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Abstract: Peakons are special weak solutions of a class of nonlinear partial differential
equations modelling non-linear phenomena such as the breakdown of regularity and the
onset of shocks. We show that the natural concept of weak solutions in the case of the
modified Camassa–Holm equation studied in this paper is dictated by the distributional
compatibility of its Lax pair and, as a result, it differs from the one proposed and used in
the literature based on the concept of weak solutions used for equations of the Burgers
type. Subsequently, we give a complete construction of peakon solutions satisfying the
modified Camassa–Holm equation in the sense of distributions; our approach is based
on solving certain inverse boundary value problem, the solution of which hinges on a
combination of classical techniques of analysis involving Stieltjes’ continued fractions
andmulti-point Padé approximations.We propose sufficient conditions needed to ensure
the global existence of peakon solutions and analyze the large time asymptotic behaviour
whose special features include a formation of pairs of peakons that share asymptotic
speeds, as well as Toda-like sorting property.
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1. Introduction

The nonlinear partial differential equation

mt +
(
(u2 − u2x )m

)
x

= 0, m = u − uxx , (1.1)

is an intriguing modification of the Camassa–Holm equation (CH) [8]:

mt + umx + 2uxm = 0, m = u − uxx , (1.2)

for the shallow water waves. Originally, Eq. (1.1) appeared in the papers of Fokas [23],
Fuchssteiner [24], Olver and Rosenau [55] and was, later, rediscovered by Qiao [56,57].
It is worth mentioning at this point that the same equation was also studied, including
its Lax formulation, in a somewhat unappreciated paper by Schiff [60].

We note that the derivation of this equation in [55] followed from the general method
of tri-Hamiltonian duality applied to the bi-Hamiltonian representation of the modified
Korteweg–de Vries equation (see also [37] for a recent generalization of this idea).
Since the CH equation can be obtained from the Korteweg–de Vries equation by the
same tri-Hamiltonian duality, it is therefore natural to refer to Eq. (1.1) as the modified
CH equation (mCH), in full agreement with other authors [30,42], even though the name
FORQ to denote (1.1) is sometimes used as well (e.g. [31,32]).

We are interested in the class of non-smooth solutions of (1.1) given by the peakon
ansatz [8,30,58], that is, we assume

u =
n∑
j=1

m j (t)e
−|x−x j (t)|, (1.3)

where all coefficients m j (t) are taken to be positive, and hence

m = u − uxx = 2
n∑
j=1

m jδx j

is a positive discrete measure. The relevance of this ansatz proved to be supported
by the fact that these special solutions seem to capture main attributes of solutions
of this class of equations: the breakdown of regularity, which can be interpreted as
collisions of peakons, and the nature of long time asymptotics, which can be loosely
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described as peakons becoming free particles in the asymptotic region [3]. For the CH
equation peakons do not exhibit any asymptotic cooperative behaviour, while for other
equations, for example, for the Geng–Xue equation [27] or the Novikov equation [54],
one observes pairing or even more elaborate patterns of clustering of peakons in the
asymptotic region [38,39]. At the same time, for still not entirely clear reasons, the
peakon dynamics has an ever growing number of connections with classical analysis.
This was observed for the first time in the CH case [2] where the dynamics of peakons
was shown to be related, in fact, solved, in terms of the classical theory of Stieltjes
continued fractions—the connection that goes through the fundamental theory of the
inhomogeneous string of M. G. Krein [18]—eventually leading to sharp estimates on
the patterns of the breakdown of regularity [3,49,51].

Although it does not seempossible in a short introduction to do justice to the enormous
literature on the CH equation we would like to mention a few works related to issues
raised in the present paper. Thus [13] discusses the concept of weak solutions for the
CH equation that set the stage for numerous studies of related equations as well as gave
the first general results regarding the wave breaking for CH. In [16] the authors discuss
the issue of stability of CH peakons, while the stability of multipeakons is discussed
in [19,20].

One of themost interesting issues, both physically andmathematically, is the question
of the continuation of solutions past the breakdown of regularity in the CH equation. This
question was addressed from many different perspectives by several authors, the most
comprehensive being the work of Bressan and Constantin [6,7], in which the authors
attach semigroups of global solutions both in the energy conserving sector as well as
for dissipative solutions. Through a judicious change of variables which resolves singu-
larities due to wave braking one can naturally continue past the time of the breakdown
with, in the dissipative scenario, the only loss of energy occurring at the time of the
breakdown. Another related direction, although focused primarily on the development
of suitable numerical techniques is the work of Holden and Raynaud [33,34]. This line
of research is closer in spirit to the present work since it puts the multipeakon solutions
front and center, indirectly building on the result of [3] that the breakdown of regularity
can be in a precise way traced back to the collisions of peakons.

Meanwhile the literature on the peakon ansatz has grown considerably since its dis-
covery in [8]. In the following years the peakon ansatz was successfully applied to
another, well studied by now, equation, namely the Degasperis-Procesi equation [17]

mt + umx + 3uxm = 0, m = u − uxx , (1.4)

which despite its superficial similarity to the CH equation (1.2) has in addition shock
solutions [11,12,44], while its peakon sector leads to new questions regarding Nikishin
systems [53] studied in approximation theory [4,45]. For potential applicability to water
wave theory the reader is invited to consult [14,36]; for a discussion of weak solutions
see [21]; [41,43] present important results regarding stability, and finally [63,64] deal
with collisions of peakons and the onset of shocks in the form of shockpeakons [44].

Another feature of peakon sectors of Lax integrable peakon equations is the om-
nipresence of total positivity [25,40]. In its simplest form, namely speaking of matrices,
a totally positive matrix is a matrix whose minors, of all sizes, are positive. This concept
is then generalized to kernels of linear integral equations. Total positivity appears in
all peakon problems known to us, although admittedly we cannot yet explain from first
principles the underlying reasons for the presence of such a strong form of positivity;
however, we remark that peakons are in a nutshell disguised oscillatory systems in the
sense of Gantmacher and Krein [25].
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What is germane to this paper is that the peakon problem at hand is coming from
studying a distibutional Lax pair which forces us to view (1.1) as a distribution equation,
requiring in particular that we define the product u2xm. With this in mind we show in
Appendix A that the choice consistent with Lax integrability is to take u2xm to mean
〈u2x 〉m, where 〈 f 〉 denotes the average function (the arithmetic average of the right hand
and left hand limits). Subsequently, Eq. (1.1) reduces to the system of ODEs:

ṁ j = 0, ẋ j = u(x j )
2 − 〈

u2x
〉
(x j ), (1.5)

or, more explicitly, assuming the ordering condition x1 < x2 < · · · < xn ,

ṁ j = 0, ẋ j = 2
∑

1≤k≤n,
k �= j

m jmke
−|x j−xk | + 4

∑
1≤i< j<k≤n

mimke
−|xi−xk |. (1.6)

In broad terms we can say that our general interest in (1.1) is to understand how in-
tegrability manifests itself in the non-smooth sector of solutions, in particular how it
determines the properties of, initially, ill-defined operations, which acquire well-defined
meaning thanks to the condition of Lax integrability.

We note that the system given by (1.6) is not the same as the one proposed in [30];
the difference being precisely in the definition of the singular product u2xm. We clarify
the details of the difference in the remark below.

Remark 1.1. In [30], Gui, Liu, Olver and Qu showed that themCH equation admits weak
n-peakon solutions with x j ,m j satisfying

ṁ j =0, ẋ j= 2

3
m2

j +2
∑

1≤k≤n,
k �= j

m jmke
−|x j−xk | +4

∑
1≤i< j<k≤n

mimke
−|xi−xk |, (1.7)

(these equations also appear as a special case in [58]); we note that these equations
differ from (1.6) by the constant term 2

3m
2
j . For identical m j this term can be absorbed

by redefining x j but in general this cannot be done without violating the invariance of
|xi − xk |. It is not difficult to verify that, following the definition of weak solutions
adopted in [30], the singular product u2xm appearing in (1.1) equals to

( 〈u2x
〉
+ 2
〈
ux
〉2

3

)
m,

which is an abbreviated way of saying that the value of the multiplier of δx j equals〈
u2x
〉
+2
〈
ux
〉2

3 (x j ). This is markedly different than what the Lax integrability implies for the
multiplier, namely

〈
u2x
〉
(x j ). Indeed, in our case, as we shall prove in Appendix A, (1.6)

can be derived from the compatibility condition of a distribution Lax pair, which in turn
leads to explicit solutions of these equations by the inverse spectral method, following a
successful solution to the appropriate inverse problem. Finally, in view of the comments
above our solution is also a solution to the special case of the peakon problem in [30]
for which all the masses m j are assumed equal.

For other work related to (1.1) done recently the reader is invited to consult [5,42,59].
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Remark 1.2. Another important feature that sets apart our definition of peakons is that
the Sobolev H1 norm of u defined by (1.3) for peakons satisfying Eqs. (1.6) is preserved.
In other words

d

dt
||u||H1 = 0.

Even though this point is fully explained in the followup shorter paper [9], we nev-
ertheless compute ||u||2

H1 in Corollary 6.11 in terms of spectral variables, obtaining a
trace-like identity akin to the one known from the CH theory [15,50]. We stress that the
time preservation of the H1 norm is of considerable importance if one recalls that one of
the Hamiltonians defining the theory of (1.1) isH1 = ||u||2

H1 (see, for example, [37]).

In the present paper, we shall formulate and apply an inverse spectral method to solve
the peakon ODEs (1.6) and hence (1.1) under the following assumptions:

(1) all mk are positive,
(2) the initial positions are assumed to be ordered as x1(0) < x2(0) < · · · < xn(0).

Remark 1.3. If mk are negative, the corresponding problem may be solved by the trans-
formation mk → −mk . This results in pure antipeakon solutions.

In the remainder of this introduction we outline the content of individual sections, high-
lighting themain results. Thus in Sect. 2 we reformulate the Lax pair in a way suitable for
further analysis; in particular, for the peakon ansatz we obtain a difference equation and
we solve explicitly the affiliated initial value problem. This section uses in an essential
way the result fromAppendix A about the admissible ways of defining the distributional
Lax pair.

In Sect. 3 we give a full characterization of the spectrum of the boundary value
problem from Sect. 2. We prove that the spectrum is positive and simple, and in this
sense themCHpeakons confirm the “experimental" fact that all known integrable peakon
equations have a substantial amount of positivity built in. The spectral data, which
involves not only the eigenvalues but also some positive constants known in scattering
theory as the norming constants, are elegantly encoded in the Weyl function W (z) of
the boundary value problem and the main theorem, namely Theorem 3.1, which states
that W (z) is a shifted Stieltjes transform is proven in its entirety therein.

In Sect. 4 we solve the inverse boundary value problemwhich in a nutshell amounts to
reconstructing the measures g, h appearing in the original formulation of the boundary
value problem (2.3) from the spectral data encoded in the Weyl function W (z). We
subsequently give two constructions of the inverse map: one is based on recurrence
relations and Stieltjes’ method of continued fractions, the other method is explicit and
it involves certain Cauchy-Jacobi interpolation problem which is shown in Theorem
4.20 to admit an explicit solution in terms of Cauchy-Stieltjes-Vandermonde matrices
introduced in Definition 4.16.

In Sects. 5 and 6 we analyze the actual peakon solutions u constructed out of the
peakon ansatz (1.3) and the determintal solution of the inverse problem studied in Sect. 4.
This material is covered in two sections because there are some subtle differences in
the character of solutions depending on whether the total number of peakons, n, is
even or odd. In either case we present and prove sufficient conditions for the global
existence of peakon solutions. This is done in Theorems 5.6 and 6.7. We also give large
time asymptotic formulas for peakons, showing that in both cases the peakons form
asymptotic pairs.
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2. The Lax Formalism: The Boundary Value Problem

The Lax pair for (1.1) reads [56,60]:

�x = 1

2
U�, �t = 1

2
V�, � =

[
�1
�2

]
(2.1)

with

U =
[ −1 λm
−λm 1

]
, V =

[
4λ−2 + Q −2λ−1(u − ux ) − λmQ

2λ−1(u + ux ) + λmQ −Q

]
, Q = u2−u2x , λ ∈ C.

Performing the gauge transformation � = diag( e
x
2

λ
, e− x

2 )� results in a simpler x-
equation

�x =
[

0 h
−zg 0

]
�, g =

n∑
j=1

g jδx j , h =
n∑
j=1

h jδx j , (2.2)

where g j = m je−x j , h j = m jex j , z = λ2. For future use note that g j h j = m2
j .

We will be interested in solving (2.2) subject to boundary conditions �1(−∞) =
0, �2(+∞) = 0. To make the boundary value problem

�x =
[

0 h
−zg 0

]
�, �1(−∞) = �2(+∞) = 0, (2.3)

well posed we need to define the multiplication of the measures h and g by �. Guided
by the results of Appendix A we require that � be left continuous and we define the
terms �aδx j = �a(x j )δx j , a = 1, 2. This choice makes the Lax pair well defined as a
distributional Lax pair and, as it is shown in the Appendix A, the compatibility condition
of the x and t components of the Lax pair indeed implies (1.5).

The solution � is a piecewise constant function which, for convenience, we can
normalize by setting �2(−∞) = 1. The distributional boundary value problem (2.3) is
in our special case of the discrete measure m equivalent to a finite difference equation.

Lemma 2.1. Let qk = �1(xk+), pk = �2(xk+), then the difference form of the bound-
ary value problem reads:

qk − qk−1 = hk pk−1, 1 ≤ k ≤ n,

pk − pk−1 = −zgkqk−1, 1 ≤ k ≤ n,

q0 = 0, p0 = 1, pn = 0.

(2.4)

An easy proof by induction leads to the following corollary.

Corollary 2.2. qk(z) is a polynomial of degree 	 k−1
2 
 in z, and pk(z) is a polynomial of

degree 	 k
2
, respectively.

Remark 2.3. Note that the difference formof the boundary value problemadmits a simple
matrix presentation, namely a 2 × 2 matrix encoding of (2.4)

[
qk
pk

]
= Tk

[
qk−1
pk−1

]
, Tk =

[
1 hk

−zgk 1

]
. (2.5)
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We point out that the transition matrix Tk is different from the difference equation for
the inhomogeneous string boundary value problem D2v = −zgv, v(0) = v(1) = 0

discussed in [45] (Appendix A) for which Tk =
[

1 lk−1
−zgk 1 − zgklk−1

]
, thus an element

of the group SL2(C).

We can obtain more precise information about polynomials pk, qk by studying di-
rectly the solutions to the initial value problem

�x =
[

0 h
−zg 0

]
�, �1(−∞) = 0, �2(−∞) = 1, (2.6)

with the same rule regarding the multiplication of discrete measures g, h by piecewise
smooth, left-continuous, functions f as specified above. With this proviso expressions
like

∫ x

−∞
f (ξ) g(ξ)dξ

de f=
∫

ξ<x

f (ξ) g(ξ)dξ

uniquely define piecewise constant functions which we choose to be left continuous. The
same applies to iterated integrals over the regions {ξ1 < ξ2 < · · · ξk < x}. For example

∫

ξ1<ξ2<x

f (ξ1)h(ξ1)dξ1 g(ξ2)dξ2

is well defined. With this notation in place we obtain the following characterization of
�1(x) and �2(x).

Lemma 2.4. Let us set

�1(x) =
∑
0≤k

�
(k)
1 (x)zk, �2(x) =

∑
0≤k

�
(k)
2 (x)zk .

Then

�
(0)
1 (x) =

∫

η0<x

h(η0)dη0, �
(0)
2 (x) = 1

for k = 0, otherwise

�
(k)
1 (x) = (−1)k

∫

η0<ξ1<η1<···<ξk<ηk<x

[ k∏
p=1

h(ηp)g(ξp)
]
h(η0) dη0dξ1 . . . dηk,

(2.7a)

�
(k)
2 (x) = (−1)k

∫

ξ1<η1<···<ξk<ηk<x

[ k∏
p=1

g(ηp)h(ξp)
]
dξ1 . . . dηk . (2.7b)

If the points of the support of the discrete measure g (and h) are ordered x1 < x2 <

· · · < xn then
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�
(k)
1 (x) = (−1)k

∑
j0<i1< j1<···<ik< jk

x jk<x

[ k∏
p=1

h jp gi p
]
h j0 , (2.8a)

�
(k)
2 (x) = (−1)k

∑
i1< j1<···<ik< jk

x jk<x

[ k∏
p=1

g jphi p
]
. (2.8b)

Proof. First we observe that solving Eq. (2.6) is equivalent to solving the system of
integral equations:

�1(x) =
∫

ξ<x

�2(ξ)h(ξ)dξ, �2(x) = 1 − z
∫

ξ<x

�1(ξ)g(ξ)dξ,

with in turn implies

�1(x) =
∫

η0<x

h(η0)dη0 − z
∫

ξ1<η1<x

h(η1)g(ξ1)�1(ξ1)dξ1dη1,

�2(x) = 1 − z
∫

ξ1<η1<x

g(η1)h(ξ1)�2(ξ1)dξ1dη1.

Elementary iterations yield the final result in the integral form. Finally, once the ordering
conditions is in place, the evaluation of integrals as sums follows. ��

We will now introduce a multi-index notation, later used to facilitate writing explicit
formulas for peakon solutions, but also helpful in capturing the properties of solutions to
(2.4). A similar notation turned out to be very helpful in stating and proving the Canada
Day Theorem in [28] (see also [35]).

The formulas in Lemma 2.4 involve a choice of j-element index sets I and J from the
set [k] = {1, 2, . . . , k}. We will use the notation

([k]
j

)
for the set of all j-element subsets

of [k], listed in increasing order; for example I ∈ ([k]j
)
means that I = {i1, i2, . . . , i j } for

some increasing sequence i1 < i2 < · · · < i j ≤ k. Furthermore, given the multi-index
I we will abbreviate gI = gi1gi2 . . . gi j etc.

Definition 2.5. Let I, J ∈ ([k]j
)
, or I ∈ ( [k]

j+1

)
, J ∈ ([k]j

)
.

Then I, J are said to be interlacing if

i1 < j1 < i2 < j2 < · · · < i j < j j

or,
i1 < j1 < i2 < j2 < · · · < i j < j j < i j+1,

in the latter case. We abbreviate this condition as I < J in either case, and, furthermore,
use the same notation, that is I < J , for I ∈ ([k]1

)
, J ∈ ([k]0

)
.

Remark 2.6. We point out that the multi-indices I, J satisfying I < J are called in [28]
strictly interlacing.
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Corollary 2.7. Let qk = �1(xk+), pk = �2(xk+), then the difference form of the
initial value problem (2.6) reads:

qk − qk−1 = hk pk−1, 1 ≤ k ≤ n,

pk − pk−1 = −zgkqk−1, 1 ≤ k ≤ n,

q0 = 0, p0 = 1

(2.9)

whose unique solution (restoring the dependence on z in qk and pk) is given by:

qk(z) =
	 k−1

2 
∑
j=0

( ∑

I∈( [k]
j+1),J∈([k]

j )
I<J

h I gJ
)
(−z) j , (2.10a)

pk(z) = 1 +

	 k
2 
∑

j=1

( ∑

I,J∈([k]
j )

I<J

h I gJ
)
(−z) j . (2.10b)

Our next goal is to study the spectrum of the boundary value problem (2.3).

Definition 2.8. A complex number z is an eigenvalue of the boundary value problem
(2.3) if there exists a solution {qk, pk} to (2.9) for which pn(z) = 0. The set of all
eigenvalues is the spectrum of the boundary value problem (2.3).

The relevance of the spectrum of (2.3) is captured in the following lemma which
follows from examining the t part of the Lax pair (2.1) in the region x > xn .

Lemma 2.9. Let {qk, pk} satisfy the system of difference equations (2.9). Then

q̇n = 2

z
qn − 2L

z
pn, ṗn = 0, (2.11)

where L = ∑n
j=1 h j . Thus pn(z) is independent of time and, in particular, its zeros, i.e.

the spectrum, are time invariant.

Since Corollary 2.7 gives an explicit form of pn(z) we can easily identify the constants
of motion implied by isospectrality of the boundary value problem (2.3).

Lemma 2.10. The quantities

M j =
∑

I,J∈([n]
j )

I<J

h I gJ , 1 ≤ j ≤ 	n
2



form a set of 	 n
2 
 constants of motion for the system (1.6).

Example 2.11. Let us consider the case n = 4. Then the constants of motion, written in
the original variables (m j , x j ), with positions x j satisfying x1 < x2 < x3 < x4, are

M1 = m1m2e
x1−x2 + m1m3e

x1−x3 + m1m4e
x1−x4 + m2m3e

x2−x3

+ m2m4e
x2−x4 + m3m4e

x3−x4 ,

M2 = m1m2m3m4e
x1−x2+x3−x4 .
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3. Forward Map: Spectrum and Spectral Data

We will characterize the spectrum of the boundary value problem (2.3), or equivalently,
(2.4) by associating it with theWeyl function

W (z) = qn(z)

pn(z)
. (3.1)

The remainder of this section is devoted to the proof of the following theorem charac-
terizing our boundary value problem in terms of W (z).

Theorem 3.1. W (z) is a (shifted) Stieltjes transform of a positive, discrete measure dμ

with support inside R+. More precisely:

W (z) = c +
∫

dμ(x)

x − z
, dμ =

	 n
2 
∑

i=1

b jδζ j , 0 < ζ1 < · · · < ζ	 n
2 
,

0 < b j , 1 ≤ j ≤
⌊n
2

⌋
, (3.2)

where c > 0 when n is odd and c = 0 when n even.

The next corollary describes the properties of the spectrum.

Corollary 3.2.

(1) The spectrum of the boundary value problem (2.2) is positive and simple.

(2) W (z) = c +
∑	 n

2 

j=1

b j
ζ j−z , where all residues satisfy b j > 0 and c ≥ 0.

The strategy of the proof of Theorem 3.1 is to show that W has a continued fraction
expansion of Stieltjes’s type, the term explained below. We start by reformulating the
recurrence relation (2.9).

Lemma 3.3. Let {qk, pk} be the solution to (2.9) and letw2k = qk
pk

, w2k−1 = qk−1
pk

. Then

w1 = 0, w2k = (1 + zm2
k)w2k−1 + hk, 1 ≤ k ≤ n (3.3a)

1

w2k
= 1

w2k+1
+ zgk+1, 1 ≤ k ≤ n − 1 (3.3b)

Proof. The first line follows readily by rewriting the first line of (2.9) as

qk
pk

− qk−1

pk
= hk

(pk−1 − pk)

pk
+ hk,

then using the second equation of (2.9) to eliminate pk−1 − pk , on the way employing
the relation m2

k = gkhk , and finally rewriting the result using the definition of w2k and
w2k−1. The condition w1 = 0 corresponds to the boundary condition at index k = 1,
recalling that w1 = q0

p1
= 0 because q0 = 0, p1 = 1. The second line follows from the

second formula in (2.9). ��
Remark 3.4. The recurrence in Lemma 3.3 can be viewed as the recurrence on the Weyl
functions corresponding to shorter strings obtained by truncating at the index k. Then
W2k is precisely the Weyl function corresponding to the measures

∑k
j=1 h jδx j and∑k

j=1 g jδx j , while W2k−1 corresponds to the measures
∑k−1

j=1 h jδx j and
∑k

j=1 g jδx j
respectively.
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Before we state the second lemma we briefly review some old results of T. Stielt-
jes, appropriately adapted to our setup. More specifically, the following description of
rational functions follows from general results proved by T. Stieltjes in his famous mem-
oir [62].

Theorem 3.5 (T. Stieltjes). Any rational function F(z) admitting the integral represen-
tation

F(z) = c +
∫

dν(x)

x − z
, (3.4)

where dν(x) is the (Stieltjes) measure corresponding to the piecewise constant non-
decreasing function ν(x) with finitely many jumps in R+ has a finite (terminating) con-
tinued fraction expansion

F(z) = c +
1

a1(−z) +
1

a2 +
1

a3(−z) +
1

. . .

, (3.5)

where all a j > 0 and, conversely, any rational function with this type of continued
fraction expansion has the integral representation (3.4).

We will refer to the integral representation (3.4) as the shifted Stieltjes transform of
a measure dv(x). Now we are ready to state the second lemma.

Lemma 3.6. Given h j > 0, h j g j = m2
j > 0, 1 ≤ j ≤ n, let w j s satisfy the recurrence

relations of Lemma 3.3. Then w j s are shifted Stieltjes transforms of finite, discrete
Stieltjes measures supported on R+, with nonnegative shifts. More precisely:

w2k−1 =
∫

dμ(2k−1)(x)

x − z
,

w2k = c2k +
∫

dμ(2k)(x)

x − z
,

where c2k > 0 when k is odd, otherwise, c2k = 0. Furthermore, the number of points in
the support dμ(2k)(x) and dμ(2k−1) is 	 k

2
.
Proof. The proof proceeds by induction on k. The base case k = 1 is trivial sincew1 = 0
while w2 = h1 by the first equation in Lemma 3.3 confirming that c2 > 0. Suppose now
the claim is valid for the index k. Thus w2k−1 and w2k are shifted Stieltjes transforms
of some measures dμ(2k−1) and dμ(2k), both being finite, discrete and supported on R+.
We now solve (3.3b) for w2k+1 obtaining:

w2k+1 = 1

−zgk+1 + 1
w2k

,

then use the induction hypothesis, which implies that w2k has the form (3.5), resulting
in the continued fraction expansion:
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w2k+1 = 1

−zgk+1 +
1

c +
1

a1(−z) +
1

a2 +
1

a3(−z) +
1

. . .

.

If c > 0 then w2k+1 has already the required form. If, on the other hand, c = 0 the first
term in the continued fraction expansion is−(gk+1+a1)z and since a1 > 0 the coefficient
is positive. Thusw2k+1 satisfies the conditions of Stieltjes’s Theorem 3.5 and, as a result,
w2k+1 is the Stieltjes transformwith zero shift of a finite, discretemeasure, say dμ2k+1(x)
supported on R+. In either case

w2k+1 =
∫

dμ2k+1(x)(−1

z
) + O(

1

z2
), z → ∞,

where
∫
dμ2k+1(x) = 1

gk+1
if c > 0 and

∫
dμ2k+1(x) = 1

gk+1+a1
if c = 0. Let us now

examine Eq. (3.3a), shifting k → k + 1. First, we have

w2k+2 = (1 + zm2
k+1)w2k+1 + hk+1,

and, upon using the integral representation for w2k+1 we obtain:

w2k+2 =
∫

(1 + xm2
k+1)dμ(2k+1)(x)

x − z
+ hk+1 − m2

k+1

∫
dμ(2k+1)(x)

=
∫

(1 + xm2
k+1)dμ(2k+1)(x)

x − z
+ hk+1

(
1 − gk+1

∫
dμ(2k+1)(x)

)
.

If the shift c in the formula for w2k is positive then
∫
dμ(2k+1)(x) = 1

gk+1
, as remarked

earlier, and the shift in the formula for w2k+2 is 0. When c = 0,
∫
dμ(2k+1)(x) =

1
gk+1+a1

< 1
gk+1

and then the shift is positive since
(
1 − gk+1

∫
dμ(2k+1)(x)

)
> 0. This

proves the integral representation for w2k+2 and shows that the shift alternates between
0 and positive numbers, depending on whether k is even or odd as claimed since c2 > 0.
Finally, the number of the points in the support of dμ(2k)(x) and dμ(2k−1)(x) follows
from Corollary 2.2. ��

Now, with all the preparation, the proof of Theorem 3.1 follows readily from Lemma
3.6 by observing that

W (z) = c2n +
∫

dμ(2n)(x)

x − z
, dμ(2n) =

	 n
2 
∑

j=1

b(2n)
j δζ j . (3.6)

This concludes the spectral characterization of the boundary value problem (2.3), or
equivalently (2.4).
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4. Inverse Problem

4.1. A solution by recursion. The inverse problem associated with the boundary value
problem (2.3) can be stated: given positive constants m j , 1 ≤ j ≤ n, and a ra-
tional function W (z) with integral representation (3.6), we seek to invert the map
S : {x1, x2, . . . xn} −→ W .

To solve the inverse problemweproceed in two stages: firstwe reconstruct the positive
coefficients g j , h j such that g j h j = m2

j then we use the relation
h j
g j

= e2x j to determine
x j . In this section we concentrate on the first stage.

The reconstruction of h j , g j amounts to solving recurrence relations (3.3a) and (3.3b)
following the steps below:

(1) starting with w2n = W (z) define hn = w2n(− 1
m2
n
), gn = m2

n
hn

and solve

w2n = (1 + zm2
n)w2n−1 + hn,

1

w2n−2
= 1

w2n−1
+ zgn,

for w2n−1 and w2n−2;
(2) restart the procedure from w2n−2 shifting n → n − 1.

We remark that the procedure encodes solving (3.3a), (3.3b) backwards. However, for
the procedure to make sense, w2n−2 needs to be of the form (3.6). Let us therefore turn
to analyzing w2n−2. First, from the recurrence relation we easily get

hn = c2n +
∫

dμ(2n)(x)

x + 1
m2
n

= c2n + m2
n

∫
dμ(2n−1)(x),

where dμ(2n−1)(x) = dμ(2n)(x)
1+m2

n x
, while solving for w2n−1 yields

w2n−1(z) =
∫

dμ(2n−1)(x)

x − z
.

Thus by Stieltjes’s theorem 3.5

w2n−1(z) = 1

a1(−z) +
1

a2 +
1

a3(−z) +
1

. . .

for some a j > 0. Next, we write

w2n−2 = 1

zgn +
1

w2n−1

= 1

(gn − a1)z +
1

a2 +
1

a3(−z) +
1

. . .
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and observe that for w2n−2 to have the spectral representation (3.6) gn − a1 must be
negative or 0. However,

1

a1
− 1

gn
=
∫

dμ(2n−1)(x) − hn
m2

n
= −c2n

m2
n
,

hence gn − a1 ≤ 0, which proves the existence of the spectral representation (3.6) for
w2n−2 for some measure dμ2n−2 supported on a finite number of points in R+.

Similar to the content of Lemma 3.6 we have the following dichotomy: if c2n = 0,
which by the same Lemma happens if n is even, the support of w2n−2 has one less point
in the spectrum of the corresponding measure compensated by the appearance of non-
zero c2n−2. If, on the other hand, n is odd, in which case c2n > 0, then c2n−2 = 0 and
the number of points in the support of dμ(2n−2) does not differ from that of dμ(2n). In
either case, by iterating, one reaches w2 which is a positive constant equal by definition
to h1 and the iteration stops. We conclude the discussion of the solution to the inverse
problem of recovering {g j , h j } by recursion with the following theorem.

Theorem 4.1. The inverse spectral problem is uniquely solvable for any positive masses
m j and the inverse map is continuous both with respect to the masses m j as well as the
spectral data {ζ1 < ζ2 < · · · < ζ	 n

2 
; b1, b2, . . . , b	 n
2 
; c}.

Proof. The uniqueness follows by construction of the inverse map. As discussed earlier
there are no obstructions to invertibility present at each stage of the recursion and the
updated spectral data is obtained by evaluation and algebraic inversions of continuous
functions (Weyl functions) at points (− 1

m2
j
) where those Weyl functions are strictly

positive. ��

4.2. A solution by interpolation; basic ideas. The iteration proposed above requires
2n − 2 steps to reach w2, each step leading to a new input rational function w j . The
formulas for h j get increasingly more complicated and a natural question presents itself:
can one compute h j using directly the spectral data c2n and dμ(2n)? The answer is
affirmative and this section outlines themain steps of the construction leaving the detailed
formulas for the following sections inwhichwe present a complete solution to the peakon
problem (1.6).

First we give a brief summary of main ideas behind the solution by interpolation. Let
us rewrite (2.5) in terms of the Weyl function W = w2n as

[
W (z)
1

]
= Tn(z)Tn−1(z) . . . Tn−k+1(z)

[
qn−k (z)
pn(z)

pn−k (z)
pn(z)

]
. (4.1)

Clearly, the transposeof thematrix of cofactors of eachTj (z) is

[
1 −h j
zg j 1

]
def= Cn− j+1(z),

which allows one to express Eq. (4.1) as

Ck(z) . . .C1(z)

[
W (z)
1

]
= det(Tn(z)) det(Tn−1(z)) . . . det(Tn−k+1(z))

[
qn−k (z)
pn(z)

pn− j (z)
pn(z)

]
,
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which, recalling that det Tj (z) = 1 + zm2
j and that the roots of pn(z) are all positive,

implies
(
Ck(z) . . .C1(z)

[
W (z)
1

]) ∣∣∣
z=− 1

m2
n−i+1

= 0, for any 1 ≤ i ≤ k. (4.2)

Theorem 4.2. Let the matrix of products of Cs in Eq. (4.2) be denoted by[
ak(z) bk(z)
ck(z) dk(z)

]
def= Ŝk(z). Then the polynomials ak(z), bk(z), ck(z), dk(z) solve the fol-

lowing interpolation problem:

ak(− 1

m2
n−i+1

)W (− 1

m2
n−i+1

) + bk(− 1

m2
n−i+1

) = 0, 1 ≤ i ≤ k, (4.3a)

deg ak = ⌊k
2

⌋
, deg bk = ⌊k − 1

2

⌋
, ak(0) = 1, (4.3b)

ck(− 1

m2
n−i+1

)W (− 1

m2
n−i+1

) + dk(− 1

m2
n−i+1

) = 0, 1 ≤ i ≤ k, (4.3c)

deg ck = ⌊k + 1

2

⌋
, deg dk = ⌊k

2

⌋
, ck(0) = 0, dk(0) = 1. (4.3d)

Proof. The approximation statements follow directly from (4.2), while the degrees fol-
low, by induction, from the definition of C j and the formula for Ŝk . ��
Remark 4.3. The interpolation (4.3) is an example of a Cauchy-Jacobi interpolation
problem [29,52,61], studied as part of a general multi-point Padé approximation the-
ory [1].

Before we solve the interpolation problem it is helpful to understand how information
about the measures g and h is encoded in the coefficients a j (z), b j (z), c j (z), d j (z). To
this end we define another initial value problem, following the general philosophy of
scattering theory, this time specifying initial conditions at x = +∞.

�̂x =
[

0 h
−zg 0

]
�̂, �̂1(+∞) = 1, �̂2(+∞) = 0, (4.4)

and seeking, in contrast to (2.6), the right-continuous solutions, interpreting the products

�̂aδx j as �̂aδx j = �̂a(x j )δx j , a = 1, 2. Subsequently we define the (right) boundary
value problem:

�̂x =
[

0 h
−zg 0

]
�̂, �̂1(−∞) = 0, �̂2(+∞) = 0, (4.5)

seeking right continuous solutions.

Remark 4.4. We refer to (4.5) as the (right) boundary value problem, even though it is
formally the same boundary value problem as (2.3) butwe stress that the rules of defining
the singular operation of multiplication of a measure by piecewise-smooth functions has
changed, hence, we don’t know a priori if the boundary value problems are indeed the
same. We will establish below that they are.
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Lemma 4.5. Let q̂ j = �̂1(x j ′−), p̂ j = �̂2(x j ′−), where j ′ = n + 1 − j .
Then the difference form of the (right) boundary value problem (4.5) reads:

q̂ j − q̂ j−1 = −h j ′ p̂ j−1, 1 ≤ j ≤ n,

p̂ j − p̂ j−1 = zg j ′ q̂ j−1, 1 ≤ j ≤ n,

p̂0 = 0, q̂n = 0.

(4.6)

The accompanying initial value problem is chosen for the remainder of the discussion
to have initial conditions q̂0 = 1, p̂0 = 0. Furthermore, the notation j ′ = n + 1 − j
(reflection of the interval [1, n], or counting from the right end n ) is in force from this
point onward.

Lemma 4.6. The difference form of the (right) boundary value problem (4.6) can be
written in matrix form

[
q̂ j
p̂ j

]
= T̂ j

[
q̂ j−1
p̂ j−1

]
, T̂ j =

[
1 −h j ′

zg j ′ 1

]
, (4.7)

and C j ′(z), the transpose of the cofactor matrix of Tj (z) appearing in (4.2), satisfies

C j (z) = T̂ j (z), 1 ≤ j ≤ n,

and its product Ŝk(z), also defined in Theorem 4.2, is the transition matrix for the right
boundary value problem, namely,

Ŝk(z) = T̂k(z) · · · T̂1(z).
Lemma 4.7. Consider the initial value problem given by Eq. (4.4) and let us set

�̂1(x) =
∑
0≤k

�̂
(k)
1 (x)zk, �̂2(x) =

∑
0≤k

�̂
(k)
2 (x)zk .

Then

�̂
(0)
1 (x) = 1, �̂

(0)
2 (x) = 0, (4.8a)

�̂
(k)
1 (x) = (−1)k

∫

x<ξ1<η1<···<ξk<ηk

[ k∏
j=1

h(ξ j )g(η j )
]
dξ1 . . . dηk , 1 ≤ k,

(4.8b)

�̂
(k)
2 (x) = (−1)k−1

∫

x<η0<ξ1<η1<···<ξk−1<ηk−1

g(η0)
[ k−1∏
j=1

h(ξ j )g(η j )
]
dη0dξ1 . . . dηk−1, 1 ≤ k,

(4.8c)

where, for k = 1,
∏0

j=1 is defined to be 1 and the integration is carried out with respect
to η0 only.

Furthermore, if the points of the support of g (and h) are ordered x1 < x2 < · · · < xn
then
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�̂
(k)
1 (x) = (−1)k

∑
i1< j1<···<ik< jk

x<xi1

[ k∏
l=1

hil g jl

]
, (4.9a)

�̂
(k)
2 (x) = (−1)k−1

∑
j0<i1< j1<···<ik< jk

x<x j0

g j0

[ k−1∏
l=1

gil h jl

]
. (4.9b)

Clearly, by setting q̂k = �̂1(xk′−), p̂k = �̂2(xk′−), with the help of (4.9), we obtain
the solution to difference equations (4.6) to initial conditions q̂0 = 1, p̂0 = 0. The
procedure can be repeated for the case of initial conditions Q̂0 = 0, P̂0 = 1, yielding
a complementary solution to (4.6). We will skip the intermediate steps since they are
very similar to the computations leading up to Lemma 4.7. To state the final result we
remark that the map i → i ′ = n + 1− i is a bijection between [1, k] and [n + 1− k, n].
This map can be lifted to multi-indices I ∈ ([1,k]j

)
introduced earlier, in particular given

I = i1 < i2 < · · · < i j ∈ ([1,k]j

)
let us denote by I ′ its image {i ′1 > i ′2 > · · · > i ′j } ∈([n−k+1,n]

j

)
.

Theorem 4.8. Consider the right boundary value problem (4.6)with its transitionmatrix

Ŝk = T̂k · · · T̂1.

Then

Ŝk =
[
q̂k Q̂k

p̂k P̂k

]
, 1 ≤ k ≤ n,

where

q̂k(z) = 1 +

	 k
2 
∑

j=1

( ∑

I,J∈([k]
j )

I<J

gI ′hJ ′
)
(−z) j , Q̂k(z) = −

	 k−1
2 
∑

j=0

( ∑

I∈( [k]
j+1),J∈([k]

j )
I<J

h I ′gJ ′
)
(−z) j ,

(4.10a)

p̂k(z) = −
	 k+1

2 
∑
j=1

( ∑

I∈([k]
j ),J∈( [k]

j−1)
I<J

gI ′hJ ′
)
(−z) j , P̂k(z) = 1 +

	 k
2 
∑

j=1

( ∑

I,J∈([k]
j )

I<J

h I ′gJ ′
)
(−z) j .

(4.10b)

Corollary 4.9. Let Ŝk be the transition matrix for the right boundary value problem as
specified above.

(1) The entries of Ŝk solve the interpolation problems (4.3), that is: q̂k, p̂k, Q̂k, P̂k
satisfy
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q̂k(− 1

m2
i ′

)W (− 1

m2
i ′

) + Q̂k(− 1

m2
i ′

) = 0, 1 ≤ i ≤ k, (4.11a)

deg q̂k = ⌊k
2

⌋
, deg Q̂k = ⌊k − 1

2

⌋
, q̂k(0) = 1, (4.11b)

p̂k(− 1

m2
i ′

)W (− 1

m2
i ′

) + P̂k(− 1

m2
i ′

) = 0, 1 ≤ i ≤ k, (4.11c)

deg p̂k = ⌊k + 1

2

⌋
, deg P̂k = ⌊k

2

⌋
, p̂k(0) = 0, P̂k(0) = 1. (4.11d)

(2) Given f (z) ∈ C[z], let f + denote the coefficient of the term of the highest degree.
Then

gk′ = p̂+k
q̂+k−1

, if k is odd, (4.12a)

gk′ = P̂+
k

Q̂+
k−1

, if k is even. (4.12b)

(3) The right boundary value problem (4.5) has the same spectrum as the left boundary
value problem (2.3).

Proof. The interpolation problem was stated in Theorem 4.2 for the matrix elements of
CkC(k−1) · · ·C1 (and that’s where Ŝk was introduced). However, by Theorem 4.8, Ŝk is

the same as

[
q̂k Q̂k

p̂k P̂k

]
, hence the first claim.

To prove the second claim with consider first the case of odd k. Then, by the formulas
in Theorem 4.8 we get:

q̂+k−1 = (−1)
k−1
2

∑

I,J∈([k−1]
k−1
2

)

I<J

gI ′hJ ′ = (−1)
k−1
2 g1′h2′g3′ · · · g(k−2)′h(k−1)′,

p̂+k = −(−1)
k+1
2

∑

I∈( [k]
k+1
2

),J∈( [k]
k−1
2

)

I<J

gI ′hJ ′ = (−1)
k−1
2 g1′h2′g3′ · · · g(k−2)′h(k−1)′gk′,

whose ratio gives the desired formula for gk′ , recalling that q̂0 = 1 to cover the case
of k = 1. The argument for even k is similar except that one uses the formulas for the
second column of Ŝk .

Finally, to prove the last claim, we observe that the map i → n + 1− i is a bijection
of the set [n]. Upon comparing Corollary 2.7 with the formula for q̂n given above we
see that q̂n(z) = pn(z), hence the two boundary value problems are equivalent. ��

4.3. Solving the inverse problemby interpolation. The inverse problemwe are interested
in solving explicitly can be stated as follows:

Definition 4.10. Given a rational function (see Theorem 3.1)
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W (z) = c+
∫

dμ(x)

x − z
, dμ =

	 n
2 
∑

i=1

b j δζ j , 0 < ζ1 < · · · < ζ	 n
2 
, 0 < b j , 1 ≤ j ≤

⌊n
2

⌋
,

(4.13)
where c > 0when n is odd and c = 0when n even, aswell as positive, distinct, constants
m1,m2, . . . ,mn , find positive constants g j , h j , 1 ≤ j ≤ n, such that g j h j = m2

j and
the unique solution of the initial value problem:

qk − qk−1 = hk pk−1, 1 ≤ k ≤ n,

pk − pk−1 = −zgkqk−1, 1 ≤ k ≤ n,

q0 = 0, p0 = 1,

satisfies

W (z) = qn(z)

pn(z)
.

Remark 4.11. The restriction that the constantsm j be distinct has beenmade to facilitate
the argument and will be eventually relaxed by taking appropriate limits of the generic
case (see Theorem 4.22).

The key observation leading to the solution of this inverse problem is the realization
that the interpolation problem (4.11) (the same as (4.3)) has a unique solution.

Theorem 4.12. Given a rational function W (z) as above, and positive, distinct con-
stants m1,m2, . . . ,mn, there exist unique solutions q̂k, p̂k, Q̂k, P̂k, 1 ≤ k ≤ n to the
interpolations problems (4.11).

Let zi = − 1
m2
i ′
, 1 ≤ i ≤ k, then the solution to the first interpolation problem

(4.11a), (4.11b) is

q̂k(z) + z	
k
2 
+1 Q̂k(z)

= 1

Dk
det

⎡
⎢⎢⎢⎢⎢⎣

1 z . . . z	 k
2 
 z	 k

2 
+1 z	 k
2 
+2 · · · zk

W (z1) z1W (z1) . . . z
	 k
2 


1 W (z1) 1 z1 · · · z
	 k−1

2 

1

...
...

. . .
...

...
...

. . .
...

W (zk) zkW (zk) . . . z
	 k
2 


k W (zk) 1 zk · · · z
	 k−1

2 

k

⎤
⎥⎥⎥⎥⎥⎦

,
(4.14)

where

Dk = det

⎡
⎢⎢⎣
z1W (z1) . . . z

	 k
2 


1 W (z1) 1 z1 · · · z
	 k−1

2 

1

...
. . .

...
...

...
. . .

...

zkW (zk) . . . z
	 k
2 


k W (zk) 1 zk · · · z
	 k−1

2 

k

⎤
⎥⎥⎦ . (4.15)

Likewise, the solution to the second interpolation problem (4.11c), (4.11d) is

P̂k(z) + z	
k
2 
 p̂k(z)

= 1

Ek
det

⎡
⎢⎢⎢⎢⎢⎣

1 z . . . z	 k
2 
 z	 k

2 
+1 z	 k
2 
+2 · · · zk

1 z1 . . . z
	 k
2 


1 z1W (z1) z21W (z1) · · · z
	 k+1

2 

1 W (z1)

...
...

. . .
...

...
...

. . .
...

1 zk . . . z
	 k
2 


k zkW (zk) z2kW (zk) · · · z
	 k+1

2 

k W (zk)

⎤
⎥⎥⎥⎥⎥⎦

,
(4.16)
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where

Ek = det

⎡
⎢⎢⎣
z1 . . . z

	 k
2 


1 z1W (z1) z21W (z1) · · · z
	 k+1

2 

1 W (z1)

...
. . .

...
...

...
. . .

...

zk . . . z
	 k
2 


k zkW (zk) z2kW (zk) · · · z
	 k+1

2 

k W (zk)

⎤
⎥⎥⎦ . (4.17)

Proof. Set

q̂k(z) = 1 +

	 k
2 
∑

j=1

a j z
j , Q̂k(z) =

	 k−1
2 
∑

j=0

A j z
j .

Then the first interpolation problem reads:

	 k
2 
∑

j=1

(zi )
jW (z j )a j +

	 k−1
2 
∑

j=0

(zi )
j A j = −W (zi ), 1 ≤ i ≤ k,

whose solution, by virtue of Cramer’s rule, can be written in the form of Eq. (4.14),
provided that Dk �= 0. Likewise, the solution to the second interpolation problem can
be easily deduced by writing

P̂k(z) = 1 +

	 k
2 
∑

j=1

Bj z
j , p̂k(z) =

	 k+1
2 
∑

j=1

b j z
j ,

substituting into the interpolation problem (4.11c) and, again, using Cramer’s rule, with
the same proviso that Ek �= 0. Thus it remains to prove that Dk and Ek are not 0
under our assumption of distinct masses m j . To this end we derive below explicit for-
mulas for the determinants Dk and Ek from which we conclude that none of the de-
terminants can be 0 in view of the non-degeneracy assumption on the masses m j (see
Corollary 4.19). ��

4.4. Evaluation of determinants. In this subsection, we will derive explicit formulas
for determinants appearing in the solution to the interpolation problems (see Theorem
4.12). We begin by introducing some additional notation to facilitate the presentation of
formulas, reminding the reader that the multi-index notation was introduced earlier in
the part leading up to the Definition 2.5. The following notation is in place: we denote
[i, j] = {i, i + 1, . . . , j}, ([1,K ]

k

) = {J = { j1, j2, . . . , jk}| j1 < · · · < jk, ji ∈ [1, K ]}.
Then for two ordered multi-index sets I, J we define

xJ =
∏
j∈J

x j , 
J (x) =
∏

i< j∈J

(x j − xi ),


I,J (x; y) =
∏
i∈I

∏
j∈J

(xi − y j ), �I,J (x; y) =
∏
i∈I

∏
j∈J

(xi + y j ),

along with the convention


∅(x) = 
{i}(x) = 
∅,J (x; y) = 
I,∅(x; y) = �∅,J (x; y) = �I,∅(x; y) = 1,([1, K ]
0

)
= 1;

([1, K ]
k

)
= 0, k > K .
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Definition 4.13. Given two vectors e ∈ Rk,d ∈ Rl , 0 ≤ l ≤ k such that ei + d j �= 0
for any pair of indices, a Cauchy–Vandermonde matrix [22,26,47,48] is a matrix of the
form

CV (l)
k (e,d) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
e1+d1

1
e1+d2

· · · 1
e1+dl

1 e1 · · · ek−l−1
1

1
e2+d1

1
e2+d2

· · · 1
e2+dl

1 e2 · · · ek−l−1
2

...
...

. . .
...

...
...

. . .
...

1
ek+d1

1
ek+d2

· · · 1
ek+dl

1 ek · · · ek−l−1
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.18)

Two special cases are: for l = 0 the matrix defined by (4.18) is a classical Vander-
monde matrix and for l = k it is a classical Cauchy matrix, and for both these special
cases there exist classical formulas expressing their determinants. Luckily, there ex-
ists also a compact formula for the determinant of the (generic) Cauchy–Vandermonde
matrix [26,47,48]:

det(CV (l)
k (e,d)) = 
[1,k](e)
[1,l](d)

�[1,k],[1,l](e;d)
. (4.19)

As a side note we would like to mention that the Cauchy–Vandermonde matrix
(4.18) appears naturally as the coefficient matrix of a rational interpolation problem of
Lagrange type: given k pairs of interpolation data (e1, t1), . . . , (ek, tk), where e1, . . . , ek
are different real numbers, find a function

f (x) =
l∑

j=1

s j
1

x + d j
+

k∑
j=l+1

s j x
j−l−1,

with si to be determined, such that f (ei ) = ti , i = 1, · · · , k.
The interpolation problems (4.3) can be viewed as slight variations on the theme of

rational interpolations problem of Largrange type and to effect the explicit solution of
these problems one is led to a generalization of the Cauchy–Vandermonde matrix.

Definition 4.14. Given three vectors e ∈ Rk,d, a ∈ Rl , 0 ≤ l ≤ k such that ei +d j �= 0
for any pair of indices, a modified Cauchy–Vandermonde matrix is that of the form

CV (l,p)
k (e,d, a) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1e
p
1

e1+d1
a2e

p+1
1

e1+d2
· · · al e

p+l−1
1

e1+dl
1 e1 · · · ek−l−1

1

a1e
p
2

e2+d1
a2e

p+1
2

e2+d2
· · · al e

p+l−1
2

e2+dl
1 e2 · · · ek−l−1

2

...
...

. . .
...

...
...

. . .
...

a1e
p
k

ek+d1

a2e
p+1
k

ek+d2
· · · al e

p+l−1
k

ek+dl
1 ek · · · ek−l−1

k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.20)

with p ≥ 0, 0 ≤ l ≤ k, p + l − 1 ≤ k − l.

Theorem 4.15. Let 0 ≤ p, 0 ≤ l ≤ k and p + l − 1 ≤ k − l, then

det(CV (l,p)
k (e,d, a)) = Cl,p


[1,k](e)
[1,l](d)

�[1,k],[1,l](e;d)
, (4.21)

where Cl,p = (−1)lp+
l(l−1)

2 a[1,l] · dp
[1,l] · d01d12 . . . dl−1

l .
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Proof. By multilinearity of the determinant we can factor all coefficients a j from the
first l rows. Hence it is sufficient toworkwith a = [1, 1, . . . , 1]. Let us drop the reference
to a for the remainder of the proof and simply write

CV (l,p)
k (e,d) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ep1
e1+d1

ep+11
e1+d2

· · · ep+l−1
1
e1+dl

1 e1 · · · ek−l−1
1

ep2
e2+d1

ep+12
e2+d2

· · · ep+l−1
2
e2+dl

1 e2 · · · ek−l−1
2

...
...

. . .
...

...
...

. . .
...

epk
ek+d1

ep+1k
ek+d2

· · · ep+l−1
k
ek+dl

1 ek · · · ek−l−1
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.22)

maintaining the assumptions 0 ≤ p, 0 ≤ l ≤ k and p + l − 1 ≤ k − l.
Let us now consider the l-th column of the matrix; we may write it as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ep+l−1
1 −(−dl )p+l−1+(−dl )p+l−1

e1+dl

ep+l−1
2 −(−dl )p+l−1+(−dl )p+l−1

e2+dl

...

ep+l−1
k −(−dl )p+l−1+(−dl )p+l−1

ek+dl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑p+l−1
j=1 ep+l−1− j

1 (−dl) j−1 + (−dl )p+l−1

e1+dl

∑p+l−1
j=1 ep+l−1− j

2 (−dl) j−1 + (−dl )p+l−1

e2+dl

...∑p+l−1
j=1 ep+l−1− j

k (−dl) j−1 + (−dl )p+l−1

ek+dl

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Since, thanks to the assumption p + l − 1 ≤ k − l, the first terms above are linear
combinations of columns l + 1 through k we obtain

det(CV (l,p)
k (e,d)) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ep1
e1+d1

ep+11
e1+d2

· · · (−dl )p+l−1

e1+dl
1 e1 · · · ek−l−1

1

ep2
e2+d1

ep+12
e2+d2

· · · (−dl )p+l−1

e2+dl
1 e2 · · · ek−l−1

2

...
...

. . .
...

...
...

. . .
...

epk
ek+d1

ep+1k
ek+d2

· · · (−dl )p+l−1

ek+dl
1 ek · · · ek−l−1

k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which after implementing similar operations for the remaining first l − 1 columns leads
to:

det(CV (l,p)
k (e,d)) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−d1)p

e1+d1
(−d2)p+1

e1+d2
· · · (−dl )p+l−1

e1+dl
1 e1 · · · ek−l−1

1

(−d1)p

e2+d1
(−d2)p+1

e2+d2
· · · (−dl )p+l−1

e2+dl
1 e2 · · · ek−l−1

2

...
...

. . .
...

...
...

. . .
...

(−d1)p

ek+d1
(−d2)p+1

ek+d2
· · · (−dl )p+l−1

ek+dl
1 ek · · · ek−l−1

k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Now it suffices to factor (−d1)p, . . . , (−dl)p+l−1 in order to obtain a straightforward
relation between the determinants of the modified Cauchy–Vandermonde matrix and the
Cauchy–Vandermonde matrix (4.18), (4.19)

det(CV (l,p)
k (e,d)) = (−d1)

p(−d2)
p+1 · · · (−dl)

p+l−1 · det(CV l
k (e,d)),

from which, after restoring a general a which contributes the factor a[1,l], the result
follows. ��

In the final step of generalizingCauchy–Vandermondematriceswe introduce a family
of matrices of this type attached to a Stieltjes transform of a positive measure.

Definition 4.16. Given a (strictly) positive vector e ∈ Rk , a non-negative number c, an
index l such that 0 ≤ l ≤ k, another index p such that 0 ≤ p, p + l − 1 ≤ k − l, and a
positive measure ν with support in R+, a Cauchy-Stieltjes-Vandermonde (CSV) matrix
is that of the form

CSV (l,p)
k (e, ν, c) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ep1 ν̂c(e1) e
p+1
1 ν̂c(e1) · · · ep+l−1

1 ν̂c(e1) 1 e1 · · · ek−l−1
1

ep2 ν̂c(e2) e
p+1
2 ν̂c(e2) · · · ep+l−1

2 ν̂c(e2) 1 e2 · · · ek−l−1
2

...
...

. . .
...

...
...

. . .
...

epk ν̂c(ek) e
p+1
k ν̂c(ek) · · · ep+l−1

k ν̂c(ek) 1 ek · · · ek−l−1
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(4.23)
where ν̂c is the (shifted) Stieltjes transform of the measure ν and is given by ν̂c(y) =
c +

∫ dν(x)
y+x .

In the next theorem we establish explicit formulas for the determinant of the CSV
matrix. This theorem is essential for our solution of the interpolation problems (4.3).

Theorem 4.17. Let ν be a positive measure with support in R+ and let x denote the
vector [x1, x2, . . . , xl ] ∈ Rl and dν p(y) = y pdν(y), respectively. Then

(1) if either c = 0 or p + l − 1 < k − l then

detCSV (l,p)
k (e, ν, c)

= (−1)lp+
l(l−1)

2 
[1,k](e)
∫

0<x1<x2<···<xl


[1,l](x)2
�[1,k],[1,l](e; x)dν p(x1)dν p(x2) . . . dν p(xl );

(4.24)

(2) if c > 0 and p + l − 1 = k − l then

detCSV (l,p)
k (e, ν, c) = (−1)lp+

l(l−1)
2 
[1,k](e)

·
( ∫

0<x1<x2<···<xl


[1,l](x)2

�[1,k],[1,l](e; x)dν p(x1)dν p(x2) . . . dν p(xl)

+ c
∫

0<y1<y2<···<yl−1


[1,l−1](y)2

�[1,k],[1,l−1](e; y)dν p(y1)dν p(y2) . . . dν p(yl−1)
)
.

(4.25)
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Proof. Let us first consider the case c = 0. Using multilinearity of the determinant we
obtain

detCSV (l,p)
k (e, ν, 0)

=
∫

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ep1
e1+x1

ep+11
e1+x2

· · · ep+l−1
1
e1+xl

1 e1 . . . ek−l+1
1

ep2
e2+x1

ep+12
e2+x2

· · · ep+l−1
2
e2+xl

1 e2 . . . ek−l+1
2

...
...

. . .
...

...
...

. . .
...

epk
ek+x1

ep+1k
ek+x2

· · · ep+l−1
k
ek+xl

1 ek . . . ek−l+1
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

dν(x1)dν(x2) · · · dν(xl).

Then by Theorem 4.15

detCSV (l,p)
k (e, ν, 0)

= (−1)lp+
l(l−1)

2

∫
(x1x2 · · · xl )px01 x12 · · · xl−1

l

[1,k](e)
[1,l](x)
�[1,k],[1,l](e; x) dν(x1)dν(x2) · · · dν(xl ).

Let us now consider the action of the group of permutations on l letters, denoted Sl , on
individual terms of the integrand. The product measure is invariant under the action and
so are (x1x2 · · · xl)p and �[1,n],[1,l](e; x). Let σ.x = [xσ(1), xσ(2), . . . , xσ(l)] then

detCSV (l,p)
k (e, ν, 0)

= (−1)lp+
l(l−1)

2 
[1,k](e)
l!

∫
(x1x2 · · · xl)p
�[1,k],[1,l](e; x)

× ( ∑
σ∈Sl

x0σ(1)x
1
σ(2) · · · xl−1

σ(l)
[1,l](σ.x)
)
dν(x1)dν(x2) · · · dν(xl)

= (−1)lp+
l(l−1)

2 
[1,k](e)
l!

∫
(x1x2 · · · xl)p
2[1,l](x)

�[1,k],[1,l](e; x) dν(x1)dν(x2) · · · dν(xl),

where in the last step we used 
[1,l](σ.x) = sgn(σ )
[1,l](x). Since now the integrand
is invariant under the action of Sl we integrate over x1 < x2 < · · · < xl , multiply by l!,
and restrict integration to R+ in view of the condition on the support of ν, obtaining the
final formula for this case.

The next case is 0 ≤ c but p + l − 1 < k − l. In this case every column j, 1 ≤ j ≤ l
is a sum:

c

⎛
⎜⎜⎜⎜⎜⎝

ep+ j−1
1

ep+ j−1
2

...

ep+ j−1
k

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

ep+ j−1
1 ν0(e1)

ep+ j−1
2 ν0(e2)

...

ep+ j−1
k ν0(ek)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and the condition p + l − 1 < k − l ensures that the first vector, namely the one
multiplied by c, appears in the Vandermonde part of the matrix, hence by antisymmetry
of the determinant implying that this case reduces to the case c = 0.
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Finally, the last case p + l − 1 = k − l can handled in a similar fashion, except that
now in the lth column we have a term which does not appear in the original Cauchy part:

detCSV (l,p)
k (e, ν, c)

= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ep1 ν̂0(e1) ep+11 ν̂0(e1) · · · cep+l−1
1 + ep+l−1

1 ν̂0(e1) 1 e1 · · · ek−l−1
1

ep2 ν̂0(e2) ep+12 ν̂0(e2) · · · cep+l−1
2 + ep+l−1

2 ν̂0(e2) 1 e2 · · · ek−l−1
2

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

epk ν̂0(ek) ep+1k ν̂0(ek) · · · cep+l−1
k + ep+l−1

k ν̂0(ek) 1 ek · · · ek−l−1
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

It suffices now to split the determinant into two, then move the term involving c to the
Vandermonde part, effectively lowering l to l − 1 for this term and then apply the same
method as in the proof of the c = 0 case. ��

Our goal in the remainder of this section is to connect the determinantal formalism
we have developed to the interpolation problem (4.3) (see Theorem 4.12). To this end
we set (see (4.13) and Theorem 4.12):

e j = −z j = 1

m2
j ′

, ν = μ, 1 ≤ j ≤ n,

and observe that W (z j ) = μ̂c(e j ) by (4.13).

Theorem 4.18. Let Dk, Ek be the determinants defined in Theorem 4.12. Then

Dk = (−1)	
k
2 
	 k+1

2 
 detCSV
(	 k

2 
,1)
k (e, μ, c),

Ek = (−1)k+	 k
2 
	 k+1

2 
e[1,k] detCSV
(	 k+1

2 
,0)
k (e, μ, c).

Proof. This is a straightforward computation requiring only to factor (−1) j from any
column containing z ji = (−ei ) j and, in the case of Ek , we also need to factor (z1z2 · · · zk)
and reshuffle the columns to bring the matrix to the CSV form. ��

Now, it suffices to use theorem 4.17 to conclude that both Dk and Ek are nonzero,
provided that all e j are distinct ( which is the same as our nondegeracy conditions on
the masses m j ).

Corollary 4.19. The determinants Dk and Ek appearing in the solution to the interpo-
lation problem stated in Theorem 4.12 are non zero for any k, 1 ≤ k ≤ n.

We finish this subsection by giving a complete solution to the inverse problem in
terms of determinants of CSV matrices. To lessen the burden of keeping track of signs
resulting from manipulations of matrix columns needed to bring matrices to the CSV
form we opt for the display using the absolute value of determinants to quickly and
compactly present the formulas. Thus, till further notice, we will denote

D
(l,p)
k =

∣∣∣detCSV (l,p)
k (e, μ, c)

∣∣∣ , (4.26)
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with the proviso that the arguments e, μ, c are fixed. With this notation in place the
formulas of Theorem 4.18 take the form:

|Dk | = D
(
⌊
k
2

⌋
,1)

k , |Ek | = e[1,k]D
(
⌊
k+1
2

⌋
,0)

k , (4.27)

from which one obtains determinantal formulas for the coefficients of the polynomials
q̂k, p̂k, Q̂k, P̂k leading via Eqs. (4.12a), (4.12b) to a complete solution of the inverse
problem 4.10.

Theorem 4.20. Suppose the Weyl function W (z) is given by (4.13) along with positive
distinct constants (masses) m1,m2, . . . ,mn. Then there exists a unique solution to the
inverse problem specified in Definition 4.10:

gk′ = D
( k−1

2 ,1)
k D

( k−1
2 ,1)

k−1

e[1,k]D
( k+12 ,0)
k D

( k−1
2 ,0)

k−1

, if k is odd, (4.28a)

gk′ = D
( k2 ,1)
k D

( k2−1,1)
k−1

e[1,k]D
( k2 ,0)
k D

( k2 ,0)
k−1

, if k is even. (4.28b)

Likewise,

hk′ = e[1,k−1]D
( k+12 ,0)
k D

( k−1
2 ,0)

k−1

D
( k−1

2 ,1)
k D

( k−1
2 ,1)

k−1

, if k is odd, (4.29a)

hk′ = e[1,k−1]D
( k2 ,0)
k D

( k2 ,0)
k−1

D
( k2 ,1)
k D

( k2−1,1)
k−1

, if k is even. (4.29b)

Proof. The formulas follow from Eqs. (4.12a) and (4.12b), as well as Theorem 4.12.
The question of signs involved in the identification of the CSV determinants is addressed
by taking the absolute values in all formulas needed to produce positive outcomes gk′ .
The formulas for hk′ follow from the relation gk′hk′ = m2

k′ . ��
Finally, recalling that the original peakon problem (1.6) was formulated in the x

space, using the relation h j = m jex j (see Eq. (2.2)), we arrive at the inverse formulae
relating the spectral data and the positions of peakons given by x j .

Theorem 4.21. Given positive and distinct constants m j , let � be the solution to the
boundary value problem 2.3 with associated spectral data {dμ, c}. Then the positions
x j (of peakons) in the discrete measure m = 2

∑n
j=1m jδx j can be expressed in terms

of the spectral data as:

xk′ = ln
e[1,k−1]D

( k+12 ,0)
k D

( k−1
2 ,0)

k−1

mk′D
( k−1

2 ,1)
k D

( k−1
2 ,1)

k−1

, if k is odd, (4.30a)

xk′ = ln
e[1,k−1]D

( k2 ,0)
k D

( k2 ,0)
k−1

mk′D
( k2 ,1)
k D

( k2−1,1)
k−1

, if k is even, (4.30b)
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with D
(l,p)
k defined in (4.26), k′ = n − k + 1, 1 ≤ k ≤ n and the convention that

D
l,p
0 = 1.

Finally, we can relax the condition that the masses be distinct, observing that the
Vandermonde determinants 
[1,r ](e), r = k, k − 1, cancel out in all expressions of the
type

D
(l1,p1)
k D

(l2,p2)
k−1

D
(l3,p3)
k D

(l4,p4)
k−1

as can be seen from the determinantal expressions given in Theorem 4.17 (see (4.24)
and (4.25)).

Theorem 4.22. Given positive constants m j , let� be the solution to the boundary value
problem 2.3 with associated spectral data {dμ, c}. Then the positions x j (of peakons)
in the discrete measure m = 2

∑n
j=1m jδx j can be expressed in terms of the spectral

data as given by the continuous extension of the formulas (4.30a) and (4.30b) to all,
including coinciding, masses.

Proof. We give a short proof of this statement. The forward map S : (m1,m2, . . . ,

mn; x1, x2, . . . , xn) → (m1,m2, . . . , ζ,b, c) and its inverseS −1, which exists by The-
orem 4.1, are continuous. The formulas (4.30a) and (4.30b) were originally defined
for distinct masses but, after cancellation of the Vandermonde determinants mentioned
above, have continuous extensions to all positive masses, distinct or not. By uniqueness
and continuity of S the extended formulas are then the formulas valid for all positive
masses. ��

5. Multipeakons for n = 2K

Even though the only difference between even and odd n is that c = 0when n is even (see
Theorem 3.1), and c > 0 otherwise, we nevertheless present these two cases separately
in an attempt to underscore subtle differences in the asymptotic behaviour of peakons
for these two cases.

5.1. Closed formulae for n = 2K. If we assume that x1(0) < x2(0) < · · · < x2K (0)
then this condition will hold at least in a small interval containing t = 0. Thus by
Theorem 4.21 we have the following result.

Theorem 5.1. Assuming the notation of Theorem 4.21, the mCH Eq. (1.1) with the
regularization of the singular term u2xm given by

〈
u2x
〉
m admits the multipeakon solution

u(x, t) =
2K∑
k=1

mk′(t) exp(−|x − xk′(t)|), (5.1)

where xk′ are given by Eqs. (4.30a) and (4.30b), with the peakon spectral measure

dμ =
K∑
j=1

b j (t)δζ j , (5.2)

b j (t) = b j (0)e
2t
ζ j , 0 < b j (0), ordered eigenvalues 0 < ζ1 < · · · < ζK and c = 0 in

(4.26).
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Proof. We only need to discuss the time evolution of the spectral measure. To this end
we recall that the Weyl function W (z) defined in (3.1) undergoes the time evolution
dictated by (2.11); a simple computation gives

Ẇ = 2

z
W − 2L

z
,

which, in turn, implies ḃ j = 2
ζ j
b j , 1 ≤ j ≤ K by virtue of Corollary 3.2. The remaining

statement regarding the multipeakon solutions follows from our solution of the inverse
problem and the fact that to formulate the time evolution we used the distributionally
compatible Lax pair (see Apendix A). ��

Even though one could easily give examples of peakon solutions based directly on
Theorem 5.1 it is helpful to examine the explicit formulas for the evaluation of CSV
determinants presented in Theorem 4.17 (see Eq. (4.26) for notation), adjusted to the
case of even n.

Theorem 5.2. Let n = 2K , 0 ≤ l ≤ K , 0 ≤ p, p + l − 1 ≤ k − l, 1 ≤ k ≤ 2K and
let the peakon spectral measure be given by (5.2). Then

(1)

D
(l,p)
k = ∣∣
[1,k](e)

∣∣ ∑

I∈([1,K ]
l )


2
I (ζ )bI ζ

p
I

�[1,k],I (e; ζ )
; (5.3)

(2) in the asymptotic region t → +∞

D
(l,p)
k = ∣∣
[1,k](e)

∣∣ 
2[1,l](ζ )b[1,l]ζ p
[1,l]

�[1,k],[1,l](e; ζ )

[
1 + O(e−αt )

]
, 0 < α; (5.4)

(3) in the asymptotic region t → −∞

D
(l,p)
k = ∣∣
[1,k](e)

∣∣ 
2[1,l]∗(ζ )b[1,l]∗ζ p
[1,l]∗

�[1,k],[1,l]∗(e; ζ )

[
1 + O(eβt )

]
, 0 < β, (5.5)

where [1, l]∗ = [l∗ = K − l + 1, 1∗ = K ] (reflection of the interval [1, K ]).
Proof. Equation (5.3) follows from Theorem 4.17, in particular Eq. (4.24), by taking
dν = dμ there, and carrying out integration. The formula (5.4) can be obtained from
(5.3) by observing that the time dependence is confined to terms bI =
b j1(0)e

2t
ζ j1 b j2(0)e

2t
ζ j2 · · · b jl (0)e

2t
ζ jl of which the term with the smallest l-tuple of eigen-

values is dominant; the rest then follows from our ordering of the eigenvalues. Finally,
formula (5.5) follows from a similar argument, except that for t → −∞ the dominant
term corresponds to the largest l-tuple of eigenvalues. ��

Before we display examples of formulas for multipeakons in the case of n = 2K
we remind the reader that e j = 1

m2
j ′
, j ′ = 2K − j + 1. All examples below are derived

following the same pattern: one takes formulas (4.30a), (4.30b) and uses (5.3) to derive
explicit expressions for positions x1, . . . , x2K .
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Example 5.3. (2-peakon solution; K=1)

x1 = ln

(
b1

ζ1m1(1 + ζ1m2
2)

)
, x2 = ln

(
b1m2

1 + ζ1m2
2

)
.

Example 5.4. (4-peakon solution; K = 2)

x1 = ln

⎛
⎝ 1

m1
· b1b2(ζ2 − ζ1)

2

ζ1ζ2

(
b1ζ1(1 + ζ2m

2
2)(1 + ζ2m

2
3)(1 + ζ2m

2
4) + b2ζ2(1 + ζ1m

2
2)(1 + ζ1m

2
3)(1 + ζ1m

2
4)
)
⎞
⎠ ,

x2 = ln

⎛
⎝m2 ·

b1b2(ζ2 − ζ1)
2
(
b1(1 + ζ2m

2
3)(1 + ζ2m

2
4) + b2(1 + ζ1m

2
3)(1 + ζ1m

2
4)
)

(
b1ζ1(1 + ζ2m

2
3)(1 + ζ2m

2
4) + b2ζ2(1 + ζ1m

2
3)(1 + ζ1m

2
4)
)

· 1(
b1ζ1(1 + ζ2m

2
2)(1 + ζ2m

2
3)(1 + ζ2m

2
4) + b2ζ2(1 + ζ1m

2
2)(1 + ζ1m

2
3)(1 + ζ1m

2
4)
)
⎞
⎠ ,

x3 = ln

⎛
⎝ 1

m3
·
(
b1(1 + ζ2m

2
4) + b2(1 + ζ1m

2
4)
) (

b1(1 + ζ2m
2
3)(1 + ζ2m

2
4) + b2(1 + ζ1m

2
3)(1 + ζ1m

2
4)
)

(1 + ζ1m
2
4)(1 + ζ2m

2
4)
(
b1ζ1(1 + ζ2m

2
3)(1 + ζ2m

2
4) + b2ζ2(1 + ζ1m

2
3)(1 + ζ1m

2
4)
)

⎞
⎠ ,

x4 = ln

(
m4 · b1(1 + ζ2m

2
4) + b2(1 + ζ1m

2
4)

(1 + ζ1m
2
4)(1 + ζ2m

2
4)

)
.

Example 5.5. (a general formula for the last position x2K = x1′ )

x2K = x1′ = ln
D (1,0)

1

m1′
= ln

μ̂0(e1)

m2K
= ln

∑K
i=1

bi
1

m2
2K

+ζi

m2K
= lnm2K

K∑
i=1

bi
1 + m2

2K ζi
.

5.2. Global existence for n = 2K. As time varies, the initial order x1(0) < x2(0) <

· · · < x2K (0)might cease to hold. In this subsection, we formulate a sufficient condition
needed to ensure that the peakon flow exists globally in time.

Theorem 5.6. Given arbitrary spectral data

{b j > 0, 0 < ζ1 < ζ2 < · · · < ζK : 1 ≤ j ≤ K },
suppose the masses mk satisfy

ζ
k−1
2

K

ζ
k+1
2

1

< m(k+1)′mk′ , for all odd k, 1 ≤ k ≤ 2K − 1,

(5.6a)

m(k+2)′m(k+1)′
(1 + m2

(k+1)′ζ1)(1 + m2
(k+2)′ζ1)

<
ζ
k+1
2

1

ζ
k−1
2

K

2min j (ζ j+1 − ζ j )
k−1

(k + 1)(ζK − ζ1)
k+1

, for all odd k, 1 ≤ k ≤ 2K − 3.

(5.6b)

Then the positions obtained from inverse formulas (4.30a), (4.30b) are ordered x1 <

x2 < · · · < x2K and the multipeakon solutions (5.1) exist for arbitrary t ∈ R.
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Proof. The solutions described in Theorem 4.21 are valid peakon solutions as long as
x1 < x2 < · · · < x2K holds. We write these conditions as:

x(k+1)′ < xk′ , for all odd k, 1 ≤ k ≤ 2K − 1, (5.7a)

x(k+2)′ < x(k+1)′ , for all odd k, 1 ≤ k ≤ 2K − 3, (5.7b)

and use Eqs. (4.30a), (4.30b) to obtain equivalent conditions

1

m(k+1)′mk′
<

D
( k+12 ,1)
k+1 D

( k−1
2 ,0)

k−1

D
( k+12 ,0)
k+1 D

( k−1
2 ,1)

k−1

, for all odd k, 1 ≤ k ≤ 2K − 1, (5.8a)

1

m(k+2)′m(k+1)′
<

D
( k+12 ,1)
k+2 D

( k+12 ,0)
k

D
( k+32 ,0)
k+2 D

( k−1
2 ,1)

k

, for all odd k, 1 ≤ k ≤ 2K − 3. (5.8b)

Note that Eq. (5.3) implies easily that the inequality

D
( k+12 ,1)
k+1 D

( k−1
2 ,0)

k−1

D
( k+12 ,0)
k+1 D

( k−1
2 ,1)

k−1

>
ζ

k+1
2

1

ζ
k−1
2

K

(5.9)

holds uniformly in t (we recall that the coefficients b j depend on t). Thus if we impose

1

m(k+1)′mk′
<

ζ
k+1
2

1

ζ
k−1
2

K

for all odd k, k ≤ 2K − 1,

then Eq. (5.7a) hold automatically.
Now we turn to the second inequality, namely (5.8b), which is needed whenever

K ≥ 2. It is convenient to consider a slightly more general expression, namely,

D (l,1)
k+2 D (l,0)

k

D (l+1,0)
k+2 D (l−1,1)

k

, 1 ≤ l ≤ K − 1,

for which after using (5.3) we obtain the inequality

D (l,1)
k+2 D (l,0)

k

D (l+1,0)
k+2 D (l−1,1)

k

>
ζ l1

ζ l−1
K

∑

A,B∈([1,K ]
l )


2
A
2

BbAbB

�[1,k+2],A�[1,k],B

∑

I∈([1,K ]
l−1 ),J∈([1,K ]

l+1 )


2
I


2
JbIbJ

�[1,k],I�[1,k+2],J

, (5.10)

where, to ease off notation, we temporarily suspended displaying the dependence on
ζ, e.
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We focus now on rewriting the denominator of the above expression. First, we note
that since the cardinality of J exceeds that of I it is always possible to find a unique
smallest index i in J which is not in I . This leads to the map:

� :
([1, K ]
l − 1

)
×
([1, K ]
l + 1

)
−→

([1, K ]
l

)
×
([1, K ]

l

)
,

(I, J ) : �−→ (A = I ∪ {i}, B = J\{i}), for all l, l ≤ K − 1.
(5.11)

For A = I ∪ {i}, B = J\{i} we clearly have A, B ∈ ([1,K ]
l

)
, bIbJ = bAbB , as well

as


2
I


2
J

�[1,k],I�[1,k+2],J

= 
2{i},B

2{i},I

· 1

(ek+1 + ζi )(ek+2 + ζi )
· 
2

A
2
B

�[1,k],A�[1,k+2],B

≤ (ζK − ζ1)
2l

min j (ζ j+1 − ζ j )2(l−1)
· 1

(ek+1 + ζ1)(ek+2 + ζ1)


2
A
2

B

�[1,k],A�[1,k+2],B

which implies

∑

I∈([1,K ]
l−1 ),J∈([1,K ]

l+1 )


2
I


2
JbIbJ

�[1,k],I�[1,k+2],J

≤ (ζK − ζ1)
2l

min j (ζ j+1 − ζ j )2(l−1)
· 1

(ek+1 + ζ1)(ek+2 + ζ1)

·
∑

A,B∈([1,K ]
l )

(A,B)∈Image(�)

#[�−1(A, B)] 
2
A
2

BbAbB

�[1,k],A�[1,k+2],B
,

where #[�−1(A, B)] counts the number of pairs (I, J ) which are mapped by � into the
same (A, B). However, by construction, #[�−1(A, B)] ≤ 1 for l = 1, while for 1 < l
two distinct pairs (I1, J1) �= (I2, J2) are mapped to the same (A, B) if, for the smallest
i1 ∈ J1\I1 and the smallest i2 ∈ J2\I2, there exists L ∈ ([1,K ]

l−2

)
, M ∈ ([1,K ]

l

)
such that

I1 = L ∪ {i2}, J1 = M ∪ {i1},
I2 = L ∪ {i1}, J2 = M ∪ {i2},

in which case A = L ∪{i1}∪ {i2}, B = M . Thus #[�−1(A, B)] is bounded from above
by the number of ways we can select an individual entry from A, since once i1 is selected
so is i2 and M , hence #[�−1(A, B)] ≤ l, and
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∑

I∈([1,K ]
l−1 ),J∈([1,K ]

l+1 )


2
I


2
JbIbJ

�[1,k],I�[1,k+2],J
(5.12)

≤ l
(ζK − ζ1)

2l

min j (ζ j+1 − ζ j )2(l−1)
· 1

(ek+1 + ζ1)(ek+2 + ζ1)
·

∑

A,B∈([1,K ]
l )

(A,B)∈Image(�)


2
A
2

BbAbB

�[1,k],A�[1,k+2],B

≤ l
(ζK − ζ1)

2l

min j (ζ j+1 − ζ j )2(l−1)
· 1

(ek+1 + ζ1)(ek+2 + ζ1)
·

∑

A,B∈([1,K ]
l )


2
A
2

BbAbB

�[1,k],A�[1,k+2],B
,

(5.13)

which, upon substituting into (5.10), proves the bound

D (l,1)
k+2 D (l,0)

k

D (l+1,0)
k+2 D (l−1,1)

k

>
ζ l1

ζ l−1
K

min j (ζ j+1 − ζ j )
2(l−1)

l(ζK − ζ1)2l
· (ek+1 + ζ1)(ek+2 + ζ1)

= ζ l1

ζ l−1
K

min j (ζ j+1 − ζ j )
2(l−1)

l(ζK − ζ1)2l
· (1 + m2

(k+1)′ζ1)(1 + m2
(k+2)′ζ1)

m2
(k+1)′m

2
(k+2)′

.

(5.14)

Hence, setting l = k+1
2 , if one takes

1

m(k+2)′m(k+1)′
<

ζ
k+1
2

1

ζ
k−1
2

K

2min j (ζ j+1 − ζ j )
k−1

(k + 1)(ζK − ζ1)k+1
· (1 + m2

(k+1)′ζ1)(1 + m2
(k+2)′ζ1)

m2
(k+1)′m

2
(k+2)′

,

then (5.8b) and thus (5.7b) will hold. Finally, rewriting the last condition as:

m(k+2)′m(k+1)′

(1 + m2
(k+1)′ζ1)(1 + m2

(k+2)′ζ1)
<

ζ
k+1
2

1

ζ
k−1
2

K

2min j (ζ j+1 − ζ j )
k−1

(k + 1)(ζK − ζ1)
k+1

, for all odd k, k ≤ 2K−3

(5.15)
we obtain the second sufficient condition (5.6b). ��

As an example illustrating the global existence of our multipeakon solutions let us
consider the case K = 2 (i.e. n = 4).

Example 5.7. Let K = 2, and b1(0) = 10, b2(0) = 1, ζ1 = 0.3, ζ2 = 3, m1 =
8, m2 = 16, m3 = 18, m4 = 13. It is easy to show that the condition in Theorem
5.6 is satisfied. Hence the order of {xk, k = 1, 2, 3, 4} will be preserved at all time and
one can use the explicit formulae for the 4-peakon solution at all time, resulting in the
following sequence of graphs (Fig. 1).

5.3. Large time peakon asymptotics for n = 2K. In this short subsection we state the
asymptotic behaviour of multipeakon solutions for large (positive and negative) time,
thus implicitly assuming the global existence of solutions as guaranteed for example by
imposing sufficient conditions of Theorem 5.6.
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Fig. 1. Snapshots of u(x, t) for n = 4 at times t = −5, −1.5, −0.5, 4 in the case of b1(0) = 10, b2(0) =
1, ζ1 = 0.3, ζ2 = 3, m1 = 8, m2 = 16, m3 = 18, m4 = 13

Theorem 5.8. Suppose the masses m j satisfy the conditions of Theorem 5.6. Then the
asymptotic position of a k-th (counting from the right) peakon as t → +∞ is given by

xk′ = 2t

ζ k+1
2

+ ln
b k+1

2
(0)e[1,k−1]
2

[1, k−1
2 ],{ k+12 }(ζ )

mk′�[1,k],{ k+12 }(e; ζ )ζ 2
[1, k−1

2 ]
+ O(e−αk t ),

for some positive αk and odd k, (5.16a)

xk′ = 2t

ζ k
2

+ ln
b k

2
(0)e[1,k−1]
2

[1, k2−1],{ k2 }(ζ )

mk′�[1,k−1],{ k2 }(e; ζ )ζ 2
[1, k2−1]ζ k

2

+ O(e−αk t ),

for some positive αk and even k, (5.16b)

xk′ − x(k+1)′ = lnm(k+1)′mk′ζ k+1
2

+ O(e−αk t ),

for some positive αk and odd k. (5.16c)

Likewise, as t → −∞, using the notation of Theorem 5.2, the asymptotic position of
the k-th peakon is given by

xk′ = 2t

ζ
( k+12 )∗

+ ln
b
( k+12 )∗(0)e[1,k−1]
2

([1, k−1
2 ])∗,{( k+12 )∗}(ζ )

mk′�[1,k],{( k+12 )∗}(e; ζ )ζ 2
[1, k−1

2 ]∗
+ O(eβk t ),

for some positive βk and odd k, (5.17a)

xk′ = 2t

ζ
( k2 )∗

+ ln
b
( k2 )∗(0)e[1,k−1]
2

[1, k2−1]∗,{( k2 )∗}(ζ )

mk′�[1,k−1],{( k2 )∗}(e; ζ )ζ 2
[1, k2−1]∗ζ( k2 )∗

+ O(eβk t ),

for some positive βk and even k, (5.17b)
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xk′ − x(k+1)′ = lnm(k+1)′mk′ζ
( k+12 )∗ + O(eβk t ),

for some positive βk and odd k. (5.17c)

Proof. The proof is by a straightforward computation using the formulas for positions
(4.30a), (4.30b), as well as asymptotic evaluations of determinants (5.4) and (5.5). ��
Remark 5.9. In the closing remark for this section we note that multipeakons of the
mCH exhibit Toda-like sorting properties of asymptotic speeds, a common occurrence
among known to us peakon systems. However, it is apparent that the multipeakons of
the mCH show also features known to occur in multi-component cases, for example in
the Geng–Xue equation [46], a two-component modified Camassa–Holm equation [10],
but also in the Novikov equation [38,39], for which one observes an asymptotic pairing
of peakons, undoubtedly forced by a shortage of eigenvalues whose total number is K ,
versus 2K positions in need of asymptotic speeds. This feature does not show up in the
CH equation.

6. Multipeakons for n = 2K + 1

The main source of difference with the even case is of course the presence of the positive
shift c which impacts the evaluations of the CSV determinants as illustrated by Theorem
4.17, in particular formula (4.25). We will present the material in this section in a way
parallel to the previous section on the even case.

6.1. Closed formulae for n = 2K + 1. Again, we assume that x1(0) < x2(0) < · · · <

x2K+1(0) then this condition will hold at least in a small interval containing t = 0. Thus
Theorem 4.21 gives us the following local existence result.

Theorem 6.1. Assuming the notation of Theorem 4.21, the mCH Eq. (1.1) with the
regularization of the singular term u2xm given by

〈
u2x
〉
m admits the multipeakon solution

u(x, t) =
2K+1∑
k=1

mk′(t) exp(−|x − xk′(t)|), (6.1)

where xk′ are given by Eqs. (4.30a) and (4.30b), with the peakon spectral measure

dμ =
K∑
j=1

b j (t)δζ j , (6.2)

b j (t) = b j (0)e
2t
ζ j , 0 < b j (0), ordered eigenvalues 0 < ζ1 < · · · < ζK and c(t) =

c(0) > 0 in (4.26).

Proof. The time evolution of the spectral measure is the same as for the even case. To
see this as well as that c is a constant we recall that the Weyl function W (z) is defined
in (3.1), regardless of whether n is even or odd, thusW (z) undergoes the time evolution
obtained earlier in the proof of Theorem 5.1, namely,

Ẇ = 2

z
W − 2L

z
,

which, in turn, implies ḃ j = 2
ζ j
b j , 1 ≤ j ≤ K as well as ċ = 0 by virtue of Corollary

3.2. The rest of the proof is the same as for the even case. ��
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We examine now the explicit formulas for the evaluation of CSV determinants
presented in Theorem 4.17 (see Eq. (4.26) for notation), with due care to two facts:
n = 2K +1 and c > 0. The proof follows the same steps as in Theorem 5.2 and we omit
it.

Theorem 6.2. Let n = 2K +1, 1 ≤ k ≤ 2K +1, 0 ≤ l ≤ K +1, 0 ≤ p, p+l−1 ≤ k−l,
and let the peakon spectral measure be given by (6.2) and a shift c > 0. Then

(1)

D
(l,p)
k = ∣∣
[1,k](e)

∣∣ ∑

I∈([1,K ]
l )


2
I (ζ )bI ζ

p
I

�[1,k],I (e; ζ )
if p + l − 1 < k − l, k ≤ 2K + 1; (6.3a)

D
(l,p)
k = ∣∣
[1,k](e)

∣∣ ( ∑

I∈([1,K ]
l )


2
I (ζ )bI ζ

p
I

�[1,k],I (e; ζ )
+ c

∑

I∈([1,K ]
l−1 )


2
I (ζ )bI ζ

p
I

�[1,k],I (e; ζ )

)
if p + l − 1 = k − l, k ≤ 2K + 1;

(6.3b)

with the proviso that the first term inside the bracket is set to zero if l = K +1, which
only happens when k = 2K + 1, p = 0.

(2) in the asymptotic region t → +∞

D
(l,p)
k = ∣∣
[1,k](e)

∣∣ 
2[1,l](ζ )b[1,l]ζ p
[1,l]

�[1,k],[1,l](e; ζ )

[
1 + O(e−αt )

]
, 0 < α, if 0 ≤ l ≤ K ;

(6.4a)

D (K+1,0)
2K+1 = c

∣∣
[1,2K+1](e)
∣∣ 
2[1,K ](ζ )b[1,K ]
�[1,2K+1],[1,K ](e; ζ )

,

if k = 2K + 1, l = K + 1, p = 0. (6.4b)

(3) in the asymptotic region t → −∞

D
(l,p)
k = ∣∣
[1,k](e)

∣∣ 
2[1,l]∗(ζ )b[1,l]∗ζ p
[1,l]∗

�[1,k],[1,l]∗(e; ζ )

[
1 + O(eβt )

]
, 0 < β,

if p + l − 1 < k − l, k ≤ 2K + 1; (6.5a)

D
(l,p)
k = c

∣∣
[1,k](e)
∣∣ 
2[1,l−1]∗(ζ )b[1,l−1]∗ζ p

[1,l−1]∗
�[1,k],[1,l−1]∗(e; ζ )

[
1 + O(eβt )

]
, 0 < β,

if p + l − 1 = k − l, k < 2K + 1; (6.5b)

D (K+1,0)
2K+1 = c

∣∣
[1,2K+1](e)
∣∣ 
2[1,K ](ζ )b[1,K ]
�[1,2K+1],[1,K ](e; ζ )

,

if k = 2K + 1, l = K + 1, p = 0, (6.5c)

where, as before, [1, l]∗ = [l∗ = K − l + 1, 1∗ = K ].
For the future use, namely in the forthcoming proof of Theorem6.7, wewill formulate

an elementary corollary aimed at comparing formulae with c > 0 and c = 0. For the
duration of this corollary we explicitly display the dependence on c.
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Corollary 6.3. Let n = 2K+1, 1 ≤ k ≤ 2K+1, 0 ≤ l ≤ K+1, 0 ≤ p, p+l−1 ≤ k−l,
and let the peakon spectral measure be given by (6.2) and a shift c > 0. Then

D
(l,p)
k (c) = D

(l,p)
k (0), if p + l − 1 < k − l, k ≤ 2K + 1;

(6.6a)

D
(l,p)
k (c) = D

(l,p)
k (0) + cD (l−1,p)

k (0), if p + l − 1 = k − l, k ≤ 2K + 1;
(6.6b)

with the convention that the first term in (6.6b) is set to zero if l = K +1, k = 2K +1, p =
0.

Proof. It suffices to compare formulas (6.3a) and (6.3b) with (5.3), for k ≤ 2K , while
the case k = 2K + 1 can be directly obtained from Theorem 4.17 and the definition of
D

(l,p)
k (c) (see Eq. (4.26)). ��
Finally, by use of the formulas (4.30a), (4.30b), Theorems 6.1 and 6.2, in particular

the formulas (6.3a) and (6.3b), we get exact formulae for (local) 1,3-peakon solutions
with initial positions satisfying x1(0) < x2(0) < · · · < x2K+1(0).

Example 6.4. (1-peakon solution; K = 0 (trivial, does not require inverse spectral ma-
chinery))

x1 = ln

(
c

m1

)
.

We note that by shifting this example covers the 1-peakon solution discussed in
Theorem 6.1 in [30].More generally, by shifting we cover all peakon solutions discussed
therein for which masses are taken to be identical (see Remark 1.1 in the Introduction).

Example 6.5. (3-peakon solution; K = 1)

x1 = ln

(
b1c

ζ1m1
(
b1ζ1m2

2m
2
3 + c(1 + ζ1m2

2)(1 + ζ1m2
3)
)
)

,

x2 = ln

(
b1m2

b1ζ1m2
2m

2
3 + c(1 + ζ1m2

2)(1 + ζ1m2
3)

(
b1m2

3

1 + ζ1m2
3

+ c

))
,

x3 = ln

(
1

m3

(
b1m2

3

1 + ζ1m2
3

+ c

))
.

Example 6.6. (a general formula for the last position x1′ = x2K+1) Recalling that μ̂c
denotes the shifted Stieltjes transform of the spectralmeasureμ (introduced inDefinition
4.16) and using (4.30a) we obtain:

x1′ = x2K+1 = ln
μ̂c(e1)

m1′
= ln

c + m2
2K+1

∑K
i=1

bi
1+m2

2K+1ζi

m2K+1
.
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6.2. Global existence for n = 2K + 1. This section presents the main results regarding
the global existence of peakon solutions when n = 2K + 1.

Theorem 6.7. Given arbitrary spectral data

{b j > 0, 0 < ζ1 < ζ2 < · · · < ζK , c > 0 : 1 ≤ j ≤ K },

suppose the masses mk satisfy

1

m(k+1)′mk′
<

ζ
k+1
2

1

ζ
k−1
2

K

min{1, β̂}, for all odd k, 1 ≤ k ≤ 2K − 1, (6.7a)

1

m(k+2)′m(k+1)
<

ζ
k+1
2

1

ζ
k−1
2

K

min{1, β̂1}, for all odd k, 1 ≤ k ≤ 2K − 1, (6.7b)

where

β̂ =
⎧⎨
⎩

2ζK min j (ζ j+1−ζ j )
k−3

ζ1(k−1)(ζK−ζ1)k−1

(1+m2
(k)′ ζ1)(1+m

2
(k+1)′ ζ1)

m2
(k)′m

2
(k+1)′

, for all odd k, 3 ≤ k ≤ 2K − 1,

+∞, for k = 1,

β̂1 = 2min j (ζ j+1 − ζ j )
k−1

(k + 1)(ζK − ζ1)k+1

(1 + m2
(k+1)′ζ1)(1 + m2

(k+2)′ζ1)

m2
(k+1)′m

2
(k+2)′

.

Then the positions obtained from inverse formulas (4.30a), (4.30b) are ordered x1 <

x2 < · · · < x2K+1 and the multipeakon solutions (5.1) exist for arbitrary t ∈ R.

Proof. The solutions described in Theorem 4.21 are valid peakon solutions as long as
x1 < x2 < · · · < x2K+1 holds. We write these conditions as:

x(k+1)′ < xk′ , for all odd k, 1 ≤ k ≤ 2K − 1, (6.8a)

x(k+2)′ < x(k+1)′ , for all odd k, 1 ≤ k ≤ 2K − 1, (6.8b)

and use Eqs. (4.30a), (4.30b) to obtain equivalent conditions

1

m(k+1)′mk′
<

D
( k+12 ,1)
k+1 (c)D

( k−1
2 ,0)

k−1 (c)

D
( k+12 ,0)
k+1 (c)D

( k−1
2 ,1)

k−1 (c)
, for all odd k, 1 ≤ k ≤ 2K − 1,

(6.9a)

1

m(k+2)′m(k+1)′
<

D
( k+12 ,1)
k+2 (c)D

( k+12 ,0)
k (c)

D
( k+32 ,0)
k+2 (c)D

( k−1
2 ,1)

k (c)
, for all odd k, 1 ≤ k ≤ 2K − 1,

(6.9b)
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displaying the dependence on c in anticipation of the use of Corollary 6.3. Note that
Eqs. (6.6a) and (6.6b) suggest writing

D
( k+12 ,1)
k+1 (c)D

( k−1
2 ,0)

k−1 (c)

D
( k+12 ,0)
k+1 (c)D

( k−1
2 ,1)

k−1 (c)
=
(
D

( k+12 ,1)
k+1 (0) + cD

( k−1
2 ,1)

k+1 (0)
)
D

( k−1
2 ,0)

k−1 (0)

D
( k+12 ,0)
k+1 (0)

(
D

( k−1
2 ,1)

k−1 (0) + cD
( k−3

2 ,1)
k−1 (0)

)

= D
( k+12 ,1)
k+1 (0)D

( k−1
2 ,0)

k−1 (0) + cD
( k−1

2 ,1)
k+1 (0)D

( k−1
2 ,0)

k−1 (0)

D
( k+12 ,0)
k+1 (0)D

( k−1
2 ,1)

k−1 (0) + cD
( k+12 ,0)
k+1 (0)D

( k−3
2 ,1)

k−1 (0)

de f= A1 +B1

A2 +B2
,

with the proviso that B2 = 0 for k = 1. Examining the ratios A1
A2

, B1
B2

we observe that
they satisfy (uniform in t) bounds

A1

A2
>

ζ
k+1
2

1

ζ
k−1
2

K

def= α,

B1

B2
>

ζ
k−1
2

1

ζ
k−3
2

K

2min j (ζ j+1 − ζ j )
k−3

(k − 1)(ζK − ζ1)k−1

(1 + m2
k′ζ1)(1 + m2

(k+1)′ζ1)

m2
k′m2

(k+1)′

de f= β,

by Eqs. (5.9) and (5.14), respectively, with the convention that β = ∞ for the special
case k = 1. Thus

min{α, β} <
D

( k+12 ,1)
k+1 (c)D

( k−1
2 ,0)

k−1 (c)

D
( k+12 ,0)
k+1 (c)D

( k−1
2 ,1)

k−1 (c)

holds uniformly in t and if we impose

1

m(k+1)′mk′
< min{α, β} for all odd k, 1 ≤ k ≤ 2K − 1,

then Eq. (6.8a) will hold automatically.
Now we turn to the second inequality, namely (6.9b). Again, using Corollary 6.3 we

obtain

D
( k+12 ,1)
k+2 (c)D

( k+12 ,0)
k (c)

D
( k+32 ,0)
k+2 (c)D

( k−1
2 ,1)

k (c)
>

A1 +B1

A2 +B2
, (6.10)

where, this time,

A1

A2
>

ζ
k+1
2

1

ζ
k−1
2

K

= α,

B1

B2
>

ζ
k+1
2

1

ζ
k−1
2

K

2min j (ζ j+1 − ζ j )
k−1

(k + 1)(ζK − ζ1)k+1

(1 + m2
(k+1)′ζ1)(1 + m2

(k+2)′ζ1)

m2
(k+1)′m

2
(k+2)′

de f= β1,

and,

min{α, β1} <
D

( k+12 ,1)
k+2 (c)D

( k+12 ,0)
k (c)

D
( k+32 ,0)
k+2 (c)D

( k−1
2 ,1)

k (c)
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Fig. 2. Snapshots of u(x, t) for n = 3 at time t = −12, 2, 10, 30 in the case of b1(0) = 1, c = 3, ζ1 =
5, m1 = 3, m2 = 2, m3 = 2.2

is satisfied. Thus inequality

1

m(k+2)′m(k+1)′
< min{α, β1}, for all odd k, 1 ≤ k ≤ 2K − 1,

implies (6.9b) and, consequently, (6.8b), thereby completing the proof. ��
Example 6.8. Let K = 1, and b1(0) = 1, c = 3, ζ1 = 5, m1 = 3, m2 = 2, m3 =
2.2. Then the sufficient conditions in Theorem 6.7 are satisfied. Hence the order of
{xk, k = 1, 2, 3} will be preserved at all time and one can use the explicit formulae for
the 3-peakon solution at all time, resulting in the following sequence of graphs (Fig. 2).

6.3. Large time peakon asymptotics for n = 2K + 1. We will investigate in this sec-
tion the long time asymptotics of global multipeakon solutions, guaranteed to exist by
Theorem 6.7.

Theorem 6.9. Suppose the masses m j satisfy the conditions of Theorem 6.7. Then the
asymptotic position of a k-th (counting from the right) peakon as t → +∞ is given by

xk′ = 2t

ζ k+1
2

+ ln
b k+1

2
(0)e[1,k−1]
2

[1, k−1
2 ],{ k+12 }(ζ )

mk′�[1,k],{ k+12 }(e; ζ )ζ 2
[1, k−1

2 ]
+ O(e−αk t ),

for some positive αk and odd k ≤ 2K − 1; (6.11a)

x(2K+1)′ = ln
ce[1,2K ]

m(2K+1)′ζ 2[1,K ]
+ O(e−αt ), for some positive α; (6.11b)

xk′ = 2t

ζ k
2

+ ln
b k

2
(0)e[1,k−1]
2

[1, k2−1],{ k2 }(ζ )

mk′�[1,k−1],{ k2 }(e; ζ )ζ 2
[1, k2−1]ζ k

2

+ O(e−αk t ),
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for some positive αk and even k ≤ 2K ; (6.11c)

xk′ − x(k+1)′ = lnm(k+1)′mk′ζ k+1
2

+ O(e−αk t ),

for some positive αk and odd k ≤ 2K − 1. (6.11d)

Likewise, as t → −∞, using the notation of Theorem 5.2, the asymptotic position of
the k-th peakon is given by

xk′ = 2t

ζ
( k−1

2 )∗
+ ln

b
( k−1

2 )∗(0)e[1,k−1]
2
[1, k−1

2 −1]∗,{( k−1
2 )∗}(ζ )

mk′�[1,k−1],{( k−1
2 )∗}(e; ζ )ζ 2

[1, k−1
2 −1]∗ζ( k−1

2 )∗
+ O(eβk t ),

for positive βk and odd 1 < k ≤ 2K + 1; (6.12a)

x1′ = ln
c

m1′
+ O(eβk t ), for positive βk; (6.12b)

xk′ = 2t

ζ
( k2 )∗

+ ln
b
( k2 )∗(0)e[1,k−1]
2

([1, k2−1])∗,{( k2 )∗}(ζ )

mk′�[1,k],{( k2 )∗}(e; ζ )ζ 2
[1, k2−1]∗

+ O(eβk t ),

for positive βk and even k; (6.12c)

xk′ − x(k+1)′ = lnm(k+1)′mk′ζ
( k2 )∗ + O(eβk t ), for positive βk and even k. (6.12d)

Proof. The proof is by a straightforward, but tedious, computation using the formulas for
positions (4.30a), (4.30b), as well as asymptotic evaluations of determinants presented
in Theorem 6.2. ��
Remark 6.10. The Toda-like sorting property can also be observed in this case by ex-
amining more closely the asymptotic formulae but the pairing mechanism is subtly
different. We point out that the constant c is a surrogate of an additional eigenvalue
ζK+1 = ∞, which results in the formal asymptotic speed 0. Thus for large positive times
the first particle counting from the left comes to a halt, while the remaining 2K peakons
form pairs, sharing the remaining K eigenvalues. By contrast, for large, negative times,
the first particle counting from the right comes to a halt, while the remaining peakons
form pairs. This, somewhat intricate, breaking of symmetry is responsible for noticeable
asymmetry in the indexing of positions seen when one compares asymptotic formulas
for n = 2K with n = 2K + 1.

We would like to conclude this section with an application of asymptotic formulas,
valid for any n, to the computation of the Sobolev H1 norm of u which, by a result of [9],
is time invariant.

Corollary 6.11. Suppose masses satisfy conditions guaranteeing the global existence of
solutions. Then

||u||2H1 = 2
n∑
j=1

m2
j + 4

K∑
j=1

1

ζ j
. (6.13)

Proof. First, as proven in [9], ||u||2
H1 = ∑n

j=1 2m ju(x j ) = 2
∑n

j=1m
2
j +

4
∑

i< j mim j exi−x j , where we used the ordering condition xi < xi+1. Since ||u||2
H1
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is constant we can compute its value using asymptotic formulas. Thus from the asymp-
totic formulas in Theorem 6.9 (or 5.8 in the even case) we see that the only contribution
to the last term above will come from pairs sharing the same asymptotic speeds. In other
words,

||u||2H1 =
n∑
j=1

2m ju(x j ) = 2
n∑
j=1

m2
j + lim

t→+∞ 4
K∑
i=1

m2im2i+1e
x2i−x2i+1 = 2

n∑
j=1

m2
j + 4

K∑
i=1

1

ζi
,

again, by asymptotic formulas of Theorem 6.9, 5.8, respectively. ��
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Appendix A. Lax Pair for the mCH Peakon ODEs

Our technique of solving the peakon ODEs (1.6) hinges on the following steps:

(1) associate a Lax pair to the differential equation in question;
(2) formulate the boundary value problem compatible with the Lax pair;
(3) define the spectral data and its time evolution;
(4) solve the inverse problem of reconstructing the x component of the Lax pair;

One of the essential challenges of this program is to construct a well defined distribution
Lax pair, i.e. a distribution version of (2.1), which is ordinarily given in the smooth
sector of the equation. The transition from the smooth sector to the distribution sector
is not canonical and this appendix addresses the main steps of our construction of the
correct distribution Lax pair used in this paper.

Remark A.1. In fact, we started our search for a distribution Lax pair suitable for (1.7).
We were, however, led to a different definition of distribution solutions to (1.1) than
in [30] or [58]. Even though we do not have a result that would exclude (1.7) as coming
from a suitably defined distribution Lax pair using some other way of defining the
products of distributions appearing in the Lax pair we can state this: within the class of
possible distribution Lax pairs which we will sharply define below no such a pair exists.

Notations:

• �k : the region xk(t) < x < xk+1(t), where xk are smooth functions such that
−∞ = x0(t) < x1(t) < · · · < xn(t) < xn+1(t) = +∞.

• PC∞: the function space consisting of all the piecewise smooth functions f (x, t)
such that the restriction of f to each region�k is a smooth function fk(x, t) defined
on an open neighbourhood of�k . Actually, for each fixed t , f (x, t) defines a regular
distribution T f (t) in the class of D ′(R) (for simplicity we will write f instead of
T f ). Note that the value of f (x, t) on xk(t) does not need to be defined.

• fx (xk−, t): the left limit of the function f (x, t) at every point xk , fx (xk+, t): the
right limit of the function f (x, t) at every point xk .

• [
f
]
(xk, t): the jump between fx (xk−, t) and fx (xk+, t), i.e.

[
f
]
(xk, t) = f (xk+, t) − f (xk−, t).
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• 〈
f
〉
(xk, t): the arithmetic average of fx (xk−, t) and fx (xk+, t), i.e.

〈
f
〉
(xk, t) = f (xk+, t) + f (xk−, t)

2
.

• fx , ft : the ordinary (classical) partial derivative with respect to x, t respectively.
• Dx f : the distributional derivative with respect to x .
• Dt f : the distributional limit Dt f (t) = lima→0

f (t+a)− f (t)
a , .

• we will suppress the t-dependence throughout the remainder of this Appendix; thus
[ f ](xk) will denote [ f ](xk, t) etc.

Then the following identities follow from elementary distributional calculus

Dx f = fx +
n∑

k=1

[
f
]
(xk)δxk .

Dt f = ft −
n∑

k=1

ẋk
[
f
]
(xk)δxk ,

where ẋk = dxk
dt .

Moreover, we also have:

[
f g
] = 〈

f
〉[
g
]
+
[
f
]〈
g
〉
,

〈
f g
〉 = 〈

f
〉〈
g
〉
+
1

4

[
f
][
g
]
,

d

dt

[
f
]
(xk) = [

fx
]
(xk)ẋk +

[
ft
]
(xk),

d

dt

〈
f
〉
(xk) = 〈

fx
〉
(xk)ẋk +

〈
ft
〉
(xk),

(A.1)

for any f, g ∈ PC∞.
It is easy to see that the peakon solution u(x, t) and the corresponding functions

�1, �2 belong to the piecewise smooth class PC∞. Indeed u, ux , �1, �2 are smooth
functions in xk < x < xk+1. However, u is continuous throughout R; by contrast
ux , �1, �2 have a jump at each xk .

Let us now set � = (�1, �2)
T , and let us consider an overdetermined system

Dx� = 1

2
L̂�, Dt� = 1

2
Â�, (A.2)

where

L̂ = L + 2λ

(
n∑

k=1

mkδxk

)
M, (A.3)

Â = A − 2λ

(
n∑

k=1

mkQ(xk)δxk

)
M (A.4)

with

L=
(−1 0

0 1

)
, M =

(
0 1

−1 0

)
, A =

(
4λ−2 + Q −2λ−1(u − ux )

2λ−1(u + ux ) −Q

)
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and Q = u2 − u2x . Note that in view of (A.3) the x-member of the Lax equation (A.2)
involves multiplying M� = (�2,−�1) by δxk . Thus we have to assign some values
to �1, �2 at xk . Likewise, for the t-Lax equation (A.4) to be defined as a distribution
equation, u2x M� = (u2x�2,−u2x�1) needs to be a multiplier of δxk . Thus the values
of u2x (xk) need to be assigned as well. Henceforth, we will refer to these assignments
as regularizations. The compatibility condition (Dx Dt − Dt Dx )� = 0 is a geometric
condition (the zero curvature condition), and can be written as

(
Dx ( Â) − Dt (L̂) +

1

2
[ Â, L̂])� = 0,

whose invariance includes the transformations � → �R = R�, R ∈ GL(2,R). These
transformations leave the singular support ofm invariant, and we require that the assign-
ment of values to � on the singular support respects that symmetry. Thus we postulate
that for every xk

�R(xk) = R�(xk), R ∈ GL(2,R).

Furthermore we consider local regularizations, depending only on the right and left hand
limits at the points of singular support. In summary we consider regularizations of the
form:

�(xk) = α
[
�
]
(xk) + β

〈
�
〉
(xk), α, β ∈ GL(2,R), (A.5)

which lead, under the invariance assumption, to the condition:

�R(xk) = α
[
�R
]
(xk) + β

〈
�R
〉
(xk) = R

(
α
[
�
]
(xk) + β

〈
�
〉
(xk)

)

valid for every R ∈ GL(2,R) and resulting in the intertwining conditions

αR = Rα, βR = Rβ, ∀R ∈ GL(2,R). (A.6)

Consequently, by Schur’s Lemma α and β are scalar matrices. This motivates the next
definition.

Definition A.2. An invariant regularization of the Lax pair (A.2) is given by specifying
the values of α, β ∈ R and Q(xk) = (u2 − u2x )(xk) in the formulas below

�(x)δxk = �(xk)δxk ,

�(xk) = α
[
�
]
(xk) + β

〈
�
〉
(xk),

Q(x)δxk = Q(xk)δxk .

Theorem A.3. Let m be the discrete measure associated to u defined by (1.3). Given an
invariant regularization in the sense of A.2 the distributional Lax pair (A.2) is compat-
ible, i.e. Dt Dx� = Dx Dt�, if and only if the following conditions hold:

β2 = 4α2, (A.7a)

β = 1, (A.7b)

Q(xk) = 〈
Q
〉
(xk), (A.7c)

ṁk = 0, (A.7d)

ẋk = Q(xk). (A.7e)
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Proof. The proof proceeds in a similar way to Theorem B.1 in [35] (also see [10]). We
highlight the critical steps of the proof. First, we observe that since we are interested
only in the behaviour of Lax pairs around the singular points xk we can localize our
computations to be carried out only locally on some open neighbourhoods of these
points. Moreover, these computations look identical, regardless of the index k. In other
words, without loss of generality we can assume u(x) = m1e−|x−x1| for the sake of
the computation, thus using n = 1, and then in the final step of the proof pass to a
general n. With this simplification in mind, assuming invariant regularization A.2, we
write Eq. (A.2) as

Dx� = 1

2
L� + λm1M�(x1)δx1,

Dt� = 1

2
A� − λm1Q(x1)M�(x1)δx1 .

In particular, the first equation implies[
�
]
(x1) = λm1M�(x1). (A.8)

The computation of the distribution compatibility condition Dx Dt� = Dt Dx� pro-
duces a distribution condition which can be split into the regular and singular parts.
The regular part is just the compatibility condition one gets in the smooth sector of the
equation and we omit that. The singular part takes the form:

[1
2
A�](x1)δx1 − λm1Q(x1)M�(x1)δ

′
x1 =

− λ

2
m1Q(x1) LM�(x1)δx1 + λ

(
ṁ1M�(x1) + m1M�̇(x1)

)
δx1 − λm1M�(x1)ẋ1δ

′
x1 .

The coefficients at δ′
x1 imply Eq. (A.7e), while the coefficients at δx1 give the condition:

[1
2
A�](x1) = −λ

2
m1Q(x1) LM�(x1) + λ

(
ṁ1M�(x1) + m1M�̇(x1)

)
. (A.9)

Since the value of�(x1) is determined uniquely once the coefficients α and β are chosen
and the values of Q(xk) are assigned (fixing a regularization) we can compute the term
�̇(x1) appearing in (A.9) with the help of Eqs. (A.1), (A.8), the Definition A.2, and
(A.7e). After several intermediate elementary steps we obtain:

�̇(x1) = {〈 A
2

〉
(x1) +

α

β

[ A
2

]
(x1) + λm1(

β

4
− α2

β
)
[ A
2

]
(x1)M + ẋ1

L

2

}
�(x1). (A.10)

Likewise, we can express the right hand side of (A.9) by using (A.1), (A.8) and A.2.
Again, after some straightforward computations we obtain:

[ A
2

�
]
(x1) = {〈 A

2

〉
(x1)λm1M +

[ A
2

]
(x1)

1 − αλm1M

β

}
�(x1), (A.11)

which finally gives us the compatibility condition we have set out to obtain:

λm1
〈 A
2

〉
(x1)M +

[ A
2

]
(x1)

1 − αλm1M

β

= −λm1Q(x1)
1

2
LM + λṁ1M + λ m1M

{〈 A
2

〉
(x1)

+
α

β

[ A
2

]
(x1) + λm1(

β

4
− α2

β
)
[ A
2

]
(x1)M + Q(x1)

L

2

}
.
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We now summarize the content of (A.12), broken down according to powers of λ,
omitting conditions identically satisfied,

(1) λ−1:
[
ux
]
(x1)

β
= −2m1

(2) λ1: ṁ1 = m1
(
Q(x1) − 〈

Q
〉
(x1)

)
, ṁ1 = −m1

(
Q(x1) − 〈

Q
〉
(x1)

)
,

(3) λ2: β
4 − α2

β
= 0,

which imply claims (A.7b), (A.7c), (A.7d), (A.7a) after restoring the number of singular
points to n. ��
Corollary A.4. There are only two invariant regularizations of the Lax pair (2.1) for
the peakon problem of the mCH equation (1.1):

�(xk) = �(xk+), or �(xk) = �(xk−). (A.12)

For either of the two regularizations u2x (xk) = 〈
u2x
〉
(xk) and in both cases the equations

of motion read:
ṁk = 0, ẋk = u2(xk) − 〈

u2x
〉
(xk). (A.13)

Remark A.5. In the body of the paper we use both regularizations to define the right and
the left boundary value problems.

Remark A.6. Observe that one does not need to specify the values of ux (xk).
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