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Abstract: We find an exact solution to strongly-coupled matrix models with a single-
trace monomial potential. Our solution yields closed form expressions for the partition
function as well as averages of Schur functions. The results are fully factorized into
a product of terms linear in the rank of the matrix and the parameters of the model.
We extend our formulas to include both logarithmic and finite-difference deformations,
thereby generalizing the celebrated Selberg and Kadell integrals. We conjecture a for-
mula for correlators of two Schur functions in these models, and explain how our results
follow from a general orbifold-like procedure that can be applied to any one-matrix
model with a single-trace potential.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1236
2. Matrix Model Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1238

2.1 The loop equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 1239
2.2 Contour dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . 1240
2.3 Reflection positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 1243
2.4 The weak- and strong-coupling expansions . . . . . . . . . . . . . . . 1244

3. Exact Solutions at Strong Coupling . . . . . . . . . . . . . . . . . . . . . 1245
3.1 The real-line quartic . . . . . . . . . . . . . . . . . . . . . . . . . . . 1246
3.2 Pure and mixed phases . . . . . . . . . . . . . . . . . . . . . . . . . 1247
3.3 Summary of results for pure phases . . . . . . . . . . . . . . . . . . . 1249
3.4 Solution by orthogonal polynomials . . . . . . . . . . . . . . . . . . 1250
3.5 Single-trace correlators . . . . . . . . . . . . . . . . . . . . . . . . . 1253
3.6 The large N limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1254

4. A General Orbifold Construction for Matrix Models . . . . . . . . . . . . 1255
4.1 General results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1256
4.2 Example: logarithmic models . . . . . . . . . . . . . . . . . . . . . . 1258

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-017-3072-x&domain=pdf
http://orcid.org/0000-0002-0579-3295


1236 C. Córdova, B. Heidenreich, A. Popolitov, S. Shakirov

4.3 Some q analogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1260
4.4 Refactorization of the Vandermonde . . . . . . . . . . . . . . . . . . 1263

5. Applications and Future Directions . . . . . . . . . . . . . . . . . . . . . 1264
5.1 Two-Schur correlators . . . . . . . . . . . . . . . . . . . . . . . . . . 1264
5.2 Five-dimensional partition functions . . . . . . . . . . . . . . . . . . 1266
5.3 Superconformal indices and surface defects . . . . . . . . . . . . . . 1267

A. Divisibility and Quotients of Partitions . . . . . . . . . . . . . . . . . . . 1268
A.1 Determinants and p-quotients . . . . . . . . . . . . . . . . . . . . . . 1268
A.2 The abacus diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 1269
A.3 Basic theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1271

1. Introduction

In this paper we study a class of matrix models, those with single-trace potential of
monomial form

S[X ] = Tr(Xr ) , (1.1)

and generalizations thereof. When r = 2 the model is quadratic and free, but for r > 2
the models we study are interacting and can be viewed as the infinite coupling limit of
more familiar Gaussian plus interaction potentials.

We demonstrate that any such monomial matrix model is exactly solvable and pro-
vide a completely factorized form of the correlators. The solution depends on a non-
perturbative choice of contour of integration in the space of matrices, which introduces
an additional hidden integral parameter 0 ≤ a < r into the model. A taste of the type of
formulas that we provide is the following expression for the partition function

Z (r,a)
N = δr,a(N )

(2π)N

N−1∏

i=0

�

(⌊
i

r

⌋
+ 1

)
�

(⌊
i − a

r

⌋
+
a

r
+ 1

)
, (1.2)

where N is the rank of the matrix and δr,a(N ) = 0,±1, depending on N , see (3.21).
In Sect. 3 we provide a similar formula for the expectation value of Schur polynomial
insertions sλ(X) where λ is a Young diagram of at most N rows:

〈sλ(X)〉 = δr (λ)

r |λ|/r
∏

x∈λ

�N + cλ(x)�r,0 �N + cλ(x)�r,a
�hλ(x)�r,0

. (1.3)

Here cλ and hλ are respectively the contents and hook length of the box x ∈ λ, δr (λ) =
0,±1 depending on λ (see “Appendix A”), and

�n�r,a =
{
n n ≡ a mod r
1 otherwise

. (1.4)

These formulas—and their logarithmic and q-deformed (finite difference calculus)
analogs that we obtain in Sects. 4.2 and 4.3—are similar to the celebrated Selberg
and Kadell integrals [1–4], and reduce to them when r = 1. To illustrate their simple
and explicit nature, we show an example of applying (1.3) in Fig. 1.

In Sect. 4 we show that our results are related to a general orbifold-like structure
in matrix models, where the partition function and Schur polynomial averages for the
potential W (Xr ) factor into r -fold products of those for the potential W (X). This fac-
torization is related to a combinatoric identity involving the Vandermonde, and occurs
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Fig. 1. Evaluating a Schur polynomial average using (1.3) for the pure cubic potential S[X ] = Tr(X3) with

a = 1 and N ≡ 0 (mod 3). In this example, we find 〈s3,3,2,1(X)〉 = − N2(N+1)2(N−2)(N−3)
2×36

where the

3-signature δ3(λ) = − 1 can be found using one of several methods discussed in “Appendix A”

in an natural basis of complex integration contours. (For other integration contours the
partition function and insertions can be expressed as a sum over factorized components.)

We emphasize that these results go far beyond the observation that one-matrixmodels
with single-trace potentials are solvable, e.g., by the method of orthogonal polynomials.
Generically, even after determining the moments of the eigenvalue potential, computing
the partition function (with or without insertions) requires the evaluation of an N ×
N determinant, by diagonalization (as in the method of orthogonal polynomials) or
otherwise. By contrast, in the exampleswe study that these determinants can be evaluated
in closed form for arbitrary N . One illustration of the simplicity of our results is the fact
that correlation functions of N -independent operators are rational functions of N (once
discrete data such as a and (N mod r) are fixed). This suggests that these models fall
into a class that is some matrix-model analog of exactly solvable quantum field theories,
such as integrable systems, rational CFTs, and Liouville theory. (However, we know no
precise definition of such a class.)

Our results have a variety of possible applications. As suggested above, the simple
potential

S[X ] = Tr(X2) + λTr(Xr ) , (1.5)

can be viewed as a toymodel of variety of interacting quantum systems, where λ controls
the strength of the interactions. When λ is small perturbation theory can be applied, but
the resulting perturbative expansion is not convergent, and advanced techniques are
required to make sense of it (see, e.g., [5] for a recent discussion). On the other hand,
when the coupling λ is large, it is more appropriate to view theGaussian potential Tr(X2)

as a perturbation around the monomial model that we solve exactly. As we demonstrate
in Sect. 2.4, the resulting strong coupling expansion converges for any λ �= 0, and
provides a different perspective on the interacting system.

Apart from their use as toy models, our monomial matrix models may also find
applications in calculations of certain observables in ordinary quantum field theory. For
instance the case r = 1 (the Selberg integral) is related to the integral expression for the
superconformal index of a class of four-dimensional N = 1 gauge theories [6,7].1 The
fact that the integral can be evaluated in closed form is a reflection of s-confinement [10–
13]: this theory has an alternative infrared description in terms of free fields. The r > 1
models we study here may be related to the superconformal index of the same class of

1 Specifically, those with gauge group Sp(2N ), one chiral multiplet in the antisymmetric tensor represen-
tation, six in the fundamental representation, and no superpotential. These theories confine without chiral
symmetry breaking [8,9].



1238 C. Córdova, B. Heidenreich, A. Popolitov, S. Shakirov

s-confining gauge theories on a Lens space [14–16].We comment further on this in Sect.
5.3.

Related matrix models (r = 3) have also appeared in the study of five-dimensional
gauge theory on the five-sphere [17]. In that case the quadratic piece of themodel controls
the Yang–Mills term and the cubic descends from the Chern–Simons interaction. The
pure monomial model describes the strongly-coupled pure Chern–Simons theory that
arises at infinite Yang–Mills coupling.

Finally, another possible avenue of application for our results is described in Sect.
5.2 and concerns a generalization of the AGT conjecture [18,19]. In [20] the partition
function of four-dimensional gauge theory on an orbifoldC

2/Zr was studied resulting in
matrix models similar to those considered here. It would be interesting to determine the
precise connection, and to understand if our results may be used to compute three-point
functions in para-Liouville theory (see, e.g., [21–25]), thus generalizing [26].2 We leave
this as a potential direction for future research.

2. Matrix Model Review

In this sectionwe review general properties of randommatrixmodels which are pertinent
to our results. For more comprehensive reviews, see, e.g., [27,28]. We focus on the
relation between perturbative and non-perturbative approaches, the role of the integration
contour in the latter and the role of reflection positivity.

A matrix model is an average over random matrices, of the schematic form:

Z = 1

Vol G

∫
DX e−S[X ] , (2.1)

where S[X ] is an action that depends on one or more matrices X , DX is some measure
for integration over these matrices, andG is a gauge group, i.e., a symmetry of the action
whose singlet sector defines the set of observables. Observables are defined by inserting
X -dependent operators into the partition function:

Z [O] ≡ 1

Vol G

∫
DX O[X ] e−S[X ] , (2.2)

whereas normalized expectation values are obtained by dividing by the partition function

〈O〉 ≡ Z [O]
Z

. (2.3)

In the case where G is non-trivial, only G-invariant operators are permissible.
There is an obvious analogy between matrix models and quantum field theories; in

essence, a matrix model is a quantum field theory in zero dimensions. We pursue this
analogy inmore detail below, as it will provide an interesting context for ourmain results.

As an example, Hermitian one-matrix models are defined by the measure

DX =
N∏

i=1

dXii

N∏

i< j

dXi j dX
∗
i j (2.4)

2 There is also a possible connection between our results and the (r +1)-point function of ordinary Louiville
theory for a special arrangements of the points.
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where X is aHermitian N×N matrix and the independent real components are integrated
from −∞ to ∞. The measure is invariant under U (N ) transformations

X → U∗XU , (2.5)

where U∗ denotes the Hermitian conjugate of U , so it is natural to take G = U (N ).
Henceforward, we focus on such U (N ) Hermitian matrix models with single-trace

potentials of the form S[X ] = TrW (X), where W is any analytic function. Expanding
about a critical point of W , we obtain

S[X ] = 1

2
Tr X2 +

∞∑

p=3

λp Tr X
p . (2.6)

A Gaussian matrix model has S[X ] = 1
2 Tr X

2, and is free in the sense that Tr X2 =∑
i, j Xi j X ji = ∑

i, j |Xi j |2, so that the integral factors into one-dimensional integrals.
Models with λp �= 0 for p > 2 are interacting, in that the integral no longer factors in
this way. Two examples of interacting models that we will use frequently are the cubic
model, S[X ] = 1

2 Tr X
2 + λ3 Tr X3, and the quartic model S[X ] = 1

2 Tr X
2 + λ4 Tr X4.

Interacting theories can be studied perturbatively by splitting S = 1
2 Tr X

2 + Sint and
expanding e−Sint in a formal power series in the coupling constants.

2.1. The loop equations. An alternative approach to these matrix models is to sys-
tematically exploit integration by parts identities (a.k.a. Ward identities). The resulting
formulas are known as loop equations (see e.g., [27]), and we review them below.

LetM[X ] = M0(Tr Xi )+M1(Tr Xi )X+M2(Tr Xi )X2+· · · be a polynomial function
of X and its traces, and introduce the matrix differential operator

(∂X )i, j = ∂

∂(X) j,i
. (2.7)

Now consider the total derivative:

0 = 1

Vol G

∫
DX Tr ∂X (M[X ]e−S[X ]) , (2.8)

where we assume that the corresponding boundary term vanishes. We then obtain:

0 = Z [Tr(∂XM) − Tr(M∂X )S] . (2.9)

In particular, taking M = OXk+1 for k � −1 for some gauge invariant operator O =
O(Tr Xi ) and using ∂X Xn+1 =∑n

i=0(Tr X
i )Xn−i and ∂X Tr Xn+1 = Xn , we find:

0 = Z

[
O

k∑

i=0

Tr Xi Tr Xk−i + Tr(Xk+1∂X )O − O Tr(Xk+1∂X )S

]
, (2.10)

for k � −1.
These are the loop equations for the one-matrix model (2.1). Besides the action S[X ],

the only information about the matrix integral that (2.10) encodes is the vanishing of the
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boundary term (2.8). Nonetheless, the loop equations are a powerful tool for solving the
model. For instance, the Gaussian matrix model, S = 1

2 Tr X
2, has the loop equations

〈
O Tr Xk+2

〉
=

k∑

i=0

〈
O Tr Xi Tr Xk−i

〉
+
〈
Tr(Xk+1∂X )O

〉
. (2.11)

Suppose that O is a polynomial in X , and split it into monomials. Notice that the total
power of X on the left-hand side (LHS) of the equation is two greater than on the right-
hand side (RHS). We can compute any polynomial correlator by iteratively replacing
terms of the form 〈O Tr Xk+2〉, k � −1, with the RHS of (2.11). Since every non-trivial
gauge-invariant monomial in X takes this form, and the overall power of X is strictly
decreasing, this procedure reduces every polynomial correlator to 〈1〉 = 1, allowing all
such correlators to be computed.

Thus, the loop equations provide a nearly-complete solution to the Gaussian matrix
model, fixing everything but the partition function itself (which requires a direct evalu-
ation of the integrals). The loop equations also provide a perturbative solution to inter-
acting models. The action (2.6) gives the loop equations:

〈
O Tr Xk+2

〉
=

k∑

i=0

〈
O Tr Xi Tr Xk−i

〉
+
〈
Tr(Xk+1∂X )O

〉
−
∑

p>2

pλp

〈
O Tr Xk+p

〉
.

(2.12)
Because of the last term, the largest power of X on the RHS is now larger than on the
LHS, and we cannot solve the model exactly using the samemethod as before. However,

if we truncate at some fixed order λ
kp
p in perturbation theory with

∑
p kp finite, then the

power of X increases in at most
∑

p kp steps by at most
∑

p(p − 2)kp in total, and the
same iterative procedure as for the free theory terminates in a finite number of steps.

Thus, the loop equations fix the correlators of both the free theory and perturbatively
in interacting theories.

2.2. Contour dependence. It is interesting to ask whether the loop equations likewise
solve interacting theories non-perturbatively. As an example, we consider the cubic
matrix model S = 1

2 Tr X
2 + λ3 Tr X3. We rewrite the loop equations as

3λ3
〈
O Tr Xk+3

〉
=

k∑

i=0

〈
O Tr Xi Tr Xk−i

〉
+
〈
Tr(Xk+1∂X )O

〉
−
〈
O Tr Xk+2

〉
, (2.13)

so that the LHS has a power of X one greater than the RHS. We can then iteratively
apply these equations to simplify any polynomial insertion, just as for the Gaussian
theory. As before, this procedure terminates in a finite number of steps due to the strictly
decreasing maximum power of X . However, unlike in the Gaussian case, not every
monomial insertion is of the form 〈O Tr Xk+3〉 for k � −1, hence the best we can do
is to express every correlator in terms of the unknown averages 〈(Tr X)p〉 for p > 0,
where 〈(Tr X)0〉 = 1.

This is not the full story, because for finite-dimensional N×N matrices there are oper-
ator equations3 relating Tr X P , P > N , to polynomials in Tr X p, p � N . These trace

3 Recall that an operator equation A = B holds if and only if 〈AO〉 = 〈BO〉 for any operator O.
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relations exist because gauge-invariant polynomials in X only depend on the N eigen-
values of X , so there are only N independent gauge-invariant operators. For instance,

Tr XN+1 = (−1)N+1

N ! (Tr X)N+1 + · · · , (2.14)

where the omitted terms involve at least one factor of Tr X p, 2 � p � N . Applying
the loop equations to (2.14), we can express 〈(Tr X)N+1〉 in terms of 〈(Tr X)p〉, p � N .
Multiplying (2.14) by (Tr X)k and applying the loop equations once more, we find that
in general 〈(Tr X)P 〉 for P > N can be expressed in terms of the N unknowns 〈(Tr X)p〉
for 1 � p � N .

Although it is not yet clear, one can show that there are no further relations between
the unknowns 〈(Tr X)p〉, 1 � p � N . Thus, non-perturbatively the loop equations
do not completely solve the cubic matrix model. Instead, the correlators depend on N
additional parameters which were invisible in perturbation theory.

To determine the nature of these parameters, we consider the case N = 1, corre-
sponding to the integral:

Z = 1

2π

∫ ∞

−∞
dx e− 1

2 x
2−λx3 . (2.15)

However, we notice an immediate problem: this integral diverges unless Re λ = 0!
This problem, arising from the factor of e−(Re λ)x3 at either x → ∞ or x → −∞,
is invisible in perturbation theory, but makes the Hermitian matrix model ill-defined
non-perturbatively (unless λ is imaginary).

Recall that the loop equations (hence also perturbation theory) are insensitive to the
choice of integration contour. A natural way to define a non-perturbative completion
of the model is to choose a different integration contour C such that the integral (2.15)
is finite. To avoid introducing boundary terms into the loop equations, the integrand
must vanish on ∂C . This occurs asymptotically at |x | → ∞ with | arg(λx3)| < π

2 (or
with | arg(λx3)| = π

2 and | arg(x2)| < π
2 ). There are three such regions, centered on

arg(λ1/3x) = 0,± 2π
3 , so there are two linearly-independent closed contours C1,C2

connecting these regions, see Fig. 2. For a general linear combination C = c1C1 + c2C2,

one can check that the integrals I0 ≡ ∫ dx e− 1
2 x

2−λx3 and I1 ≡ ∫ dx xe− 1
2 x

2−λx3 depend
on different linear combinations of c1,2, hence a choice of I0,1 is equivalent to a choice
of contour. Since Z = I0/2π and 〈Tr X〉 = I1/I0, the information not specified by the
loop equations is precisely the choice of integration contour.

C1

C2

Fig. 2. A basis of possible integration contours for a cubic potential
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Thus, we conclude that the choice of integration contour C is a non-perturbative
ambiguity in the N = 1 cubic matrix model, and this ambiguity precisely accounts for
the missing information in the loop equations.

To extend this analysis to N > 1, it is convenient to re-express the random matrix X
in terms of its N eigenvalues xi , i = 1, . . . , N . To do so, we apply the Faddeev–Popov
gauge-fixing procedure to the U (N ) gauge symmetry of the Hermitian matrix model.
The result is the eigenvalue model:

Z = 1

N !
∫ N∏

i=1

dxi
2π

∏

i< j

(xi − x j )
2e−∑i W (xi ) , (2.16)

where
∏

i< j (xi − x j )2—the square of the Vandermonde determinant det x j−1
i —is the

gauge-fixing determinant, and we specialize to a single-trace potential S[X ] = TrW (X)

for simplicity. The residual gauge-symmetry is SN � U (1)N , with volume (2π)N N !,
whereU (1)N acts trivially and SN permutes the eigenvalues. Gauge invariant operators
are (sufficiently regular) symmetric functions of the xi , the simplest class of which
are symmetric polynomials, corresponding to the vector space generated by multitrace
operators in the original matrix model.

The permissible integration contours for the cubic model W (x) = 1
2 x

2 + λx3 are the
same as those for N = 1 described above, except that the contour for each eigenvalue
can be chosen separately. For SN invariant insertions, only the number of eigenvalues
integrated along each contour will affect the answer, hence there is a basis CN1,N2

of integration contours with N1 eigenvalues integrated along C1 and N2 eigenvalues
integrated along C2. A general contour takes the form:

C =
N∑

i=0

ci,N−iCi,N−i . (2.17)

The insertions Ip ≡ Z [(Tr X)p] for 0 � p � N will depend on linearly independent
combinations of the ci,N−i ,4 so that the data not fixed by the loop equations exactly
correspond to the choice of integration contour. As before, this is a non-perturbative
ambiguity (invisible in perturbation theory).

Thus, the cubic eigenvalue model is sensitive to integration contour at the non-
perturbative level, with N + 1 independent possible contours. Except in the special
case where λ is purely imaginary, the real axis is not a possible choice of integration
contour.

The quartic model W (x) = 1
2 x

2 + λx4 is an interesting counterpoint. In this case,
the integral along the real axis converges for Re λ � 0, hence there is a “canonical”
choice of integration contour. Nonetheless, other integration contours are available—
a total of (N+1)(N+2)

2 are linearly independent—with the same perturbation series and
loop equations. In this sense, non-perturbative ambiguities persist, and the canonical
resolution of these ambiguities is just one of many possibilities.

4 Assume the opposite. This implies the existence of a linear combination of contours such that
Z [(Tr X)p] = 0 for 0 � p � N , hence by the loop equations Z [O] = 0 for any polynomial operator.
In particular, [1] = 0 and Z [Tr X3] = 0, the latter implying that Z is independent of λ. This is a contradiction,
because Z [1] = 0 at λ = 0 is incompatible with an analysis of the Gaussian.
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2.3. Reflection positivity. Nonetheless, the real axis is a distinguished contour, because
only for this contour is the eigenvalue integral equivalent to an integral over Hermitian
matrices (X∗ = X ),with themeasure (2.4). In principle, for other contours the eigenvalue
integral can be written as a matrix integral of the holomorphic form

DX =
N∧

i, j=1

dXi j , (2.18)

over the cycle defined by the U (N ) orbit of the eigenvalue contours. This cycle can be
defined in a U (N )-invariant way by equations of the form

[X, X∗] = 0, fi (Tr X, . . .Tr XN ) = 0 , (2.19)

where the first equation specifies that X is normal and the fi are N real functions of
Tr X, . . . ,Tr XN and their conjugates which specify the eigenvalue contour implicitly.
For instance, the contour described by:5

[X, X∗] = 0, Im(Tr X2k) = 0 , (k = 1, . . . , N ) , (2.20)

is relevant to the quartic model. Equivalently, this contour consists of normal matrices
X whose squares are Hermitian.

Despite the fact that X �= X∗ on a general contour, the eigenvalue model—and the
related matrix integral—retains some of the formal properties of a Hermitian matrix
model. To illustrate this, we define an antilinear involution † on the operator algbera by
X† ≡ X (noting that in general X† �= X∗). The action of † on an arbitrary operator is
specified by antilinearity together with (Tr X p)† = (Tr X p). Provided that we choose a
real potential and a contour satisfying C = C∗, this implies the formal property

Z [O†] = Z [O]∗ , (2.21)

for any operator O.
To distinguish between eigenvalue models with these formal reality properties and

an actual integral over Hermitian matrices, we note that the latter satisfies reflection
positivity:

Z [O†O] > 0 for any operator O �= 0. (2.22)

By contrast, the cubic model is in general not reflection-positive. Consider the N = 1
model, for example. Reflection positivity requires that 〈A†

i A j 〉 is a positive-definite
matrix for any set of linearly-independent operators {Ai }. Choosing the operators
{1,Tr X,Tr X2} and applying the loop equations, we find that the matrix 〈A†

i A j 〉 has
at least one non-positive eigenvalue unless |λ| < 2−1/2 3−7/4 � 0.1. The constraint on
λ becomes successively tighter as we consider larger operators (Tr X p for p > 2) and
indeed the non-polynomial operator:

O = (Tr X)e
1
4 Tr X

2
(2.23)

5 The constraints on Tr X2k , k = 1, . . . , N can in principle be rewritten as constraints on Tr X, . . . ,Tr XN .
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satisfies 〈O†O〉 = 0, independent of λ �= 0. Thus, the N = 1 model is not reflection-
positive, regardless of the choice of integration contour.6 We expect the same to be true
for N > 1.

The cubic matrix model is therefore analogous to a non-unitary QFT. The quartic
matrix model, by contrast, is manifestly reflection-positive when the integration contour
is chosen to be the real line. A similar analysis to above shows that other contours are
not reflection-positive, with increasingly large operators required to violate reflection-
positivity as the integration contour approaches the real line. Thus, while the quartic
integrated along the real line is analogous to a unitary QFT, other integration contours
behave like non-unitary QFTs.

2.4. The weak- and strong-coupling expansions. The existence of non-perturbative
ambiguities is closely related to the divergence of perturbation theory, which typically
defines only an asymptotic series near an essential singularity on the Riemann sphere.
As an example, consider the N = 1 quartic model, integrated along the real axis:

Z = 1

2π

∫ ∞

−∞
dx e− 1

2 x
2−λx4 . (2.24)

Expanding the partition function in powers of λ, we obtain formally:

Z = 1

2π

∞∑

p=0

(−1)p

p! λp
∫ ∞

−∞
dx x4pe− 1

2 x
2 = 1√

2π

∞∑

p=0

(−1)p
(4p − 1)!!

p! λp (2.25)

where n!! ≡ n(n − 2)(n − 4) . . .. Since

(4p − 1)!!
p! = 22p�

(
2p + 1

2

)

�(p + 1)�
( 1
2

) ∼ pp , (p � 1) , (2.26)

we conclude that the radius of convergence of the formal perturbation series (2.25) is
zero. Similar divergences appear with insertions and in normalized correlators.

Heuristically, perturbation theory diverges because for |x | � 1/
√|λ| the quartic cou-

pling dominates the integral (2.24), hence a perturbative expansion in λ is not justified.
In particular, the integral diverges for Re λ < 0, whereas it converges for Re λ > 0,
implying that λ = 0 is an essential singularity in the holomorphic function Z(λ). This
is similar to how contour dependence appears non-perturbatively. Since the quartic cou-
pling dominates for |x | � 1/

√|λ|, there are additional integration contours where the

quadratic term e− 1
2 x

2
diverges but the quartic term keeps the integral finite—such as

the imaginary axis—and the choice of integration contour generates a non-perturbative
ambiguity.7

Thus, these twin problems of perturbation theory—divergence and insensitivity to
non-perturbative physics—are both linked to the dominance of interactions at large field
values. A novel approach would be to instead expand the exponential in the quadratic

6 Technically, we could restrict the operator algebra to polynomial operators, eliminating this problematic
operator, but for any fixed value of λ �= 0, polynomial operators of finite degree will nonetheless violate
reflection-positivity.

7 Resolving these non-perturbative ambiguities in unitary theories is an active research topic, see, e.g., [29].
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coupling, keeping the interaction term fixed. To do so, we rescale x → x/λ1/4 to obtain
the model

Z = 1

2π

∫ ∞

−∞
dx e

− 1
2g2

x2−x4
, (2.27)

up to a normalizing factor for Z , where g = √
λ. If we now expand the exponential

about the strong-coupling limit, g → ∞, we obtain

Z = 1

2π

∞∑

p=0

(−1)p

2p p! g−2p
∫ ∞

−∞
dx x2pe−x4 = 1

4π

∞∑

p=0

(−1)p�
( p
2 + 1

4

)

2p p! g−2p .

(2.28)
Using Stirling’s approximation, we conclude that

�
( p
2 + 1

4

)

2p p! ∼ p−p/2 , (2.29)

hence the perturbation series converges! The sum can be performed explicitly,

Z = 1

4π

∞∑

p=0

(−1)p�
( p
2 + 1

4

)

2p p! g−2p = 1√
32π2g2

e
1

32g4 K 1
4

(
1

32g4

)
, (2.30)

where Kν(z) is the modified Bessel function of the second kind, a result which can be
verified by direct integration of (2.27).

Provided that a solution in the strong coupling limit, g → ∞, is available, the
strong-coupling expansion g � 1 has much better properties than the weak-coupling
expansion g � 1. In particular, the value of g �= 0 does not affect the convergence
of the partition function, so we expect that Z(1/g2) is analytic at 1/g2 = 0, and the
expansion in g � 1 should converge. For the same reason, there are no analogs of
non-perturbative ambiguities. Indeed, the pure quartic model, g = ∞, depends on the
same set of contours as at any intermediate coupling g �= 0, so the ambiguities that went
unresolved perturbatively at weak coupling are fixed at strong coupling, even before
perturbing!

In the next section, we explore the feasibility of solving the cubic or quartic model in
the strong coupling limit g → ∞ for arbitrary finite N , which would enable a solution
for any g via the strong-coupling expansion described above.

3. Exact Solutions at Strong Coupling

Motivated by the above considerations, we analyze one-matrix models in the limit where
an r -point coupling blows up, λr → ∞. After a field redefinition, these correspond to
monomial matrix models S[X ] = Tr Xr . We begin by considering the quartic with a
real (reflection-positive) integration contour, before generalizing to other contours and
potentials.
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3.1. The real-line quartic. We consider the pure quartic model:

ZN = 1

N !
∫ ∞

−∞

N∏

i=1

dxi
2π

e−x4i
∏

i> j

(xi − x j )
2 . (3.1)

We can rewrite the partition function as a determinant using a standard trick; note that
∏

i> j

(xi − x j ) = det Vi j = det x j−1
i , (3.2)

where Vi j = x j−1
i is the Vandermonde matrix. Fixing the SN permutation symmetry of

the partition function, we obtain

ZN =
∫ ∞

−∞

N∏

i=1

dxi
2π

xi−1
i e−x4i × (det xk−1

j ) = det
N×N

Z1[xi+ j−2] , (3.3)

where detN×N denotes the determinant of the upper-left N × N block, i, j = 1, . . . , N .
Evaluating the integral directly, we find

Z1[x p] =
∫ ∞

−∞
dx

2π
x pe−x4 =

{
1
4π �

(
p+1
4

)
p ∈ 2Z

0 p ∈ 2Z + 1
. (3.4)

Thus,

ZN = 1

(4π)N
det
N×N

1 + (−1)i+ j

2
· �

(
i + j − 1

4

)
. (3.5)

By similar reasoning

ZN

[
n∏

a=1

Tr X pa

]

= 1

(4π)N

N∑

k1,...,kn=1

det
N×N

1 + (−1)i+
∑

a paδika+ j

2
· �

(
i +
∑

a paδika + j − 1

4

)
.

(3.6)

These relatively simple results mask the complexity of the model inside a determinant.
To illustrate this complexity, we evaluate the partition function for small values of N :

Z0,1,... =
{
1,

�1
4

4π
,
�1

4
�3

4

16π2 ,

�2
1
4
�3

4
− 4�3

3
4

256π3 ,

−�4
1
4
+ 16�2

1
4
�2

3
4

− 48�4
3
4

214 π4 ,

−�5
1
4
+ 20�3

1
4
�2

3
4

− 96�1
4
�4

3
4

218 π5
,

−�5
1
4
�3

4
+ 17�3

1
4
�3

3
4

− 72�1
4
�5

3
4

220 π6 ,

−5�6
1
4
�3

4
+ 105�4

1
4
�3

3
4

− 684�2
1
4
�5

3
4
+ 1296�7

3
4

226 π7 , . . .

}
(3.7)

where we use the shorthand �x ≡ �(x). Here we have simplified the determi-
nant by reducing �

( 2k+1
4

)
to an rational number times either �

( 1
4

)
or �

( 3
4

)
; since
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�
( 1
4

)
/�
( 3
4

) � 2.958675 is transcendental, there are no obvious further simplifications.
The same complexity is evident in the normalized correlators, for instance

〈Tr X2〉0,1,... =
{
0,

�3
4

�1
4

,

�2
1
4
+ 4�2

3
4

4�1
4
�3

4

,

�3
1
4
+ 4�1

4
�2

3
4

4�2
1
4
�3

4
− 16�3

3
4

,

16�1
4
�3

3
4

−�4
1
4
+ 16�1

4
�3

4
− 48�4

3
4

, . . .

}
,

(3.8)
with increasingly complicated expressions for larger N .

Nonetheless, the result (3.7) has some obvious structure. The partition function takes
the general form:

ZN = 1

(2π)N

N∑

i=0

ai;N�i
1
4
�N−i

3
4

, (3.9)

where the coefficients ai;N are rational. More generally, for any polynomial operatorO

ZN [O] = 1

(2π)N

N∑

i=0

ai;N (O) �i
1
4
�N−i

3
4

, (3.10)

for rational coefficients ai;N (O), since the eigenvalue integral can be evaluated by
expanding the Vandermonde determinant times O into a sum of monomials and apply-
ing (3.4).

It is natural to interpret (3.10) as a sumover sectors, Z [O] =∑i Zi [O], inwhich case
the complexity of the real-line quartic model can be partially ascribed to the increasing
number of sectors—N + 1 for ZN . One approach to solving the model is to solve each
sector individually. After identifying the origin of these sectors, we will show that at
least some of them admit exact solutions for all N .

3.2. Pure and mixed phases. We now generalize to the potential:

S[X ] = Tr Xr , (3.11)

which includes the Gaussian (r = 2), cubic (r = 3), and quartic (r = 4) as special
cases. The corresponding N = 1matrixmodel admits r−1 closed contours onwhich the
integral converges, constructed as follows. Let Br, j denote the contour from 0 to ω

j
r ·∞,

where ωr ≡ e2π i/r . These contours are open, but represent all possible asymptotics for
which the integral converges. We form the “Fourier-transformed” contours:

Cr,a ≡
r−1∑

j=0

ω
− ja
r Br, j . (3.12)

We observe that ∂Cr,a = 0 for a �≡ 0 mod r , hence Cr,1, . . . ,Cr,r−1 form a basis of
closed contours on which the integral converges. This basis, illustrated in Fig.3, is the
eigenbasis of the Zr symmetry X → ωr X , which maps Cr,a → ω−a

r Cr,a
For N > 1, a general contour can be written as a linear combination of

C (r)
N1,··· ,Nr−1

≡ CN1
r,1 × · · · × CNr−1

r,r−1 , N =
r−1∑

a=1

Na , (3.13)
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1

1

1

a = 0

1

e
2πi
3

e−
2πi
3

a = 1

1

e
2πi
3

e−
2πi
3

a = 2

Fig. 3. A natural basis of integration contours for a cubic (r = 3) potential, where the values at the end of
each ray (and the color of the ray) denote its weight within the contour. We include the case a = 0, which is
not a closed contour but occurs naturally once we include the u-deformation in Sect. 4

i.e., with Na eigenvalues integrated along the contour Cr,a . There are
(N+r−2

r−2

)
such

contours. We refer to matrix models integrated over the contours CN
r,a as “pure phases,”

and those integrated over C (r)
N1,...,Nr−1

with N1, . . . , Nr < N as “mixed phases.”
The principle advantage of this contour basis is that it simplifies the moments:

∫

Ca

x pe−xr dx = δr |p+1−a �

(
p + 1

r

)
, (3.14)

where δr |p = 1 when r divides p, and vanishes otherwise. The non-vanishing moments
are those for which the integrand together with the contour forms a Zr singlet, and each
such moment is a rational prefactor times �

( a
r

)
. As a consequence

∫

CN1,...,Nr−1

O
∏

i

e−xri ∼
∏

a

�
Na
a
r

, (3.15)

up to a rational prefactor, whereO is any polynomial insertion. Comparing with (3.10),
we see that the sum over sectors previously identified in the real-line quartic is nothing
but a sum over pure and mixed phases!

In particular, for r = 4, the contour along the real axis is R = 1
2 (C4,1 +C4,3), where

RN = 1

2N

N∑

i=0

(
N

i

)
Ci
4,1C

N−i
4,3 . (3.16)

Not every phasemixture contributes to the partition function, as theZr symmetry dictates
that many insertions vanish. Suppose that Op is a homogeneous polynomial in X of
degree p. A necessary condition for ZN1,...,Nr−1 [Op] to be non-vanishing is for it to be
a Zr singlet:

p + N 2 −
∑

a

aNa ≡ 0 mod r . (3.17)

For instance, the partition function (p = 0) of a pure phases vanishes unless N = kr or
N = kr + a. For the C4,1,C4,3 two-phase mixture of the real-line quartic, we obtain the
constraint

N1 ≡ N (N + 1)

2
mod 2 , (3.18)
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for contributions to the partition function, which explains the non-vanishing terms
in (3.7).

Having identified the natural subsectors of the real-line quartic, the obvious question
is whether these subsectors are solvable. Remarkably, as we now argue, the pure phases
are exactly solvable for any r , a and N .

3.3. Summary of results for pure phases. Before explaining how the pure phases can be
solved, we present the solution in brief. We consider the pure-phase eigenvalue model

Z (r,a)
N = 1

N !
∫

Cr,a

∏

i

dxi
2π

e−xri
∏

i> j

(xi − x j )
2 , (3.19)

for integers N � 0, r > 0, and 0 � a < r , with Cr,a defined by (3.12). As usual,
insertions and expectation values are defined as in (2.1–2.3).

Theorem 1. The partition function of the monomial matrix model (3.19) is

Z (r,a)
N = δr,a(N )

(2π)N

N−1∏

i=0

�

(⌊
i

r

⌋
+ 1

)
�

(⌊
i − a

r

⌋
+
a

r
+ 1

)
, (3.20)

where δr,a(N ) = 0,±1 is given by

δr,a(N ) =
{

(−1)

⌈
N
r

⌉
a(a−1)

2 +
⌊
N
r

⌋
ã(ã−1)

2 N ≡ 0, a mod r
0 otherwise

, (3.21)

and ã ≡ r − a.

Recall that Schur polynomials are multivariate symmetric polynomials defined as

sλ(x) ≡ det x
N+λ j− j
i

det xN− j
i

, (3.22)

where λ denotes a partition λ1 � · · · � λN � 0.

Theorem 2. The averages of Schur polynomials take the simple form:

〈sλ(X)〉 = δr (λ)

r |λ|/r
∏

x∈λ

�N + cλ(x)�r,0 �N + cλ(x)�r,a
�hλ(x)�r,0

, (3.23)

where

�n�r,a =
{
n n ≡ a mod r
1 otherwise

. (3.24)
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Here we interpret λ as a Young diagram with |λ| boxes x = (i, j), rows of length
λi and columns of length λ�

i . The contents cλ(x) ≡ j − i and hook-length hλ(x) ≡
λi + λ�

j − i − j + 1 are the same quantities which appear in the dimension formula for
representations of the special linear group:

dimSL(N )(Rλ) =
∏

x∈λ

N + cλ(x)

hλ(x)
, (3.25)

which is similar to (3.23). Finally, the prefactor δr (λ) = 0,±1, the “r -signature” of λ,
is given explicitly by

δr (λ) =
{

(−1)
|λ|
r
∏

x∈λ(−1)

⌊
cλ(x)
r

⌋
+
⌊
hλ(x)
r

⌋

The r -core of λ is trivial
0 otherwise

. (3.26)

Here the r -core of λ—the unique result of stripping all possible rim hooks of length
r from λ—generalizes the remainder upon division by r , so that Schur polynomials
with non-zero averages correspond to Young diagrams which are “divisible by r ,” or
“r -divisible.” A necessary but insufficient condition for r -divisibility is that |λ| ≡ 0
mod r . The relevant properties of r -cores, r -signatures, and r -divisible Young diagrams
are reviewed in “Appendix A”.

We note in passing that the Schur average formula (3.23) obeys several non-trivial
relations when treated as a formal analytic function of N for fixed N mod r :

〈sλ(X)〉(r,a)
N = 〈sλ(X)〉(r,r−a)

N ′ , 〈sλ(X)〉(r,a)
−N = (−1)(r+1)

|λ|
r 〈sλ�(X)〉(r,r−a)

N , (3.27)

where N ′ indicates the opposite value of N mod r . The first equation relates the two
possible values of N mod r for fixed N , whereas the second equation relates N → −N
for fixed N mod r , similar to negative rank duality (see, e.g., [30, Ch. 13]).

Since any symmetric polynomial in xi , i = 1, . . . , N , can be expressed in terms of
the Schur polynomials, in principle (3.20) and (3.23) provide a complete solution to
the matrix model (3.19) for any N .8 For instance, single-trace correlation functions are
calculated explicitly in Sect. 3.5, see (3.47), (3.49), (3.50) and (3.52).

3.4. Solution by orthogonal polynomials. We now prove Theorems 1 and 2, i.e., derive
formulas (3.20) and (3.23), using orthogonal polynomials. Suppose that pn(x) = xn+· · ·
is some polynomial basis. The Vandermonde determinant can be rewritten as det x j−1

i =
det p j−1(xi ) by a triangular change of basis, so that

ZN = det
N×N

Z1[pi p j ] . (3.28)

If we choose a polynomial basis for which the matrix Z1[pi p j ] is sufficient sparse then
the partition function is easily computed. The usual approach is to choose Z1[pi p j ] =
tiδi j for some normalization ti , so that ZN = ∏N−1

i=0 ti . This approach is well-suited to
the Gaussian model (r = 2 and a = 1), but is impossible in the pure phases for r > 2,

8 Our formulas for normalized correlators apply when Z �= 0. Unnormalized insertions can still be finite
when Z = 0, but besides a brief discussion in Sect. 4.4, we leave a thorough treatment of these cases to the
future.
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because ZN=kr and ZN=kr+a do not vanish, whereas ZN vanishes for other values of N ,
implying that some of the ti vanish and others are infinite.

Instead, we consider orthogonal polynomials satisfying the orthogonality relation:

Z1[pm pn] = tmδ(r,a)
m,n , (3.29)

where δ
(r,a)
m,n is the block-diagonal matrix diag(Ja, Jr−a, Ja, Jr−a, . . .) with Jn the n×n

antidiagonal permutation matrix. This condition is chosen so that δ(r,a)
m,n is nonzero on a

subset of the nonzero entries of Z1[xmxn], i.e., those satisfyingm +n ≡ a−1 (mod r).
The solution is

prk+i (x) =
{
xi L̂

( a
r −1)

k (xr ) 0 � i < a

xi L̂
( a
r )

k (xr ) a � i < r
, (3.30)

where L(α)
k (x) denotes the generalized Laguerre polynomial

L(α)
k (x) =

k∑

p=0

(−1)p
(
k + α

k − p

)
x p

p! , (3.31)

and L̂(α)
k (x) = (−1)kk!L(α)

k (x) = xk + · · · is monic. The Laguerre polynomials satisfy
the orthogonality relation:

∫ ∞

0
xαL(α)

m (x)L(α)
n (x)e−xdx = �(n + α + 1)

n! δmn . (3.32)

Together, (3.30) and (3.32) are sufficient to derive (3.29), where the homogeneity prop-
erty pn(ωr x) = ωn

r pn(x) implies that the integral over Cr,a either vanishes or is equiv-
alent to an integral over B0 = (0,∞), which can be reduced to (3.32) by a change of
variables y = xr . We obtain

ti = 1

2π
�

(⌊
i

r

⌋
+ 1

)
�

(⌊
i − a

r

⌋
+
a

r
+ 1

)
. (3.33)

The partition function is therefore ZN = δr,a(N )
∏N−1

i=0 ti , where δr,a(N ) =
detN×N δ

(r,a)
m,n is the determinant of upper-left N×N block of δ(r,a)

m,n . This matches (3.20).
The Schur polynomial average (3.23) can also be derived using orthogonal polyno-

mials, as we now show.9 Our starting point is the formula [32, p. 67]

k∏

j=1

det(z j − X) =
∑

λ
λ1�k

(−1)|λ|sλ(X)sλ̃(z) , (3.34)

where λ̃ is the partition λ̃i = (N − λ�
k , . . . , N − λ�

1 ). It is straightforward to check
using the orthogonality relation (3.29) that:

〈
k∏

j=1

det(z j − X)

〉
= 1

det
1�i, j�k

z j−1
i

det

⎛

⎜⎝
pN (z1) . . . pN+k−1(z1)

...
...

pN (zk) . . . pN+k−1(zk)

⎞

⎟⎠ . (3.35)

9 We follow a similar approach to [31].
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In general, this holds when Z1[pi p j ] = 0 for i < N and j � N , which follows
from (3.29) when ZN �= 0, i.e., when N = kr or N = kr + a.

Combing (3.34) with (3.35) and using sλ̃(z) = det z
N−λ�

j + j−1

i / det z j−1
i , we obtain

det
1�i, j�k

pN+ j−1(zi ) =
∑

λ
λ1�k

(−1)|λ|〈sλ(X)〉 det
1�i, j�k

z
N−λ�

j + j−1

i . (3.36)

For orthogonal polynomials of the general form pi =∑ j pi; j x j , we have

det
1�i, j�k

pN+i−1(z j ) =
∑

p1,...,pk

⎛

⎝
k∏

j=1

z
p j
j

⎞

⎠ det
1�i, j�k

pN+i−1; p j , (3.37)

so that
〈sλ(X)〉 = (−1)|λ| det

1�i, j�k
pN+i−1; N−λ�

j + j−1 , k � λ1 . (3.38)

The general result (3.38) can be applied to the case at hand by noting that

pi; j = δr |(i− j)
(−1)

i− j
r

( i− j
r

)!
ti
t j

, (3.39)

where the Kronecker delta enforces i− j
r ∈ Z. We obtain

〈sλ(X)〉 = (−1)|λ|
⎛

⎝
k∏

j=1

tN+ j−1

tN+ j−1−λ�
j

⎞

⎠ det
1�i, j�k

δr |(λ�
j +i− j)

(−1)
λ�
j +i− j

r

(
λ�
j +i− j

r )!
, (3.40)

for k � λ1.
To evaluate the determinant, we use the results of Sect. A.1. We must have

det
1�i, j�k

(−1)λ
�
j +i− j

(λ�
j + i − j)! = (−1)|λ|∏

x∈λ

1

hλ(x)
, k � λ1 , (3.41)

to reproduce the Kadell formula for r = 1 [3]. The hook-lengths in the various compo-
nents of the r -quotient λ/r (μ) are just 1/r times the hook lengths divisible by r in λ, so
we obtain

det
1�i, j�k

δr |(λ�
j +i− j)

(−1)
λ�
j +i− j

r

(
λ�
j +i− j

r )!
= r |λ|/rδr (λ)

∏

x∈λ

1

�hλ(x)�r,0
, (3.42)

using (A.9) and Theorem 9. Using (3.33) and the identity

�
(⌊ n+I−a

r

⌋
+ a

r + 1
)

�
(⌊ n−a

r

⌋
+ a

r + 1
) = r

−
(⌊

n+I−a
r

⌋
−� n−a

r �) I∏

i=1

�n + i�r,a , (3.43)

to simplify the product over ts, we obtain the Schur average formula (3.23).
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3.5. Single-trace correlators. Let L(I,J ) denote the L-shaped partition with I + 1 rows
and J + 1 columns, i.e., L(I,J )

1 = J + 1, L(I,J )
2 = · · · = L(I,J )

I+1 = 1. We have [32, p. 48]

Tr X p =
p−1∑

I=0

(−1)I sL(I,p−1−I ) (X) . (3.44)

Combining this with the Schur average formula (3.23), we compute the expectation

values of single-trace operators. Using δr (L(I,J )) = δr |(I+J+1)(−1)
I+
⌊
I
r

⌋

, we obtain:

〈Tr Xqr 〉 = 1

qrq+1

qr−1∑

J=0

(−1)

⌊
I
r

⌋

�I �r,0!�J�r,0!
J∏

i=−I

�N + i�r,0�N + i�r,a , (3.45)

for q > 0, where I = qr − 1 − J and �n�r,a ! ≡ ∏n
i=1�i�r,a . By (3.43), this can be

rewritten as

〈Tr Xqr 〉 = 1

q

qr−1∑

J=0

(−1)

⌊
I
r

⌋

�
(⌊ N+J

r

⌋
+ 1
)
�
(⌊ N+J−a

r

⌋
+ a

r + 1
)

�
(⌊ N+J

r

⌋− q + 1
)
�
(⌊ N+J−a

r

⌋
+ a

r − q + 1
) ⌊ I

r

⌋! ⌊ J
r

⌋! . (3.46)

Collecting terms, this takes the form of a sum of hypergeometric series

〈Tr Xqr 〉N=kr = a fk, ar (q) + (r − a) fk, ar +1(q) ,

〈Tr Xqr 〉N=kr+a = a fk+1, ar (q) + (r − a) fk, ar +1(q) ,
(3.47)

for 0 < a < r , where

fk,x (q) ≡ (−1)q−1

q!
q−1∑

j=0

�(k + j + 1)�(k + j + x)(1 − q) j

�(k + j − q + 1)�(k + j − q + x) j ! , (3.48)

and (x)n ≡ x(x+1) . . . (x+n−1)denotes the rising factorial.Using apair of resummation
identities for 3F2, this can be rewritten as10

fk,x (q) = k (x)q 3F2

[
1 − k, 1 + q, −q

x, 2
; 1
]

. (3.49)

Combining (3.47) and (3.49), it is straightforward to compute any single-trace cor-
relation function of interest. For instance,

r〈Tr Xr 〉 = N 2 ,

r2〈Tr X2r 〉 = 2N 3 + aãN

r3〈Tr X3r 〉 = 5N 4 + (r2 + 6aã)N 2 ± aã(a − ã)N ,

r4〈Tr X4r 〉 = 14N 5 + 10(r2 + 3aã)N 3 ± 10aã(a − ã)N 2 + 3aã(2r2 − aã)N ,

...

(3.50)
where the upper (lower) sign corresponds to N = kr (N = kr + a).

10 Note that the generating function
∑∞

q=0
〈Tr Xqr 〉

(x)q
tq can bewritten in terms of 2F1. However, the resulting

expression is no easier to work with than (3.47), (3.49), and this curiosity will play no further role in our
discussion.
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3.6. The large N limit. We briefly consider the large N limit of these pure phase eigen-
valuemodels. From (3.50)we see that the contour dependence enters atO(1/N 2) relative
to the leading large N behavior, and that there are subleading corrections suppressed by
odd powers of N . This can be shown more generally by rewriting

fk,x (q) = k
q∑

p=0

(2q − p)!
p!(q − p)!(q − p + 1)! (x + q − 1)(p)(k − 1)(q−p) , (3.51)

where x (p) ≡ x(x−1) . . . (x−p+1) = �(x+1)
�(x+1−p) denotes the falling factorial. Expanding

in k � 1 and retaining the first few terms, we obtain

rq〈Tr Xqr 〉 = (2q)!
q!(q + 1)!N

q+1 +
(2q − 2)!

12(q − 1)!(q − 2)! (r
2(q − 2) + 6aã)Nq−1

± (2q − 2)!
12(q − 1)!(q − 3)!aã(a − ã)Nq−2 + · · · , (3.52)

where the upper (lower) sign corresponds to N = kr (N = kr + a), as above.
Similar results hold for the free energy. We first rewrite the partition function (3.20)

in terms of the Barnes G-function, defined by the Weierstrass product

G(z + 1) = e−ζ ′(−1)− z+(1+γ )z2

2

∞∏

k=1

(
1 +

z

k

)k

e
z2
2k −z , (3.53)

which can be shown to satisfy11

G(z + 1) = �(z)√
2π

G(z) , G(1) = e−ζ ′(−1) . (3.54)

where ζ(s) is the Riemann zeta function and the normalization is chosen for future
convenience. We define

Zr,a(N ) ≡ G

(
N

r
+ 1

)r
G

(
N + a

r

)a
G

(
N + a

r
+ 1

)r−a

, (3.55)

so that

Z (r,a)
N=kr = δr,a(N )

Zr,a(N )

Zr,a(0)
, Z (r,a)

N=kr+a = δr,a(N )
Zr,ã(N )

Zr,a(0)
. (3.56)

We have the asymptotic expansion

logG(n + 1) = n2

2
log n − 3

4
n2 − 1

12
log n +

∞∑

g=2

B2g

2g(2g − 2)
n2−2g , (3.57)

where B2g are the Bernoulli numbers. Thus,

logZr,a(N ) =
(
N 2

r
+
aã

2r
− r

6

)
log

N

r
− 3N 2

2r
+
aã(a − ã)

6Nr
− r4 − 15a2ã2

120r N 2 + · · · ,

(3.58)

11 A more common but ultimately less convenient convention is G2(z +1) = (2π)
z
2 eζ

′(−1)G(z +1), which
satisfies G2(z + 1) = �(z)G2(z) and G2(1) = 1.
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from which we obtain the large N free energy:12

F = F0 +

(
N 2

r
+
aã

2r
− r

6

)
log

N

r
− 3N 2

2r
± aã(a − ã)

6Nr
− r4 − 15a2ã2

120r N 2 + · · · (3.59)

where F0 is an N -independent constant13 which depends on the normalization of the
partition function and the upper (lower) sign corresponds to N = kr (N = kr + a).
Ignoring the logs, the contour dependence again enters at O(1/N 2) relative to the leading
terms, and there are O(1/N 3) corrections to the free energy.

Reproducing these results with a large N analysis along the lines of [33–35] (see,
e.g., [28] and references therein for a more comprehensive review of large N techniques)
is an interesting open problem. This calculation is non-trivial for several reasons. Firstly,
the large N analysis of [33–35] is naturally expressed in a contour basis of Lefschetz
thimbles, corresponding to the saddle points of the potential. This basis is degenerate
when the potential is monomial for r > 2, as r − 1 critical points coincide at the origin.
Secondly, the genus expansion is organized in even powers of N , hence the appearance
of O(1/N 3) corrections is unexpected in a standard analysis.

These two issues may be linked. To pick out the pure-phase contour Cr,a , one can
deform the potential by ε Tr X2 to resolve the r − 1 critical points and then express Cr,a
in a thimble basis, later taking ε → 0. The change of basis betweenCr,a and the thimbles
gives a linear combination of the saddle points weighted by binomial coefficients (e.g.,
in the case r = 3). The O(N ) terms in the sum over saddle points can change the large
N scaling, and we hypothesize that this gives rise to the unexpected odd powers of N .

In the language of topological recursion (see [36] for a review), the appearance of
subleading corrections suppressed by odd powers of N means that these theories are not
of topological type ([36], Definition 3.6). Hence they are not described by the standard
large-N tools—spectral curve topological recursion [37,38]—or even its more general
“blobbed” version [39].However, the difference from the topological type case is actually
rather mild. The ward identities (2.10) are not broken—they still admit solutions of topo-
logical type (in contrast toβ-ensembles [40],where for genericβ solutions of topological
type are forbidden). Rather, the unusual dependence on N enters through initial condi-
tions; for example, for r = 3 the first non-topological correlator is 〈(Tr X)3〉 = ±N .

The large-N behavior of these monomial matrix models is interesting for the follow-
ing reason. If one computes the standard spectral curve (forgetting for now that pure
phase correlators are not described by it), one gets y ∼ xr , which is the symplectic dual
(x ↔ y) [41] to the spectal curve for the r-Gelfand–Dickey hierarchy (see [42] Theo-
rem 7.3). Since pure phases are very natural from the matrix model point of view one
can expect that the relevant generalization of the topological recursion is also natural.
Once available, it would immediately provide a generalization of the r-Gelfand–Dickey
hierarchy (and, via a lift to cohomology, of Witten’s r-spin class [43]). We defer this
problem to future work.

4. A General Orbifold Construction for Matrix Models

The exact solutions found in the previous section arise from amore general construction,
which we now explain. This construction is, roughly speaking, an orbifold, where a

12 Notice that the free energy satisfies F(r,a)
N = F(r,r−a)

N ′ and F(r,a)
N = F(r,r−a)

−N , similar to (3.27).
13 We drop the prefactor δr,a(N ) from the large N expansion, as it is periodic in N with period 2r , hence

formally non-perturbative in N .
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matrix model with a single-trace potential W (X) is replaced by one with a single-trace
potential W (Xr ).

4.1. General results.

Definition 1. For any one-matrix model

Zn,u = 1

n!
∫

Cn

n∏

i=1

dxi
2π

xui
∏

i< j

(xi − x j )
2e−TrW (X) , (4.1)

the (pure phase) r-fold matrix model is defined as

Z (r,a)
N ,U = 1

N !
∫

CN
r,a

N∏

i=1

dxi
2π

(xri )
U
r
∏

i< j

(xi − x j )
2e−TrW (Xr ) , (4.2)

for any r ∈ N and choice of contour 0 � a < r , with Cr,a = ∑r−1
j=0 ω

− ja
r C1/r

j , where

C1/r is the principal r th root of C and C1/r
j is C1/r rotated by ω

j
r .

Here W (X) is any (single-trace) potential and C is any contour,14 where we isolate
a contribution −u log X from the potential for future convenience.15 We assume that
the solution to the parent matrix model is known, and use it to solve the corresponding
r -fold model.

Let p(u)
m be a set of orthogonal polynomials for the parent model (4.1):

Z1,u[p(u)
m p(u)

n ] = t (u)
m δm,n . (4.3)

Now consider the polynomials

P(U ;r,a)
kr+i (x) =

⎧
⎪⎨

⎪⎩
xi p

(
U+a
r −1

)

k (xr ) , 0 � i < a ,

xi p

(
U+a
r

)

k (xr ) , a � i < r .

(4.4)

Using (4.3), one can check that

Z (r,a)
1,U [P(U ;r,a)

m P(U ;r,a)
n ] = T (U ;r,a)

m δ(r,a)
m,n , T (U ;r,a)

kr+i =

⎧
⎪⎨

⎪⎩
t

(
U+a
r −1

)

k , 0 � i < a ,

t

(
U+a
r

)

k , a � i < r .

(4.5)

where δ
(r,a)
m,n is the same as in (3.29). In particular, (4.5) follows from the Zr orbifold

projection implied by the contour Cr,a together with the change of variables

r
∫

C1/r
xa−1 f (xr ) dx =

∫

C
y

a
r −1 f (y) dy , (4.6)

14 Note that C1/r will have additional discontinuities relative to C if C crosses the negative real axis, since
the principal r th root is discontinuous there. The pieces of the contour are reconnected in the linear combination
Cr,a , but the weight of each piece remains discontinuous except in the special case a = 0.
15 The presence of the u deformation is linked to the inclusion of the contour a = 0. The additional

logarithmic term in the potential adds a saddle point, hence (in the basis of Lefschetz thimbles) an additional
integration contour with a boundary at the origin.
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where (xr )1/r = x for −π
r < arg x � π

r .

Using (4.5), we can compute the partition function Z (r,a)
N ,U , much as in Sect. 3.4:

Z (r,a)
N ,U = δr,a(N )

N−1∏

I=0

t

(
U+a
r +

⌊
I−a
r

⌋
−
⌊
I
r

⌋)

⌊
I
r

⌋ . (4.7)

Re-expressing this in terms of the partition function of the parent model, Zn,u =∏n−1
i=0 t (u)

i , we find16

Theorem 3. The partition function of an r-fold matrix model is a product of r copies of
the partition function of the parent model:

Z (r,a)
N ,U = δr,a(N )

r−1∏

μ=0

Znμ,uμ , (4.8)

where

nμ =
⌊
N − μ − 1

r

⌋
+ 1 , uμ = U + a

r
+

⌊
N − μ − a − 1

r

⌋
−
⌊
N − μ − 1

r

⌋
.

(4.9)

Note that
∑

μ nμ = N and
∑

μ uμ = U .
A similar factorized structure occurs in the Schur average formula. To derive it, we

start with the general result (3.38). Writing p(u)
n (x) =∑i p

(u)
n;i x

i , we have

P(U ;r,a)
N (x) =

∑

I

δr |(N−I ) p

(
U+a
r +

⌊
N−a
r

⌋
−
⌊
N
r

⌋)

⌊
N
r

⌋
;
⌊
I
r

⌋ x I , (4.10)

and so

〈sλ(X)〉(r,a)
N ,U = (−1)|λ| det

1�I,J�K

⎡

⎣δr |(λ�
J +I−J ) p

(
U+a
r +

⌊
N+I−1−a

r

⌋
−
⌊
N+I−1

r

⌋)

⌊
N+I−1

r

⌋
;
⌊

N+J−1−λ�
J

r

⌋

⎤

⎦ ,

K � λ1 . (4.11)

Choosing K such that K + N ≡ 0 (mod r) and applying (A.17), we obtain

〈sλ(X)〉(r,a)
N ,U = δr (λ)

r−1∏

μ=0

(−1)|λ/r (μ)| det
1�i, j�kμ

p
(uμ)

nμ+i−1; nμ+ j−(λ/r (μ))�j −1
. (4.12)

where kμ =
⌊
K+μ
r

⌋
. From the definition of the r -quotient (A.8), we find

kμ �
⌊

λ1 + μ

r

⌋
� (λ/r (μ))1 , (4.13)

so that
16 Here we use the substitution I = ri + (N −μ−1) mod r for i � 0 and 0 � μ < r . Simpler substitutions

are possible, such as I = ri + μ, but this particular form occurs naturally in the Schur average formula.
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= × × 1(−1)
k, 1

r k, 1
r k,− 2

r
3k, 0

(3, 1)

Fig. 4. One example of applying Theorem 4, c.f. Fig. 1

Theorem 4. The average of Schur polynomials in an r-fold matrix model is the product
of r averages in the parent model:

〈sλ(X)〉(r,a)
N ,U = δr (λ)

r−1∏

μ=0

〈sλ/r (μ) (X)〉nμ,uμ , (4.14)

where nμ and uμ are defined in Theorem 3.

An example application of this theorem is shown in Fig. 4.

4.2. Example: logarithmic models. As an example of the general construction given in
the previous section, we consider the eigenvalue model

Z (r,a)
N = 1

N !
∫

CN
r,a

∏

i

dxi
2π

∏

i< j

(xi − x j )
2
∏

i

(xri )
u(1 − xri )

v , (4.15)

where

Cr,a =
r−1∑

j=0

ω
− ja
r B j , (4.16)

with Bj now the finite segment [0, ω j
r ]. This is an r -fold generalization of the β = 1

Selberg integral [1,2] (see also [7]):17

1

N !
∫ 1

0

∏

i

dxi
∏

i< j

(xi − x j )
2
∏

i

xui (1 − xi )
v =

N∏

i=1

�(i + u)�(i + v)�(i)

�(N + i + u + v)
. (4.17)

The model (4.15) is related to the exponential model (3.19) by the scaling limit

lim
v→∞

(
1 − 1

v
xr
)v

= e−xr , (4.18)

hence limv→∞ S0,v[X/v1/r ] = Tr Xr , where Su,v[X ] is the logarithmic potential

Su,v[X ] = −u Tr ln
(
Xr )− v Tr ln

(
1 − Xr ) . (4.19)

17 One might hope to generalize the β-deformation (xi − x j )
2 → |xi − x j |2β to the exactly solvable r > 1

models we study in this paper. However, this is challenging due to the non-analytic integrand that results for
non-integral β, and even for integral β we do not find any exact results besides the r = 2, a = 1 case with
u = 0, which is merely a special case of the Selberg integral.
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This logarithmicgeneralization is natural, for example, from theperspective of conformal
field theories,where free-field representations of correlation functions are typically given
by generalized matrix models with logarithmic potentials [26] sometimes referred to as
Selberg integrals [44].

Using Theorem 3 and (4.17), we obtain the partition function

Z (r,a)
N = δr,a(N )

(2π)N

N−1∏

I=0

�
(⌊ I−a

r

⌋
+ a

r + u + 1
)
�
(⌊ I

r

⌋
+ v + 1

)
�
(⌊ I

r

⌋
+ 1
)

�
(⌊ N+I−a

r

⌋
+ a

r + u + v + 1
) ,

(4.20)

where we use the substitution

I =
{
ir − μ − 1 , N = kr ,

(i − 1)r + μ , N = kr + a ,
(4.21)

to simplify the product of r Selberg integrals.
The expectation value of a Schur polynomial with the Selbergmeasure (4.17) is given

by the Kadell formula [3]:

〈sλ(X)〉 =
∏

x∈λ

(N + cλ(x))(N + cλ(x) + u)

hλ(x)(2N + cλ(x) + u + v)
. (4.22)

Using this together with Theorem 4, we can compute the average of a Schur polynomial
in the r -fold model (4.15). To simplify the result, we rewrite the product over contents
in the r -quotient as a product of columns using

∏
x∈λ �(α + cλ(x)) =∏λ1

j=1
�(α+ j)

�(α+ j−λ�
j )
.

Rearranging and applying a generalization of (3.43), the result can be expressed as a
product over boxes of the parent Young diagram:

〈sλ(X)〉 = δr (λ)
∏

x∈λ

�N + cλ(x)�r,0 �N + cλ(x); ru�r,a

�hλ(x)�r,0 �2N + cλ(x); ru + rv�r,a
, (4.23)

where the deformed bracket �n; x�r,a generalizes (3.24)

�n; x�r,a =
{
n + x n ≡ a mod r
1 otherwise

. (4.24)

It is straightforward to check that (4.20) and (4.23) reduce to (3.20) and (3.23) in the
appropriate limit.

These logarithmic models not only preserve all the solvability properties discussed
so far; they also reveal additional ones not present in the original polynomial models.
They enjoy exact formulas for the correlation function of two Schur polynomials (with
an appropriate shift in the argument). This remarkable property has already been noted
for r = 1 models [44–47]; in this paper we propose a generalization to r > 1, see Sect.
5.1.
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4.3. Some q analogs. The orbifold-like construction of Sect. 4.1 can also be extended
to q-analogs of random matrix models. q calculus is based on the replacement

d f

dx
−→ dq f

dq x
≡ f (x) − f (qx)

x − qx
, (4.25)

for some 0 < q < 1, where the limit q → 1 takes dq f
dq x

→ d f
dx . The inverse of the q

derivative is the Jackson integral

∫
f (x)dq x ≡ (1 − q)x

∞∑

k=0

qk f (qkx) , (4.26)

where definite integrals are defined by the fundamental theorem of calculus,
∫ b
a f (x)dq x

= F(b) − F(a) for F(x) = ∫ f (x)dq x .
q calculus satisfies a limited form of the chain rule

dqr (ax
r ) = a[r ]q xr−1dq x , (4.27)

where [n]q denotes the q-number

[n]q ≡ 1 − qn

1 − q
, (4.28)

which satisfies limq→1[n]q = n. Such calculus appears naturally from several closely
related perspectives. Physically, it has most recently attracted attention in the context of
five-dimensional gauge theories, where the finite difference parameter q is the exponen-
tiated radius of the fifth dimension [48] in the spirit of Kaluza and Klein. Mathemati-
cally, q-numbers appear in enumerative geometry of symplectic resolutions as K-theory
weights associated with fixed points of equivariant torus action [49]. From the perspec-
tive of integrability theory, q-numbers correspond to trigonometric integrable models,
which occupy an intermediate level of complexity between rational (corresponding to
usual numbers) and elliptic (corresponding to elliptic numbers, [50]) models.

The reasoning of Sect. 4.1 now goes as follows.

Definition 2. For any q-deformed one-matrix model

Zn,u;q = 1

n!
∫

Cn

n∏

i=1

dq xi
2π

xui
∏

i< j

(xi − x j )
2e−TrW (X;q) , (4.29)

the (pure phase) r-fold matrix model is defined as

Z (r,a)
N ,U ;q = 1

N !
∫

CN
r,a

N∏

i=1

dq xi
2π

(xri )
U
r
∏

i< j

(xi − x j )
2e−TrW (Xr ;qr ) , (4.30)

with Cr,a defined as in Definition 1.
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This definition is chosen so that the q-deformed measures of the parent and r -fold
models are related by a change of variables. We find the r -fold orthogonal polynomials

P(U ;r,a)
kr+i (x; q) =

⎧
⎪⎨

⎪⎩
xi p

(
U+a
r −1

)

k (xr ; qr ) , 0 � i < a ,

xi p

(
U+a
r

)

k (xr ; qr ) , a � i < r ,

(4.31)

with

Z (r,a)
1,U ;q [P(U ;r,a)

m P(U ;r,a)
n ]=T (U ;r,a)

m;q δ(r,a)
m,n , T (U ;r,a)

kr+i;q = r

[r ]q ·

⎧
⎪⎨

⎪⎩
t

(
U+a
r −1

)

k;qr , 0 � i < a ,

t

(
U+a
r

)

k;qr , a � i < r .

(4.32)

By the same reasoning as above, we conclude that

Theorem 5. The partition function and Schur averages of a q-deformed r-fold matrix
model factor:

Z (r,a)
N ,U ;q = δr,a(N )

(
r

[r ]q
)N r−1∏

μ=0

Znμ,uμ;qr ,

〈sλ(X)〉(r,a)
N ,U ;q = δr (λ)

r−1∏

μ=0

〈sλ/r (μ) (X)〉nμ,uμ;qr ,

(4.33)

as in Theorems 3 and 4.

As an example, we consider the q-Selberg integral

1

N !
∫ 1

0

∏

i

dq xi
∏

i< j

(xi − x j )
2
∏

i

xui (qxi ; q)v

= q(u+1)(N2)+2(
N
3)

N∏

i=1

�q(i + u)�q(i + v)�q(i)

�q(N + i + u + v)
. (4.34)

Here

(x; q)∞ ≡
∞∏

i=0

(1 − qi x) , (x; q)n ≡ (x; q)∞
(xqn; q)∞

, (4.35)

is the q-Pochhammer symbol and �q(x) ≡ (1 − q)1−x (q; q)x−1 is the q-gamma func-
tion, which satisfies �q(x + 1) = [x]q�q(x), �q(1) = 1, and limq→1 �q(x) = �(x).

The r -fold generalization of the q-Selberg integral is the eigenvalue model:

Z (r,a)
N = 1

N !
∫

CN
r,a

N∏

i=1

dq xi
2π

(xri )
u(qr xri ; qr )v

∏

i< j

(xi − x j )
2 . (4.36)
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Using (4.33), we obtain

Z (r,a)
N = δr,a(N )

(2π)N
(qr )nr (N ,u)

(
r

[r ]q
)N

×
N−1∏

I=0

�qr
(⌊ I−a

r

⌋
+ a

r + u + 1
)
�qr
(⌊ I

r

⌋
+ v + 1

)
�qr
(⌊ I

r

⌋
+ 1
)

�qr
(⌊ N+I−a

r

⌋
+ a

r + u + v + 1
) , (4.37)

where nr (N , u) ≡ ∑r−1
μ=0

[
(uμ + 1)

(nμ

2

)
+ 2
(nμ

3

)]
.18 Apart from the q-dependent pref-

actor, this is a straightforward q-analog of (4.20).
Likewise, using the q-Selberg Schur average formula [3]

〈sλ(X)〉 = qn(λ)
∏

x∈λ

[N + cλ(x)]q [N + cλ(x) + u]q
[hλ(x)]q [2N + cλ(x) + u + v]q , (4.38)

with n(λ) ≡∑i (i − 1)λi , we obtain

〈sλ(X)〉(r,a) = δr (λ) (qr )nr (λ)
∏

x∈λ

�N + cλ(x)�
(q)
r,0 �N + cλ(x); ru�

(q)
r,a

�hλ(x)�
(q)
r,0 �2N + cλ(x); ru + rv�

(q)
r,a

, (4.39)

where �n; x�(q)
r,a is given by the obvious q-deformation n + x → [n + x]q of (4.24) and

nr (λ) ≡∑μ n(λ/r (μ)). This is a q-analog of (4.23).

The q → ωr limit There is a another class of q-analogs of the r -fold models discussed
in this paper. To see this, consider a Jackson integral

∫

C
e−W (x;q)dq x , (4.40)

where for simplicity we take C to be an interval along the positive real axis. Whereas in
the limit q → 1 we obtain an ordinary integral along C , in the limit q → ωr , we find

lim
q→ωr

[r ]q
∫ b

a
e−W (x;q)dq x =

∫

Cr,0

e−Wr (x)dx , (4.41)

where Wr (x) = W (x;ωr ) and Cr,0 is the a = 0 r -fold contour of Definition 1.
Other r -fold contours can be obtained by inserting appropriate branch cuts (in the form
x−a(xr )a/r ) into the integrand.

Thus, for a given r -fold potentialW (xr ), anyq-deformedpotentialW (x; q) satisfying
W (x;ωr ) = W (xr ) defines a q-analog which reduces to the r -fold model in the q → ωr
limit. For example, in the q-Selberg measure we have

lim
q→ωr

(qxi ; q)V = (1 − xri )
V/r , (4.42)

provided that V ∈ rZ. Thus, the r = 1 q-Selberg integral is in some sense a q-analog of
the r -fold logarithmic model discussed in Sect. 4.2. Using this connection and analytic
continuation off the integers, one obtains an alternate proof of (4.20) and (4.23) from
the q-Selberg integral.

The limit q → ωr has an interesting connection to orbifolds (see, e.g., [20]), which
plays a role in several possible physical applications for r -fold matrix models, as dis-
cussed in Sect. 5.
18 One can check that nr (N , u) = r(u + 1)

(�N/r�
2

)
+ 2r

(�N/r�
3

)
+ �N/r� (N mod r)(u + N/r − 1), hence

it does not depend separately on a.
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4.4. Refactorization of the Vandermonde. The results of Sect. 4.1 can be reduced to a
combinatoric identity of the integrand, as follows. Define the projection operator

Pa f (x) = 1

r

r−1∑

j=0

ω
− ja
r f (ω j

r x) , (4.43)

and notate
Pa1,...,aN f (x1, . . . , xN ) = P(x1)

a1 . . . P(xN )
aN f (x1, . . . , xN ) . (4.44)

We will show that

Theorem 6. The projection of the Vandermonde factors

Pa1,...,aN
∏

I>J

(xI − xJ ) = δa1,...,aN

∏

I

xaI mod r
I

r−1∏

μ=0

∏

i> j

(xrIμ,i
− xrIμ, j

) , (4.45)

where Iμ,i denotes the i th value of I for which aI ≡ μ (mod r) and δa1,...,aN ∈ {0,±1}
is defined as follows: consider the function σ : [1, N ] → N

σ(Iμ,i ) = 1 + r(i − 1) + μ . (4.46)

If σ is a permutation on [1, N ], then δa1,...,aN = (−1)σ . Otherwise δa1,...,aN = 0.

Proof. Call the polynomial on the left hand side f (x1, . . . , xN ). The homogene-
ity conditions f (. . . , ωr xI , . . .) = ω

aI
r f (. . . , xI , . . .) imply that f (x1, . . . , xN ) =(∏

I x
aI mod r
I

)
g(xr1, . . . , x

r
N ) for some polynomial g(y1, . . . , yN ). Since f is alternat-

ing within each sub-block Iμ,i for fixed μ, so too is g, hence g contains Vandermonde
factors, and (4.45) holds for some polynomial δ = δ(xr1, . . . , x

r
N ). The total degree of δ

in the x variables is

r−1∑

μ=0

(
μNμ +

Nμ(Nμ − 1)

2

)
− N (N − 1)

2
, (4.47)

where Nμ denotes the number of variables xI for which aI ≡ μ (mod r). Maximiz-
ing (4.47) at fixed N , we find the conditions Nμ − Nν ∈ {0, 1} for μ � ν, thus the
unique maximum satisfies Nμ = nμ from (4.9). In this case, one can check that (4.47)
vanishes, implying that δ is a constant, whereas for Nμ �= nμ the total degree of δ is
negative, requiring δ = 0.

To fix the constant δ in the case where Nμ = nμ, note that we can fix aI ≡ I − 1
(mod r) up to a permutation of the labels. Comparing the coefficients of

∏
I x

I−1
I on

both sides, we conclude that δ0,...,N−1 = 1, whereas σ is the identity permutation.
Generalizing by permuting the labels gives δa1,...,aN = (−1)σ . Since moreover σ is a
permutation on [0, N ] iff Nμ = nμ, the result (4.45) is proven. ��

In fact, Theorem 6 encompasses our earlier results Theorems 3–5. For instance, the
pure-phase partition function can be derived by rewriting

1

N !
(
det
N×N

xN− j
i

)2 ∼=
∏

i

x N−i
i

∏

i< j

(xi − x j ) , (4.48)
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up to symmetrization in the variables xi . The integral over Cr,a imposes the projection
Pa−1,...,a−1 on the integrand, hence Pa−N ,...,a−1 on the Vandermonde

∏
i< j (xi −x j ). By

Theorem 6, this splits the Vandermonde into r non-interacting blocks, and we recover
Theorem 3. Likewise, using the definition (3.22) we find

1

N ! sλ(X)

(
det
N×N

xN− j
i

)2 ∼=
∏

i

x N+λi−i
i

∏

i< j

(xi − x j ) , (4.49)

up to symmetrization. As before, the projection implied by the contour splits the Van-
dermonde into r non-interacting blocks, and we recover Theorem 4.

Theorem 6 can also be used to answer several important questions that we will not
discuss in detail in the present paper, but which deserve further attention in future work.
Firstly, using this identity we can compute the unnormalized insertions Z (r,a)

N [sλ(X)] in
cases where Z (r,a)

N [1] = 0 (N �≡ 0, a (mod r)). More importantly, Theorem 6 can be
used to derive a factorized structure for mixed phases, as follows.

After fixing the SN permutation symmetry as in (4.48) or (4.49), a mixed phase
integrated on the contour

∏r−1
a=0 C

Na
r,a (

∑
a Na = N ) becomes an integral over the sym-

metrization of the contour
∏

a C
Na
r,a . This symmetrization can be broken up into ordered

components
∏N

i=1 Cr,ai , such that xi is integrated along the contour Cr,ai . This is a
finer basis of contours than that discussed in Sect. 3.2 because in a mixed phase each
symmetrized contour has multiple ordered components

∏N
i=1 Cr,ai . In particular, for

p eigenvalue contours there are pN ordered contours but only
(N+p−1

p−1

)
symmetrized

contours. The larger basis of contours does not lead to further ambiguities in the loop
equations (recall Sect. 2.2) because the weights of ordered contours related by permu-
tations are constrained to be equal. Nonetheless, the basis of ordered contours is useful
because on each ordered contour the eigenvalue interactions (4.48) and (4.49) factor into
the product of r subblocks using Theorem 6, much as in Theorems 3 and 4.

Thismeans, for instance, that the partition function Z of the reflection-positive quartic
matrix model discussed in Sect. 3.1 can be written explicitly as a sum of 2N terms (since
(C4,1 +C4,3)/2 equals the real line), as can Z [sλ(X)]. While the number of terms grows
rapidly with N , the growth is much slower than the N ! terms which appear in the
determinant (3.5).

Moreover, this approach gives a straightforward solution to any given “symmetrized”
mixed phase as a finite sum over “ordered” mixed phases, where the ordered mixed
phases are given by r -fold products of the parent theory. Whether this leads to further
insights into the mixed phases (and by extension, strongly-interacting reflection-positive
models) is a question for the future.

5. Applications and Future Directions

In this section we discuss various generalizations and applications of our results. Several
open questions still remain here and clarifying those questions is a promising direction
of future research.

5.1. Two-Schur correlators. Perhaps the most puzzling and not fully understood phe-
nomenon, observed in a wide range of matrix models, is a possibility to write an exact
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formula for a two-Schur correlator: an average of a product of two Schur polynomials.
While existence of a formula for the average of a single Schur polynomial is not sur-
prising and relates to, e.g., the determinant structure of Schur polynomials, an equally
simple reason for the exact solvability of two-Schur correlators is—to the best of our
knowledge—unknown.

In this section, we present such a formula for two-Schur averages in the general case
of the r -fold q-deformed logarithmic model. We have tested this formula with numerous
computer experiments.19

Conjecture 1. For a pair of partitions λ,μ let Zλμ be the following product,

Zλμ =
∏

1≤i< j≤N

�λi − λ j + j − i; 0�r,0
� j − i; 0�r,0

∏

1≤i< j≤N

�μi − μ j + j − i; 0�r,0
� j − i; 0�r,0

∏

1≤i, j≤N

�2N + 1 − i − j; u + v�r,a
�2N + 1 + λi + μ j − i − j; u + v�r,a

∏

(i, j)∈λ

�N + j − i; u�r,a
�N + j − i; u + v�r,a

∏

(i, j)∈μ

�N + j − i; v�r,0
�N + j − i; 0�r,0 ,

(5.1)

with the linear factors given by

�x; y�r,a =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�
q(x+r y)/2 − q−(x+r y)/2

q1/2 − q−1/2 , (x + a) mod r = 0 ,

ω
x/2
r − ω

−x/2
r

ω
1/2
r − ω

−1/2
r

, (x + a) mod r �= 0 .

(5.2)

Then,

〈
χλ

(
X
)
χμ

(
Tr Xk �→ Tr Xk + rv δr |k

) 〉
=
{
Zλμ, if deg� Zλμ = 0 ,

0, otherwise.
(5.3)

Here the notation sλ(Tr Xk �→ Tr Xk + rvδr |k) means that we first write sλ as a linear
combination of multitrace operators and then replace Tr Xk �→ Tr Xk +rvδr |k . Note that
this formula does not fully survive the polynomial limit: when x �→ x/v and v → ∞,
the v-shift in the second Schur polynomial implies that theμ-dependence goes away, and
the formula reduces to a single Schur correlator. Thus, there is no analogous two-Schur
average formula in the monomial matrix models considered in Sect. 3.

The r = 1 case of Conjecture 1 was given in [46,47,51] and used to formulate a
proof of the AGT conjecture. For v = 0 these conjectures reduce to a theorem proven
by Kadell [45]. The space of conjectured solvable two-Schur correlators is diagrammed
in Fig. 5. Here we include the possibility of an elliptic generalization, see, e.g., [44].

As illustrated in Fig. 5, the r -foldq-deformedmodel discussed in Sect. 4.3 generalizes
all of the known solvable two-Schur correlators, with the possible exception of an elliptic
version of the formula. For r = 1 one recovers the correlators associated to the q-Selberg
model from [51], of which the other existing conjectures are special cases. An additional
relationship in the diagram arises from the q → ωr limit of the r = 1 q-deformed
formula, which gives the r -fold formula without q-deformation, see Sect. 4.3. If an

19 The necessary MAPLE code may be found at http://math.harvard.edu/~shakirov/.

http://math.harvard.edu/~shakirov/
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Fig. 5. The landscape of two-Schur correlators

elliptic generalization exists for r = 1, we speculate that the r -fold q-deformed formula
may be some limit of it.

In the next subsection we outline a possible physical interpretation for the existence
of the factorization formula, Conjecture 1.

5.2. Five-dimensional partition functions. The AGT conjecture [18,19], by now proven
by several different approaches [46,47,52–62], states a correspondence between confor-
mal blocks of q-deformed Toda CFTs withW -algebra symmetry and partition functions
of N = 1 5d gauge theories. Since conformal blocks of (q-deformed) Toda CFTs can
be represented in matrix model form, this is really a relation between three quantities,
i.e., a “threesome” [63] or “triality” [59].

In this paper we only need the simplest example of an AGT correspondence: equality
between a 3-point conformal block of Wq,t (sl2)—i.e., the q-Virasoro algebra—and the
partition function of a 5d T2 gauge theory. In particular, in the free-field formalism the
3-point conformal block is exactly represented by the q-Selberg integral. This gives a
simple 5d argument for why the q-Selberg integral is solvable (i.e., is fully factorized as
a product of Gamma-functions with linear arguments), because the partition function of
a 5d T2 gauge theory is fully perturbative, and does not have a non-trivial instanton part.

An important special case that has attracted significant attention is when the q-
deformation parameter is an r th root of unity. In this case, as shown in [20,64], the
5d partition function reduces to a 4d partition function on an ALE space, the C

2/Zr
orbifold. At the same time the matrix model (q-Selberg integral) reduces to precisely
the integrals that we study in the current paper, see Sect. 4.3.20 This provides a 5d
physical perspective for why the non-q-deformed model with r > 1 is solvable.

20 It should be noted that a different matrix model was derived for the same partition function earlier in
[20]. This other matrix model was obtained using the methods of [65] and is not the usual AGT description.
The relation between AGT-type matrix models and Sulkowski-type matrix models is not a simple change of
variables; rather, it should involve a spectral duality transformation [66].
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At the same time this argument also hints at a physical explanation of why the q-
deformed model with r > 1 is solvable. Namely, instead of taking the root of unity
limit, one can consider directly the 5-dimensional T2 theory on an orbifold C

2/Zr . The
resulting theory would depend on both q and r and—because of the relation to orbifold
T2 theory—should be given by a product of Gamma-functions with linear arguments.
This could also shed light on why the two Schur average is factorized for these models.

To connect this answer to our integrals, however, there has to be an orbifold version
of the 5d AGT correspondence. Orbifold generalizations of AGT have been considered
in [21–25], but we are unaware of an exact relationship to the matrix models considered
in our paper. Thus, the physical interpretation of the topmost nodes in Fig. 5 remains an
open problem.

This argument also allows us tomake a connection tomathematics in the enumerative
geometry of symplectic resolutions. The T2 theory in five dimensions is known to be
equivalent to aU (1) theorywith two fundamental hypermultiplets. The partition function
of this theory is mathematically a K-theoretic integral (push-forward) of a sheaf on a
Hilbert scheme of points on C

2 that corresponds to fundamental matter. The results of
the current paper correspond to considering instead aHilbert scheme of points onC

2/Zr .

5.3. Superconformal indices and surface defects. Another way to explain the solvability
of the q-Selberg integral is to note that it is a special case of the elliptic Selberg integral [6,
7], which is itself equal to the superconformal index of a 4d N = 1 gauge theory with
gauge group Sp(2N ), one chiral multiplet in the antisymmetric tensor representation,
and six fundamental chiral multiplets. This gauge theory is s-confining [10–13], hence it
admits an infrared description in terms of chiral multiplets interacting via an irrelevant
superpotential. The absence of a gauge group in this description implies that the index
factors into a product of elliptic gamma functions, which in turn implies the factorization
of the q-Selberg integral.

Recall that the superconformal index is the partition function of the theory on S3×S1.
Replacing S3 by a Lens space L(r, p) leads to a refined index which has received some
attention in the literature [14–16]. Since, of course, L(r, n) is a Zr orbifold of S3, this
suggests that perhaps the r -fold q-Selberg integral considered in Sect. 4.3 is a special
case of the superconformal index of the same Sp(2N ) gauge theory on L(r, n)× S1 (for
some n, e.g., n = 1). More generally, other r -fold matrix models of the kind considered
in Sect. 4 may relate to the index of the same CFT on a Lens space as generates the
parent matrix model on S3.

An intriguing feature of this potential connection to indices is that it could explain
the physics behind the factorization of Schur averages. It is natural to conjecture that the
insertion of a Schur function (or the appropriate elliptic analog) into a superconformal
index is related to the insertion of a surface defect in the partition function of the gauge
theory, see for instance [67]. If so, the factorization of Schur averages in the r -foldmatrix
models considered in this paper could relate to the physics of surface defects on Lens
spaces.

Nonetheless, at the time of writing we have been unable to make the connection
between r -fold matrix models and Lens space indices explicit, and it remains an inter-
esting open problem for future research.
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A. Divisibility and Quotients of Partitions

In this appendix we review the concept of dividing a partition by a natural number as it
relates to our work. (see, e.g., [32, pp. 12–14] for a textbook treatment).

A.1. Determinants and p-quotients. To motivate the concepts of divisibility and quo-
tients for partitions, consider the determinant

det
1�I,J�N

δp|(λI+J−I ) f

(
λI + J − I

p

)
, (A.1)

for natural numbers p, N ∈ N, a partition λ1 � · · · � λN � 0 and any function f (n).
Writing the determinant as a sum det MI J = ∑

σ (−1)σ
∏

I MIσ(I ), the permutations
which contribute satisfy

σ(I ) ≡ I − λI (mod p) . (A.2)

This specifies σ up to the ordering of pairs I, I ′ for which I − λI ≡ I ′ − λI ′ (mod p).
This ordering can be specified by p permutations σμ, 0 � μ < p, constructed so that

σ(Iμ,i ) > σ(Iμ,i ′) iff σμ(i) > σμ(i ′) , (A.3)

where Iμ,i is the i th value of I for which I − λI − 1 ≡ μ (mod p). We have explicitly

σ(Iμ,i ) = 1 + p(σμ(i) − 1) + μ . (A.4)

Recall that a permutation σS on a set S is finitary (infinitary) if it acts non-trivially on
a finite (infinite) subset of S. As an infinitary permutation cannot be written as a finite
product of transpositions, it is convenient to define its signature as (−1)σ ≡ 0. With this
definition, it is straightforward to check that

(−1)σ = δp(λ)

p−1∏

μ=0

(−1)σμ , (A.5)

where the “p-signature” δp(λ) is the signature of the permutation σ̂ (Iμ,i ) = 1 + p(i −
1) + μ (c.f. [32, p. 50]).
Since the permutations which appear in the determinant are finitary, (A.1) vanishes

unless δp(λ) �= 0. For reasons which will soon become clear, we call a partition λ with
δp(λ) �= 0 “p-divisible.” In general, we have

Iμ,i = 1 + p(i − iμ − 1) + μ , Iμ,i > λ�
1 , (A.6)

where σ̂ is finitary iff iμ = 0 for all 0 � μ < p. The p integers iμ, constrained by∑
μ iμ = 0, can be thought of as a remainder. Conventionally, this is expressed in terms
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of the “p-core”, λ mod p, which is the smallest partition χ such that i (χ)
μ = i (λ)

μ .21 We

use the notation (λ mod p)μ ≡ i (λ)
μ henceforward.

By expressing σ in terms of σμ, the determinant (A.1) can be rewritten as

det
1�I,J�N

δp|(λI +J−I ) f

(
λI + J − I

p

)

= δp(λ)

p−1∏

μ=0

det
1�i, j�nμ

f

(
j − 1 +

λIμ,i − Iμ,i + μ + 1

p

)
, (A.7)

where nμ ≡
⌊
N−μ−1

p

⌋
+ 1. Notice that

(λ/p(μ))i ≡ i − (λ mod p)μ − 1 +
λIμ,i − Iμ,i + μ + 1

p
, (A.8)

defines a partition λ/p(μ), since (λ/p(μ))i+1 � (λ/p(μ))i and (λ/p(μ))i = 0 for Iμ,i >

N . We find

det
1�I,J�N

δp|(λI +J−I ) f

(
λI + J − I

p

)
= δp(λ)

p−1∏

μ=0

det
1�i, j�nμ

f
(
(λ/p(μ))i + j − i

)
,

(A.9)

since iμ = 0 when δp(λ) �= 0.
The p partitions λ/p(μ), 0 � μ < p, defined in (A.8) are known as the “p-quotient”

of λ. As we have seen, these play an important role in evaluating determinants of the
form (A.1).More generally, the determinant of an arbitrarymatrixMI J satisfyingMI J =
0 for (λI + J − I ) mod p �= 0 can be found using the formula

det
1�I,J�N

δp|(λI+J−I ) f(J−1) mod p

(⌊
N + λI − I

p

⌋
,

⌊
N − J

p

⌋)

= δp(λ)

p−1∏

μ=0

det
1�i, j�nμ

fμ
(
nμ + (λ/p(μ))i − i, nμ − j

)
,

(A.10)

for p functions fμ(x, y), where (A.9) is a special case.

A.2. The abacus diagram. The p-core, p-quotient, and p-signature have a graphical
interpretation, as follows. Consider a plot consisting of the points

{(
(i − λi − 1) mod p,

⌊
λi − i

p

⌋) ∣∣∣∣ i ∈ N

}
, (A.11)

in Zp × Z, which is the same as the plot

21 We later show that χ is unique, which is not obvious at present.
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Fig. 6. a The lower-right boundary of a Young diagram determines a binary sequence, where we indicate the
centerline of the sequence (the point for which the number of 1’s to the left and 0’s to the right are equal) with
a bar. b For each inversion in the sequence (1 before a 0), there is a corresponding box in the Young diagram
(red) and an associated rim hook (grey). Removing the inversion (exchanging the circled digits) corresponds
to removing the rim hook. a A Young diagram determines a binary sequence. b An inversion and its rim hook

{(
μ, (λ mod p)μ + (λ/p(μ))i − i

) ∣∣∣∣ i ∈ N, 0 � μ < p

}
. (A.12)

This is known as the “abacus diagram”, and can be constructed from the Young diagram
associated to λ as follows.
We assign a binary digit 1 (0) to each vertical (horizontal) line segment along the

lower-right boundary of the Young diagram. Reading off the resulting sequence from
upper-right to lower-left and padding the beginning (end) with an infinite number of
0s (1s), we obtain an infinite binary sequence which encodes the Young diagram, see
Fig. 6a. This sequence has a natural centerline where it crosses the diagonal of the
Young diagram (the point where the number of 1s preceding is equal to the number
of 0s following). For each “inversion”—a pair of digits 1, 0, where the 1 precedes the
0—there is a corresponding box in the Young diagram with hook length equal to the
distance between the two digits. Swapping to the two digits corresponds to removing
the associated rim hook from the Young diagram, see Fig. 6b.
To construct the abacus diagram, we print out the binary sequence left-to-right, top-

to-bottom, in p columns, arranged so that the centerline falls on a line break. Each 1
in the sequence corresponds to the end of a row in the Young diagram, whereas in the
abacus diagram the 1s coincide with the points of the plot (A.11), henceforward referred
to as “beads”. Conversely, using (A.12) we see that the binary sequence in the column
μ, 0 � μ < p, corresponds to the p-quotient λ/p(μ), where the centerline (determined
by equating the 1s preceding and the 0s following, as before) is a height (λ mod p)μ
above the centerline of the abacus diagram.
The remainder (λ mod p)μ is unaffected by sliding beads vertically in the abacus

diagram (adding or removing a rim-hook of length p), hence the p-core is determined
uniquely by sliding all the beads downwards as far as they can go. This reproduces the
standard definition of the p-core: theYoung diagramwhich results from removing length
p rim-hooks until none remain. The relation between the Young diagram, the abacus
diagram, and the p-quotient and p-core is summarized in Fig. 7.
The p-signature can also be given a diagrammatic interpretation, as follows. Reading

top to bottom in the kth column, label the j th bead with k + ( j − 1)p. Reading left
to right, top to bottom, σ̂ (i) is the label associated to the i th bead, and δp(λ) is the
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(a)

0 0 0 0
0 0 0 1
1 0 1 0
0 0 1 1
0 1 1 1
1 1 1 1

(b)

(        ,   ,   ,     )λ/4(µ) :

λ mod 4:

(c)

Fig. 7. Translating between a a Young diagram, b the corresponding abacus diagram, and c the p-quotient
and p-core, in the case p = 4 for the Young diagram in Fig. 6a. a Young diagram. b Abacus diagram. c Core
and quotient

signature of σ̂ . Using this construction it is straightforward to show that the effect of
adding a rim-hook spanning the rows i, i + 1, . . . , j is to map

σ̂ → σ̂ ◦ ( j, j − 1, . . . , i) , (A.13)

in cycle notation, so that the group algebra is related to sliding beads in the abacus dia-
gram. This observation provides another method (easier to apply by hand) for computing
the p-signature. Removing length p rim-hooks successively until no boxes remain, the
p-signature of λ is equal to (−1)k when there are k rim-hooks spanning an even number
of rows.

A.3. Basic theorems. We now catalog a few basic properties of p-cores, p-quotients,
and p-signatures. For the sake of brevity, we omit most proofs, leaving them as an
exercise for the interested reader.
To state these properties concisely, we define the functions

Hp,i (λ) = |{x ∈ λ|hλ(x) ≡ i (mod p)}| , Cp,i (λ) = |{x ∈ λ|cλ(x) ≡ i (mod p)}| ,
(A.14)

which count the number of boxes in λ with hook-length and contents congruent to i
(mod p), respectively.
We have

Theorem 7. For any partition λ and p ∈ N:

1. |λ| = p
∑

μ |λ/p(μ)| + |λ mod p| .
2. λ is a p-core iffHp,0(λ) = 0.
3. Hp,0(λ) � |λ|/p and Hp,0(λ) � Cp,0(λ).
4. The following are equivalent

i. λ is p-divisible,
ii. Hp,0(λ) = |λ|/p,
iii. Hp,0(λ) = Cp,0(λ),
iv. ∀i ∈ Z, Cp,i (λ) = |λ|/p.

5. If λ is p-divisible, then ∀i ∈ Z, Hp,i (λ) +Hp,p−i (λ) = 2|λ|/p.
One way to prove these results is to construct λ from its p-core by sliding beads in the
abacus diagram, keeping track of both sides of the relevant (in)equality.
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Theorem 8. If λ is p-divisible then its p-signature is given by the product over boxes

δp(λ) = (−1)
|λ|
p
∏

x∈λ

(−1)

⌊
cλ(x)
p

⌋
+
⌊
hλ(x)

p

⌋

. (A.15)

As above, this formula can be proven by constructing λ from its (empty) p-core and
keeping track of both sides, e.g., using (A.13) to track the changes in p-signature.

Theorem 9. The p-core, p-quotient, and p-signature transformas followsunder a trans-
position of the Young diagram

1. λ� mod p = (λ mod p)� ,
2. λ�/p(μ) = (λ/p(p−1−μ))� ,

3. δp(λ
�) = (−1)|λ|+ |λ|

p δp(λ) .

The first two parts are obvious from the abacus diagram, whereas the third follows from
Theorem 8 as well as

∑

x∈λ

(⌈
cλ(x)

p

⌉
−
⌊
cλ(x)

p

⌋)
= (p − 1)

|λ|
p

, (A.16)

for λ p-divisible, which is a direct consequence of property 4.iv of Theorem 7.
Using Theorem 9, we write down a useful variant of (A.10):

(−1)|λ| det
1�I,J�K

δp|(λ�
J +I−J ) f(−I ) mod p

(⌊
N + I − 1

p

⌋
,

⌊
N + J − λ�

J − 1

p

⌋)

= δp(λ)

p−1∏

μ=0

(−1)|λ/p(μ)| det
1�i, j�kμ

fμ
(
nμ + i − 1, nμ + j − (λ/p(μ))�j − 1

)
.

(A.17)

for K � λ1, where kμ =
⌊
K+μ
p

⌋
and N + K ≡ 0 (mod p).
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