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Abstract: Algebraic quantum field theory is considered from the perspective of the
Hochschild cohomology bicomplex. This is a framework for studying deformations and
symmetries. Deformation is a possible approach to the fundamental challenge of con-
structing interacting QFT models. Symmetry is the primary tool for understanding the
structure and properties of a QFT model.

This perspective leads to a generalization of the algebraic quantum field theory frame-
work, as well as a more general definition of symmetry. This means that some models
may have symmetries that were not previously recognized or exploited.

To first order, a deformation of a QFT model is described by a Hochschild cohomology
class. A deformation could, for example, correspond to adding an interaction term to a
Lagrangian. The cohomology class for such an interaction is computed here. However,
the result is more general and does not require the undeformed model to be constructed
from aLagrangian. This computation leads to amore concrete version of the construction
of perturbative algebraic quantum field theory.
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1. Introduction

At present, the best known description of fundamental physics is given by the Standard
Model, which is an interacting quantum field theory (QFT) in 4 dimensions. Unfortu-
nately, a mathematically consistent description of the Standard Model is not yet known.
It is a fundamental problem of mathematical physics to construct mathematical mod-
els of interacting quantum field theories such as the Standard Model or whatever may
supplant it.

Algebraic QuantumField Theory (AQFT) [19] does provide a framework for describ-
ing QFT, but thus far, interacting models have only been constructed in dimensions less
than 4.More tools are needed for constructing and understanding quantum field theories.

A possible approach to constructing interacting QFTs is by deformation—either
deforming a free QFT into an interacting one or deforming an interacting classical field
theory into a quantum one. This is analogous to deforming a commutative algebra into a
noncommutative one, as is done in formal [2,23] or strict [29] deformation quantization.

Formal deformation quantization is part of the theory of algebraic deformations
[15], which is based upon Hochschild cohomology and the algebraic structure of the
Hochschild complex. The purpose of this paper is to consider AQFT from the perspec-
tive of the relevant generalization of Hochschild cohomology. This is a necessary step
toward a theory of deformation quantization of field theories and thus an approach to
building interacting QFT models.

This perspective provides a unified framework for three seemingly disparate concepts:
the symmetries of a QFT, the transition from classical to quantum field theory, and the
transition from free to interacting QFT. It also leads to a more general definition of
symmetry and a generalization of AQFT.

1.1. Algebraic quantumfield theory. The fundamental difference betweenquantumfield
theory and other models of quantum physics is locality. Consistency with relativity
means that only some observables can be measured in a given region, O, of spacetime.
Observables regarding processes spacelike separated fromO cannot be measured inO.
This is a manifestation of the principle that no signal can travel faster than light.

Any sum or product of observables that can be measured inO can also be measured
there, therefore the set of observables measurable inO is an algebra,A(O). IfO1 ⊂ O2,
then any observable that can be measured in O1 can a fortiori be measured in O2, so
A(O1) ⊆ A(O2).
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This correspondence between regions and algebras completely encodes the structure
of a quantum field theory. This is the fundamental idea of Algebraic Quantum Field
Theory [19].

This can be used to describe aQFTonMinkowski spacetime or on a curved spacetime.
Locally Covariant Quantum Field Theory extends this to describe a QFT on all possible
spacetimes. The key insight is that a region of a spacetime is itself a spacetime—thus
regions and spacetimes can be treated on the same footing.

Definition 1.1. [5] Loc is the category in which:

– the objects are all oriented, time-oriented, globally hyperbolic, Lorentzian manifolds
(of some fixed dimension, n);

– themorphisms are the smoothmaps that are isometric, injective, oriented, and preserve
the causal relation.

Definition 1.2. [5] A Locally covariant quantum field theory (LCQFT) is a covariant
functor A : Loc→ Alg (or to some other category of algebras).

This is usually required to satisfy further axioms.

Axiom 1 (Einstein Causality). If ι1 : O1 → M and ι2 : O2 → M and the images of ι1
and ι2 are spacelike separated, then the images of A[ι1] and A[ι2] commute.

Axiom 2 (Time Slice). If φ : M → N and Im φ contains a Cauchy surface of N , then
A[φ] : A(M)→ A(N ) is an isomorphism.

Axiom 3 (Isotony). For any φ, A[φ] is injective.
In fact, only Einstein causality will be needed in this paper.
The category Loc is monoidal under the operation of disjoint union of spacetimes.

Einstein causality is almost equivalent to requiring A to be a monoidal functor (see [4]).
If X ⊂ Loc is a small category whose inclusion is an equivalence of categories, then

an LCQFT can equivalently be described as a functor A : X → Alg. For example, X
could be the subcategory of spacetimes whose underlying manifolds are submanifolds
of R

2n+1. The results of [28] imply that Loc is equivalent to the small subcategory of
globally hyperbolic submanifolds of Minkowski spacetime (of sufficiently large dimen-
sion).

A QFT on a fixed manifold, M ∈ Obj(Loc), can also be encoded as a functor. If
X ⊂ Loc is the subcategory of spacetimes that happen to be open subsets of M , then
a QFT on M can be encoded as a functor A : X → Alg. Einstein causality and the
time slice axiom are perfectly meaningful conditions on such a functor. Note that this
encodes the action of any oriented, time-oriented isometries of M . In particular, if M is
Minkowski spacetime, then this functor encodes the action of the Poincaré group.

A similar approach can be taken to conformal field theory. A conformal net is a
functor from a category of open intervals in S1 to von Neumann algebras (satisfying
further axioms). See, e.g., [18].

A cruder description of quantum physics on a fixed spacetime, ignoring locality, can
also be described in this way. Given M ∈ Obj(Loc), the full subcategory of Loc with
the single object M is the group of oriented, time-oriented isometries of M . A functor
from this group (as a category) to Alg encodes the algebra of observables on M and the
action of this group on that algebra.

For most of this paper, I will talk about an arbitrary small category,X. I have in mind
any of the examples above. In the later sections, this will be limited to a subcategory
X ⊂ Loc for which Einstein causality is a meaningful condition.



442 E. Hawkins

1.2. Hochschild cohomology. The continuous functions on a topological space and the
smooth functions on a manifold form commutative algebras. Many geometrical con-
structions can be expressed algebraically in terms of these commutative algebras and
extend easily to noncommutative algebras. It is often useful to view a noncommuta-
tive algebra as if it comes from a topological space and to apply geometrical ideas and
intuition. This is the fundamental idea of Noncommutative Geometry.

For example, let M be a compact, smooth manifold, andX •(M) the space of smooth,
antisymmetric multivector fields. This is a Gerstenhaber algebra with both a graded
commutative, associative product (the exterior product) and a graded Lie bracket (the
Schouten-Nijenhuis bracket). The Hochschild cohomology H•(A, A) of the commuta-
tive algebra A = C∞(M) is naturally identified with X •(M) as a graded vector space.

Moreover, Gerstenhaber constructed a graded Lie bracket and an associative product
on the Hochschild complex C•(A, A) of any algebra, which give the cohomology the
structure of a Gerstenhaber algebra (hence the name) and for C∞(M) this is the natural
structure mentioned in the last paragraph. This means that Hochschild cohomology
should be thought of as a noncommutative generalization of the Gerstenhaber algebra
of multivector fields. This—and the detailed structure on the complex—play a central
role in the theory of formal deformation quantization.

1.3. Algebraic quantum field theory as noncommutative geometry.

Definition 1.3. A diagram of algebras is a covariant functor from a small category to
Alg.

As described above, an AQFT can be expressed as a functor A : X → Alg, where
X ⊂ Loc is a small subcategory, thus an AQFT is a diagram of algebras.

Remark. In [16,17] a diagram is defined as a presheaf (contravariant functor) but an
AQFT is covariant, and the difference is just a matter of replacing X with its opposite
category.

Let 1 be the category with one object and one morphism. A single algebra is trivially
equivalent to a functor 1→ Alg. Thus:

– An AQFT is in particular a diagram of algebras.
– A diagram of algebras is a generalization of an algebra.
– An algebra is a generalization of an algebra of functions on a space.

In this way, QFT is a generalization of geometry. This is the perspective that I will pursue
here.

1.4. Notation and terminology. Vec and Algwill denote the categories of vector spaces
and algebras over the field of complex numbers, C. ∗-Alg will denote the category of
∗-algebras.

For any M ∈ Obj(Loc), letD(M) := C∞c (M, R) be the space of smooth, compactly
supported functions (test functions). Because anyLocmorphismφ : M → N is injective
and open, there is a push-forward map φ∗ : D(M) → D(N ); for f ∈ D(M), φ∗ f
is defined by the conditions that φ∗φ∗ f = f and Supp(φ∗ f ) ⊆ Im φ. If we define
D[φ] := φ∗, then D : Loc→ Vec is a covariant functor.

Given two points x, y ∈ M ∈ Obj(Loc), denote [1,20]:

– x ≤ y if there exists a future-directed causal curve from x to y.
– x < y if x ≤ y and x 	= y.
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– x ∼ y if neither x < y nor x > y.
– x � y if x < y or x ∼ y.

These relations extend to sets. For example, if O1,O2 ⊂ M , then write

O1 � O2 ⇐⇒ ∀x ∈ O1, y ∈ O2 : x � y .

If O ⊆ M ∈ Obj(Loc), then denote

J+M (O) := {x ∈ M | ∃y ∈ O : x ≥ y}

and

J−M (O) := {x ∈ M | ∃y ∈ O : x ≤ y}

(or J±(O), if there is no ambiguity). Further, let JM (O) := J+M (O) ∪ J−M (O). The
causal complement of O is O′ := M � JM (O) and O is causally complete if O = O′′.

A subset O ⊂ M ∈ Obj(Loc) is future/past compact if for any x ∈ M , J±(x) ∩O
is compact.

A function V (not necessarily linear) from D(M) to a vector space is additive if for
f, g, h ∈ D(M),

Supp f ∩ Supp h = ∅ �⇒ V ( f + g + h) = V ( f + g)− V (g) + V (g + h) .

This is really a locality condition, but note that a linear map is automatically additive.
The bracket notation [ · , · ] will be used for both the Gerstenhaber bracket and the

commutator in an associative algebra. I hope that this will be clear in context.

1.5. Outline. In Sect. 2, I review the definitions of Hochschild cohomology and the
Gerstenhaber algebra structure for a single algebra and for a diagram of algebras.

In Sect. 3, I discuss the relationship of “asimplicial” Hochschild cohomology to the
deformations and automorphisms of a diagram of algebras. Seeking a similar interpre-
tation of full Hochschild cohomology leads me to define skew diagrams of algebras and
their morphisms. This gives the first main results: a generalization of AQFT and a more
general definition of global symmetries of an AQFT. The category of skew diagrams is
shown to be a 2-category of functors between 2-categories.

The first main calculation is in Sect. 4, where I compute the characteristic class in
Hochschild cohomology of an interaction term for an AQFT. This involves defining a
smoothed-out analogue of Cauchy surfaces.

In Sect. 5, I discuss the construction of perturbative AQFT by the algebraic adiabatic
limit. The next main result is an alternative, more concrete construction; this is motivated
by my computation of the characteristic class. This construction leads to the last main
calculation—a direct proof that the characteristic class satisfies the appropriate Maurer–
Cartan equation.
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2. Hochschild Cohomology

The definition of Hochschild cohomology H•(A, A) for an algebra extends to diagrams
of algebras.1 This is referred to as Yoneda cohomology by Gerstenhaber and Schack in
[16] because theywereworkingwith algebras over a ground ring that was not necessarily
a field; that degree of generality is irrelevant here.

Hochschild cohomology of a diagram of algebras is still a Gerstenhaber algebra. This
cohomology governs deformations of diagrams, just as it does for a single algebra.

This does not perfectly characterize deformations of LCQFTs, because a LCQFT
might be deformed to a diagramof algebras that violates Einstein causality. Nevertheless,
this does describe a lot of the relevant structure, and an infinitesimal deformation will
have a characteristic class in Hochschild cohomology.

The category of algebras in AQFT is most often taken to be C∗-algebras or von Neu-
mann algebras. These are not well suited for studying infinitesimal deformations. To
construct multivector fields via Hochschild cohomology, we use not the C∗-algebra of
continuous functions but the dense subalgebra of smooth functions. This suggests that
studying infinitesimal deformations of an LCQFT may require identifying analogous
dense subalgebras.

Themain explicit calculation herewill be in the setting of perturbative LCQFT,which
does not use C∗-algebras.

Let’s begin by recalling the definition and properties of Hochschild cohomology for
an algebra.

2.1. A single algebra. [22] Let A be an associative algebra over C, and B a bimodule
of A.

2.1.1. The complex.

Definition 2.1. Cq(A, B) := HomC(A⊗q , B) is the space of q-multilinear maps.

Definition 2.2. The maps δHi : Cq(A, B) → Cq+1(A, B) are defined by, for any Γ ∈
Cq(A, B) and a1, . . . , aq+1 ∈ A,

(δH0 Γ )(a1, . . . , aq+1) := a1Γ (a2, . . . , aq+1) ,

(δHi Γ )(a1, . . . , aq+1) := Γ (a1, . . . , aiai+1, . . . , aq+1)

for 1 ≤ i ≤ q, and

(δHq+1Γ )(a1, . . . , aq+1) := Γ (a1, . . . , aq)aq+1 .

The Hochschild coboundary δ : Cq(A, B) → Cq+1(A, B) is

δ :=
q+1∑

i=0
(−1)iδHi .

Definition 2.3. The Hochschild cohomology H•(A, B) is the cohomology ofC•(A, B)

with the coboundary δ.

1 The functorial Hochschild cohomology HH•(A) = H•(A, A∗) does not extend to diagrams, because
A �→ A∗ is not a covariant functor.
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2.1.2. The Gerstenhaber bracket. [14] Now consider the case that B = A.
Let Γ ∈ Cq(A, A) and Δ ∈ Cq ′(A, A).

Definition 2.4. For 1 ≤ i ≤ q, the partial composition Γ ◦i Δ ∈ Cq+q ′−1(A, A) is
defined by

(Γ ◦i Δ)(a1, . . . , aq+q ′−1) := Γ (a1, . . . , ai−1,Δ(ai , . . . , ai+q−1), ai+q , . . . , aq+q ′−1)

for a1, . . . , aq+q ′−1 ∈ A.

Definition 2.5. From this, define

Γ ◦Δ :=
q∑

i=1
(−1)(q−i)(q ′−1)Γ ◦i Δ

and the Gerstenhaber bracket

[Γ,Δ] = Γ ◦Δ− (−1)(q−1)(q ′−1)Δ ◦ Γ ∈ Cq+q ′−1(A, A) .

This bracket is a graded Lie bracket of degree −1. Equivalently, C•(A, A) with this
bracket is a graded Lie algebra with the shifted grading in which Γ ∈ Cq(A, A) has
degree q − 1.

Definition 2.6. m ∈ C2(A, A) is the multiplication map, i.e., m(a, b) := ab.

Note that δΓ = [m, Γ ]. From this, it is a simple exercise to deduce that C•(A, A) is a
differential graded Lie algebra. The defining property,

δ[Γ,Δ] = [δΓ,Δ] + (−1)q−1[Γ, δΔ]

follows from the Jacobi identity. This implies that the Gerstenhaber bracket induces a
well defined graded Lie bracket on the Hochschild cohomology H•(A, A).

There is also an associative product.

Definition 2.7. Γ � Δ ∈ Cq+q ′(A, A) is defined by

(Γ � Δ)(a1, . . . , aq+q ′) := Γ (a1, . . . , aq)Δ(aq+1, . . . , aq+q ′)

for a1, . . . , aq+q ′ ∈ A.

This is obviously associative but is not commutative. Less obviously, this descends to
an associative product on cohomology, where:

– The product is commutative.
– The bracket is a derivation of the product (in each argument).
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2.1.3. Significance of theGerstenhaber bracket. [15]Note thatm◦m = m◦2m−m◦1m,
so

(m ◦m)(a, b, c) = a(bc)− (ab)c

and the equation

0 = m ◦m = 1
2 [m,m] (2.1)

is precisely equivalent to the associativity of m.
Imagine that m is part of a smooth, 1-parameter family of associative products.

Differentiating Eq. (2.1) once gives

0 = m ◦ ṁ + ṁ ◦m = [m, ṁ] = δm ,

so an infinitesimal deformation of an associative product is a 2-cocycle. Differentiating
again gives

0 = [ṁ, ṁ] + [m, m̈] �⇒ [ṁ, ṁ] = −δm̈ ,

so the Gerstenhaber bracket of ṁ with itself is exact. This and Eq. (2.1) are examples of
Maurer–Cartan equations.

A deformation is trivial if A with the deformed product is isomorphic to A with
the undeformed product. If α ∈ C1(A, A) is such an isomorphism, then the deformed
product of a and b is

m(a, b) = α−1 (α(a)α(b)) .

Suppose that there is a 1-parameter family of such isomorphisms, starting from the
identity. Differentiating this expression and then setting α = id gives

ṁ(a, b) = α̇(a) b − α̇(ab) + a α̇(b) ,

so ṁ = δα̇. In other words, trivial infinitesimal deformations correspond to exact cocy-
cles. This means that the Hochschild cohomology class of an infinitesimal deformation
describes it modulo trivial deformations.

Similarly, if there is a 1-parameter family of automorphisms, starting from the identity,
then 0 = ṁ = δα̇. (This means precisely that α̇ is a derivation.) So, an infinitesimal
automorphism is a 1-cocycle.

If A is unital, an invertible element b ∈ C0(A, A) = A determines an inner auto-
morphism, α(a) = b−1ab. Suppose that b is part of a 1-parameter family, starting from
the unit. Differentiating gives

α̇(a) = aḃ − ḃa �⇒ α̇ = δḃ ,

so infinitesimal inner automorphisms are exact 1-cocycles. This means that H1(A, A)

describes infinitesimal automorphisms modulo inner ones.
Finally, the equation 0 = δb is the condition that b be central, so H0(A, A) = Z(A),

the center of A.
Note that here there are various structures—algebra elements, automorphisms,

multiplication—that are elements of C•(A, A) in various degrees. These satisfy proper-
ties that are most naturally expressed as the vanishing of elements of C•(A, A) in other
degrees.
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2.2. A diagram of algebras. [16,17,26] Let X be a small category and A : X → Alg
a covariant functor, i.e., a diagram of algebras over X. Because I mainly have in mind
X ⊂ Loc, I will denote elements of X as M , N , et cetera.

Such a functor consists of 3 types of information: Every object determines a vector
space; every object also determines an associative product on that vector space; and
every morphism determines a homomorphism of algebras. A vector space cannot be
deformed, but the other two structures can. This is in contrast to a single algebra, where
there is only one deformable structure.

Let φ : M → N and ψ : N → P be morphisms in X.
For a manifold M , there is a bilinear multiplication map m[M] : A(M)⊗2 →

A(M), a ⊗ b �→ ab. For a morphism φ, there is a linear map, A[φ] : A(M) →
A(N ), a �→ A(φ; a).

These two structures satisfy three properties.Associativitymeans that for everyM , the
mapA(M)⊗3 → A(M), a⊗b⊗ c �→ a(bc)− (ab)c vanishes. Being a homomorphism
means that for everyφ, themapA(M)⊗2 �→ A(N ), a⊗b �→ A(φ; ab)−A(φ; a)A(φ; b)
vanishes. Functoriality means that for every pair of composable morphisms, φ and ψ ,
the map A(M)→ A(P), a �→ A(ψ;A(φ; a))− A(ψ ◦ φ; a) vanishes.2

A symmetry3 of the functor A is a natural automorphism α : A →̇ A. This is
given by, for every object M , an automorphism α[M] : A(M) → A(M). This satisfies
two properties. Being an automorphism means that for every M , the map A(M)⊗2 →
A(M), a ⊗ b �→ α(M; ab) − α(M; a)α(M; b) vanishes (and that α[M] is invertible).
Naturality means that for every φ, the map A(M) → A(N ), a �→ A(φ;α(M; a)) −
α(N ;A(φ; a)) vanishes.

Each of these structures and conditions depends upon an element of the nerve, B•X,
of the category X. B0X = ObjX is the set of objects. B1X = MorX is the set of
morphisms. B2X is the set of composable pairs of morphisms. In general, BpX is the
set of composable p-tuples of morphisms. Each element of BpX begins at an object and

ends at an object; for example, M ∈ B0X begins and ends at M , but M
φ→ N

ψ→ P
begins at M and ends at P .

Each structure or condition consists of—for every chain of a given length in B•X—a
multilinear map from the algebra at the beginning to the algebra at the end. This suggests
that the generalization of C•(A, A) is bigraded. One degree is (again) the multilinearity
and the other degree is the chain length (the degree in B•X).

2.2.1. The Hochschild bicomplex

Definition 2.8.

C p,q(A,A) :=
∏

(M0←···←Mp)∈BpX

HomC[A(Mp)
⊗q ,A(M0)]

=
∏

(M0←···←Mp)∈BpX

Cq [A(Mp),A(M0)]

Remark. I am writing morphisms as arrows from right to left. This is consistent with
the usual convention for writing compositions.

2 Note that I am denoting the linear map as A[φ] (with square brackets) and the value of that linear map
on a as A(φ; a) (with parentheses and a semicolon). This and similar notation will be needed frequently.

3 Fewster [10] showed that this is a good definition of symmetry for an LCQFT.
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Any chain in BpX can be composed to a single morphism. Applying A to this mor-
phism gives a homomorphism from A(Mp) to A(M0), which makes A(M0) a bimodule
of A(Mp).

Definition 2.9. The Hochschild coboundary

δH : C p,q(A,A) → C p,q+1(A,A)

is (−1)p times the Hochschild coboundary on Cq [A(Mp),A(M0)], i.e.,

δH =
q+1∑

i=0
(−1)p+iδHi .

The nerve, B•X is a simplicial set. In particular, there are face maps ∂i : BpX →
Bp−1X, for 0 ≤ i ≤ p. For φ : M → N , these are the source and target, ∂0(φ) = M
and ∂1(φ) = N . For p ≥ 2,

∂0(φ1, . . . , φp) = (φ2, . . . , φp)

∂i (φ1, . . . , φp) = (φ1, . . . , φi ◦ φi+1, . . . , φp)

∂p(φ1, . . . , φp) = (φ1, . . . , φp−1)

The face maps correspond to injective maps in the simplicial category. Specifically,
∂i corresponds to the inclusion of {0, . . . , p − 1} into {0, . . . , p} that skips i . Other
injective maps can be specified by the numbers that they skip, and the corresponding
face maps will be useful. Specifically,

∂i ... j (φ1, . . . , φp) = (φ1, . . . , φi−1, φi ◦ · · · ◦ φ j+1, φ j+2, . . . , φp)

and

∂0...i, j ...p(φ1, . . . , φp) = (φi+2, . . . , φ j−1) .

There are also degeneracy maps, given by inserting identity morphisms, but these will
not be needed.

Definition 2.10.

– For 1 ≤ i ≤ p,

δSi Γ = Γ ◦ ∂i .

– For p = 0,

(δS0Γ )[φ] = A[φ] ◦ Γ [M] ,
(δS1Γ )[φ] = Γ [N ] ◦ A[φ]⊗q .

– For p ≥ 1,

(δS0Γ )[φ1, . . . , φp+1] = A[φ1] ◦ Γ [φ2, . . . , φp+1] ,
(δSp+1Γ )[φ1, . . . , φp+1] = Γ [φ1, . . . , φp] ◦ A[φp+1]⊗q .

The simplicial coboundary δS : C p,q(A,A) → C p+1,q(A,A) is dual to this sim-
plicial structure and is defined by

δS :=
p+1∑

i=0
(−1)iδSi .
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These satisfy (δS)2 = (δH)2 = δHδS+δSδH = 0, soC••(A,A)with the coboundaries
δS and δH is a first quadrant bicomplex.

Definition 2.11. The Hochschild cohomology of a diagram of algebras is

H•(A,A) := H•(C•(A,A))

where

Cn(A,A) := totn C••(A,A) =
n⊕

p=0
C p,n−p(A,A)

with the coboundary δ := δS + δH. Denote the space of closed cycles as Z•(A,A).
Following Gerstenhaber and Schack [17], also define the asimplicial bicomplex4

C p,q
a (A,A) :=

{
0 q = 0
C p,q(A,A) q ≥ 1

and from this, C•a , Z•a , and H•a are defined analogously.

2.2.2. Binary operations. The naive product of Δ ∈ C p,q(A,A) and Γ ∈ C p,q ′(A,A)

is Δ · Γ ∈ C p,q+q ′(A,A) defined by

(Δ · Γ )(φ1, . . . , φp; a1, . . . , aq , b1, . . . , bq ′)
= Δ(φ1, . . . , φp; a1, . . . , aq)Γ (φ1, . . . , φp; b1, . . . , bq ′) .

Elements Γ ∈ C p,q(A,A) and Δ ∈ C p′,q ′(A,A) can be combined by several binary
operations.

The cup product, Γ � Δ ∈ C p+p′,q+q ′(A,A) is defined by

Γ � Δ := (−1)qp′δSp+1,...,p+p′+1Γ · δS0,...,p−1Δ .

For 1 ≤ j ≤ q, the partial composition is defined by

(Γ ◦ j Δ)(σ ; a1, . . . , aq+q−1)
:= Γ (∂p+1,...,p+p′+1σ ;A(∂p,p+p′+1σ ; a1), . . . , Δ(∂0,...,p−1σ ; ai , . . . , ai+q ′−1),

. . . ,A(∂p,p+p′+1σ ; aq+q ′−1)) .

These combine to define Γ ◦Δ ∈ C p+p′,q+q ′−1(A,A) by

Γ ◦Δ :=
q∑

j=1
(−1)(q−1)p′+(q ′−1)(q− j)Γ ◦ j Δ .

For 1 ≤ i ≤ p, there is another kind of “composition” defined by Γ •i Δ :=
δSi,...,i+p′−2Δ · δS0,...,i−2,i+p′,...,p+p′−1Γ . Note that Γ and Δ are multiplied in a surprising

order. These combine to define Γ •Δ ∈ C p+p′−1,q+q ′(A,A) by

Γ •Δ :=
p∑

i=1
(−1)qq ′+(p′−1)(p+q−i)Γ •i Δ

4 They denoted this with an s in [16].
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Remark. If q = 0, then Δ ◦ Γ = 0. If p = 0 or p′ = 0, then Δ • Γ = 0.

The analogue of the ◦ operation of the ordinary Hochschild complex is

Γ ◦̄Δ := Γ ◦Δ + Γ •Δ

and the generalized Gerstenhaber bracket is

[Γ,Δ] := Γ ◦̄Δ− (−1)(p+q−1)(p′+q ′−1)Δ ◦̄ Γ .

The cup product and bracket give well defined operations on cohomology, and these
make H•(A,A) and H•a (A,A) into Gerstenhaber algebras. However, in contrast to the
case of a single algebra, this bracket does not make C•(A,A) into a graded Lie algebra.

2.2.3. Involution. If A : X→ ∗-Alg, then there is also an antilinear involution on this
bicomplex.

Definition 2.12. For Γ ∈ C p,q(A,A), Γ � ∈ C p,q(A,A) is given by

Γ �(φ1, . . . , φp; a1, . . . , aq) := (−1)pq+p(p+1)/2(Γ (φ1, . . . , φp; a∗q , . . . , a∗1))∗

for any M0
φ1←− . . .

φp←− Mp and a1, . . . , aq ∈ A(M0).

This operation does not commute with the coboundaries. Instead,

(δΓ )� = (−1)p+q+1δ(Γ �) .

This is sufficient to give a well defined involution on cohomology.
This is an involution of the � product, up to a homotopy given by the • operation.

For Γ ∈ C p,q(A,A) and Δ ∈ C p′,q ′(A,A),

(Γ � Δ)� −Δ� � Γ �

= (−1)(p+q)(p′+q ′−1)+1 (
δΓ � •Δ� − δ(Γ � •Δ�) + (−1)p+q+1Γ � • δΔ�

)
.

3. The Significance of Hochschild Cohomology

Hochschild cohomology is mainly concerned with infinitesimal things such as deriva-
tions and infinitesimal deformations. These concepts are appropriate to purely algebraic
AQFT (such as perturbative AQFT) but are not well suited to C∗-algebraic AQFT. How-
ever, some of these infinitesimal concepts have finite analogues, which are conceptually
clearer and directly applicable to C∗-algebraic AQFT.

3.1. Asimplicial cohomology. The cohomology H•a (A,A) is more directly relevant to
deformations and symmetries of a diagram of algebras.

3.1.1. Z2
a . A diagram of algebras, A, includes two deformable structures. Denote the

multiplication in A(M) asm(M; a, b) = ab; this definesm ∈ C0,2(A,A). Also denote
μ(φ; a) = A(φ; a); this defines μ ∈ C1,1(A,A).
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These structures satisfy three conditions, which can be expressed as the vanishing of
cochains. Associativity is a condition onm, expressed in C0,3(A,A). The compatibility
between m and μ is that μ must consist of morphisms between the products given by
m; this is expressed in C1,2(A,A) and is explicitly

μ(φ;m(M; a, b)) = m(N ;μ(φ; a), μ(φ; b)) (3.1)

for φ : M → N and a, b ∈ A(M). Functoriality is a condition on μ, expressed in
C2,1(A,A); explicitly,

μ(ψ ◦ φ; a) = μ(ψ;μ(φ; a)) (3.2)

for P
ψ← N

φ← M and a ∈ A(M).
Now imagine that m + μ ∈ C2

a (A,A) = C0,2(A,A) ⊕ C1,1(A,A) is part of a
1-parameter family of structures satisfying these conditions. Differentiating these con-
ditions gives 3 conditions on ṁ and μ̇. As in the case of a single algebra, differentiating
associativity gives the condition 0 = δHṁ. Differentiating Eq. (3.1) gives

δH1 μ̇ + δS0 ṁ = δS1 ṁ + δH2 μ̇ + δH0 μ̇

thus 0 = δSṁ + δHμ̇. Differentiating the functoriality condition (3.2) gives

δS1 μ̇ = δS2 μ̇ + δS0 μ̇ ,

thus 0 = δSμ̇. Together, these mean that ṁ and μ̇ give a cocycle ṁ + μ̇ ∈ Z2
a(A,A).

Differentiating twice gives further conditions. As in the case of a single algebra, the
second derivative of associativity is 2ṁ ◦ ṁ = [ṁ, ṁ] = −δHm̈. The second derivative
of Eq. (3.1) is

δH1 μ̈ + δS0 m̈ + 2μ̇ ◦1 ṁ = δS1 m̈ + δH2 μ̈ + δH0 μ̈ + 2ṁ ◦1 μ̇ + 2ṁ ◦2 μ̇ + 2μ̇ •1 μ̇ ,

thus 2ṁ ◦ μ̇ + 2μ̇ • μ̇ = −δHμ̈− δSṁ. The second derivative of functoriality (3.2) is

δS1 μ̈ = δS2 μ̈ + δS0 μ̈ + 2μ̇ ◦1 μ̇ ,

thus 2μ̇ ◦ μ̇ = −δSμ̇. Together, these show that

[ṁ + μ̇, ṁ + μ̇] = −δ(m̈ + μ̈) ;

in other words, [ṁ + μ̇, ṁ + μ̇] is exact.
For a diagram of ∗-algebras, m and μ satisfy two further conditions. Being a ∗-

algebra means that m(M; a∗, b∗) = m(M; b, a)∗; equivalently, m� = m. Being a ∗-
homomorphismmeans thatμ(φ; a∗) = μ(φ; a)∗; equivalently,μ� = μ. The conditions
are the same on the derivatives, so ṁ + μ̇ is a self-adjoint cocycle.

3.1.2. H2
a . The collection of diagrams of algebras, AlgX is a category in the usual way,

meaning that a homomorphism of diagrams of algebras is a natural transformation.
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Consider a diagram of algebras, A, and let B be another diagram with the same
underlying vector spaces and the other structures denoted by m and μ. Let α : B→ A
be a natural isomorphism. This means that for a, b ∈ A(M),

α(M;m(M; a, b)) = α(M; a)α(M; b) , (3.3)

and for φ : M → N ,

μ(φ;α(M; a)) = α(N ;A(φ; a)) . (3.4)

Now, imagine that α is part of a 1-parameter family of isomorphisms, starting from
the identity. Differentiating Eq. (3.3) (and then setting α = id) gives

δH1 α̇ + ṁ = δH2 α̇ + δH0 α̇ ,

thus ṁ = δHα̇. Likewise, differentiating the naturality condition (3.4) gives

μ̇ + δS0 α̇ = δS1 α̇ ,

thus μ̇ = δSα̇. Together, this is ṁ + μ̇ = δα̇. In other words, a trivial deformation is
given to first order by an exact cocycle.

A class in H2
a (A,A) is called a Maurer–Cartan element if the bracket with itself

is 0. Deformations of A are classified to first order modulo trivial deformations by the
Maurer–Cartan elements.

3.1.3. H1
a . The symmetries of A are its natural automorphisms, so now consider α a

natural automorphism of A. This means that for a, b ∈ A(M),

α(M; ab) = α(M; a)α(M; b) , (3.5)

and for φ : M → N ,

A(φ;α(M; a)) = α(N ;A(φ; a)) . (3.6)

Suppose that α is part of a 1-parameter family of natural automorphisms, starting
from the identity. Differentiating Eq. (3.5) (and setting α = id) gives

δH1 α̇ = δH2 α̇ + δH0 α̇ ,

thus 0 = δHα̇. Differentiating Eq. (3.6) gives

δS0 α̇ = δS1 α̇ ,

thus 0 = δSα̇. Together, this gives 0 = δα̇, but since C0
a (A,A) = 0, this means that

α̇ ∈ H1
a (A,A).

The set of natural automorphisms of A is a group. For two natural automorphisms, α
and β, their product is simply α◦β = α◦1β, given by (α◦β)(M; a) = α(M;β(M; a)).

The Lie algebra of the group of natural automorphisms is the space H1
a (A,A), with

the ◦-commutator. This operation is the Gerstenhaber bracket in this degree.
For a diagram of ∗-algebras, we should also require that α(M; a∗) = α(M; a)∗. This

just means that α� = α. The condition on the derivative is the same. The Lie algebra of
infinitesimal natural ∗-automorphisms is thus the �-invariant part of H1

a (A,A).
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3.2. Full Hochschild cohomology.

3.2.1. Z2. A cocycle in the full Hochschild complex contains more structure. This
complex should describe the deformations of a diagram of algebras to something more
general.

The additional structure is an element ξ ∈ C2,0(A,A). For any P
ψ← N

φ← M , this
gives some ξ(ψ, φ) ∈ A(P). For a diagram of ∗-algebras, if ξ� = ξ , then ξ(ψ, φ) is
anti-selfadjoint; this suggests that this is the first order part of a unitary. In general, we
should have an invertible element u(ψ, φ) ∈ 1 + A(P) ⊂ Ã(P) (the unitalization of
A(P)).

Letm+μ+u be an example of this (yet undetermined) generalization of a diagram of
algebras. Suppose that if this is part of an 1-parameter family of such structures (starting
from A with u = 1) then the first derivative satisfies 0 = δ(ṁ + μ̇ + u̇) and

[ṁ + μ̇ + u̇, ṁ + μ̇ + u̇]
is exact. These conditions have components in degrees (0, 3), (1, 2), (2, 1), and (3, 0).

The conditions in degrees (0, 3) and (1, 2) are unchanged, thus we should still require
that m[M] is an associative product, and μ[φ] is a homomorphism.

The condition in degree (2, 1) is modified by terms involving u. This means that the
functoriality condition (3.2) on μ must be modified by u. The second derivative of this
condition should be, 0 = δHμ̈ + δSü + 2ṁ ◦ u̇ + 2μ̇ ◦ μ̇ + 2μ̇ • u̇ + 2u̇ • μ̇, which is

δS0 μ̈ + δS2 μ̈ + δH0 ü + 2ṁ ◦2 u̇ + 2μ̇ ◦1 μ̇ + 2u̇ •1 μ̇ + 2u̇ •2 μ̇

= δS1 μ̈ + δH1 ü + 2ṁ ◦1 u̇ + 2μ̇ •1 u̇ .

The condition in degree (3, 0) is new and only involves u. This suggests that u
satisfies some nonlinear cocycle condition indexed by B3X. The second derivative of
this condition should be 0 = δSü + 2u̇ • u̇, which is

δS0 ü + δS2 ü + 2u̇ •2 u̇ = δS1 ü + δS3 ü + 2u̇ •1 u̇ .

This leads to the following definition.

Definition 3.1. A skew diagram of algebras (A, u) over a category X consists of

– for every M ∈ X, an associative algebra A(M),
– for every φ : M → N in X, a homomorphism A[φ] : A(M)→ A(N ), and

– for every P
ψ← N

φ← M , an invertible element u(ψ, φ) ∈ 1 + A(P),

such that:

– For any P
ψ← N

φ← M and a ∈ A(M),

A(ψ;A(φ; a))u(ψ, φ) = u(ψ, φ)A(ψ ◦ φ; a) ;

– for any Q
χ← P

ψ← N
φ← M ,

A(χ; u(ψ, φ))u(χ,ψ ◦ φ) = u(χ,ψ)u(χ ◦ ψ, φ) .
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Remark. The penultimate condition can be stated as commutativity of the diagram,

A(M) A(P )

A(N) A(P )

A[ψ◦φ]

A[φ] Ad[u(ψ,φ)]

A[ψ]

where Ad[u] : a �→ uau−1.

This definition extends easily to some other categories of algebras.

Definition 3.2. For a skew diagram of ∗-algebras, u(ψ, φ) is required to be unitary. For
a skew diagram of unital algebras, u(ψ, φ) ∈ A(M).

Remark. Note that a diagram of algebras is precisely a skew diagram of the form (A, 1).

By construction, if a diagram of algebras, A, is deformed to a 1-parameter family of
skew diagrams of algebras, then at first order the deformation determines an element of
Z2(A,A) whose bracket with itself is exact.

3.2.2. H2. By analogy with the asimplicial cohomology, H2
a (A,A), theMaurer–Cartan

elements of H2(A,A) should classify the deformations of A into skew diagrams up to
first order, modulo trivial deformations. A trivial deformation should mean one in which
all of the skew diagrams are isomorphic to A. This guides us to define morphisms of
skew diagrams.

IfA is a diagram of algebras, then a trivial deformation ofA to skew diagrams can be
constructed using a 1-parameter family of isomorphisms. This is given to first order by
an element of C0,1(A,A)⊕ C1,0(A,A). The first part is not new, and corresponds to a
family of homomorphisms (indexed by the objects of X). The second part is a family of
algebra elements indexed by morphisms inX. For a diagram of ∗-algebras, a �-invariant
element ofC1,0(A,A) is a family of anti-self-adjoint algebra elements. This corresponds
to a family of unitary (or generally, invertible) elements of the unitalized algebras.

We don’t yet know what a morphism of skew diagrams is, but suppose that (α, v) :
(B, u)→ (A, 1) is an isomorphism of skew diagrams, whereB has the same underlying
vector spaces. The structuresm, μ, and u of this (B, u) should be determined by some
formulae from α, v, and the structures of A. As before, the product is defined by

α(M;m(M; a, b)) = α(M; a)α(M; b) ,

for a, b ∈ A(M)

Suppose that (α, v) is part of a 1-parameter family, starting from α = id and v = 1.
To first order, μ is given by μ̇ = δSα̇ + δHv̇ = δS0 α̇− δS1 α̇− δH0 v̇ + δH1 v̇; more explicitly,

μ̇(φ; a) + α̇(N ;A(φ; a)) + A(φ; a)v̇(φ) = A(φ; α̇(M; a)) + v̇(φ)A(φ; a) ,

for φ : M → N and a ∈ A(M). This is the derivative of

α(N ;μ(φ; a))v(φ) = v(φ)A(φ;α(M; a)) ,

which defines μ.
To first order, u is given by u̇ = δSv̇ = δS0 v̇ − δS1 v̇ + δS2 v̇. More explicitly,

u̇(ψ, φ) + v̇(ψ ◦ φ) = A(ψ; v̇(φ)) + v̇(ψ) ,
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for M
φ→ N

ψ→ P . This is the first derivative of

α(P; u(ψ, φ))v(ψ ◦ φ) = v(ψ)A(ψ; v(φ)) ,

which defines u.

Remark. The orderings in the products in this formula are not obvious. This is linked
with the reversed order of multiplication in the definition of •.

In fact, there are 2 possible conventions. The definition of a skew diagram of algebras
can be changed so that the multiplication here and in the definition of • is in the obvious
order. The repercussion of this choice is that the definition of the cup product would
be more awkward. I am using the convention consistent with Gerstenhaber and Schack
[16,17].

Further extrapolation leads to the following definition.

Definition 3.3. A morphism of skew diagrams of algebras (α, v) : (A, u) → (B, u′)
is given by

– For every object M ∈ ObjX, a homomorphism α[M] : A(M)→ B(M), and
– for every morphism φ : M → N , an element v(φ) ∈ 1 +B(N ),

such that

– for φ : M → N and a ∈ A(M),

α(N ;A(φ; a)) v(φ) = v(φ)B(φ;α(M; a)) (3.7)

– and for M
φ→ N

ψ→ P ,

α(P; u(ψ, φ)) v(ψ ◦ φ) = v(ψ)B(ψ; v(φ)) u′(ψ, φ) . (3.8)

For a morphism of skew diagrams of unital algebras, v(φ) ∈ B(N ), and for a morphism
of skew diagrams of ∗-algebras it should be unitary.

Remark. Equation (3.7) generalizes the definition of a natural transformation. It can be
expressed as commutativity of the diagram

A(M) A(N )

B(N )

B(M) B(N ) B(N )

A[φ]

α[M]
α[N ]

·v(φ)

B[φ] v(φ)·

which is like the diagram defining naturality, but with the lower right corner modified.
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3.2.3. Z1. A diagram of algebrasA is in particular a skew diagram, if we set u = 1. We
can thus consider the group, SAut(A), of skew automorphisms ofA, i.e., automorphisms
of (A, 1) in the category of skewdiagrams of algebras (which I have not yet fully defined).

The defining properties of a skew automorphism (α, v) of A simplify to: α[M] is a
homomorphism,

α(N ;A(φ; a)) v(φ) = v(φ)A(φ;α(M; a)) ,

and

v(ψ ◦ φ) = v(ψ)A(ψ; v(φ)) .

For a 1-parameter family of such automorphisms, starting from (id, 1), the first deriva-
tives of these conditions give precisely that α̇ + v̇ is closed. So, Z1(A,A) is the space of
infinitesimal skew automorphisms.

The Gerstenhaber bracket on C•(A,A) does not satisfy the graded Jacobi identity.
Nevertheless, Z1(A,A) actually is a Lie algebra. So, let’s compute the Gerstenhaber
bracket of ξ + υ and ξ ′ + υ ′ ∈ C0,1(A,A) ⊕ C1,0(A,A). Because of the low degrees,
ξ • υ ′ = 0. The only degree (0, 1) part of (ξ + υ) ◦̄ (ξ ′ + υ ′) is ξ ◦ ξ ′ = ξ ◦1 ξ ′, given by

(ξ ◦ ξ ′)(M; a) = ξ(M; ξ ′(M; a)) .

The degree (1, 0) part is υ • υ ′ + ξ ◦ υ ′ = υ •1 υ ′ + ξ ◦1 υ ′, given by

(υ • υ ′ + ξ ◦ υ ′)(φ) = υ ′(φ) υ(φ) + ξ(N ;υ(φ)) .

(Note the order of multiplication.) The Gerstenhaber bracket is given by antisymmetriz-
ing this.

The Gerstenhaber bracket actually satisfies the Jacobi identity on the larger subspace
of ξ + υ ∈ C1(A,A) such that δHξ = 0 (i.e., ξ [M] is a derivation). This Lie algebra has
subalgebras indexed by the objects and morphisms of X. For every object M ∈ ObjX,
there is theLie algebrader(A(M))of derivations. For everymorphismφ : M → N , there
is a copy of A(N ) with bracket equal to minus the commutator. Obviously, der(A(M))

acts on A(M) by derivations. This Lie algebra is the semidirect product of all of the
subalgebras.

The corresponding group has subgroups indexed by the objects and morphisms in
X. For every object, M , there is the group of automorphisms, Aut(A(M)). For every
morphism with codomain M , there is the group of invertible elements in 1 + A(M)op.
The group of skew automorphisms of A is a subgroup of the semidirect product of these
groups.

This leads to the definition of composition.

Definition 3.4. If (α, v) : (A, u) → (B, u′) and (β, v′) : (B, u′) → (C, u′′) are mor-
phisms of skew diagrams of algebras, then their composition (γ, v′′) = (β, v′)(α, v) :
(A, u) → (C, u′′) is given by

γ (M; a) = β(M;α(M; a)) (3.9)

and

v′′(φ) = β(N ; v(φ)) v′(φ) . (3.10)
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Remark. There are two natural ways of identifying the semidirect product of groups
with the Cartesian product as a set. The other choice is not compatible with the fact that
v(φ) ∈ 1 + A(N ).

Theorem 3.1. With these definitions of the objects, morphisms, and compositions, skew
diagrams of algebras over X form a category.

The proof is a straightforward calculation. It also follows from Theorem 3.2, below

3.2.4. H1. As I have noted, Z1(A,A) is a Lie algebra under the Gerstenhaber bracket.
It acts on C0(A,A) and on itself by the Gerstenhaber bracket, and the coboundary

δ : C0(A,A) → Z1(A,A)

is equivariant, so its image is an ideal, and thus H1(A,A) is a Lie algebra. The obvious
commutator bracket makes C0(A,A) a Lie algebra and −δ a homomorphism. This
suggests that the analogue of H1(A,A) should be a quotient of the group SAut(A).

Let ξ + υ ∈ Z1(A,A) and ζ ∈ C0(A,A). The Gerstenhaber bracket in these degrees
reduces to

[ξ + υ, ζ ] = ξ ◦ ζ = ξ ◦1 ζ,

so the action of (α, v) ∈ SAut(A) on ζ is also just α ◦1 ζ , i.e.,

(α ◦1 ζ )(M) = α(M; ζ(M)) .

The finite analogue of C0(A,A) is the set of functions w ∈ C0(A, Ã) such that
w(M) ∈ 1 + A(M) is invertible; this is a group under the naive product. The finite
analogue of −δ should be an equivariant homomorphism from this group to SAut(A).
Let (α, v) be the image ofw by this homomorphism. Ifw is part of a 1-parameter family
starting from w = 1, then the first derivative should be given by minus the coboundary,
i.e., α̇ = −δHẇ = −δH0 ẇ + δH1 ẇ and v̇ = −δSẇ = −δS0 ẇ + δS1 ẇ. Explicitly,

α̇(M; a) = ẇ(M) a − a ẇ(M)

and

v̇(φ) = ẇ(N )− A(φ; ẇ(M)) .

These requirements lead uniquely to the formulae,

α(M; a) = w(M)a w(M)−1

and

v(φ) = w(N )A(φ;w(M)−1) .

Definition 3.5. The group of outer skew automorphisms, SOut(A), is the quotient of
SAut(A) by this image.

This is the finite analogue of H1(A,A). I discuss this further in Sect. 3.6.
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3.2.5. H0. In this case the infinitesimal and finite concepts are the same.
H0(A,A) is the joint kernel of δS and δH in

C0,0(A,A) =
∏

M∈ObjX
A(M) .

Let ζ ∈ C0,0(A,A).
The Hochschild coboundary δHζ ∈ C0,1(A,A) is defined by, for M ∈ ObjX and

a ∈ A(M),

(δHζ )(M; a) = a ζ(M)− ζ(M)a = [a, ζ(M)] .
The condition 0 = δHζ means precisely that ζ(M) ∈ A(M) is central for allM ∈ ObjX.

The simplicial coboundary δSζ ∈ C1,0(A,A) is defined by, for φ : M → N in X,

(δSζ )(φ) = A(φ; ζ(M))− ζ(N ) .

The condition that 0 = δSζ is a sort of invariance.

Example. If X = G is a group (viewed as a category with one object, ∗ ∈ Obj(X))
then A : G → Alg is equivalent to a single algebra A = A(∗) with an action of G
by automorphisms of A. The condition that 0 = δSζ means that ζ is G-invariant, and
0 = δHζ means that ζ is central, so

H0(A,A) = Z(A)G .

For a diagram of ∗-algebras, ζ � = ζ precisely if ζ(M) is self-adjoint.
For A : Loc→∗-Alg a LCQFT, ζ = ζ � ∈ H0(A,A) is an observable whose values

are unaffected by the action of other observables. Moreover, it can be measured in any
arbitrarily small region of spacetime.

3.3. Higher categorical interpretation. For the definitions of 2-categories and their func-
tors, transformations, and modifications, see [24,25].

Definition 3.6. Let AlgInn be the strict 2-category whose underlying 1-category is Alg
and

– for any homomorphisms α, β : A → B, a 2-morphism α
u�⇒ β is u ∈ 1 + B such

that for any a ∈ A,

u α(a) = β(a)u ;
– the horizontal composition of α

u�⇒ β
v�⇒ γ is α

vu�⇒ γ (i.e., v ◦ u = vu);
– the vertical composition of α

u�⇒ β and γ
v�⇒ δ is v • u := v γ (u) = δ(u) v :

(γ ◦ α) �⇒ (δ ◦ β).

As a category, X is in particular a strict 2-category, with only identity 2-morphisms.
Both X and AlgInn are in particular weak 2-categories (bicategories).

Theorem 3.2. The category of skew diagrams of algebras over X is the category whose
objects are pseudofunctors from X to AlgInn (written as oplax functors) and whose
morphisms are lax transformations.
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Proof. An oplax functor (A, u) : X → AlgInn maps objects to objects, morphisms
to morphisms, and composable pairs to 2-morphisms. In a pseudofunctor, these 2-
morphisms are required to be invertible. For each M ∈ ObjX, it gives an algebraA(M).
For φ : M → N it gives a homomorphism A[φ] : A(M) → A(N ). For (ψ, φ) ∈ B2X,
it gives u(ψ, φ) : A[ψ ◦ φ] �⇒ A[ψ] ◦ A[φ].

By the definition of AlgInn, this means that u(ψ, φ) ∈ 1 + A(P) and

u(ψ, φ)A(ψ ◦ φ; a) = A(ψ;A(φ; a))u(ψ, φ) .

These are the components of a natural transformation, but because X has only identity
2-morphisms, the naturality condition is trivial.

For any (χ,ψ, φ) ∈ B3X, there is a commutative diagram of 2-morphisms,

A[χ ◦ ψ ◦ φ] A[χ ] ◦ A[ψ ◦ φ]

A[χ ◦ ψ] ◦ A[φ] A[χ ] ◦ A[ψ] ◦ A[φ]

u(χ,ψ◦φ)

u(χ◦ψ,φ) idA[χ ] ◦u(ψ,φ)

u(χ,ψ)◦idA[φ]

that is,

[idA(χ) ◦u(ψ, φ)] • u(χ,ψ ◦ φ) = [u(χ,ψ) ◦ idA(φ)] • u(χ ◦ ψ, φ) .

(Here, id denotes the identity 2-morphism over a 1-morphism in AlgInn.) The definition
of horizontal composition in AlgInn gives that

idA(χ) ◦u(ψ, φ) = A(χ; u(ψ, φ)) : A(χ) ◦ A(ψ, φ) �⇒ A(χ) ◦ A(ψ) ◦ A(φ)

and

u(χ,ψ) ◦ idA(φ) = u(χ,ψ) : A(χ ◦ ψ) ◦ A(φ) �⇒ A(χ) ◦ A(ψ) ◦ A(φ) .

The definition of vertical composition in AlgInn simplifies this to

A(χ; u(ψ, φ))u(χ,ψ ◦ φ) = u(χ,ψ)u(χ ◦ ψ, φ) .

This shows that a pseudofunctor (A, u) : X → AlgInn is a skew diagram, and that a
skew diagram is a pseudofunctor.

Let (A, u) and (B, u′) be diagrams of algebras over X. As we have just seen, these
are pseudofunctors X→ AlgInn, written as oplax functors. A lax transformation

(α, v) : (A, u) →̇ (B, u′)

consists of, for every object M ∈ ObjX, a homomorphism

α[M] : A(M)→ B(M) ,

and for every 1-morphism φ : M → N , a 2-morphism

v(φ) : B[φ] ◦ α[M] �⇒ α[N ] ◦ A[φ] .
This means that v(φ) ∈ 1 +B(N ) and for any a ∈ A(M),

α(N ;A(φ; a)) v(φ) = v(φ)B(φ;α(M; a)) .

This is precisely Eq. (3.7).
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For P
ψ← N

φ← M , there is a commutative diagram of 2-morphisms,

B[ψ ◦ φ] ◦ α[M] α[P] ◦ A[ψ ◦ φ]

B[ψ] ◦B[φ] ◦ α[M] α[P] ◦ A[ψ] ◦ A[φ]

B[ψ] ◦ α[N ] ◦ A[φ]

v(ψ◦φ)

u′(ψ,φ)◦idα[M] idα[P] ◦u(ψ,φ)

idB[ψ] ◦v(φ) v(ψ)◦idA[φ]

that is,

[u′(ψ, φ) ◦ idα[M]] • v(ψ ◦ φ)

= [v(ψ) ◦ idA[φ]] • [idB[ψ] ◦v(φ)] • [u′(ψ, φ) ◦ idα[M]] .
By the definitions of horizontal and vertical composition, this is precisely Eq. (3.8).

Finally, consider two lax transformations (α, v) : (A, u) →̇ (B, u′) and (β, v′) :
(B, u′) →̇ (C, u′′), and denote their compositon as (γ, v′′) : (A, u) →̇ (C, u′′). At
M ∈ ObjX, γ [M] = β[M] ◦ α[M]; this is Eq. (3.9). For φ : M → N , v′′(φ) :
C[φ] ◦ γ [M] �⇒ γ [N ] ◦ A[φ] is diagrammatically

B(N ) A(N )

C(N ) A(M)

C(N ) B(M)

β[N ]
α[N ]

A[φ]

α[M]C[φ]

v′(φ)

β[M]

v(φ)
B[φ]

and explicitly

v′′(φ) = [idβ[N ] ◦v(φ)] • [v′(φ) ◦ idα[M]]
= β(N ; v(φ)) v′(φ) ,

which is Eq. (3.10). ��
Remark. There are a fewminor variations possible on these definitions, depending upon
what is required to be invertible and lax versus oplax versions.

From this perspective, an additional structure becomes apparent: The categoryof skew
diagrams is actually a strict 2-category. The 2-morphisms are modifications between the
lax transformations.

Again, let (A, u), (B, u′) : X → AlgInn and (α, v), (β, v′) : (A, u) →̇ (B, u′).
A modification w : (α, v) →̈ (β, v′) consists of, for every M ∈ ObjX, a 2-morphism
w(M) : α[M] �⇒ β[M], such that for any φ : M → N , there is a commutative
diagram of 2-morphisms,

B[φ] ◦ α[M] B[φ] ◦ β[M]

α[N ] ◦ A[φ] β[N ] ◦ A[φ]

idB[φ] ◦w[M]

v(φ) v′(φ)
w(N )◦idA[φ]

Applying the definition of AlgInn makes this explicit:



A Cohomological Perspective on Algebraic Quantum Field Theory 461

Definition 3.7. Given two 1-morphisms of skew diagrams, (α, v), (β, v′) : (A, u) →
(B, u′), a 2-morphism w : (α, v) �⇒ (β, v′) consists of w(M) ∈ 1+B(M) (for every
object M) satisfying

w(M)α(M; a) = β(M; a)w(M) (3.11)

for all a ∈ A(M), and

v′(φ)B(φ;w(M)) = w(N )v(φ) , (3.12)

for every φ : M → N .
For w : (α, v) �⇒ (β, v′) and w′ : (β, v′) �⇒ (γ, v′′), the vertical composition

w′ • w : (α, v) �⇒ (γ, v′′) is

(w′ • w)(M) = w′(M) • w(M) = w′(M)w(M) .

For three skew diagrams, (A, u), (B, u′), and (C, u′′), four 1-morphisms (α, v),
(β, v′) : (A, u) → (B, u′) and (δ, v′′), (γ, v′′′) : (B, u′) → (C, u′′), and two 2-
morphisms, w : (α, v) �⇒ (β, v′) and w′ : (δ, v′′) �⇒ (γ, v′′′). The horizontal
composition w′ ◦ w is

(w′ ◦ w)(M) = w′(M) ◦ w(M) = w′(M)γ (M;w(M)) .

In particular, for a given diagram A, there is a 2-group of automorphisms, which can
be described by a crossed module involving the structures discussed in Sect. 3.2.4. The
crossed module consists of:

– the finite analogue of C0(A,A), i.e., the group of invertible elements of C0(A, Ã) of
the form w(M) ∈ 1 + A(M),

– the finite analogue of Z1(A,A), i.e., SAut(A),
– the finite analogue of −δ : C0(A,A) → Z1(A,A), and
– the finite analogue of the action of Z1(A,A) onC0(A,A) by theGerstenhaber bracket.

It is easy to check that in Sect. 3.2.4, w : (id, 1) �⇒ (α, v).
This gives interpretations of the finite analogues of H1(A,A) and H0(A,A). The

group SOut(A) is the 0’th homotopy group of the automorphism2-group ofA. The group
of invertible elements of H0(A,A) is the first homotopy group of the automorphism 2-
group of A.

3.4. Generalized AQFT. Definition 3.1 of a skew diagram of algebras suggests a gen-
eralization of algebraic quantum field theory. With X = Loc or the category of causally
complete regions of a fixed spacetime, we can simply define a generalized AQFT as a
skew diagram of ∗-algebras overX. Einstein causality, the time-slice axiom, and isotony
can be required just as before. This sets AQFTmodels within a larger class of structures.

Given a skew diagram (A, u) of algebras over X, there exists another category Y , a
functor π : Y → X, a diagram B : Y → Alg, and a (non-functorial) section σ of π

such that A = B ◦ σ .
If, in some attempt to construct an AQFT, it is only possible to construct a generalized

AQFT in this sense, then this is an indication that some additional structure is required
beyond the globally hyperbolic spacetimes in Loc.

For example, a model with a spin- 12 field cannot be formulated as a LCQFT over
Loc (see remarks following Cor. 13 in [11]) but can be formulated over the category of
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globally hyperbolic spin-manifolds. It appears likely that such amodel can be formulated
as a generalized AQFT with a skew diagram over Loc.

This situation is extremely similar to that considered in [3], and the relationship
deserves further investigation. Can a quantum field theory on a category Y fibered in
groupoids over Loc be described by a skew diagram over Loc? Can a generalized AQFT
be described by a QFT over a fibered category? The answers are almost certainly yes in
some cases.

4. Interaction

As I have mentioned, an AQFT (or any diagram of algebras) has two deformable struc-
tures: the associative products and the maps between algebras. These are elements of the
Hochschild bicomplex in degrees (0, 2) and (1, 1), respectively. This means that there
are 2 qualitatively different ways of deforming an AQFT. For example:

– The transition from a classical to a quantum field theory deforms the associative
algebra structures.

– The transition from a free to an interacting field theory deforms the maps between
algebras.

It may not always be possible to disentangle these 2 aspects of deformation, but it is
known that the von Neumann algebra associated to any connected, precompact region
of spacetime is isomorphic to the (unique) hyperfinite type III1 factor [6,12,13]. (This
does not apply to classical field theories.) This strongly indicates that deformation of
maps is far more important to the deformation of a quantum field theory.

If an AQFT, A, is deformed smoothly by changing the interaction, then this should
be described to first order by a class in H2

a (A,A). This suggests that that class can be
given by an element of C1,1(A,A).

In practice, computing a cohomology class means computing some cocycle in that
class. This requires making an additional choice.

In principle, in order to compute the characteristic class of an interaction, we should
(for each M) identify the algebras for a family of field theories with a fixed vector space.
It may then be possible to differentiate the product and homomorphisms to get a cocycle.
Different choices of identifications should give cohomologous cocycles.

To understand what is needed, it is simplest to first consider classical field theories.
A classical algebra of observables is a commutative algebra of functionals on the space
of solutions. We need to choose a way of identifying solutions of different field theories
on a spacetime M . The simplest way to do this is by initial data. Given a Cauchy surface
Σ ⊂ M , solutions of field theories on M can be identified with their initial data on Σ .
The characteristic class of an interaction can thus be computed by using an arbitrary
choice of a Cauchy surface for every spacetime M ∈ Obj(Loc).

To see how this can work, first consider a classical field theory given by some
Lagrangian density, L, on a spacetime M ∈ Obj(Loc). Let Σ1,Σ2 ⊂ M be Cauchy
surfaces, and suppose for simplicity that5 Σ1 � Σ2 and that these are equal outside of
some compact set.

Assume for simplicity that this theory has no gauge degeneracies, so that the phase
space is just the set of solutions of the equations of motion for L. Such a solution can
be identified with initial data along Σ1 or Σ2. If we change the Lagrangian density to

5 See Sec. 1.4 for notation.
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L + λV , then the equations of motion change, and evolution from Σ1 to Σ2 defines a
map from the phase space to itself. Differentiating with respect to λ and then setting
λ = 0 gives a vector field, Ξ , on the phase space.

Let

H :=
∫

{x∈M|Σ1�x�Σ2}
V .

This is a functional on the phase space, and Ξ is the Hamiltonian vector field given by
H . (This is immediate from Peierls’ construction of the Poisson structure [19,27].)

If we define

θi (x) :=
{
1 x � Σi

0 otherwise

then

H =
∫

M
(θ1 − θ2)V (4.1)

(and we no longer need to assume Σ1 � Σ2).
This is good enough for classical field theory, but for a quantum field theory, V will

need to be a distribution, which is best thought of as a linear map,

V : f �→
∫

M
f V

from D(M) to the algebra of observables. Unfortunately, θ1 − θ2 is not smooth.
Note that because Σi is a Cauchy surface, Supp θi = J+Σi is past compact and

Supp(1 − θi ) = J−Σi is future compact. (See [1] for a discussion of these concepts.)
This suggests a smoothed-out analogue of the set of Cauchy surfaces:

Definition 4.1.

Θ(M) := {
θ ∈ C∞(M, R) | Supp θ past compact, Supp(1− θ) future compact

}

So, now let θ1, θ2 ∈ Θ(M) and suppose that θ1 − θ2 has compact support. Even if
V is distributional, we can define H = V (θ1 − θ2). The action of this on a classical
observable, a, is the Poisson bracket,

Ξ(a) = {H, a} = {V (θ1 − θ2), a} .

Note that if Supp f ∼ Supp a, then {V ( f ), a} = 0, therefore

Ξ(a) = {V (χ), a} (4.2)

for any test function χ ∈ D(M) such that χ = θ1 − θ2 over J (Supp a).
This allows us to drop the assumption that θ1−θ2 has compact support. By construc-

tion, Supp(θ1 − θ2) is future compact and past compact, so Supp(θ1 − θ2) ∩ J (Supp a)

is compact, and there exists χ ∈ D(M) equal to θ1 − θ2 on J (Supp a). Equation (4.2)
can then be taken as the definition of Ξ .

This was for a classical field theory. For a quantum field theory,Ξ should be a deriva-
tion of the algebraA(M) of quantum observables. In the classical limit, the commutator
is approximately proportional to the Poisson bracket. This suggests that the quantum
version of (4.2) may be

Ξ(a) = −i
�
[V (χ), a] .

This is indeed a derivation, and we shall see that it is the right answer.
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4.1. The character of an interaction. LetX ⊂ Loc be a small subcategory that is closed
under pullbacks (i.e., intersections) and such that the inclusion of any causally complete
open subset into M ∈ Obj(X) is a morphism in X. Let A be a functor from X to
topological C-algebras, satisfying Einstein causality.

In perturbative AQFT, the algebraA(M) is constructed from functionals, which have
clearly defined support in M . However, I am trying to be more general here. Instead of
defining the support of an observable, I have the following definitions for the subalgebra
of observables supported on a given subset and for the subalgebra of compactly supported
observables.

Definition 4.2. For any M ∈ ObjX and K ⊂ M , let

A(M; K ) :=
⋂
{ImA[ι] | ∀O ∈ ObjX, ι : O→ M, such that K ⊂ Im ι}

and

Ac(M) :=
⋃

K⊂M compact

A(M; K ) .

For φ : M → N , Ac[φ] is the restriction of A[φ] to Ac(M).

Lemma 4.1. Ac : X→ Alg is a functor.

Proof. Any a ∈ Ac(M) is in A(M; K ) for some compact K ⊂ M . Consider some
φ : M → N . For ι1 : O1 → N , let ι2 : O2 → M be the pullback of ι1 by φ : M → N .
If φ(K ) ⊂ Im ι1, then K ⊂ Im ι2 so a ∈ ImA[ι2] and

A(φ; a) ∈ ImA[φ ◦ ι2] ⊆ ImA[ι1] .
Therefore,

A(φ; a) ∈ A(N ;φ(K )) ⊂ Ac(N ) .

��
Let V : D →̇ A be a linear natural transformation. The idea is to use this as an

interaction term for a Lagrangian, L +λV , although this works even if A is not given by
aLagrangian, and it certainly doesn’t need to be free. In perturbativeAQFT, it is normally
only assumed that V is additive, rather than linear; however, we are only interested in
the first order effect of this interaction, and only the linear part of V will be relevant.

In order to choose a specific cocycle in the character of the interaction V , we need a
choice of smoothed-out Cauchy surface on each spacetime, so following Definition 4.1
define:

Definition 4.3.

Θ(X) :=
∏

M∈ObjX
Θ(M) .

Lemma 4.2. For V : D →̇ A, M ∈ Obj(X), and f ∈ D(M),

VM ( f ) ∈ A(M;Supp f )



A Cohomological Perspective on Algebraic Quantum Field Theory 465

Proof. Consider any ι : O→ M such that Supp f ⊂ Im ι, and note that f = ι∗ι∗ f . By
naturality of V ,

VM ( f ) = VM (ι∗ι∗ f ) = A(ι; VO(ι∗ f )) ∈ ImA[ι] .
Because this holds for any such ι, the result follows. ��
Lemma 4.3. If K1 ∼ K2 ⊂ M are spacelike separated and compact, a ∈ A(M; K1),
and b ∈ A(M; K2), then ab = ba.

Proof. Let K ′1 ⊂ M be the causal complement of K1. This is an open neighborhood of
K2.

Because K ′1 is locally compact, every point of K2 has a relatively compact (i.e., with
compact closure) open neighborhood. This gives a cover of K2 by relatively compact
open subsets of K ′1. By compactness of K2, this has a finite subcover. The union is
a relatively compact open neighborhood of K2. Let O2 ⊂ K ′1 ⊂ M be the Cauchy

development of this neighborhood. Let O1 := O2
′ ⊂ M be the causal complement of

O2.
Write ιi : Oi → M for the inclusions. Because O1 and O2 are globally hyperbolic

neighborhoods of K1 and K2, a ∈ ImA[ι1] and b ∈ ImA[ι2]. Because these are
spacelike separated, a and b commute. ��
Lemma 4.4. For V : D →̇ A additive, K ⊂ M compact, a ∈ A(M; K ), and f, g ∈
D(M), if K ∼ Supp( f − g), then

[VM ( f ), a] = [VM (g), a] ,
where the bracket is the commutator.

Proof. J (K ) is closed, so J (K ) ∩ Supp f is compact. There exists another function
h ∈ D(M � Supp( f − g)) that equals f (and hence g) over J (K ) ∩ Supp f .

By definition, Supp h is disjoint from Supp( f − g), so additivity of VM gives

VM (h + [g − h] + [ f − g]) = VM (h + [g − h])− VM (g − h)

+ VM ([g − h] + [ f − g])
VM ( f ) = VM (g)− VM (g − h) + VM ( f − h) .

In particular, Supp(g − h) and Supp( f − h) are spacelike to K , so

[VM ( f ), a] − [VM (g), a] = [VM ( f − h), a] − [VM (g − h), a] = 0 .

��

Definition 4.4. Given φ : M → N and θM ∈ Θ(M), define θ̃M ∈ C∞(JN (M)) by

θ̃M (φ(x)) = θM (x) x ∈ M

θ̃M (x) = 0 x ∈ J−N (M) � M

θ̃M (x) = 1 x ∈ J+N (M) � M .

To avoid clutter I am sometimes not writing φ, as in J+N (M) meaning J+N (φM).
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Fig. 1. An example of the possible arrangement of subsets of N in Lemma 4.5. The shaded region represents
Suppχ

Lemma 4.5. For V : D →̇ A additive and any θ ∈ Θ(X), there exists a unique cochain
ΞV,θ ∈ C1,1(Ac,Ac) such that for φ : M → N, K ⊂ M compact, and a ∈ A(M; K ),
if χ ∈ D(N ) such that χ = θ̃M − θN on a neighborhood of JN (K ) then ΞV,θ is given
by the commutator

ΞV,θ (φ; a) = −i
�
[VN (χ),A(φ; a)] .

(See Fig. 1.)

Proof. Let O ⊂ M be a relatively compact neighborhood of K . Observe that θ̃M −
θN ∈ C∞(JN (M)) has future and past compact support, so J±(O) ∩ Supp(θ̃M − θN )

are compact, and therefore, J (O) ∩ Supp(θ̃M − θN ) is as well. Therefore there exists
a function χ ∈ D(N ) that equals θ̃M − θN on JN (O) ⊃ JN (O). This satisfies the
conditions in the hypothesis, so such functions do exist.

By the previous lemma, −i
�
[VN (χ),A(φ; a)] is independent of the choice of such a

function. This is clearly linear in a ∈ A(M; K ), but any a, b ∈ Ac(M) are contained in
A(M; K ) for some K . Therefore this is a well defined linear map. ��
Lemma 4.6. If V : D →̇ A is linear and θ ∈ Θ(X), then δΞV,θ = 0.

Proof. Firstly, δHΞV,θ measures whether ΞV,θ [φ] : Ac(M) → Ac(N ) is a derivation.
By construction, it is an inner derivation on A(M; K ) for any compact K ⊂ M . Since
Ac(M) is the union of these algebras, this shows that δHΞV,θ = 0.

Now consider two composable morphisms P
ψ←− N

φ←− M , some compact K ⊂
M , and a ∈ A(M; K ). Choose a relatively compact neighborhood O ⊂ M of K ,
and functions χψ ∈ D(P) and χφ ∈ D(N ) such that χψ = θ̃N − θP on JP (O) and
χφ = θ̃M − θN on JN (O).
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Note that χψ◦φ := χψ + ψ∗χφ satisfies

x ∈ JM (O) �⇒ χψ◦φ(ψ ◦ φ(x)) = θN (φ(x))− θP (ψ ◦ φ(x))

+ θM (x)− θN (φ(x))

= θM (x)− θP (ψ ◦ φ(x))

x ∈ J−N (O) � O �⇒ χψ◦φ(ψ(x)) = χψ(φ(x)) + χφ(x)

= θN (φ(x))− θP (ψ ◦ φ(x))− θN (φ(x))

= −θP (ψ ◦ φ(x))

x ∈ J+N (O) � O �⇒ χψ◦φ(ψ(x)) = θN (φ(x))− θP (ψ ◦ φ(x))

+ 1− θN (φ(x))

= 1− θP (ψ ◦ φ(x))

x ∈ J−M (O) � N �⇒ χψ◦φ(x) = χψ(x) = −θP (x)

x ∈ J+M (O) � N �⇒ χψ◦φ(x) = χψ(x) = 1− θP (x) .

So, the functions χψ , χφ , and χψ◦φ satisfy the hypotheses of Lemma 4.5 for computing
ΞV,θ (ψ;A(φ; a)), ΞV,θ (φ; a), and ΞV,θ (ψ ◦ φ; a). Using the linearity and naturality
of V , this gives

VP (χψ◦φ) = VP (χψ) + VP (ψ∗χφ) = VP (χψ) + A(ψ; VN (χφ)) .

Therefore

δSΞV,θ (ψ, φ; a)

= A(ψ; −i
�
[VN (χφ),A(φ; a)])− −i

�
[VP (χψ◦φ),A(ψ ◦ φ; a)]

+−i
�
[VP (χψ),A(ψ ◦ φ; a)]

= 0 .

��
Lemma 4.7. For V : D →̇ A linear and θ, θ ′ ∈ Θ(X), there exists a cochainΛV,θ ′−θ ∈
C0,1(Ac,Ac) such that for any M ∈ ObjX, K ⊂ M compact, a ∈ A(M; K ), and
ξ ∈ C∞(M) satisfying ξ(x) = θ ′M (x)− θM (x) for x ∈ J (K ), we have

ΛV,θ ′−θ (M; a) = −i
�
[VM (ξ), a] ,

and ΞV,θ ′ = ΞV,θ + δΛV,θ ′−θ .

Proof. Clearly, Supp(θ ′M − θM ) is future and past compact, so J (K )∩ Supp(θ ′M − θM )

is compact, and there exists a function ξ ∈ D(M) that equals θ ′M−θM on this subset. By
Lemma4.4,ΛV,θ ′−θ (M; a) is independent of the choice of ξ , soΛV,θ ′−θ ∈ C0,1(Ac,Ac)

is well-defined.
By construction, ΛV,θ ′−θ [M] is a derivation on any A(M; K ), so δHΛV,θ ′−θ = 0.
Now, let φ : M → N and choose χ ∈ D(N ), ξM ∈ D(M), and ξN ∈ D(N ) suitable

to compute ΞV,θ (φ; a), ΛV,θ ′−θ (M; a), and ΛV,θ ′−θ (N ;A(φ; a)), respectively. If we
define χ ′ := χ + φ∗ξM − ξN , then

x ∈ JM (K ) �⇒ χ ′(φ(x)) = θM (x)− θN (φ(x)) + ξM (x)− ξN (φ(x))

= θ ′M (x)− θ ′N (φ(x))

x ∈ J−N (K ) � M �⇒ χ ′(x) = −θN (x)− ξN (x) = −θ ′N (x)

x ∈ J+N (K ) � M �⇒ χ ′(x) = 1− θN (x)− ξN (x) = 1− θ ′N (x)
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therefore (using linearity of V )

ΞV,θ ′(φ; a) = −i
�
[VN (χ ′),A(φ; a)]

= −i
�
[VN (χ),A(φ; a)] + −i

�
[VN (ξN ),A(φ; a)] − −i

�
[VN (φ∗ξM ),A(φ; a)]

= ΞV,θ (φ; a) + A(φ;ΛV,θ ′−θ (M; a))−ΛV,θ ′−θ (N ;A(φ; a))

= ΞV,θ (φ; a) + δSΛV,θ ′−θ (φ; a) .

��
Putting these results together proves:

Theorem 4.8. If V : D →̇ A is linear, then it defines a cohomology class ΞV ∈
H2
a (Ac,Ac), which is the class of ΞV,θ ∈ C1,1(Ac,Ac) for any θ ∈ Θ(X).

It is not completely clear whether linearity of V is a necessary assumption, as only
additivity was needed in Lemma 4.5.

A test function f ∈ D(M) in VM ( f ) serves as an infrared cutoff of the interaction.
It can be thought of as varying the coupling constant over M , and thus λVM ( f ) should
really be VM (λ f ). The characteristic class ΞV is supposed to describe the first order
effect of the interaction. From this perspective, even if V is nonlinear, then only the first
order, linear part of V should be used to construct ΞV .

I have tried to prove the results in this section as generally as possible, but this has led
to constructing ΞV ∈ H2

a (Ac,Ac) rather than in H2
a (A,A). In order to fix this, we need

to use some more specific category of topological algebras such that Ac(M) ⊂ A(M)

is dense and ΞV,θ extends uniquely and continuously. This is true in the setting of
perturbative AQFT.

5. Perturbative AQFT

Now turn to the setting of perturbative algebraic quantum field theory. Let Alg[[�]]
denote the category of �-adically complete C[[�]]-algebras and homomorphisms.

The �-adic topology can be defined by a norm such as ‖a‖ = e−k , where �
k is the

largest power of � dividing a. Completeness of A ∈ ObjAlg[[�]]means that any power
series in � with coefficients in A converges to an element of A.

Any C[[�]]-linear map between �-adically complete modules is norm-contracting,
and hence continuous. If A is a dense C[[�]]-submodule of a complete module and
�a ∈ A �⇒ a ∈ A, then any linear map from A to a complete module extends
uniquely to a homomorphism defined on the closure of A.

Similarly, Alg[[�, λ]] denotes the category of complete C[[�, λ]]-algebras.
Remark. These should really also be ∗-algebras, but for simplicity, I am ignoring the
involution here.

As in the previous section, X ⊂ Loc is a small subcategory, closed under pullbacks
and inclusion of causally complete open sets. Let A : X → Alg[[�]] satisfy Einstein
causality and V : D →̇ A be additive.

Definition 5.1. A time-ordered product ·T on A(M) is a commutative and associative
product such that if O1 � O2 ⊂ M , a ∈ A(M;O1), and b ∈ A(M;O2), then a ·T b =
b ·T a = ab.
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Suppose that we have made a natural choice of time-ordered product ·T on each
A(M); naturality, in this case, means that each A[φ] is a homomorphism under the
time-ordered products. Let ExpT denote the ·T exponential function.

The formal S-matrix SM : D(M)→ A(M)[[�−1λ]] is

SM ( f ) := ExpT { i�VM (λ f )}

This satisfies the causal factorization property that if f, g, h ∈ D(M) with Supp f �
Supp h, then

SM ( f + g + h) = SM ( f + g)SM (g)−1SM (g + h) . (5.1)

Naturality of V and ·T imply that S is natural.

Definition 5.2. The retarded Møller operator

R f : A(M)→ A(M)[[λ]] (5.2)

is defined by R f (a) := SM ( f )−1 [SM ( f ) ·T a].

This is a linear map, but not a homomorphism.

Remark. The formal S-matrix includes negative powers of �, so it is slightly surprising
that R f does not. See [8,21].

Remark. I am not concerned with the details of renormalization here, but these are
needed in order to actually construct ·T and V .

Remark. The interaction V is not actually used directly to construct the interacting
theory. We only need a natural time-ordered product and a natural formal S-matrix
satisfying Eqs. (5.1) and (5.2)

Note that, for a ∈ A(M; K ),

Supp f � K �⇒ R f (a) = a ,

Supp f � K �⇒ R f (a) = SM ( f )−1a SM ( f ) .

Roughly speaking, the interaction to the future of K is irrelevant and the interaction to
the past of K only gives a unitary transformation.

Ifweheuristically imagine that f is {0, 1}-valued, and f = 1on the causal completion
K ′′ of K , then R f (a) uses the interacting theory to evolve a back to the past boundary of
Supp f , where it is identified with an observable of the free theory. This is good enough
to identify interacting observables supported in K with free observables.

The problem is that, as we consider larger subsets of M , wemust adjust f and change
the identification with free observables. No single choice of f works for all observables,
and this is why the algebraic adiabatic limit is needed.
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5.1. Adiabatic limit. The following is a formalization of the algebraic adiabatic limit
construction [9] as applied to constructing an interacting LCQFT.

Definition 5.3. Define a strict functor K : X→ Cat (the category of small categories)
by:

– For M ∈ ObjX, ObjK(M) is the set of pairs (K , f ) where K ⊂ M is compact and
f ∈ D(M) such that f = 1 on J+(K ) ∩ J−(K ).

– For M ∈ ObjX, MorK(M) is the set of inclusions of compact subsets (without any
condition relating the test functions).

– For φ : M → N , the functor (Cat morphism) K[φ] : K(M) → K(N ), is defined by
K[φ] : (K , f ) �→ (φ(K ), φ∗ f ).

Definition 5.4. Given M ∈ ObjX, define a functor AV (M;−) : K(M) → Alg[[�, λ]]
such that:

– On objects, AV (M; K , f ) ⊂ A(M)[[λ]] is generated by the image R f (A(M; K )).
– On morphisms, it is determined by the condition that R : A(M;−) →̇ AV (M;−)

be a natural linear transformation—i.e., for any (K1, f1), (K2, f2) ∈ K(M) with
K1 ⊆ K2,

A(M ;K1) A(M ;K2)

AV (M ;K1, f1) AV (M ;K2, f2)

⊆

Rf1 Rf2

AV (M ;K1,f1,K2,f2)

is a commutative diagram.

For any φ : M → N and (K , f ) ∈ K(M), we can consider the restriction of A[φ]
to AV (M; K , f ) ⊂ A(M)[[λ]]. To determine the codomain, observe that A[φ] ◦ R f =
Rφ∗ f ◦ A[φ], so

A(φ;AV (M; K , f )) ⊆ AV (N ;φK , φ∗ f ) = AV (M;K[φ](K , f )) .

Now consider (K1, f1, K2, f2) ∈ MorK(M). Observe that,

A[φ] ◦ AV (M; K1, f1, K2, f2) ◦ R f1

= A[φ] ◦ R f2 = Rφ∗ f2 ◦ A[φ]
= AV (N ;φK1, φ∗ f1, φK2, φ∗ f2) ◦ Rφ∗ f1 ◦ A[φ]
= AV (N ;φK1, φ∗ f1, φK2, φ∗ f2) ◦ A[φ] ◦ R f1 ,

which implies that the restrictions of A[φ] give a natural transformation

AV (M;−) →̇ AV (N ;−) ◦K[φ] . (5.3)

The transformation (5.3) and universality of the direct limit lim−→AV (M;−) give a
homomorphism

lim−→AV (M;−) → lim−→{AV (N ;−) ◦K[φ]} . (5.4)

Universality of lim−→{AV (N ;−) ◦K[φ]} gives a homomorphism

lim−→{AV (N ;−) ◦K[φ]} → lim−→AV (N ;−) . (5.5)
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Fig. 2. In Theorem 5.1, g = 1− θ in J+K , and f = θ in J−(K ∪ Supp g). The shaded region is Supp g

Definition 5.5. Define a functor AV : X→ Alg[[�, λ]] by:
– For M ∈ ObjX,

AV (M) := lim−→AV (M;−) .

– For φ : M → N , AV [φ] : AV (M) → AV (N ) is the composition of the homomor-
phisms (5.4) and (5.5).

This AV is the perturbative AQFT given by modifying A with the interaction λV .

5.2. Modified construction.

Definition 5.6. For f, g ∈ D(M) and a ∈ A(M),

R̃ f,g(a) := SM ( f )−1[SM ( f + g) ·T a]SM ( f + g)−1SM ( f ) . (5.6)

Remark. If we heuristically imagine that f and f + g are {0, 1}-valued, then R̃ f,g(a)

evolves a forward to the future boundary of Supp( f + g) and then back to the past
boundary of Supp f , where it is identified with an observable of the free theory.

This gives a uniformway of identifying interacting observableswith free observables,
because R̃ f,g(a) does not change if f is changed in the future and g is changed in the
past.

Theorem 5.1. Given θ ∈ Θ(M), there exists a unique linear map (the modified Møller
operator) R̃θ : A(M) → A(M)[[λ]] such that if K ⊂ M compact, a ∈ A(M; K ),
and f, g ∈ D(M) with Supp(g − 1 + θ) � K and Supp( f − θ) � K ∪ Supp g, then
R̃θ (a) = R̃ f,g(a).

The different regions are sketched in Fig. 2.

Proof. Supp(1 − θ) ∩ J+(K ) is compact, so such a g exists, and (Supp θ) ∩ J−(K ∪
Supp g) is compact, so such an f exists.



472 E. Hawkins

For a given choice of g, if f ′ is another possible choice of f , then Supp( f − f ′) �
K ∪ Supp g. This implies that

SM ( f ′ + g) ·T a = SM ( f ′)SM ( f )−1[SM ( f + g) ·T a]
and

SM ( f ′ + g) = SM ( f ′)SM ( f )−1SM ( f + g) ,

so the right side of (5.6) is independent of the choice of f . If g′ is another possible
choice of g, then Supp θ ∩ J−(K ∪Supp g∪Supp g′) is compact, so a choice of f exists
that is compatible with both g and g′. Now, Supp(g − g′) � K , so

SM ( f + g′) ·T a = [SM ( f + g) ·T a]SM ( f + g)−1SM ( f + g′) ,

and therefore the right side of (5.6) is independent of the choice of g, i.e., R̃θ (a) is well
defined for a ∈ A(M; K ).

For any a, b ∈ Ac(M), there exists K ⊂ M compact such that a, b ∈ A(M; K ). Any
larger compact set determines the same R̃θ (a), therefore R̃θ is well defined. Because
a+b ∈ A(M; K ), we have R̃θ (a+b) = R̃θ (a)+ R̃θ (b), therefore R̃θ is linear onAc(M).
Finally, this extends uniquely to A(M). ��
Theorem 5.2. Given θ ∈ Θ(X), there is a unique functor AV,θ : X→ Alg[[�, λ]] such
that:

– AV,θ (M) = A(M)[[λ]];
– R̃θ : A →̇ AV,θ is a natural linear transformation.

Proof. Because R̃θM : A(M)[[λ]] → A(M)[[λ]] is equal to the identity plus higher
order terms in λ, it is automatically a bijective linear map. The naturality condition
means that for any φ : M → N

A(M) A(N)

A(M)[[λ]] A(N)[[λ]]

R̃θM

A[φ]

R̃θN

AV,θ [φ]

should commute. Because R̃θM is injective, this clearly defines a linear map from Im R̃θM

to Im R̃θN , and hence A(M)[[λ]] → A(N )[[λ]]. It is automatically functorial. We need
to check that it is a homomorphism.

Consider a ∈ A(M; K ) and compare R̃θM (a) with R̃θN (A(φ; a)). First, note that if
R̃θM (a) is computed with f, g ∈ D(M) as before, then

A(φ; R̃θM (a)) = SN (φ∗ f )−1[SN (φ∗ f + φ∗g) ·T A(φ; a)]SN (φ∗ f + φ∗g)−1SN (φ∗ f ) .

In this formula, φ∗ f can safely be replaced with a test function on N , as long as the
support of the difference is � φ(K ∪ Supp g).

With this in mind, choose g1 ∈ D(M) such that Supp(g1 − 1 + θM ) � K . Again,
denote by θ̃M ∈ C∞(JN (M)) the function such that φ∗θ̃M = θM and θ̃M = 1 in the
future of φ(M) and 0 in the past. Next choose χ ∈ D(N ) such that χ = θ̃M − θN
on J (φ(K )) ∪ J−(φ(Supp g1)). Define g2 = φ∗g1 + χ . Choose f2 ∈ D(N ) such that



A Cohomological Perspective on Algebraic Quantum Field Theory 473

Fig. 3. Some of the relationships in the proof of Theorem 5.2. The darker shaded region is Supp g2. The lighter
shaded region is Suppχ

Supp( f2 − θN ) � φ(K ∪ Supp g1)∪ Supp g2. Finally, let f1 = f2 + χ . (Some of this is
sketched in Fig. 3.)

The point of these choices is that they can be used to compute A(φ; R̃θM (a)) and
R̃θN (A(φ; a)), and f1 + φ∗g1 = f2 + g2. Now,

A(φ; R̃θM (a)) = SN ( f1)
−1[SN ( f2 + g2) ·T A(φ; a)]SN ( f2 + g2)

−1SN ( f1)

and

R̃θN (A(φ; a)) = SN ( f2)
−1[SN ( f2 + g2) ·T A(φ; a)]SN ( f2 + g2)

−1SN ( f2)

= SN ( f2)
−1SN ( f1)A(φ; R̃θM (a))SN ( f1)

−1SN ( f2) .

This shows that for b ∈ R̃θM (A(M; K )),

AV,θ (φ; b) = SN ( f2)
−1SN ( f1)A(φ; b)SN ( f1)

−1SN ( f2) . (5.7)

This AV,θ [φ] is manifestly a homomorphism.
Finally, this extends uniquely to all of AV,θ (M). ��

Corollary 5.3. For any θ, θ ′ ∈ Θ(X), there is a natural isomorphism α : AV,θ →̇ AV,θ ′
such that

A(M)

AV,θ (M) AV,θ ′(M)

R̃θM
R̃θ ′M

αM

commutes for any M ∈ ObjX.

Proof. The calculation is the same as in the previous proof, although slightly simplified.
More formally, this result follows if we apply the previous theorem to a doubled version
of the category X in which every object of X appears as 2 isomorphic copies. ��
Theorem 5.4. For any θ ∈ Θ(X), AV,θ is naturally isomorphic to AV .
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Proof. First, forM ∈ ObjX, K ⊂ M compact, θ ′ ∈ Θ(M) such that Supp(1−θ ′) � K ,
and a ∈ A(M; K ), we can compute R̃θ ′(a) using g = 0. So, if Supp( f − θ ′) � K , then

R f (a) = R̃ f,0(a) = R̃θ ′(a) .

Now, for any (K , f ) ∈ K(M), there exists θ ′ ∈ Θ(M) such that Supp( f − θ ′) �
K . So, the isomorphism that intertwines R̃θ ′ with R̃θM also maps AV (M; K , f ) to
AV,θ (M). These maps are consistent with AV (M;−), so these give a homomorphism
from AV (M) = lim−→AV (M;−) to AV,θ (M). For the same reason, this homomorphism
is natural.

The image of AV (M; K , f ) is densely generated by R̃θM (A(M; K )), but these sub-
algebras densely generate AV,θ (M), therefore this homomorphism is surjective. It is
injective by construction, therefore it is an isomorphism. ��

This shows that AV,θ is completely equivalent to AV . It has the advantage of
being more concrete. Whereas AV (M) is defined abstractly as a limit, AV,θ (M) is just
A(M)[[λ]].

5.3. Maurer–Cartan. The computations in the previous section make it possible to
explicitly show that the characteristic class ΞV of an interaction is a Maurer–Cartan
element of H2

a (A,A), provided that a natural time-ordered product exists. In this sec-
tionA : X→ Alg[[�]] satisfies Einstein causality and has a natural time-ordered product
as in the previous section.

If V is nonlinear, then only its linear part is relevant at first order in λ, so in this
section I will assume that V : D →̇ A is a natural linear transformation.

For θ ∈ Θ(M), the map R̃θ is a formal power series in λ, so denote this expansion
explicitly as

R̃θ = id +λR̃(1)
θ + 1

2λ
2 R̃(2)

θ + . . . . (5.8)

Inverting this gives

R̃−1θ = id−λR̃(1)
θ + λ2

(
R̃(1)

θ ◦ R̃(1)
θ − 1

2 R̃
(2)
θ

)
+ . . . . (5.9)

Theorem 5.5. For θ ∈ Θ(X), and φ : M → N in X,

AV,θ [φ] ≡ A[φ] + λ ΞV,θ [φ] mod λ2 ,

where ΞV,θ ∈ C1,1(A,A) is now �-adically completed.

Proof. This follows from Eq. (5.7) by expanding SN to first order in λ. ��
For θ ∈ Θ(X), I would like to compute a cochainΨV,θ such thatAV,θ = A+λΞV,θ +

1
2λ

2ΨV,θ + . . . . By definition, for φ : M → N ,

AV,θ [φ] = R̃θN ◦ A[φ] ◦ R̃−1θM
.

Using (5.8) and (5.9), this gives

ΞV,θ [φ] = R̃(1)
θN
◦ A[φ] − A[φ] ◦ R̃(1)

θM
(5.10)

and leads to:
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Definition 5.7. For V : D →̇ A linear, θ ∈ Θ(X), let ΨV,θ ∈ C1,1(A,A) be such that
for φ : M → N ,

ΨV,θ [φ] = R̃(2)
θN
◦ A[φ] − A[φ] ◦ R̃(2)

θM
− 2ΞV,θ [φ] ◦ R̃(1)

θM
. (5.11)

Lemma 5.6. For V : D →̇ A linear, θ ∈ Θ(X), φ : M → N, K ⊂ M compact, if
O ⊂ M is a neighborhood of

K ∪ (J+K ∩ Supp[1− θM ]) ∪ (J−K ∩ Supp θM ) ,

and χ, f2 ∈ D(N ), such that

χ = θ̃M − θN on JNO
f2 = θN on J−N (O ∪ Suppχ)

(where θ̃M ∈ Θ(JNO) is again the extension of θM by 1 in the future and 0 in the past)
then for any a ∈ A(M; K ),

ΨV,θ (φ; a) = −1
�2 [VN (χ), [VN (χ),A(φ; a)]]
+ −1
2�2 [VN (2 f2 + χ) ·T VN (χ)− VN (2 f2 + χ)VN (χ),A(φ; a)]. (5.12)

Moreover, for any such φ and K , such O, χ , and f2 exist.

Proof. The map defined in (5.6) is natural in the sense that for φ : M → N ,

A[φ] ◦ R̃ f,g = R̃φ∗ f,φ∗g ◦ A[φ] .
Explicitly,

R̃(1)
f,g(a) = −i

�
(VM ( f )a + aVM (g)− VM ( f + g) ·T a) .

This only depends upon f in J−K and g in J+K , therefore R̃(1)
f,g(a) = R̃(1)

θM
(a) if

f = θM in J−K and g = 1− θM in J+K . If O ⊂ M is a neighborhood of

K ∪ (J+K ∩ Supp[1− θM ]) ∪ (J−K ∩ Supp θM ) ,

then f and g can be chosen that are supported inO, therefore R̃(1)
θM

(a) is in the image of
A[ι], where ι : O→ M is the inclusion.

From the properties of R̃, R̃(2)
f2,g2

◦A(φ; a) = R̃(2)
θN
◦A(φ; a), provided that g2 = 1−θN

on J+N K , and f2 = θN on J−N (K ∪ Supp g2).
Likewise, for f1 ∈ D(N ) and g1 ∈ D(M),

A[φ] ◦ R̃(2)
θM

(a) = R̃(2)
f1,φ∗g1 ◦ A(φ; a)

if g1 = 1− θM on J+K and f1 = θ̃M on J−N (K ∪ Supp g1).
Thirdly, for χ, f1 ∈ D(N ) and g1 ∈ D(M),

ΞV,θ [φ] ◦ R̃(1)
θM

(a) = −i
�
[VN (χ),A[φ] ◦ R̃(1)

θM
(a)]

= −i
�
[VN (χ), R̃(1)

f1,φ∗g1 ◦ A(φ; a)]
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if χ = θ̃M − θN on JNO, f1 = θ̃M on J−N K , and g1 = 1− θM on J+K .
If all of these conditions are satisfied, then

ΨV,θ (φ; a) =
(
R̃(2)

f2,g2
− R̃(2)

f1,φ∗g1

)
◦ A(φ; a) + 2i

�
[VN (χ), R̃(1)

f1,φ∗g1 ◦ A(φ; a)] .
(5.13)

If f1 − f2 = g2 − φ∗g1 = χ , then the right side of (5.13) equals

−1
�2 [VN (χ), [VN (χ),A(φ; a)]]
+ −1
2�2 [VN ( f1 + f2) ·T VN (χ)− VN ( f1 + f2)VN (χ),A(φ; a)] .

This is most easily seen by expanding Eq. (5.7) to second order in λ. Note that g1 and
g2 do not appear in this expression.

Now suppose that O ⊂ M , and χ, f2 ∈ D(N ) satisfy the hypotheses of this lemma.
O ⊂ M is an open neighborhood of the compact set J+K ∩ Supp(1 − θM ), therefore
there exists a function in D(O) that equals 1 on J+K ∩ Supp(1 − θM ); multiplying
this with 1 − θM gives a function g1 ∈ D(M) such that g1 = 1 − θM on J−K and
Supp g1 ⊂ O. Define f1 := f2 + χ and g2 := φ∗g1 + χ . The conditions are satisfied as
follows:

– f1 = θ̃M on J−(K ∪Supp g1), because K ⊂ O, Supp g1 ⊂ O, and f1 = f2+χ = θ̃M
on J−N O.

– g1 = 1− θM on J+K , by construction.
– f2 = θN on J−N (K ∪Supp g2), because Supp g2 ⊂ Supp g1 ∪Suppχ ⊂ O∪Suppχ .
– g2 = 1− θN on J+N K , because φ∗g1 + χ = 1− θ̃M + (θ̃M − θN ) on J+N K .
– χ = θ̃M − θN on JN K , by hypothesis.

This verifies Eq. (5.12) under the given hypotheses.
Finally, consider anyφ : M → N and K ⊂ M compact. The sets J+K∩Supp(1−θM )

and J−K ∩Supp θM are compact, because Supp(1−θM ) and Supp θM are (respectively)
future-compact and past-compact. Therefore,

K2 := K ∪ (J+K ∩ Supp[1− θM ]) ∪ (J−K ∩ Supp θM )

is compact. Because M is locally compact, every point has a precompact neighborhood.
By compactness, K2 has a finite cover by precompact open sets, therefore K2 has a
precompact open neighborhood, O ⊂ M .

The function θ̃M − θN is defined over JN M , where it has future and past-compact
support. Because the closureO is compact, there exists χ ∈ D(N )with compact support
in JN M and χ = θ̃M − θN over JO.

Finally, because Suppχ andO are compact and Supp θN is past-compact, there exists
f2 ∈ D(N ) such that f2 = θN over J−N (O ∪ Suppχ). ��
Remark. I began by assuming the existence of a natural time-ordered product, ·T . How-
ever, in the construction of ΨV,θ it is only used on the image of V , not on arbitrary
elements of the algebra. This suggests that it may be sufficient to only define ·T on this
subspace.

Theorem 5.7. 0 = δΨV,θ + [ΞV,θ , ΞV,θ ].
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Proof. Both terms have components in degrees (2, 1) and (1, 2), so this is really two
equations.

In degree (2, 1), we need to show that 0 = δSΨV,θ +2ΞV,θ ◦ΞV,θ .More explicitly, for

any P
ψ←− N

φ←− M , we need to show that (δSΨV,θ )[ψ, φ] = −2ΞV,θ [ψ] ◦ΞV,θ [φ].
The first 2 terms in Eq. (5.11) cancel perfectly in δSΨV,θ . This leaves

(δSΨV,θ )[ψ, φ] = ΨV,θ [ψ] ◦ A[φ] − ΨV,θ [ψ ◦ φ] + A[ψ] ◦ ΨV,θ [φ]
= −2ΞV,θ [ψ] ◦ R̃(1)

θN
◦ A[φ] + 2

(
ΞV,θ [ψ ◦ φ] − A[ψ] ◦ΞV,θ [φ]

) ◦ R̃(1)
θM

.

Because 0 = δSΞV,θ ,

(δSΨV,θ )[ψ, φ] = −2ΞV,θ [ψ] ◦ R̃(1)
θN
◦ A[φ] + 2ΞV,θ [ψ] ◦ A[φ] ◦ R̃(1)

θM

= −2ΞV,θ [ψ] ◦Ξ [φ]
by Eq. (5.10).

In degree (1, 2), we need to show that 0 = δHΨV,θ + 2ΞV,θ •ΞV,θ . More explicitly,
for any φ : M → N and a, b ∈ A(M), we need to show that (δHΨV,θ )(φ; a, b) =
2ΞV,θ (φ; a)ΞV,θ (φ; b).

Suppose that a, b ∈ A(M; K ), for some compact K ⊂ M , and let χ be as in
Lemma 5.6. The last term of Eq. (5.12) is manifestly a derivation, so it doesn’t contribute
to δHΨV,θ . Note that in any associative algebra, the commutator satisfies

[A, [A, BC]] = [A, [A, B]C + B[A,C]]
= [A, [A, B]]C + 2[A, B][A,C] + B[A, [A,C]] .

This leaves

(δHΨV,θ )(φ; a, b) = −A(φ; a)ΨV,θ (φ; b) + ΨV,θ (φ; ab)− ΨV,θ (φ; a)A(φ; b)
= −2

�2 [VN (χ),A(φ; a)][VN (χ),A(φ; b)]
= 2ΞV,θ (φ; a)ΞV,θ (φ; b) .

��
In terms of the cohomology class ΞV ∈ H2

a (A,A) of ΞV,θ , this means simply that
it satisfies the Maurer–Cartan equation,

[ΞV , ΞV ] = 0 . (5.14)

This is the analogue of the Jacobi identity satisfied by a Poisson structure.

6. Conclusions

This paper has presented several new ideas and perspectives on constructing models in
algebraic quantum field theory.

The first is that the algebraic structures and properties of a locally covariant quantum
field theory are naturally organized in the Hochschild bicomplex. This makes it possible
to consider deformations of a quantum field theory as a generalization of deformation
quantization of a Poisson manifold.
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This perspective leads to the definition of skew diagrams of algebras (Def. 3.1) as
a generalization of functors X → Alg. Because the other axioms of AQFT are still
meaningful for a skew diagram, this is a more general framework for building physical
models.

An AQFT model is a functor A : X→ Alg, and the global symmetries of the model
(e.g., the U(1)-symmetry associated to charge conservation) are described as the natural
automorphisms of A. This cohomological perspective leads to a more general definition
of symmetry as skew automorphisms (Def. 3.3) or outer skew automorphisms (Def. 3.5)
of A. This means that some models may have symmetries that were not previously
recognized.

From this perspective, an interaction is analogous to a bivector field on a manifold.
Just as bivectors can be constructed by multiplying and adding vectors, interactions may
be constructed by multiplying and adding infinitesimal skew automorphisms, using the
Gerstenhaber algebra structure on Hochschild cohomology. For an interaction of this
form, the full interacting model may then be constructed directly by methods similar to
those in [7], generalizing the strict deformation quantization construction in [29].

One way of deforming AQFT is to begin with a model defined by a Lagrangian and
then perturb it by adding an interaction term, V , to that Lagrangian. I have explicitly
constructed (Thm. 4.8) the characteristic Hochschild cohomology class ΞV of such an
interaction term. However, this construction does not require the initial theory to be
defined by a Lagrangian. This makes it possible to perturb a non-Lagrangian model with
a Lagrangian interaction.

The construction of this characteristic class required introducing a notion (Def. 4.1) of
a smoothed-out Cauchy surface as a function that vanishes in the distant past and equals
1 in the distant future. In order to compare this characteristic class with the construction
of perturbative AQFT, I introduced an alternative version (Thm. 5.2) of that construction,
which uses smoothed-out Cauchy surfaces instead of the algebraic adiabatic limit. This
is more concrete than the standard construction, so this is likely to be advantageous for
many calculations.

Finally, assuming the existence of a time-ordered product, I showed that the charac-
teristic class of an interaction satisfies the appropriate Maurer–Cartan equation (5.14).

Much remains to be done. In particular, nontrivial examples of skew automorphisms
would be very useful, because they can be used to construct interacting models. This
cohomology is defined in a purely algebraic setting, so it needs to be extended or adapted
to apply to C∗-algebras or von Neumann algebras.

This is not the first cohomological structure to be associated with quantum field
theory. Rejzner used a BV-bicomplex to construct gauge theories in perturbative AQFT
[30]. Hochschild cohomology needs to be extended to gauge theories, and combining
the Hochschild complex with the BV-bicomplex may lead to further new perspectives.
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