of the coverings

The coupling function plays an important role in the proof of convergence of height
functions. We define the double-dimer coupling function as a difference of single-dimer
coupling functions of a pair of domains that differ by two squares. Similarly to the single-
dimer coupling function, the double-dimer coupling function can be used to compute
the expectation of the double-dimer height function. However, the single-dimer coupling
function is also the kernel which allows to compute multi-edge correlations, see [19].
Therefore it allows us to compute all moments of the single-dimer height function, see
[18]. This is not the case for the double-dimer model.

Main results. Let us now summarise the main results. We will show that in the double-
dimer model the coupling function C(u, v) has a factorization into a product of two
discrete holomorphic functions F(u) and G(v) described in Corollary 3.9. Moreover,
we will describe the construction of the discrete integral of this product of two dis-
crete holomorphic functions. Then for any discrete domain the expectation of the height
function of the double-dimer model can be interpreted as an integral of two discrete
holomorphic functions. Due to Kenyon [16], for the single-dimer model, the expecta-
tion of the height function is harmonic in the limit for approximations by Temperleyan
domains. Using the above-mentioned factorization of the double-dimer coupling func-
tion, we will show that the expectation of the double-dimer height function is harmonic
already at the discrete level, with respect to the leap-frog Laplacian, see (3.2). In other
words, we have the following result.

Theorem 1.1. The expectation of the double-dimer height function on an odd Tem-
perleyan domain (see Sect. 2.1 for a precise definition) is exactly discrete leap-frog
harmonic.

Note that the exact discrete harmonicity does not hold for the single-dimer model.
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Fig. 3. The coupling function C(u, v0) with fixed v0 is real on the set of light grey squares, and it is pure
imaginary on the set of dark grey squares. On the left pictures the coupling function restricted to the light
grey squares satisfies the Dirichlet boundary conditions, and the coupling function restricted to the dark grey
squares obeys Neumann boundary conditions. The picture on the right corresponds to mixed Dirichlet and
Neumann boundary conditions for the coupling function

Also, we will prove the convergence of the expectation of the (integer-valued) height
function in the double-dimer model to the harmonic measure under discretization by
polygonal domains. More precisely, we have the following result.

Theorem 1.2. Let � be a polygon with n sides parallel to the axes and two marked
points u0 and v0 on straight parts of the boundary of �. Suppose that a sequence of
discrete n-gons �δ on a grid with mesh size δ approximates the polygon � in a proper
way, and that each polygon �δ has at least one domino tiling. Assume that some black
and white squares uδ

0 and vδ
0 of the domain �δ tend to the boundary points u0 and v0

of the domain �. Let hδ be the height function of a uniform double-dimer configuration
on �. Then Ehδ converges to the harmonic measure hm�( · , (u0v0)) of the boundary
arc (u0v0) on the domain �.

Furthermore, we will show the convergence of the dimer coupling function in the
case of approximations by black-piecewise Temperleyan domains (see Fig. 14), domains
which correspond tomixedDirichlet andNeumann boundary conditions for the coupling
function (see Fig. 3). For a more precise statement, see Theorem 6.1. Note that the
coupling functionC(u, v0)with fixed v0 coincides with a discrete holomorphic function
F(u). Let Fδ be equal 1

δ
F on a domain �δ of mesh size δ, we have the following result

(for a more precise statement, see Theorem 5.5).

Theorem 1.3. Let �δ be a sequence of discrete 2k-black-piecewise Temperleyan
domains of mesh size δ approximating a continuous domain �. Suppose that each �δ

admits a domino tiling. Assume that white square vδ
0 of the domain �δ tends to the

boundary point v0 of the domain �. Then Fδ converges uniformly on compact subsets
of � to a continuous holomorphic function f with a singularity at v0, as δ tends to 0.

Similarly, one can show the convergence of Gδ = 1
δ
G for approximations by white-

piecewise Temperleyan domains. Note that a polygonal domain �δ as in Theorem 1.2 is
black-piecewise Temperleyan and also white-piecewise Temperleyan. Thus, we obtain
the convergence of the double-dimer coupling function for any polygonal domain.

It is known that all moments of the scaling limit of the height function can be written
in terms of the scaling limit of the coupling function, see [18]. Thus, adopting the proof
of [18, Theorem 1.1], we obtain the convergence of the dimer height function to the
Gaussian Free Field in the setup of Theorem 1.3. More precisely, we have the following
result.
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Corollary 1.4. Let � be a Jordan domain with smooth boundary in R
2. Let �δ be a

black-piecewise Temperleyan domain approximating �. Let hδ be the height function of
�δ . Then hδ − Ehδ converges weakly in distribution to the Gaussian Free Field on �

with Dirichlet boundary conditions, as δ tends to 0.

As it was shown in [18], it is enough to compute all the limit moments of the fluctua-
tions hδ − Ehδ of the height function to prove that their limit is the Gaussian Free Field.
The main tool to compute these moments is the coupling function. The scaling limit of
the coupling function is very sensible to the boundary conditions, in particular the limits
of the coupling function in the Temperleyan case and the piecewise Temperleyan case
are different. However, all the limits of hδ − Ehδ turns out to be the same.

Organization of the paper. The rest of the paper is organized as follows. In Sect. 2,
we recall some basic facts and definitions. Section 3 contains the construction of the
primitive of the product of two discrete holomorphic functions. Also, we show that for
an appropriate choice of the boundary conditions of discrete holomorphic functions the
primitive of their product coincides with the expectation of the height function in the
double-dimer model and we prove Theorem 1.1. In Sect. 4 we show that the continuos
analogue of the above-mentioned primitive is the harmonic measure hm�( · , (u0v0)) of
the boundary arc (u0v0) on the domain � in the setup of Theorem 1.2. In Sect. 5 we
prove Theorem 1.3. Finally, Sect. 6 contains results about the single, dimer model.

2. Definitions and Basic Facts

2.1. Height function and Temperleyan domain. Consider a checkerboard tiling of a
discrete domain � with unit squares. We will use grey color for the black squares in
our figures. Sometimes for convenience we will distinguish between two types of black
squares, in this case in the figures black squares in even rows will be represented by
a light grey and those in odd rows will be dark grey (see Fig. 5). A domain where
all corner squares are dark grey is called an odd Temperleyan domain. To obtain the
Temperleyan domain one removes one dark grey square adjacent to the boundary from
an odd Temperleyan domain.

Thurston [36] defines the height function h (which is a real-valued function on the
vertices of �) as follows. Fix a vertex z0 and set h(z0) = 0. For every other vertex z
in the tiling, take an edge-path γ from z0 to z. The height along γ changes by ± 1

4 if
the traversed edge does not cross a domino from the tiling or by ∓ 3

4 otherwise: if the
traversed edge has a black square on its left then the height increases by 1

4 or decreases
by 3

4 ; if it has a white square on its left then it decreases by 1
4 or increases by 3

4 , see
Fig. 4. Note that for a simply connected domain, the height is independent of the choice
of γ . The height function in the double-dimer model is defined as the difference of the
height functions of the two corresponding dimer coverings.

2.2. Kasteleyn weights and discrete holomorphic functions. Let G be a bipartite graph
with n black and n white vertices. AKasteleyn matrix KG is an n×n weighted adjacency
matrix whose rows index the black vertices and columns index the white vertices. Let us
denote by τ(u, v) an element of this matrix, where u and v are adjacent black and white
vertices. For finite planar bipartite graphs Kasteleyn [15] proved that if the edge-weights
are Kasteleyn, i.e. the alternating product of the weights along any simple face of degree
p is equal to (− 1)(p+2)/2, then the absolute value of the determinant of the Kasteleyn
matrix is equal to the number of perfect matchings of the graph.
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Fig. 4. Left: a domino tiling of the domain, vertices z0 and z. Right: an edge-path from z0 to z and the height
along this path: hδ(z0) = 0, hδ(z) = −1
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Fig. 5. Left: A Temperleyan domain. Right: Weights of the Kasteleyn matrix on the square lattice (proposed
by Kenyon in [16]): at each white vertex the four edge weights going counterclockwise from the right-going
edge are 1, i , − 1, − i respectively

Kenyon showed how to compute local statistics for the uniform measure on dimer
configurations on a planar graph, using the inverse of the Kasteleyn matrix. Let E be
a finite collection of disjoint edges of �. Let μ be the uniform probability measure on
perfect matchings of �. Let b1, . . . , bk and w1, . . . , wk be the black and white vertices
of the edges belonging to E correspondingly.

Theorem 2.1 ([19]). The μ-probability that the set E occurs in a perfect matching is
given by | det(K−1

E )|, where K−1
E is the submatrix of K−1

� whose rows are indexed by
b1, . . . , bk and columns are indexed by w1, . . . , wk . More precisely, the probability is
c · (− 1)

∑
pi+q j · aE · det(K−1

E ), where pi , qi is the index of bi , resp. wi , in a fixed
ordering of the vertices, c = ± 1 is a constant depending only on that ordering, and aE
is the product of the edge weights of the edges E.

For a given planar graphG, there aremanyways to choose the edge-weights satisfying
the Kasteleyn condition. Let us fix the following ones, which were proposed by Kenyon
in [16]: put τ(e) = ± 1 for horizontal edges and τ(e) = ± i if e is a vertical edge, see
Fig. 5. It is easy to check that these weights are Kasteleyn weights.

Let � be a discrete domain on a square lattice that has at least one domino tiling.
Let K� be a Kasteleyn matrix of this domain. Let us denote by C�(u, v) the elements
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F (c) − F (a) = −i · (F (d) − F (b))
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s=1(F (us) − F (u))

Fig. 6. Left: Discrete Cauchy–Riemann equation. Right: Discrete leap-frog Laplacian on the light grey lattice.
The function F is called discrete harmonic at u if [�F](u) = 0

of the inverse matrix K−1
� , where u and v are black and white squares of �. The main

advantage of choosing Kasteleyn weights as shown in Fig. 5 is the following: with this
choice of weights the function C�(u, v) is discrete holomorphic on the domain. Thus
its limiting behavior can be studied using the methods of discrete complex analysis,
see [16]. Following [16], we call C�(u, v) the coupling function.

Let F be a function defined on the set of black squares of the domain �. Recall that
the function F is called discrete holomorphic on � if for any white square v ∈ � it
satisfies a discrete analogue of the Cauchy–Riemann equation (see Fig. 6), and at the
same time the values of the function F on the set of light grey squares are real, while on
the set of dark grey squares they are purely imaginary. Note that the real and imaginary
parts of a holomorphic function are harmonic functions. It is also true on a discrete level:
consider the discrete Cauchy–Riemann equations at four white neighbours of a black
square u, then it is easy to show that F(u) = 1

4

∑4
i=1 F(ui ). Therefore the discrete leap-

frog Laplacian of F at u equals zero (see. Fig. 6). In other words, real and imaginary
parts of discrete holomorphic functions are discrete harmonic functions.

The coupling function C�(u, v) = K−1
� (u, v) can be extended to be zero on all

boundary black squares, see Fig. 3. We know that K−1
� · K� = I , which is equivalent

to the following relation:

1 · C�(v + 1, v0) − 1 · C�(v − 1, v0) + i · C�(v + i, v0) − i · C�(v − i, v0) = 1{v=v0}.
(2.1)

Note that this relation is the discrete Cauchy–Riemann equation for the coupling function
C�(·, v0), so for anywhite square v0 ∈ � the functionC�(u, v0) considered as a function
of u ∈ � is discrete holomorphic on � � {v0}, for more details see [16]. Therefore,
the restriction of C�(u, v0) to one type of black squares is a discrete harmonic function
everywhere except the two squares adjacent to v0.

Moreover, the function C�(u, v) satisfies the following property:

� if u and v are adjacent squares, then |C�(u, v)| is equal to the probability that the
domino [uv] is contained in a random domino tiling of �, see [16].

For Temperleyan domains, each of the two discrete harmonic components of the
functionC�(u, v0) has the following boundary conditions: the restriction of the coupling
function to the light grey squares (see Fig. 3), satisfies the Dirichlet boundary conditions,
and coupling function restricted to the dark grey squares obeys Neumann boundary
conditions.
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2.3. Even/odd double dimers. A double-dimer configuration is the union of two dimer
coverings. We will consider coverings of a pair of domains �1, �2 that differ by two
squares, i.e. |�1 � �2| = 2. Note that there are two different situations depending on
whether � := �1 ∪ �2 contains an odd or an even number of squares. In the odd case,
assume that � has one more black square than white squares. Then the domains �1 and
�2 are obtained from � by removing black squares u1 and u2 adjacent to the boundary
(see Fig. 8). In the even case, let �1 = � and �2 be obtained from � by removing
black and white squares u0 and v0, which are adjacent to the boundary. One can modify
a domain in the odd case to reduce it to the even case, see Fig. 12 and Remark 3.13.

Let us define the double-dimer coupling function on � = �1 ∪ �2 as the difference
of the two dimer coupling functions on domains �1 and �2

Cdbl-d,�(u, v) := C�1(u, v) − C�2(u, v).

Recall that the absolute value of the coupling function is the probability that
the corresponding domino is contained in a random tiling, and the determinant of
the Kasteleyn matrix is equal to the number of domino tilings of our domain, so,

|C��{u0,v0}(u, v)| =
∣
∣
∣
det(K��{u0,v0,u,v})
det(K��{u0,v0})

∣
∣
∣ . Note that

det(K��{u0,v0})
det(K�)

= ± K−1
� (u0, v0) and

det(K��{u,v})
det(K�)

= ± K−1
� (u, v),

and also

det(K��{u0,v0,u,v})
det(K�)

= ± det

(
K−1

� (u0, v0) K−1
� (u0, v)

K−1
� (u, v0) K−1

� (u, v)

)

.

Therefore,

Cdbl-d,�(u, v) = C�(u, v) − C��{u0,v0}(u, v) = ± K−1
� (u0, v) · K−1

� (u, v0)

K−1
� (u0, v0)

.

Recall that for a fixed v0 the function K
−1
� (u, v0) is a discrete holomorphic function of u.

Let us denote it by Fv0(u) and similarly let us define a function Gu0(v) := K−1
� (u0, v).

So, we obtain

Cdbl-d,�(u, v) = constu0,v0 · Fv0(u) · Gu0(v),

where constu0,v0 = ± 1/K−1
� (u0, v0).

Belowwe discuss the above factorization of the double-dimer coupling function from
the viewpoint of discrete holomorphic solutions to appropriate boundary value problems,
the framework which we use later to prove the main convergence theorems.

3. Expectation of the Height Function in the Double-Dimer Model and the Proof
of Theorem 1.1

3.1. Notation. Put λ = ei
π
4 and λ̄ = e−i π

4 .
Consider a checkerboard tiling C

δ of R
2 with squares, each square has side δ and is

centered at a lattice point of
{(

δn√
2
,

δm√
2

)

| n,m ∈ Z; n + m ∈ 2Z

}
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z0 z0

u0

v0

Fig. 7. Even case. The vertex z0 is the vertex on the boundary where h1(z0) = h2(z0) = h(z0) = 0. The
squares u0 and v0 are the difference between the domains �1 = � and �2 = � � {u0, v0}. On the right: an
example of the interface (grey) from u0 to v0 and the set of loops and double edges in �

z0

u1

z0

u2

Fig. 8. Odd case. The vertex z0 is the vertex on the boundary where h1(z0) = h2(z0) = h(z0) = 0. The
squares u1 and u2 are the difference between the domains �1 = � � {u1} and �2 = � � {u2}. On the right:
an example of the interface (grey) from u1 to u2 and the set of loops and double edges in �

(see Fig. 9). The pair (n,m) is called the coordinates of a point on this lattice. Let �δ

be a simply connected discrete domain composed of a finite number of squares of C
δ

bounded by a disjoint simple closed lattice path. Let Vδ be the vertex set of �δ . We
will denote by �δ the set of black squares and by ♦δ the set of white squares of �δ . So,
�δ = �δ � ♦δ . Let the coordinates of a square be the coordinates of its center. Then we
can define the sets �δ

0
and �δ

1
of black squares of �δ and the sets ♦δ

0
and ♦δ

1
of white

squares by the following properties:

(�δ
0
) both coordinates are even and the sum of coordinates is divisible by 4;

(�δ
1
) both coordinates are even and the sum of coordinates is not divisible by 4;

(♦δ
0
) both coordinates are odd and the sum of coordinates is not divisible by 4;

(♦δ
1
) both coordinates are odd and the sum of coordinates is divisible by 4.

Define ∂Vδ to be the set of vertices on the boundary. Let ∂�δ be the set of faces
adjacent to �δ but not in �δ . Let ∂�δ and ∂♦δ be the sets of black and white faces of
∂�δ correspondingly. Let ∂int�δ be the set of interior faces that have a common edgewith
boundary of �δ . Similarly define sets ∂int�δ and ∂int♦δ (∂int�δ = ∂int�δ � ∂int♦δ). Let

us denote by�
δ
the set�δ �∂�δ , define also sets �̄δ

and ♦̄δ
, to be exact: �̄δ = �δ �∂�δ

and ♦̄δ = ♦δ � ∂♦δ . In the same way we define sets ∂�δ
0, 1
, ∂♦δ

0, 1
, ∂int�δ

0, 1
, ∂int♦δ

0, 1
, �̄δ

0, 1

and ♦̄δ
0, 1
.
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Fig. 9. The domain �δ , the sets �δ and ♦δ of this domain and the set Vδ is the vertex set of �δ , the squares
u0 ∈ ∂int�0 and v0 ∈ ∂int♦0, and the elements of the sets of square corners {u∗

s }m+1
s=1 , {v∗

k }n+1k=1, {ũs }m−1
s=1

and {ṽk }n−1
k=1. We call a corner of �δ a convex corner if the interior angle is π/2, and concave if the interior

angle is 3π/2. A corner is called white if there is a white square in the corner, and black if there is a black

square in this corner. The discrete holomorphic function Fδ is real on �̄δ

0 and purely imaginary on �̄δ

1; the

discrete holomorphic function Gδ belongs to λR on ♦̄δ
0 and belongs to λ̄R on ♦̄δ

1. The discrete primitive Hδ

is defined on vertices and is purely real: it is easy to check that in all possible positions (according to the
types of the squares) the difference of values of function Hδ at two adjacent vertices is real. For all u ∈ ∂�δ ,
either Re[Fδ(u)] = 0 or Im[Fδ(u)] = 0; for all v ∈ ∂♦δ , either Re[λ̄Gδ(v)] = 0 or Re[λGδ(v)] = 0. The
function Fδ (resp., Gδ) changes boundary conditions only at white (resp., black) corners of �δ . Let (u0v0)
be a part of the boundary starting at the middle of the boundary side of the square u0 and going to the middle
of the boundary side of square v0 in the positive direction. Note that two segments of the boundary (u0v0)
and (v0u0) form the whole boundary. The function Hδ is a constant on (u0v0) and (v0u0). The difference of
the values on these segments is nonzero: Hδ(z
) − Hδ(z+) = 4iδ2Gδ(v0)[∂̄δFδ](v0)

Let Fδ : �̄δ → C be a function. Let us define discrete operators ∂δ and ∂̄δ by the
formulas:

[∂δFδ](v) = 1

2

(
Fδ(v + δλ) − Fδ(v − δλ)

2δλ
+
Fδ(v + δλ̄) − Fδ(v − δλ̄)

2δλ̄

)

,

[∂̄δFδ](v) = 1

2

(
Fδ(v + δλ) − Fδ(v − δλ)

2δλ̄
+
Fδ(v + δλ̄) − Fδ(v − δλ̄)

2δλ

)

,

where v ∈ ♦δ . Note that, if [∂̄δFδ](v) = 0, then the two terms involved into the definition
of [∂Fδ] are equal to each other.

We can similarly define these operators for a function Gδ : ♦̄δ → C.

Definition 3.1. A function Fδ : �̄δ → C is called discrete holomorphic in �δ if

[∂̄δFδ](v) = 0 for all v ∈ ♦δ . Also, we always assume that Fδ is real on �̄δ

0
and

purely imaginary on �̄δ

1
.
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A function Gδ : ♦̄δ → C is called discrete holomorphic in �δ if [∂̄δGδ](u) = 0 for
all u ∈ �δ . Also, we always assume that Gδ belongs to λR (resp., λ̄R) on ♦̄δ

0
(resp.,

on ♦̄δ
1
).

Remark 3.2. If a function Fδ : �̄δ → C is discrete holomorphic in �δ then
[i · ∂δFδ] : ♦δ → C is a discrete holomorphic function in �δ

� ∂int�
δ . Similarly, if

Gδ : ♦̄δ → C is discrete holomorphic in �δ then ∂δGδ : �δ → C is discrete holomor-
phic in �δ

� ∂int�
δ .

Define the discrete Laplacian of Fδ by

�δFδ(u) = Fδ(u + 2δλ) + Fδ(u + 2δλ̄) + Fδ(u − 2δλ) + Fδ(u − 2δλ̄) − 4Fδ(u)

4δ2
,

where u ∈ �δ . Note that �δFδ(u) = 4[∂δ∂̄δFδ](u) = 4[∂̄δ∂δFδ](u).

A function Fδ : �̄δ → C (resp., Gδ : ♦̄δ → C) is called a discrete harmonic function
in �δ if it satisfies �δFδ(u) = 0 for all u ∈ �δ (resp., �δGδ(v) = 0 for all v ∈ ♦δ).

It is easy to see that discrete harmonic functions satisfy the maximum principle:

max
u∈�δ

Fδ(u) = max
u∈∂�δ

Fδ(u).

3.2. The primitive of the product of two discrete holomorphic functions. In this section
wewill define the discrete primitive of the product of twodiscrete holomorphic functions.
This definition is close to the definition of the discrete primitive of the square of the
s-holomorphic function [6,33]. Also, there is a straightforward generalization of this
construction on isoradial graphs, see “Appendix”.

Definition 3.3. Let Fδ : �̄δ → C and Gδ : ♦̄δ → C be discrete holomorphic functions.
Let us define a discrete primitive H δ : Vδ → R by the equality

H δ(z′ ) − H δ(z) = (z′ − z)Fδ(u)Gδ(v), (3.1)

where u, v are adjacent black and white squares (correspondingly); and z, z′ are their
common vertices, see Fig. 9.

Remark 3.4. It is easy to see that, if�δ is simply connected, then H δ is well defined (see
Fig. 10).

Let us define the discrete leap-frog Laplacian of H δ at z ∈ IntVδ by

[�δH δ](z) = 1

4δ2
∑

z′s∼z

(H δ(z′s) − H δ(z)), (3.2)

where s ∈ {1, 2, 3, 4}, and z′s are defined as shown in Fig. 10.

Proposition 3.5. Let u−, u+, v�, v
, z be as shown in Fig. 10, then

[�δH δ](z) = δ · (λ[∂δFδ](v�)[∂δGδ](u−) − λ̄[∂δFδ](v�)[∂δGδ](u+)
+ λ̄[∂δFδ](v
)[∂δGδ](u−) − λ[∂δFδ](v
)[∂δGδ](u+)).

(3.3)
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u3

u2 u1

u4

vz−

z

z+

z

u−
v

u+

v
z

z1z2

z3 z4

z2 z1

z4z3

Fig. 10. Left: The discrete holomorphic condition [∂̄δFδ](v) = 0 guarantees that (Hδ(z
) − Hδ(z−)) +

(Hδ(z+)−Hδ(z
))+ (Hδ(z�)−Hδ(z+))+ (Hδ(z−)−Hδ(z�)) = 0. Right: The discrete leap-frog Laplacian

of Hδ is defined by (3.2). The function Hδ has no saddle points: a value at an interior vertex cannot be
strictly greater than values at two of its neighbouring vertices and strictly smaller than values at two other
neighbouring vertices at the same time

Proof. Note that

4δ2[�δH δ](z)
= δλ[Fδ(u−) + 2δλ[∂δFδ](v�)] · [Gδ(v
) + 2δλ[∂δGδ](u+)] + δλFδ(u+)G

δ(v�)

− δλ̄[Fδ(u+) − 2δλ̄[∂δFδ](v�)] · [Gδ(v
) − 2δλ̄[∂δGδ](u−)] − δλ̄Fδ(u−)Gδ(v�)

− δλ[Fδ(u+) − 2δλ[∂δFδ](v
)] · [Gδ(v�) − 2δλ[∂δGδ](u−)] − δλFδ(u−)Gδ(v
)

+ δλ̄[Fδ(u−) + 2δλ̄[∂δFδ](v
)] · [Gδ(v�) + 2δλ̄[∂δGδ](u+)] + δλ̄Fδ(u+)G
δ(v
).

One can rewrite the above formula in the following form

Fδ(u−) · [δλGδ(v
) + 2δ2λ2[∂δGδ](u+) − δλ̄Gδ(v�) − δλGδ(v
) + δλ̄Gδ(v�) + 2δ2λ̄2[∂δGδ](u+)]
︸ ︷︷ ︸

=0

+ Fδ(u+) · [δλGδ(v�) + 2δ2λ2[∂δGδ](u−) − δλ̄Gδ(v
) − δλGδ(v�) + δλ̄Gδ(v
) + 2δ2λ̄2[∂δGδ](u−)]
︸ ︷︷ ︸

=0

+ Gδ(v
) · [2δ2λ̄2[∂δFδ](v�) + 2δ2λ2[∂δFδ](v�)]
︸ ︷︷ ︸

=0

+Gδ(v�) · [2δ2λ̄2[∂δFδ](v
) + 2δ2λ2[∂δFδ](v
)]
︸ ︷︷ ︸

=0

+ 4 · [δ3λ3[∂δFδ](v�)[∂δGδ](u+) − δ3λ̄3[∂δFδ](v�)[∂δGδ](u−)

− δ3λ3[∂δFδ](v
)[∂δGδ](u−) + δ3λ̄3[∂δFδ](v
)[∂δGδ](u+)].

Finally, note that λ̄3 = −λ and λ3 = −λ̄. ��
Proposition 3.6. The function H δ has no local maxima or minima. Moreover, a value
at an interior vertex cannot be strictly greater than values at two of its neighbouring
vertices and strictly smaller than values at two other neighbouring vertices at the same
time.

Proof. It is enough to show that the product of all the differences is non-positive
(see Fig. 10):

(H δ(z) − H δ(z1)) · (H δ(z) − H δ(z2)) · (H δ(z) − H δ(z3)) · (H δ(z) − H δ(z4))

= (−δλ)Fδ(u+)G
δ(v�) · δλ̄Gδ(v�)F

δ(u−) · δλFδ(u−)Gδ(v
) · (−δλ̄)Gδ(v
)F
δ(u+)

= δ4 · (Fδ(u+) · Gδ(v�) · Fδ(u−) · Gδ(v
))
2 ≤ 0,

since Fδ(u+) · Fδ(u−) ∈ iR and Gδ(v�) · Gδ(v
) ∈ R. ��
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Remark 3.7. 1. The function H δ satisfies the maximum principle:

max
z∈Vδ

H δ(z) = max
z∈∂Vδ

H δ(z).

2. Also, it is easy to see that H δ satisfies the following non-linear equation:

(H δ(z) − H δ(z1)) · (H δ(z) − H δ(z3)) + (H δ(z) − H δ(z2)) · (H δ(z) − H δ(z4)) = 0,

where z, z1, z2, z3, z4 are defined as shown in Fig. 10.

It is worth noting that Definition 3.3 coincides with the definition of a primitive of
the product of two s-holomorphic functions used in [34]. To see this let us divide the
vertex set V into two sets V◦ and V• as it shown on Fig. 11. On the set V• the function
Hs-hol defined below as a discrete integral of the product of two discrete s-holomorphic
functions coincides with the function H defined above.

Let F : �̄ → C and G : ♦̄ → C be discrete holomorphic functions defined above.
Let Fs-hol be a function defined as follows:

⎧
⎨

⎩

Fs-hol(u) = F(u) if u ∈ �; Fs-hol(vλ) = λ√
2

· (F(uR) − i F(uI)) if vλ ∈ ♦0;
Fs-hol(z) = F(uR) + F(uI) if z ∈ V◦; Fs-hol(vλ) = λ̄√

2
· (F(uR) + i F(uI)) if vλ ∈ ♦1,

where z ∈ V◦ and u I, vλ, uR, vλ are adjacent to the vertex z squares (see Fig. 11).
Let us similarly define a function Gs-hol:

⎧
⎪⎪⎨

⎪⎪⎩

Gs-hol(v) = G(v) if v ∈ ♦; Gs-hol(uR) =
(

λ̄G(vλ)+λG(vλ)√
2

)

if uR ∈ �0;

Gs-hol(z) = F(vλ) + F(vλ) if z ∈ V◦; Gs-hol(uI) = i ·
(

λ̄G(vλ)−λG(vλ)√
2

)

if uI ∈ �1.

Note that functions F |V◦ and G|V◦ are s-holomorphic functions on V◦, i.e. for each
pair of white vertices z◦1, z◦2 of the same square a

Projτ(a)[F(z1)] = Projτ(a)[F(z2)],

where Projτ(a)[z] = τ(a) ·Re
[
z · τ(a)

]
and τ(a) is 1, i , λ or λ̄ if the square a is a square

of type �0, �1, ♦0 or ♦1 correspondingly.
Let Hs-hol : V• → R be a function defined by the equality

Hs-hol(z
•
2) − Hs-hol(z

•
1) = Fs-hol(a) · Gs-hol(a) · (z•2 − z•1),

where z•1, z•2 are two black vertices of the same square a. It is easy to check that

Hs-hol(z
•
2) − Hs-hol(z

•
1) = (H(z•2) − H(z◦)) + (H(z◦) − H(z•1)),

where z◦ is one of two white vertices of the square a. Note that the function Hs-hol(·) is
defined up to an additive constant. One can choose the additive constant such that the
function Hs-hol coincides with the function H |V• .
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0

1 0

1

♦0♦1

♦1

1

♦0

♦1

vλ

u

vλ

u
z

R

I

Fig. 11. Left: the set V◦ (white vertices), the set V• (black vertices). So, V = V◦ � V•. Right: adjacent to
the vertex z ∈ V◦ squares uI, vλ, uR, vλ. S-holomorphic functions defined on V◦ and its projections defined
on ♦ � �

3.3. The expectation of the double dimer height function. In the rest of Sect. 3, we will
use the square lattice with mesh size 1 rather than δ. For the simplicity of notations we
will not write the index δ. (Later, in Sect. 4, we are going to use notations without index
for continuous objects.) We prove that the function H defined by formula (3.1) with an
appropriate choice of functions F andG described above is the expectation of the height
function for double dimers up to a multiplicative constant.

Lemma 3.8. 1. Let a domain � admit a domino tiling. Suppose that a discrete holomor-
phic function F : �̄ → C vanishes on ∂�. Then F is identically zero.

2. Let � be a domain which contains m white squares and m + 1 black squares. Let
the domain have a domino tiling after removing one black square from ∂int�. Then there
exists a nontrivial discrete holomorphic function F : �̄ → C, which is equal to zero
on ∂�. Such a function F is unique up to a multiplicative constant. Moreover F(u) �= 0
for all black squares u ∈ ∂int� such that � � u admits a domino tiling.

Proof. 1. Consider a system of linear equations with variables that correspond to values
of F in the black faces, and each equation means that the function F is holomorphic
in some white face. The number of variables is equal to the number of black faces, and
the number of equations is equal to the number of white faces. So we have a linear
system with a square matrix, the same linear system as (2.1) but with a vanishing right
hand side. To prove that this system has only a trivial solution it is enough to show that
the determinant of the matrix is not equal to zero. Note that the absolute value of the
determinant is equal to the number of the domino tilings of �, since the matrix is the
Kasteleyn matrix of �. Hence, if the domain has a domino tiling then the determinant
is not zero. Therefore F ≡ 0.

2. We can consider a system of linear equations in the same way as described above.
Note that in this case the number of variables is one more then the number of equations.
Hence the system has a non-trivial solution. Let F have the values which correspond to
this solution. Let u′ be a square in ∂int� and let the domain � � u′ have a domino tiling.
Let F be equal to zero at u′. Note that the function F satisfies the conditions of the first
part of the lemma, therefore F ≡ 0 on�. We obtain a contradiction with a non-triviality
of the solution of our system. Similarly to the proof of the first part of the lemma we can
show that there is the unique discrete holomorphic function F such that F(u′) = 1. ��
Corollary 3.9. Let a domain � contain the same number of black and white squares,
and let � admit a domino tiling. Fix a black square u0 ∈ ∂int�0 and a white square
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v0 ∈ ∂int♦0 such that the domain � � {u0, v0} admits a domino tiling. Then the
following holds:

1. There exists the unique function F : �̄ → C such that F |∂� = 0 and F is discrete
holomorphic everywhere in ♦ except at the face v0 where one has [∂̄F](v0) = λ.

Moreover, F(u0) �= 0.
2. Similarly, there exists the unique function G : ♦̄ → C such that G|∂♦ = 0

and G is discrete holomorphic everywhere in � except at the face u0 where one has
[∂̄G](u0) = i. Moreover, G(v0) �= 0.

Proof. Due to Lemma 3.8 the function F on � � v0 is unique up to a multiplicative
constant. Moreover, F(u0) �= 0 since the domain � � {u0, v0} admits a domino tiling.
Therefore, [∂̄F](v0) �= 0 (otherwise F is identically zero due to Lemma 3.8). Finally,
the condition [∂̄F](v0) = λ defined the function F uniquely. ��

In the setup of Corollary 3.9, we construct the function H defined on the vertex
set of the domain � � {u0, v0} as described in Sect. 3.2. So, the formula (3.1) holds
for all square edges of the domain � except boundary edges of the squares u0, v0.
Note that if u0 and v0 are not corner squares of the domain �, then the vertex set
of the domain � � {u0, v0} and the vertex set of the domain � are the same. Define
∂� = (u0v0) ∪ (v0u0), see Fig. 9. Note that the product F · G along each boundary
square edge equals zero, since F |∂� = 0 and G|∂♦ = 0. Therefore H is constant on
each of boundary segments. Recall that H is defined up to an additive constant, which
can be chosen so that H |(v0u0) ≡ 0.

Lemma 3.10. The value of the function H on the boundary segment (u0v0) equals

H |(u0v0) = 4iG(v0)[∂̄F](v0) = − 4i F(u0)[∂̄G](u0) �= 0.

Proof. Consider the difference between the values of the function H in boundary vertices
of the square v0:

(H(z
) − H(z+)) = (H(z�) − H(z+)) + (H(z−) − H(z�)) + (H(z
) − H(z−))

= G(v0)(−λ̄F(u1) − λF(u2) + λ̄F(u3))

= 4iG(v0)[∂̄F](v0),
where u1, u2, u3, z+, z−, z�, z
 and v0 are defined as shown in Fig. 9.

The second expression for H |(u0v0) can be obtained in a similar way. Finally,
H |(u0v0) �= 0 since G(v0) �= 0. ��

Recall that we can think about the inverse Kasteleyn matrix C�(u, v) as a function
of two variables u ∈ � and v ∈ ♦. If v ∈ ♦0, then C�(u, v) is a discrete holomorphic
function of u, with a simple pole at v:

4λ̄∂̄[C�(u, v)](v)=C�(v + λ, v) − C�(v − λ, v)+iC�(v + λ̄, v) − iC�(v − λ̄, v)=1,

since the product of the Kasteleyn matrix and the inverse Kasteleyn matrix is equal to
the identity matrix.

Let functions F and G be constructed as in Corollary 3.9. Let �′ = � � {u0, v0}.
Recall that Cdbl-d,�(u, v) = C�(u, v) − C�′(u, v).
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Proposition 3.11 (factorization of the double-dimer coupling function). Let u ∈ � and
v ∈ ♦, then the following identity holds

Cdbl-d,�(u, v) = const · F(u)G(v),

where const = 1
4G(v0)

.

Proof. For a fixed ṽ ∈ ♦, considerC�(u, ṽ)−C�′(u, ṽ) as a function of u. This function
is holomorphic at all faces in ♦ � v0. Moreover ∂̄[(C� − C�′)(u, ṽ)](v0) �= 0, since
otherwise the function C�(u, ṽ) − C�′(u, ṽ) is discrete holomorphic everywhere in �

and vanishes on the boundary and then C�(u, ṽ) − C�′(u, ṽ) ≡ 0 from Lemma 3.8.
Hence, for fixed ṽ ∈ ♦ this difference is equal to F(u) up to a multiplicative constant.
So,

C�(u, ṽ) − C�′(u, ṽ) = k1 · F(u),

where k1 depends on ṽ.
Similarly, for a fixed ũ ∈ �, consider C�(̃u, v) − C�′ (̃u, v) as a function of v. We

obtain that C�(̃u, v) − C�′ (̃u, v) = k2 · λG(v), where k2 depends on ũ.
Therefore

C�(u, v) − C�′(u, v) = const · F(u)G(v).

Consider C�(u, v0) − C�′(u, v0) as a function of u. Note that

C�′(u, v0) ≡ 0.

Hence

C�(u, v0) = const · F(u)G(v0).

Recall that

4∂̄[C�(u, v0)](v0) = λ.

Thus, const = 1
4G(v0)

��.
Corollary 3.12. Let h be the height function in the double-dimer model on the vertices
of the domain �. Then for all z ∈ V the following equality holds

E[h(z)] = H(z) · H |−1
(u0v0)

,

where the value H |(u0v0) is given in Lemma 3.10.

Proof. Let h� and h′
� be height functions in the dimer model on domains � and �′,

i.e. h = h� − h′
�. Recall that the probability that there is a domino [uv] in the domino

tiling of � is equal to |C�(u, v)|. It is easy to see, that

E[h�(z1) − h�(z2)] = 3
4 · P[uv] + (− 1

4 ) · (1 − P[uv]),
where u, v are adjacent squares; and z1, z2 are their common vertices. Therefore,

E[h�(z1) − h�(z2)] = P[uv] − 1
4 = |C�(u, v)| − 1

4 .

Similarly, E[h�′(z1) − h�′(z2)] = |C�′(u, v)| − 1
4 .
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So, E[h(z1) − h(z2)] = |C�(u, v)| − |C�′(u, v)|.
Note that for u1, u2, u3, u4 and v defined as shown on Fig. 10 the following equality

holds:

1 = P[u1v] + P[u2v] + P[u3v] + P[u4v]
= |C�(u1, v)| + |C�(u2, v)| + |C�(u3, v)| + |C�(u4, v)|.

Moreover,

C�(u2, v) + iC�(u3, v) − C�(u4, v) − iC�(u1, v) = 1,

since the product of the Kasteleyn matrix and the inverse Kasteleyn matrix is equal to
the identity matrix. Therefore

|C�(u, v)| − |C�′(u, v)| = τ(uv) · (C�(u, v) − C�′(u, v)),

where τ(uv) is the Kasteleyn weight of the edge (uv). To complete the proof it is enough
to apply Proposition 3.11. ��

3.4. Proof of Theorem 1.1. We call a discrete domain an odd Temperleyan domain if all
its corner squares are of type �0. Recall that to obtain a Temperleyan domain one should
remove a square of type �0 from the set ∂int� from an odd Temperleyan domain, see
Fig. 5. A Temperleyan domain always admits a domino tiling.

We need to adjust the notation from the previous section to this setup. Corollary 3.9
is stated for the case of the domain containing the same number of black and white
squares. If we consider a discrete domain in which the number of black squares is greater
by one than the number of white squares (see Fig. 8), then we have some differences
in definitions of functions F and G. Fix two black squares u1, u2 ∈ ∂int� in such a
way, that after removing one of them the resulting domain admits a domino tiling. Let
u1 ∈ �0.

1. There exists the unique function F : �̄ → C such that F |∂� = 0, F(u1) = 1 and F
is discrete holomorphic everywhere in ♦.

2. There exists the unique function G : ♦̄ → C such that G|∂♦ = 0 and G is discrete
holomorphic everywhere in � except at faces u1, u2 and one has [∂̄G](u2) = i.

The existence and the uniqueness of functions F and G follow from Lemma 3.8.

Proof of Theorem 1.1. Let� be an odd Temperleyan domain. Note that Proposition 3.11
and Corollary 3.12 are still true in odd case. So, it is enough to show that H is a discrete
leap-frog harmonic function. This follows directly from Proposition 3.5. In this case F
is a discrete holomorphic function at all white squares of �. So, its imaginary part is a
discrete harmonic function with zero boundary conditions. Therefore ImF is identically
zero, and thus the real part of F is a constant. Hence, ∂F is identically zero. ��

Let v�
0 be a white square on ∂� adjacent to u1. Let us define domains ��, ��

1 and
��

2 as it shown on Fig. 12. Let u�
0 = u2. Then there are unique functions F� and G�

satisfying Corollary 3.9 on the domain �� with marked squares v�
0 and u�

0.

Remark 3.13. It is easy to check that the functions F (resp., G) defined above equals F�

(resp., G�) on �. Hence there is no difference between odd and even cases in terms of
functions F and G.
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u1v0

u2

u1v0

u2

u1

u2

Fig. 12. Left: �� = � ∪ {v�
0}. Center: ��

1 = �1 ∪ {v�
0, u1}. Note that each domino covering of the domain

��
1 has domino [v�

0u1]. Therefore there is a bijection between the sets of domino coverings of domains �1
and ��

1. Right: �
�
2 = �2

4. Double-Dimer Height Function in Polygonal Domains

From now onwards, we will use the square lattice with mesh size δ rather than 1. Let
� be a polygon in C with sides parallel to vectors λ and λ̄. For each sufficiently small
δ > 0, let �δ be a discrete polygon approximating � on the square lattice with mesh
size δ.

Let us define functions Fδ and Gδ similarly to the previous section:

1. The function Fδ is discrete holomorphic everywhere in♦δ except at the face vδ
0 where

one has [∂̄δFδ](vδ
0) = λ

δ2
.

2. Similarly, the function Gδ is discrete holomorphic everywhere in �δ except at the
face uδ

0 where one has [∂̄δGδ](uδ
0) = i

δ2
.

Our goal is to prove the convergence of the functions H δ defined by the formula (3.1).
Recall that this definition can be thought of as “H δ = ∫ δ Re[FδGδdz]”. We will prove
that the functions Fδ and Gδ converge individually.

To prove the convergence of the functions Fδ we will consider approximations by
domains �δ with fixed colour type of the corners. We will describe this classification
below. The limits of the functions Fδ and Gδ depend on the type of the corners. At the
same time the limit of the functions H δ does not depend on the type of the corners.

We will call a corner of �δ a convex corner if the interior angle is π/2, and concave
if the interior angle is 3π/2. A corner is called white if there is a white square in the
corner, and black if there is a black square in this corner, see Fig. 9.

Lemma 4.1. If a simply connected domain �δ contains the same number of black and
white squares then

#{white convex corners} = #{white concave corners} + 2,

#{black convex corners} = #{black concave corners} + 2.

Proof. Note thatπ ·(#{corners}−2)=π
2 ·#{convex corners}+3π

2 ·#{concave corners},
hence

#{convex corners}=#{concave corners} + 4.

Recall that the height along the boundary changes by ± 1
4 : if an edge has a black

square on its left then the height increases by 1
4 ; if it has a white square on its left then the

height decreases by 1
4 . Along each straight segment of the boundary of the domain the

height function varies between two values. This pair increases (resp., decreases) by 1
4 if
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u

0

0

u2u1

u3

F δ(u) = F δ(u1)+F δ(u2)+F δ(u3)
3

u 00

u2u1

F δ(u) = F δ(u1)+F δ(u2)
2

u0

0 0

0

u2u1

F δ(u) = F δ(u1)+F δ(u2)
3

Fig. 13. Discrete harmonicity of the function Fδ together with the boundary conditions implies the following
equations for u ∈ ∂int�

δ , see also Fig. 3

the boundary turns left along black (resp., white) convex square, and decreases (resp.,
increases) by 1

4 if it turns right along black (resp., white) concave square. Then

#{white convex corners}+ #{black concave corners} =
#{white concave corners} + #{black convex corners},

since the height function on the boundary is well defined if the domain contains the same
number of black and white squares (this is easily proved by induction on the number of
black squares, starting from the case of a 2 × 1 rectangle). ��

Let �δ admit a domino tiling. Let uδ
0 and vδ

0 be black and white squares in ∂int�
δ

placed away from the corners of �δ in such a way that the domain �δ
� {uδ

0, v
δ
0} admits

a domino tiling. Let {ṽδ
k}n−1

k=1 be the set of white squares located in the concave white
corners of the domain �δ , and let {v∗δ

k }n+1k=1 be the set of white squares located in the
convex white corners of the domain�δ , see Fig. 9. Recall that the cardinality of the latter
set is greater by two than the cardinality of the former due to Lemma 4.1. Similarly, let
{ũδ

s}m−1
s=1 be the set of black squares located in the concave black corners of the domain

�δ , and let {u∗δ
s }m+1

s=1 be the set of black squares located in the convex black corners of
the domain �δ (see Fig. 9).

4.1. Discrete boundary value problem for the functions F and G. Note that for all
uδ ∈ ∂�δ one has Fδ(uδ) = 0, which can be thought of as a zero Dirichlet boundary
conditions either for Re[Fδ] or for Im[Fδ]. Similarly, for all vδ ∈ ∂♦δ , either Re[λ̄Gδ]
or Re[λGδ] has zero Dirichlet boundary conditions.

Remark 4.2. The function Fδ (resp., Gδ) changes boundary conditions only at white
(resp., black) corners of �δ .

A function on a discrete domain �δ is called semibounded by its boundary values in
a subdomain U δ ⊂ �δ if either the maximum or the minimum of this function in U δ is
attained on the boundary ofU δ . A function on a discrete domain�δ is called bounded by
its boundary values in a subdomain U δ ⊂ �δ if both, the maximum and the minimum
of this function in U δ , are attained on ∂U δ .

Lemma 4.3. The function Fδ|�δ
0
is bounded by its boundary values in neighbourhoods

of white convex corners and semibounded by its boundary values in neighbourhoods of
white concave corners.
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Proof. Note that the function Fδ|�δ
0
is discrete harmonic in �δ

0
, except at the squares

of type �δ
0
adjacent to {ṽδ

k} and vδ
0, where {ṽδ

k} is the set of white squares in the white
concave corners. In particular, the function Fδ is bounded by its boundary values in
vicinities of white convex corners {v∗δ

k }, see Fig. 13.
Let us consider a neighbourhood of a corner ṽδ

k . Note that in this neighbourhood the
function Fδ|�δ

0
is discrete harmonic everywhere except at the unique black square of

type �δ
0
adjacent to ṽδ

k . Note that at this square either the maximum or the minimum of
Fδ can be reached, thus Fδ|�δ

0
is semi-bounded near ṽδ

k ��.
4.2. The continuous analogue of the functions Fδ and Gδ . In this section we will
describe the continuous analogue of the functions Fδ and Gδ . Also, we will show that
the primitive of their product is the harmonic measure.

Proposition 4.4. Let � be a simply connected Jordan domain. Let v0 be a boundary
point which lies on a straight segment of the boundary of �, and this segment goes to
the direction λ. Let {v∗

k }n+1k=1 ∪ {ṽk}n−1
k=1 be a set of marked points on ∂� � {v0}. Then

there exists the unique holomorphic function f� on � such that:

� f�(z) = λ
z−v0

+ O(1) in a vicinity of the point v0;
� f� is bounded in vicinities of the points v∗

k ;
� f� is semi-bounded (either from above or from below) in vicinities of the points

ṽk;
� along each boundary arc between marked points {v∗

k }n+1k=1 ∪ {ṽk}n−1
k=1 , one has

either Re[ f�] = 0 or Im[ f�] = 0;
� aforementioned boundary conditions change at all marked points ṽk and v∗

s .

Proof. Let φ be a conformal mapping of the domain � onto the upper half plane H such
that none of the marked points and v0 is mapped onto infinity. Then fH := f� ◦ φ−1 is
a holomorphic function on H, which satisfies the following conditions:

(1) fH(w) = λ·φ′(v0)
w−φ(v0)

+ O(1) in a vicinity of the point φ(v0);
(2) fH is bounded in vicinities of the points φ(v∗

k );
(3) fH is semi-bounded (either from above or from below) in vicinities of the points

φ(ṽk);
(4) fH is bounded at infinity;
(5) on each segment of the real line between the points of the set {φ(ṽk)}n−1

k=1∪{φ(v∗
k )}n+1k=1

one has either Re[ fH] = 0 or Im[ fH] = 0;
(6) the function fH changes the boundary conditions at all points φ(ṽk) and φ(v∗

k ), and
only at these points.

For a given k let us add a constant to φ so that φ(ṽk) = 0. Let us consider a function
fH(w2) in a vicinity of zero. The boundary conditions (5), (6) of the function fH(w2)

allow one to extend this function to a punctured vicinity of 0 by the Schwarz reflection
principle.

Let us show that fH(w2) = O(1/w) as w → 0. Great Picard’s Theorem together
with the semi-boundedness condition (3) implies that fH(w2) cannot have an essential
singularity at zero. So, the function fH(w2) either is regular or has a pole at zero. This

pole must be simple due to (3), and hence fH(w) = O
(
(w − φ(ṽk))

− 1
2
)
in a vicinity

of ṽk .
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Similarly, conditions (2), (5) and (6) imply that fH(w) = O
(
(w − φ(v∗

k ))
1
2
)
in a

vicinity of each of the points v∗
k

Consider a function

fH(w) · (w − φ(v0)) ·
n−1∏

k=1

(w − φ(ṽk))
1
2 ·

n+1∏

k=1

(w − φ(v∗
k ))

− 1
2 ,

which can be extended to a bounded function in thewhole plane by the Schwarz reflection
principle. Hence it is a constant, and

fH(w) = cφ

w − φ(v0)
·
n+1∏

k=1

(w − φ(v∗
k ))

1
2 ·

n−1∏

k=1

(w − φ(ṽk))
− 1

2 ,

where the real constant cφ can be determined from the condition (1).
Since fH = f ◦ φ−1, we obtain

f�(z) = cφ

(φ(z) − φ(v0))
·
n+1∏

k=1

(φ(z) − φ(v∗
k ))

1
2 ·

n−1∏

k=1

(φ(z) − φ(ṽk))
− 1

2 , (4.1)

where cφ is a real constant that depends on φ. ��
Remark 4.5. The previous proposition also holds if v0 is an inner point of �. In this case

f�(z) = cφ ·
(

1

φ(z) − φ(v0)
− 1

φ(z) − φ(v0)

)

·
n+1∏

k=1

(φ(z) − φ(v∗
k ))

1
2 ·

n−1∏

k=1

(φ(z) − φ(ṽk))
− 1

2 .

Similarly, for the set of boundary points {ũk}m−1
s=1 ∪ {u∗

k}m+1
s=1 and the point u0 on

a straight segment of the boundary of � parallel to vector λ̄, there exists the unique
holomorphic function g, which satisfies conditions analogous to conditions from Propo-
sition 4.4:

� g�(z) = i
z−u0

+ O(1) in a vicinity of the point u0;
� g� is bounded in vicinities of the points u∗

k ;
� g� is semi-bounded in vicinities of the points ũk ;
� along each boundary segment between boundary points of the set {u∗

k}m+1
k=1 ∪

{ũk}m−1
k=1 , one has either Re[λ̄g�] = 0 or Re[λg�] = 0;

� aforementioned boundary conditions of the function g� change at all points ũk
and u∗

s .

This function is written as follows

g�(z) = λc̃φ

(φ(z) − φ(u0))
·
m+1∏

k=1

(φ(z) − φ(u∗
k))

1
2 ·

m−1∏

k=1

(φ(z) − φ(ũk))
− 1

2 , (4.2)

where c̃φ is a real constant that depends on φ.
It is worth noting that the product of the functions f�(z) and g�(z) defined by (4.1)

and (4.2) , respectively, does not depend on the colours of corners of � (while each of
f�(z), g�(z) does depend on these colours).
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Proposition 4.6. Let � be a polygon in C with sides parallel to vectors λ and λ̄. Let
v0 and u0 be the points on the straight part of the boundary of the polygon �. Let
{v∗

k }n+1k=1 ∪ {u∗
s }m+1

s=1 be the set of vertices of the convex corners of the polygon �, and
{ṽk}n−1

k=1 ∪{ũs}m−1
s=1 be the set of vertices of the concave corners of the polygon�. Assume

that the boundary arc (u0v0) contains 0.
Let functions f� and g� be defined as in Proposition 4.4, then the function

∫ w

0
Re[ f�(z)g�(z)dz]

is proportional to the harmonic measure hm�(w, (v0u0)) in the domain �.

Proof. Let us consider the product of functions f�(z) and g�(z). It equals

f�(z) · g�(z) = λcφ c̃φ

(φ(z) − φ(v0)) · (φ(z) − φ(u0))

×
n+1∏

k=1

(φ(z) − φ(v∗
k ))

1
2 ·

n−1∏

k=1

(φ(z) − φ(ṽk))
− 1

2

·
m+1∏

k=1

(φ(z) − φ(u∗
k))

1
2 ·

m−1∏

k=1

(φ(z) − φ(ũk))
− 1

2 .

Let ψ(w) be a conformal transformation of the upper half-plane onto the interior
of a simple polygon �, the inverse mapping to φ. The Schwarz–Christoffel mapping
theorem implies that

ψ ′(w) = λcψ ·
n−1∏

k=1

(w − φ(ṽk))
1
2 ·

m−1∏

k=1

(w − φ(ũk))
1
2 ·

n+1∏

k=1

(w − φ(v∗
k ))

− 1
2 ·

m+1∏

k=1

(w − φ(u∗
k))

− 1
2 ,

where cψ is a real constant.
Note that φ is the inverse mapping to ψ , so 1

ψ ′(φ(z)) = φ′(z).
Therefore

f (z) · g(z) = λcφ c̃φλcψ · φ′(z)
(φ(z) − φ(v0))(φ(z) − φ(u0))

= icφ c̃φcψ

φ(v0) − φ(u0)
·
(

log
(φ(z) − φ(v0))

(φ(z) − φ(u0))

)′
,

hence
∫
Re[ f gdz] is proportional to 1

π
Im log

(
(φ(z)−φ(v0))
(φ(z)−φ(u0))

)
which is the harmonicmea-

sure of (v0u0). ��
Now to complete the proof of Theorem 1.2 it is enough to prove convergence of

functions Fδ and Gδ . In Sect. 5 we will prove a more general result: the convergence of
Fδ for approximations by black-piecewise Temperleyan domains. This special type of
discrete domains is defined below in Sect. 5.1. Similarly, one can show the convergence
of Gδ for approximations by white-piecewise Temperleyan domains. In the setup of
Proposition 4.6 the polygonal approximations �δ are 2n-black-piecewise Temperleyan
and 2m-white-piecewise Temperleyan domains at the same time.
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Fig. 14. A 4-black-piecewise Temperleyan domain

5. Convergence of Fδ in Black-Piecewise Temperleyan Domains

5.1. Black-piecewise Temperleyan domains. Let us fix a natural number n. A discrete
domain is called a 2n-black-piecewise Temperleyan domain if it is a domain with n + 1
convex white corners and n − 1 concave white corners. Consider a segment of the
boundary between two neighbouring white corners; we will call such a segment a black
Temperleyan segment. Note that all black squares on this part of the boundary are of the
same type: either they all are of type �δ

0
or all of type �δ

1
(see Fig. 14).

Let � be a bounded, simply connected Jordan domain with a piecewise-smooth
boundary and 2n boundary marked points v∗

1 , . . . , v
∗
n+1, ṽ1, . . . , ṽn−1. For sufficiently

small δ,we say that a 2n-black-piecewise Temperleyan domain �δ approximates � if
the boundaries of the 2n-black-piecewise Temperleyan domain are within O(δ) of the
boundaries of �, and if furthermore, all convex white corners v∗δ

k are within O(δ) of the
set of marked points v∗

k and all concave white corners ṽδ
j are within O(δ) of the set of

marked points ṽ j .

5.2. Proof of the convergence. Let uδ be a square on the square lattice with mesh size δ.
By Bδ

r (u
δ) we denote the set of squares on this lattice such that the distance from them

to uδ is less then or equal to r . Let ∂Bδ
r (u

δ) be the set of boundary squares of the set
∼ Bδ

r (u
δ).

Consider a discrete domain �δ . Let Eδ be a subset of the set ∂�δ . Let hm�δ (xδ, Eδ)

be a discrete harmonic function in �δ such that it is equal to χEδ on the boundary of
�δ , where χEδ is the characteristic function of the set Eδ . The function hm�δ (xδ, Eδ) is
called the harmonic measure. Note that the harmonic measure is a probabilistic measure
for any fixed xδ ∈ �δ . Note also that the value of hm�δ (xδ, Eδ) equals to the probability
that a simple random walk starting at x first hits the boundary of the domain �δ on the
set Eδ .

Let Fδ
harm be a discrete harmonic function in �δ defined on the set �δ ∪ ∂�δ . Then

it is easy to see that

Fδ
harm(xδ) =

∑

yδ∈∂�δ

Fδ
harm(yδ) · hm�δ (xδ, {yδ}).

Remark 5.1. From now on we assume that δ > 0 and r > 0 are chosen so that the
discrete punctured vicinity Bδ

r (ṽ
δ
k) � {ṽδ

k} contains neither vδ
0 nor white corner squares

of �δ for all k ∈ {1, . . . , n − 1}.
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yδ

Fig. 15. A path on the set �δ
0 from the square yδ to the square adjacent to ṽδ

k

r
2

r

γδ
yδ

xδ ṽδ
k r

2

r

γδ
yδ

xδ ṽδ
k

Fig. 16. The probability that a random walk on a square lattice with mesh size 2δ travels all the way from xδ

to the boundary of �δ inside the gray domain is bounded away from zero uniformly in δ

Lemma 5.2. Let xδ be a black square in the middle of one of the arcs of the set ∂Bδ
r (ṽ

δ
k)∩

�δ
0
. Let yδ ∈ �δ

0
be a black square on the boundary of Bδ

r/2(ṽ
δ
k). Let γ

δ be a path on the

set �δ
0
starting in yδ and ending at the black square of �δ

0
adjacent to ṽδ

k (see Fig. 15).
Let hmδ(xδ, γ δ) be the harmonic measure on Bδ

2r (ṽ
δ
k) ∩ �δ

0
� γ δ . Then there exists a

constant c̃ > 0 that does not depend on δ such that for all yδ ∈ �δ
0
∩ ∂Bδ

r/2, one has

hmδ(xδ, γ δ) ≥ c̃ = c̃ (�) > 0.

For a more general statement see [5, Lemma 3.14].

Proof. Let us consider two gray discrete domains of width r
l , where l is a large enough

positive number, see Fig. 16. Let these domains contain xδ and cross the boundary of�δ .
The probability that a random walk on a square lattice with mesh size 2δ travels all the
way from xδ to the boundary of �δ inside the gray domain is uniformly bounded away
from zero [5, Fig. 3B], for each of the two domains.

Note that the path γ δ necessarily intersects at least one of the gray domains. The
probability of the event that a random walk travels all the way from xδ to the boundary
of �δ inside this gray domain is less then hmδ(xδ, γ δ). ��
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Lemma 5.3. Let Mδ
t (r) = max

uδ∈�δ
r,t

|Fδ(uδ)|, where

�δ
r,t = �δ

�

(
n−1⋃

k=1

Bδ
r (ṽ

δ
k) ∪ Bδ

t (v
δ
0)

)

.

Then for some fixed t > 0 small enough and for any sufficiently small fixed r > 0, as
δ → 0 we have

Mδ
t

( r

2

)
≤ 4

c̃
· Mδ

t (r),

where c̃ is the absolute constant from Lemma 5.2.

Proof. Note that it is enough to prove that

max
uδ∈�δ∩∂Bδ

r/2(ṽ
δ
k )

|ReFδ(uδ)| ≤ 2

c̃
· Mδ

t (r),

for all k ∈ {1, . . . , n − 1}, since similarly the same inequality holds for ImFδ .
Let yδ be the square in �δ ∩ ∂Bδ

r/2(ṽ
δ
k) such that

|ReFδ(yδ)| = max
uδ∈�δ∩∂Bδ

r/2(ṽ
δ
k )

|ReFδ(uδ)|.

Without loss of generality we may assume that ReFδ(yδ) > 0. Note that ReFδ is a
discrete harmonic function, and hence there exists a path γ δ on the set �δ

0
from yδ to the

boundary of the domain �δ ∩ Bδ
r (ṽ

δ
k) or to the square adjacent to ṽδ

k along which the
absolute value of the function ReFδ increases, since discrete harmonic functions satisfy
the maximum principle. If the path γ δ ends on the boundary of the domain�δ ∩ Bδ

r (ṽ
δ
k),

then

max
uδ∈�δ∩∂Bδ

r/2(ṽ
δ
k )

|ReFδ(uδ)| ≤ max
uδ∈�δ∩∂Bδ

r (ṽδ
k )

|ReFδ(uδ)|.

Assume that γ δ ends at the square adjacent to ṽδ
k . Let hm

δ(·, γ δ) be the harmonicmeasure
in the domain Bδ

2r (ṽ
δ
k)∩�δ

0
�γ δ . Due to Lemma 5.2 there exists a black square xδ ∈ �δ

0

on the boundary of Bδ
r (ṽ

δ
k) such that hmδ(xδ, γ δ) ≥ c̃ > 0. Note that

Mδ
t (r) ≥ ReFδ(xδ) ≥ ReFδ(yδ) · hmδ(xδ, γ δ) − Mδ

t (r) · (1 − hmδ(xδ, γ δ)).

Hence,

2Mδ
t (r) ≥ hmδ(xδ, γ δ) · ReFδ(y) ≥ c̃ · ReFδ(yδ).

To complete the proof, recall thatwe assumedReFδ(yδ) = max
uδ∈�δ∩∂Bδ

r/2(ṽ
δ
k )

|ReFδ(uδ)|.��
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Let Fδ

C,vδ
0
be the unique discrete holomorphic function on the whole plane C

δ
� {vδ

0}
tending to zero at infinity and such that [∂̄δFδ

C,vδ
0
](vδ

0) = λ
δ2
, see [5, Theorem 2.21].

Note that ReFδ

C,vδ
0
and ImFδ

C,vδ
0
are discrete harmonic everywhere except two squares

adjacent to vδ
0. It is well known that F

δ

C(z),vδ
0
is asymptotically equal 1

2π · λ
z−v0

as δ ↓ 0.

We need to introduce a similar function Fδ

H,vδ
0
on a half-plane H

δ , where ∂H
δ goes to

the direction λ and vδ
0 ∈ ∂intH

δ ∩ ♦δ
0
. The imaginary part of Fδ

H,vδ
0
equals zero on the

boundary, and [∂̄δFδ

H,vδ
0
](vδ

0) = λ
δ2

. There is the unique discrete holomorphic function

with these two properties that tends to zero at infinity.
Let us consider the sum Fδ

C,vδ
0
+ Fδ

C,vδ
0+2λ̄δ

, where by vδ
0 + 2λ̄δ we denote a white

square at distance δ from the square vδ
0 that does not belong to H

δ. This sum tends to
zero at infinity, since both Fδ

C,vδ
0
and Fδ

C,vδ
0+2λ̄δ

tend to zero at the infinity. Note that

Fδ

C,vδ
0+2λ̄δ

is discrete holomorphic on H
δ , therefore Fδ

C,vδ
0
+ Fδ

C,vδ
0+2λ̄δ

is holomorphic on

H
δ

� {vδ
0} and [∂̄δ(Fδ

C,vδ
0
+ Fδ

C,vδ
0+2λ̄δ

)](vδ
0) = λ

δ2
. Finally, note that

ImFδ

C,vδ
0
(u) = Gδ(u, vδ

0 + λ̄δ) − Gδ(u, vδ
0 − λ̄δ),

where Gδ(u, u′) is the classical Green’s function on C
δ ∩ �δ

1
satisfies �δGδ(u, u′) =

1u=u′ · 1
2δ3

. The Green’s function is symmetric, therefore Im[Fδ

C,vδ
0
+Fδ

C,vδ
0+2λ̄δ

] vanishes
on ∂H

δ. As a consequence we have Fδ
H
(u) = Fδ

C,vδ
0
+ Fδ

C,vδ
0+2λ̄δ

.

Corollary 5.4. Let

Mδ∗(r) = max
u∈�δ

r,0

|Fδ(u) − Fδ
H
(u)|.

Then, for all sufficiently small δ, one has

Mδ∗
( r

2

)
≤ 4

c̃
· Mδ∗(r) + C∗,

where C∗ is an absolute constant and c̃ is the constant from Lemma 5.2.

Proof. Note that Fδ
H
is uniformly bounded away from vδ

0 and vanishes on ∂H
δ , hence

Fδ − Fδ
H
is uniformly bounded on ∂�δ. Moreover, function Fδ − Fδ

H
is discrete holo-

morphic on �δ , in particular it is discrete holomorphic on Bδ
t (v

δ
0) ∩ �δ and vanishes on

∂�δ ∩Bδ
t (v

δ
0). Therefore the statement of Lemma 5.3 is valid for Fδ −Fδ

H
and t = 0. ��

We are now in the position to prove the convergence of Fδ . Note that Fδ can be
thought of as defined in polygonal representation of �δ by some standard continuation
procedure, linear on edges and multilinear inside faces. Then we have the following

Theorem 5.5. Let �δ be a sequence of discrete 2k-black-piecewise Temperleyan
domains of mesh size δ approximating a continuous domain �. Suppose that each
�δ admits a domino tiling. Let the sets of white corner squares {v∗δ

k }n+1k=1 and {ṽδ
k}n−1

k=1
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approximate the sets of boundary points {v∗
k }n+1k=1 and {ṽk}n−1

k=1 correspondingly, and let
vδ
0 approximate a boundary point v0, which lies on a straight segment of the boundary of

�. Then Fδ converges uniformly on compact subsets of � to a continuous holomorphic
function f�, where f� is defined as in Proposition 4.4.

In the following proof we use the idea described in [4] (proof of Theorem 2.16).

Proof. First case: suppose that for each fixed positive r the function Mδ∗(r) remains
bounded, as δ → 0. Corollary 5.4 implies that discrete holomorphic functions Fδ −
Fδ

H
are uniformly bounded, and therefore equicontinuous due to Harnack principle on

compact subsets of �. Thus, due to the Arzelà–Ascoli theorem, the family Fδ − Fδ
H
is

precompact and hence converges along a subsequence to some holomorphic function f̃
uniformly on compact subsets of�. Note that Fδ

H
⇒ fH = 1

π
· λ
z−v0

as δ → 0, uniformly

on compacts. Let f� := f̃ − fH, then Fδ ⇒ f�, i.e. ReFδ ⇒ Re f� and ImFδ ⇒ Im f�,
uniformly on compacts. Since a discrete solution of Dirichlet problem converges to its
continuous counterpart up to the boundary [5, Section 3.3], the boundary conditions for
the functions Fδ yield the same boundary conditions for their limit. Thus, the function f�
solves the boundaryvalueproblemdescribed inProposition4.4, therefore it is determined
uniquely. This implies that all convergent subsequences of the family {Fδ} have the same
limit and thus the whole family converges to f�.

Second case: suppose that Mδ∗(r) tends to infinity along a subsequence as δ → 0
for some r > 0. Let us show that this is impossible. Consider a discrete holomorphic

function F̃δ∗ := Fδ−Fδ
H

Mδ∗(r)
. Using the same arguments as above, we can show that the

family F̃δ∗ converges to some holomorphic function f∗. Note that the limit is bounded
near v0, since Fδ − Fδ

H
is discrete holomorphic and bounded near vδ

0. Also, note that
Fδ

H

Mδ∗(r)
tends to zero away from v0. Therefore, as in the previous case, the limit satisfies

all boundary conditions described in Proposition 4.4 except the first one: the behaviour
near the point v0. The only function satisfying these properties is zero.

Suppose that there exists a sequence of squares uδ
inner converging to uinner ∈ � such

that
ReF̃δ∗ (uδ

inner) > const� > 0. (5.1)

Then we have f∗(uinner) > 0, which contradicts the fact that f∗ vanishes on �, and
therefore the second case is impossible.

To complete the proof let us show the existence of the sequence {uδ
inner}. Let uδ

max
be chosen so that 1 = sup

uδ∈�δ
r,0

|F̃δ∗ (uδ)| = |F̃δ∗ (uδ
max)|. Assume that uδ

max ∈ �δ
0
,

i.e. |F̃δ∗ (uδ
max)| = |ReF̃δ∗ (uδ

max)|. Without loss of generality we may assume that

ReF̃δ∗ (uδ
max) > 0. Let uδ

max → umax ∈ �r as δ → 0, where �r = � �

(
n−1⋃

k=1
Br (ṽk)

)

.

The discrete maximum principle implies that umax ∈
n−1⋃

k=1
∂Br (ṽk). Note that ReF̃δ∗ is a

discrete harmonic function, and hence there exists a path γ δ on the set �δ
0
from uδ

max to
the boundary of the domain �δ or to the square adjacent to ṽδ

k along which the absolute
value of the function ReF̃δ∗ increases. The boundary conditions together with the fact
that the limit function vanishes imply that γ δ goes along a subarc N δ

k ⊂ ∂�δ where
ReFδ has Neumann boundary condition and ends at the square adjacent to ṽδ

k .
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Assume that Br (ṽk) ∩ � is connected, the other case is treated similarly. Denote by
U δ the discrete subdomain of Bδ

r (ṽ
δ
k) ∩ �δ that is bounded by the subarc of ∂�δ where

ReFδ has Dirichlet boundary condition, the path γ δ ∩ �δ and the arc ∂Bδ
r (ṽ

δ
k) ∩ �δ .

Note that U δ converges to Br (ṽk) ∩ �.
The absolute value of ReF̃δ∗ is bounded by εδ away from the pieces of the boundary

of �δ where ReFδ has Neumann boundary conditions. Note that the function ReF̃δ∗ is
semi-bounded in a vicinity of the point ṽδ

k , therefore near the boundary ReF̃δ∗ > − c,
where c > 0 is a constant. Let uδ

inner ∈ U δ be a black square in the middle of one of the
arcs of the set ∂Bδ

r/2(ṽ
δ
k) ∩ �δ

0
. Then

ReF̃δ∗ (uδ) ≥ −εδ · 1 + (−c) · hmU δ (uδ, (̃εδ-vicinity of N
δ
k ) ∩ (∂Bδ

r (ṽ
δ
k) ∩ �δ))

+1 · hmU δ (uδ, γ δ ∩ ∂U δ).

Due to Lemma 5.2 we have hmU δ (uδ
inner, γ

δ ∩∂U δ) > const(U ) > 0. Note that εδ tends
to zero as δ → 0. Also, hmU δ (uδ

inner, (̃εδ-vicinity of N δ
k )∩(∂Bδ

r (ṽ
δ
k)∩�δ)) tends to zero

as δ → 0. Hence we construct a sequence of squares uδ
inner converging to uinner ∈ �

such that (5.1) holds. ��
Remark 5.6. Let in the setup of Theorem 5.5 the squares vδ

0 approximate an inner point
v0 of the domain�, instead of a boundary one. Then Fδ converges uniformly on compact
subsets of � \ v0 to a continuous holomorphic function f�, where f� is defined as in
Remark 4.5.

6. Single Dimer Model and the Gaussian Free Field

In [18] Kenyon proved that the scaling limit of the height function in the dimer model
on Temperleyan domains is the Gaussian Free Field. Our goal in this section is to prove
Corollary 1.4, i.e. to show that the same scaling limit appears for approximations by
a more general class of discrete domains which we call black-piecewise Temperleyan
domains. Also, in “Appendix” we will show that the same holds for isoradial black-
piecewise Temperleyan graphs.

6.1. Boundary conditions for the coupling function. For a fixed v′ ∈ ♦0, the func-
tion C�(u, v′) is discrete holomorphic as a function of u, with a simple pole at v′:⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C�(·, v′)|∂� = 0,
C�(·, v′)|�0

∈ R, C�(·, v′)|�1
∈ iR,

∂̄[C�(·, v′)](v) = 0, ∀v ∈ ♦, v �= v′
∂̄[C�(·, v′)](v′) = 1

4λ̄
.

Therefore in a 2n-black-piecewise Temperleyan domain, for a fixed v′ ∈ ♦, the
boundary conditions of the coupling function C�(u, v′) as a function of u change at all
white corners, and there are 2n parts of the boundary with either Re[C�(·, v′)] = 0 or
Im[C�(·, v′)] = 0.

In other words, a black-piecewise Temperleyan domain corresponds tomixed Dirich-
let and Neumann boundary conditions for the discrete harmonic components of the
coupling function. Recall that in a Temperleyan domain we have a simple boundary
conditions, namely, Im[C�(u, v′)] = 0 for all boundary squares u, in other words
Im[C�(u, v′)] as a function of u has Dirichlet boundary conditions.
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6.2. Asymptotic values of the coupling function. Following [16],we define two functions
f0(z1, z2) and f1(z1, z2). For a fixed z2,

� the function f0(z1, z2) is analytic as a function of z1, has a simple pole of residue
1/π at z1 = z2, and no other poles on �;

� f0(·, z2) is bounded in the vicinity of the points v∗
s ;

� the function f0(·, z2) is semi-bounded in the vicinity of the points ṽk ;
� on each segment intowhich points from the set {ṽk}n−1

k=1∪{v∗
s }n+1s=1 split the boundary,

we have either Re[ f0(·, z2)] = 0 or Im[ f0(·, z2)] = 0;
� the boundary conditions of the function f0(·, z2) change at all points ṽk, v∗

s .

The function f1(z1, z2) has the same definition, except for a difference in the boundary
conditions: if on a segment between two points from the set {ṽk}n−1

k=1 ∪ {v∗
s }n+1s=1 we have

Re[ f0(·, z2)] = 0 (or Im[ f0(·, z2)] = 0), then on that segment Im[ f1(·, z2)] = 0 (or
Re[ f1(·, z2)] = 0). The existence and uniqueness of such functions can be shown using
the technique described in Sect. 3, see Remark 4.5. In particular, we can write these
functions in the following way

f0(z, w) =
n+1∏

k=1

(z − v∗
k )

1
2 ·

n−1∏

k=1

(z − ṽk)
− 1

2 ·
(

s(w)

z − w
+

s(w)

z − w

)

,

f1(z, w) =
n+1∏

k=1

(z − v∗
k )

1
2 ·

n−1∏

k=1

(z − ṽk)
− 1

2 ·
(

s(w)

z − w
− s(w)

z − w

)

,

where

s(w) =
n+1∏

k=1

(w − v∗
k )

− 1
2 ·

n−1∏

k=1

(w − ṽk)
1
2 . (6.1)

Theorem 6.1. Let� be a bounded, simply connected domain inCwith k marked points.
Assume that a sequence of discrete k-black-piecewise Temperleyan domains �δ on a
grid with mesh size δ approximates the domain �, and each domain �δ has at least one
domino tiling. Let a sequence of white squares vδ approximates a point v ∈ �. Then the
coupling function 1

δ
C�δ (u, v) satisfies the following asymptotics:

for vδ ∈ ♦0

1

δ
C�δ (u, vδ) − 2

λ
· Fδ

C,vδ (u) = f0(u, v) − 1

π(u − v)
+ o(1);

if vδ ∈ ♦1, then

1

δ
C�δ (u, vδ) − 2

λ
· Fδ

C,vδ (u) = f1(u, v) − 1

π(u − v)
+ o(1),

where Fδ
C,vδ (u) is defined in Sect. 5.2.

Proof. Recall that Fδ

C(z),vδ
0
is asymptotically equal 1

2π · λ
z−v0

as δ ↓ 0. Now, to obtain

the result one can use the techniques described in Sect. 5.2. More precisely, the first
asymptotic can be obtained exactly from the proof of Theorem 5.5, see Remark 5.6. The
second one can be obtained similarly. ��



Dimers in Piecewise Temperleyan Domains 219

6.3. Sketch of the proof of Corollary 1.4. This section contains the sketch of the proof
of Corollary 1.4. In [18] Kenyon proved convergence of the height function on Temper-
leyan domains to the Gaussian free field. To obtain the same result for black-piecewise
Temperleyan domains it is enough to show that the limits of moments of height function
in Temperleyan case and black-piecewise Temperleyan case are the same. Essentially
the novel part of the argument is in (6.2), then Lemma 6.3 implies Corollary 6.4, and
the rest of the argument is exactly as in [18, Theorem 1.1].

Similarly to [16] one can obtain the following result for black-piecewise Temper-
leyan approximations. Let f+(z, w) = f0(z, w) + f1(z, w) and f−(z, w) = f0(z, w) −
f1(z, w).

Proposition 6.2. Let γ1, . . . , γm be a collection of pairwise disjoint paths running from
the boundary of � to z1, . . . , zm respectively. Let h(zi ) denote the height function at a
point in black-piecewise Temperleyan domain �δ lying within O(δ) of zi . Then

lim
δ→o

E[(h(z1) − E[h(z1)]) · . . . · (h(zm) − E[h(zm)])]

=
∑

ε1,...,εm∈{−1,1}
ε1 · · · εm

∫

γ1

· · ·
∫

γm

det
i, j∈[1,m](Fεi ,ε j (zi , z j )) dz

(ε1)
1 · · · dz(εm )

m ,

where dz(1)j = dz j and dz(−1)
j = dz j , and

Fεi ,ε j (zi , z j ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 i = j
f+(zi , z j ) (εi , ε j ) = (1, 1)
f−(zi , z j ) (εi , ε j ) = (−1, 1)
f−(zi , z j ) (εi , ε j ) = (1,−1)
f+(zi , z j ) (εi , ε j ) = (−1,−1).

Proof. See the proof of [16, Proposition 20]. ��
Recall that in the Temperleyan case [16] one has f+(z, w) = 2

z−w
and f−(z, w) =

2
z−w

. In the black-piecewise Temperleyan case we have

⎧
⎨

⎩

f−(z, w) = 2
z−w

· s(w)
s(z)

f+(z, w) = 2
z−w

· s(w)
s(z)

(6.2)

where the function s(w) is defined by (6.1).
One can easily check that the following lemma holds:

Lemma 6.3. Let ε1, . . . , εm ∈ {−1, 1}. Let us define function Sεi ,ε j (z, w) as follows:

Sεi ,ε j (z, w) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 i = j
s(w)/s(z) (εi , ε j ) = (1, 1)
s(w)/s(z) (εi , ε j ) = (−1, 1)
s(w)/s(z) (εi , ε j ) = (1,−1)
s(w)/s(z) (εi , ε j ) = (−1,−1).
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♦

♦

♦

♦

♦

♦v∗
k

ṽk

♦
♦

♦
♦

♦
♦

♦
♦

Fig. 17. Left: isoradial graph � (black), its dual graph �∗ (gray) and the corresponding rhombic lattice
(dashed). Center: isoradial 2n-black-piecewise Temperleyan graph with n = 2; the set of rhombic centers
(white), the bipartite graph (vertices: white, gray and black; edges: solid lines), the elements of the sets of
white corners {v∗

k }n+1k=1 and {ṽk }n−1
k=1. Right: the set of midedges of the rhombic lattice, the set V (circles)

Then

Sεα(1),ε1(zα(1), z1) · . . . · Sεα(m),εm (zα(m), zm) =
{
1 α(i) �= i ∀i ∈ {1, 2, . . . ,m}
0 otherwise,

where α is a permutation of the set {1, 2, . . . ,m}.
Corollary 6.4. The limits of moments of the height function in the Temperleyan case and
the black-piecewise Temperleyan case are the same.

In [18] Kenyon showed that:

Proposition 6.5. Let� be a Jordan domain with smooth boundary. Let z1, . . . , zm (with
m even) be distinct points of �. Let �δ be a Temperleyan approximation of � and h�δ

be the height function of a uniform domino tiling in the domain �δ . Then

lim
δ→o

E[(h�δ (z1) − E[h�δ (z1)]) · . . . ·(h�δ (zm) − E[h�δ (zm)])]

=
(

−16

π

)m/2 ∑

pairings α

gD(zα(1), zα(2)) · . . . · gD(zα(m−1), zα(m)),

where gD is the Green function with Dirichlet boundary conditions on �.

Proof. See the proof of [18, Proposition 3.2]. ��
By Corollary 6.4 this proposition holds for black-piecewise Temperleyan domains

as well. And the following lemma completes the proof of Corollary 1.4.

Lemma 6.6. ([2]) A sequence of multidimensional random variables whose moments
converge to the moments of a Gaussian, converges itself to a Gaussian.
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Appendix. Generalization to Isoradial Graphs

In this section, we will discuss the result of Theorem 5.5 for the dimer model on isoradial
graphs. The notion of a rhombic lattice (or isoradial graph)was introduced byDuffin [11]
as a large family of graphs, where discretizations of Laplace and Cauchy–Riemann
operators can be defined similarly to the case of the square lattice. The class of isoradial
graphs forms a large class of graphs where classical complex analysis results have
discrete analogs, see [5].A lot of planar graphs admit isoradial embeddings [23].Discrete
complex analysis allows to obtain results for two-dimensional latticemodels on isoradial
graphs, notably the Ising [6,25] and dimer [8,9,20,24] models.
Let � be an isoradial graph, i.e. a planar graph in which each face is inscribed into a
circle of a common radius δ. Also one can thing about δ as a mesh size of the isoradial
graph. Suppose that all circle centers are inside the corresponding faces, then the dual
graph �∗ is also isoradial with the same radius. The rhombic lattice is the graph on
the union � of the two vertex sets � and �∗ (see Fig. 17). We will use the following
assumption (see [5])

(♠) the rhombi angles are uniformly bounded from 0 and π .

The dimer model on isoradial graphs was introduced by Kenyon [20]. A dimer config-
uration in this setup is a perfect matching of the bipartite graph �δ defined as follows.
The vertex set of �δ consists of a union of � (two types of black vertices) and rhombi
centers (white vertices), and there is an edge between black and white vertices if the
black vertex and corresponding rhombi are adjacent (see Fig. 17). Note that �δ is an
isoradial graph, where each face is inscribed into a circle of radius δ

2 , for more details
see [9].
We will call a white vertex on the boundary of �δ a corner if it is adjacent to two
boundary black vertices of different types. We can define as before the notion of convex
and concave white corners, see Fig. 17. Note that Lemma 4.1 holds also in the isoradial
case. An isoradial graph �δ is called a 2n-black-piecewise Temperleyan graph if it has
n + 1 convex white corners and n − 1 concave white corners, see Fig. 17. Now we can
formulate the similar result for isoradial graphs analogous to Theorem 5.5.

Theorem A.7. Let �δ be a sequence of isoradial 2k-black-piecewise Temperleyan
graphs approximating a continuous domain �. Assume that each �δ admits a perfect
matching. Let the sets of white boundary vertex {v∗δ

k }n+1k=1 and {ṽδ
k}n−1

k=1 approximate the
sets of boundary points {v∗

k }n+1k=1 and {ṽk}n−1
k=1 correspondingly, and let vδ

0 approximate
a point boundary point v0 which lies on a straight segment of the boundary of �. Then
Fδ
iso converges uniformly on compact subsets of� to a continuous holomorphic function
f�, where f� is defined as in Proposition 4.4.

Proof. The proof mimics the proof of Theorem 5.5 using the toolbox described in [5,
Definition 2.1, Proposition 2.7, Definition 2.12, Proposition 2.14, Theorem 2.21]. ��
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