
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-017-3070-z
Commun. Math. Phys. 361, 1155–1167 (2018) Communications in

Mathematical
Physics

A Conformally Invariant Gap Theorem in Yang–Mills
Theory

Matthew Gursky1, Casey Lynn Kelleher2, Jeffrey Streets3

1 Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, USA.
E-mail: mgursky@nd.edu

2 Department of Mathematics, Princeton University, Princeton, NJ 08540, USA.
E-mail: ckelleher@princeton.edu

3 Department of Mathematics, University of California, Irvine, CA 92617, USA.
E-mail: jstreets@uci.edu

Received: 5 August 2017 / Accepted: 4 November 2017
Published online: 13 January 2018 – © Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract: We show a sharp conformally invariant gap theorem for Yang–Mills connec-
tions in dimension 4 by exploiting an associated Yamabe-type problem.

1. Introduction

Let (Xn, g) be a smooth Riemannian manifold, and suppose ∇ is a connection on a
smooth vector bundle over X . The Yang–Mills energy associated to ∇ is

∫
X

|F∇|2g dVg.

Critical points of this functional are known as Yang–Mills connections, and satisfy
D∗∇ F∇ = 0. In the case n = 4, the Yang–Mills energy admits a special class of critical
points, namely those with (anti)self-dual curvature, i.e. �F∇ = ±F∇ , known as instan-
tons. Instantons are the key ingredient in developing applications ofYang–Mills theory to
four-dimensional topology throughDonaldson invariants (cf. [10–12]).When they exist,
instantons always have the minimum possible Yang–Mills energy. However, on many
interesting bundles where the instantons are understood, there exist non-minimizing
Yang–Mills connections (e.g. [5,23,27,31]). Moreover, many basic questions about the
structure of Yang–Mills connections beyond instantons remain unanswered, for instance
on the allowable energy levels. We note that Bourguignon-Lawson ([7] Theorems C, D)
have shown some gap results assuming pointwise smallness of some pieces of the cur-
vature, exploiting primarily the Bochner formula. This was later improved by Min-Oo
([22] Theorems 2, 4) to an L2 gap theorem, exploiting an ε-regularity argument which
requires positivity of a certain curvature quantity associated to the background metric. A
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closely related gap result in the presence of a curvature positivity condition was shown
by Parker ([24] Proposition 2.2). Later Feehan ([13]) showed a more general L2 gap
theorem, which removes this positivity hypothesis, and again ultimately relies on ε-
regularity style estimates, where the smallness of Yang–Mills energy is balanced against
the Sobolev constant to obtain a key estimate. The main result of this paper improves
upon all of these prior gap theorems. In particular, we show a sharp, conformally in-
variant improvement of these gap theorems that is nontrivial when the Yamabe invariant
Y ([g]) of (X4, g) (see [21]) is positive.

Theorem 1.1. Let (X4, g) be a closed, oriented four-manifold. Suppose ∇ is a Yang–
Mills connection on a vector bundle E over X4 with structure group G ⊂ SO(E), and
curvature F∇ . Then one of the following must hold:

(1) F+∇ ≡ 0; or
(2) F+∇ satisfies

Y ([g]) ≤ 3γ1‖F+∇‖L2 + 2
√
6‖W+‖L2 , (1.1)

where γ1 = γ1(E) ≤ 4√
6

is a constant which depends on the structure group of the

bundle (see Definition 2.3 below), and W+ is the self-dual Weyl tensor.
Moreover, if equality holds in (1.1) then [g] admits a Yamabe metric g with respect
to which W+ has constant norm, ∇g F+∇g

≡ 0, and

Rg − 2
√
6|W+|g = 3γ1|F+∇|g, (1.2)

where Rg is the scalar curvature of g. Furthermore, if γ1 > 0we must have b+2 (X4) =
0, whereas if γ1 = 0 then all harmonic self-dual forms are parallel.

The key idea to prove the inequality (1.1) is to interpret a certain Böchner estimate
for F+∇ in light of the modified Yamabe problem introduced in [16]. This technique has
been used in various contexts to prove sharp L2-curvature estimates under topological
and geometric assumptions (see [17,18,20]). In each of these applications one studies
a generalization of the Yamabe problem in which the scalar curvature is modified by
adding a conformal density of the correct weight. Carrying this method out requires a
number of sharp linear algebraic estimates carried out in Sect. 2.1, as well as a sharp
improved Kato inequality for bundle-valued differential forms shown in Sect. 2.2.

The estimate (1.1) is sharp, as illustrated in a key geometric situation. First, note that
as follows from Lemmas 2.4 and 2.6, one has the universal bound γ1 ≤ 4√

6
. Using this

together with explicit calculations for the Yamabe constant and the Yang–Mills energy
as spelled out in Sect. 3.2, one sees that the classic example of SU(2) ADHM/BPST
instantons on (S4, gS4) ([1,3]) yields equality in (1.1). Moreover, the existence of a
conformally relatedmetric forwhich the curvature is parallel reflects the fact that all these
instantons are determined by the action of the conformal group on the unique SO(4)-
invariant ADHM/BPST instanton (the “standard” ADHM/BPST instanton) which has
parallel curvature.

We note here that it may be possible to extend Theorem 1.1 to the case when the
underlying Riemannian manifold is complete. Previous results in this direction have
been shown ([9,30,35]), which rely on a curvature positivity condition (see also [15]).
As our proof relies on solving a kind of modified Yamabe problem, extending it to the
complete setting requires knowledge of the asymptotics of the underlying metric and
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the given Yang–Mills connection. This makes the sharp statement in this direction not
completely clear, and we do not pursue this further here.

Theorem 1.1 has some immediate corollaries, whichwe collect below. First, using the
characteristic class formula from Chern-Weil theory we derive a lower bound which we
make explicit in the case of conformally flat metrics, which includes of course the round
sphere. Here we take the convention following ([12] (2.1.40)) for the meaning of the
characteristic number κ(E). Note in particular that κ(E) = c2(E) for SU(r) bundles.
However, our metric convention differs from ([12]), see (Sect. 3.2, (3.17)). To make
things concrete, estimates (1.4) and (1.5) below are saying for instance on a |κ(E)| = 1
bundle, any Yang–Mills connection which is not an instanton must have at least three
units of charge, where intuitively one unit each of SD/ASD charge cancel out to preserve
the characteristic class condition.

Corollary 1.2. Let (X4, g) be a closed, oriented, conformally flat four-manifold with
Y ([g]) > 0. Suppose ∇ is a Yang–Mills connection on a vector bundle E over X4

with structure group G ⊂ SO(E), and curvature F∇ . Then ∇ is either an instanton, or
satisfies

∫
X

|F∇|2g dVg ≥ 16π2 |κ(E)| + 2Y ([g])2
9γ 2

1

≥ 16π2 |κ(E)| + Y ([g])2
12

. (1.3)

In particular,

1. For E → (S4, gS4) an SU(2) bundle, a Yang–Mills connection ∇ is either an instan-
ton, or satisfies

∫
S4

|F∇|2g dVg ≥ 16π2 |κ(E)| + 32π2. (1.4)

2. For E → (S4, gS4) an SO(3) bundle, a Yang–Mills connection ∇ is either an instan-
ton, or satisfies

∫
S4

|F∇|2g dVg ≥ 16π2 |κ(E)| + 64π2. (1.5)

Another application of Theorem 1.1 is to the Yang–Mills flow. Fundamental work
of Chen–Shen [8], Struwe, [34], Schlatter [29], Kozono–Maeda–Naito [19] shows that
finite time singularities of the Yang–Mills flow occur via energy concentration, and
moreover bubbling limits can be constructed which are Yang–Mills connections over
(S4, gS4). Although not explicitly stated, an immediate corollary of those works is a
global existence and convergence statement for connections over the trivial bundle with
sufficiently small energy, where this constant depends on a gap theorem for connections
on S4. Thus Theorem 1.1 gives a statement about Yang–Mills flow that is much stronger
than that previously attainable, yielding a computable universal threshold below which
the flow must exist globally and converge. In the case of (S4, gS4) the limit is flat, and
the corollary gives the sharp energy inequality, which guarantees convergence to a flat
connection. Note that the hypothesis that the bundle is trivial is a necessary consequence
of the energy upper bound hypothesis, but we state it for clarity.
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Corollary 1.3. Let (X4, g) be a closed, oriented, four-manifold. Suppose E → X4 is a
trivial bundle with structure group G ⊂ SO(E). Suppose ∇ is a connection on E with
curvature F∇ satisfying ∫

X
|F∇|2 dVg < 16π2. (1.6)

Then the solution to Yang–Mills flow with initial condition ∇ exists on [0,∞), and
converges as t → ∞ to a Yang–Mills connection. If (X4, g) ∼= (S4, gS4) then the limit
is flat.

2. Preliminary Inequalities

In this section we establish preliminary inequalities necessary for the proof of Theorem
1.1. In particular, in Sect. 2.1 we show sharp matrix inequalities needed to estimate non-
linear terms which arise. We also establish an improved Kato inequality for Lie algebra
valued 2-forms in Sect. 2.2 which yields favorable inequalities for small powers of

∣∣F+∇
∣∣.

To set the stage, we restate the fundamental Böchner formula here for convenience. First
let us fix certain conventions. For sections of gE we define the canonical inner product

〈A, B〉 := − 1
2 tr(AB). (2.1)

The factor of 1
2 is in keeping with the convention of Bourguignon-Lawson ([7] (2.14)).

This inner product is positive definite since the only Lie algebras we consider satisfy
gE ⊂ soE , the space of skew symmetric endomorphisms of E . In the Bochner formula
below, the inner products use the given Riemannian metric in conjunction with (2.1).

Lemma 2.1 ([6,7] Theorem 3.10). Let (X4, g) be a Riemannian manifold, and suppose
E → X is a smooth vector bundle with connection ∇. If ω ∈ �2

+(gE ) is a harmonic
two-form, one has

1
2	|ω|2 = |∇ω|2 − 〈ω, [F+, ω]〉 − 2〈ω, W+ � ω〉 + 1

3 R |ω|2 , (2.2)

where with respect to local bases one has, for P, Q ∈ �2
+(gE ), the tensor [P, Q] ∈

�2
+(gE ) defined via

[P, Q]βi jα := gkl
(

Pβ
ikδ Qδ

jlα − Pδ
ikα Qβ

jlδ − Pβ
jkδ Qδ

ilα + Pδ
jkα Qβ

ilδ

)
, (2.3)

and

(W+ � ω)
β
i jα := gkpglq W+

i jklω
β
pqα.

2.1. Sharp matrix inequalities. In this subsection we establish estimates for the curva-
ture and covariant derivative terms in (2.2). First we estimate the Weyl curvature term.
As the action is induced from the natural action on real valued self-dual two-forms, the
proof is a straightforward modification of that case.

Lemma 2.2. Let (X4, g) be a Riemannian manifold, and suppose E → X is a smooth
vector bundle with connection ∇. If ω ∈ �2

+(gE ) is a two-form, one has
∣∣〈ω, W+ � ω〉∣∣ ≤ 2√

6
|W+||ω|2. (2.4)
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Proof. This follows directly from the fact that W+ is a trace-free endomorphism of �2
+,

a rank 3 vector bundle (cf. [33] p 234). ��
The estimate of the bracket term in (2.2) will depend on the Lie algebra. We define

two constants relevant to understanding the bracket term in the Böchner formula.

Definition 2.3. Given g ⊂ soE , let

γ0 := sup
A,B∈g\{0}

|[A, B]|
|A| |B| ,

γ1 := sup
ω∈�2

+(g)\{0}

〈ω, [ω,ω]〉
|ω|3 .

These suprema are certainly attained as the quantities are scale invariant and defined
on finite dimensional vector spaces. A crucial point however is that these quantities
depend on the choice of metric on gE . Thus the choice (2.1) is important to what follows,
and fixes the “scale” of various terms involving Lie algebra values. A fundamental
lemma of Bourguignon-Lawson gives a universal upper bound for γ0, which is further
improvable for some special Lie algebras.

Lemma 2.4 ([7] Lemma 2.30). Given g ⊂ soE , one has γ0 ≤ √
2, with the supremum

defining γ0 attained by pairs A, B which are simultaneously equivalent to a pair of Pauli
matrices, i.e.

A =

⎛
⎜⎜⎜⎝

0 t
−t 0 0

0
0 t
−t 0

0

0 0

⎞
⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎝

0
−s 0
0 s

s 0
0 −s 0

0

0 0

⎞
⎟⎟⎟⎠ . (2.5)

Furthermore, in the case g = so3 one has γ0 = 1.

Next, using Lemma 2.4, we establish an estimate for the wedge product commutator
of Lie algebra valued 2-forms. We first record an elementary linear algebra fact. Note
here that we take the metric induced on two-forms as

〈η,μ〉 := gik g jlηi jμkl .

Lemma 2.5. Given (V 4, g) an inner product space, for η,μ ∈ �2
+(V ∗) define (η ◦μ) ∈

�2
+(V ∗) via

(η ◦ μ)i j = gkl (
ηikμ jl − η jkμil

)
.

Then given {e1, e2, e3} an orthonormal basis for �2
+(V ∗), one has that {(e1 ◦ e2), (e1 ◦

e3), (e2 ◦ e3)} is another orthonormal basis.

Lemma 2.6. Let E → (M4, g) be a smooth vector bundle. Given P ∈ �2
+(gE ), one has

|[P, P]| ≤ 2√
3
γ0 |P|2 .
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Proof. Fix a point p ∈ M and let {ei }, i = 1, 2, 3 be an orthonormal basis for �2
+ at p.

Now let us express P = Pi ei , where Pi ∈ gE . Due to the skew commutativity of the
bracket structure we may estimate

|[P, P]|2 =
∣∣∣[Pi ei , P j e j ]

∣∣∣2

=
∣∣∣2(e1 ◦ e2) ⊗ [P1, P2] + 2(e1 ◦ e3) ⊗ [P1, P3] + 2(e2 ◦ e3) ⊗ [P2, P3]

∣∣∣2

≤ 4

(∣∣∣[P1, P2]
∣∣∣2 +

∣∣∣[P1, P3]
∣∣∣2 +

∣∣∣[P2, P3]
∣∣∣2

)

≤ 4γ 2
0

(∣∣∣P1
∣∣∣2

∣∣∣P2
∣∣∣2 +

∣∣∣P1
∣∣∣2

∣∣∣P3
∣∣∣3 +

∣∣∣P2
∣∣∣2

∣∣∣P3
∣∣∣2

)

≤ 4γ 2
0
3

(∣∣∣P1
∣∣∣2 +

∣∣∣P2
∣∣∣2 +

∣∣∣P3
∣∣∣2

)2

= 4γ 2
0
3 |P|4 . (2.6)

Taking the square root yields the claim. ��
Remark 2.7. We note that equality in Lemma 2.6 is achieved by the curvature of the
standard ADHM/BPST instanton. At a fixed point this tensor takes the form (cf. (3.16))

F∇ = λ
{(

dx12 + dx34
)

⊗ i +
(

dx13 − dx24
)

⊗ j +
(

dx14 + dx23
)

⊗ k
}

.

Note that, in the notation of Lemma 2.6, this curvature is expressed as ei Pi = e1i+e2j+
e3k for {e1, e2, e3} the standard basis for �2

+. Using the quaternion relations, it is clear
that the pairwise commutators between the Pi are thus orthogonal, making the third line
of (2.6) an equality. These matrices Pi are Pauli matrices, so by Lemma 2.4 the fourth
line is also an equality. Lastly, as each Pi has the same norm, the fifth line of (2.6) is an
equality.

2.2. Improved Kato inequality. In this subsection we prove a sharp Kato inequality for
Lie algebra valued harmonic two-forms on four-manifolds. This was proved for Yang–
Mills connections on R4 in [25]. Our proof is an elementary modification of the method
of Seaman [28], who showed a sharpKato inequality for harmonic real valued two-forms
on four-manifolds, and exploited it to derive vanishing results for positively curved four-
manifolds. Seaman’s method exploits the conformal invariance of harmonic two-forms
in four dimensions, together with a delicate comparison of the Böchner formula for
two choices of conformal factor. The Yang–Mills equation is also conformally invariant
in four-dimensions, and the relevant Bochner formula only differs by a conformally
invariant term, the proof is adapted in a straightforward manner.

Proposition 2.8. Let E → (X4, g) be a vector bundle over a smooth Riemannian four-
manifold. Given ∇ a connection on E, and ω ∈ �2(gE ) a harmonic two-form, one has
the pointwise inequality

|∇ω|2 ≥ 3
2 |d |ω||2 . (2.7)
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Proof. First, by applying theBochner formula (Lemma2.1) toω (summing over self-dual
and antiself-dual parts) we obtain

1
2	 |ω|2 = |∇ω|2 + 〈[F, ω] − 2W � ω + R

3 ω,ω
〉
. (2.8)

We now make a conformal modification of the metric and derive a second Böchner
identity. In particular, let ĝ = |ω| g, which defines a smooth Riemannian metric away
from the zero locus of |ω|. Note by construction that |ω|2ĝ ≡ 1. Furthermore, as the
condition that ω is harmonic is conformally invariant, ω is harmonic with respect to ĝ,
and thus we apply the Bochner formula again to conclude

0 = 1
2 	̂ |ω|2ĝ =

∣∣∣∇̂ω

∣∣∣2
ĝ
+

〈
[F̂, ω] − 2Ŵ � ω + R̂

3 ω,ω
〉
ĝ
. (2.9)

The bundle curvature F and the Weyl tensor W are conformally covariant, yielding
〈
[F̂, ω] − 2Ŵ � ω, ω

〉
ĝ

= |ω|−3 〈[F, ω] − 2W � ω, ω〉 . (2.10)

On the other hand, using the transformation formula for the scalar curvature under
conformal change one obtains

〈
R̂
3 ω,ω

〉
ĝ

= |ω|−3
(〈 R

3 ω,ω
〉 − 1

2	 |ω|2 + 3
2 |d |ω||2

)
. (2.11)

Plugging (2.10) and (2.11) into (2.9), and incorporating (2.8) we conclude

∣∣∣∇̂ω

∣∣∣2
ĝ

= − |ω|−3
(〈[F, ω] + W � ω + R

6 ω,ω
〉 − 1

2	 |ω|2 + 3
2 |d |ω||2

)

= |ω|−3
(
|∇ω|2 − 3

2 |d |ω||2
)

.

This implies the desired inequality away from the vanishing locus of |ω|, which in turn
implies the inequality at all points.

3. Main Proofs

In this section we give the proof of Theorem 1.1. As discussed in the introduction the
proof involves a delicate application of ideas from conformal geometry to the Böchner
formula for F+∇ . The proof of Theorem 1.1 appears in Sect. 3.1. Then in Sect. 3.2 we
give an example illustrating the sharpness of the estimate. We conclude in Sect. 3.3 with
the proofs of Corollaries 1.2 and 1.3.

3.1. Proof of Theorem 1.1.

Proof. Let ∇ denote a Yang–Mills connection, and let us set F = F∇ for convenience.
Then DF = 0, D∗F = 0, and it follows easily that �F is also closed and co-closed,
hence DF+ = 0, D∗F+ = 0. Thus we may apply Lemma 2.1 to F+ to yield

1
2	|F+|2 = |∇F+|2 − 〈F+, [F+, F+]〉 − 2〈F+, W+ � F+〉 + 1

3 R|F+|2. (3.1)
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By the result of Lemma 2.2 and the definition of γ1, we immediately obtain

1
2	|F+|2 ≥ |∇F+|2 + 1

3 (R − 2
√
6|W+| − 3γ1|F+|)|F+|2. (3.2)

By the Leibniz rule, away from the zero locus of F+ we have

1
2	|F+|2 = |F+|	|F+| + |∇|F+||2,

hence by (2.7)

	|F+| ≥ 1
2
|∇|F+||2

|F+| + 1
3 (R − 2

√
6|W+| − 3γ1|F+|)|F+|. (3.3)

It follows that

	|F+|1/2 ≥ 1
6

(
R − 2

√
6|W+| − 3γ1|F+|)|F+|1/2 (3.4)

off the zero locus of F+, or in the sense of distributions.
We next exploit (3.4) in conjunction with as a modified Yamabe problem introduced

in [16]. In particular, given a metric ĝ ∈ [g] we define
�ĝ = Rĝ − 2

√
6|W+|ĝ − 3γ1|F+|ĝ. (3.5)

If we drop theWeyl and F+-terms then� is just the scalar curvature. Moreover, because
these terms transform by scalings of the same weight under conformal changes of met-
ric, the transformation law for � is essentially the same as the scalar curvature. More
precisely, if we define the natural generalization of the conformal Laplacian by

L = −6	 + �,

then given ĝ = u2g it follows that

�ĝ = u−3Lgu. (3.6)

Moreover, L is conformally covariant:

Lĝφ = u−3Lg(uφ).

Consequently, if λ1(L) denotes the first eigenvalue of L ,

λ1(Lg) = inf
φ∈C∞,φ �=0

∫
X φLgφ dVg∫

X φ2 dVg
, (3.7)

then the sign of λ1(g) is a conformal invariant. In particular, by using an eigenfunction
associated with λ1(L) as a conformal factor, it follows that [g] admits a metric ĝ with
�ĝ > 0 (resp., = 0,< 0) if and only if λ1(Lg) > 0 (resp. = 0,< 0).

One departure from the classicalYamabe problem is that themodified scalar curvature
may only be Lipschitz continuous. Therefore, the Schauder estimates imply that the first
eigenfunction is in C2,α and hence defines a conformal metric which is only C2,α . One
can smooth |F+| and approximate (see Section 3 of [16] for details), but in our setting
this will not be necessary.

Returning to the inequality (3.4), we can now express this as

0 ≥ Lg(|F+|1/2). (3.8)
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Multiplying by |F+|1/2 and integrating over X4 gives

0 ≥
∫

X
|F+|1/2Lg(|F+|1/2) dVg.

It thus follows that either F+ ≡ 0 or λ1(Lg) ≤ 0. The case F+ ≡ 0 is case (1) of
the statement, thus we proceed to analyze the case λ1(Lg) ≤ 0. Let φ1 > 0 denote an
eigenfunction associated to λ1(L), and define the metric g = φ2

1g. By (3.6),

�g = φ−3
1 Lgφ1 = λ1φ

−2
1 ≤ 0.

Therefore,

0 ≥
∫

X
�g dVg =

∫
X

(
Rg − 2

√
6|W+| − 3γ1|F+|g

)
dVg,

or ∫
X

Rg dVg ≤ 2
√
6

∫
X

|W+|g dVg + 3γ1

∫
X

|F+|g dVg. (3.9)

We can estimate the integral on the left-hand side in terms of the Yamabe invariant of
[g]:

∫
X

Rg dVg ≥ Y ([g])Vol(g)1/2. (3.10)

For the terms on the right-hand side of (3.9) we use Cauchy-Schwartz:

2
√
6

∫
X

|W+|g dVg + 3γ1

∫
X

|F+|g dVg

≤ 2
√
6

(∫
X

|W+|2g dVg

)1/2

Vol(g)1/2 + 3γ1

(∫
X

|F+|2g dVg

)1/2

Vol(g)1/2

= 2
√
6

(∫
X

|W+|2g dVg

)1/2

Vol(g)1/2 + 3γ1
( ∫

X
|F+|2g dVg

)1/2 Vol(g)1/2,

(3.11)

where the second line follows from conformal invariance of the integrals. Combining
(3.9)–(3.11) and dividing by the square root of the volume we arrive at (1.1).

If equality is achieved then all of the inequalities above become equalities. Equality
in (3.10) implies that g is a Yamabe metric (hence C∞), and

Rg − 2
√
6|W+|g = 3γ1|F+|g, (3.12)

which proves (1.2). Since equality is attained in (3.11), it follows that both |W+|g and
|F+|g are constant. By conformal invariance of the Yang–Mills energy, we can write the
Böchner formula (3.1) with respect to any metric in [g]. If we use g in place of g, then
(3.2) becomes

0 = 1
2	g|F+|2g ≥ |∇F+|2g + 1

3�g|F+|2g = |∇F+|2g, (3.13)

hence F+ is parallel.
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Finally, we establish the statements concerning b+2 . By the Bochner formula for real-
valued self-dual two-forms (a special case of (3.1)),

1
2	g|ω|2 = |∇ω|2 − 2W+

g (ω, ω) + 1
3 Rg|ω|2. (3.14)

As a special case of Lemma 2.2 we have

|W+
g (ω, ω)| ≤ 2√

3
|W+||ω|2.

Therefore,

1
2	g|ω|2 = |∇ω|2 − 2W+

g (ω, ω) + 1
3 Rg|ω|2

≥ |∇ω|2 + 1
3

(
Rg − 2

√
6|W+|g

)|ω|2
= |∇ω|2 + γ1|F+|g|ω|2,

where the last line follows from (3.12). Since |F+|g is constant and non-zero by assump-
tion, we see that ω must vanish if γ1 > 0, implying b+2 = 0. If γ1 = 0 we see that ω

must be parallel, as claimed. ��

3.2. Sharpness via SU(2) instantons. It is possible to achieve equality in (1.1) via the
classic construction of BPST/ADHMSU(2) instantons on S4 ([1,3]). We recall the most
basic connection in this class, the standard connection, for convenience (and also as
a way to fix conventions). The standard connection is expressed on R

4, thought of as
S
4\{N }) as the su(2)-valued 1-form (cf. [12] (3.4.2))

θ = 1
1+|x |2 (θ1 ⊗ i + θ2 ⊗ j + θ3 ⊗ k) ,

where,

θ1 = x1dx2 − x2dx1 + x3dx4 − x4dx3

θ2 = x1dx3 − x3dx1 + x4dx2 − x2dx4

θ3 = x1dx4 − x4dx1 + x2dx3 − x3dx2.

Also, in keeping with our previous convention, we represent {i, j, k} as real matrices

i =
⎛
⎜⎝

0
1 0
0 1

−1 0
0 −1 0

⎞
⎟⎠ , j =

⎛
⎜⎝

0
0 1

−1 0
0 1

−1 0 0

⎞
⎟⎠ , k =

⎛
⎜⎝

0 1
−1 0 0

0
0 −1
1 0

⎞
⎟⎠ . (3.15)

A classic calculation yields the relevant curvature tensor

F∇ = 2(
1+|x |2)2

{(
dx12 + dx34

)
⊗ i +

(
dx13 − dx24

)
⊗ j +

(
dx14 + dx23

)
⊗ k

}
.

(3.16)
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Using our conventions for the metric induced by the Euclidean metric on two-forms,∣∣dx12
∣∣2 = 2, etc. Moreover, using (3.15) and (2.1), it follows that |i|2 = |j|2 = |k|2 = 2.

Putting these together we can compute the pointwise norm of F∇ in this context to yield

|F∇|2 = 4(
1+|x |2)4

(
2

∣∣∣dx12 + dx34
∣∣∣2 + 2

∣∣∣dx13 − dx24
∣∣∣2 + 2

∣∣∣dx14 + dx23
∣∣∣2

)

= 96(
1+|x |2)4 .

Using the conformal invariance of the Yang–Mills energy, we thus obtain

||F∇||2L2(S4,g
S4 )

= 96
∫
R4

1(
1+|x |2)4 dVEucl = 16π2.

Having computed the Yang–Mills energy, we turn to the remaining quantities in

(1.1). As follows from [2], the Yamabe invariant of the round 4-sphere is 4(3)(ω4)
1
2 =

12
( 8
3π

2
) 1
2 = 8

√
6π . Thus, employing Lemmas 2.4 and 2.6 we observe that the right

hand side of the right hand side of (1.1) can be estimated as

3γ1
∣∣∣∣F+∇

∣∣∣∣
L2 ≤ 3

(
2√
3
γ0

)
(4π) ≤ 8

√
6π = Y ([gS4 ]).

Thus (1.1) is an equality, as are all the intermediate estimates. These equalities reflect
many interesting geometric properties of this classic charge 1 SU(2) instanton. First,
as discussed in Remark 2.7, the curvature of this connection gives equality in the rel-
evant algebraic inequalities we used. Furthermore, the theorem yields parallelism of
F+∇ with respect to a particular representative of [g]. One can directly compute that the
distinguished BPST/ADHM connection representing the center of the moduli space has
parallel curvature with respect to the round metric. However, since all BPST/ADHM
connections are given by pullback by an element of the conformal group, one imme-
diately concludes again that any such connection has parallel curvature with respect
to a particularly chosen element of the conformal class, which our method explicitly
constructs in a more general fashion via the solution to the modified Yamabe problem.

3.3. Proofs of Corollaries.

Proof of Corollary 1.2. We recall the fundamental Chern-Weil formula

16π2κ(E) =
∫

X
tr(F∇ ∧ F∇) =

∫
X

(∣∣F−
∇

∣∣2
g − ∣∣F+∇

∣∣2
g

)
dVg. (3.17)

Let us first assume κ(E) ≥ 0, and F+∇ �= 0, with the case κ(E) ≤ 0 directly analogous.
Since we have assumed our metric is conformally flat and Y ([g]) > 0, we may combine
(1.1) and (3.17) to yield

||F∇||2L2 = ∣∣∣∣F−
∇

∣∣∣∣2
L2 +

∣∣∣∣F+∇
∣∣∣∣2

L2

= 16π2 |κ(E)| + 2
∫

X

∣∣F+∇
∣∣2
g dVg ≥ 16π2 |κ(E)| + 2Y ([g])2

9γ 2
1

,

as claimed. For the special case of (S4, gS4), as discussed in Sect. 3.2 know that the
Yamabe invariant is 8

√
6π . Moreover using Lemmas 2.4 and 2.6, we know that in the

case of structure group SU(2) we may choose γ1 = 4√
6
, whereas for SO(3) one has

γ1 = 2√
3
. This yields the remaining statements. ��
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Proof of Corollary 1.3. We give a very brief sketch which assumes familiarity with the
papers ([29,34]), and Yang–Mills flow in general. In particular, as discussed in ([34]
Theorem 2.3, [29] Theorem 1.1), any smooth connection admits a unique solution to
Yang–Mills flow with the prescribed initial data, which moreover encounters a singular-
ity at either finite or infinite time via “concentration of energy.” As made precise in ([34]
Theorem 2.4, [29] Theorem 1.2), at any singular point in spacetime one can construct
at least a maximal bubble defined as a limit of blowup sequences, which converge in
the Uhlenbeck sense to a nontrivial Yang–Mills connection over (S4, gS4). Crucially,
the energy of this limiting connection is no larger than the energy of the initial connec-
tion. Thus, comparing (1.6) against the results in Corollary 1.2, we see that the energy
inequalities cannot hold, and therefore this limiting connection must be an instanton.
However, comparing against (3.17), we see that any nonflat instanton must have energy
at least 16π2, thus we have arrived at a contradiction. Thus the flow exists globally and
the time slices converge subsequentially as time approaches infinity to a smooth limiting
Yang–Mills connection. In the case of (S4, gS4) it is clear by the argument above that
the limiting connection is flat. By employing Łojasiewicz-Simon arguments (cf. [26]
Proposition 7.2, [14,36] Theorem 7, all based on the classic [32] Theorem 2) one can
improve this C∞ Uhlenbeck subsequential convergence to convergence of the entire
flow line. ��
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