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Abstract: We prove propagation of chaos at explicit polynomial rates in Wasserstein
distance W2 for Kac’s N -particle system associated with the spatially homogeneous
Boltzmann equation for Maxwell molecules. Our approach is mainly based on
novel probabilistic coupling techniques. Combining them with recent stabilization re-
sults for the particle systemwe obtain, under suitablemoments assumptions on the initial
distribution, a uniform-in-time estimate of order almost N−1/3 forW2

2 .

1. Introduction and Main Results

1.1. The Boltzmann equation. The spatially homogeneous Boltzmann equation predicts
that the density ft (v) of particles with velocity v ∈ R

3 at time t ≥ 0 in a spatially
homogeneous dilute gas subjected to binary collisions, satisfies

∂t ft (v) = 1

2

∫
R3

dv∗
∫
S2
dσ [ ft (v′) ft (v′∗) − ft (v) ft (v∗)]B(|v − v∗|, θ), (1)

where v′ and v′∗ are the pre-collisional velocities, given by

v′ = v + v∗
2

+
|v − v∗|

2
σ, v′∗ = v + v∗

2
− |v − v∗|

2
σ, (2)

and θ is the deviation angle, defined by cos θ = σ ·(v−v∗)/|v−v∗|. The collision kernel
B(|v−v∗|, θ) ≥ 0 describes the rate at which collisions between pairs of particles occur,
and depends on the type of physical interactions among them. Solutions of (1) preserve
mass

∫
R3 ft (v)dv, momentum

∫
R3 v ft (v)dv and kinetic energy

∫
R3 |v|2 ft (v)dv, so we

may and shall assume that
∫
R3 ft (v)dv = 1 for all t ≥ 0.
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Equation (1) has been extensively studied for several decades. We refer the reader to
Cercignani [4] for physical background on the Boltzmann equation and to Villani [31],
Alexandre [1] and Mischler and Mouhot [22] for historical accounts on aspects of its
mathematical theory.

Typically, one assumes that B : R+ × (0, π ] → R+ has the form

B(z, θ) sin θ = zγ β(θ),

for some γ ∈ (− 3, 1], and some function β : (0, π ] → R+ which, for symmetry
reasons, can be taken to be equal to 0 on (π/2, π ]. In this paper, we assume that γ = 0
and β(θ) ∼ θ−1−ν near 0 for ν = 1/2, a setting referred to asMaxwell molecules case.

1.2. Particle system and propagation of chaos. As a step to rigorously justify the inter-
pretation of the Boltzmann equation as a representation of the evolution of a very large
number of interacting particles, Kac [19] suggested to study the limit, as N goes to ∞,
of some exchangeable stochastic system of N of such particles, defined as a continuous-
time pure-jump Markov process on (R3)N . For a simplified one dimensional version of
the nonlinear equation (1), he in fact proved that if the joint law of k particles at time 0
weakly converges as N → ∞ to the k-fold product of an initial density f0 in R, then
the same holds true at times t > 0, with ft as the limit density.

This property, termed propagation of chaos, is equivalent to the convergence of the
empirical measure of the system at each time t to the solution of the nonlinear equation,
and has been established, under different convergence criteria, for a wide class of models
including the true Boltzmann equation (1). For general background on propagation of
chaos, we refer the reader to Sznitman [27], Méléard [21] and Mischler and Mouhot
[22] (see also Sect. 1.4 below for historical and recent references).

More specifically, we consider the particle system given by the (R3)N -valuedMarkov
process with infinitesimal generator AN defined as follows: for all Lipschitz bounded
function 	 : (R3)N → R and v = (v1, . . . , vN ) ∈ (R3)N ,

AN	(v) = 1

2(N − 1)

∑
i 	= j

∫
S2
dσ [	(ai j (v, σ )) − 	(v)]B(θ), (3)

where B(θ) sin θ := β(θ), and ai j (v, σ ) ∈ (R3)N is the vector v with its i-th and j-th
R
3-valued components respectively replaced by v′ and v′∗ given by (2) with v = vi and

v∗ = v j . Particles start with a symmetric law GN
0 on (R3)N . We denote1 this stochastic

interacting particle system by Vt = (V 1
t , . . . , V N

t ).

Hence, any pair of particles i and j with velocities v = V i
t and v∗ = V j

t interact
with deviation angle θ at rate β(θ)/2(N − 1), and then they update their velocities to
v′ and v′∗ given by (2), with σ ∈ S

2 uniformly chosen at random among unitary vectors
such that σ · (v − v∗)/|v − v∗| = cos θ ; notice that v′ and v′∗ as defined in (2) now
appear in the role of post-collisional velocities, consistently with the weak form (9)
of Eq. (1). The fact that the function β(θ) has a non-integrable singularity at θ = 0
entails that particles jump infinitely many times on every finite time interval (all but
finitely many jumps corresponding to very small deviation angles). One can check that
the quantities

∑N
i=1 vi and

∑N
i=1 |vi |2, corresponding to momentum and kinetic energy,

are a.s. exactly preserved by the corresponding random dynamics.

1 For notational simplicity, we dot not make explicit the dependence of the system on N .
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An explicit construction of the system V will be given in Lemma 8, Sect. 2. Let us
mention for the moment that, under the assumptions we will make, a unique (in law)
Markov process with càdlàg trajectories and generator (3) will exist, for each value of
N ∈ N.

The goal of the present paper is to establish a fully explicit, uniform in time prop-
agation of chaos rate, for the Kac N -particle system V. We adopt here a probabilistic
pathwise approach, as pioneered by Tanaka [28,29] and Sznitman [27]. The main idea is
to extend the coupling techniques for binary-jump particle systems introduced in [5] to
the much more difficult framework of the Boltzmann equation. We will also rely on the
analytic approach and estimates of Fournier and Mischler [13]. Moreover, combining
these ideaswith a uniform-in-N equilibration result, recently established byRousset [25]
for Kac particles in theMaxwell molecules case, we will obtain the sharpest propagation
of chaos estimates in Wasserstein distance so far available in this setting.

1.3. Main results. Let us first fix some notation and specify our hypotheses. Given a
metric space E , p ≥ 1 and k ∈ N, let P(E), Pp(E) and Psym

p (Ek) respectively denote
the space of probability measures on E , the subspace of probability measures on E
with finite p-moment, and the subspace of Pp(Ek) consisting of symmetric probability
measures on Ek with finite p-moment. Given a vector x = (x1, . . . , xN ) ∈ (R3)N , we
define the empirical measures x̄ ∈ P(R3) and x̄i ∈ P(R3) for any i ∈ {1, . . . , N }, by

x̄ := 1

N

N∑
j=1

δx j and x̄i := 1

N − 1

∑
j 	=i

δx j . (4)

The empirical measure of the particle system at time t ≥ 0 is thus denoted by V̄t . Also,
given a (mainly exchangeable) random vector X on (R3)N , we will denote its law by
L(X) ∈ P((R3)N ), and the law of its k first components by Lk(X) ∈ P((R3)k), for any
k ≤ N .

For μ, ν ∈ P2((R
3)k), their quadratic Wasserstein distance is defined as

W2(μ, ν) = inf
π

(∫
(R3)k×(R3)k

|x − y|2kπ(dx, dy)
)1/2

= inf
X,Y

(
E|X − Y|2k

)1/2
,

where the first infimum is taken over all π ∈ P2((R
3)k × (R3)k) having marginals μ

and ν, and the second infimum is taken over all random vectors X and Y on (R3)k such
that L(X) = μ and L(Y) = ν. Here we use the normalized distance | · |k on (R3)k

defined by |x|2k = 1
k

∑k
i=1 |xi |2. It is known that the infimum is always reached, and a

π attaining the first infimum or a pair (X,Y) attaining the second one, is referred to as
an optimal coupling.

The angular cross section function β will be assumed to satisfy

∃ν ∈ (0, 1), c0θ
−1−ν ≤ β(θ) ≤ c1θ

−1−ν ∀θ ∈ (0, π/2), (5)

for some constants 0 < c0 < c1. The initial distribution f0 will be assumed to satisfy

∃p0 > 4,
∫
R3

|v|p0 f0(dv) < ∞. (6)
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Note that in the usual Maxwellian case, the quantities ν and γ = 0 are linked by the
relation ν = 1−γ

2 , but in our (slightly more general) context, ν ∈ (0, 1) will be viewed
as an independent parameter.

We now state ourmain results. SeeDefinition 3 below for the notion ofweak solutions
of (1) that we will use, and Theorem 4 for its well-posedness .

Theorem 1. Assume (5) and (6), and let ( ft )t≥0 be the unique weak solution of (1). Let
GN

0 ∈ Psym
2 ((R3)N ) be given, and let Vt = (V 1

t , . . . , V N
t ) be the particle system with

generator (3) starting with law GN
0 . Then, there exists a constant C > 0 such that for

all t ≥ 0,

EW2
2 (V̄t , ft ) ≤ CW2

2 (GN
0 , f ⊗N

0 ) + C(1 + t)2N−1/3.

Note that one can simply choose GN
0 = f ⊗N

0 and then W2
2 (GN

0 , f ⊗N
0 ) = 0, or

assume that the term W2
2 (GN

0 , f ⊗N
0 ) goes to 0 at least as fast as N−1/3. In either case,

the previous theorem gives a chaos result in squared 2-Wasserstein distance for the Kac
particle system associated to the Boltzmann equation for Maxwell molecules, with an
explicit rate of order N−1/3. The time dependence is quadratic.

It is worth noting that the proof of Theorem 1 also provides the same convergence
rates for each k-marginal of the N -particle system defined by (3), when N goes to ∞,
and that statements for cutoff systems can also be established (with similar dependence
on the cutoff parameter as in [13]).

Under stronger conditions on the initial law, we obtain our most important result:

Theorem 2. Under the same hypotheses of Theorem 1, assume additionally that∫
v f0(dv) = 0,

∫ |v|2 f0(dv) = 1, and that Rp := supN E|V 1
0 |p < ∞ for some

p ≥ 4. Then, there exists C > 0 and for all ε > 0 there exists Cp,ε > 0 such that for all
t ≥ 0,

EW2
2 (V̄t , ft ) ≤ CW2

2 (GN
0 , f ⊗N

0 ) + Cp,εN
−(p−2)/3p+ε .

Thus, for each such p ≥ 4, we obtain a uniform propagation of chaos estimate for
Maxwell molecules in squared 2-Wasserstein distance at an explicit rate of order almost
N−(p−2)/3p, provided that W2

2 (GN
0 , f ⊗N

0 ) converges to 0 with the same rate or faster
(one can simply take GN

0 = f ⊗N
0 as long as f0 has finite p-moment). For instance: if,

together with (6), one only assumes Rp < ∞ for p = 4, we obtain a chaos rate of order
almost N−1/6; but if one assumes Rp < ∞ for all p, then the rate is of order almost
N−1/3.

Let us mention that our techniques can be applied to the case in which ν ∈ [1, 2)
(implying the usual integrability condition

∫ π/2
0 θ2β(θ) < ∞), but this would re-

quire additional technicalities in order to treat the probabilistic objects involved in the
statements and proofs. To keep the exposition simple, we restrict ourselves to the case
ν ∈ (0, 1), which includes the classical Maxwellian molecules (ν = 1/2). Let us further
remark that our coupling techniques can be applied to Kac particles systems in the hard
potentials and hard spheres cases as well, providing in those frameworks the same rate
N−1/3 as in Theorem 1, but a much worse dependence on time. This will be addressed
in forthcoming works.

1.4. Comparison to known results and approaches. The study of propagation of chaos
for the Boltzmann equation was initiated in the paper [19] by Kac. Propagation of chaos
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results were proved by several authors the decades thereafter, for different instances of
the equation, in theweak convergence sense andwithout convergence rates. For instance,
McKean [20] and Grünbaum [17] obtained such results for some models with bounded
collision kernel, whereas the work of Sznitman [26] dealt with unbounded kernels in the
hard spheres case. Tanaka [28,29] introduced a crucial tool in the probabilistic study of
the propagation of chaos property, the nonlinear process, which represents the trajectory
of a “typical particle” in the infinite population and whose time-marginal laws solve
the Boltzmann equation. By coupling the particle system with independent nonlinear
processes, Graham andMéléard [16] obtained one of the first quantitative propagation of
chaos results which cover cutoff variants of the model. However, their approach, relying
on total variation distance on path space, can not be extended to non-cutoff contexts,
and provides bounds which increase exponentially in time.

More recently, in the remarkable work of Mischler and Mouhot [22], uniform-in-
time propagation of chaos results in W1 distance for Maxwellian molecules and hard
spheres are established, with a slow (and hard to track) rate in N . Their method, of
analytic nature, focused on the stability of the evolution of the time-marginal laws of the
particle system and relied on the comparison between Wasserstein and other probability
distances. Moreover, combining Theorem 5.1-(iii) of [22] with the estimates found in
Step 3 of the proof of Theorem 8-(ii) of [3] by Carrapatoso, one can obtain a uniform-in-
time chaos rate for Maxwellian molecules of order almost N−1/8 in some comparable
distance, though only in the case of i.i.d. initial data conditioned to theBoltzmann sphere,
and under a finite Fisher information assumption (this seems to be the best uniform rate
so far available in the literature; we thank an anonymous referee for pointing out this to
us).

In [13], using a coupling with independent nonlinear processes and optimal transport
based techniques, Fournier and Mischler obtained a propagation of chaos result with
an optimal rate of order N−1/2 in squared Wasserstein distance W2 for Nanbu particle
systems in the hard potentials, hard spheres and Maxwell molecules cases, in the latter
setting with the same dependence on t as ours in Theorem 1. Analogous coupling ar-
guments relying on optimal transport were developed earlier in Fontbona et al. [7] for
Nanbu type diffusive approximations of the Landau equation, with less sharper explicit
rates (due to the general coefficients and the suboptimal estimates for empirical measures
of i.i.d. samples available by that time). Recall that, contrary to the Markov dynamics
(3) of binary (also called Bird type) interactions, each particle in a Nanbu type system
is driven by an independent noise source, which implies in the jump case that only one
particle jumps at each collision. Such particle systems preserve momentum and energy
only in mean, and hence are less meaningful from the physical point view (but are still
relevant for numerical simulation purposes). Since the coupling constructions in [7,13]
strongly relied on the independence of the noise sources for different particles, they
cannot be applied to systems with true binary interactions like (3), where the random
noises are shared.

In [5], we addressed this problem in the case of Kac’s one dimensional model and
some generalizations. More precisely, we introduced a new coupling between an in-
teracting particle system with effective binary interactions and a system of nonlinear
processes driven by the same randomness sources, which thus turned out to be not inde-
pendent. As part of that coupling argument, we had to show, in a second step, that these
nonlinear processes become on their turn independent as N goes to ∞. With a similar
strategy, the case of the Landau equation was recently addressed by Fournier and Guillin
[10] in the hard potentials and Maxwell molecules cases. Relying also on a stabilization
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result for the corresponding particle system (analogous to the one in [25]), they obtain in
the latter case a uniform propagation of chaos estimate, similar to ours in the Boltzmann
case.

One of the main additional difficulties that pathwise probabilistic approaches to the
Boltzmann equation need to deal with, when compared to the one dimensional Kac
model (and also to the Landau setting), is the lack of continuity of the parametrization
of the collision angles, as a function of pre-collisional velocities. Here, we cope with
this problem using optimal transport techniques and dealing with cutoff versions of the
nonlinear process.

The assumptions on the initial distributions required in Theorem 2 are similar to those
in [10], and are muchmore general than in all the available uniform propagation of chaos
results for Maxwell molecules (no support constraint or regularity being needed). We
notice that the rate of N−1/3 in W2

2 for Bird type particle systems obtained here, in [5]
and in [10], is slower than the N−1/2 rate valid for Nanbu type systems (corresponding
to the optimal convergence rate in expected W2

2 distance for the empirical measure of
i.i.d. samples, established in [11]). An interesting question, raised in [5], is to what extent
this sub-optimality is intrinsic to the interaction type, or a consequence of the techniques
employed.

1.5. Weak solutions and nonlinear processes. Next we recall the notion of weak so-
lutions for (1) we will work with, for which some definitions are needed. We follow
[13]. Consider the function G : R+ → (0, π/2] defined as G(z) = H−1(z) where
H : (0, π/2] → R+ is given by

H(θ) :=
∫ π/2

θ

β(x)dx .

Consider also measurable functions ı̂, ĵ : R
3 → R

3 such that for every x 	= 0,

(
x

|x | ,
ı̂(x)

|x | ,
ĵ (x)

|x |
)

is an orthonormal basis of R
3. We may and shall assume that they are homogeneous

functions, that is, one has ı̂(λx) = λı̂(x) and ĵ (λx) = λĵ(x) for all x ∈ R
3 and all

λ ∈ R. For v, v∗ ∈ R
3, θ ∈ (0, π/2), φ ∈ [0, 2π), and z ≥ 0, define

�(x, φ) := (cosφ)ı̂(x) + (sin φ)ĵ (x),

a(v, v∗, θ, φ) := −1 − cos θ

2
(v − v∗) +

sin θ

2
�(v − v∗, φ),

c(v, v∗, z, φ) := a(v, v∗,G(z), φ).

(7)

Note that when φ varies in [0, 2π), the vector v + a(v, v∗, θ, φ) ranges all over the
circle centered at b = v+v∗

2 + cos θ v−v∗
2 , with radius r = sin θ

|v−v∗|
2 and orthogonal to

d = v−v∗|v−v∗| . Denote this circle by C(v, v∗, θ), or alternatively by Ĉ(b, r, d).
These objects provide a suitable parametrization of the post-collisional velocities:

it is straightforward to verify that for all v, v∗ ∈ R
3 and for any Lipschitz bounded

measurable function 	 on R
3,
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∫
S2
dσ [	(v′) − 	(v)]B(θ)

=
∫ π/2

0
dθ

∫ 2π

0
dφ[	(v + a(v, v∗, θ, φ)) − 	(v)]β(θ)

=
∫ ∞

0
dz
∫ 2π

0
dφ[	(v + c(v, v∗, z, φ)) − 	(v)],

(8)

the integral being well defined since |a(v, v∗, θ, φ)| ≤ Cθ |v − v∗| and
∫ π/2
0 θβ(θ)dθ <

∞ when (5) holds. By a slight abuse of notation, we still call v′ = v + a(v, v∗, θ, φ),
v′∗ = v∗ − a(v, v∗, θ, φ) and also v′ = v + c(v, v∗, z, φ), v′∗ = v∗ − c(v, v∗, z, φ).

Definition 3. We say that a collection ( ft )t≥0 ∈ C([0,∞),P2(R
3)) is a weak solu-

tion for (1) if it preserves momentum and energy (that is,
∫

v ft (dv) = ∫
v f0(dv) and∫ |v|2 ft (dv) = ∫ |v|2 f0(dv) for all t ≥ 0), and if for all bounded Lipschitz function

	 : R
3 → R and for all t ≥ 0,

∫
R3

	(v) ft (dv) =
∫
R3

	(v) f0(dv) +
∫ t

0
ds
∫
R3

∫
R3

fs(dv) fs(dv∗)
∫ π/2

0
dθβ(θ)

×
∫ 2π

0
dφ[	(v + a(v, v∗, θ, φ)) − 	(v)]. (9)

The next statement provides the main analytical properties of Eq. (1) that we shall
need. The proof of well-posedness can be found for instance in [30,31], whereas the
proof of the existence of a density can be found in [9].

Theorem 4. Assume (5) and (6). Then, there exists a unique weak solution ( ft )t≥0 ∈
C([0,∞),P2(R

3)) of (1), which satisfies supt
∫
R3 |v|p0 ft (dv) < ∞. Moreover, if f0 is

not a Dirac mass, then ft has a density as soon as t > 0.

The nonlinear process, introduced by Tanaka in [28,29] to provide a probabilistic
interpretation of the Boltzmann equation, can be defined in the present case through a
stochastic integral equation with respect to some Poisson point measure. More specifi-
cally, consider the equation

dWt =
∫ ∞

0

∫ 2π

0

∫
R3

c(Wt− , v, z, φ)M(dt, dz, dφ, dv), (10)

whereM(dt, dz, dφ, dv) is a Poisson point measure on [0,∞)×[0,∞)×[0, 2π)×R
3

with intensity dtdzdφ ft (dv)/2π . Following Tanaka’s ideas, under (5) and (6) Fournier
and Méléard [12] proved weak existence and uniqueness in law for Eq. (10), together
with the fact that (L(Wt ))t≥0 solves (9), henceL(Wt ) = ft for all t . Any process having
the same law as W is called a nonlinear process.

Unfortunately, we cannot carry out our coupling construction by relying only on
weak existence of solutions to Eq. (10). This is why we will need to work with the cutoff
nonlinear process instead. Given a cutoff level L > 0, this process WL can be defined
as the solution of a nonlinear SDE similar to (10), namely

dW L
t =

∫ ∞

0

∫ 2π

0

∫
R3

cL(WL
t− , v, z, φ)ML (dt, dz, dφ, dv), (11)
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where cL(v, v∗, z, φ) := c(v, v∗, z, φ)1{z≤L}. This time ML(dt, dz, dφ, dv) is a Pois-
son point measure on [0,∞)×[0,∞)×[0, 2π)×R

3 with intensity dtdzdφ f Lt (dv)/2π ,
where ( f Lt )t≥0 ∈ C([0,∞),P2(R

3)) is the unique solution to the nonlinear equation
(9) with β replaced by βL(z) := β(z)1{θ≥G(L)}, for which the well-posedness part of
Theorem 4 applies. Strong well-posedness for (11) is straightforward: thanks to the in-
dicator 1{z≤L}, the equation is nothing but a recursion for the values of WL

t at its timely
ordered jump-times. By standard arguments, it can be seen that any (weak or strong)
solution to (11) satisfies L(WL

t ) = f Lt (more specifically, the collection(L(WL
t ))t≥0

satisfies a linearized and cutoff version of (9), which in turn has ( f Lt )t≥0 as the unique
solution, see for instance Theorem 3.1 of [12] for details). As expected, one can show
that f Lt → ft as L → ∞ (see Lemma 15 below).

1.6. Idea of the proofs and plan of the paper. To prove our results, following ideas
introduced in [5], for each N and cutoff parameter L we will first couple in some
optimal way, a suitable realization of the particle system Vt with generator (3) (given
below in (13)) with some system UL

t = (U 1,L
t , . . . ,UN ,L

t ) of copies of the cutoff
nonlinear processWL . To do this, we will make use of optimal transport theory, in order
to carefully construct the jumps of the system UL , in such a way that they mimic as
closely as possible the jumps of the particle system V. Roughly speaking, from this
construction and Gronwall’s lemma, we will obtain an estimate like

E
1

N

N∑
i=1

|V i
t −Ui,L

t |2 ≤ C
[
W2

2 (GN
0 , f ⊗N

0 ) + (1 + t)2EW2
2 (ŪL

t , f Lt ) + t L1−2/ν
]

for some constant C > 0. As mentioned earlier, the fact that we deal with a particle
system with effective binary collisions will imply that the cutoff nonlinear processes
U 1,L , . . . ,UN ,L thus constructed are not independent. Therefore, in a similar way as in
[5], we will need to “decouple”, in a second step, these processes, obtaining

EW2
2 (ŪL

t , f Lt ) ≤ CN−1/3

uniformly on L (see Lemma 12 and Corollary 14).Wewill thenmake L → ∞ to deduce
the estimates of Theorem 1. Finally, from this and the results of [25], we will obtain the
uniform-in-time chaos rate stated in Theorem 2.

In Sect. 2 we give an explicit construction of the particle systemVt and, more impor-
tantly, we construct the coupling with the corresponding systemUL

t of non-independent
cutoff nonlinear processes used throughout this paper. In Sect. 3 we state and prove
several technical results. In Sect. 4 we prove Theorem 1. Finally, in Sect. 5 we prove
Theorem 2, along with some intermediate results that have interest on their own, such
as the propagation of moments for the particle system without assuming bounded initial
energy (see Corollary 17), and an equilibration result that extends the one by Rousset
[25] (see Lemma 18).

2. Construction

In this section we explicitly construct the coupled system (V,UL) in order to prove
our results. These processes will be defined as solutions of stochastic integral equations
driven by the same Poisson point measure. We follow [5,13].
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2.1. The particle system. Fix the number of particles N ∈ N. We introduce the function
i : [0, N ) → {1, . . . , N } by i(ξ) = �ξ� + 1, so that i(ξ) is a discrete index associated to
the continuous variable ξ . Let G ⊆ R

2 be the set

G = {(ξ, ζ ) ∈ [0, N )2 : i(ξ) 	= i(ζ )}.
Note that its area is |G| = N (N−1). Consider nowaPoissonpointmeasureN (dt, dz, dφ,

dξ, dζ ) on [0,∞) × [0,∞) × [0, 2π) × [0, N ) × [0, N ) with intensity

N

2
dtdz

dφ

2π

dξdζ1G(ξ, ζ )

|G| = dtdzdφdξdζ1G(ξ, ζ )

4(N − 1)π
.

In words, the measure N picks atoms (t, z) ∈ [0,∞)2 with intensity N
2 dtdz and for

each such atom it also independently samples an angle φ uniformly from [0, 2π) and a
pair (ξ, ζ ) uniformly from the set G. We will use the variables ξ and ζ to choose indexes
i = i(ξ) and j = i(ζ ) of the particles that interact at each jump. Additionally, given
GN

0 ∈ Psym
2 ((R3)N ) and f0 ∈ P2(R

3) as in the statement of Theorem 1, we will in the
sequel denote by

(V0,U0) (12)

a realization, independent of N , of the optimal coupling between GN
0 and f ⊗N

0 . Call
F = (Ft )t≥0 the complete, right-continuous filtration generated by (V0,U0) and N .
We denote by P and E the probability measure and expectation in the corresponding
probability space.

We can now introduce the particle systemV = (V 1, . . . , V N ) as the solution, starting
from the initial condition V0, of the stochastic equation

dVt =
∫ ∞

0

∫ 2π

0

∫
[0,N )2

∑
i 	= j

1{i(ξ)=i,i(ζ )= j}ci j (Vt− , z, φ)N (dt, dz, dφ, dξ, dζ ) (13)

where ci j (x, z, φ) ∈ (R3)N is the vector with coordinates given by

(ci j (x, z, φ))l =

⎧⎪⎨
⎪⎩
c(xi , x j , z, φ) if l = i,
−c(x j , xi , z, φ) if l = j,
0 otherwise.

(14)

Weak existence and uniqueness of solutions for (13) holds, see Lemma 8 below.
Since we required ı̂ and ĵ to be homogeneous functions, in particular they are odd

functions and it can be easily seen that c(v, v∗, z, φ) = −c(v∗, v, z, φ). Given a solution
to (13), it follows that for each i = 1, . . . , N , the particle V i satisfies the stochastic
equation

dV i
t =

∫ ∞

0

∫ 2π

0

∫ N

0
c(V i

t− , V i(ξ)

t− , z, φ)N i (dt, dz, dφ, dξ), (15)

where N i is given by

N i (dt, dz, dφ, dξ) := N (dt, dz, dφ, dξ, [i − 1, i)) +N (dt, dz, dφ, [i − 1, i), dξ).

That is, N i selects only the atoms of N such that either i(ξ) = i or i(ζ ) = i . Clearly,
N i is a Poisson point measure on [0,∞) × [0,∞) × [0, 2π) × [0, N ) with intensity

dtdzdφdξ1Ai (ξ)

2(N − 1)π
,
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where Ai := [0, N ) \ [i − 1, i). Thus, the term V i(ξ)

t− appearing in (15) is a ξ -realization
of the (random) probability measure V̄i

t− (defined as in (4)). Therefore, from the point
of view of the particle V i , the dynamics is as follows: (t, z)-atoms are sampled with
intensity 1 and for each such atom an angle φ is chosen and a particle v∗ = V i(ξ)

t− is

selected at random among all the others; v = V i
t− (and v∗ = V i(ξ)

t− ) then updates its state

to v′ = V i
t (and v′∗ = V i(ξ)

t ) as given in (2).

2.2. Coupling with a system of cutoff nonlinear processes. The key observation is the
following: in (15) with cL in place of c, if one replaces V i(ξ)

t− by some realization of the
probability measure f Lt , then the resulting equation defines a cutoff nonlinear process as
in (11). Moreover, we want to choose this f Lt -distributed random variable in an optimal
way (in the suitable sense), so that the resulting process remains close to V i . Such a
construction needs to be carried out in a measurable way, which motivates the following
lemma. In the sequel, all optimal couplings and optimal costs considered use the cost
function C(v, u) = |v − u|2.
Lemma 5 (coupling). Fix L > 0 and i ∈ {1, . . . , N }. Then, there exists an R

3-valued
function �

i,L
t (x, ξ), measurable in (t, x, ξ) ∈ [0,∞) × (R3)N × Ai , with the following

property: for any (t, x) ∈ [0,∞)× (R3)N and any random variable ξ uniformly chosen
in Ai , the pair (x i(ξ),�

i,L
t (x, ξ)) is an optimal coupling between x̄i and f Lt . Moreover,

for any exchangeable random vector X ∈ (R3)N and any bounded measurable function
h, we have E

∫ j
j−1 h(�

i,L
t (X, ξ))dξ = ∫

R3 h(u) f Lt (du) for any j ∈ {1, . . . , N }, j 	= i .

Proof. See Lemma 3 in [5]. ��
To ensure that the post-collisional velocities of V i

t and Ui,L
t do not differ much, we

will use the functions �i,L of Lemma 5 to define our system UL = (U 1,L , . . . ,UN ,L)

of cutoff nonlinear processes. This will mean that at each jump of v = V i
t together

with some other particle v∗, the corresponding process u = Ui,L
t will sample some

f Lt -distributed variable u∗ to interact with, in such a way that the interactions of the
system UL mimic those of the particle system V.

However, post-collisional velocities will also depend on the anglesφ chosen in circles
of the form C(v, v∗, θ) and C(u, u∗, θ) associated with each collision. As remarked by
Tanaka [28,29], no continuity assumption can be made about the functions ı̂ and ĵ , and,
in order to control the distance between V i

t and Ui,L
t after a collision, one has to make

specific (non trivial) uniformly random choices for those angles as well. In the present
paper, we will choose the angles φ uniformly in the circles C(v, v∗, θ) and C(u, u∗, θ)

in such a way that their joint distribution is an optimal coupling of the uniform laws on
these circles, with respect to the quadratic cost. The optimal transport cost happens to
have a nice explicit formula, with the optimal transport map depending only on v − v∗
and u − u∗, in a fully explicit way. This is stated in the following:

Lemma 6 (optimal coupling of circles).Recall that Ĉ(b, r, d) denotes the circle centered
at b ∈ R

3, with radius r > 0 and orthogonal direction d ∈ S
2; alternatively, for

v, v∗ ∈ R
3 and θ ∈ [0, π/2], C(v, v∗, θ) denotes the circle centered at v+v∗

2 +cos θ v−v∗
2 ,

with radius sin θ
|v−v∗|

2 and orthogonal to v−v∗|v−v∗| . Then:
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(i) For any b, b̃ ∈ R
3, r, r̃ ≥ 0 and d, d̃ ∈ S

2, the optimal transport cost between the
uniform distributions on the circles Ĉ(b, r, d) and Ĉ(b̃, r̃ , d̃) is given by

W2
2

(
unifĈ(b,r,d)

, unifĈ(b̃,r̃ ,d̃)

)
= |b − b̃|2 + (r − r̃)2 + rr̃(1 − |d · d̃|). (16)

(ii) There exists a measurable function ϕ : R
3 × R

3 × [0, 2π) → [0, 2π) with the
following property: for every v, v∗, u, u∗ ∈ R

3, θ, ϑ ∈ [0, π/2] and for any random
variable φ uniformly chosen in [0, 2π), the pair

(v + a(v, v∗, θ, φ), u + a(u, u∗, ϑ, ϕ))

where ϕ = ϕ(v − v∗, u− u∗, φ), is an optimal coupling of the uniform distributions
on the circles C(v, v∗, θ) and C(u, u∗, ϑ).

Proof. We first prove (i). Without loss of generality, assume b̃ = 0 and d · d̃ ≥ 0. Let
h = h(d, d̃) ∈ S

2 be a fixed measurable choice of a unitary vector orthogonal to both
d and d̃ (if they are parallel then there are infinitely many such h’s; if not, there are
only 2; we can take for instance h = ı̂(d)/|d| in the first case and h = d × d̃/|d × d̃|
in the second). Let also k, k̃ ∈ S

2 be such that (h, k, d) and (h, k̃, d̃) are orthonormal
bases of R

3 with the same orientation s = d · (h × k) = d̃ · (h × k̃) ∈ {−1, 1}, so that
k · k̃ = sk · (d̃ × h) = sd̃ · (h × k) = d · d̃ . With these bases, we can now parametrize
the circles Ĉ(b, r, d) and Ĉ(b̃, r̃ , d̃) using angles φ and φ̃ ∈ [0, 2π). Namely, a point
x ∈ Ĉ(b, r, d) is written as x = b + r(cosφ)k + r(sin φ)h, while a point y ∈ Ĉ(b̃, r̃ , d̃)

is written as y = r̃(cos φ̃)k̃ + r̃(sin φ̃)h. Then, the associated cost is

C(φ, φ̃) = |b + r(cosφ)k − r̃(cos φ̃)k̃ + (r sin φ − r̃ sin φ̃)h|2
= |b|2 + r2 + r̃2 − 2rr̃ [(sin φ sin φ̃) + (cosφ cos φ̃)d · d̃]
+ 2b · [r(cosφ)k − r̃(cos φ̃)k̃ + (r sin φ − r̃ sin φ̃)h].

Using the inequality 2αβ ≤ α2 + β2 in the cross-terms, we obtain C(φ, φ̃) ≥ 	(φ) −
�(φ̃) for all φ, φ̃ ∈ [0, 2π), where

	(φ) = |b|2 + r2 − rr̃ [(sin φ)2 + (cosφ)2d · d̃] + 2rb · [(cosφ)k + (sin φ)h]
�(φ̃) = −{r̃2 − rr̃[(sin φ̃)2 + (cos φ̃)2d · d̃] − 2r̃b · [(cos φ̃)k̃ + (sin φ̃)h]}.

Moreover, the equality C(φ, φ̃) = 	(φ) − �(φ̃) is attained when φ = φ̃. Using for
instance Remark 5.13 of [32], this shows that taking φ = φ̃ uniformly distributed on
[0, 2π) in fact provides an optimal coupling of the uniform distributions on C(b, r, d)

and C(b̃, r̃ , d̃). This proves point (i), since the cost of this coupling is

∫ 2π

0
C(φ, φ)

dφ

2π
= 1

2π

∫ 2π

0
{|b|2 + r2 + r̃2 − 2rr̃[(sin φ)2 + (cosφ)2d · d̃]

+ 2b · [(cosφ)(rk − r̃ k̃) + (sin φ)(r − r̃)h]}dφ

= |b|2 + r2 + r̃2 − rr̃(1 + d · d̃).
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We now prove (ii). Put d = v−v∗|v−v∗| and d̃ = u−u∗|u−u∗| . For some fixed measurable choice

(d, d̃) �→ h = h(d, d̃) of a vector h orthogonal to both d and d̃, let φi = φi (d, d̃) ∈
[0, 2π), i = 1, 2 be the unique angles such that

�(v − v∗, φ1)

|v − v∗| = �(u − u∗, φ2)

|u − u∗| =: h,

Note that (φ1, φ2) depend only on v − v∗ and u − u∗ through d, d̃, �(v − v∗, ·) and
�(u − u∗, ·), in a measurable way. Now put

k := �(v − v∗, φ1 + π/2)

|v − v∗| , k̃ := �(u − u∗, φ2 + sπ/2)

|u − u∗| .

Here s = ±1 is chosen such that the rotation in π/2 is performed with the same orienta-
tion. More specifically, if d · d̃ ≥ 0, then s = 1 when the bases ( v−v∗|v−v∗| ,

ı̂(v−v∗)|v−v∗| ,
ĵ (v−v∗)
|v−v∗| )

and ( u−u∗|u−u∗| ,
ı̂(u−u∗)|u−u∗| ,

ĵ (u−u∗)
|u−u∗| ) have the same orientation, and s = −1 otherwise; but

when d · d̃ < 0, we make the opposite choice. Now, the same argument of part (i)
shows that if φ is a uniform random variable on [0, 2π) then v + a(v, v∗, θ, φ) and
u + a(u, u∗, ϑ, s(φ − φ1) + φ2) constitute an optimal coupling. Put ϕ = s(φ − φ1) + φ2
and the conclusion follows. ��
Remark 7.

• The expression on the right of (16) is nice: the term |b − b̃|2 is the cost associated
to translation of the circles, the term (r − r̃)2 is the dilation or contraction cost, and
rr̃(1 − |d · d̃|) corresponds to inclination.

• When (v−v∗) · (u−u∗) ≥ 0 and θ = ϑ , the coupling given in Lemma 6-(ii) reduces
to the parallel spherical coupling of [25].

With the functions�i,L and ϕ of Lemmas 5 and 6-(ii) in hand, we can now introduce,
at a formal level first, a system of cutoff nonlinear processes UL = (U 1,L , . . . ,UN ,L),
suitably constructed in the same probability space as V = (V 1, . . . , V N ) defined in
(13). Recall that the pair (V0,U0) is given and specified in (12). Mimicking (15), for
each L ∈ [1,∞), N ∈ N and i = 1, . . . N , the processesUi,L is defined as the solution,
starting from Ui

0, of the stochastic equation

dUi,L
t =

∫ ∞

0

∫ 2π

0

∫ N

0
cL(Ui,L

t− ,�
i,L
t (UL

t− , ξ), z, ϕi
t−)N i (dt, dz, dφ, dξ), (17)

where we have used the shorthand

ϕi
t− = ϕ(V i

t− − V i(ξ)

t− ,Ui,L
t− − �

i,L
t (UL

t− , ξ), φ). (18)

In words, at jump instants of Ui,L
t , this process collides with an f Lt -distributed random

variable, which is optimally coupled to the realization U i(ξ),L
t− of the (random) measure

Ūi,L
t− . Since the Poisson measures N i and N j share some of its atoms, processes Ui,L

and U j,L have simultaneous jumps and hence are not independent.
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We can write the following joint SDE for the pair (V,UL), arranged as the collection
of pairs ((V 1,U 1,L), . . . , (V N ,UN ,L)) ∈ (R3 × R

3)N :

d(V,UL)t =
∫ ∞

0

∫ 2π

0

∫
[0,N )2

∑
i 	= j

1{i(ξ)=i,i(ζ )= j}

× bL ,i j (Vt− ,UL
t− , t, z, φ, ξ, ζ )N (dt, dz, dφ, dξ, dζ ),

(19)

where bL ,i j (x, y, t, z, φ, ξ, ζ ) ∈ (R3 × R
3)N is given by

(bL ,i j (x, y, t, z, φ, ξ, ζ ))�

=

⎧⎪⎪⎨
⎪⎪⎩

(
c(xi , x j , z, φ), cL (yi ,�i,L

t (y, ζ ), z, ϕ(xi − x j , yi − �
i,L
t (y, ζ ), φ))

)
if � = i,(

c(x j , xi , z, φ), cL (y j ,�
j,L
t (y, ξ), z, ϕ(x j − xi , y j − �

j,L
t (y, ξ), φ))

)
if � = j,

(0, 0) otherwise.

Existence for each L ∈ [1,∞) and N ∈ N of a pair (V,UL) solving (19), along
with its relevant properties, is stated in the next result. Some arguments of the proof are
standard or can be adapted from previous works, so details will be provided only when
needed. The proof is given in the Appendix.

Lemma 8. Assume (5) and let L ∈ [1,∞) and N ∈ N. We have:

(i) If V is a solution to (13), then it has the law of the unique (R3)N valued Markov
process with generator given by (3). In particular, we almost surely have

∑N
i=1 V

i
t =∑N

i=1 V
i
0 and

∑N
i=1 |V i

t |2 = ∑N
i=1 |V i

0 |2 for all t ≥ 0.
(ii) There is weak existence and uniqueness of a solution (V,UL) to the system of SDEs

(19).
(iii) For each i = 1, . . . , N, the process Ui,L is a cutoff nonlinear process, and in

particular we have L(Ui,L
t ) = f Lt .

(iv) Last, the collection of pairs of processes (V 1,U 1,L), . . . , (V N ,UN ,L) is exchange-
able.

Remark 9. One can also check, using the preservation of moments of the processes
UL , L ∈ [1,∞) and Lemma 15, that the family of laws of (V,UL) has accumulation
points as L → ∞ which are couplings of the particle system (13) and a system of N
non-independent nonlinear processes. Unfortunately, due to the lack of continuity of the
functions ϕ and �

i,L
t , this does not readily ensure (weak) well-posedness for the system

(19) in the case L = ∞, which would simplify the construction and proofs. This is the
reason why we are constrained to work with a system of cutoff nonlinear processes.

3. Estimates and Technical Results

We will use the following bounds a couple of times: under (5), it can be easily seen that
for some constants 0 < c2 < c3 we have:

c2(1 + z)−1/ν ≤ G(z) ≤ c3(1 + z)−1/ν ∀z > 0. (20)

The following lemmas provide useful estimates for our purposes. Typically, onewants
to use these lemmas with v and v∗ taken from the particle system, and u and u∗ taken
from the system of cutoff nonlinear processes.
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Lemma 10. Write R(v, u) := |v||u| + |v · u| − 2v · u ≥ 0. For any v, v∗, u, u∗ ∈ R
3,

θ, ϑ ∈ [0, π/2], write ϕ = ϕ(v − v∗, u − u∗, φ). Then:

∫ 2π

0

(
|v + a(v, v∗, θ, φ) − u − a(u, u∗, ϑ, ϕ)|2 − |v − u|2

) dφ

2π

= −
[
(v − u) + (v∗ − u∗)

]
·
[
1 − cos θ

2
(v − v∗) − 1 − cosϑ

2
(u − u∗)

]

− sin θ sin ϑ

4
R(v − v∗, u − u∗) +

1 − cos(θ − ϑ)

2
(v − v∗) · (u − u∗).

(21)

Proof. Setting

b = v + v∗
2

+ cos θ
v − v∗

2
, r = sin θ

|v − v∗|
2

, d = v − v∗
|v − v∗| ,

b̃ = u + u∗
2

+ cosϑ
u − u∗

2
, r̃ = sin ϑ

|u − u∗|
2

, d̃ = u − u∗
|u − u∗| ,

we have

4(b − b̃)2

= |(v − u) + (v∗ − u∗) + cos θ(v − v∗) − cosϑ(u − u∗)|2
= |v − u|2 + |v∗ − u∗|2 + 2(v − u) · (v∗ − u∗)
+ cos2 θ |v − v∗|2 + cos2 ϑ |u − u∗|2 − 2 cos θ cosϑ(v − v∗) · (u − u∗)
+ 2[(v − u) + (v∗ − u∗)] · [cos θ(v − v∗) − cosϑ(u − u∗)]

= 3|v − u|2 − |v∗ − u∗|2 + 2(v − u) · (v∗ − u∗)
+ cos2 θ |v − v∗|2 + cos2 ϑ |u − u∗|2 − 2 cos θ cosϑ(v − v∗) · (u − u∗)
− 2[(v − u) + (v∗ − u∗)] · [(1 − cos θ)(v − v∗) − (1 − cosϑ)(u − u∗)]

(22)

and

4(r − r̃)2 + 4rr̃(1 − |d · d̃|)
= sin2 θ |v − v∗|2 + sin2 ϑ |u − u∗|2

− sin θ sin ϑ(|v − v∗||u − u∗| + |(v − v∗) · (u − u∗)|)
= sin2 θ |v − v∗|2 + sin2 ϑ |u − u∗|2 − sin θ sin ϑR(v − v∗, u − u∗)

− 2 sin θ sin ϑ(v − v∗) · (u − u∗).
(23)

Adding (22) and (23), using that |v −v∗|2 + |u−u∗|2 +2(v −u) · (v∗ −u∗) = |v −u|2 +
|v∗ − u∗|2 + 2(v − v∗) · (u − u∗) and the identity cos θ cosϑ + sin θ sin ϑ = cos(θ −ϑ),
yields

4(b − b̃)2 + 4(r − r̃)2 + 4rr̃(1 − |d · d̃|)
= 4|v − u|2 − sin θ sin ϑR(v − v∗, u − u∗)
+ 2(1 − cos(θ − ϑ))(v − v∗) · (u − u∗)
− 2[(v − u) + (v∗ − u∗)] · [(1 − cos θ)(v − v∗) − (1 − cosϑ)(u − u∗)].
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Thanks to Lemma 6-(ii), ϕ is an optimal transport map, and then the integral on the left
side of (21) without the term −|v − u|2 is actually the cost given by Lemma 6-(i), that
is, (b − b̃)2 + (r − r̃)2 + rr̃(1 − |d · d̃|). Dividing by 4 and subtracting |v − u|2 in the
above identity, the result follows. ��
Corollary 11. Assume (5). Fix any K , L ∈ [0,∞] with K ≥ L, and define 	K

L :=∫ K
L

1−cosG(z)
2 dz ≥ 0. For any v, v∗, u, u∗ ∈ R

3, write ϕ = ϕ(v − v∗, u − u∗, φ). Then
we have

∫ ∞

0

∫ 2π

0

(
|v + cK (v, v∗, z, φ) − u − cL(u, u∗, z, ϕ)|2 − |v − u|2

) dφ

2π
dz

= 	L
0 [−|v − u|2 + |v∗ − u∗|2] + 	K

L (v − v∗) · (2u − v − v∗)

− R(v − v∗, u − u∗)
∫ L

0

sin2 G(z)

4
dz.

≤ 	L
0 [−|v − u|2 + |v∗ − u∗|2] + C(|v| + |v∗| + |u|)2(1 + L)1−2/ν .

Proof. Split the integral with respect to z into
∫ L
0 and

∫ K
L . For the first integral we have

cK (v, v∗, z, φ) = a(v, v∗, θ, φ) and cL(u, u∗, z, ϕ) = a(u, u∗, θ, ϕ) for θ = G(z);
using Lemma 10 yields the first and third terms in the equality. For the second integral
we have cL(u, u∗, z, ϕ) = a(v, v∗, 0, ϕ), so this time we use Lemma 10 with θ = G(z)
and ϑ = 0, which gives the second term. The inequality is then obtained discarding the
negative third term, noting that 	K

L ≤ C
∫∞
L G2(z)dz, and using (20). ��

The next lemma is of key importance, since it gives a decoupling estimate for the
system of non-independent cutoff nonlinear processes UL . The proof, also relying on a
coupling argument, follows Lemma 6 of [5].

Lemma 12 (decoupling). Assume (5) and take L ∈ [1,∞). Then, there exists a constant
C independent of L such that for all k ∈ {1, . . . , N } and all t ≥ 0,

W2
2 (Lk(UL

t ), ( f Lt )⊗k) ≤ C
k

N
.

Proof. Given k ∈ {1, . . . , N } fixed, we will construct k independent cutoff nonlinear
processes Ũ 1,L , . . . , Ũ k,L such that E|Ui,L

t − Ũ i,L
t |2 is small, for all i = 1, . . . , k. To

achieve this, the idea is the following: when Ui,L
t has a simultaneous jump with some

U j,L
t with j /∈ {1, . . . , k}, then the process Ũ i,L

t will use the same sample of f Lt used
by Ui,L

t to define its own jump; but when j ∈ {1, . . . , k}, then one of the processes,
Ũ i,L
t or Ũ j,L

t , will not jump at that instant. We will then use an additional, independent
source of randomness to define new jumps that compensate for the missing ones. Since,
when k � N , the second kind of jump occurs much less frequently, this construction
will give the desired estimate.

Consider a Poisson point measure M that is an independent copy of N , also inde-
pendent from (V0,U0), and define for each i ∈ {1, . . . , k}

Mi (dt, dz, dφ, dξ) = N (dt, dz, dφ, [i − 1, i), dξ)

+N (dt, dz, dφ, dξ, [i − 1, i))1[k,N )(ξ)

+M(dt, dz, dφ, dξ, [i − 1, i))1[0,k)(ξ).
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That is, Mi selects the atoms of N (dt, dz, dφ, dξ, dζ ) where either (i(ξ) = i), or
(i(ζ ) = i and i(ξ) /∈ {1, . . . , k}), and to make up for the dropped atoms it also selects
new ones from M(dt, dz, dφ, dξ, dζ ), where i(ζ ) = i and i(ξ) ∈ {1, . . . , k}. This
ensures that no such atom appears in two Mi ’s, implying that they are independent
Poisson point measures, all with intensity dtdzdφdξ1Ai (ξ)/[2(N − 1)π ], just likeN i .

Mimicking (17), we define Ũ i,L as the solution, starting from Ũ i,L
0 = Ui

0, of the
stochastic equation

dŨ i,L
t =

∫ ∞

0

∫ 2π

0

∫ N

0
cL(Ũ i,L

t− ,�
i,L
t (UL

t− , ξ), z, ϕ̃i
t−)Mi (dt, dz, dφ, dξ). (24)

Here we write

ϕ̃i
t− = ϕ(Ui,L

t− − �
i,L
t (UL

t− , ξ), Ũ i,L
t− − �

i,L
t (UL

t− , ξ), ϕi
t−),

where ϕi
t− was defined in (18). In other words: ϕ̃i

t− takes the angle ϕi
t− and maps it to

[0, 2π) in such a way that the resulting pair (ϕi
t− , ϕ̃i

t−) parametrizes (as a function of φ)
an optimal coupling of the uniform distributions on the circles with orthogonal directions
Ui,L
t− −�i

t (U
L
t− , ξ) and Ũ i,L

t− −�i
t (U

L
t− , ξ), whenever φ is uniformly chosen on [0, 2π).

The latter ensures closeness of the states of Ui,L
t and Ũ i,L

t after the joint jump.
If we define M̃i,L(dt, dz, dφ, dv) to be the point measure on [0,∞) × [0,∞) ×

[0, 2π) × R
3 with atoms (t, z, ϕ̃i

t− ,�
i,L
t (UL

t− , ξ)) for every atom (t, z, φ, ξ) of Mi , it

is clear that Ũ i,L depends only on M̃i,L and Ui
0. Since: (1) the dependence on V and

UL in (24) is predictable with respect to N , M and the initial data, (2) the Poisson
measures M1, . . . ,Mk are independent, (3) the ξ -law of �

i,L
t (x, ξ) is f Lt for every

x ∈ R
N , and (4) the φ-law of ϕ(v, u, φ) is the uniform distribution on [0, 2π) for any

v, u ∈ R
3, one can use the compensation formula to compute the joint Laplace functional

of M̃1,L , . . . ,M̃k,L and deduce that they are independent Poisson point measures, all
with intensity dtdzdφ f Lt (dv)/2π . This shows that Ũ i,L satisfies (11) withML replaced
by M̃i,L , and then Ũ 1,L , . . . , Ũ k,L are independent cutoff nonlinear processes.

Consequently, we have

W2
2 (Lk(UL

t ), ( f Lt )⊗k) ≤ E
1

k

k∑
j=1

|U j,L
t − Ũ j,L

t |2 = E|Ui,L
t − Ũ i,L

t |2.

Thus, it suffices to estimate the quantity ht := E|Ui,L
t − Ũ i,L

t |2, for any i ∈ {1, . . . , k}
fixed. We can write

ht − hs = J 1s,t + J 2s,t + J 3s,t (25)

where J 1s,t is the term associated with simultaneous jumps of Ui,L and Ũ i,L , J 2s,t cor-

responds to jumps of Ui,L alone, and J 3s,t corresponds to jumps of Ũ i,L alone. To

write this terms explicitly, let us first shorten notation: write Ur := Ui,L
r , Ũr := Ũ i,L

r ,
�r := �

i,L
r (UL

r , ξ), cr := c(Ur ,�r , z, ϕi
r ) and c̃r := c(Ũr ,�r , z, ϕ̃i

r ). From (17) and
(24), J 1s,t , J

2
s,t and J 3s,t are thus given by
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J 1s,t = E

∫
(s,t]

∫ L

0

∫ 2π

0

∫ N

0

(
|Ur− + cr− − Ũr− − c̃r−|2 − |Ur− − Ũr−|2

)
[
N (dr, dz, dφ, [i − 1, i), dξ) +N (dr, dz, dφ, dξ, [i − 1, i))1[k,N )(ξ)

]
,

J 2s,t = E

∫
(s,t]

∫ L

0

∫ 2π

0

∫ N

0

(
|Ur− + cr− − Ũr−|2 − |Ur− − Ũr−|2

)

N (dr, dz, dφ, dξ, [i − 1, i))1[0,k)(ξ),

J 3s,t = E

∫
(s,t]

∫ L

0

∫ 2π

0

∫ N

0

(
|Ur− − Ũr− − c̃r−|2 − |Ur− − Ũr−|2

)

M(dr, dz, dφ, dξ, [i − 1, i))1[0,k)(ξ).

Recall that N and M have intensity dtdzdφdξdζ1G(ξ, ζ )/[4(N − 1)π ]. Note that∫ i
i−1 1G(ξ, ζ )dζ = 1Ai (ξ), where Ai = [0, N ) \ [i − 1, i). Using the compensation
formula, the Poisson point measures in the integrals can be replaced by their intensities,
and we obtain for J 1s,t :

J 1s,t = E

∫ t

s

∫ L

0

∫ 2π

0

∫ N

0

(
|Ur + cr − Ũr − c̃r |2

− |Ur − Ũr |2
)

[1Ai (ξ) + 1[k,N )(ξ)] drdzdφdξ

4(N − 1)π

≤ −	L
0 E

∫ t

s

∫ N

0
|Ur − Ũr |2[1Ai (ξ) + 1[k,N )(ξ)] drdξ

2(N − 1)

≤ −	L
0

2

∫ t

s
hr dr, (26)

where we have used Corollary 11 with v = Ur , u = Ũr , v∗ = u∗ = �r , K = L and the
change of variable (φ, ϕi

r ) �→ (ϕi
r , ϕ̃

i
r ). For J

2
s,t we get:

J 2s,t = E

∫ t

s

∫ L

0

∫ 2π

0

∫ N

0

(
|Ur + cr − Ũr |2 − |Ur − Ũr |2

)
1Ai∩[0,k)(ξ)

drdzdφdξ

4(N − 1)π

≤ CE

∫ t

s

∫ N

0
(|Ur | + |�r | + |Ũr |)21Ai∩[0,k)(ξ)

drdξ

2(N − 1)

≤ C(t − s)
k − 1

N − 1
, (27)

where in the second step we have used Corollary 11 again, with v = Ur , u = Ũr ,
v∗ = u∗ = �r and the roles of K and L exchanged (the smallest one being equal to
0). In the last step we have used the fact that f Lr has uniformly bounded moments of
order 2, that L(Ur ) = L(Ũr ) = f Lr , and that E

∫ j
j−1 |�r |2dξ = ∫

R3 |u|2 f Lr (du) for all

j 	= i , thanks to Lemma 5. Similarly for J 3s,t : using Corollary 11 with v = Ũr , u = Ur ,
v∗ = u∗ = �r , the bound (27) is also valid for J 3s,t .

Thus, from (25), (26) and (27), we obtain that ∂t ht ≤ −(	L
0 /2)ht + Ck/N for

almost all t ≥ 0, and, since h0 = 0, the conclusion follows from Gronwall’s lemma (the
dependence on L can be dropped since 	L

0 is bounded away from 0 when L ≥ 1 thanks
to the lower bound in (20)). ��
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4. Proof of Theorem 1

For aprobabilitymeasureμonR
d , call εn(μ) := EW2

2 (μ, Z̄),whereZ = (Z1, . . . , Zn) ∈
(Rd)n is a vector of n independent and μ-distributed random variables on R

d . The best
general estimate available for εn(μ) is the following, whose proof can be found in [11]:
for any p > 4, there exists a constant Cp < ∞ such that for every μ ∈ P(Rd)

εn(μ) ≤ Cp(
∫ |v|pμ(dv))2/p

n1/2
. (28)

The following lemma will allow us to work with W2
2 (Ln(UL

t ), ( f Lt )⊗n) instead of

EW2
2 (Ūi,L

t , f Lt ), but at the price of the extra term εn( f Lt ):

Lemma 13. Let X = (X1, . . . , Xm) ∈ (Rd)m be an exchangeable random vector, and
let μ ∈ P(Rd). Then, for any n ≤ m,

1

2
EW2

2 (X̄, μ) ≤ kn

m

(
W2

2 (Ln(X), μ⊗n) + εn(μ)
)

+
�

m

(
W2

2 (L�(X), μ⊗�) + ε�(μ)
)

,

where k and � are the unique non-negative integers satisfying m = kn+� and � ≤ n−1.

Proof. See the proof of Lemma 7 of [5]. ��
Corollary 14. Assume (5) and (6), and take L ∈ [1,∞). Then, there exists a constant
C > 0 independent of L, such that for any i ∈ {1, . . . , N } and for all t ≥ 0,

EW2
2 (Ūi,L

t , f Lt ) ≤ CN−1/3.

Moreover, the same bound is valid with ŪL
t in place of Ūi,L

t .

Proof. In the notation of Lemma 13, set m = N − 1, X = (U j,L
t ) j 	=i and μ = f Lt and

given n ≤ m, simply bound kn
m ≤ 1, �

m ≤ n
N ,W2

2 (L�(X), μ⊗�) ≤ 4E and ε�(μ) ≤ 4E ,
where E = ∫ |v|2 f Lt (dv) = ∫ |v|2 f0(dv). Using that result we get

1

2
EW2

2 (Ūi,L
t , f Lt ) ≤ W2

2 (Ln(UL
t ), ( f Lt )⊗n) + εn( f

L
t ) + 8E

n

N

≤ C
n

N
+ C

1

n1/2
,

where we have used Lemma 12 together with (28) with p = p0 > 4 and the uniformity
of the p0-moments of f Lt . Choosing n = �N 2/3� yields the desired result. To obtain the
same estimate with ŪL

t on the left hand side, use m = N and X = UL
t . ��

We need to make sure that the cutoff L can be removed in a satisfactory manner;
for instance, we can use Theorem 5.2 of [12]. However, for the reader’s convenience,
we state here a result specific for the cutoff we use, with a shorter proof and better
dependence on time:

Lemma 15. Assume (5) and (6). Then there exists a constant C such that for all t ≥ 0
and all L > 0,

W2
2 ( f Lt , ft ) ≤ CtL1−2/ν.
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Proof. If f0 is a Dirac mass, then ft = f Lt = f0 for all t ≥ 0 and the result is trivial. If
f0 is not a Dirac mass, we know that ft has a density for t > 0 thanks to Theorem 4;
therefore, there exists an optimal transport map T L

t : R
3 → R

3 such that for any random
vector X ∈ R

3 with law ft , the pair (X, T L
t (X)) is an optimal coupling between ft and

f Lt . Moreover, thanks to themeasurability of the flows t �→ ( ft , f Lt ) and to Theorem 1.1
in [8], the maps T L

t can be chosen in such a way that the mapping (t, v) �→ (v, T L
t (v))

is measurable. Now, given a (weak) solution (W,M) to (10), define a process WL as
the unique, jump-by-jump solution, starting from WL

0 = W0, to the stochastic equation

dW L
t =

∫ ∞

0

∫ 2π

0

∫
R3

cL(WL
t− , T L

t (v), z, ϕt−)M(dt, dz, dφ, dv),

with ϕt− = ϕ(Wt− −v,WL
t− −T L

t (v), φ). Arguing as in the proof of part (iii) of Lemma
8, one can verify that WL is a cutoff nonlinear process, and in particular, WL

t has law
f Lt for each t ≥ 0. For ht = E|Wt − WL

t |2, we obtain from this and (10):

∂t ht = E

∫ ∞

0

∫ 2π

0

∫
R3

(
|Wt + c(Wt , v, z, φ) − WL

t − cL(WL
t , T L

t (v), z, ϕt )|2

− |Wt − WL
t |2

) dtdφ ft (dv)

2π

≤ E

∫
R3

(
−	L

0 |Wt − WL
t |2 + 	L

0 |v − T L
t (v)|2

+ C(|Wt | + |v| + |WL
t |)2L1−2/ν

)
ft (dv),

where we have used Corollary 11 with K = ∞. By construction, we have
∫
R3 |v −

T L
t (v)|2 ft (dv) = W2

2 ( f Lt , ft ) ≤ ht , and using the preservation of the second moment
for f Lt and ft , the last inequality yields ∂t ht ≤ CL1−2/ν . Since h0 = 0, the result
follows. ��

We are now ready to prove Theorem 1.

Proof of Theorem 1. Take L ∈ [1,∞). For some i ∈ {1, . . . , N } fixed, we will estimate
the quantity ht := E|V i

t − Ui,L
t |2. To shorten notation, call Vr := V i

r , V
i
r := V i(ξ)

r ,
Ur := Ui,L

r and �r := �
i,L
r (UL

r , ξ). From (15) and (17) it follows that for every
0 ≤ s < t ,

ht − hs = E

∫
(s,t]

∫ ∞

0

∫ 2π

0

∫ N

0

( ∣∣∣Vr− + c(Vr− , V i
r− , z, φ) −Ur−

− cL(Ur− ,�r− , z, ϕi
r−)

∣∣∣2 − |Vr− −Ur−|2
)
N i (dr, dz, dφ, dξ).

Using the compensation formula,N i can be replaced by its intensity drdzdφdξ1Ai (ξ)/

[2(N − 1)π ], where Ai = [0, N ) \ [i − 1, i). Corollary 11 with v = Vr , v∗ = V i
r ,

u = Ur , u∗ = �r and K = ∞ yields

ht − hs ≤ E

∫ t

s

∫
Ai

[
−	L

0 |Vr −Ur |2 + 	L
0 |V i

r − �r |2

+C(|Vr | + |V i
r | + |Ur |)2L1−2/ν

] drdξ

N − 1
.
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Note that |V i
r − �r |2 ≤ |V i

r − U i
r |2 + 2|V i

r − U i
r ||U i

r − �r | + |U i
r − �i

r |2, where
U i
r := U i(ξ),L

r , and that E
∫
Ai |V i

r − U i
r |2dξ/(N − 1) = hr by exchangeability. Also,

thanks to Lemma 5, we know that
∫
Ai |U i

r −�r |2dξ/(N −1) = W2
2 (Ūi,L

r , f Lr ). Calling

gt := EW2
2 (Ūi,L

t , f Lt ), using the Cauchy–Schwarz inequality and the fact that both the
particles and the cutoff nonlinear processes have uniformly bounded second moment,
we obtain ∂t ht ≤ C[h1/2t g1/2t + gt + L1−2/ν] for almost every t ≥ 0. Using a version of
Gronwall’s lemma (see for instance Lemma 4.1.8 of [2]) we deduce that ht ≤ C[h0 +
t (1 + t)gt + t L1−2/ν], and consequently,

ht ≤ C[h0 + t (1 + t)N−1/3 + t L1−2/ν],
where we have used Corollary 14 to bound gt ≤ CN−1/3 uniformly on t and L . From
this, we obtain for all L ≥ 1

EW2
2 (V̄t , ft ) ≤ C[EW2

2 (V̄t , ŪL
t ) + EW2

2 (ŪL
t , f Lt ) +W2

2 ( f Lt , ft )]
≤ C[ht + N−1/3 + t L1−2/ν]
≤ C[h0 + (1 + t)2N−1/3 + t L1−2/ν],

where we have used Corollary 14 again, together with Lemma 15. Letting L → ∞, the
result follows. ��

5. Uniform Propagation of Chaos

In this section we give the proof of Theorem 2.
The following is a version of Povzner’s lemma [24], see for instance [6,15,23,33]

and the references therein for other versions. Plainly, it will be crucial to establish the
propagation of moments for the particle system, needed to take full advantage of the
stability result in [25]. A proof can be found in [23] in a slightly different setting; for the
readers convenience, we provide a proof of the precise statement below in the Appendix
in the case of p even (which is enough for purposes).

Lemma 16 (a version of Povzner’s lemma). Assume that I := ∫ π/2
0 θ2β(θ)dθ < ∞.

Then, for any p > 2 and any v, v∗ ∈ R
3, we have∫

S2
(|v′|p + |v′∗|p − |v|p − |v∗|p)B(θ)dσ

≤ −Ap(|v|p + |v∗|p) + I Ã p(|v|p−2|v∗|2 + |v∗|p−2|v|2),
where Ãp > 0 is some constant that depends only on p, and

Ap :=
∫ π/2

0
[1 − sin(θ/2)p − cos(θ/2)p]β(θ)dθ > 0.

The propagation of moments for the particle system was already established in [22,
Lemma5.3], where it is assumed that the initial energy is a.s. bounded. In theMaxwellian
setting, following the proof of that lemma and performing a careful inspection of how
the constants depend on the energy, we are able to write a moments estimate where this
dependence is explicit. More importantly, using conditional expectations we are able to
deduce propagation of moments for a general initial condition, without any restriction
(besides of course finite second moment). This is stated in the next result:
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Corollary 17 (propagation of moments for the particle system). Assume (5), let p ≥ 2
and define the random variable E := 1

N

∑N
i |V i

0 |2. Then, there exists a constant Cp > 0
(nonrandom and not depending on V0 nor on its law) such that for all t ≥ 0,

E

(
|V 1

t |p
∣∣∣ E
)

≤ E

(
|V 1

0 |p
∣∣∣ E
)
+ CpE p/2, a.s.

As a consequence, we have

E|V 1
t |p ≤ (Cp + 1) E|V 1

0 |p, ∀t ≥ 0.

Proof. For each t≥0,write gt =E
(|V 1

t |p ∣∣ E)which is a.s. equal toE

(
1
N

∑N
i |V i

t |p
∣∣ E)

by exchangeability of the system V. Since the process

1

N

N∑
i

|V i
t |p − 1

N

N∑
i

|V i
0 |p

− 1

N

N∑
i

∫ t

0

∫ ∞

0

∫ 2π

0

∫
Ai

[|V i
s + c(V i

s , V
i(ξ)
s , z, φ)|p − |V i

s |p]
dξdφdzds

2(N − 1)π

is a martingale in the filtration (Ft )t≥0 defined in Sect. 2.1 and E is F0 measurable,
taking into account Eq. (8) we get for each t ≥ 0

gt − g0 = E

(
1

N

N∑
i

∫ t

0

∫ ∞

0

∫ 2π

0

∫
Ai

[|V i
t + c(V i

t , V
i(ξ)
t , z, φ)|p

−|V i
t |p]

dξdφdzdt

2(N − 1)π

∣∣∣∣ E
)

=
∫ t

0
E

⎛
⎝ 1

N 2

N∑
i

∑
j 	=i

∫ 2π

0

∫ π/2

0
[|V ′i

t |p + |V ′ j
t |p − |V i

t |p

−|V j
t |p]β(θ)

dθdφ

4π

∣∣∣∣ E
)
dt

almost surely. The latter implies that t �→ gt has an a.s. absolutely continuous version
which we work with from now on. Taking the difference gt − gs , dividing by t − s and
letting s → t , by Lemma 16 we a.s. have for some positive constants I , Ap and Ã p and
almost every t ≥ 0 :

∂t gt ≤ −Apgt + I Ã pE

⎛
⎝ 1

N

N∑
i

|V i
t |p−2 1

N − 1

∑
j 	=i

|V j
t |2

∣∣∣∣∣∣ E
⎞
⎠

≤ −Apgt + 2E I Ã pg
1−2/p
t ,

where we have used that
∑

k 	= j |V k
t |2 ≤ ∑

k |V k
t |2 = NE since the system almost surely

preserves energy, together with exchangeability and the conditional Hölder inequality.
This differential inequality implies that gt ≤ max(g0, x∗) for all t ≥ 0, where x∗ =
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(2E I Ã p/Ap)
p/2 is the unique positive root of the polynomial −Apx + 2E I Ã px1−2/p.

This implies

gt ≤ g0 + CpE p/2,

for some constant depending only on Ap, Ã p and I , which proves the first statement.
For the second one, we use conditional expectation to get

E|V 1
t |p ≤ E

[
E

(
|V 1

0 |p
∣∣∣ E
)
+ CpE p/2

]

= E|V 1
0 |p + CpE

⎡
⎣
(
1

N

N∑
k=1

|V k
0 |2
)p/2⎤

⎦ ,

and then Jensen’s inequality (applied in the empirical mean) gives E|V 1
t |p ≤ E|V 1

0 |p +
CpE

1
N

∑N
k=1 |V k

0 |p. The proof is complete. ��
The fact that the particles have bounded moments allows us to obtain a convergence

to equilibrium result for the particle system that extends Proposition 1.7 of [25]. We will
state it in terms of the following distance: defineW2 as the usual 2-Wasserstein distance
on P(P(R3)) induced by W2, that is

W2(α, β) = inf
a,b

(
EW2

2 (a,b)
)1/2

,

where the infimumis takenover all randomelementsa andb inP(R3) such thatL(a) = α

and L(b) = β. For F ∈ Psym
2 ((R3)N ), denote by F̂ the push-forward of F by the

“empirical measure” map, that is, F̂ = L(X̄) ∈ P(P(R3)) for X ∼ F . It is also clear
that for any X ∼ F and μ ∈ P(R3), we have

EW2
2 (X̄, μ) = W 2

2 (F̂, δμ). (29)

Define also the Boltzmann sphere

SN =
{
x ∈ (R3)N : 1

N

N∑
i=1

xi = 0,
1

N

N∑
i=1

|xi |2 = 1

}
,

and notice that if GN
0 is concentrated on SN , then the preservation of momentum and

kinetic energy of the collisions imply that GN
t := L(Vt ) is also concentrated on SN for

all t ≥ 0. Denote UN the uniform distribution on SN . Theorem 1.6 of [25] states that
for any δ > 0 and q > 1,

∂+t W2(Ĝ
N
t , ÛN ) ≤ −cδ,q,N (GN

t )W2(Ĝ
N
t , ÛN )1+1/δ, (30)

where cδ,q,N (GN
t ) = kδ,qE(|V 1

t |2q(1+δ))−1/2qδ and kδ,q > 0 is some constant. We are
now ready to state and prove:
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Lemma 18. Assume (5) and that GN
0 ∈ Psym

2 ((R3)N ) is concentrated on the Boltzmann
sphere SN . Assume also that Rp := supN E|V 1

0 |p < ∞ for some p ≥ 4. Then, for all
0 < δ < p − 2 there exists a constant Cp,δ > 0 depending only on p, δ and Rp, such
that for all N ∈ N and all t ≥ 0

W 2
2 (ĜN

t , ÛN ) ≤
[
W 2

2 (ĜN
0 , ÛN )−1/δ + Cp,δt

]−δ

.

Proof. Take q > 1 and δ < p/2 − 1 such that 2q(1 + δ) = p. Using Corollary 17, we
deduce that cδ,q,N (GN

t ) ≥ kδ,q(CpE|V 1
0 |p)−1/2qδ ≥ kδ,q(CpRp)

−1/2qδ =: Cp,δ . From
(30), the result follows using Gronwall’s lemma, squaring, and redefining δ as 2δ. ��

We conclude with the proof of Theorem 2. We follow a standardization argument
found in [10], which allows one to reduce the proof to the case where the initial distri-
bution GN

0 is concentrated on the Boltzmann sphere SN .
Given any F ∈ Psym((R3)N ) and a random vector X ∼ F , set [F] = L([X]), where

[X] = Y = (Y 1, . . . ,Y N ) is defined as

Y i = Xi − M

S
, with M = 1

N

∑
j

X j , S2 = 1

N

∑
j

|X j − M |2 (31)

on the event {S > 0}, and Y i = Zi on {S = 0}, where Z is some (arbitrary but fixed)
exchangeable random vector on SN , independent of X (although we will mainly use
this standardization when S > 0). This, of course, ensures that [F] is symmetric and
concentrated on SN . Calling Q2 = 1

N

∑
i |Xi |2 we have S2 = Q2 − |M |2, and then

1

N

∑
i

|Xi − Y i |2 = 1{S>0}
1

N

∑
i

∣∣∣∣ (S − 1)Xi + M

S

∣∣∣∣
2

+ 1{S=0}
1

N

∑
i

|M − Zi |2

= 1{S>0}
(S − 1)2Q2 + (2S − 1)|M |2

S2
+ 1{S=0}[1 + |M |2]

= 1{S>0}[(S − 1)2 + |M |2] + 1{S=0}[1 + |M |2]
= (S − 1)2 + |M |2 ≤ W2

2 (X̄, μ), (32)

where μ ∈ P2(R
3) is any distribution with Mμ := ∫

vμ(dv) = 0 and S2μ := ∫ |v −
Mμ|2μ(dv) = 1 (in general, (Sμ − Sν)

2 + |Mμ − Mν |2 ≤ W2
2 (μ, ν), since for X ∼ μ

and Y ∼ ν one has E|X − Y |2 = E[|(X − Mμ) − (Y − Mν)|2 + |Mμ − Mν |2 ≥
S2μ + S2ν − 2SμSν + |Mμ − Mν |2). Since W2

2 (F, [F]) ≤ E
1
N

∑
i |Xi − Y i |2, this gives

for any such μ:
W2

2 (F, [F]) ≤ EW2
2 (X̄, μ) = W 2

2 (F̂, δμ). (33)

Remark 19. If γ denotes theGaussian densitywithmean 0 and variance 1, that is, γ (v) =
(2πσ 2)−3/2e−|v|2/(2σ 2) for σ 2 = 1/3, then themeasure [γ ⊗N ] corresponds toUN . Thus,

from (33) applied to F = γ ⊗N andμ = γ , we obtainW2
2 (γ ⊗N ,UN ) ≤ W 2

2 (γ̂ ⊗N , δγ ).

SinceW 2
2 (γ̂ ⊗N , ÛN ) ≤ W2

2 (γ ⊗N ,UN ) and using (28) onW 2
2 (γ̂ ⊗N , δγ ) = εN (γ ), we

deduce the following chaos rate for UN (already established in [10, Lemma 25-(i)]; see
[18, Theorem 4.4] for related W1 estimates):

W 2
2 (ÛN , δγ ) ≤ 2W 2

2 (ÛN , γ̂ ⊗N ) + 2W 2
2 (γ̂ ⊗N , δγ ) ≤ 4W 2

2 (γ̂ ⊗N , δγ ) ≤ CN−1/2.

(34)



936 R. Cortez, J. Fontbona

Proof of Theorem 2. Let us first prove the result in the case where GN
0 is concentrated

on the Boltzmann sphere SN . Noting that in this case W 2
2 (ĜN

0 , ÛN ) ≤ 4, Lemma 18
gives

W 2
2 (ĜN

t , ÛN ) ≤ Cp,δ(1 + t)−δ, (35)

for all δ < p − 2, where Cp,δ depends only on p, δ and Rp := supN E|V 1
0 |p. With this,

from (29) we have:

EW2
2 (V̄t , ft ) = W 2

2 (ĜN
t , δ ft ) ≤ C

[
W 2

2 (ĜN
t , ÛN ) +W 2

2 (ÛN , δγ ) +W 2
2 (δγ , δ ft )

]
.

The first and second terms are controlled using (35) and (34), respectively. The third
term is equal toW2

2 (γ, ft ), which, by Theorem 5.8 of [14], converges exponentially fast
to 0 under our assumption that f0 has finite p0-moment for some p0 > 4 (condition
(6)). Thus, we can just bound that term by Cp,δ(1 + t)−δ . All this yields

EW2
2 (V̄t , ft ) ≤ Cp,δ(1 + t)−δ + CN−1/3.

For η ∈ (0, 1/3) to be chosen, set t̄ = Nη/δ − 1, so the last inequality implies that
EW2

2 (V̄t , ft ) ≤ Cp,δN−η for all t > t̄ , whereas Theorem 1 gives EW2
2 (V̄t , ft ) ≤

Ch0 + CN−1/3+2η/δ for all t ≤ t̄ , where h0 = W2
2 (GN

0 , f ⊗N
0 ). Setting η = [3(1 +

2/δ)]−1 < (p− 2)/3p gives EW2
2 (V̄t , ft ) ≤ Ch0 +Cp,δN−η for all t ≥ 0. Since δ can

be chosen arbitrarily close to p − 2, the result follows in this case.
Now we prove the general case by reducing it to the previous one. Consider the

process Wt := [Vt ], with the notation of (31). Set Mt = 1
N

∑
j V

j
t = M0, S2t =

1
N

∑
j |V j

t − M0|2 = S20 . It holds that on the event {S0 > 0}, W solves (13) with
the same Poisson measure associated to V, but starting with initial condition W0 =
[V0]. Specifically: given v, v∗,m ∈ R

3 and s > 0, the homogeneity of ı̂ and ĵ and
the definitions of (7) imply that for ṽ = (v − m)/s and ṽ∗ = (v∗ − m)/s we have
c(ṽ, ṽ∗, z, φ) = c(v, v∗, z, φ)/s, and then

ṽ′ = ṽ + c(ṽ, ṽ∗, z, φ) = v + c(v, v∗, z, φ) − m

s
= v′ − m

s
,

and the same for ṽ′∗. This means that the standardization procedure is preserved by the
collisions. Since the function c is the one involved in the definition of the particle system,
this shows that W solves (13), as desired.

Define the event D = {S20 ≥ 1/4}. We have

EW2
2 (V̄t , ft ) ≤ 2EW2

2 (V̄t , W̄t ) + 2E1DW2
2 (W̄t , ft ) + E1DcW2

2 (V̄t , ft ). (36)

From (32) we haveW2
2 (V̄t , W̄t ) ≤ 1

N

∑
i |V i

t −Wi
t |2 = (St −1)2 + |Mt |2 = (S0−1)2 +

|M0|2 ≤ W2
2 (V̄0, f0), since

∫
v f0(dv) = 0 and

∫ |v|2 f0(dv) = 1 Thus,W2
2 (V̄t , W̄t ) ≤

W2
2 (V̄0, f0) ≤ 2W2

2 (V̄0, Ū0)+2W2
2 (Ū0, f0), and then for the first term of (36) we have

EW2
2 (V̄t , W̄t ) ≤ 2E

1

N

∑
i

|V i
0 −Ui

0|2 +2EW2
2 (Ū0, f0) ≤ 2W2

2 (GN
0 , f ⊗N

0 )+CN−1/2,

(37)
where we have used (28).
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On D, we have |Wi
0| = |V i

0 + M0|/S0 ≤ 2(|V i
0 | + |M0|), and thus E(1D|Wi

0|p) ≤
CpE|V i

0 |p. SinceW is a particle system taking values on SN , we can apply the previous
case, obtainingE1DW2

2 (W̄t , ft ) ≤ CW2
2 ([GN

0 ], f ⊗N
0 )+Cp,εN−(p−2)/3p+ε . Using (33)

we have W2
2 ([GN

0 ], f ⊗N
0 ) ≤ 2W2

2 ([GN
0 ],GN

0 ) + 2W2
2 (GN

0 , f ⊗N
0 ) ≤ 2EW2

2 (V̄0, f0) +
2W2

2 (GN
0 , f ⊗N

0 ), and from there, the same argument used to estimate the first term of
(36) yields for the second term:

E1DW2
2 (W̄t , ft ) ≤ CW2

2 (GN
0 , f ⊗N

0 ) + Cp,εN
−(p−2)/3p+ε . (38)

For the third term, using the preservation of momentum and energy, we have

E1DcW2
2 (V̄t , ft ) ≤ E

(
1{S20<1/4}2

[
1

N

∑
i

|V i
t |2 +

∫
|v|2 ft (dv)

])

= E

(
1{S20<1/4}2[S20 + |M0|2 + 1]

)

≤ 10

4
P(S20 < 1/4) + 2E|M0|2,

and since P(S20 < 1/4) ≤ P(|S0 − 1| > 1/2) ≤ 4E|S0 − 1|2, we have shown that
E1DcW2

2 (V̄t , ft ) ≤ 10E(|S0−1|2+|M0|2),which is again controlledby10EW2
2 (V̄0, f0)

≤ CW2
2 (GN

0 , f ⊗N
0 ) + CN−1/2 as above.

Finally, putting the previous estimate, (37) and (38) into (36), yields the desired
result. ��

Appendix

Proof of Lemma 8. Part (i) follows from the last step in the proof of part (ii) below.
Since L < ∞, in order to prove (ii) it is enough to construct a weak solution V to

(13) and then build UL driven by the same Poisson process in a jump-by-jump manner.
To obtain a weak solution of (13), we will use a cutoff procedure: for a given cutoff

level K ∈ [1,∞), define VK = (V 1,K , . . . , V N ,K ) as the solution to

dVK
t =

∫ ∞

0

∫ 2π

0

∫
[0,N )2

∑
i 	= j

1{i(ξ)=i,i(ζ )= j}cK ,i j (VK
t− , z, φ)N (dt, dz, dφ, dξ, dζ )

(39)
where cK ,i j is defined as in (14) but using cK in place of c. Again, since K < ∞, the
system VK can be constructed pathwise. Thus, given a sequence of finite cutoff levels
K → ∞, one can prove in a similar way as in Proposition 1.2–(ii) of [13] that the laws
of VK are tight (the second moment estimates are indeed trivial here because of their
exact preservation stated in (i)). By martingale methods and classic probability space
enlargement arguments, one then gets that the accumulation points are weak solutions of
(13). In order to prove uniqueness in law of weak solutions of (13) it is enough to show
that any weak solution can be approximated, in a pathwise way as K → ∞, by (strong)
solutions V̂K to (39) driven by some Poisson measures defined in the same probability
space. More specifically: given V̂∞ a weak solution to (13) driven by the Poisson point
measure N̂ (dt, dz, dφ, dξ, dζ ), define V̂K uniquely by
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dV̂K
t =

∫ ∞

0

∫ 2π

0

∫
[0,N )2

∑
i 	= j

1{i(ξ)=i,i(ζ )= j}

× cK ,i j (V̂K
t− , z, φK

t−)N̂ (dt, dz, dφ, dξ, dζ )

with V̂K
0 = V̂0 and where φK

t− = φK
t−(φ, ξ, ζ ) = ϕ(V̂ i(ξ),∞

t− − V̂ i(ζ ),∞
t− , V̂ i(ξ),K

t− −
V̂ i(ζ ),K
t− , φ). Notice that V̂K has the same law asVK , by pathwise uniqueness for (13) and

the fact that the pointmeasure N̂ K definedon test functions by f �→ ∫
f (t, z, φK

t− , dξ, dζ )

N̂ (dt, dz, dφ, dξ, dζ ) has the same law as N (dt, dz, dφ, dξ, dζ ) (as can be checked
using Itô calculus and Campbell’s formula). Since the coupling between circles pro-
vided by Lemma 6 is optimal, integrated versions of the bounds provided in Lemma
5.1 of [13] (for some other coupling of angles φ) also hold in the present context.
Using Itô calculus and Gronwall’s lemma we are then able to prove, in a similar way
that, for each T > 0 and some function RT (K ) going to 0 as K → ∞ one has
supt∈[0,T ] E(|V̂K

t − V̂∞
t |2) ≤ RT (K ), from where we get the desired convergence:

E

(
sup

t∈[0,T ]
|V̂K

t − V̂∞
t |2

)
≤ RT (K )

Part (ii) follows.
Nowweprovepart (iii).Define Ñ i,L (dt, dz, dφ, dv) as thepointmeasure on [0,∞)×

[0,∞) × [0, 2π) × R
3 with atoms (t, z, ϕi

t− ,�
i,L
t (UL

t− , ξ)) for every atom (t, z, φ, ξ)

ofN i . Since: (1) the dependence on (V,UL) is predictable, (2) the ξ -law of �
i,L
t (x, ξ)

is f Lt for any x ∈ (R3)N , and (3) the φ-law of ϕ(v, u, φ) is the uniform distribution on
[0, 2π) for any v, u ∈ R

3, one can compute the Laplace functional of Ñ i,L and deduce
that it is a Poisson point measure with intensity dtdzdφ f Lt (dv)/2π . From (17), it is
then clear thatUi,L satisfies (11), withML replaced by Ñ i,L , which shows thatUi,L is
a cutoff nonlinear process.

Part (iv) is obvious. ��
Proof of Lemma 16, case of p even. Wewill use the parametrization of S

2 given by (7),
that is, v′ = v + a(v, v∗, θ, φ) and v′∗ = v∗ − a(v, v∗, θ, φ). For notational simplicity,
call c := 1−cos θ

2 , s = sin θ
2 , ı̂ = ı̂(v − v∗), ĵ = ĵ (v − v∗) and � = �(v − v∗, φ) (recall

that � = (cosφ)ı̂ + (sin φ)ĵ ). Noting that |�|2 = |v − v∗|2 and that (v − v∗) · � = 0,
we have

|v′|2 = |v + c(v∗ − v) + s�|2
= [1 + c2 + s2 − 2c]|v|2 + [c2 + s2]|v∗|2 + 2[c − c2 − s2]v · v∗ + 2sv · �

= (1 − c)|v|2 + c|v∗|2 + s(v + v∗) · �,

where in the last step we used the identity c2 + s2 = c and the fact that v · � = v∗ · �.
Calling w = v + v∗, we thus obtain

|v′|2 = x + sw · �, for x = (1 − c)|v|2 + c|v∗|2, and
|v′∗|2 = y − sw · �, for y = (1 − c)|v∗|2 + c|v|2,
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where the second identity is deduced similarly as the first one. Take p = 2k for integer
k ≥ 2. Thus,

∫ 2π

0
|v′|p dφ

2π
= xk +

�k/2�∑
i=1

(
k

2i

)
xk−2i s2i

∫ 2π

0
(w · �)2i

dφ

2π
, (40)

where we have used the fact that
∫ 2π
0 (w · �)2i−1 = 0, since it is computed as the sum

of integrals of terms of the form (cosφ)a(sin φ)b where a or b is odd. The key of the
proof is to show that, after integration in φ, the term (w · �)2i is of order |v|2i |v∗|2i and
not |v|4i |v∗|4i , as one would obtain using loose bounds. Specifically: using the same
argument to neglect the odd terms of the sum, we have

∫ 2π

0
(w · �)2i

dφ

2π
=
∫ 2π

0
[(cosφ)w · ı̂ + (sin φ)w · ĵ ]2i dφ

2π

=
i∑

j=0

(
2i

2 j

)
(w · ı̂)2i−2 j (w · ĵ )2 j

∫ 2π

0
(cosφ)2i−2 j (sin φ)2 j

dφ

2π
.

Denoting by n!! the product of the positive integers smaller than or equal to n which have
the same parity as n, one can check the identity

∫ 2π
0 (cosφ)n(sin φ)m

dφ
2π = (n−1)!!(m−1)!!

(n+m)!!
for n andm even (integrate by parts in both possible ways, use cos2 φ +sin2 φ = 1 to get
two recurrence relations and deduce the identity by double induction in (n,m)). Since
(2n − 1)!! = (2n)!

2nn! and (2n)!! = 2nn!, it can be easily seen that (2i2 j
) (2i−2 j−1)!!(2 j−1)!!

(2i)!! =
2−2i

(2i
i

)(i
j

)
, which yields

∫ 2π

0
(w · �)2i

dφ

2π
= 2−2i

(
2i

i

) i∑
j=0

(
i

j

)
(w · ı̂)2i−2 j (w · ĵ )2 j

= 2−2i
(
2i

i

)[
(w · ı̂)2 + (w · ĵ )2

]i
.

Using that ( v−v∗|v−v∗| ,
ı̂

|v−v∗| ,
ĵ

|v−v∗| ) is an orthonormal basis, we have

(w · ı̂)2 + (w · ĵ )2 = |v − v∗|2|w|2 − (w · (v − v∗))2

= (|v|2 + |v∗|2 − 2v · v∗)(|v|2 + |v∗|2 + 2v · v∗) − (|v|2 − |v∗|2)2
= 4|v|2|v∗|2 − 4(v · v∗)2,

where the cancelation of |v|4 and |v∗|4 in the last step is the crucial point of the proof.
We deduce that

∫ 2π

0
(w · �)2i

dφ

2π
=
(
2i

i

)[
|v|2|v∗|2 − (v · v∗)2

]i ≤ 2i
(
2i

i

)
|v|2i |v∗|2i

Denote Ã p > 0 some constant that depends only on p and that can change from line
to line. With the last inequality and using the bound xk−2i ≤ Ã p(|v|2k−4i + |v∗|2k−4i ),
from (40) we obtain
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∫ 2π

0
|v′|p dφ

2π
≤ ck |v|2k + (1 − c)k |v∗|2k +

k−1∑
i=1

(
k

i

)
(1 − c)k−i |v|2k−2i ci |v∗|2i

+ Ã p

�k/2�∑
i=1

s2i (|v|2k−2i |v∗|2i + |v∗|2k−2i |v|2i )

≤ ck |v|2k + (1 − c)k |v∗|2k + θ2 Ã p(|v|2k−2|v∗|2 + |v∗|2k−2|v|2),
where in the last step we have used Young’s inequality and the fact that s2i and ci are of
order θ2 for i ≥ 1. With the same argument, the last inequality is valid replacing v′ for
v′∗ and exchanging the roles of v and v∗. Since c = sin(θ/2)2 and 1 − c = cos(θ/2)2,
integrating |v′|p + |v′∗|p − |v|p − |v∗|p against β(θ)dθ

dφ
2π yields the result. ��
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