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Abstract: For a given subcritical discrete Schrödinger operator H on aweighted infinite
graph X , we construct a Hardy-weight w which is optimal in the following sense. The
operator H − λw is subcritical in X for all λ < 1, null-critical in X for λ = 1, and
supercritical near any neighborhood of infinity in X for any λ > 1. Our results rely on
a criticality theory for Schrödinger operators on general weighted graphs.

0. Introduction

In 1921, Landauwrote a letter toHardywhich includes a proof of the following inequality

∞∑

n=0

|ϕ(n) − ϕ(n + 1)|p ≥ Cp

∞∑

n=1

w(n)|ϕ(n)|p (0.1)

for all finitely supported ϕ : N0 → R such that ϕ(0) = 0, where

w(n) := 1

n p
, and Cp :=

(
p − 1

p

)p

,

with n ≥ 1, 1 < p < ∞ andN0 := {0, 1, 2, 3, . . .}. This inequality was stated before by
Hardy, and therefore, it is called aHardy inequality (see [19] for a marvelous description
on the prehistory of the celebratedHardy inequality). Since then, Hardy-type inequalities
have received an enormous amount of attention.

By a Hardy-type inequality for a nonnegative operator P we roughly mean that the
inequality P ≥ Cw holds for some “large” weight function w and optimal constant
C > 0. One particular focus in the literature lies on finding the sharp constant C to a
prescribed Hardy-weightw which is typically an inverse square weight. For the classical
literature we refer here to themonographs [2,22] and to references therein. Recent devel-
opments include relationshipswith other functional inequalities, Hardy-type inequalities
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related to different boundary conditions [1,8,18], Hardy-type inequalities for fractional
Schrödinger operators [4,10,11,14,20,24], and Hardy inequalities for the Laplacian on
metric trees [9,21].

A conceptually different approach was taken by [6] in the context of general elliptic
Schrödinger operators P in the case p = 2. There, the weight function w ≥ 0 is
intrinsically derived from P in terms of superharmonic functions such as the Green
function. This weight w is shown to be optimal in three aspects:

• For every w̃ � w, the Hardy inequality fails (“Criticality”).
• The ground state is not an eigenfunction (“Null-criticality”).
• For any λ > 0, the Hardy inequality outside of any compact set fails for the weight

(1 + λ)w (“Optimality near infinity”).

Such a weight w is called an optimal Hardy-weight (for a rigorous definition see
Sect. 1.2). Using a different approach, the main results of [6] were later generalized
to the p-Laplacian for 1 < p < ∞ [7].

In the present paper we follow the approaches in [6,7] in the context of Schrödinger
operators on weighted graphs (with p = 2). Similarly to [6,7], we prove a Hardy
inequality with an optimal Hardy weight under the assumption of the existence of certain
positive (super)harmonic functions. There are two versions of the result: one for bounded
positive (super)harmonic functions and one for unbounded positive (super)harmonic
functions.

Let us present two special cases of our results in the context of graphs with standard
weights and bounded vertex degree. Let X be a countably infinite vertex set. We denote
x ∼ y whenever two vertices x, y are connected by an edge in which case we call x and
y adjacent. The degree deg(x) of a vertex x ∈ X is the number of vertices adjacent to
x . A function u : X → R is said to be harmonic on W ⊆ X if

�u(x) :=
∑

y∼x

(u(x) − u(y)) = 0 x ∈ W.

Correspondingly, a function u is called superharmonic onW if�u(x) ≥ 0 for all x ∈ W .
Recall that a function u : X → R is called proper on W ⊆ X if u−1(I ) is compact,

(i.e., finite) for all compact I ⊆ u(W ) := {u(x) | x ∈ W }.
Theorem 0.1. Let a connected graph X with bounded vertex degree and a finite set
K ⊆ X be given, and let u : X → (0,∞) be an positive function which is harmonic and
proper on X\K and such that u = 0 on K . Then the following Hardy-type inequality
holds true

1

2

∑

x,y∈X,x∼y

(ϕ(x) − ϕ(y))2 ≥
∑

x∈X\K
w(x)ϕ(x)2

for all finitely supported functions ϕ with support in X\K, where the weight function w

is given by

w(x) := 1

2u(x)

∑

y∼x

(
u(x)1/2 − u(y)1/2

)2
x ∈ X\K .

Moreover, w is an optimal Hardy weight in X\K.



Optimal Hardy inequalities on graphs 769

In various cases it is hard to find explicit non-trivial harmonic functions. However,
for transient graphs there are plenty of positive superharmonic functions in terms of the
positive minimal Green function

Gx (y) :=
∞∑

n=0

pn(x, y)

where pn(x, y) are thematrix elements of the n-th power of the transitionmatrix given by
the matrix elements p1(x, y) = 1/ deg(x), x, y ∈ X . The case when the sum converges
for all x, y ∈ X is called transient. In this case, u = Go is known to be a strictly
positive superharmonic and harmonic outside of o ∈ X (cf e.g. [25]). Furthermore, Go
is bounded, see [15, Theorem B.1] By the minimality of G it follows that inf Go = 0.
We prove the following Hardy inequality.

Theorem 0.2. Let a transient connected graph with bounded vertex degree be given,
and let o ∈ X be fixed. Let Go : X → (0,∞) be the positive minimal Green function,
and assume that G = Go is proper. Then the following Hardy-type inequality holds true

1

2

∑

x,y∈X, x∼y

(ϕ(x) − ϕ(y))2 ≥
∑

x∈X
w(x)ϕ(x)2

for all finitely supported functions ϕ on X, where

w(x) :=
�

(
G(x)1/2

)

G(x)1/2

is an optimal Hardy weight in X, and for all x �= o

w(x) = 1

2G(x)

∑

y∼x

(
G(x)1/2 − G(y)1/2

)2
.

These theorems are special cases of Theorem 1.1 and Corollary 1.4 which are the
main results of the paper. In Sect. 6 we show how they can be derived from the main
results.

As for the proofs of our theorems, we are faced with the challenge that the two
approaches of [6,7] both rely heavily on the chain rule. However, it is well known that,
in general, a chain rule is not valid in non-local settings such as graphs. The remedy is
twofold. Firstly it was observed in [3] that an analogue of the chain rule holds for the
square root. This is crucial since the square root of a positive superharmonic function is
superharmonic. Secondly, we rely on a coarea formula that is inspired by the treatment
in [7] (see also [6]). This is in line with the meta-strategy that local estimates should be
replaced by integrated estimates in the case of graphs.

The paper is structured as follows. In the following section, the basic setting is
introduced and the main results are stated. Then, in Sect. 2, we provide the major tools
for the proof which consists of a discrete chain rule, the ground state transform and a
coarea formula which are backbone of the proof of our main result. In Sects. 3, 4 and 5
the proofs of the criticality, null-criticality and optimality near infinity, of our Hardy
weights are respectively presented for the case of Laplace-type operators. In Sect. 6, we
deduce these results for Schrödinger operators from the previously proven results using
the ground state transform. Finally, in Sect. 7 we present some first basic examples,
where our results can be applied to concrete graphs.
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1. Set Up and Main Result

1.1. Graphs, formal Schrödinger operators and forms. A graph over an infinite discrete
set X is a symmetric function b : X × X → [0,∞) with zero diagonal such that

∑

y∈X
b(x, y) < ∞ for all x ∈ X.

We call the elements of X vertices. We say that x, y ∈ X are adjacent or neighbors or
connected by an edge if b(x, y) > 0 in which case we write x ∼ y.

Throughout the paper we assume that X is a countably infinite set equipped with the
discrete topology and b is a graph over X . Furthermore we assume that b is connected,
that is, for every x and y in X there are x0, . . . , xn in X such that x0 = x , xn = y and
xi ∼ xi+1 for i = 0, . . . , n − 1.

For W ⊆ X , we denote by C(W ) (resp., Cc(W )) the space of real valued functions
on W (resp., with compact support in W ). By extending functions by zero on X\W the
space C(W ) will be considered as a subspace of C(X).

We say that f ∈ C(W ) is positive in W if f ≥ 0 and f �= 0 in W , in this case, we
also use the notation f � 0.

Given a graph b over X , we introduce the associated formal Laplacian L = Lb acting
on the space

F(X) := { f ∈ C(X) |
∑

y∈X
b(x, y)| f (y)| < ∞ for all x ∈ X},

by

L f (x) :=
∑

y∈X
b(x, y)( f (x) − f (y)).

By the summability assumption on b we have �∞(X) ⊂ F(X).
For a potential q : X → R, we define the formal Schrödinger operator H on F(X)

by

H := L + q.

The associated bilinear form h of H on Cc(X) × Cc(X) is given by

h(ϕ, ψ) := 1

2

∑

x,y∈X
b(x, y)(ϕ(x)−ϕ(y))(ψ(x)−ψ(y))+

∑

x∈X
q(x)ϕ(x)ψ(x).

We denote by h(ϕ) := h(ϕ, ϕ) the induced quadratic form on Cc(X), and write h ≥
0 on Cc(X) (or in short h ≥ 0) if h(ϕ) ≥ 0 for all ϕ ∈ Cc(X).

Any function w : X → R gives rise to a canonical quadratic form on Cc(X) which
we denote (with a slight abuse of notation) by w. It acts as

w(ϕ) :=
∑

x∈X
w(x)ϕ(x)2.

We denote by �2(X) the Hilbert space of square summable functions equipped with
the scalar product

〈 f, g〉 :=
∑

X

f g =
∑

x∈X
f (x)g(x) f, g ∈ �2(X).

Finally, we introduce the notion of (super)harmonic functions on a graph.
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Definition. We say that a function u is H -(super)harmonic on W ⊆ X if u ∈ F(X)

and Hu = 0, (Hu ≥ 0) on W . We write

H ≥ 0 on W

if there exists a positive H -superharmonic function u on W .

1.2. Critical Hardy-weights. In this subsection we define the notions of criticality, sub-
criticality and null-criticality that are fundamental for the present paper. These notions
are discussed in detail in [17] to which we also refer for references.

Definition (Critical/subcritical). Let h be a quadratic form associated with the formal
Schrödinger operator H , such that h ≥ 0 on Cc(X). The form h is called subcritical in
X if there is a positive w ∈ C(X) such that h −w ≥ 0 on Cc(X). A positive form h that
is not subcritical is called critical in X .

In [17, Theorem 5.3], a characterization of criticality is presented. There it is shown,
that for a form h being critical is equivalent to the existence of a unique positive H -
superharmonic function v (which is in fact H -harmonic), andwhich is called the (Agmon)
ground state of h. Furthermore, criticality is equivalent to existence of a null-sequence,
i.e. a sequence (en) in Cc(X) such that 0 ≤ en ≤ v, en → v pointwise and h(en) → 0
for n → ∞. (Here v is H -superharmonic which is in fact, the ground state).

Definition (Null-critical/positive-critical). Let h be a quadratic form associated with
the formal Schrödinger operator H , such that h ≥ 0 on Cc(X). The form h is called
null-critical (resp., positive-critical) in X with respect to a positive potential w if h is
critical in X and

∑
X ψ2w = ∞ (resp.,

∑
X ψ2w < ∞), where ψ is the ground state

of h in X .

Note that the null/positive-criticality of a critical form depends also on the weight w.
By [17, Theorem 6.2], the form h −w is null-critical with respect to w if and only if the
ground stateψ of the critical form h−w cannot be approximated by compactly supported
functions, i.e., by convergence with respect to h − w and pointwise convergence.

Finally, we define the optimality criterion for Hardy weights we are interested in this
paper.

Definition (Optimal Hardy-weight). We say that a positive function w : X → [0,∞)

is an optimal Hardy-weight for h in X if

• h − w is critical in X ,
• h − w is null-critical with respect to w in X ,
• h − w ≥ λw fails to hold on Cc(X\W ) for all λ > 0 and all finite W ⊆ X . In this
case, we say that w is optimal near infinity for h.

1.3. The main results. The following theorem is the main result of our paper.

Theorem 1.1. Let b be a connected graph over X, and let q be a given potential. Let u
and v be positive H-superharmonic functions that are H-harmonic outside of a finite
set. Let u0 := u/v, and assume that
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(a) u0 : X → (0,∞) is proper.

(b) sup
x,y∈X
x∼y

u0(x)

u0(y)
< ∞.

Then the function

w := H
[
(uv)1/2

]

(uv)1/2

is an optimal Hardy-weight in X, and

w(x) = 1

2

∑

y∈X
b(x, y)

[(
u(y)

u(x)

)1/2

−
(

v(y)

v(x)

)1/2
]2

for all x ∈ X satisfying Hu(x) = Hv(x) = 0.

Remark 1.2. Let us discuss assumptions (a) and (b) on the function u0:
The properness assumption (a) says that u−1

0 (I ) is a finite set for any compact I ⊆
u0(X). Since u0(X) ⊆ (0,∞) for positive superharmonic functions by the Harnack
inequality, [17, Lemma 4.5], the assumption implies that 0 and∞ are the only (possible)
accumulation points of the range of u0 (and without loss of generality we may assume
sup u0 = ∞, since otherwise, we can only replace u0 with ũ0 := 1/u0). For example
this can be achieved if the limit of u0 in the one-point compactification X ∪ {∞} of X
towards ∞ is sup u0 = ∞.

The second assumption bounds the quotient of the function u0 on neighboring ver-
tices. It can be understood as an anti-oscillation assumption guaranteeing that the values
of u0 at neighbors do not oscillate over the whole range of u0. As above, it is also satis-
fied if the limit of u0 towards ∞ (in the one-point compactification of X ) exists and is
either 0 or∞. Another case when this is automatically satisfied is if the weighted degree
function x �→ ∑

y b(x, y) is bounded on X and inf x∼y b(x, y) > 0.
A downside of the assumptions (a) and (b) is that together they exclude locally infinite

graphs, i.e. graphs that have vertices with infinitely many neighbors.

Remark 1.3. Via complexification of quadratic forms, the optimality of the Hardy in-
equality described in the theorem above remains valid on the space of complex valued
functions. However, it is more natural to study criticality for real valued functions (as is
recurrence). Indeed, considering complex valued functions adds only an additional step
in the proofs by decomposing functions into their real and imaginary part while it does
not add to the phenomena.

Theorem 1.1 uses the so called supersolution construction (see [6]) with the function
(uv)1/2 in the case where u0, the quotient of the supersolution u and v, is a proper map.
The corollary below applies for the case when the quotient is bounded. It uses the a
similar supersolution construction that was developed in [7] for the p-Laplacian.

Corollary 1.4. Let b be a connected graph over X, and let q be a given potential. Let u
and v be positive functions such that u and v−u are positive H-superharmonic functions
on X that are H-harmonic outside of a finite set. Let u0 := u/v and assume
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(a) The map u0 : X → (0, 1) is proper and satisfies sup u0 = 1.

(b) sup
x,y∈X
x∼y

u0(x)(1 − u0(y))

u0(y)(1 − u0(x))
< ∞.

Then the function

w := H
[
u1/2(v − u)1/2

]

u1/2(v − u)1/2

is an optimal Hardy-weight in X, and

w(x) = 1

2

∑

y∈X
b(x, y)

[(
u(y)

u(x)

)1/2

−
(

(v − u)(y)

(v − u)(x)

)1/2
]2

for all x ∈ X satisfying Hu(x) = Hv(x) = 0.

2. The Toolbox

In this section we discuss the three major tools needed for the proof of the main theorem.
The first is a discrete chain rule for the square root which is the basis for the supersolution
construction of the Hardy weight. Second, we briefly recall the ground state transform
which allows us to deal with Schrödinger operators instead of Laplacians only. Finally,
we prove a coarea formula for Laplace type operators.

Throughout the section we are given a graph b over a discrete set X and a potential
q such that the associated form satisfies h ≥ 0 on Cc(X). Let H = L + q be the
corresponding Schrödinger operator on F(X) with the graph Laplacian L = Lb.

2.1. Product and chain rules. We present the product rule for the discrete Laplacian
and a discrete version of the chain rule for the square root.

Lemma 2.1. (Product rule) Let f, g ∈ F(X). Then for all x ∈ X,

H( f g)(x) = ( f Hg)(x) + (gL f )(x) −
∑

y∈X
b(x, y)( f (x) − f (y))(g(x) − g(y)).

Proof. This is a straightforward calculation. ��
In general, there is no chain rule for the discrete setting. However, for the square root

it was noticed by [3] that a chain rule holds. This observation is a crucial point for the
analysis in this paper. Specifically, we use it to show that the square root of a product of
positive superharmonic functions is superharmonic.

Lemma 2.2. (Chain rule for the square root). Let f, g ∈ F(X) be positive functions.
Then for all x ∈ X,

2( f g)
1
2 H

[
( f g)

1
2

]
(x) = ( f Hg) (x) + (gH f ) (x)

+
∑

y∈X
b(x, y)

[
g(x)

1
2

(
f (x)

1
2 − f (y)

1
2

)
− f (x)

1
2

(
g(x)

1
2 −g(y)

1
2

)]2
.
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Proof. To shorten notation we write ∇ f = ( f (x) − f (y)). Then,

2( f 1/2L f 1/2)(x)=
∑

y∈X
b(x, y)

(
f (x) − f (y) + f (x) − 2( f (x) f (y))1/2 + f (y)

)

= L f (x) +
∑

y∈X
b(x, y)

(
∇ f 1/2

)2
.

We use the product rule

2( f g)
1
2 H( f g)

1
2 (x) = 2( f g)

1
2

(
L( f g)

1
2 (x) + q( f g)

1
2 (x)

)

=2( f g
1
2 Lg

1
2 )(x)+2(g f

1
2 L f

1
2 )(x)+2(q f g)(x)

−2( f g)
1
2

∑

x,y∈X
b(x, y)∇ f

1
2 ∇g

1
2 .

By the equality above we obtain

. . . = ( f Hg) (x) + (gH f ) (x)

+
∑

y∈X
b(x, y)

(
f (∇g

1
2 )2 + g(∇ f

1
2 )2 − 2( f g)

1
2 ∇ f

1
2 ∇g

1
2

)
.

��
Corollary 2.3. If f, g∈F(X) are positive H-superharmonic (resp., H-harmonic) func-
tions, then the function ( f g)1/2 is H-superharmonic (resp., H-harmonic), and

H [( f g)1/2]
( f g)1/2

(x) = 1

2

∑

y∈X
b(x, y)

[(
f (y)

f (x)

)1/2

−
(
g(y)

g(x)

)1/2
]2

for all x satisfying H f (x) = Hg(x) = 0.
In particular, if f is positive L-superharmonic (resp., L-harmonic), then f 1/2 is

L-superharmonic (resp., L-harmonic), and

L[ f 1/2]
f 1/2

(x) = 1

2 f (x)

∑

y∈X
b(x, y)

(
f (x)1/2 − f (y)1/2

)2

for all x satisfying L f (x) = 0.

Proof. We calculate H [( f g)1/2] using the chain rule for the square root (Lemma 2.2)
to obtain the super-harmonicity and the explicit expression for w at points where f and

g are H -harmonic. Indeed, H [( f g)1/2]
( f g)1/2

(x)

=
∑

y∈X

b(x, y)

2( f g)(x)

[
g(x)

1
2

(
f (x)

1
2 − f (y)

1
2

)
− f (x)

1
2

(
g(x)

1
2 −g(y)

1
2

)]2

= 1

2

∑

y∈X
b(x, y)

[
f (x)−

1
2

(
f (x)

1
2 − f (y)

1
2

)
−g(x)−

1
2

(
g(x)

1
2 −g(y)

1
2

)]2

= 1

2

∑

y∈X
b(x, y)

[(
f (y)

f (x)

) 1
2 −

(
g(y)

g(x)

) 1
2
]2

.

The statement for L follows from the calculation above with g = 1. ��
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2.2. The ground state transform. The ground state transform is vital to deal with Schröd-
inger operators H = L + q specifically under the presences of potentials q with non-
vanishing negative part q− �= 0. Namely, given a strictly positive (super)harmonic func-
tion one can reduce the analysis to the one of Laplace type operators (resp. Schrödinger
operators with positive potentials).

This transform was first used to show Hardy inequalities by [12] and later by [5].
We present here the notation that is needed for the paper and refer the reader for a more
detailed discussion to [17, Section 4.2].

For any function v ∈ C(X), we denote the operator of multiplication by v by Tv and
note that whenever v does not vanish its inverse is given by Tv−1 . For strictly positive v,
we define the ground state transform of a Schrödinger operator H on T−1

v F(X)

Hv = T−1
v HTv

and if additionally v ∈ F(X), we define the bilinear form hv : Cc(X) × Cc(X) → R

via

hv(ϕ, ψ) := 1

2

∑

x,y∈X
b(x, y)v(x)v(y)(ϕ(x) − ϕ(y))(ψ(x) − ψ(y)).

These two notions are related by the following formula. See [17, Proposition 4.8] for
a proof and references therein for a discussion of the history in the discrete setting.

Proposition 2.4. (Ground state transform) Let v ∈ F(X) be strictly positive, f ∈ C(X)

such that Hv = f v. Then

h(ϕ, ψ) = hv

(
ϕ

v
,
ψ

v

)
+ 〈 f ϕ,ψ〉, ϕ, ψ ∈ Cc(X).

Clearly, whenever there exists a strictly positive H -harmonic function v, criticality
can be carried over directly from h to hv and vice versa. In this paper we are concerned
with criticality of a form h − w for some positive function w ≥ 0. However, criticality,
null-criticality and even optimality near infinity can be carried over from hv − v2w to
h − w as well.

Corollary 2.5. Let v ∈ F(X) be a strictly positive H-(super)harmonic function and
w ≥ 0.

(a) h − w is critical if and only if hv − v2w is critical.
(b) h − w is null-critical with respect to w if and only if hv − v2w is null-critical with

respect to v2w.
(c) w is optimal near infinity for h if and only if v2w is optimal near infinity for hv .

Proof. By the ground state, transform the quadratic form associated to the operator
Hv − w is hv − v2w (where Proposition 2.4 is applied for the operator H − w and
f = w). Furthermore, for any ψ ∈ F(X) we see that

(H − w)ψ = (TvHvTv−1 − w)ψ = Tv(Hv − w)Tv−1ψ = Tv(Hv − w)
ψ

v
.

Therefore, every positive (H − w)-(super)harmonic function ψ yields a positive (Hv −
w)-(super)harmonic function ψ/v. Thus, h − w is critical if and only if hv − v2w is
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critical by [17, Theorem 5.3]. This proves (a). For the very same reason, statement (b)
follows immediately by the definition of null-criticality.

Finally, w not being optimal near infinity for h means there is a finite W ⊆ X and
λ > 0 such that h−w ≥ λw onCc(X\W ). Hence, h−(1+λ/2)w is subcritical in X\W
which according to (a) yields that hv − (1 + λ/2)v2w is subcritical there. Consequently,
hv − v2w ≥ (λ/2)v2w on Cc(X\W ) and thus, v2w is not optimal near infinity (for hv).
By the same argument, w is not optimal near infinity for h when v2w is not optimal near
infinity for hv which shows (c). ��

2.3. Coarea formula. In this section we establish the pivotal tool for the proof of the
main theorems. It allows us to translate calculations and estimates of infinite sums over
graphs to one dimensional integrals.

Theorem 2.6. Let b be a connected graph over X, and let u ∈ C(X) be positive. Let
f : (inf u, sup u) → [0,∞) be a Riemann integrable function. Then

1

2

∑

x,y∈X×X

b(x, y)(u(x) − u(y))
∫ u(x)

u(y)
f (t) dt =

∫ sup u

inf u
f (t)g(t) dt, (2.1)

where both sides can take the value +∞, and g : (inf u, sup u) → [0,∞] is given by

g(t) :=
∑

x,y∈X
u(y)<t≤u(x)

b(x, y)(u(x) − u(y)).

Assume further that u ∈ F(X) is L-harmonic outside of a finite set, and

(a) u−1(I ) is finite for any compact I ⊆ (inf u, sup u),

(b) sup
x,y∈X
x∼y

u(x)

u(y)
< sup

x,y∈X
u(x)

u(y)
.

Then there are positive constants c and C such that

c ≤ g ≤ C,

and if in addition u is L-harmonic in X, then g is constant.

Remark 2.7. (a) Note that by f ≥ 0, the terms in the sum on both sides of the equality
(2.1) above are always greater than or equal to zero.

(b) Let u and f be as in Theorem2.6with f being continuous. Then by the Lagrange’s
mean value theorem, if u(x) �= u(y) there is θx,y ∈ (u(x) ∧ u(y), u(x) ∨ u(y)) such
that

f (θx,y) =
∫ u(x)
u(y) f (t) dt

u(x) − u(y)
.

Consequently, the coarea formula reads as

1

2

∑

x,y∈X×X

b(x, y)(u(x) − u(y))2 f (θx,y) =
∫ sup u

inf u
f (t)g(t) dt.
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The following lemma can be interpreted as a Stokes type theorem. Specifically, the
function g can be viewed as the integral of the normal derivative over the boundary of
the level set {x | u(x) > t} of u for some t . Formula (2.2) of the Lemma 2.8 then shows
that the function g at t1 and t2 differs only by the nonharmonic contribution of u on the
set A = {x | t1 < u(x) ≤ t2}. Provided (2.2), the proof of the coarea-formula reduces
to algebraic manipulations and the application of Tonelli’s theorem.

Lemma 2.8 (Stokes-type formula). Let u ∈ F(X) be a positive nonconstant function
such that u−1(I ) is finite for any compact I ⊆ (inf u, sup u). Let

g : (inf u, sup u) → [0,∞], g(t) :=
∑

x,y∈X
u(y)<t≤u(x)

b(x, y)(u(x) − u(y)).

Then for any t1, t2 ∈ (inf u, sup u) such that t1 ≤ t2, the set

A := {x ∈ X | t1 < u(x) ≤ t2}
is finite, and

g(t2) = g(t1) −
∑

x∈A

Lu(x), (2.2)

where both sides may take the value +∞. In particular, g is monotone decreasing when-
ever u is L-superharmonic.

Moreover, if

sup
x,y∈X x∼y

u(x)

u(y)
< sup

x,y∈X
u(x)

u(y)
,

and u is L-harmonic outside of a finite set, then g is piecewise constant with finitely
many jumps, and for some positive constants c,C

0 < c ≤ g ≤ C < ∞.

Furthermore, if u is L-harmonic in X, then g is constant.

Proof. For this proof we denote∇ f := f (x)− f (y) for functions f whenever summing
over x and y such that x ∼ y.

For t > 0, define

�t := {x ∈ X | u(x) > t}.
Let t1, t2 ∈ (inf u, sup u) with t1 ≤ t2, and define A to be

A := �t1\�t2 = {x ∈ X | t1 < u(x) ≤ t2}.
By the assumption that the pre-images ofu of compact sets in the interval (inf u, sup u)

are finite, the set A is finite. Therefore, the characteristic function 1A of A is in Cc(X).
For B ⊂ X we denote

∂B := {(x, y) ∈ X × X | x ∈ B, y �∈ B}.
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Since u ∈ F(X), we can apply the Green formula, [13, Lemma 4.7], for u paired
with 1A to see

∑

A

Lu =
∑

X

1ALu = 1

2

∑

X×X

b∇u∇1A =
∑

∂A

b∇u,

where the right hand side also converges absolutely.
In the next stepwe show that the sum on the left hand side can be split into a difference

of a sum over the boundary of �t1 and �t2 . To this end, we observe that for any B ⊆ X ,
we have (x, y) ∈ ∂B if and only if (y, x) ∈ ∂(X\B). Moreover, since �t2 ⊆ �t1 , we
conclude

∂A = (
∂�t1 ∩ ∂A

) ∪ (
∂(X\�t2) ∩ ∂A

)
,

and

∂�t1\∂A = ∂�t2\∂(X\A).

For the sake of illustration, see Fig. 1.
Thus, since

∑
(x,y)∈∂A b(x, y)(u(x) − u(y)) converges absolutely, we obtain by the

considerations above∑

∂A

b∇u =
∑

∂�t1∩∂A

b∇u +
∑

∂(X\�t2 )∩∂A

b∇u =
∑

∂�t1∩∂A

b∇u −
∑

∂�t2∩∂(X\A)

b∇u.

We employ the equalities above to see

g(t2) =
∑

∂�t2

b∇u =
∑

∂�t2\∂(X\A)

b∇u +
∑

∂�t2∩∂(X\A)

b∇u

=
∑

∂�t1\∂A
b∇u +

∑

∂�t2∩∂(X\A)

b∇u

= g(t1) −
∑

∂�t1∩∂A

b∇u +
∑

∂�t2∩∂(X\A)

b∇u

= g(t1) −
∑

∂�t1∩∂A

b∇u −
∑

∂(X\�t2 )∩∂A

b∇u

= g(t1) −
∑

∂A

b∇u = g(t1) −
∑

A

Lu.

As
∑

A Lu < ∞, this shows for all t1, t2 ∈ (inf u, sup u) we have g(t1) < ∞ if and
only if g(t2) < ∞.

If u is L-harmonic outside of a finite set, then the mapping {B ⊆ X} → R, B �→∑
B Lu takes only finitely many values. Therefore, by (2.2), g takes only finitely many

values. Moreover, since
∑

A Lu as a function of t2 changes only at finitely many t2 and
vice versa for t1, the function g is piecewise constant with finitely many jumps.

Hence, g ≥ c > 0 can fail only if g(t) = 0 for some t ∈ (inf u, sup u). However, this
is impossible as g(t) = 0 implies ∂�t = ∅ which implies either t < inf u or t ≥ sup u
by the connectedness of the graph.

To see the upper bound for g, we employ the assumption

sup
x,y∈X x∼y

u(x)

u(y)
< sup

x,y∈X
u(x)

u(y)
.
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Ωt1

∂Ωt1

Ωt2

∂Ωt2

A

∂A

X \ A

∂(X\A) ∂Ωt1\∂A = ∂Ωt2\∂( X\A)

Fig. 1. Illustrations of the sets and their boundaries

This assumption is equivalent to

c := sup
x∼y

(u(x) − u(y)) < sup
x∈X

u(x) − inf
x∈X u(x).

Hence, there are t1, t2 ∈ (inf u, sup u) such that t2 − t1 > c. For the choice of these
t1, t2, there is no vertex in �t2 that is connected to a vertex outside of �t1 . Hence,
∂�t2 = ∂�t2 ∩ ∂(X\A) and we have by the considerations above

g(t2) =
∑

∂�t2∩∂(X\A)

b∇u ≤
∑

∂A

b|∇u| < ∞.

Thus, g stays finite on (inf u, sup u) and since g is piecewise constant with finitely many
jumps, there is C such that g ≤ C . This finishes the proof. ��
Proof of Theorem 2.6. Let t > 0, and recall that

�t = {x ∈ X | u(x) > t}.
Let 1x,y be the characteristic function of the interval

Ix,y = [u(x) ∧ u(y), u(x) ∨ u(y)].
Observe that (x, y) or (y, x) are in ∂�t := �t × X\�t if and only if t ∈ Ix,y . With this
observation in mind, we calculate

∑

x,y∈X×X

b(x, y)(u(x) − u(y))
∫ u(x)

u(y)
f (t) dt

=
∑

x,y∈X×X

b(x, y)|u(x) − u(y)|
∫ sup u

inf u
f (t)1x,y(t) dt.

Now, by Tonelli’s theorem we obtain

. . . =
∫ sup u

inf u
f (t)

∑

x,y∈X×X

b(x, y)|u(x) − u(y)|1x,y(t) dt

= 2
∫ sup u

inf u
f (t)

∑

(x,y)∈∂�t

b(x, y)|u(x) − u(y)| dt

= 2
∫ sup u

inf u
f (t)

∑

(x,y)∈∂�t

b(x, y)(u(x) − u(y)) dt

since u(x) ≥ u(y) for (x, y) ∈ ∂�t . This shows the first part of the theorem. The second
part follows from Lemma 2.8. ��
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3. Critical Hardy-Weights

In the following three sections we will prove Theorem 1.1 for operators H = L + q
with finitely supported q ≥ 0. This will be achieved by the virtue of the coarea formula
(Theorem 2.6). The general case will be deduced in Sect. 6 using the ground state
transform. We start by proving criticality in this section, and show null-criticality and
optimality at infinity in the two succeeding sections.

Theorem 3.1. Let b be a connected graph and q ≥ 0 be a finitely supported potential.
Suppose that u is a positive H-superharmonic function that is H-harmonic outside of a
finite set, and satisfies

(a) u : X → (0,∞) is proper,

(b) sup
x,y∈X
x∼y

u(x)

u(y)
< ∞.

Let h be the quadratic form associated to H. Then h − w with w := H
[
u1/2

]

u1/2
, is critical

in X.

Proof. We set v := u1/2. Then v is positive and H -superharmonic by the chain rule
for the square root (Lemma 2.2) since q ≥ 0. Furthermore, v is obviously a positive
(H − w)-harmonic function in X .

The strategy of the proof is to construct a null-sequence (en) in Cc(X) with respect
to (h − w)v , i.e. (h − w)v(en) → 0 and en → 1 pointwise. By [17, Theorem 5.3 (iv)],
this then implies that (h − w)v is critical, and hence the criticality of h − w.

Set ϕn : R → R

ϕn(t) :=
(
2 +

1

log n
log(t)

)
1[ 1

n2
,+ 1

n ](t) + 1[ 1n ,n](t)

+

(
2 − 1

log n
log(t)

)
1[n,n2](t) ,

and let en := ϕn ◦ u. Since suppϕn ⊆ (0,∞), and sup u = ∞ or inf u = 0, we have
en ∈ Cc(X) by assumption (a). Obviously, en → 1 pointwise as n → ∞. So, we are
left to show (h − w)v(en) → 0 as n → ∞. We compute

(h − w)v(en) = 1

2

∑

x,y∈X
b(x, y)(u(x)u(y))1/2(ϕn(u(x)) − ϕn(u(y)))2

= 1

2

∑

x,y∈X
b(x, y) (u(x) − u(y)) c(x, y)

(∫ u(x)

u(y)
tϕ′

n(t)
2 dt

)
,

where

c(x, y) := (u(x)u(y))1/2(ϕn(u(x)) − ϕn(u(y)))2

(u(x) − u(y))
∫ u(x)
u(y) tϕ′

n(t)
2 dt

whenever the denominator is nonzero and c(x, y) = 0 otherwise.
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Since c(x, y) always appears in a product with b(x, y) it suffices to consider x, y with
x ∼ y. By the anti-oscillation assumption (b) there is a constantC0 := supz∼w u(z)/u(w)

such that for n >
√
C0 we have u(x), u(y) ∈ (0, n] or u(x), u(y) ∈ [1/n,∞) for x ∼ y.

We now use the definition of ϕn and the elementary inequalities

|a ∧ c − b ∧ c| ≤ |a − b|, a, b, c ∈ R,

log b − log a

b − a
≤ log′(a) = 1

a
, 0 < a ≤ b < ∞,

to estimate

c(x, y) ≤ (u(x)u(y))1/2(log u(x) − log u(y))

(u(x) − u(y))

≤ sup
z,w∈X,z∼w

(
u(z)

u(w)

)1/2

= C0

for all x ∼ y and n >
√
C0. Notice that C0 < ∞ by our assumption (b).

We use this estimate and we apply now the coarea formula with f (t) = tϕ′
n(t)

2.
To this end, we note that the assumptions of Theorem 2.6 are fulfilled: The function u
is L-harmonic outside of the finite set (including the finite set where q is supported),
Theorem 2.6 (a) is fulfilled by assumption (a), and Theorem 2.6 (b) is fulfilled by
assumption (b) and sup u = ∞ or inf u = 0. Moreover, by the L-harmonicity of u
outside of a finite set, the function g in the coarea formula (2.1) is piecewise constant.
Therefore, there exists a constant C1 such that

(h − w)v(en) ≤ C0

∑

x,y∈X
b(x, y) (u(x) − u(y))

(∫ u(x)

u(y)
tϕ′

n(t)
2 dt

)

≤ C1

∫ sup u

inf u
tϕ′

n(t)
2 dt

≤ C2

(
1

log n

)2
(∫ 1

n

1
n2

dt

t
+

∫ n2

n

dt

t

)
= 2C2

log n
−−−→
n→∞ 0.

Thus, (en) is a null-sequence which implies that h − w is critical by the discussion in
the beginning of the proof. ��

4. Null-Criticality

In the present section we prove the null-criticality assertion of Theorem 1.1 under the
additional assumption that q is a positive finitely supported potential. For general q the
statement is then deduced in Sect. 6 using the ground state transform.

In the case q ≥ 0, it is convenient to extend the quadratic form h for a graph b which
is defined on Cc(X) to a map C(X) → [0,∞] via

f �→ 1

2

∑

x,y∈X
b(x, y)( f (x) − f (y))2 +

∑

x∈X
q(x) f (x)2.

It is easily seen that this defines a quadratic form and with a slight abuse of notation we
denote this form also by h. Moreover, whenever there is a positive harmonic function
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u for the operator H associated to a form h with general potential q, such an extension
can be employed for the ground state transform hu of h.

Theorem 4.1. Let b be a graph, q ≥ 0 be finitely supported and H = L + q. Let u
be a positive H-superharmonic function that is H-harmonic outside of a finite set. In
addition, assume that

(a) u : X → (0,∞) is proper,

(b) sup
x,y∈X
x∼y

u(x)

u(y)
< ∞.

Let h be the quadratic form associated to H. Then

h(u1/2) = ∞,

and the form h − w with w := H [u1/2]
u1/2

is null-critical in X with respect to w.

Proof. By the elementary inequality

(b1/2 − a1/2)2

(b − a)
∫ b
a

dt
t

≥ a

4b
, 0 < a < b < ∞,

we have for x, y ∈ X with x ∼ y

c(x, y) := (u1/2(x) − u1/2(y))2

(u(x) − u(y))
∫ u(x)
u(y)

dt
t

≥ 1

4
inf
x ′∼y′

u(x ′)
u(y′)

=: C0,

where C0 > 0 by assumption (b) whenever u(x) �= u(y). We apply the coarea formula
(Theorem 2.6) with f (t) = 1/t . Since q is finitely supported, u is L-harmonic outside of
a finite set. Thus, by Theorem 2.6, the function g in the coarea formula (2.1) is bounded
away from zero, and we get

1

2

∑

x,y∈X
b(x, y)(u1/2(x) − u1/2(y))2= 1

2

∑

x,y∈X
b(x, y)c(x, y)(u(x) − u(y))

∫ u(x)

u(y)

dt

t

≥ C0

∑

x,y∈X
b(x, y)(u(x) − u(y))

∫ u(x)

u(y)

dt

t
≥ C1

∫ sup u

inf u

1

t
dt = ∞,

where C1 is a positive constant. Consequently, h(u1/2) = ∞.
It remains to show that this implies the null-criticality of h − w with respect to w in

the case sup u = ∞ or inf u = 0. Note that the function u1/2 is (H −w)-harmonic with

w = H [u1/2]
u1/2

. Since sup u = ∞ or inf u = 0, it follows from Theorem 3.1 that, under
our assumptions, h − w is critical.

In the critical case, there is a unique positive harmonic function (up to linear depen-
dence), see [17, Theorem 5.3 (iii)]. Hence, this ground state is u1/2. By h(u1/2) = ∞ it
follows, in particular, that u1/2 can not be approximated by compactly supported func-
tions. By a characterization of null-criticality [17, Theorem 6.2], this implies that the
form h − w is null-critical with respect to w. ��
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5. Optimality Near Infinity

In this section we give a criterion for optimality near infinity. Recall that if h, u and
q ≥ 0 satisfy the assumptions of Theorem 4.1, then

h(u1/2) = 1

2

∑

x,y∈X
b(x, y)

(
u(x)1/2 − u(y)1/2

)2
+

∑

x∈X
q(x)u(x)1/2 = ∞,

where h denotes again the extension of the form on Cc(X) to C(X). We will deduce
optimality at infinity for q ≥ 0 directly from the divergence of the sum above. The case
of general q is then covered in Sect. 6.

Theorem 5.1. Consider a graph b and q ≥ 0 with a finite support. Let H := L + q. Let
u be a positive nonconstant H-superharmonic function in X that is L-harmonic outside
of a finite set. Furthermore, let w = L(u1/2)/u1/2, and assume h − w is critical and

h(u1/2) = ∞.

Then for all finite W ⊆ X and all λ > 0, the inequality

h − (1 + λ)w ≥ 0

fails to hold on Cc(X\W ).

We prove this theorem by assuming that the inequality in the theorem holds for some
λ > 0 and show that contradicts the null-criticality. To this end, we need to show that
we can extend the inequalities in question to a larger class of functions. This is achieved
by the following lemma

Lemma 5.2. Let b, b̃ be graphs, q, q ′ potentials, and let h, h′ be the corresponding
forms with the associated operators H and H ′. Let v be a positive H-superharmonic
function and suppose that v1/2 is a positive H ′-harmonic function. Assume h′ is critical
on X and that there is C ≥ 0 such that

h(ϕ) ≤ Ch′(ϕ), ϕ ∈ Cc(X\W ),

for W ⊆ X. Then

hv(v
−1 f ) ≤ Ch′

v1/2
(v−1/2 f ), f ∈ C(X\W ).

Proof. Since h′ is critical on X , it follows that h′
v1/2

is critical as well by Corollary 2.5.
Then by [17, Theorem 5.3 (iv)], there exists a the null-sequence (en) for h′

v1/2
such that

en ∈ Cc(X), 0 ≤ en ≤ 1, en → 1 and h′
v1/2

(en) → 0.
Applying the ground state transforms (Proposition 2.4), we see

hv(v
−1ϕ) ≤ h(ϕ) ≤ Ch′(ϕ) = Ch′

v1/2
(v−1/2ϕ)

for all ϕ ∈ Cc(X\W ), and hence, multiplying all functions by v1/2 yields

hv(v
−1/2ϕ) ≤ Ch′

v1/2
(ϕ), ϕ ∈ Cc(X\W ).

We next employ [17, Lemma 5.11] which states that since h′
v1/2

is critical and (en)
is a null-sequence for h′

v1/2
it follows that for every function f ∈ C(X) we have
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limn→∞ h′(en f ) = h′( f ). Hence, for f ∈ C(X) with support in X\W , by Fatou’s
lemma and the inequality in the assumption (noting that en f ∈ Cc(X\W )) we obtain

hv(v
−1/2 f ) ≤ lim inf

n→∞ hv(v
−1/2en f ) ≤ C lim sup

n→∞
h′

v1/2
(en f ) = Ch′

v1/2
( f ).

Replacing f by v−1/2 f yields the claim of the lemma. ��
We recall the following notation: Given a graph b, zero potential q = 0, and a strictly

positive function g, the form hg on C(X) acts as

hg( f ) = 1

2

∑

x,y∈X
b(x, y)g(x)g(y)( f (x) − f (y))2,

which happens to coincide with the extension of the ground state transform of h toC(X)

whenever g is H -harmonic.

Proof of Theorem 5.1. Throughout the proof c and C denote positive finite constants
that may change from line to line.

We set w = (Hu1/2)/u1/2. Assume there is λ > 0 such that h − w ≥ λw on
Cc(X\W ) for finite W . So,

h ≤ C(h − w)

on Cc(X\W ) with C = 1+λ
λ
. We show that this leads to a contradiction.

By definition ofw the function u1/2 is (H −w)-harmonic and u is H -superharmonic
by assumption. By Lemma 5.2, we have

hu(u
−1 f ) ≤ C(h − w)u1/2(u

−1/2 f ), f ∈ C(X\W ), (5.1)

with the ground state transforms hu of h and (h − w)u1/2 of h − w.
Let us first estimate the left hand side of (5.1) from below. Let f = u1/21X\W . By

the equality ab(a−1/2 − b−1/2)2 = (a1/2 − b1/2)2 applied with a = u(x), b = u(y),
we obtain

hu(u
−1 f ) = hu(u

−1/21X\W ) = h1X\W (u1/2) +
∑

x∈W,y∈X\W
b(x, y)u(y),

where we observe that the second term on the right hand side is finite since u ∈ F(X)

and W is finite. Furthermore,

. . . = h1(u
1/2) − h1W (u1/2) −

∑

x∈W,y∈X\W
b(x, y)((u1/2(x) − u1/2(y))2 − u(y))

≥ h1(u
1/2) − h1W (u1/2) −

∑

x∈W
u(x)

∑

y∈X\W
b(x, y),

where the second and the third term on the right hand side are finite since W is finite
and

∑
y∈X b(x, y) < ∞ for all x . Since q ≥ 0 is compactly supported and we assume

that h(u1/2) = ∞, it follows that h1(u1/2) = ∞ and, thus, we conclude that

hu(u
−1 f ) = ∞.
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For the right hand side of (5.1), we get with f := u1/21X\W

(h − w)u1/2(u
−1/2 f ) = (h − w)u1/2(1X\W )

≤
∑

x∈W,y∈X\W
b(x, y)(u(x)u(y))1/2

≤
⎛

⎝
∑

x∈W,y∈X\W
b(x, y)u(x)

⎞

⎠
1/2⎛

⎝
∑

x∈W,y∈X\W
b(x, y)u(y)

⎞

⎠
1/2

.

The right hand side is finite since u ∈ F(X), the setW is finite, and
∑

y∈X b(x, y) < ∞
for all x .

Thus, (h − w)u1/2(u
−1/2 f ) < ∞ while hu(u−1 f ) = ∞ which is a contradiction to

(5.1). This proves the theorem by the discussion in the beginning of the proof. ��

6. Proof of the Main Theorem

Proof of Theorem 1.1. Let u, v be positive H -superharmonic functions on X , such that
u, v are H -harmonic outside of a finite set. Let u0 := u/v. Then the positive function
u0 is Hv-superharmonic and Hv-harmonic outside of the finite set. Let

w :=
Hv

[
u1/20

]

u1/20

= H
[
(uv)1/2

]

(uv)1/2
.

By Corollary 2.5, w is an optimal Hardy weight for h if and only if w′ = v2w is an
optimal Hardy weight for h′ := hv . Note that by Green’s formula the form h′ = hv

corresponds to the operator H ′ = L ′ + q ′ where L ′ is the operator associated to the
graph b′(x, y) = b(x, y)v(x)v(y), x, y ∈ X , and q ′ = v(Hv), i.e.,

h′(ϕ, ψ) = 〈H ′ϕ,ψ〉1.
Note that by assumption on v the potential q ′ is finitely supported and since H ′ = Tv2Hv

the function u0 is a positive H ′-superharmonic function that satisfies the assumptions of

Theorem 3.1, Theorem 4.1 and Theorem 5.1. Hence,w′ = H ′(u1/20 )

u1/20

= v2w is an optimal

Hardy weight for h′ = hv which finishes the proof. The explicit formula for w follows
from the chain rule of the square root (see Lemma 2.2 and Corollary 2.3). ��
Proof of Corollary 1.4. First of all, by the chain rule for the square root, the function
(u(v − u))1/2 is H -superharmonic, (see, Lemma 2.2 and Corollary 2.3, where also
the explicit formula of w can be read from). Let us check that the assumptions of
Corollary 1.4 imply the assumptions of Theorem 1.1. We let u0 = u/v and

v0 := u

v − u
= u0

1 − u0
= 1

u−1
0 − 1

.

Let us check the validity of the assumption (a) in Theorem 1.1. Let [a, b] ⊆ (0,∞)

and x ∈ X such that v0(x) ∈ [a, b]. It follows that u0(x) ∈ [a/(a + 1), b/(b + 1)] ⊂
(0, 1). By assumption (a) of Corollary 1.4, there are only finitely many of these x and
hence Theorem 1.1 (a) follows. Assumption (b) of Theorem 1.1 follows directly from
assumption (b) of Corollary 1.4. ��
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Finally, we explain how the two special cases in the Introduction can be derived from
the main theorems.

To this end we first prove the following lemma in the context of graphs with standard
weights, i.e., b(x, y) ∈ {0, 1}, x, y ∈ X .

Lemma 6.1. Assume that deg(x) ≤ C for all x ∈ X, and let u be a positive �-
superharmonic on W ⊆ X. Then

sup
x∼y
x∈W

u(x)

u(y)
≤ C.

Proof. Since u > 0 and �u(y) ≥ 0, we get for x ∼ y

u(x) ≤
∑

z∼y

u(z) ≤ deg(y)u(y) ≤ Cu(y)

where C > 0 does not depend on x ∈ W . ��
Proof of Theorem 0.1. Let hX\K be the restriction of the form h to the space Cc(X\K ).
Then the operator HX\K acts as

HX\Kϕ(x) =
∑

y∈X\K , y∼x

(ϕ(x) − ϕ(y)) + q(x)ϕ(x),

with q(x) := #{z ∈ K | z ∼ x}. Hence, v = 1 is HX\K -superharmonic in X\K
and HX\K -harmonic outside of the combinatorial neighborhood of K . Moreover, as
� = HX\K for functions supported on X\K , the restriction of u to X\K is HX\K -
harmonic.

Assumption (a) of Theorem 1.1 is satisfied for HX\K for u0 = u. Furthermore,
assumption (b) follows from Lemma 6.1. Hence, we obtain for ϕ ∈ Cc(X\K ),

1

2

∑

x∼y

(ϕ(x) − ϕ(y))2 = h(ϕ) ≥
∑

x∈X\K
w(x)ϕ2(x)

with optimal w given by

w(x) = HX\K u1/2

u1/2
(x) = 1

2u(x)

∑

y∼x

(
u(x)1/2 − u(y)1/2

)2

for x ∈ X\K . ��
Proof of Theorem 0.2. We apply Theorem 1.1 with v = G(o, ·) and u = 1. In particular,
assumption (a) of Theorem 1.1 is satisfied for u0 = 1/G(o, ·). Furthermore, assumption
(b) follows from the lemma above (Lemma 6.1). Hence, the statement follows. ��

7. Examples

7.1. TheZ
d -case. It is awell-known that for d ≥ 3, theGreen functionG(x) := G(x, 0)

associated to the Laplacian � on the standard Z
d -lattice has the following asymptotic

behaviour (see [23, Theorem 2], and the remark at the very end of Sect. 2 therein):
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Theorem 7.1. Let d ≥ 3. Then as |x | → ∞,

G(x) = C1(d)

|x |d−2 + C2(d)

((
d∑

i=1

( xi
|x |

)4
)

− 3

d + 2

)
1

|x |d +O
(

1

|x |d+2
)

,

where C1(d) and C2(d) are positive constants depending only on d.

It follows from Theorem 0.2 that

w(x) := �[G1/2(x)]
G1/2(x)

, x ∈ Z
d\{0},

is an optimal Hardy weight for�. We use Theorem 7.1 to derive the asymptotic behavior
of w as |x | → ∞.

Theorem 7.2. Let d ≥ 3. Then as |x | → ∞ we have

w(x) =
(
d − 2

)2

4

1

|x |2 +O
(

1

|x |3
)

.

Proof. Using Theorem 7.1, one obtains for |x | → ∞ and y ∼ x that

G(y)

G(x)
= |x |d−2

|y|d−2 +O
(

1

|x |3
)

.

Keeping this observation in mind, it follows that

∑

y∼x

(
G(y)

G(x)

)1/2

=
d∑

i=1

∑

ε∈{±1}

( |x |d−2

(|x |2 + ε2 xi + 1
)(d−2)/2

)1/2
+O

(
1

|x |3
)

=
d∑

i=1

∑

ε∈{±1}

(
1 +

ε2 xi
|x |2 +

1

|x |2
)(2−d)/4

+O
(

1

|x |3
)

.

We now use the Taylor series expansion

(
1 + z

)α = 1 + α z +

(
α

2

)
z2 +O(|z|3)

for z ∈ R with |z| < 1 and α ∈ R (here the generalized binomial coefficient
(
α
2

)
is

defined as
(
α
2

) := α
(
α − 1

)
/2). As x → ∞, this yields

∑

y∼x

(
G(y)

G(x)

)1/2
=

d∑

i=1

(
2 +

2(2 − d)

4

1

|x |2 + 2

( 2−d
4
2

)
4x2i
|x |4

)
+O

(
1

|x |3
)

= 2d +
d(2 − d)

2

1

|x |2 + 8
(2 − d)(2 − d − 4)

2 · 16
1

|x |2 +O
(

1

|x |3
)

= 2d −
(
d − 2

)2

4

1

|x |2 +O
(

1

|x |3
)

.
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It follows that

w(x)= �
[
G1/2(x)

]

G1/2(x)
=2d−

∑

y∼x

(
G(y)

G(x)

)1/2

=
(
d − 2

)2

4

1

|x |2 +O
(

1

|x |3
)

.

has the claimed asymptotics as |x | → ∞. ��

7.2. The half line. In this subsection we show that we not only recover the classical
Hardy inequality (0.1), but that we can also improve it, in the sense that we can show
lower order terms. In particular, in contrast to the continuous case, the operator associated
with the classical Hardy inequality (0.1) is subcritical in N.

Theorem 7.3 ([16]). For all finitely supported functions ϕ : N0 → R

with ϕ(0) = 0 we have

∞∑

n=0

|ϕ(n) − ϕ(n + 1)|2 ≥
∞∑

n=1

w(n)|ϕ(n)|2 (7.1)

with an optimal Hardy-weight w given by

w(n) =
∞∑

k=1

(
4k

2k

)
1

(4k − 1) 2(4k−1)

1

n2k
= 1

4n2
+

5

64n4
+ · · · ,

for n ≥ 2 and w(1) = 2 − √
2. In particular, w(n) > 1

4n2
for any n ≥ 1.

Proof. Consider the Laplacian (with standard weights) acting on N ⊂ Z as

�u(n) := 2ϕ(n) − ϕ(n + 1) − ϕ(n − 1), n ∈ N.

Then the identity function u(n) := n on N0 is positive and harmonic on N. Moreover,
by choosing v(n) := 1 on N0 (which is harmonic on N), it follows that the assumptions
of Theorem 0.1 are satisfied. Hence, the corresponding optimal Hardy weightw is given
by

w(n) = 1

2n

[(
n1/2 − (n + 1)1/2

)2
+

(
n1/2 − (n − 1)1/2

)2]

= 1

n

[
2n − n1/2

(
(n + 1)1/2 + (n − 1)1/2

)]

= 2 −
((

1 +
1

n

)1/2

+

(
1 − 1

n

)1/2
)

.

Employing the Taylor expansion of the square root at 1, i.e.,

(
1 ± 1

n

)1/2

=
∞∑

k=0

(
1/2

k

) (±1

n

)k

= 1 ± 1

2n
− 1

8n2
± 1

16n3
− 5

128n4
± · · ·

yields the result. ��
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