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Abstract: Strong Beltrami fields, that is, vector fields in three dimensions whose curl
is the product of the field itself by a constant factor, have long played a key role in fluid
mechanics and magnetohydrodynamics. In particular, they are the kind of stationary
solutions of the Euler equations where one has been able to show the existence of vortex
structures (vortex tubes and vortex lines) of arbitrarily complicated topology. On the
contrary, there are very few results about the existence of generalized Beltrami fields,
that is, divergence-free fieldswhose curl is the field times a non-constant function. In fact,
generalized Beltrami fields (which are also stationary solutions to the Euler equations)
have been recently shown to be rare, in the sense that for “most” proportionality factors
there are no nontrivial Beltrami fields of high enough regularity (e.g., of class C6,α),
not even locally. Our objective in this work is to show that, nevertheless, there are
“many” Beltrami fields with non-constant factor, even realizing arbitrarily complicated
vortex structures. This fact is relevant in the study of turbulent configurations. The core
results are an “almost global” stability theorem for strong Beltrami fields, which ensures
that a global strong Beltrami field with suitable decay at infinity can be perturbed to get
“many”Beltrami fieldswith non-constant factor of arbitrarily high regularity and defined
in the exterior of an arbitrarily small ball, and a “local” stability theorem for generalized
Beltrami fields, which is an analogous perturbative result which is valid for any kind of
Beltrami field (not just with a constant factor) but only applies to small enough domains.
The proof relies on an iterative scheme of Grad–Rubin type. For this purpose, we study
the Neumann problem for the inhomogeneous Beltrami equation in exterior domains via
a boundary integral equation method and we obtain Hölder estimates, a sharp decay at
infinity and some compactness properties for these sequences of approximate solutions.
Some of the parts of the proof are of independent interest.
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1. Introduction

Beltrami fields, that is, three dimensional vector fields whose curl is proportional to
the field, are a particularly important class of smooth stationary solutions of the three-
dimensional incompressible Euler equations:

∂t u + (u · ∇)u = −∇ p , div u = 0 .

In a way, what makes them so special is the celebrated structure theorem of Arnold [3],
which asserts that, under suitable technical hypotheses, the velocity field of a smooth
stationary solution to the Euler equations is either a Beltrami field or “laminar”, in the
sense that it admits a regular first integral whose smooth level sets provide “layers” to
which the fluid flow is tangent. In fluid mechanics, a Beltrami field is interpreted as a
fluid whose velocity is parallel to its vorticity.

Understanding the knot and link type of stream lines and tubes in stationary fluids
has also attracted the attention of many researchers, both from the theoretical and the
experimental points of view [18,19,28,44], because knotted stationary vortex structures
turned out to play a key role in the so called Lagrangian theory of turbulence. From
a numerical point of view, the description of the flows in the literature that allow for
arbitrary vortex structures is mainly based on an active vector formulation of Euler’s
equations (see [11] and the references therein). The existence of knotted and linked
vortex lines and tubes in stationary solutions to the Euler equations has been recently
established in [18,19] using strong Beltrami fields, that is, Beltrami fields with a constant
proportionality factor:

curl u = λu , λ ∈ R \{0} . (1)
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Notice that theBeltrami fields in [18,19] can be assumed to fall off as 1/|x | at infinity, and
that this decay rate is optimal (see the global obstructions in the form of a Liouville type
theorem in [7,36]). Concrete examples of Beltrami fields with constant proportionality
factor are the ABC flows, whose analysis has yielded considerable insight into the
aforementioned phenomenon of Lagrangian turbulence [17].

The main objective of this paper is to study the existence, regularity and stability
results of generalized Beltrami fields (i.e., Beltrami fields with nonconstant proportion-
ality factor). These vector fields play a fundamental role in the understanding of turbu-
lence. The idea that turbulent flows can be understood as a superposition of Beltrami
flows has already been proposed in [12,39]. They are also relevant in magnetohydro-
dynamics in the context of vanishing Lorentz force (force-free fields) and they can be
used to model magnetic relaxation, which is relevant in some astrophysical applica-
tions [27,29,34,35]. Indeed, to the best of our knowledge there are just a handful of
explicit examples, all of which have Euclidean symmetries, and the analysis of Beltrami
fields with nonconstant factor has proved to be extremely hard. The heart of the mat-
ter is that, as it was recently proved in [20], the equation for a generalized Beltrami
field,

curl u = f u , div u = 0 , (2)

does not admit any nontrivial solution, even locally, for a “generic” nonconstant func-
tion f . In a very precise sense, it shows that Beltrami fields with a nonconstant factor are
rare and such obstruction is of a purely local nature. These results have been carefully
stated in “Appendix B” for the reader’s convenience.

One of the aims of this paper is to show that, although generalized Beltrami fields
are indeed rare, one can still prove some kind of partial stability result. Specifically,
we will show that for each nontrivial Beltrami field, there are “many” close enough
nonconstant proportionality factors that enjoy close nontrivial generalized Beltrami
fields. The stabilility result is “partial” in the sense that a “full” stability result can-
not be expected since the space of factors that enjoy nontrivial generalized Beltrami
fields does not contain any ball in the Ck,α norm by the above-mentioned obstruc-
tions. The analysis of stability can be crucial to shed some light on the interactions
between the different scales in the study of relevant configurations in a fully turbulent
state.

More concretely, we will prove two stability results for generalized Beltrami fields.
The first one (Theorem 3.7) is an “almost global” perturbation result for strong Beltrami
fields defined on R

3. Roughly speaking, it asserts that given any nontrivial solution
of (1) onR3 with optimal fall-off at infinity (i.e., 1/|x |) and any arbitrarily small ball G,
there are infinitely many nonconstant factors f , as close to the constant λ as one wishes
in Ck,α(R3), such that the corresponding Eq. (2) admits nontrivial solutions on the
complementR3 \G. This can be combined with the results in [18,19] to construct almost
global Beltrami fields with a nonconstant factor that feature vortex lines and vortex
tubes of arbitrarily complicated topology (Theorem 4.1). The second stability result
(Theorem 5.3) states an analogue for perturbations of nontrivial Beltrami fields with
constant or nonconstant factor defined in a small enough open set where the field does
not vanish. The point of these stability results is that the perturbation of the initial
proportionality factor is defined by recursively propagating a two-variable function along
the integral curves of a velocity vector field, so that is the flexibility in choosing the
proportionality factor that is granted by the method of proof. Notice that the idea of
constructing the proportionality factor by dragging along the integral curves of a field is
somehow inherent to the problem, as the incompressibility condition div u = 0 implies
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that, if it is nonconstant, the factor must be a first integral of the generalized Beltrami
field, i.e.,

u · ∇ f = 0 .

Let us outline the key aspects of the proofs. For concreteness, since all the ideas
involved in the proof of the local partial stability result are essentially present in that of
the almost global theorem, we shall only discuss the latter result in this Introduction.
As we have already mentioned, the point of the partial stability result is to develop a
perturbation technique allowing us to deform the initial factor f , which for the pur-
pose of this discussion can be taken to be a nonzero constant λ. This requires analyzing
a related boundary value problem, namely, the Neumann boundary value problem for
the inhomogeneous Beltrami equation with constant proportionality factor λ in exterior
domains. To our best knowledge, this problem has not been directly studied in the litera-
ture. Our analysis is based on a boundary integral equation method for complex-valued
solutions which requires some potential theory estimates for generalized volume and
single layer potentials and an analysis of the decay properties and radiation conditions
of the solutions. They will be determined through the natural connections between the
complex-valued solutions of the Beltrami, Helmholtz and Maxwell systems.

In [27], the authors show that one can perturb a harmonic field (i.e., a Beltrami field
with λ = 0) defined in an exterior domain to construct a generalized Beltrami field with
a nonconstant factor. However, the perturbed fields and factors are of low regularity (of
class C1,α and C0,α , respectively). In view of the relevance and important applications
of Beltrami fields with nonzero λ, we have striven to extend the result for harmonic fields
to general Beltrami fields, and also to show the existence of perturbations of arbitrarily
high regularity (the field will be in Ck+1,α and the factor in Ck,α for any fixed integer k).
It should be stressed that the passing from λ = 0 to nonzero λ is not a trivial matter, since
the behavior of the equations at infinity is completely different (oversimplifying a little,
for λ = 0 the behavior of the fields at infinity is that of a harmonic function, so one gets
uniqueness simply from a decay condition, while for nonzero λ, Beltrami fields solve
Helmhotz’s equation, so radiation conditions must be specified to obtain uniqueness.)
We will present a detailed treatment of these topics (Sect. 2 and “Appendix A”), since
we consider that they are of independent interest.

The gist of the proof of the almost global partial stability result for strong Beltrami
fields is to study the convergence in Ck,α of an iterative scheme that takes the form{∇ϕn · un = 0, x ∈ �,

ϕn = ϕ0, x ∈ �,

{
curl un+1 − λun+1 = ϕnun, x ∈ �,

un+1 · η = u0 · η, x ∈ S.

Here, � stands for an exterior domain with smooth boundary S, η is its outward unit
normal vector field and � is some open subset of the boundary. This is a modified
Grad–Rubin method (see [1,5] for the original Grad–Rubin method in the setting of
force-free fields perturbations of harmonic fields), which we will start up with a strong
Beltrami field u0 of constant proportionality factor λ (which can be assumed to exhibit
knotted and linked vortex structures) and prescribes the value ϕ0 of the perturbation
of the proportionality factor λ over �. Notice that {ϕn}n∈N and {un}n∈N are taken in a
consistent way so that whenever they have limits ϕ and u in some sense, then ϕ is a
global first integral of u and such vector field verifies the Beltrami equation (2) with
f = λ + ϕ.

Our approach will be based again on the analysis of stationary transport equations
along stream tubes and a sequence of inhomogeneous problems of div-curl type that
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we will call inhomogeneous Beltrami equations and which are intimately linked to the
Helmhotz equation. In fact, we will start with the complex-valued fundamental solution
of the Helmholtz equation in R

3

	λ(x) = eiλ|x |

4π |x | , x ∈ R
3 \{0},

and will arrive at a representation formula of Helmholtz–Hodge type for its complex-
valued solutions. Then, it is necessary to specify the optimal decay and radiation condi-
tions that allow dealing with generalized volume and single layer potentials, namely,∫

∂BR(0)
|u(x)| dx S = o(R2), R → +∞, (3)

∫
∂BR(0)

∣∣∣i x
R

× u(x) − u(x)
∣∣∣ dx S = o(R), R → +∞. (4)

Here, (3) is nothing but a weak decay condition of the velocity field u in L1 and (4)
will be called the L1 Silver–Müller–Beltrami radiation condition (L1 SMB) and will
be deduced from both the classical Sommerfeld and Silver–Müller radiation conditions,
whose connections with the Helmholtz equation and the Maxwell system are classical.

Summing up, we will be interested in analyzing the existence and uniqueness of
complex-valued smooth solution with high order Hölder-type regularity of the general
Neumann boundary value problem for the inhomogeneous Beltrami equation (NIB)

⎧⎪⎨
⎪⎩
curl u − λu = w, x ∈ �,

u · η = g, x ∈ �,

+ L1 decay property (3),
+ L1 SMB radiation condition (4).

(5)

Notice that although we were originally interested in real-valued Beltrami fields, we
will be concerned with complex-valued solutions to (5) and we will then take real parts
to obtain the real-valued ones. The reason to do it is twofold. Firstly, this will allow
us to employ a representation formula for complex-valued radiating fields. Secondly,
this presents no problems related to the application to knotted structures as one can
realize the fields in [18,19] as the real parts of complex-valued radiating Beltrami fields.
Problem (5) was previously studied in [29], who provedC1 regularity results in bounded
domains. We introduce some potential theory estimates of high order for generalized
potentials associated with inhomogeneous kernels in exterior domains and adapt the
boundary integral method to the unbounded setting. We will also improve regularity
from C1 to Ck+1,α .

Consequently, we will rely on the complex-valued counterpart of the modified Grad–
Rubin method:

{∇ϕn · un = 0, x ∈ �,

ϕn = ϕ0, x ∈ �,

⎧⎪⎨
⎪⎩
curl vn+1 − λvn+1 = ϕnun, x ∈ �,

vn+1 · η = u0 · η, x ∈ S,

+ L1 Decay property (3),
+ L1 SBM radiation condition (4),

(6)

where un = �vn are the real parts of the complex-valued solutions vn . The compactness
of {un}n∈N inCk+1,α(�,R3) follows from some Schauder estimates of Eq. (5) in Hölder
spaces. Similarly, {ϕn}n∈N will be shown to be compact in Ck,α(�) too. Concerning
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the application to solutions u0 with knotted vortex structures of the kind constructed
in [18,19], we will see that the solution u inherits the knotted vortex structures from
u0 (up to a small deformation) by virtue of structural stability. This is a straightforward
consequence of the fact that u can be chosen close to u0 as long as the prescribed value
ϕ0 is small enough.

The paper is organized as follows. Section 3 is devoted to studying the iterative
scheme (6). First, we analyze the linear transport equations in the right hand side and
the convergence of the iterative scheme will then follow from the analysis of (5). Such
problem will be studied in Sect. 2 by extending the results in [29,38,43]. By comparison
with the vector-valued divergence-free Helmhotz equation, the reduced Maxwell system
and the Beltrami equation, we will deduce the apropriate radiation and decay conditions.
The SMB radiation condition (4) will then be connected with the classical Silver–Müller
and Sommerfeld radiation conditions and we will then present a representation formula
of Helmholtz–Hodge type which involves these radiation conditions and that will be
extremely useful to obtain our existence, uniqueness and regularity results. In Sect. 4, we
combine the above results to construct small perturbations of the constant proportionality
factor λ leading to nontrivial generalized Beltrami fields that exhibit the same kind of
knots and links and so to construct stationary solutions to the Euler equations. Finally,
in order to support the above regularity results, “Appendix A” will focus on obtaining
Hölder estimates of high order for volume and single layer potentials associated with
the inhomogeneous kernel 	λ(x). The underlying ideas can be adapted to many other
general inhomogeneous kernels with a controlled decay at infinity. The local partial
stability result for generalized Beltrami fields will be discussed in Sect. 5. “Appendix
B” recalls, for the benefit of the reader, the results on the generic non-existence of
generalized Beltrami fields proved in [20].

Notation Let us conclude this Introduction by summing up some notation that will be
used throughout the paper without further notice. The notation regarding the domains
can be stated as follows:

⎧⎪⎪⎨
⎪⎪⎩

• G is a Ck+5 bounded domain homeomorphic to an Euclidean ball and
containing the origin, i.e., 0 ∈ G.

• � := R
3 \G is its exterior domain and S :=∂� = ∂G is the boundary surface.

• η denotes the outward unit normal vector field of S.

(7)

Although most of our results hold under weaker assumption on the boundary regularity
(specificallyCk+1,α boundaries), there are certain results concerning a singular boundary
integral equation which need S to be at least Ck+5 because higher order derivatives of
the normal vector field η are involved (see for instance Theorem A.10).

Concerning functional spaces, we will essentially use the same notation as in [23].
Let us agree to say that Ck(�) is the space of functions of class Ck on � with finite
Ck norm (meaning that all their derivatives up to order k are bounded). We will replace
� by � when the function and all its derivatives up to order k can be continuously
extended to the closure of �. The space Ck,α(�) is the inhomogeneous Hölder space
with exponent α ∈ (0, 1) and k-th order regularity. We will use similar notation Ck(S),
Ck,α(S) for functions defined on S. Vector-valued analogs of these spaces are denoted
in the usual fashion, e.g. Ck,α(�,R3).
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2. Neumann Problem for the Inhomogeneous Beltrami Equation and Radiation
Conditions

In this section we analyze the existence and uniqueness of solutions in Ck+1,α of the
NIB problems (5) arising in the modified Grad–Rubin iterative method (6). The key
tool is a representation formula of Helmholtz–Hodge type for its solutions, which we
will combine with the well-posedness of the underlying boundary integral equation for
the tangential components in the space of Ck+1,α tangent vector fields to the boundary.
For this we will need to deal with some regularity results for high order derivatives of
generalized volume and single layer potentials arising in the classical potential theory,
which will require some potential-theoretic estimates for inhomogeneous singular inte-
gral kernels that are relegated to “Appendix A” for simplicity of exposition. Regarding
the representation formula, wewill introduce and discuss in detail the weakest decay and
radiation conditions under which this formula holds (namely, (3) and (4)), as this topic
is of independent interest. Notice that many other radiation conditions have been used in
the literature for relatedmodels: the natural one for the scalar complex-valuedHelmholtz
equation is the Sommerfeld radiation condition and those of the reducedMaxwell system
are called the Silver–Müller radiation conditions (SM) (see e.g. [9,10,37,45]).

Let us first recall some previous results in the literature about the exterior NIB bound-
ary value problem (5).Although the sameproblem is studied in [29] for bounded domains
and C1 vector fields, the technique that we present in this section has not been studied in
the case of exterior domains and Ck,α-regularity. We recall that in [29] it was essential
to assume that λ is “regular” with respect to the interior problem. This is the case when
λ is not a Dirichlet eigenvalue of the Laplacian in the interior domain, or if it is a simple
eigenvalue whose eigenfunction has non-zero mean, so this condition holds generically
(as it can be seen e.g. by considering arbitrarily small rescalings of the domain). Related
results for exterior domains are proved in [38]. Indeed, the technique used in bounded
domain by [43] and [29] (for λ = 0 and λ �= 0, respectively) goes through to the case
of λ = 0 and exterior domains via sharp estimates of harmonic volume and single layer
potentials in C1,α . In our case λ is a nonzero constant, which leads to inhomogeneous
kernels where the estimates in unbounded domains are much harder to obtain.

There is some literature regarding Laplace’s equation in less regular settings (e.g.
L p data and Lipschitz domains). For C1 domains, [14,15] solved it via the analysis of
harmonic measures and [22] introduced a method of layer potentials. The latter looks
like the method that we propose and is supported by Fredholm’s theory: some boundary
singular integral operator is shown to be compact and one to one in the C1 setting,
leading to bijectivity and an useful lower estimate that entails the well posedness. For
purely Lipschitz domains, compactness does no longer hold [21] whilst bijectivity is
preserved [16]. Regarding non-symmetric elliptic operators L = − div A(x)∇ in the
half-space (x, t) ∈ R

n ×R
+, the well posedness of the Dirichlet problem with L p data

[26] follows from the method of “ε-approximability” and the absolute continuity of the
L-harmonic measure with respect to the surface measure.

Let us now analyze the representation formula, the radiation conditions and some
existence and uniqueness results for the scalar complex-valued Helmholtz equation. We
will introduce some classical notation and powerful tools like the far field pattern of a
radiating solution not only in the homogeneous setting but also in the inhomogeneous
one. All these results will be later used and extended to the NIB problem (5) in the
subsequent parts of this section.



204 A. Enciso, D. Poyato, J. Soler

2.1. Inhomogeneous Helmholtz equation in the exterior domain. The Helmholtz equa-
tion with wave number λ ∈ R in the exterior domain � stands for the elliptic PDE

�a + λ2a = 0, x ∈ �,

where the unknown is a possibly complex-valued scalar function a ∈ C2(�,C). This
equation arises in acoustic and electromagnetic mathematics [10,37] and in the study
of Beltrami fields arising either from the incompressible Euler equation or from the
force-free field system of magnetohydrodynamics. Indeed, it can be derived from (1) by
taking curl and noting that Beltrami fields are divergence-free when λ �= 0.

This relation with the Beltrami equation suggests studying the representation formu-
las, radiation conditions and uniqueness result for the Helmholtz equation.

Definition 2.1. Wewill say that a complex-valued scalar function a ∈ C1(�,C) verifies

• the L1 Sommerfeld radiation condition if
∫

∂BR(0)

∣∣∣∇a(y) · y

R
− iλa(y)

∣∣∣ dy S = o (R) , R → +∞. (8)

• the L1 decay property at infinity if

∫
∂BR(0)

|a(y)| dy S = o(R2), when R → +∞. (9)

Other stronger radiation conditions may be assumed to obtain representation formu-
las and certain uniqueness results [10,37]. For instance, the L2 Sommerfeld radiation
condition ∫

∂BR(0)

∣∣∣∇a(y) · y

R
− iλa(y)

∣∣∣2 dy S = o(1), R → +∞, (10)

implies (8) and, in turns, the classical (L∞) Sommerfeld radiation condition

sup
y∈∂BR(0)

∣∣∣∇a(y) · y

R
− iλa(y)

∣∣∣ = o

(
1

R

)
, R → +∞, (11)

implies (10). There is another stronger link between the L2 and L1 conditions that will
be exhibited in the next results. The proof follows from a simple expansion of the square
in the L2 condition (10) and an integration by parts argument in the Helmholtz equation
multiplied by the solution itself.

Remark 2.2. Let a ∈ C2(�,C) ∩ C1(�,C) be any complex-valued solution to the
Helmholtz equation such that (10) holds. Then

lim
R→+∞

∫
∂BR(0)

(∣∣∣∣∂a∂η

∣∣∣∣
2

+ λ2|a|2
)

dx S = −2λ	
(∫

S
a

∂a

∂η
dx S

)
.

In particular, (10) ⇒ (8) + (9) for each complex-valued solution of the Helmholtz
equation.
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Before showing that this radiation condition leads to aforementioned formula, let us
analyze it in the case of the fundamental solution to the 3-D Helmholtz equation,

	λ(x) = eiλ|x |

4π |x | =
(
cos(λ|x |)
4π |x | + i

sin(λ|x |)
4π |x |

)
. (12)

Since

∇	λ(x) =
(
iλ − 1

|x |
)

	λ(x)
x

|x | , (13)

a straightforward inductive argument shows that all the partial derivatives of 	λ(x) up
to second order verify an even stronger version of the Sommerfeld radiation condition
(11). Hence we easily infer:

Proposition 2.3. The fundamental solution of the Helmholtz equation, together with its
partial derivatives up to order 2 satisfy the identities

∇	λ(x) · x

|x | − iλ	λ(x) = −	λ(x)

|x | ,

∇
(

∂	λ

∂xi

)
(x) · x

|x | − iλ
∂	λ

∂xi
(x) =

(
2

|x | − iλ

)
	λ(x)

xi
|x |2 ,

∇
(

∂2	λ

∂xi∂x j

)
(x) · x

|x | − iλ
∂2	λ

∂xi∂x j
(x) = −∇

(
∂	λ

∂xi

)
(x) · ∂

∂x j

(
x

|x |
)

+
∂

∂x j

((
2

|x | − iλ

)
	λ(x)

xi
|x |2
)

,

for every i, j ∈ {1, 2, 3}. Consequently,

sup
x∈∂BR(0)

∣∣∣∇(Dγ 	λ)(x) · x

R
− iλDγ 	λ(x)

∣∣∣ = O

(
1

R2

)
, for R → +∞,

for every multi-index with |γ | ≤ 2.

In particular, 	λ(x) together with its partial derivatives up to order two verify the
Sommerfeld radiation condition (11). It is then an easy task to obtain newcomplex-valued
solutions to the homogeneous Helmholtz equation enjoying such radiation condition
through the definition of the generalized single layer potentials associated with the
kernel 	λ(x).

Proposition 2.4. Let a be the generalized single layer potential with density ζ ∈ C(S)

associatedwith theHelmholtz equation, i.e., a(x) := (Sλζ )(x) = ∫S 	λ(x−y)ζ(y) dy S,

for every x ∈ �. Then, a solves the homogeneous Helmholtz equation �a + λ2a = 0
in the exterior domain �. Moreover, a and all its partial derivatives up to second order
verify the Sommerfeld radiation condition (11).

The same result remains true for generalized volume potential with compactly sup-
ported densities. In this case, radiating solutions for the inhomogeneous complex-valued
Helmholtz equation can be obtained.
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Proposition 2.5. Let a be the generalized volume potential with density ζ ∈ Cc(�) asso-
ciatedwith theHelmholtz equation, i.e., a(x) := (Nλζ )(x) = ∫

�
	λ(x−y)ζ(y) dy S, for

every x ∈ �. Then, a solves the inhomogeneous Helmholtz equation −(�a + λ2a) = ζ

in the exterior domain �. Moreover, a and all its partial derivatives up to second order
verify the Sommerfeld radiation condition (11).

To establish the representation formula for the inhomogeneous Helmholtz equation,
we study the radiation conditions for the volume and single layer potentials, as well as its
decay properties at infinity. We will need the Hardly–Littlewood–Sobolev estimates of
fractional integrals [42, Theorem 1.2.1], which we state not in terms of L p integrability
conditions but in terms of pointwise decay at infinity. The proof follows from similar
arguments.

Theorem 2.6. Consider any dimension N and 0 < α < N. Define the associated Riesz
potential by

Rα(x) := |x |−α, x ∈ R
N .

For any measurable function f : RN −→ R, we have

(1) If f = O(|x |−ρ) for |x | → +∞ and ρ is any nonnegative exponent such that
N − α < ρ < N then,

|(Rα ∗ f )(x)| ≤ C‖|x |ρ f ‖L∞(RN )|x |(N−ρ)−α,

holds for every x ∈ R
N . Here, C stands for a positive constant that depends on N,

α and ρ but do not depend on f .
(2) The optimal decay |x |−α is obtained in the compactly supported case, i.e.,

|(Rα ∗ f )(x)‖ ≤ C‖ f ‖L∞(RN )|x |−α,

for every x ∈ R
N , as long as f ∈ L∞(RN ) has compact support inside some ball

BR0(0). Now, not only does C depend on N and α but also on the size R0 > 0 of
the support.

The above results permit obtaining a Stokes-type formula to represent the solutions
to the inhomogeneous Helmholtz equation. Now, we deal with the weakest radiation
condition, namely, the L1 Sommerfeld radiation condition and some property of weak
decay at infinity in L1. We will skip the proof, since it is completely analogous to the
more important result for complex-valued solutions of the inhomogeneous Beltrami
equation that we present in the next Sect. (Theorem 2.12). See also [10, Theorem 2.4]
and [37, Theorem 3.1.1] for a proof with more restrictive radiation conditions that can
be recovered from the next stronger version via Remark 2.2.

Theorem 2.7. Let a ∈ C2(�,C) ∩ C1(�,C) be any function which verifies the L1

Sommerferld radiation condition (8) and the L1 decay property at infinity (9). Assume
that �a + λ2a = O(|x |−ρ) when |x | → +∞, for some exponent 2 < ρ < 3. Then,

a(x) = −
∫

�

	λ(x − y)(�a(y) + λ2a(y)) dy +
∫
S

∂	λ(x − y)

∂η(y)
a(y) dy S

−
∫
S
	λ(x − y)

∂a

∂η
(y) dy S, (14)

for every x ∈ � and, as a consequence, a = O(|x |−(ρ−2)), when |x | → +∞. Indeed,
when �a + λ2a has compact support, one obtains the optimal decay at infinity, namely,
a = O(|x |−1), when |x | → +∞.
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The properties follow from Theorem 2.6 and they may also be found in [10,37].
Notice that the decay rates |x |−(ρ−2) (for the inhomogeneous equation) and |x |−1 (for
the homogeneous one) are straightforward consequences of the representation formula.

An immediate consequence of the representation formulas in Theorem 2.7 is that a
far field pattern at infinity exists for each solution to the Helmholtz equation (see [10]
for details). It is a very powerful tool since it provides a description of the asymptotic
behavior at infinity and easy uniqueness criteria for radiating solutions.

Althoughmost of the literature is only devoted to far field patterns of complex-valued
radiating solutions to the homogeneous Helmholtz equation, our problem concerns the
inhomogeneous setting. For this, consider any solution a ∈ C2(�,C) ∩ C1(�,C) to
the inhomogeneous Helmholtz equation

−(�a + λ2a) = f, x ∈ �,

where f is compactly supported in � and a verifies both the decay condition (9) and
the L1 Sommerfeld radiation condition (8). Then, Theorem 2.7 leads to

a(x) =
∫

�

	λ(x − y) f (y) dy +
∫
S

∂	λ(x − y)

∂η(y)
a(y) dy S −

∫
S
	λ(x − y)

∂a

∂η
(y) dy S.

Consider the compact subset K := supp f and notice the asymptotic behavior

	λ(x − y) = 	λ(x)

{
e−iλ x

|x | ·y + O

(
1

|x |
)}

, when |x | → +∞,

∂	λ(x − y)

∂η(y)
= 	λ(x)

{
∂e−iλ x

|x | ·y

∂η(y)
+ O

(
1

|x |
)}

, when |x | → +∞,

where O
(|x |−1

)
is uniform in y ∈ K ∪ S in the first formula and uniform in y ∈ S in

the second one. From here we deduce the asymptotic behavior

a(x) = 	λ(x)

{
a∞
(

x

|x |
)
+ O

(
1

|x |
)}

, when |x | → +∞, (15)

where a∞ is called the far field pattern of a, and reads as

a∞(σ ) =
∫

�

e−iλσ ·y f (y) dy +
∫
S

∂e−iλσ ·y

∂η(y)
a(y) dy S −

∫
S
e−iλσ ·y ∂a

∂η
(y) dy S,

for each point σ ∈ ∂B1(0).
It is apparent that a∞ is uniquely determined from formula (15). Hence, we can define

the following well-defined linear and one to one map

D∞ −→ C∞(∂B1(0))
a �−→ a∞,

(16)

where the domain of the far field pattern mapping is

D∞ := {a ∈ C2(�,C) ∩ C1(�,C) : �a + λ2a

has compact support and (8) and (9) hold}.
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A similar reasoning leads to an explicit formula for the far field pattern of the derivatives
of a, namely,

(∇a)∞(σ ) = iλa∞(σ )σ, ∀σ ∈ ∂B1(0). (17)

The splitting in (15) ensures that

lim
R→+∞

∫
∂BR(0)

|a(x)|2 dx = 1

4π

∫
∂B1(0)

|a∞(σ )|2 dσ S. (18)

The celebrated Rellich Lemma [10, Lemma 2.11] states that the only complex-valued
solution a ∈ C2(�,C) to the exterior homogeneous Helmholtz equation such that the
limit in the left hand side of the preceding formula becomes zero is the zero function
identically. Therefore, whenever a solution to the homogenoeus Helmholtz equation has
a well-defined far field pattern and it vanishes, then a vanishes everywhere.

CombiningRellichLemmawithRemark 2.2, the following uniqueness result follows.
It is of great interest to deal with Dirichlet and Neumann boundary value problems in
the exterior domain, see [10, Theorem 2.12].

Lemma 2.8. Consider any solution a ∈ C2(�,C) ∩ C1(�,C) to the complex-valued
homogeneous Helmholtz equation in the exterior domain� fulfilling the L2 Sommerfeld
radiation condition (10). Then, a verifies

λ	
(∫

S
a(x)

∂a

∂η
(x) dx S

)
≤ 0.

If the equality holds, then a vanishes everywhere in �.

In the case of vector-valued solutions, the decay property and radiation conditions
can be considered componentwise. For instance, given any vector-valued solution u ∈
C2(�,C3) ∩ C1(�,C3) to

−(�u + λ2u) = F, x ∈ �,

where F is compactly supported, then the decay property and radiation condition read
∫

∂BR(0)
|u(x)| dx = o(R2), when R → +∞,

∫
∂BR(0)

∣∣∣Jac u(x)
x

R
− iλu(x)

∣∣∣ dx = o(R), when R → +∞.

One can wonder whether there are more natural radiation conditions for vector-valued
solutions to Helmholtz equation, see [9, Theorem 4.13] and [45, Section 5, Theorem
2]. Straightforward computations using curl(curl u) − ∇(div u) − λ2u = F in �, and
curl(curl(curl u)) − λ2 curl u = curl F in � show that the terms associated with the far
field patterns vanish and we obtain the radiation conditions

sup
x∈∂BR(0)

∣∣∣ x
R

× curl u(x) − div u(x)
x

R
+ iλu(x)

∣∣∣ = o

(
1

R

)
, when R → +∞,

sup
x∈∂BR(0)

∣∣∣λ x

R
× u(x) + i curl u(x)

∣∣∣ = o

(
1

R

)
, when R → +∞.
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Div–Free Helmholtz Reduced Maxwell

Beltrami

B := u, E := − curl u
iλ

u := B

SMH SM

SMB

u
B := u

E := − curl u
iλ

Fig. 1. Sketch of the connections between the three related models: divergence-free Helmholtz equation,
reduced Maxwell system and Beltrami equation. The picture in the left shows the bonds between such models
whilst the picture in the right exhibits the associated relations between its natural radiation conditions

When u is a divergence-free solution to the Helmholtz equation (as in our case), the
radiation condition are simpler and read

sup
x∈∂BR(0)

∣∣∣ x
R

× curl u(x) + iλu(x)
∣∣∣ = o

(
1

R

)
, when R → +∞, (19)

sup
x∈∂BR(0)

∣∣∣λ x

R
× u(x) + i curl u(x)

∣∣∣ = o

(
1

R

)
, when R → +∞. (20)

2.2. Inhomogeneous Beltrami equation in the exterior domain. Now, we move to the
complex-valued inhomogeneous Beltrami equation. In order to understand where the
natural radiation condition (4) comes form, we will connect three different systems that
will provide an appropriate terminology. The heuristic idea is summarized in Fig. 1.
Through the relations between the vector fields u and B in the left hand side of such
pictures, we find (see [10, Theorem 6.4] and [45]) that the divergence-free Helmholtz
equation and the reducedMaxwell system [10, Definition 6.5] are completely equivalent,
i.e., {

�u + λ2u = 0, x ∈ �,

div u = 0, x ∈ �.
⇐⇒
{
curl E − iλB = 0, x ∈ �,

curl B + iλE = 0, x ∈ �.

In order that the solutions to this system could be represented through the classical
Stratton–Chu formulas [10, Theorem 6.6], the Silver–Müller radiation conditions (SM)
have to be considered:

sup
x∈∂BR(0)

∣∣∣B(x) × x

R
− E(x)

∣∣∣ = o

(
1

R

)
,

sup
x∈∂BR(0)

∣∣∣E(x) × x

R
+ B(x)

∣∣∣ = o

(
1

R

)
, when R → +∞.

Due to our choice of B and E , the SM radiation conditions leads to (19)–(20) again.
Thus, the natural radiation conditions for the divergence-free vector-valued Helmholtz
equation are actually a consequence of the SM radiation conditions for the reduced
Maxwell system. Therefore, we will call them the Silver–Müller–Helmholtz radiation
conditions (SMH).
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Let us now consider the case of the Beltrami equation

curl u − λu = 0, x ∈ �.

When λ �= 0, then u is a solution to the divergence-free Helmholtz equation, and
consequently it also solves the reduced Maxwell system. Therefore, one may want to
transfer the SMH or the original SM radiation condition to the Beltrami framework.
An easy substitution in (19) and (20) leads to the Silver–Müller–Beltrami radiation
condition (SMB):

sup
x∈∂BR(0)

∣∣∣i x
R

× u(x) − u(x)
∣∣∣ = o

(
1

R

)
, when R → +∞.

It might seem that the only connection between the Beltrami equation and the
divergence-free vector-valued Helmholtz equation is the first implication sketched in
Fig. 1, but the connection is actually much stronger. The reason is the following. Given
any solution u to the Beltrami equation, it is obviously a solution to the divergence-free
Helmholtz equation. The point is that, conversely, given any solution û to the divergence-
free Helmholtz equation,

u := curl û + λû

2λ
. (21)

is a solution to the Beltrami equation, and all the solutions can be constructed this way.
In view of this converse relation, it is natural to wonder about the radiation conditions

that one should assume on û in order for u to verify the SMB radiation condition. For
this, notice that

i
x

R
× u(x) − u(x) = i

2λ

( x
R

× curl û(x) + iλû(x)
)
+

i

2λ

(
λ
x

R
× û(x) + i curl û(x)

)
,

for every x ∈ ∂BR(0). Therefore, the SMB radiation condition on u is recovered form
the SMH radiation conditions on û, so all the possible links between the three models
and its corresponding radiation conditions in Fig. 1 follow.

Remark 2.9. The complex-valued Beltrami fields u satisfying the SMB radiation condi-
tion take the form (21) for some solution û of the divergence-free Helmholtz equation
satisfying the SMH radiation conditions.

Definition 2.10. We will say that u verify

(1) the L1 Silver–Müller–Beltrami condition if

∫
∂BR(0)

∣∣∣i x
R

× u(x) − u(x)
∣∣∣ dx S = o(R), R → +∞; (22)

(2) the L1 decay property at infinity if

∫
∂BR(0)

|u(x)| dx S = o(R2), when R → +∞. (23)
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Analogously to the case of the Helmholtz equation, one might consider the L2 SMB
radiation condition∫

∂BR(0)

∣∣∣i x
R

× u(x) − u(x)
∣∣∣2 dx S = o(1), R → +∞, (24)

or the (L∞) SMB radiation condition

sup
x∈∂BR(0)

∣∣∣i x
R

× u(x) − u(x)
∣∣∣ = o

(
1

R

)
, R → +∞. (25)

As in the Helmholtz equation, similar reasonings yield the next remark that links (24)
to (22) and (23).

Remark 2.11. Let u ∈ C1(�,C3) be any complex-valued solution to the Beltrami equa-
tion such that (24) holds. Then

lim
R→+∞

∫
∂BR(0)

(∣∣∣ x
R

× u(x)
∣∣∣2 + |u(x)|2

)
dx S = 2	

(∫
S
u(x) · (η(x) × u(x)) dx S

)
.

In particular, (24) ⇒ (22) + (23) for each complex-valued solution of the Beltrami
equation.

In the next result we show the desired decomposition theorem of Helmholtz–Hodge
type is proved under the above L1 decay and radiation hypotheses:

Theorem 2.12. Let u ∈ C1(�,C3) be any vector field which verifies the L1 SMB con-
dition (22) and (23). Assume that div u, curl u − λu = O(|x |−ρ) when |x | → +∞ for
2 < ρ < 3. Then, u can be decomposed as u(x) = −∇φ(x) + curl A(x) + λA(x), for
every x ∈ �, where φ and A are the scalar and vector fields

φ(x) =
∫

�

	λ(x − y) div u(y) dy +
∫
S
	λ(x − y)η(y) · u(y) dy S,

A(x) =
∫

�

	λ(x − y)(curl u(y) − λu(y)) dy +
∫
S
	λ(x − y)η(y) × u(y) dy S.

As a consequence, u = O(|x |−(ρ−2)), when |x | → +∞. Indeed, when both div u and
curl u − λu are compactly supported, one obtains the optimal decay at infinity, namely,
u = O(|x |−1), when |x | → +∞, and u satisfies the Sommerfeld radiation condition
(11) componentwise.

Proof. Consider any x ∈ � and fix any couple of radii ε0, R0 > 0 such that

Bε0(x) ⊆ � and Bε0(x) ∪ G ⊆ BR0(0).

Define the subdomain �(x, ε, R) := � ∩ (BR(0) \ Bε(x)) for R > R0 and ε > ε0, as
in Fig. 2.

Let e ∈ C
3 be fixed. Since 	λ solves the scalar homogeneous Helmholtz equation

outside the origin, then 	λe is a solution to the vector-valued Helmholtz equation too.
Therefore, the following identity

0 = −
∫

�(x,ε,R)

(�(	λ(x − y)e) + λ2(	λ(x − y)e)) · u(y) dy
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x

Gε

R Ω(x, ε, R)

0

Fig. 2. Domain �(x, ε, R)

holds. As in the classical Helmholtz–Hodge theorem, having in mind curl(curl) =
∇(div) − �, removing the dot product by e, subtracting and adding appropriate terms,
we obtain the following formula

0 = −
∫

∂�(x,ε,R)

∇x	λ(x − y)ν(y) · u(y) dy S +
∫

�(x,ε,R)

∇x	λ(x − y) div u(y) dy

+
∫

∂�(x,ε,R)

∇x	λ(x − y) × (ν(y) × u(y)) dy S

−
∫

�(x,ε,R)

∇x	λ(x − y) × (curl u(y) − λu(y)) dy

+ λ

(
−
∫

�(x,ε,R)

	λ(x − y)(curl u(y) − λu(y)) dy

+
∫

∂�(x,ε,R)

	λ(x − y)ν(y) × u(y) dy S

)
. (26)

Taking limits when ε → 0 and R → +∞ shows that the volume integrals converges to
the integral over the whole exterior domain due to the dominated convergence theorem,
the Hardy–Littewood–Sobolev theorem of fractional integration (Theorem 2.6) and the
hypotheses on div u and curl u − λu:

∫
�(x,ε,R)

∇x	λ(x − y) div u(y) dy −→
∫

�

∇x	λ(x − y) div u(y) dy,

∫
�(x,ε,R)

∇x	λ(x − y) × (curl u(y) − λu(y)) dy −→
∫

�

∇x	λ(x − y)

× (curl u(y) − λu(y)) dy,∫
�(x,ε,R)

	λ(x − y)(curl u(y) − λu(y)) dy −→
∫

�

	λ(x − y)(curl u(y)

− λu(y)) dy,

when ε → 0 and R → +∞. Regarding the boundary integrals, it is worth splitting
them into the three connected components of the boundary surface of �(x, ε, R), that
is, ∂�(x, ε, R) = S ∪ ∂Bε(x) ∪ ∂BR(0). Since the integrals over S are not relevant in
the limit ε → 0 and R → +∞, we focus on the two remaining terms. On the one hand,
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using (13) and Lagrange’s formula v = (e · v) e− e× (e× v), for any unit vector e and
any general vector v, the boundary terms over the sphere ∂Bε(x) can be written as

Iε := −
(
iλ − 1

ε

)
eiλε

4πε

∫
∂Bε(x)

u(y) dy S − λ
eiλε

4πε

∫
∂Bε(x)

y − x

ε
× u(y) dy S

= iλ
eiλε

4πε

∫
∂Bε(x)

(
i
y − x

ε
× u(y) − u(y)

)
dy S +

eiλε

4πε2

∫
∂Bε(x)

u(y) dy S.

Consequently, the first term converges to zero as ε → 0 while the second term converges
to u(x) due to the properties of the mean value over spheres of continuous functions.

In addition, the boundary terms over ∂BR(0) may also be written in a similar way

IR :=
∫

∂BR(0)

{
−∇x	λ(x − y)

y

R
· u(y) + ∇x	λ(x − y)

×
( y
R

× u(y)
)
+ λ	λ(x − y)

y

R
× u(y)

}
dy S

=
∫

∂BR(0)

(
iλ − 1

|x − y|
)

eiλ|x−y|

4π |x − y|
y − x

|y − x |
y

R
· u(y) dy S

−
∫

∂BR(0)

{(
iλ − 1

|x − y|
)

eiλ|x−y|

4π |x − y|
y − x

|y − x |
×
( y
R

× u(y)
)
+ λ

eiλ|x−y|

4π |x − y|
y

R
× u(y)

}
dy S.

Lagrange’s formula for the triple vector product cannot be directly applied since BR(0)
is not centered at x . See Remark 2.13 below for the behavior of this boundary integrals
if we had defined �(x, ε, R) = � ∩ BR(x) ∩ (R3 \Bε(x)) instead of �(x, ε, R) =
� ∩ BR(0) ∩ (R3 \Bε(x)). Adding and subtracting appropriate terms in order to apply
Lagrange’s formula for the triple vector product

IR := − iλ
∫

∂BR(0)

eiλ|x−y|

4π |x − y|
(
i
y

R
× u(y) − u(y)

)
dy S

−
∫

∂BR(0)

eiλ|x−y|

4π |x − y|2 u(y) dy S

+
∫

∂BR(0)

(
iλ − 1

|x − y|
)

eiλ|x−y|

4π |x − y|
(

y − x

|y − x | − y

R

)
y

R
· u(y) dy S

−
∫

∂BR(0)

(
iλ − 1

|x − y|
)

eiλ|x−y|

4π |x − y|
(

y − x

|y − x | − y

R

)
×
( y
R

× u(y)
)
dy S.

Then, a mean value argument leads to the following bound of the norm of IR for R > |x |

|IR | ≤ |λ|
4π(R − |x |)

∫
∂BR(0)

∣∣∣i y
R

× u(y) − u(y)
∣∣∣ dy S

+
1

4π(R − |x |)2
∫

∂BR(0)
|u(y)| dy S +

2C |x |
4π(R − |x |)2

∫
∂BR(0)

|u(y)| dy S. (27)
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Thereby, IR → 0 when R → +∞, thanks to the L1 SMB radiation condition (22) and
the decay property (23).

Now that we have the representation formula in the statement of the theorem, the
asymptotic behavior at infinity follows from Theorem 2.6 and the componentwise Som-
merfeld radiation condition in the compactly supported case is a direct consequence of
Propositions 2.4 and 2.5. ��
Remark 2.13. Consider�(x, ε, R) = �∩ BR(x)∩ (R3 \Bε(x)) insteadof�(x, ε, R) =
�∩ BR(0)∩ (R3 \Bε(x)) in Eq. (26). We can argue in the same way both for the bound-
ary terms over ∂Bε(x) and for those over ∂BR(x). Then, the former has already been
studied in the above proof and the later reads

IR :=
(
iλ − 1

R

)
eiλR

4πR

∫
∂BR(x)

u(y) dy S + λ
eiλR

4πR

∫
∂BR(x)

y − x

R
× u(y) dy S

= − iλ
eiλR

4πR

∫
∂BR(x)

(
i
y − x

ε
× u(y) − u(y)

)
dy S − eiλR

4πR2

∫
∂BR(x)

u(y) dy S.

(28)

Therefore, the same representation theoremmight have been obtained from the following
radiation and decay conditions

∫
∂BR(x)

(
i
y − x

ε
× u(y) − u(y)

)
dy S = o(R), when R → +∞,

∫
∂BR(x)

u(y) dy S = o(R2), when R → +∞,

for every x ∈ �. The hypotheses are stronger than (22) and (23) in the sense that
they have to be assumed on every x ∈ �. However, they are weaker in the sense that
norms can be removed here. Therefore, one might take advantage of certain geometric
cancellations of our vector fields to ensure these conditions.

An obvious but interesting feature of the above boundary terms is that in both cases,
when �(x, ε, R) = � ∩ BR(0) ∩ (R3 \Bε(x)) (27) and �(x, ε, R) = � ∩ BR(x) ∩
(R3 \Bε(x)) (28), the harmonic case λ = 0 does not need to prescribe any radiation
condition at infinity, as it is the case in the classical Helmholtz–Hodge theorem and in
[38,43].

Again, Remark 2.11 and the Rellich lemma [10, Lemma 2.11] yields an uniqueness
result, which is similar to that for the reduced Maxwell system in [10, Theorem 6.10]:

Lemma 2.14. Consider any solution u ∈ C1(�,C3) to the complex-valued homoge-
neous Beltrami equation in the exterior domain satisfying the L2 SMB radiation condi-
tion (24). Then, u verifies the inequality

	
(∫

S
u(x) · (η(x) × u(x)) dx S

)
≥ 0.

If the equality holds, then u vanishes everywhere in �.

To conclude, let us state the existence result for the complex-valued inhomogeneous
Beltrami equation that will be needed in the modified Grad–Rubin iterative scheme in
Sect. 3. Since this iterative method only involves compactly supported inhomogeneities,
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we will focus on this case although it is easy to extend it to general inhomogeneous
terms with an appropriate fall off at infinity. Hereafter we will denote by Xk,α(S) ≡
Xk,α(S,R3) the real vector space of all tangent vector fields on S of regularity Ck,α , i.e.,

Xk,α(S) := {ξ ∈ Ck,α(S,R3) : ξ · η = 0 on S}.
Its complex counterpart will be denoted by Xk,α(S,C3).

Theorem 2.15. Let 0 �= λ ∈ R be any constant that is not a Dirichlet eigenvalue of the
Laplace operator in the interior domain, w ∈ Ck,α

c (�,C3) and g ∈ Ck+1,α(S,C) such
that divw ∈ Ck,α(�,C) and the following compatibility condition∫

S
(λg + w · η) dS = 0 (29)

is satisfied. Consider any solution ξ ∈ Xk+1,α(S,C3) to the boundary integral equation(
1

2
I − Tλ

)
ξ = μ, x ∈ S, (30)

where Tλξ and μ are defined by

(Tλξ)(x) =
∫
S
η(x) × (∇x	λ(x − y) × ξ(y)) dy S + λ

∫
S
	λ(x − y)η(x) × ξ(y) dy S,

(31)

μ(x) = 1

λ

∫
�

η(x) × ∇x	λ(x − y) divw(y) dy

−
∫
S
η(x) × ∇x	λ(x − y)g(y) dy S

+
∫

�

η(x) × (∇x	λ(x − y) × w(y)) dy

+ λ

∫
S
	λ(x − y)η(x) × w(y) dy S. (32)

Define the complex-valued vector field

u(x) := −∇φ(x) + curl A(x) + λA(x), x ∈ �, (33)

where φ and A stand for the scalar and vector fields

φ(x) = −1

λ

∫
�

	λ(x − y) divw(y) dy +
∫
S
	λ(x − y)g(y) dy S, (34)

A(x) =
∫

�

	λ(x − y)w(y) dy +
∫
S
	λ(x − y)ξ(y) dy . (35)

Then, u is a complex-valued solution to the exterior NIB problem⎧⎪⎨
⎪⎩
curl u − λu = w, x ∈ �,

u · η = g, x ∈ �,

+ L1 SMB radiation condition (22),
+ L1 decay property (23).

(36)

Furthermore, the decay and radiation conditions are stronger since u behaves as
O
(|x |−1

)
at infinity and the Sommerfeld radiation condition (11) holds component-

wise.
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Proof. Since the divergence of any solution u can be recovered from the equation through
the identity div u = − 1

λ
divw, then one arrives at the next expression for the candidate

to be a solution to (36)

u(x) = −∇φ(x) + curl A(x) + λA(x),

where φ and A are defined as follows

φ(x) = −1

λ

∫
�

	λ(x − y) divw(y) dy +
∫
S
	λ(x − y)g(y) dy S,

A(x) =
∫

�

	λ(x − y)w(y) dy +
∫
S
	λ(x − y)η(y) × u+(y) dy S.

Consider ξ := η ×u+, where u± denotes the limits of u at S from � and G respectively.
In order to obtain a more manageable formula for ξ , one can use the well known jump
relations for the derivatives of a single layer potential associated with the fundamen-
tal solution to the Helmholtz equation, 	λ(x) (see e.g. [9]). This formulas lead to the
following identity

u±(x) = 1

λ

∫
�

∇x	λ(x − y) divw(y) dy − PV
∫
S
∇x	λ(x − y)g(y) dy S

+
∫

�

∇x	λ(x − y) × w(y) dy + PV
∫
S
∇x	λ(x − y) × ξ(y) dy S

+ λ

∫
�

	λ(x − y)w(y) dy + λ

∫
S
	λ(x − y)ξ(y) dy S

± 1

2
η(x)g(x) ∓ 1

2
η(x) × ξ(x), (37)

where PV stands for the Cauchy principal value integral. It is clear that the terms in the
last line are actually ± 1

2u±(x). Consequently, one can take cross products by η(x) and
arrive at the boundary integral equation in (30) for the tangential component ξ . There,
we have intentionally avoided the PV signs because the η(x) factor in such integrals
provides certain geometrical cancellations (see “Appendix A”) leading to absolutely
convergent integrals.

Now, let us show that the field u thus defined is a solution to (36) as long as ξ solves the
boundary integral equation (30). We will prove later that ξ is unique and, consequently,
(36) is uniquely solvable. First, let us obtain some PDEs for the potentials φ and A both
in the interior and the exterior domain. Since volume and single layer potentials are
indeed complex-valued solutions to such PDEs, we have

�φ + λ2φ =
{

1
λ
divw, x ∈ �

0, x ∈ G
�A + λ2A =

{−w, x ∈ �

0, x ∈ G (38)

Therefore,

curl u − λu = ∇(div A) − �A + λ curl A + λ∇φ − λ curl A − λ2A

= −(�A + λ2A) + ∇ (div A + λφ)︸ ︷︷ ︸
a

.
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A direct substitution of (38) leads to the following PDE for u at any side of the boundary
surface S:

curl u − λu =
{

w + ∇a, x ∈ �,

∇a, x ∈ G.
(39)

In order to show that u solves (36), it remains to check that ∇a is zero in the exterior
domain and u satisfies the boundary condition u+ · η = g (the decay and radiation
conditions will be studied later). To this end, it might be useful to find first a PDE for a.
The same reasoning as above shows that a solves both in � and in G the homogeneous
Helmholtz equation, specifically

�a + λ2a = div(�A) + λ�φ + λ2 div A + λ3φ = div(�A + λ2A) + λ(�φ + λ2φ) = 0.
(40)

Let us show first the jump relations for the scalar potential a. Straightforward com-
putations on the explicit formulas for φ and A involving the divergence theorem lead
to

a(x) = div A(x) + λφ(x)

=
∫

�

{∇x	λ(x − y) · w(y) − 	λ(x − y) divw(y)} dy

+
∫
S
{∇x	λ(x − y) · ξ(y) + λ	λ(x − y)g(y)} dy S

= −
∫

�

divy(	λ(x − y)w(y)) dy +
∫
S
∇x	λ(x − y) · ξ(y) dy S

+ λ

∫
S
	λ(x − y)g(y) dy S

=
∫
S
	λ(x − y)(λg(y) + w(y) · η(y)) dy S +

∫
S
∇x	λ(x − y) · ξ(y) dy S.

Finally, notice that ∇x	λ(x − y) · ξ(y) = −(∇S)y [	λ(x − y)] · ξ(y) for every y ∈ S
because of ξ being a tangent vector field along S. Hence, the integration by parts formula
over S yields the next simpler expression for a:

a(x) =
∫
S
	λ(x − y) (λg(y) + w(y) · η(y) + divS ξ(y)) dy S,

i.e., a is just a new single layer potential. As such, the first and second jumps relations
read

a+ − a− ≡ 0,

(
∂a

∂η

)
+

−
(

∂a

∂η

)
−

≡ − (λg + w · η + divS ξ) , (41)

on the surface S. In particular, a is continuous across S but its normal derivative exhibits
a jump discontinuity with height λg +w · η + divS ξ . The same kind of reasoning yields
the jump relation for u

u+ − u− = g η − η × ξ, x ∈ S. (42)

Consequently, the boundary integral equation (30) along with the jump relation (42)
ensure that

η × u+ = ξ, η × u− = 0, (43)
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on S. Regarding a, let us show that it is indeed constant on S and to this end, define the
next vector field in the interior domain G:

v := λu + ∇a, x ∈ G.

Notice that v is a strong Beltrami field with factor λ by virtue of (39). Then, one can
repeat the same kind of uniqueness criterion as in Lemma 2.14 in the simpler bounded
setting, specifically

λ

∫
G

|v|2 dx =
∫
G

v · curl v dx =
∫
G
div(v × v) dx =

∫
S
(η × v) · v dS.

Now, notice that we can substitute both v and v in the above formula with its tangential
parts thanks to the presence of a cross product by the unit normal vector field η and

−η × (η × v) = −λη × (η × u−) + ∇Sa = ∇Sa,

by virtue of (43). Thereby, an integration by parts leads again to

λ

∫
G

|v|2 dx =
∫
S
(η × ∇Sa) · ∇Sa dS = −

∫
S
a curlS (∇Sa) dS = 0,

where the well know formula curlS ∇S = 0 has been used in the last step. Consequently,
v vanishes everywhere in G and, in particular, ∇Sa ≡ 0, i.e., a± ≡ a0 = const on S.

We will next prove that a vanishes everywhere in the exterior domain � using the
uniqueness result in Lemma 2.8. Notice that since a can be written as a sum of volume
and single layer potentials with compactly supported densities together with its first
order partial derivatives, then a satisfies a stronger Sommerfeld radiation condition due
to Propositions 2.4 and 2.5. Consequently, this lemma can be applied.We therefore want
to show that

	
(∫

S
a+

(
∂a

∂η

)
+
dS

)
= 0 . (44)

To derive (44), we first pass from the exterior to the interior trace values using the jump
relations (41)∫

S
a+

(
∂a

∂η

)
+
dS = a0

∫
S
(λg + w · η + divS ξ) dS +

∫
S
a−
(

∂a

∂η

)
−
dS = I + I I.

On the one hand, I becomes zero because of the divergence theorem over surfaces and
the compatibility condition (29) in the hypothesis. On the other hand, integrate by parts
in I I to arrive at

I I :=
∫
S
div (a∇a) dS =

∫
G

|∇a|2 dx +
∫

a�a dx =
∫
G

|∇a|2 dx − λ2
∫
G

|a|2 dx,

where the Helmholtz equation (40) has being used. Therefore, one arrives at

	
(∫

S
a+

(
∂a

∂η

)
+
dS

)
= 	
(∫

G
|∇a|2 dx − λ2

∫
G

|a|2 dx
)

= 0,

and consequently a = 0 in � and u solves the inhomogeneous Beltrami equation.
Before proving the boundary condition and the decay and radiation properties, let us

show that a also vanishes in the interior domain. On the one hand, a solves the homoge-
neous Helmholtz equation in such domain and it also satisfies the interior homogeneous
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Dirichlet conditions in S since a− = a+ on S and a = 0 in �. Moreover, λ is prevented
from being a Dirichlet eigenvalue of the Laplacian in the interior domain, so a also
vanishes in G. In particular, the jumps relations (41) yields

λg + w · η + divS ξ ≡ 0. (45)

Furthermore, since u is now a solution to the next inhomogeneous Beltrami equation,
curl u−λu = w, x ∈ �, taking trace values at S one gets η ·(curl u)+−λη ·u+ = w ·η.

Now, one can write the first term in an intrinsic way through η · (curl u)+ = − divS(η ×
u+) = − divS ξ, and, consequently, we have

η · u+ + w · η + divS ξ ≡ 0. (46)

Then, comparing (45) and (46) entails the boundary condition η · u+ = g.
Finally, let us show the decay and radiation conditions on u. First, since

	λ(x),∇	λ(x) = O
(
|x |−1
)

, when |x | → +∞,

andw has compact support, then u enjoys the optimal decay u = O
(|x |−1

)
when |x | →

+∞ according to Theorem 2.6. Second, as u is again a sum of single and volume layer
potential associated with the Helmholtz equation along with some partial derivatives,
then u satisfies Sommerfeld radiation condition componentwise thanks to Propositions
2.4 and 2.5. Therefore, one can show that u verifies SMH conditions (19) and (20). Since
curl u−λu = w andw is compactly supported, then u actually satisfies the strong SMB
radiation condition and this finishes the proof. ��

2.3. Well-posedness of the boundary integral equation. One should also notice that, in
addition to the uniqueness result proved in Theorem 2.15, wewill also need a study of the
regularity of the solution, which is obviously in C1(�,C3) by the decomposition (33).
We will prove in this next subsection that the regularity assumptions on the data w and
g actually leads to Ck+1,α(�,C3) regularity on u. Some necessary potential theoretic
estimates have been relegated to “Appendix A” to streamline the exposition.

Let us start by studying the well-posedness of (30) using the Riesz–Fredholm theory
for compact operators, which follows easily from our previous estimates:

Proposition 2.16. The linear operator Tλ : Xk+1,α(S) −→ Xk+1,α(S) is compact.

Proof. The gain of regularity proved in Theorem A.10 implies that Tλ defines a contin-
uous linear operator

Tλ : Xk,α(S) −→ Xk+1,α(S).

Since Xk+1,α(S) ↪→ Xk,α(S) is compact by the Ascoli–Arzelà theorem, the proposition
follows. ��

The proposition ensures that it is possible to apply Riesz–Fredholm theory to the
operator 1

2 I − Tλ. In particular, 1
2 I − Tλ is one to one if, and only if, it is onto, i.e.,

Ker

(
1

2
I − Tλ

)
= 0 ⇐⇒ Im

(
1

2
I − Tλ

)
= Xk+1,α(S).

As it is hard to show explicitly that such operator is onto, let us equivalently show that
it is one to one. This is a consequence of the uniqueness Lemma 2.14 and the existence
Theorem 2.15.
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Proposition 2.17. The bounded linear operator 1
2 I − Tλ on Xk+1,α(S) is one to one

and onto. Consequently, the boundary integral equation (30) has a unique solution
ξ ∈ Xk+1,α(S) for any μ ∈ Xk+1,α(S).

Proof. According to thepreceding argument,weonlyhave to show thatKer
( 1
2 I − Tλ

) =
0. To this end, let us consider an arbitrary ξ ∈ Ker

( 1
2 I − Tλ

)
and show that ξ ≡ 0.

By definition, ξ ∈ Xk+1,α(S) solves the boundary integral equation 1
2ξ − Tλξ = 0

on S. Define u(x) := curl A(x) + λA(x), where A is the vector potential A(x) :=∫
S 	λ(x − y)ξ(y) dy S. Thus, Theorem 2.15 for w ≡ 0 and g ≡ 0 leads to a solution
u ∈ C1(�,C3) to the homogeneous Beltrami equation in �{

curl u = λu, x ∈ �,

η · u+ = g = 0, x ∈ S,

that satisfies the Dirichlet boundary condition η × u+ = ξ on S and the SMB radiation
condition.

We would like to show that this boundary value problem has a unique solution, but
this does not follow directly from Lemma 2.14. However, since η · u+ = 0 on S, then
u+ = −η × (η × u+) on S and we have the following relation between the curl operator
on S, curlS , and the curl operator on R

3:

curlS u+ = curlS (−η × (η × u+)) = η · curl u+ = λ η · u+ = 0.

As S is homeomorphic to a sphere, Poincaré’s lemma shows that u+ has a potential
ψ ∈ C2(S) on the surface, u+ = ∇Sψ on S, where ∇S stands for the Riemannian
connection on the surface S. Consequently,

	
(∫

S
u+ · (η × u+) dS

)
= 	
(∫

S
∇Sψ · (η × ∇Sψ) dS

)

= −	
(∫

S
curlS (∇Sψ)ψ dS

)
= 0.

The identity follows from an integration by parts on S and the classical property
curlS(∇Sψ) = 0. Therefore, Lemma 2.14 yields the desired result. ��
Remark 2.18. The importance of the above result lies on the following facts.

(1) First, the existence part of the above result ensures that it is possible to choose
some ξ solving (30). Obviously, it is essential to rigurously establish the existence
Theorem 2.15.

(2) Second, the uniqueness result shows that since ξ can be uniquely chosen, then (36)
has a unique solution too.

(3) Finally, it provides a very useful estimate for the subsequent result. Since 1
2 I − Tλ

is linear, continuous and bijective, then
( 1
2 I − Tλ

)−1
is continuous by virtue of

the Banach isomorphism theorem. Consequently, there exists a positive constant c
(which depends on G and λ) such that

c‖ξ‖Ck+1,α(S) ≤
∥∥∥∥
(
1

2
I − Tλ

)
ξ

∥∥∥∥
Ck+1,α(S)

, (47)

for any ξ ∈ Xk+1,α(S).
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We conclude by proving the following regularity result for the solution u of (36)
according to Theorem 2.15. It is an immediate consequence of the decomposition (33),
the estimates for the volume and single layer potentials in “Appendix A” (Lemmas A.9
and A.1) and the estimate (47).

Corollary 2.19. Assume that the hypothesis in Theorem 2.15 are satisfied, fix any R > 0
such that G ⊆ BR(0) and assume that the closure of �R := BR(0) \ G contains the
support ofw. Then, there exists some nonnegative constant C0 = C0(k, α,G, R, λ) such
that the next estimate

‖u‖Ck+1,α(�) ≤ C0
{‖w‖Ck,α(�) + ‖ divw‖Ck,α(�) + ‖g‖Ck+1,α(S)

}
. (48)

holds. In particular, not only does u belong to C1(�,C3), but also to Ck+1,α(�,C3).

2.4. Optimal fall-off in exterior domains. It is worth discussing the differences between
the optimal fall-off |x |−1 of the solutions to inhomogeneous Beltrami equation and that
of the solutions of the div-curl problem. First, it is well know that the exterior Neumann
boundary value problem associated with the div-curl system

⎧⎪⎨
⎪⎩
curl u = w, x ∈ �,

div u = f, x ∈ �,

u · η = g, x ∈ S,

u = O(|x |1−ρ), x ∈ �,

(49)

wherew, f = O(|x |−ρ) andρ ∈ (1, 3), is uniquely solvablewhen appropriate regularity
spaces are considered (see [27,38]) andw has zero flux in the exterior domain.Moreover,
the solution inherits the optimal fall-off |x |−2 whenw and f are assumed to have compact
support. In particular, any harmonic field (w = 0, f = 0) so obtained decays at infinity
as |x |−2. Such result is an easy consequence of the Helmholtz–Hodge representation
formula in [38, Theorem 4.1] and the natural fall-off of the fundamental solution of the
Laplace equation, 	0(x).

In our case, the exterior Neumann boundary value problem associated with the
inhomogeneous Beltrami equation (36) has an associated representation formula of
Helmholtz–Hodge type (33) that transfers the “optimal fall-off” |x |−1 to the solution in
Theorem 2.15 when w is assumed to have compact support. Let us show that it is indeed
the optimal decay rate. To this end, assume that u solves the equation

curl u − λu = w, x ∈ �,

(not necessarily fulfilling neither (23) nor (22)) for some divergence-free vector field w.
Then, the solution u is divergence-free too. Hence, taking curl in the inhomogeneous
Beltrami equation, we are led to the vector-valued Helmholtz equation

−(�u + λ2u) = λw + curlw, x ∈ �.

Consider K := suppw ⊆ � and notice that λw + curlw is also compactly supported in
K . Imagine that u decayed as |x |−(1+ε) for some small ε > 0. Hence, a straightforward
computation leads to

lim
R→+∞

∫
∂BR(0)

|u(x)|2 = 0.
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Consequently, Rellich’s Lemma would show that u vanishes outside some sufficiently
large ball centered at the origin and containing K . Then, the unique continuation principle
of theHelmholtz equation allowproving that u is also compactly supported in K (see [31]
for the study of such property in many other linear PDEs with constants coefficients).
In particular, g would vanish outside K ∩ S. In an equivalent way, the next result holds.

Corollary 2.20. Let u ∈ Ck+1,α(�,R3) be a solution to

curl u − λu = w, x ∈ �,

for a divergence-free compactly supported w and some λ ∈ R \{0}. If u is transverse
to S at some point outside the support of w, then u cannot decay faster than |x |−1 at
infinity.

The above Corollary can be interpreted in two different ways. First, it establishes
the optimal fall-off of a “transverse” strong Beltrami field (w = 0). Second, it also
deals with some kind of “transverse” generalized Beltrami fields in exterior domains
(w = ϕu) that will be of a great interest in our work. We restrict to the second result
since it contains the first one as a particular case.

Corollary 2.21. Let u ∈ Ck+1,α(�,R3) be a generalized Beltrami field, i.e.,
{
curl u − f u = 0, x ∈ �,

div u = 0, x ∈ �,

whose proportionality factor is a compactly supported perturbation of a constant pro-
portionality factor λ ∈ R \{0}, i.e., f = λ + ϕ for some ϕ ∈ Ck,α

c (�). If u is transverse
to S at some point outside the support of the perturbation ϕ, then u cannot decay faster
than |x |−1 at infinity.

Remark 2.22. In particular, the above result leads to the natural counterpart for exterior
domain of theLiouville theorem in [7,36] about the fall-off of entire generalizedBeltrami
fields. Such theorem states that there is no globally defined generalized Beltrami field
decaying faster than |x |−1 at infinity. As many others Liouville type results, it strongly
depends on the solution being defined in the whole R

3. In our case we remove this
hypothesis but, in return, we need to argue with generalized Beltrami fields with constant
proportionality factor outside a compact set enjoying some trasversality condition on
the boundary surface of the exterior domain.

3. An Iterative Scheme for Strong Beltrami Fields

Our objective in this section is to set the iterative scheme that we will use to establish the
partial stability of strong Beltrami fields that will yield the existence of almost global
Beltrami fields with a non-constant factor and complex vortex structures.

3.1. Further notation and preliminaries. On the differentiable surface S, we will con-
sider local charts of the same regularity as S (that is, maps μ covering open subsets
� ⊆ S of the form

μ : D −→ R
3,
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G

Ω

Σ

T (Σ, u)

μ(s)

X(T ; 0, μ(s))

Fig. 3. Stream lines and tubes of the velocity field u

where μ(D) = � and D is a disk in the plane). We will assume μ to be a local
parametrization up to the boundary so that μ can be homeomorphically extended to the
closure D, � = μ(D) (Fig. 3).

We will also consider the corresponding Ck and Ck,α spaces of functions defined
on a coordinate neighborhood � of S provided with a local chart μ. Up to the degree
of smoothness of the surface, by compactness they are known to be independent of the
choice of the chart, so one can write

Ck(�) := { f : � −→ R : f ◦ μ ∈ Ck(D)}, and Ck,α(�)

:= { f : � −→ R : f ◦ μ ∈ Ck,α(D)}
and similarly for spaces on �. These spaces can be respectively endowed with the
complete norms

‖ f ‖Ck (�,μ) := ‖ f ◦ μ‖Ck (D), ‖ f ‖Ck,α(�,μ) := ‖ f ◦ μ‖Ck,α(D),

where the dependence on μ will be removed if it is apparent from the context.
An useful result is Calderón’s extension theorem for Ck,α functions, see e.g. [23,

Lemma 6.37]:

Proposition 3.1. Let O ⊆ R
3 be a Ck,α domain with bounded boundary ∂O, and let

O ′ be any open subset such that O ⊆ O ′. Then, there exists a linear operator

P : Ck,α(O) −→ Ck,α(O ′),

P( f ) ≡ f , such that

(1) P is an extension operator, i.e., P( f )|O = f, ∀ f ∈ Ck,α(O).

(2) The support of P( f ) is contained in the open subset O ′ for evey f ∈ Ck,α(�).
(3) P is continuous in the Ck,α topology, i.e.,

‖P( f )‖Ck,α(O ′) ≤ CP‖ f ‖Ck,α(O), ∀ f ∈ Ck,λ(O).



224 A. Enciso, D. Poyato, J. Soler

(4) P is also continuous in the Cm topology for any 0 ≤ m ≤ k, i.e.,

‖P( f )‖Cm (O ′) ≤ CP‖ f ‖Cm (O), ∀ f ∈ Ck,α(O).

In the above inequalities, CP stands for a constant which depends on k, O and O ′.
To describe the stream lines and tubes associated with a velocity field u ∈

Ck+1,α(�,R3) in presence of a boundary surface which u is not tangent to, it is conve-
nient to consider an extension of the field to obtain the following characterization from
the Picard–Lindelöf theorem on Hölder spaces:

Proposition 3.2. Let O ⊆ R
3 be aCk+1,α bounded domain,where k ≥ 0 and 0 < α ≤ 1.

Consider any vector field u ∈ Ck+1,α(O,R3), its associated extension u = P(u) ∈
Ck+1,α(R3,R3) according to Proposition 3.1, any point x0 ∈ R

3 and an initial time
t0 ∈ R. Consider the associated characteristic system{ dX

dt
= u(X), t ∈ R,

X (t0) = x0.
(50)

Then, such problem is uniquely and globally (in time) solvable, its solution will be
denoted X (t; t0, x0), X (t; t0, ·) is a Ck+1 global diffeomorphism of the Euclidean space
for every t, t0 ∈ R and its inverse is X (t0; t, ·). The solutions to these problems are the
stream lines of the extended velocity field u.

Consider any x0 ∈ O and let T (x0) ≥ 0 be the greatest time for which the stream
line X (t; 0, x0), t > 0 remains inside the open subset O, i.e., T (x0) := sup{T > 0 :
X (t; 0, x0) ∈ O ∀ t ∈ (0, T )}. Then, X (t; 0, x0), 0 < t < T (x0) is a stream line of u,
or equivalently, it solves the ODE{ dX

dt
= u(X), 0 < t < T (x0),

X (0) = x0.

Notice that when X (t; 0, x0) /∈ O, ∀ t ∈ (0, T ) for some T > 0, then T (x0) = 0, i.e.,
the corresponding stream line of u does not originally enter the region O.

We will also consider stream tubes of a velocity field which emanate from an open
subset of the surface S. Consider any vector field u ∈ Ck+1,α(�,R3), u = P(u) ∈
Ck+1,α(R3,R3) its extension according to Calderón’s extension theorem, X (t; t0, x0)
its associated flux mapping through Proposition 3.2 and an open subset � ⊆ S together
with a local chart μ : D −→ S. The stream tube of u which emanates from � is the
collection of all stream lines of u radiating from the points in the open subset �, i.e.,

T (�, u) := {X (t; 0, μ(s)) : s ∈ D, 0 < t < T (μ(s))}.
It is also useful to consider bounded stream lines with “height” T > 0

T (�, u, T ) := {X (t; 0, μ(s)) : s ∈ D, 0 < t < min{T, T (μ(s))}}.
Notice that in order for a stream line of u to be well defined, it is necessary that

the velocity field points towards the exterior domain. The same condition leads to well
defined stream tubes emanating from �. The regularity in the preceding result follows
from Peano’s differentiability theorem. The same regularity result may be used in order
to derive the regularity in the stream tubes parametrization. For the proof it can be seen
[27, Lemma 5.1] in the case k = 0 and [40, Proposición 2.1.7] for arbitrary k.
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Proposition 3.3. Consider G, �, and μ verying the hypothesis (7), u ∈ Ck+1,α(�,R3)

be a velocity field in the exterior domain, and assume that the vector field u points
towards the exterior domain at any point of �, i.e., there exits a positive ρ0 > 0 such
that u · η ≥ ρ0 on �. Then, a well defined stream line of u emanates from each point
of � and they smoothly foliate the whole stream tube T (�, u). To make this statement
more precise, let us define

D(�, u) := {(t, s) : s ∈ D, 0 < t < T (μ(s))},
and the mapping

φ : D(�, u) −→ T (�, u)

(t, s) �−→ φ(t, s) := X (t; 0, μ(s)).

Then,

(1) T (μ(s)) > 0, for each s ∈ D.
(2) φ is bijective.
(3) φ is a Ck+1 diffeomorphism.
(4) Jac(φ) and Jac(φ)−1 belongs to Ck,α locally in t , i.e., there exists a function κ :

R
+
0 ×R

+
0 −→ R

+
0 which is increasing with respect to each variable, such that if

one defines

D(�, u, T ) := {(t, s) : s ∈ D, 0 < t < min{T, T (μ(s))}}
and the mapping

φ|D(�,u,T ) : D(�, u, T ) −→ T (�, u, T ),

then,

‖ Jac(φ)‖Ck,α(D(�,μ,T ))
, ‖ Jac(φ)−1‖Ck,α(T (�,μ,T ))

≤ κ
(
‖u‖Ck+1,α(�), T

)
,

for every positive number T .

The analysis in the next sections requires stream tubes of u that are bounded and
have both ends on S. These structures were considered (although its existence was not
proved) in [27]. In our setting, we will say that the stream tube of u arising from � is a
(ρ0, T, δ)-stream tube of u when

• u · η ≥ ρ0 on �.
• For every s ∈ D there exist two associated positive numbers 0 < T0(s), Tδ(s) < T

2
such that X (T0(s); 0, μ(s)) ∈ S and X (Tδ(s); 0, μ(s)) ∈ Sδ .

Here ρ0, T, δ are positive constants which measure the initial angle of the streams lines
over �, the time at which the whole tube has returned to the surface and the depth that
the stream lines achieve into the interior domain G, while Sδ stands for the boundary
of the subdomain of G made of the points in G at distance at least δ from S, i.e.,
Gδ := {x ∈ G : dist(x, S) > δ} (see Fig. 4).

Since a stream tube consists of integral curves, the diameter of a (ρ0, T, δ)-stream
tube is bounded in terms of the sup norm of the vector field, the flow time T and the
diameter at time 0 as

diam(T (�, u)) ≤ T ‖u‖C0(�) + diam(�). (51)
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T (Σ, u)

µ(s)

X(Tδ(s); 0, µ(s))

X(T0(s); 0, µ(s))

G

Sδ

S

Fig. 4. (ρ0, T, δ)-stream tube of u

(A detailed proof of this can be found in [27, Lemma 4.6]). In a similar way, [27, Lemma
4.7] provides a criterion to obtain “almost” (ρ0, T, δ)-stream tubes for velocity fields
which are “close enough” to any other given velocity field enjoying this kind of stream
tubes. This merely asserts that, as is well known, a C0-small perturbation of the initial
vector field will not prevent the integral curves of the perturbed field from intersecting
a surface to which the initial flow was transverse. This can be written as follows:

Lemma 3.4. Let G, �,μ verify (7) and consider u1, u2 ∈ Ck+1,α(�,R3). Define Ti :=
T (�, ui ) its stream tubes emanating from � and assume that T1 is a (ρ0, T, δ)-stream
tube of u1 and

(1) u1 · η = u2 · η on �.
(2) u1 and u2 are “close enough” in C0(�) norm. Specifically, assume

‖u1 − u2‖C0(�) < 2
(1 − θ)δ

CPT
e− 1

2CPT ‖u1‖C1(�) ,

for some 0 < θ < 1.

Then, T2 is also a (ρ0, T, θδ)-stream tube of u2.

3.2. Iterative scheme. In this section we discuss the Grad–Rubin iterative method (see,
the review [44]) used to obtain nonlinear force-free fields in the magnetohydrodynam-
ical setting. An implementation of the Grad–Rubin method was obtained through the
decomposition of the Beltrami equation with small proportionality factor f into a hyper-
bolic part, which transports the proportionality factor f along the magnetic field lines,
and an elliptic one, to correct the magnetic field step by step using Ampere’s law [1].
This method was tried in [5] to obtain small perturbations of harmonic fields in bounded
domains, leading to a strategy to generate generalized Beltrami fields with small non-
constant proportionality factors. It was also analyzed in [27] to obtain small perturbations
of harmonic fields in exterior domains. The C0,α regularity of the small proportionality
factors and theC1,α regularity of themagnetic fieldswere also addressed in such paper. A
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natural question is to ascertain whether these results can be adapted to get perturbations
of strong Beltrami fields with any constant proportionality factor λ �= 0.

Assume that u0 is a strong Beltrami field with constant proportionality factor in the
exterior domain �. We will restrict ourselves to strong Beltrami fields u0 with optimal
decay at infinity, say |x |−1 (in contrast with the shap fall-off for harmonic fields |x |−2).
Now, we would like to solve⎧⎪⎪⎨

⎪⎪⎩

curl u = (λ + ϕ)u, x ∈ �,

div u = 0, x ∈ �,

u · η = u0 · η, x ∈ S,

|u(x)| ≤ C
|x | , x ∈ �,

(52)

where ϕ is a “small” perturbation of the constant proportionality factor λ. To solve this
problem, we move the term λu in the equation for curl u from the inhomogeneous side,
to the homogeneous one and we propose the following modification of the classical
Grad–Rubin iterative method⎧⎨
⎩
curl un+1 − λun+1 = ϕnun, x ∈ �,

un+1 · η = u0 · η, x ∈ S,

|un+1(x)| ≤ C
|x | , x ∈ �,

{∇ϕn · un = 0, x ∈ �,

ϕn = ϕ0, x ∈ �.
(53)

We have intentionally removed the divergence-free conditions div un+1 = 0 in the left
hand side. The reason is twofold. First, note that if one computes the divergence in the
first equation and assumes λ �= 0, one recovers div un+1 = − 1

λ
div(ϕnun) from the first

equation. Therefore, it is an easy task to check that as soon as u0 is divergence-free and
ϕn is a fist integral of un , then un+1 is also divergence-free in each step of the iteration.
Second, as it has been shown in the preceding section, the exterior inhomogeneous Bel-
trami equation is generally an overdetermined system if one also prescribes the value of
the divergence of the vector field. In particular, for the inhomogeneous Beltrami equa-
tion to have nontrivial divergence-free solutions it is necessary that the inhomogeneity
is also divergence-free.

The inhomogeneous Beltrami equations in the left hand side was studied in the
preceding section through the analysis of the complex-valued solutions satisfying both
the L1 decay condition (23) and the L1 SMB radiation condition (22). The stationary
problem along a (ρ0, T, δ)-stream tube of un in the right hand side of (53) will be studied
in the Ck+1,α setting in the next subsection and the convergence of the modified Grad–
Rubin iterative method discussed in the Introduction (Equation (6)) will be analyzed at
the end of this section.

3.3. Linear transport problem. We begin with the steady transport equations along
(ρ0, T, δ)-stream tubes in the right hand side of (6). The main idea to find a solution is
to transport ϕ0 along the foliated stream tube and to check that this definition leads to
regular enough factors fn of un due to the regularity of the tube.

Theorem 3.5. Let G, �,μ satisfy the hypotheses (7), consider any u ∈ Ck+1,α(�,R3)

such that T (�, u) is a (ρ0, T, δ)-stream tube of such a velocity field and assume that
ϕ0 ∈ Ck+1,α

c (�). Consider the first integral equation associated with u
{
u · ∇ϕ = 0 in �

ϕ = ϕ0 on �.
(54)
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Then, there exists an unique solution ϕ along T (�, u), its support lies in the closure
of T (�, u) and it can be extended to a global solution in � with zero value outside
T (�, u). Moreover, it belongs to Ck+1,α(�) and the estimate

‖ϕ‖Ck+1,α(�) ≤ ‖ϕ0‖Ck+1,α(�) κ
(‖u‖Ck+1,α(�), T

)

holds, for some continuous and separately increasing function κ : R+
0 ×R

+
0 −→ R

+
0 .

Proof. The proof of this result can be found for the particular case k = 0 in [27,
Lemmas 4.8, 4.9 and 5.2]. Let us then sketch the proof of the general case k �= 0. Define
the Calderón extension of u, u := P(u), according to Proposition 3.1 and denote its flux
mapping by X (t; t0, x0). First, let us prove the uniqueness part of our assertion. Notice
that as long as ϕ is a smooth first integral of u, then

d

dt
ϕ(X (t; 0, μ(s))) = (u · ∇ϕ)(X (t; 0, μ(s))) = (u · ∇ϕ)(X (t; 0, μ(s))) = 0,

for every (t, s) ∈ D(�, u). Therefore, ϕ(x) = ϕ0(μ(s(x))) for every x ∈ T (�, u),
where (t (x), s(x)) = φ−1(x). Second, regarding the existence assertion, the previous
formula for ϕ defines a smooth function in T (�, u) (by virtue of the bijectivity and
regularity of the parametrization φ in Proposition 3.2) which obviously solves (54)
along the stream tube. Furthermore, with the exception of the endpoints, it is compactly
supported in the interior of the tube. The extension of ϕ by zero outside the tube yields
a global smooth solution of (54) in �.

To show the bound for ‖ϕ‖Ck+1,α(�) (equivalently for ‖ϕ‖Ck+1,α(T (�,u))), let us fix
any multi-index γ = (γ1, γ2, γ3) such that |γ | ≤ k + 1 and note that

Dγ ϕ(x) = γ !
∑

(l,β,δ)∈D(γ )

(Dδ(ϕ0 ◦ μ))(s(x))
l∏

r=1

1

δr !
(

1

βr !D
βr s(x)

)δr

.

for every x ∈ T (�, u). The above formula is nothing but a chain rule for high order
partial derivatives in high dimension. Here,D(γ ) stands for the set of all possible decom-
positions of γ = ∑l

r=1 |δr |βr , where δr , βr are multi-indices, δ := ∑l
r=1 δr and for

every r = 1, . . . , l − 1 there exists some ir ∈ {1, 2, 3} such that (βr )i = (βr+1)i for
every i �= ir and (βr )ir < (βr+1)ir . First of all, it is necessary to know how to handle
Dβr s(x). To this end, note that Jac(φ−1)(x) = Jac(φ)−1(φ−1(x)), so

Dρ(Jac(φ−1)i, j )(x) =
nρ∑
n=1

∏
β∈	n

1≤p,q≤3

Ai, j
n,p,q(ρ, β)(Dβ(Jac(φ)−1

p,q))(φ
−1(x)),

for every multi-index ρ such that |ρ| ≤ k. Here, Ai, j
n,p,q(ρ, β) stand for constant coeffi-

cients and	n is a set of 3-multi-indices of order at most |ρ| ≤ k. Expanding the products
of sums by distributivity, each term in Dγ ϕ takes the form

(Dδ(ϕ0 ◦ μ))(s(x))
∏
β∈	

1≤p,q≤3

Bi, j
p,q(γ, β)(Dβ(Jac(φ)−1

p,q))(φ
−1(x)),
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where 	 is a set of multi-indices with degree at most k. The first factor can be bounded
by ‖ϕ0‖Ck+1,α(�) whilst the terms in the second factor are bounded by κ(‖u‖Ck+1,α(�), T )

as stated in Proposition 3.2. Hence, it is clear that

‖ϕ‖Ck+1(�) ≤ ‖ϕ0‖Ck+1,α(�)κ(‖u‖Ck+1,α(�), T ).

Finally, for any multi-index with maximum order k + 1, the α-Hölder seminorm
of Dγ ϕ can be estimated as follows. Take x1, x2 ∈ T (�, u) and appropriately add
and subtract the crossed terms. Since Dδ(ϕ0 ◦ μ) is bounded by ‖ϕ0‖Ck+1,α(�) and
Dβ(Jac(φ)−1

pq ) is bounded by κ(‖u‖Ck+1,α(�), T ), then it only remains to obtain estimates
for

I := (Dδ(ϕ0 ◦ μ))(s(x))
∣∣∣x2
x1

,

I I := (Dβ(Jac(φ)−1
p,q))(φ

−1(x))
∣∣∣x2
x1

.

First, we distinguish the cases |δ| < k + 1 and |δ| = k + 1. In the former case, the mean
value theorem, the estimates in Proposition 3.2 for Jac(φ)−1 and the estimate (51) of the
diameter of the stream tube T (�, u) yield the upper bound

I ≤ ‖ϕ0‖Ck+1,α(�)κ(‖u‖Ck+1,α(�), T )|x1 − x2|
≤ ‖ϕ0‖Ck+1,α(�)κ(‖u‖Ck+1,α )(T ‖u‖C0(�) + diam(�))1−α|x1 − x2|α.

In the later case, the α-Hölder continuity of Dδ(ϕ0 ◦ μ) gives rise to an analogous
estimate

I ≤ ‖ϕ0‖Ck+1,α(�)κ
(‖u‖Ck+1,α(�), T

)α |x1 − x2|α.

Second, note that Dβ(Jac(φ)−1
p,q) is α-Hölder continuous with Hölder’s constant that can

be bounded above by κ(‖u‖Ck+1,α(�), T ) by virtue of Proposition 3.2. Thus,

I I ≤ κ(‖u‖Ck+1,α(�), T )|φ−1(x1) − φ−1(x2)|α.

The mean value theorem then leads to the desired upper estimate

|Dγ ϕ(x1) − Dγ ϕ(x2)| ≤ κ(‖u‖Ck+1,α(�), T )|x1 − x2|α,

appropriately modifying the separately increasing function κ . ��
In addition to the existence and uniqueness results of (54), in order to take limits in

(6) we will need a compactness result for {ϕn}n∈N. Once we know that the sequence
{un}n∈N converges in Ck+1,α(�,R3), a result of stability for the problem (54) leads to
the convergence of the sequence {ϕn}n∈N in Ck,α(�). This stability result was proved
in [27, Lemma 5.3] in the C1,α framework and can be easily extended to Ck+1,α using
the same lines as in Theorem 3.5 (the details, which are straightforward, can be found
in [40, Corolario 2.4.4]):
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Corollary 3.6. Let G, �, μ satisfy the properties (7). Consider any couple of vector
fields u1, u2 ∈ Ck+1,α(�,R3), and denote as T1 := T (�, u1) and T2 := T (�, u2) the
associated stream tubes which emanate from �. Assume that Ti is a (ρ0, T, δi )-stream
tube of ui . Consider any boundary data ϕ0 ∈ Ck+1,α

c (�) and the solutions ϕ1 and
ϕ2 (according to Theorem 3.5) to each transport problem associated with u1 and u2
respectively:

{∇ϕ1 · u1 = 0, x ∈ �,

ϕ1 = ϕ0, x ∈ �,

{∇ϕ2 · u2 = 0, x ∈ �,

ϕ2 = ϕ0, x ∈ �.

Then,

‖ϕ1 − ϕ2‖Ck,α(�) ≤ ‖ϕ0‖Ck+1,α(�) · κ
(‖u1‖Ck+1,α(�), T

)
× κ
(‖u2‖Ck+1,α(�), T

) ‖u1 − u2‖Ck+1,α(�),

where κ : R+
0 ×R

+
0 −→ R

+
0 is continuous, separately increasing and does not depend

on ui , ϕ0 or T .

3.4. Limit of the approximate solutions. The existence and uniqueness results in Theo-
rems 3.5 and 2.15 together with the stability result for the transport problem in Corollary
3.6 now allow us to take the limit as n → +∞ in the modified Grad–Rubin iterative
scheme (6). Therefore, we obtain a generalized Beltrami field which is close to the initial
strong Beltrami field and whose proportionality factor is a non-constant small enough
perturbation of the initial constant proportionality factor λ:

Theorem 3.7. Let G, �,μ satisfy the hypotheses (7) and assume that 0 �= λ ∈ R

is not a Dirichlet eigenvalue of Laplace operator in the interior domain G. Consider
any complex-valued strong Beltrami field v0 ∈ Ck+1,α(�,C3) which satisfy the L1

SMB radiation condition (22) and the L1 decay property (23) in the exterior domain.
Consider its real part u0 := �v0 and assume that T (�, u0) is a (ρ0, T, δ)-stream tube
of the velocity field u0. Let ε0 be any positive number. Then, there exists a nonnegative
constant δ0 for which the real parts un+1 of the solutions vn+1 ∈ Ck+1,α(�,C3) together
with the solutions ϕn ∈ Ck+1,α(�) of the modified Grad–Rubin scheme (6) (Theorems
3.5 and 2.15) have a limit vector field u ∈ Ck+1,α(�,R3) and a limit perturbation of
the proportionality factor ϕ ∈ Ck,α(�) such that

un → u in Ck+1,α(�,R3), ϕn → ϕ in Ck,α(�),

as n → +∞, for any ϕ0 ∈ Ck+1,α
c (�) with ‖ϕ0‖Ck+1,α(�) < δ0. Also, (u, λ + ϕ) solves

the boundary value problem (52), u has optimal decay and ϕ = ϕ0 in �. Moreover,
T (�, u) is a (ρ0, T, δ/2)-stream tube of u, ϕ has compact support inside the closure of
such stream tube and u is close enough to u0, specifically

‖u − u0‖Ck+1,α(�) ≤ ε0‖u0‖Ck+1,α(�).

Proof. For simplicity of notation, we will denote the stream tubes associated with each
vector field un which emanates from � by Tn := T (�, un). First of all, it is necessary
to check whether the hypothesis of Theorems 3.5 and 2.15 hold and they can be deduced
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in each step from the corresponding hypotheses in the previous step in the iteration. Let
us begin with the step n = 0:

{∇ϕ0 · u0 = 0, x ∈ �,

ϕ0 = ϕ0, x ∈ �,

⎧⎪⎨
⎪⎩
curl v1 − λv1 = ϕ0u0, x ∈ �,

v1 · η = u0 · η, x ∈ S,

+ L1 Decay property (3),
+ L1 SBM radiation condition (4).

The hypotheses imply that T0 is a (ρ0, T, δ)-stream tube of u0 and ϕ0 ∈ Ck+1,α
c (�).

Hence, there exists a global solution ϕ0 to the transport equation (Theorem 3.5). More-
over, ϕ0u0 ∈ Ck+1,α

c (�,R3) ⊆ Ck,α
c (�,R3) and its compact support is contained in the

stream tube T0. In particular, the estimate (51) ensures that supp(ϕ0u0) ⊆ T0 ⊆ �R ,
where �R := BR(0) \ G and R := 2T ‖u0‖Ck+1,α(�) + diam(�). On the other hand, as
S is regular enough, so η is and, consequently, u0 · η ∈ Ck+1,α(S). An integration by
parts leads to the following expression
∫
S
(λu0 · η + ϕ0u0 · η) dS = λ

∫
S
u0 · η dS +

∫
∂BR′ (0)

ϕ0u0 · η dS −
∫

�R′
div(ϕ0u0) dx

For R′ > R, the second term vanishes as a consequence of the previous estimate for
the diameter of the initial stream tube. Regarding the third term, notice that the same
argument as above leads to

div(ϕ0u0) = ∇ϕ0 · u0 + ϕ0 div u0 = 0.

We have u0 · η = − 1
λ
divS(η × u0). Thus, the divergence theorem concludes that the

first term vanishes too. Therefore, the hypotheses of Theorem 2.15 are satisfied, so there
is a unique solution v1 to the corresponding complex-valued inhomogeneous Beltrami
equation in the right hand side of the step n = 0.

Let us prove an estimate for u1−u0 that will be useful to prove the Cauchy condition
in Ck+1,α(�,R3) for the sequence {un}n∈N. This vector field is the real part of v1 − v0,
which satisfies the complex-valued exterior Neumann problem

⎧⎪⎨
⎪⎩

(curl−λ)(v1 − v0) = ϕ0u0, x ∈ �,

(v1 − v0) · η = 0, x ∈ S,

+ L1 decay condition (3),
+ L1 SMB radiation condition (4).

Therefore, the uniqueness of the solution to this problem (Proposition 2.17), the Ck+1,α

estimates of such solutions (Corollary 2.19), and the Ck,α estimates for the solution of
the steady transport equation (Theorem 3.5) allow us to obtain the following estimate
for v1 − v0 and, consequently, for u1 − u0:

‖u1 − u0‖Ck+1,α(�) = ‖�(v1 − v0)‖Ck+1,α(�) ≤ ‖v1 − v0‖Ck+1,α(�) ≤ C0‖ϕ0u0‖Ck,α(�).

Here C0 > 0 depends on k, α, λ,G and R. The Leibniz rule for the derivative of a
product reads

Dγ (ϕ0u0) =
∑
β≤γ

(
γ

β

)
Dβϕ0D

γ−βu0,
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for any multi-index γ . Therefore, the estimates in Theorem 3.5 for the derivatives up
to order k of ϕ0 and the combination of the mean value theorem and the Calderón’s
extension theorem (Proposition 3.1) to estimate the C0,α-norm of the derivatives of u0
up to order k allow us to arrive at the inequality

‖Dγ (ϕ0u0)‖C0(�) ≤ Ck‖ϕ0‖Ck+1,α(�)κ
(‖u0‖Ck+1,α(�), T

) ‖u0‖Ck+1,α(�),

for every multi-index γ with |γ | ≤ k, and

‖Dγ (ϕ0u0)‖C0,α(�)

= ‖Dγ (ϕ0u0)‖C0,α(T0)
≤ CkCP‖ϕ0‖Ck+1,α(�)κ

(‖u0‖Ck+1,α , T
) ‖u0‖Ck+1,α(�)(T ‖u0‖Ck,α(�) + diam�)1−α,

for every multi-index γ so that |γ | = k and a nonnegative constant Ck depending on k.
To derive the last estimate, we have used that

|Dγ−βu0(x) − Dγ−βu0(y)| ≤ ‖Dγ−βu0‖C1(R3)|x − y|
≤ CP‖u0‖Ck+1,α(�)|x − y|α(diamT0)1−α,

for every x, y ∈ T0 and the estimate (51) for the diameter of the (ρ0, T, δ)-stream tube
of T0. Hence the following inequality

‖u1 − u0‖Ck+1,α(�)

≤ K
{
1 + (T ‖u0‖Ck+1,α(�) + diam�)1−α

}
‖ϕ0‖Ck+1,α(�)κ

(‖u0‖Ck+1,α(�), T
)

×‖u0‖Ck+1,α(�)

holds, with a constant K = K (k, α, λ,G, R).
Now, we can fix the small parameter δ0 such that it satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K
{
1 + (4T ‖u0‖Ck+1,α(�) + diam�)1−α

}
×
{
κ
(
2‖u0‖Ck+1,α(�), T

)
+ ‖u0‖Ck+1,α(�)κ

(
2‖u0‖Ck+1,α(�), T

)2}
δ0 <

1

2
min{ε0, 1}.

K
{
1 + (4T ‖u0‖Ck+1,α(�) + diam�)1−α

}
×
{
κ
(
2‖u0‖Ck+1,α(�), T

)
+ ‖u0‖Ck+1,α(�)κ

(
2‖u0‖Ck+1,α(�), T

)2} ‖u0‖Ck+1,α(�) δ0

<
1

4

2δ

CPT
e− 1

2CP‖u0‖Ck+1,α (�)
T
.

(55)
Then we infer

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

‖u1 − u0‖Ck+1,α(�) < min{ε0, 1}1
2
‖u0‖Ck+1,α(�),

‖u1 − u0‖Ck+1,α(�) <
1

4

2δ

CPT
e− 1

2CPT ‖u0‖Ck+1,α(�) ,

‖u1‖Ck+1,α(�) ≤ 3

2
‖u0‖Ck+1,α(�).

(56)
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To obtain similar estimates for the remaining terms we will use induction to show
that
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖un+1 − un‖Ck+1,α(�) ≤ 1

2n
‖u1 − u0‖Ck+1,α(�) < min{ε0, 1} 1

2n+1
‖u0‖Ck+1,α(�),

‖un+1 − un‖Ck+1,α(�) <
1

2

1

2n+1
2δ

CPT
e− 1

2CPT ‖u0‖Ck+1,α(�) ,

‖un+1 − u0‖Ck+1,α(�) < min{ε0, 1}
n+1∑
i=1

1

2i
‖u0‖Ck+1,α(�),

‖un+1 − u0‖Ck+1,α(�) <
1

2

n+1∑
i=1

1

2i
2δ

CPT
e− 1

2CP‖u0‖Ck+1,α(�) ,

‖un+1‖Ck+1,α(�) <

n+1∑
i=0

1

2i
‖u0‖Ck+1,α(�).

(57)

This is true for n = 0 due to (56), so we can assume that the inductive hypotheses holds
for all indices less than n. Specifically, we assume that ϕm , vm+1 are well defined, i.e.,
the corresponding problems have a unique solution, that um+1 are divergence-free and
(57) hold for indices m < n.

Let us now prove that the result is verified form = n. The inductive hypotheses imply
the existence of a vector field vn ∈ Ck+1,α(�,C3) and ϕn−1 ∈ Ck,α(�). Moreover, Tn
is a
(
ρ0, T,

(
1 − 1

2

∑n
i=1

1
2i

)
δ
)
)-stream tube of the real part un = �vn because of

the third inequality in (57). Consequently, there exists a unique solution ϕn ∈ Ck,α(�)

to the transport problem in the left hand side of (6) according to Theorem 3.5. The
last estimate in (57) along with (51) lead to Tn ⊆ �R . Therefore, ϕn is compactly
supported in �R ⊆ � and the same argument as in the step n = 0 ensures the existence
and uniqueness of a solution vn+1 ∈ Ck+1,α(�,C3) to the complex-valued exterior
Neumann problem for the inhomogeneous Beltrami equation in the right hand side of
(6).

Notice that the vanishing flux hypothesis in Theorem 2.15 is satisfied. To check it we
get

∫
S
(λu0 · η + ϕnun · η) dS = λ

∫
S
u0 · η dS +

∫
∂BR′ (0)

ϕnun · η dS −
∫

�R′
div(ϕnun) dx .

The first term is zero as before, the second one also vanishes for a choice R′ > R and
the last one is zero too because ϕn is a first integral of un and un is divergence-free
according to the induction hypothesis. Consequently, it is easy to verity that un+1 is also
divergence-free.

To conclude, let us prove the inductive hypothesis (57) for un+1 − un . Taking the
difference of the corresponding complex-valued exterior boundary value problems we
have that vn+1 − vn solves

⎧⎪⎨
⎪⎩

(curl−λ)(vn+1 − vn) = ϕnun − ϕn−1un−1, x ∈ �,

(vn+1 − vn) · η = 0, x ∈ S,

+ L1 decay conditions (3),
+ L1 SMB radiation condition (4).
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Again, thanks to the uniqueness property (Proposition 2.17), the Ck+1,α estimates for
these solutions (Corollary 2.19) and the Ck,α estimates for the solution of the steady
transport equation (Theorem 3.5), we obtain the following estimate for vn+1 − vn and,
consequently, for un+1 − un

‖un+1 − un‖Ck+1,α(�) = ‖�(vn+1 − vn)‖Ck+1,α(�)

≤ ‖vn+1 − vn‖Ck+1,α(�)

≤ C0‖ϕnun − ϕn−1un−1‖Ck,α(�).

Now, ϕnun − ϕn−1un−1 has compact support inside Tn ∪ Tn−1 ⊆ �R (see estimate
(51) and the last inequalities for the Ck+1,α norms of un and un−1 in the inductive
hypothesis). Thus, Theorem A.9 asserts that the constant C0 = C0(k, α, λ,G, R) is the
same as in the basic step because all the supports of the inhomogeneous terms in the
complex-valued exterior Neumann problems are contained in the same bounded subset
�R of the exterior domain. This is a crucial fact because it prevents those constants from
depending on the iteration number n and avoids the blowup when n → +∞. Notice that

‖ϕnun − ϕn−1un−1‖Ck,α(�) ≤ ‖(ϕn − ϕn−1)un‖Ck,α(�) + ‖ϕn−1(un − un−1)‖Ck,α(�).

Since Tn is a
(
ρ0, T,

(
1 − 1

2

∑n
i=1

1
2i

)
δ
)
-stream tube of un , Tn−1 is a

(
ρ0, T,(

1 − 1
2

∑n−1
i=1

1
2i
)
δ
)
-stream tube of un−1 and un−1 · η = u0 · η = un · η on S, we

can apply both estimates in Theorem 3.5 and Corollary 3.6 to obtain the inequality

‖ϕnun − ϕn−1un−1‖Ck+1,α(�) ≤ K‖ϕ0‖Ck+1,α(�)

{
1 + (4T ‖u0‖Ck+1,α(�) + diam�)1−α

}

×
{
κ(2‖u0‖Ck+1,α(�), T ) + ‖u0‖Ck+1,α(�)κ

(
2‖u0‖Ck+1,α(�), T

)2}
‖un − un−1‖Ck+1,α(�).

Consequently, the estimate

‖un+1 − un‖Ck+1,α(�) ≤ K‖ϕ0‖Ck+1,α(�)

{
1 + (4T ‖u0‖Ck+1,α(�) + diam�)1−α

}

×
{
κ(2‖u0‖Ck+1,α(�), T ) + ‖u0‖Ck+1,α(�)κ

(
2‖u0‖Ck+1,α(�), T

)2}
‖un − un−1‖Ck+1,α(�)

holds, with K independent of n. Since ‖ϕ0‖Ck+1,α(�) < δ0 and δ0 is small enough to
ensure (55), one has

‖un+1 − un‖Ck+1,α(�) <
1

2
‖un − un−1‖Ck+1,α(�),

and the inductive hypothesis for indices less than n leads to the first two inequalities in
(57).

The last three estimates can be obtained as follows. Firstly, the preceding two esti-
mates together with the induction hypotheses lead to

‖un+1 − u0‖Ck+1,α(�) ≤
n∑

i=0

‖ui+1 − ui‖Ck+1,α(�) ≤ min{ε0, 1}
n+1∑
i=1

1

2i
‖u0‖Ck+1,α(�).
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Similarly, we have

‖un+1 − u0‖Ck+1,α(�) ≤
n∑

i=0

‖ui+1 − ui‖Ck+1,α(�) ≤ 1

2

n+1∑
i=1

1

2i
2δ

CPT
e− 1

2CPT ‖u0‖Ck+1,α(�) .

The last inequality in (57) is obvious by the triangle inequality:

‖un+1‖Ck+1,α(�) ≤ ‖u0‖Ck+1,α(�) + ‖un+1 − u0‖Ck+1,α(�) ≤
n+1∑
i=0

1

2i
‖u0‖Ck+1,α(�).

Using the above inequalities in (57) one can show that {un}n∈N and {ϕn}n∈N are
Cauchy sequences in Ck+1,α(�, R3) and Ck,α(�), respectively. On the one hand, we
find

‖un+m − un‖Ck+1,α(�) ≤
n+m−1∑
i=n

‖ui+1 − ui‖Ck+1,α(�)

<

n+m−1∑
i=n

1

2i+1
‖u0‖Ck+1,α(�) ≤ 1

2n
‖u0‖Ck+1,α(�).

Likewise, the third inequality in (57) along with the property un · η = u0 · η on S,

shows that Tn are
(
ρ0, T,

(
1 − 1

2

∑n
i=0

1
2i

)
δ
)
-stream tubes of un . Therefore, {ϕn}n∈N

also satisfies the Cauchy condition in Ck,α(�) due to Corollary 3.6. Thus, it converges
in Ck,α to some ϕ ∈ Ck,α(�).

Let us now take the limit as n → +∞ in the iterative scheme to deduce

div un+1 = 0 curl un+1 − λun+1 = ϕnun un+1 · η = u0 · η

↓ ↓ ↓ ↓ ↓ ↓
div u = 0 curl u − λu = ϕu u · η = u0 · η.

Moreover, the L1 SMB radiation condition (22) and the decay property (23) lead
to complex-valued solutions vn to the exterior Neumann problem for the inhomo-
geneous Beltrami equations in the iterative scheme with the asymptotic behavior
|vn(x)| ≤ C |x |−1, x ∈ �, for every n and C independent of n. To check it, notice
that Theorem 2.15 provides a decomposition of vn+1 into generalized volume and single
layer potentials whose densities are u0 · η, ϕnun and the sequence ξn of solutions to the
boundary integral equations (30). The single layer potentials and its first order partial
derivarives are dominated by the corresponding integral kernels 	λ and ∇	λ for x far
enough from the surface S. This leads to an upper bound C |x |−1 where C depends on
theC0 norm of u0 ·η and ξn . Both quantities can be bounded above by ‖u0 ·η‖Ck,α(S) and‖ϕnun‖Ck,α(�), which are uniformly bounded with respect to n. Furthermore, the volume
layer potentials and its first order partial derivatives can be bounded by C |x |−1 for an
n-independent constant thanks to Theorem 2.6 and the above argument. Consequently,
we get the same asymptotic behavior at infinity for the limit vector field u.

Let us show now that T (�, u) is a (ρ0, T, δ/2)-stream tube of u and that the support
of ϕ lies in it. Since, by taking limits in the fourth inequality in (57),

‖u − u0‖Ck+1,α(�) ≤ 1

2

2δ

CPT
e− 1

2CPT ‖u0‖Ck+1,α(�) ,
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Corollary 3.6 yields the first assertion. The second one is clear by taking into account
that suppϕn ⊆ Tn , for every n ∈ N. Finally, to check that the limit solution is close to
the initial strong Beltrami field u0, it suffices to take limits in the third inequality in (57)
to get

‖u − u0‖Ck+1,α(�) ≤ min{ε0, 1}
+∞∑
i=1

1

2i
‖u0‖Ck+1,α(�) ≤ ε0‖u0‖Ck+1,α(�).

��
Remark 3.8. The generalized Beltrami field u ∈ Ck+1,α(�,R3) obtained in the pre-
ceding Theorem has proportionality factor f = λ + ϕ, for some compactly supported
perturbation ϕ ∈ Ck,α(�). Moreover, it decays as |x |−1 at infinity. To check that it is
optimal note first that div(ϕu) = 0 and consider any open subset �′ ⊆ S such that
suppϕ0 ⊆ �′ ⊆ �′ ⊆ �. Then, the preceding proof shows that ϕ is compactly sup-
ported in T (�′, u), that is indeed a (ρ0, T, δ/2)-stream tube. Take x ∈ � \ �′ and note
that u(x) · η(x) ≥ ρ0 > 0. Hence, u = O(|x |−1) is optimal by Corollary 2.21.

A related remark in the harmonic case (λ = 0) is in order now.

Remark 3.9. Recall that a similar result to that in Theorem 3.7 was previously proved in
[27] to obtain generalized Beltrami fields u ∈ C1,α(�,R3) (nonlinear force-free fields),
i.e., solutions to

curl u = f u, x ∈ �,

with compactly supported small proportionality factors f ∈ C0,α(�).
On the one hand, the low regularity C1,α and C0,α is not a weakness in such result

since despite not being directly considered in [27], our results in Sect. A provide the
necessary background to promote the existence theorem in [27] to a high regularity
setting. On the other hand, such generalized Beltrami fields decay as |x |−2 at infinity.
There is no contradiction neitherwithCorollary 2.21 (since it holds under the assumption
λ �= 0) nor with the Liouville theorem in [36] (since it just holds for globally defined
generalized Beltrami fields).

On the contrary, the latter can be used to show an interesting property of such gen-
eralized Beltrami fields obtained as perturbations of harmonic fields. Specifically: they
cannot be globally extended to the whole space by virtue of the fall-off obstructions
in [36]. Nevertheless, the same cannot be directly said for generalized Beltrami fields
obtained as perturbations of strong Beltrami fields.

4. Knotted and Linked Stream Lines and Tubes in Generalized Beltrami Fields

Our objective in this section is to apply the convergence result for the modified Grad–
Rubin method (6) that we established in the previous section (Theorem 3.7) to show
the existence of almost global Beltrami fields of class Ck+1,α with a nonconstant factor
that realize any given configuration of vortex tubes and vortex lines, modulo a small
diffeomorphism. Here k is an arbitrary integer.

4.1. Knots and links in almost global generalized Beltrami fields. Our goal here is
to show that the partial stability result for almost global Beltrami fields allows us to
conclude the existence of Beltrami fields with a non-constant proportionality factor that
are defined in all ofR3 but, say, in the complement of an arbitrarily small ball, and which
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Fig. 5. a Collection of knotted and linked vortex tubes of the strong Beltrami field u0,
{�′(Tε(	0)), �

′(Tε(	1))}, respectively homeomorphic to the unknot and to the trefoil. b Transverse inter-
section of the vortex tube �′(Tε(	0)) and the interior domain G. Here we have zoomed in the squared region
on the left side of the above figure, showing the smaller outward pointing (ρ0, T, δ)-stream tube of u0 that
emerges from �. The perturbation ϕ of λ will be supported there. C Zoom of the vortex tube �′(Tε(	1))
with trefoil knot. It shows the internal structure of such vortex tube of u0, which contains uncountably many
nested tori and knotted vortex lines

have a collection of vortex tubes and vortex lines of arbitrary topology. Let us recall that,
as mentioned in the Introduction, a stream tube (invariant torus) of a divergence-free
velocity field u is structurally stable if any divergence-free field that is close enough
to u in C3,α has an invariant torus given by a C0,α-small diffeomorphism of the initial
tube. Although we shall not state these properties explicitly, just as in [18] the vortex
tubes that we construct are accumulated on by a positive-measure set of invariant tori
on which the vortex lines are ergodic.

Theorem 4.1. Let G be an exterior domain satisfying (7) and consider any collection
of disjoint knotted and linked thin tubes Tε(	1), . . . , Tε(	n) whose closure is contained
in the exterior domain �. Then, for ε small enough and any k, α there exists a nonzero
constant λ, an open subset � ⊆ S and some δ0 > 0 with the following property: for
any function ϕ0 ∈ Ck+1,α

c (�) with ‖ϕ0‖Ck+1,α(�) < δ0 there is a Beltrami field u ∈
Ck+1,α(�,R3) with factor λ+ϕ, where ϕ is a function in Ck,α(�) satisfying ϕ|� = ϕ0:

{
curl u = (λ + ϕ)u, x ∈ �,

div u = 0, x ∈ �.

Furthermore, u = O
(|x |−1

)
as |x | → +∞, the support of ϕ is compact and lies

in the (ρ0, T, δ)-stream tube T (�, u) of u radiating from � (with the exception of the
endpoints) andTε(	1), . . . , Tε(	n) can bemodified by a diffeomorphism� close enough
to the identity in any Cm norm into a collection of structurally stable vortex tubes of u,
�(Tε(	1)), . . . , �(Tε(	n)), (possibly) knotted and linked with T (�, u).

Proof. Take a curve 	0 intersecting S transversally and such that Tε(	0)∩� has only a
connected component. We also assume that 	0 does not intersect any of the other curves
	 j , so that the setup is then as depicted in Fig. 5. For ε > 0 small enough, [18] asserts
the existence of some diffeomorphism �′ arbitrarily close to the identity map in any Cm

norm such that �′(Tε(	0)), . . . , �
′(Tε(	n)) are vortex tubes of a strong Beltrami field

u0 which satisfies the equation curl u0 = λu0 in R
3 for some non-zero constant λ (of

order ε3). By construction, these tubes are structurally stable and �′ can be assumed to
be arbitrarily close to the identity in any Cm norm, so the new thin tubes enjoy the same
geometric features as we had assumed on the initial ones. Let x0 ∈ S∩�′(	0) be where
u0 points outwards and consider any open and connected neighborhood � of x0 in S
such that � ⊆ S ∩ �′(Tε(	0)).
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Recall that u0 is of the form

u0 = curl(curl +λ)

2λ2

L∑
l=0

l∑
m=−l

cml jl(λ|x |)Ym
l

(
x

|x |
)

.

as stated in [18]. Since u0 is obviously real-valued, it is the real part of the vector field

v0 = curl(curl +λ)

2λ2

L∑
l=0

l∑
m=−l

cml h
(1)
l (λ|x |)Ym

l

(
x

|x |
)

,

where h(1)
l := jl + iyl is the spherical Hankel function of l-th order and yl denotes the

spherical Bessel function of the second kind and l-th order. By construction, v0 satisfies
the Beltrami equation (and in particular is smooth) in R

3 \{0}, while it diverges at the
origin due to the presence of a Bessel function of the second kind. In particular, it is a
Beltrami field in �.

As the Hankel function h(1)
l has been chosen to satisfy the scalar radiation condition

(∂r − iλ)h(1)
l (λr) = o(r−1),

it is straightforward to check that v0 ∈ Ck+1,α(�,C3) is a complex-valued solution to
the Beltrami equation in the exterior domain �, which satisfies the L1 SMB radiation
condition (22) and the weak L1 decay property (23) (see [9, Equation 2.41] along with
Remark 2.9 and Fig. 1). It is also apparent that T (�, u0) ⊆ �′(Tε(	0)) is a (ρ0, T, δ)-
stream tube of u0 by construction (see Fig. 5), and that λ ∼ ε3 can be prevented from
being a Dirichlet eigenvalue of the Laplace operator in the interior domain G as long
as ε is taken small enough. Then, we are ready to apply the convergence Theorem 3.7
for the modified Grad–Rubin method starting up with the strong Beltrami field u0. This
result ensures the existence of δ0 > 0 so that whenever ‖ϕ0‖Ck+1,α(�) ≤ δ0, then there
exists a generalized Beltrami field u ∈ Ck+1,α(�,R3) and a perturbation ϕ ∈ Ck,α(�)

solving the exterior boundary value problem (52) with ϕ = ϕ0, x ∈ �. T (�, u) is a
(ρ0, T, δ/2) stream tube of u, ϕ is compactly supported in the closure of such stream tube
and ‖u − u0‖Ck+1,α(�) can be made arbitrarily small. In view of the structural stability
of the vortex tubes of u0, the theorem follows. ��

5. Local Stability of Generalized Beltrami Fields

Our objective in this section is to show that, in fact, any generalized Beltrami field
possesses a local partial stability property which can be essentially regarded as a local
version of Theorem 3.7. We recall that, in view of the results in [20], one cannot prove a
full stability result even in arbitrarily small open sets, so we regard this partial stability
(where partial is understood in a very precise sense) as a satisfactory counterpart to the
results in this paper.

5.1. A local stability theorem. We shall next present the local stability result that con-
stitutes the core of this section. The philosophy of this result is that, as one is able to
perturb strong Beltrami fields, one should also be able to perturb generalized Beltrami
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fields in small domains, since in a small region a Ck,α function behaves as a constant
plus a small perturbation. Somehow, this reduces our effort to estimates similar to the
ones that we have already obtained, so our presentation of the proof of this result will be
a little sketchier than before. The gist will be to show that, although the strong conver-
gence of the modified Grad–Rubin scheme cannot be granted in Ck+1,α for un and Ck,α

for fn , we can pass to the limit in C1,α and C0,α provided that both the domain and the
perturbation of the proportionality factor are small enough. Elliptic regularity will then
yield the high order regularity by a bootstrap argument.

In order to support our argument, let us first sketch the effect of the size of the
domain on the solutions of the next Neumann boundary value problem associated with
the inhomogeneous Beltrami equation in some open ball BR(x0){

curl u − λu = w, x ∈ BR(x0),
u · η = 0, x ∈ ∂BR(x0),

(58)

where w ∈ C0,α(BR(x0),R3) has zero flux. We will be interested in the case where R
becomes very small.

This problem has being carefully analyzed in [43] for bounded domains and in [27]
for exterior unbounded domains in the harmonic case (λ = 0). The non-harmonic
counterpart was studied in [29] and Sect. 2 for the inhomogeneous Beltrami equation in
bounded and exterior domains respectively. In the bounded setting, λ has to be assumed
“regular” (see [29]). To this end, notice that taking |λ| < c/R (for an appropriate
universal constant c > 0) prevents λ from being an eigenvalue of the Laplacian in
BR(x0). Hence, |λ| < c/R is a sufficient condition ensuring the well-posedness of (58).
All the above results provide an estimate for the unique solution u to (58) in terms of w

of the form

‖u‖C1,α(BR(x0)) ≤ Cλ,R‖w‖C0,α(BR(x0)),

where the dependence of the constantCλ.R on λ and R is not explicit. The next technical
result aims to provide some explicit R-dependent estimate for u in some space.

Lemma 5.1. Let u ∈ C1,α(BR(x0),R3) be the unique solution to the Neumann bound-
ary value problem associated with the Beltrami equation (58) for |λ| < c/R and
R ∈ (0, 1). Then,

‖u‖C1,α(BR(x0)) ≤ CR−α‖w‖C0,α(BR(x0)), (59)

for some positive constant C depending on α but not on u, w, x0 or R.

Proof. To obtain an explicit R-dependent estimate of u in some space, let us perform
the change of variables y = x−x0

R . Then, one obtains the following vector fields in the
unit ball centered at the origin:

U (y) = u(x), W (y) = w(x),

solving the Neumann boundary value problem for the Beltrami equation in B1(0):{
curlU − λRU = R W, y ∈ B1(0),
U · η = 0, y ∈ ∂B1(0).

Thus, the above-mentioned results yield the following bound for some R-independent
C > 0

‖U‖C1,α(B1(0)) ≤ CR‖W‖C0,α(B1(0)),
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x0

ΣR

T (ΣR, v, TR)

BR(x0)

B2R(x0)

Ω

Fig. 6. Flow box T (�R , v, TR) covering the small ball BR(x0)

where |λ| < c/R has been used to avoid the λ-dependence of the constant C . Note that
by definition

‖W‖C0,α(B1(0)) = ‖w‖C0(BR(x0)) + Rα[w]α,BR(x0),

‖U‖C1,α(B1(0)) = ‖u‖C0(BR(x0)) + R
3∑

i=1

‖∂xi u‖C0(BR(x0)) + R1+α
3∑

i=1

[∂xi u]α,BR(x0).

Since R ∈ (0, 1), then we are led to (59). ��
Another key ingredient is to show thatC1,α vector fields near a non-equilibrium point

verify a “structurally stable” flowbox theorem, to be understood in the next precise sense.

Lemma 5.2. Let u ∈ C1,α(�,R3) be a (nontrivial) vector field and consider some x0 ∈
� such that u(x0) �= 0. There exist R0 > 0 and δ0 > such that B2R0(x0) ⊆ �, u vanishes
nowhere in the ball and for every 0 < R < R0 there exists some surface �R ⊆ ∂BR(x)
and a positive function TR ∈ C(�R) such that for every v ∈ C1,α(BR(x0),R3) with
‖u − v‖C1,α(BR(x0)) < δ0, then

BR(x0) ⊆ T (�R, v, TR) ⊆ B2R(x0).

Here, the above stream tube reads

T (�R, v, TR) := {Xv(t; 0, x) : x ∈ �R, t ∈ (0, TR(x))},
v is the Calderón extension of v from BR(x0) to B2R0(x0) (Proposition 3.1) and the
height TR of the stream tube is not constant but it continuously depends, stream line by
stream line, on the base point x ∈ �R (see Fig. 6). Furthermore, the parametrizations
μR of �R can be normalized by choosing

μR(s) = Rμ(s), s ∈ DR,

for some open subset DR ⊆ D1(0) of the unit disc centered at 0, and some local
parametrization of the unit sphere μ : D1(0) −→ ∂B1(x0). Since the proof follows
the same lines as Lemma 3.4 in Sect. 3, we skip it and pass to the central result of this
section.
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Theorem 5.3. Let u0 be a nontrivial generalized Beltrami field of class Ck+1,α(�,R3),
where k ∈ N and α ∈ (0, 1), and consider its (nonconstant) proportionality factor
f0 ∈ Ck,α(�). Take some nonequilibrium point x0 ∈ � of u0 and fix some ε0 > 0. Then,
for each small enough radius R > 0 there is some surface �R ⊆ ∂BR(x0) and some
constant δR > 0 so that for every ϕ0 ∈ Ck+1,α(�R) with ‖ϕ0‖Ck+1,α(�R ,μR) < δR there

exist ϕ ∈ Ck,α(BR(x0)) and u ∈ Ck+1,α(BR(x0),R3) such that ϕ = ϕ0 on �R and u
is a strong Beltrami field with proportionality factor f0 + ϕ enjoying the same normal
component as u0 in ∂BR(x0):⎧⎨

⎩
curl u = ( f0 + ϕ)u, x ∈ BR(x0),
div u = 0, x ∈ BR(x0),
u · η = u0 · η, x ∈ ∂BR(x0).

Furthermore,

‖u − u0‖Ck+1,α(BR(x0)) ≤ ε0‖u0‖Ck+1,α(BR(x0)).

Proof. The proof has two steps. First, we will prove the theorem for low Hölder expo-
nents and regularity (namely, α ∈ (0, 1/2) and k = 0). Second, we will show a bootstrap
argument based on elliptic gain of regularity that will raise the estimates in the first step
to its full strength and will conclude the proof of the theorem for general regularity and
Hölder exponents.

Then, let us first assume that α ∈ (0, 1/2), define λ0 := f0(x0) and fix some radius
R0 > 0 so that B2R0(x0) ⊆ �, u0 vanishes nowhere in B2R0(x0) and the assertions in
Lemma 5.2 fulfil. Without loss of generality, we can assume that R0 < min{1, c/|λ0|}.
Moreover, note that the homogeneous generalized Beltrami equation can be restated
as an inhomogeneous Beltrami equation with constant proportionality factor and an
inhomogeneous term taking the form of a small remainder, i.e.,

curl u0 − λ0u0 = R(x − x0)u0, x ∈ �, (60)

where f0(x) = λ0 +R(x − x0) for every x ∈ B2R0(x0), i.e.,

R(z) :=
(∫ 1

0
∇ f0(x0 + θ z) dθ

)
· z, z ∈ B2R0(0).

Next, consider the following modified iterative scheme of Grad–Rubin type. It con-
sists of a sequence of transport equations

{∇ϕn · un = −∇ f0 · un, x ∈ BR(x0),
ϕn = ϕ0, x ∈ �R .,

(61)

along with a sequence of boundary value problems associated with the inhomogeneous
Beltrami equation

{
curl un+1 − λ0un+1 = R(x − x0)un + ϕnun, x ∈ BR(x0),
un+1 · η = u0 · η, x ∈ ∂BR(x0).

(62)

Note that they have been chosen in a consistent way so that as long as {un}n∈N and
{ϕn}n∈N have limits (in some sense), then the limits u and ϕ give rise to a generalized
Beltrami field whose proportionality factor is a perturbation f0 + ϕ of the initial factor
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f0. Without loss of generality, we can assume that λ0 �= 0 (in the case λ0 = 0 would
need the additional condition div un+1 = 0).

Let us show that both un+1 ∈ C1,α(BR(x0),R3) and fn ∈ C0,α(BR(x0)) are well
defined and that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖un+1 − un‖C1,α(BR(x0)) ≤ 1

2n
‖u1 − u0‖C1,α(BR(x0)) < min{ε0, 1} 1

2n+1
‖u0‖C1,α(BR(x0)),

‖un+1 − u0‖C1,α(BR(x0)) ≤ min{ε0, 1}
n+1∑
i=1

1

2i
‖u0‖C1,α(BR(x0)),

‖un+1‖C1,α(BR(x0)) ≤ min{ε0, 1}
n+1∑
i=0

‖u0‖C1,α(BR(x0)),

(63)
for every n ∈ N. Let us start with n = 0. On the one hand, the transport problem (61)
with n = 0 can be solved in BR(x0) as BR(x0) ⊆ T (�R, u0, TR) ⊆ B2R(x0) by virtue
of Lemma 5.2. Indeed,

ϕ0(X
u0(t; 0, x)) = ϕ0(x) −

∫ t

0
(∇ f0 · u0)(Xu0(τ, 0, x)) dτ, x ∈ �R, t ∈ (0, TR(x))

defines a solution in T (�R, u0, TR) and, in particular, in BR(x0). Now, notice that∫
∂BR(x0)

(R(· − x0)u0 + ϕ0u0 + λ0u0 ) · η dS

=
∫
BR(x0)

(∇( f0 + ϕ0) · u0 + ( f0 + ϕ0) div u0) dx = 0,

and λ is regular (see [29]) with respect to the inhomogeneous problem (62) with n = 0
because R < R0 < c/|λ0|. Hence, (62) has an unique solution u1 ∈ C1,α(BR(x0),R3)

by virtue of the existence theorem in [29]. Notice that since div u0 = 0 and the first
integral equations in (61) hold, then

−λ0 div u1 = ( f0 + ϕ0) div u0 + ∇( f0 + ϕ0) · u0 = 0.

Furthermore, u1 − u0 solves the Neumann boundary value problem
{

(curl−λ0)(u1 − u0) = R(x − x0)u0 + ϕ0u0, x ∈ BR(x0),
(u1 − u0) · η = 0, x ∈ BR(x0).

Consequently,

‖u1 − u0‖C1,α(BR(x0)) ≤ C

Rα

(‖R(· − x0)‖C0,α(BR(x0))

+‖ϕ0‖C0,α(BR(x0))

) ‖u0‖C0,α(BR(x0)).

A similar result to that in Theorem 3.5 yields the estimate

‖ϕ0‖C0,α(BR(x0)) ≤
(
‖ϕ0‖C1,α(�R ,μR) + R1−α + ‖TR‖C0(�R)

)

×κ
(‖u0‖C1,α(BR(x0)), ‖TR‖C0(�R), ‖μR‖C1,α(BR(x0))

)
,
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for some separately increasing function κ . Regarding the remainder, it is clear that

‖R(· − x0)‖C0,α(BR(x0)) ≤ CR1−α, (64)

which is indeed the reason behind the estimate for ϕ0 that we stated above. Notice that
althoughR is clearly bounded above by R in BR(0), the α-Hölder constant is O(R1−α).
Specifically, take z1, z2 ∈ BR(0) and splitR as follows

R(z1) − R(z2) = I + I I,

where

I :=
(∫ 1

0
∇ f0(x0 + θ z1) dθ

)
· (z1 − z2),

I I :=
(∫ 1

0
(∇ f0(x0 + θ z1) − ∇ f0(x0 + θ z1)) dθ

)
· z2.

By virtue of the α-Hölder continuity of ∇ f0, I I can be bounded as follows:

|I I | ≤ ‖ f0‖C1,α(BR(x0))|z2|
∫ 1

0
|z1 − z2|αθα dθ ≤ ‖ f0‖C1,α(BR(x0))

α + 1
R|z1 − z2|α.

The first term enjoys the bound

|I | ≤ ‖∇ f0‖C0(BR(x0))|z1 − z2| ≤ 21−α‖∇ f0‖C0(BR(x0))R
1−α|z1 − z2|α,

which then leads to the desired estimate (64). Notice that one could have raised the R1−α

power to R if one assumed that ∇ f0(x0) = 0.
Also, note that ‖μR‖C1,α(DR), ‖TR‖C0(�R) ≤ C0R for some universal constant C0 >

0. Then, the above estimate for u1 − u0 can be written as

‖u1 − u0‖C0,α(BR(x0))

≤ C

Rα

(
‖ϕ0‖C1,α(�R ,μR) + 2R1−α

) {
1 + κ
(‖u0‖C1,α(BR(x0)),C0, ‖μ‖C1,α(D1(0))

)}
‖u0‖C0,α(BR(x0)).

Hereafter we will assume that

C

(
δR

Rα
+ 2R1−2α

){
1 + κ
(
2‖u0‖C1,α(BR(x0)),C0, ‖μ‖C1,α(D1(0))

)

+ 2κ
(
2‖u0‖C1,α(BR(x0)),C0, ‖μ‖C1,α(D1(0))

)2 ‖u0‖C1,α(BR(x0))

}

<
ε0

2
, (65)

with ε0 ∈ (0, 1) small enough so that ε0‖u0‖C0,α(BR(x0)) < δ0. Since we are considering
low Hölder exponents α ∈ (0, 1/2), then we can ensure the existence of small enough
R ∈ (0, R0) and δR > 0 enjoying the above property.

Assume that we have already defined fm ∈ C0,α(BR(x0)) and um+1 ∈ C1,α

(BR(x0),R3) for everym < n such that they verify (61)–(63) and um = 0 is divergence-
free for every index m < n. To close the inductive argument let us prove the result for
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m = n. First, the transport problem (61) can be uniquely solved in BR(x0) by virtue of
Lemma 5.2, the inductive hypothesis (63) and the assumption on ε0 since

‖un − u0‖C1,α(BR(x0)) ≤ ε0‖u0‖C1,α(BR(x0)) < δ0.

Second, the boundary value problem (62) can also be uniquely solved since∫
∂BR(x0)

(R(· − x0)un + ϕnun) · η dS + λ0

∫
∂BR(x0)

u0 · η dS

=
∫
BR(x0)

(∇( f0 + ϕn) · un + ( f0 + ϕn) div un) dx = 0,

by the inductive hypothesis and λ is assumed to be a regular value. Furthermore, a similar
argument to that in the step n = 0 shows that un+1 is divergence-free again. Let us finally
obtain the desired estimates for un+1 − un . To this end, note that un+1 − un solves the
boundary value problem
{

(curl−λ0)(un+1 − un) = R(· − x0)(un − un−1) + (ϕn − ϕn−1)un + ϕn−1(un − un−1), x ∈ BR(x0),
(un+1 − un) · η = 0, x ∈ ∂BR(x0).

Hence, we arrive at the following bound

‖un+1 − un‖C1,α(BR(x0)) ≤ C

Rα
(‖R(· − x0)‖C0,α(BR(x0))‖un − un−1‖C0,α(BR(x0))

+‖ϕn − ϕn−1‖C0,α(BR(x0))‖un‖C0,α(BR(x0))

+‖ϕn−1‖C0,α(BR(x0))‖un − un−1‖C0,α(BR(x0))).

On the one hand, the remainder can be bounded above as in (64). On the other hand,
‖ϕn‖C0,α(BR(x0)) and ‖ϕn − ϕn−1‖C0,α(BR(x0)) can be estimated as

‖ϕn−1‖C0,α(BR(x0)) ≤
(
‖ϕ0‖C1,α(�R ,μR) + R1−α + ‖TR‖C0(�R)

)

× κ
(‖un−1‖C1,α(BR(x0)), ‖TR‖C0(�R), ‖μR‖C1,α(BR(x0))

)
,

‖ϕn − ϕn−1‖C0,α(BR(x0)) ≤
(
‖ϕ0‖C1,α(�R ,μR) + R1−α + ‖TR‖C0(�R)

)

× κ
(‖un‖C1,α(BR(x0)), ‖TR‖C0(�R), ‖μR‖C1,α(BR(x0))

)
× κ
(‖un−1‖C1,α(BR(x0)), ‖TR‖C0(�R), ‖μR‖C1,α(BR(x0))

)
× ‖un − un−1‖C1,α(BR(x0)).

Consequently, the inductive hypothesis along with our choice (65) leads to the first
inequality in (63) and the remaining two inequalities obviously follows from the first
one by virtue of the triangle inequality.

As in Sect. 3, the first inequality in (63) shows that {un}n∈N is a Cauchy sequence
in C1,α(BR(x0),R3). By completeness, consider u ∈ C1,α(BR(x0)) such that un →
u in C1,α(BR(x0,R3)). Moreover, the same reasoning as above yields the estimate

‖ϕn − ϕm‖C0,α(BR(x0)) ≤
(
‖ϕ0‖C1,α(�R ,μR) + R1−α + ‖TR‖C0(�R)

)

× κ
(‖un‖C1,α(BR(x0)), ‖TR‖C0(�R), ‖μR‖C1,α(BR(x0))

)
× κ
(‖um‖C1,α(BR(x0)), ‖TR‖C0(�R), ‖μR‖C1,α(BR(x0))

)
× ‖un − um‖C1,α(BR(x0)),
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for every indices n,m ∈ N. Then, there exists some constant K = K (δR, R, ‖u0‖C0,α ) >

0 so that

‖ϕn − ϕm‖C0,α(BR(x0))
≤ K‖un − um‖C1,α(BR(x0)).

Hence, {ϕn}n∈N is also a Cauchy sequence in C0,α(BR(x0)) and one can consider ϕ ∈
C0,α(BR(x0)) such that ϕn → ϕ in C0,α(BR(x0)). Taking limits in (61)–(62) we are
led to a generalized Beltrami field u ∈ C1,α(BR(x0),R3) solving

⎧⎨
⎩
curl u = ( f0 + ϕ)u, x ∈ BR(x0),
div u = 0, x ∈ BR(x0),
u · η = u0 · η, x ∈ ∂BR(x0),

for a perturbation ϕ ∈ C0,α(BR(x0)) of the factor such that ϕ = ϕ0 on �R .
Let us finally show that u ∈ Ck+1,α(BR(x0),R3) and ϕ ∈ Ck,α(BR(x0)) by a

bootstrap argument based on the elliptic gain of regularity. The key observation now is
that, by acting with the curl operator on the equation for u, it follows that

⎧⎨
⎩

�u = − curl(( f0 + ϕ)u), x ∈ BR(x0),
u · η = u0 · η, x ∈ ∂BR(x0),
curl u × η = ( f0 + ϕ)u × η, x ∈ ∂BR(x0).

Then, the next hierarchy of inequalities

‖u‖Cl+1,α(BR(x0))

≤ C(‖( f0 + ϕ0)u‖Cl,α(BR(x0)) + ‖u0 · η‖Cl+1,α(∂BR(x0))

+‖( f0 + ϕ)u × η‖Cl,α(BR(x0))).

hold for every l ≥ 0. We then get that the fact that u is of class C1,α implies that ϕ is
of class C0,α . In turns, it ensures that u is in C2,α and, repeating the argument as many
times as necessary (up to the regularity on ϕ0 and u0, i.e., Ck+1,α) we derive the desired
gain of regularity. Indeed, the estimate

‖u − u0‖C1,α(BR(x0)) ≤ ε0‖u0‖C1,α(BR(x0)),

can be promoted to its Ck+1,α version, i.e.,

‖u − u0‖Ck+1,α(BR(x0)) ≤ ε0‖u0‖Ck+1,α(BR(x0)).

So far, we have only taken low Hölder exponents α ∈ (0, 1/2). Assume now that
u0 ∈ Ck+1,α′

(�,R3) and f0 ∈ Ck,α′
(�) for some α′ ∈ (α, 1). In particular, u0 ∈

Ck+1,α(B2R0(x0),R
3) and ϕ0 ∈ Ck,α(B2R(x0)). The above argument, yields a strong

Beltrami field u ∈ Ck+1,α(BR(x0),R3) with proportionality factor f0 + ϕ for some
perturbation ϕ ∈ Ck,α(BR(x0)) such that ϕ = ϕ0 on �R as long as R is small enough
and ‖ϕ0‖Ck+1,α′

(�R)
< δR . Since

‖ϕ0‖Ck+1,α(�R) = ‖ϕ0 ◦ μR‖Ck+1,α(DR) ≤ ‖ϕ0 ◦ μR‖Ck+1,α′
(DR)

= ‖ϕ0‖Ck+1,α′
(�R)

,
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then, the above smallness assumption on the Ck+1,α(�R) norm ϕ0 follows from the
corresponding assumption on the Ck+1,α′

(�R) norm, i.e., ‖ϕ0‖Ck+1,α′
(�R)

< δR . Since
ϕ solves

{∇ϕ · u = −∇ f0 · u, x ∈ BR(x0),
ϕ = ϕ0, x ∈ �R,

then, a similar result to that in Theorem 3.5 leads to ϕ ∈ C1,α(BR(x0)) because so is u,
f0 and ϕ0. In particular ϕ ∈ C0,α′

(BR(x0)) and u ∈ C0,α′
(BR(x0),R3). Then, the above

bootstrap in the Beltrami equation yields ϕ ∈ Ck,α′
(BR(x0)) and u ∈ Ck+1,α′

(BR(x0)),
thereby concluding the proof. ��
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Appendix A: Potential Theory Techniques for Inhomogeneous Integral Kernels

Our goal in this section is to extend some results of classical potential theory to inho-
mogeneous kernels like the fundamental solution of the Helmholtz equation 	λ(x) (see
e.g. [8,13,23,24,30,32,33,41,42] in the case of homogeneous kernels). While there are
some previous results concerning the inhomogeneous case (see [9,10,37] for a study
of 	λ(x) with non-zero λ), only low order Hölder estimates have been obtained. Our
approach roughly follows the treatment of [25,38] for the harmonic case (i.e., λ = 0),
and we will introduce nontrivial modifications to derive higher order Hölder estimates
of generalized volume and single layer potentials in the inhomogeneous setting. These
results were used in Sect. 2 and, of course, the main point throughout is to be able to
consider exterior (unbounded) domains.

A.1. Inhomogeneous volume and single layer potentials. In our context, all the integral
kernels to be considered come from the fundamental solution of the 3-dimensional
Helmholtz equation (12)

	λ(z) = eiλ|z|

4π |z| = 1

4π

(
cos(λ|z|)

|z| + i
sin(λ|z|)

|z|
)

, z ∈ R
3 \{0}.

For λ = 0 we recover the Newtonian potential associated with the Laplace equation
in R

3, [23,24,32,33]. As it is not longer homogeneous, the classical theory cannot be
directly applied.

Fortunately, this kernel can be though to be “almost homogeneous” in the following
sense. Let us consider the functions

⎧⎪⎨
⎪⎩

φλ(r) := eiλr

4πr
, r > 0,

ψλ(r) := φλ(r) − 1

4πr
≡ eiλr − 1

4πr
, r > 0.

(66)
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From the definition one has the following splitting

	λ(z) = φλ(|z|) = 1

4π |z| + ψλ(|z|) =: 	0(z) + Rλ(z), (67)

that amounts to a decomposition of the inhomogeneous kernel 	λ(z) into the homo-
geneous part 	0(z) and an inhomogeneous remainder Rλ(z) exhibiting a lower order
singularity at the origin. The main argument supporting our subsequent results is that
we do not need our whole kernel to be purely homogeneous, but only the principal (or
more singular) part. While high order derivatives of harmonic potentials can be directly
controlled through the harmonic kernel 	0(z) and the classical results [23,24,32,33], it
is also important to control the behavior of the higher order derivatives of the remainder
Rλ(z).

To this end, let us compute the derivative of ψλ(r)

ψ ′
λ(r) = iλ

1

4πr
+

(
iλ − 1

r

)
ψλ(r).

and note that since ψλ(r) is locally bounded near r = 0 and decay as r−1 at infinity,
it is globally bounded. Hence, a recursive reasoning leads to estimates for high order
derivatives:

|ψ(m)
λ (r)| ≤ C

(
1 +

1

rm

)
, r > 0, (68)

for a nonnegative constant C = C(λ,m). It obviously turns into

|Dγ Rλ(z)| ≤ C

(
1 +

1

|z||γ |

)
, (69)

for every z ∈ R
3 \{0} and each multi-index γ , in contrast with the analogous bounds for

	0(z):

|Dγ 	0(z)| ≤ C
1

|z||γ |+1 . (70)

A basic fact is that, being inhomogeneous, Rλ(z) is one degree less singular than
	0(z). Thus, we will combine results of Calderón–Zygmund type for singular integrals
(e.g. D2	0(z)) with a treatment in the spirit of Hardy–Littlewood–Sobolev theorem
for weakly singular integral kernels (e.g. D2Rλ(z)). See also [37] for a treatment of
pseudo-homogeneous kernels.

For the sake of completeness, we shall next introduce the kind of kernels to be faced
in this section. Let us consider a bounded domain D ⊆ R

N . A continuous function
K = K (x, z), x ∈ D, z ∈ R

N \{0} is a weakly singular kernel of exponent β if there
is a nonnegative constant C such that

|K (x, z)| ≤ C

|z|β , x ∈ D, z ∈ R
N \{0},

for a given 0 ≤ β ≤ N − 1. In this paper, the singular kernels that will appear are first
order partial derivatives of positively homogeneous kernel of degree −(N − 1), i.e.,

∂

∂zi
K (x, z), x ∈ D, z ∈ R

3 \{0},
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where K (x, z) satisfies K (x, λz) = λ−(N−1)K (x, z) for all x ∈ D, z ∈ R
N \{0}, λ > 0

and K (x, σ ) is continuous for x ∈ D and σ ∈ ∂B1(0).
The same lines as in the classical result [33, Teorema 2.I] can be used to achieve

bounds for the single layer potential associated with 	λ(z) both in bounded and
unbounded domains:

Theorem A.1 (Generalized single layer potential). Let G ⊆ R
3 be a bounded domain

with regularity Ck+1,α ,� := R
3 \G its outer domain and S = ∂G the boundary surface.

Consider the generalized single layer potential associated with the Helmholtz equation
and generated by a density ζ along S,

(Sλζ )(x) :=
∫
S
	λ(x − y)ζ(y) dy S, x ∈ R

3 \S.

Then, the restrictions of Sλζ to the interior and exterior domain defines bounded linear
operators

S−
λ : Ck,α(S) −→ Ck+1,α(G), S+

λ : Ck,α(S) −→ Ck+1,α(�).

We omit the proof of this theorem since we are interested in a more singular regular-
ity result that follows similar ideas. Specifically, we will study the regularity along the
boundary surface S of these generalized single layer potentials and other related poten-
tials with inhomogeneous kernels that arose in previous sections via similar arguments
to those in [33, Teorema 2.I]. The main goal of the next results is to derive the classical
Hölder–Korn–Lichtenstein–Giraud inequality for high order estimates of Hölder type
in the inhomogeneous case, i.e., the regularity of generalized volume (or Newtonian)
potentials with compactly supported densities both for interior and exterior domains.

Lemma A.2. Let G ⊆ R
3 be a bounded domain with regularity Ck+1,α and S = ∂G the

boundary surface. The generalized volume potential on G associated with the Helmholtz
equation and a density ζ in G,

(N−
λ ζ )(x) =

∫
G

	λ(x − y)ζ(y) dy, x ∈ G,

defines a bounded linear map N−
λ : Ck,α(G) −→ Ck+2,α(G).

Proof. The proof follows the lines of [33, Teorema 3.II] for the harmonic case λ = 0,
that we extend to the inhomogeneous case.

A C1 estimate of N−
λ ζ can be achieve by taking derivatives under the integral sign

∂

∂xi
(N−

λ ζ )(x) =
∫
G

∂

∂xi
	λ(x − y)ζ(y) dy, x ∈ G,

and using the local integrability of 	λ(z), ∇	λ(z), along with the boundedness of G
and the fact that ζ ∈ C0(G):

‖N−
λ ζ‖C1(G) ≤ C‖ζ‖C0(G) ≤ C‖ζ‖Ck,α(G).

Now, fix any multi-index γ with |γ | ≤ k and takes derivatives again under the integral
sign to get

Dγ ∂

∂xi
(N−

λ ζ )(x) =
∫
G
Dγ
x

∂

∂xi
	λ(x − y)ζ(y) dy.



Stability Results, Almost Global Generalized Beltrami Fields 249

A recursive reasoning supported by some chained integrations by parts leads to

Dγ ∂

∂xi
(N−

λ ζ )(x) = −
γ1∑

m1=1

∫
S
Dγ−m1e1
x

∂

∂xi
	λ(x − y)D(m1−1)e1ζ(y)η1(y) dy S

−
γ2∑

m2=1

∫
S
Dγ−γ1e1−γ2e2
x

∂

∂xi
	λ(x − y)Dγ1e1+(m2−1)e2ζ(y)η2(y) dy S

−
α3∑

m3=1

∫
S
Dγ−γ1e1−γ2e2−m3e3
x

∂

∂xi
	λ(x − y)Dγ1e1+γ2e2+(m3−1)e3ζ(y)η3(y) dy S

+
∫
G

∂

∂xi
	λ(x − y)Dγ ζ(y) dy.

Combining the preceding arguments with Theorem A.1 we arrive at
∥∥∥∥Dγ ∂

∂xi
(N−

λ ζ )

∥∥∥∥
C0(G)

≤ K‖ζ‖Ck,α(G).

To complete the proof, we consider the derivatives of order k + 2. For 1 ≤ j ≤ 3 we
then have

Dγ ∂2

∂xi∂x j
(N−

λ ζ )(x)

= −
γ1∑

m1=1

∫
S
D

γ−m1e1+e j
x

∂

∂xi
	λ(x − y)D(m1−1)e1ζ(y)η1(y) dy S

−
γ2∑

m2=1

∫
S
D

γ−γ1e1−γ2e2+e j
x

∂

∂xi
	λ(x − y)Dγ1e1+(m2−1)e2ζ(y)η2(y) dy S

−
α3∑

m3=1

∫
S
D

γ−γ1e1−γ2e2−m3e3+e j
x

∂

∂xi
	λ(x − y)Dγ1e1+γ2e2+(m3−1)e3ζ(y)η3(y) dy S

+
∫
G

∂2

∂xi∂x j
	λ(x − y)Dγ ζ(y) dy.

Similar estimates for the boundary terms can be obtained in C0,α(G) by virtue of The-
orem A.1, while the last term requires an adaptation of the ideas in the harmonic case
[33, Teorema 3.II]. We first split it into two parts and use again integration by parts in
the second term

∫
G

∂2

∂xi∂x j
	λ(x − y)Dγ ζ(y) dy

=
∫
G

∂2

∂xi∂x j
	λ(x − y)(Dγ ζ(y) − Dγ ζ(x)) dy

+ Dγ ζ(x)
∫
G

∂

∂x j

∂

∂xi
	λ(x − y) dy
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=
∫
G

∂2

∂xi∂x j
	λ(x − y)(Dγ ζ(y) − Dγ ζ(x)) dy

− Dγ ζ(x)
∫
S

∂

∂xi
	λ(x − y)η j (y) dy S

=: F(x) − H(x).

The idea behind such decomposition is that Theorem A.1 yields

‖H‖C0,α(G) ≤ K‖η‖C0,α(G) ‖ζ‖Ck,α(S)

and we can cancel an α power of the singularity in F(x):

|F(x)| ≤ [Dγ ζ
]
α,G

∫
G

∣∣∣∣ ∂2

∂xi∂x j
	λ(x − y)

∣∣∣∣ |x − y|α dy.

Bearing the estimates (69) and (70) in mind, along with the local integrability of |z|α−3

and the boundedness of G, we find the following C0 estimate

‖F‖C0(G) ≤ K‖ζ‖Ck,α(G).

Let us finally show the local α-Hölder property for F , i.e.,

|F(x1) − F(x2)| ≤ C‖ζ‖Ck,α(G)|x1 − x2|α,

for every x1, x2 ∈ G such that |x1 − x2| < δ and some small δ > 0 (the global one
follows from the boundedness of F). To this end, consider a neighborhoodU of x1 with
B2d(x1) ⊆ U ⊆ B7d(x1) an taking Euclidean norms, we finally arrive at

|F(x1) − F(x2)| ≤
∫
G∩B7d (x1)

∣∣∣∣∂
2	λ(x1 − y)

∂xi∂x j

∣∣∣∣ |(Dγ ζ(y) − Dγ ζ(x1))| dy

+
∫
G∩B8d (x2)

∣∣∣∣∂
2	λ(x2 − y)

∂xi∂x j

∣∣∣∣ |(Dγ ζ(y) − Dγ ζ(x2))| dy

+
∫
G\B2d (x1)

∣∣∣∣∂
2	λ(x1 − y)

∂xi∂x j
− ∂2	λ(x2 − y)

∂xi∂x j

∣∣∣∣
× |Dγ ζ(y) − Dγ ζ(x1)| dy
+ |Dγ ζ(x1) − Dγ ζ(x2)|

∫
G\U

∣∣∣∣∂
2	λ(x2 − y)

∂xi∂x j

∣∣∣∣ dy, (71)

where in the last three terms we have respectively used thatG∩B7d(x1) ⊆ G∩B8d(x2),
G \ B7d(x1) ⊆ G \ B2d(x1) and G \ B7d(x1) ⊆ G \U (Fig. 7).

The first and second terms in (71) can be bounded as desired by virtue of the α-Hölder
property for Dγ ζ and the fact that D2	λ(z) = O

(|z|−3
)
. For both cases, note that the

underlying kernel |z|−(3−α) is integrable “near the origin”. Regarding the third term in
(71), the mean value theorem shows
∣∣∣∣ ∂2	λ

∂zi∂z j
(x1 − y) − ∂2	λ

∂zi∂z j
(x2 − y)

∣∣∣∣ ≤ C
|x1 − x2|
|x1 − y|4 , ∀ y ∈ G \ B2d(x

1).
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x1

x2

G

B2d(x1) ≡ U

B7d(x1)

x1

x2

G

B2d(x1) ≡ U

B7d(x1)

x1

U ≡ B4d(x1)

Fig. 7. Right: U = B2d (x1) in the first case. Left: U = B4d (̃x1) in the second case

In this case, the same ideas bring to light the underlying kernel |z|−(4−α) that is “inte-
grable at infinity” and gives rise to the desired estimate for the third term. Concerning
the last term in (71), we are done as long as one notices that Dγ ζ ∈ C0,α(G) and shows

∫
G\U

∣∣∣∣∂
2	λ(x2 − y)

∂xi∂x j

∣∣∣∣ dy ≤ C,

for some positive constant C depending on δ but not on d = |x1 − x2|. For that,
assume first that 2d ≤ dist(x1, S) and define U := B2d(x1). In such case, ∂(G \ U ) =
S ∪ ∂B2d(x1). Then,

∫
G\U

∂2	λ(x2 − y)

∂xi∂x j
dy =
∫
S

∂	λ(x2 − y)

∂xi
η j (y) dy S

−
∫

∂B2d (x1)

∂	λ(x2 − y)

∂xi

(y − x1) j
|y − x1| dy S. (72)

On the one hand, Theorem A.1 provides a bound for the first term of (72). On the other
hand, note that a combination of the control of ∇	λ(z) at infinity (see Eqs. (69)–(70))
along with the estimate

sup
y∈∂B2d (x1)

1

|x2 − y|2 ≤ 1

|x1 − x2|2 ,

entail the aforementioned bound for the second term in (72).
Secondly, let us consider the opposite case 2d > dist(x1, S). Now the configuration

is slightly different. Let us fix some x̃1 ∈ S so that |x1 − x̃1| = dist(x1, S) and define
U := B4d (̃x1).

Since x2 ∈ B3d (̃x1) then, B2d(x1) ⊆ U ⊆ B7d(x1). This time,

∫
G\U

∂2	λ(x2 − y)

∂xi∂x j
dy=
∫
S

∂	λ(x2 − y)

∂xi
η j (y) dy S−

∫
∂(U∩G)

∂	λ(x2 − y)

∂xi
ν j (y) dy S.

(73)
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The first term in (73) can be bounded through the same reasonings as above, thus we
focus on the second term that will follow the idea in [33, Lemma 2.IV]. To this end,

define some cut-off function ξ
( |y−x̃1|

d

)
for ξ ∈ C∞

c (R+
0) such that

⎧⎪⎨
⎪⎩

ξ(r) = 1, r ∈ [0, 7
2

]
,

ξ(r) ∈ (0, 1), r ∈ ( 72 , 4) ,
ξ(r) = 0, r ≥ 4,

and consider the splitting
∫

∂(G∩B4d (̃x1))

∂	λ(x2 − y)

∂xi
ν j (y) dy S

=
∫
G∩∂B4d (̃x1)

∂	λ(x2 − y)

∂xi
ν j (y) dy S

+
∫
S∩B4d (̃x1)

∂	λ(x2 − y)

∂xi

[
1 − ξ

( |y − x̃1|
d

)]
ν j (y) dy S

+
∫
S∩B4d (̃x1)

∂	λ(x2 − y)

∂xi
ξ

( |y − x̃1|
d

)
ν j (y) dy S. (74)

Bear in mind again that x2 ∈ B3d (̃x1) and ∇	λ(z) = O(|z|−2) when |z| → +∞. In
the first term, note that y ∈ G ∩ ∂B4d (̃x1) and consequently, |y − x2| ≥ d, what shows
the boundedness of such term. For the second term, we have that y ∈ S ∩ B4d (̃x1)
but, in order that y belongs to the support of the cut-off function, one has to assume
|y − x̃1| ≥ 7

2d. Thus, |y − x2| ≥ d
2 and a similar reasoning now yields

∣∣∣∣
∫
S∩B4d (̃x1)

∂	λ(x2 − y)

∂xi
ν j (y) dy S

∣∣∣∣ ≤ C̃

|x1 − x2|2 |S ∩ B4d (̃x
1)|.

The upper bound for the second term is done once we note that for regular surfaces
|S ∩ B4d (̃x1)| ≤ Cd2. To prove the corresponding bound for the third term in (74), we
consider the potential

S(x) =
∫
S

∂	λ(x − y)

∂xi
ξ

( |y − x̃1|
d

)
ν j (y) dy S, x ∈ G,

whose C0,α estimate follows again from Lemma A.1:

‖S‖C0,α(G) ≤ C

∥∥∥∥ξ
( | · −x̃1|

d

)
ν j

∥∥∥∥
C0,α(S)

≤ C

(
1 +

1

dα

)
.

Let us now fix 0 < δ < 1 small enough so that x − θη(x) ∈ G for every couple x ∈ S
and 0 < θ < 4δ. Thus, S (̃x1 − 4dη(̃x1)) = 0 and consequently,

|S(x2)| = |S(x2) − S (̃x1 − 4dη(̃x1))| ≤ C

dα
|x2 − x̃1 + 4dη(̃x1)|α

≤ C

dα
(3d + 4d)α ≤ C̃ .

��
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Lemma A.3. Let G ⊆ R
3 be a bounded domain with regularity Ck+1,α , � := R

3 \G its
exterior domain and S = ∂G the boundary surface. The generalized volume potential
on � associated with the Helmholtz equation and generated by a density ζ in G

(N +
λ ζ )(x) =

∫
G

	λ(x − y)ζ(y) dy, x ∈ �,

defines a bounded linear map N +
λ : Ck,α(G) −→ Ck+2,α(�).

Proof. Our argument is based on some ideas of [33, Teorema 3.II]. Consider R > 0
such that G ⊆ BR(0) and let us estimate ‖N +

λ ζ‖Ck+2,α(�) in R
3 \BR(0) and �2R where

�2R := B2R(0) \ G. Set

dR := min{|x − y| : x ∈ R
3 \BR(0), y ∈ G} > 0,

and assume that dR < 1.
Equations (67), (69) and (70) yield

∣∣Dγ
x 	λ(x − y)

∣∣ ≤ C̃
1

d |γ |+1
R

,

for every multi-index γ and every x ∈ R
3 \BR(0) and y ∈ G. One can then take

derivatives under the integral sign and obtain the desired estimate for theCk+2,α norm in
R
3 \BR(0). On the other hand, consider ζ ∈ Ck,α(R3) through Proposition 3.1. Then,

(N +
λ ζ )(x) =

∫
B2R(0)

	λ(x − y)ζ (y) dy −
∫

�2R

	λ(x − y)ζ (y) dy,

for every x ∈ �2R . Since �2R ⊆ B2R(0), the triangle inequality yields:

‖N +
λ ζ‖Ck+2,α(�2R) ≤

∥∥∥∥
∫
B2R(0)

	λ(· − y)ζ (y) dy

∥∥∥∥
Ck+2,α(B2R(0))

+

∥∥∥∥
∫

�2R

	λ(· − y)ζ (y) dy

∥∥∥∥
Ck+2,α(�2R)

.

Finally, note that both domains are bounded and, consequently, Lemma A.2 and Propo-
sition 3.1 apply and yield the desired estimate

‖N +
λ ζ‖Ck+2,α(�2R) ≤ M‖ζ‖Ck,α(B2R(0)) ≤ MCP‖ζ‖Ck,α(G).

��
Now, we focus on similar bounds for singular and weakly singular kernels in the

whole space RN . This results are classical in the homogeneous harmonic case, 	0(z),
and can be found in [24,32,33]. However, not only will we need harmonic potentials,
but we will also deal with general singular and weakly singular kernels. To this end, we
remind [25, Satz 3.4, Satz 5.4].

Theorem A.4 (Weakly singular kernels). Let us consider 0 ≤ β ≤ N − 1, 0 < α < 1
and K (x, z), x ∈ D, z ∈ R

N \{0} a weakly singular integral kernel of exponent β

satisfying the following three hypothesis:
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(1) For each x ∈ D

K (x, ·) ∈ C1(RN \{0}).
(2) For each x ∈ D and z ∈ R

N \{0}
|∇z K (x, z)| ≤ C

|z|β+1 .

(3) For all x1, x2 ∈ D and z ∈ R
N \{0} one has

|K (x1, z) − K (x2, z)| ≤ C
|x1 − x2|α

|z|β .

Then, the generalized volume potential generated by a density ζ in RN ,

(NK ζ )(x) :=
∫
R
N
K (x, x − y)ζ(y) dy, x ∈ D,

defines a bounded linear map for each positive radius R

NK : C0,α
c (BR(0)) −→ C0,α(D).

Theorem A.5 (Singular kernels). Consider 0 < α < 1 and K (x, z), x ∈ D, z ∈
R

N \{0} a kernel satisfying the following hypotheses:

(1) K (x, z) is positively homogeneous of degree −(N − 1) with respect to the second
variable, i.e., K (x, λz) = λ−(N−1)K (x, z) for all x ∈ D, z ∈ R

N \{0} and λ > 0.
(2) K (x, z) has the following regularity properties for every x ∈ D and each indices

1 ≤ i, j ≤ N:

K ∈ C1(D × (RN \{0})), K (x, ·) ∈ C2(RN \{0}),
∂K

∂xi
∈ C(D × (RN \{0})), ∂K

∂xi
(x, ·) ∈ C1(RN \{0}),

∂K

∂zi
∈ C(D × (RN \{0})),

∂2K

∂zi∂x j
∈ C(D × (RN \{0})), ∂2K

∂zi∂z j
∈ C(D × (RN \{0})).

(3) The first derivatives of K (x, z) are Hölder-continuous with exponent α with respect
to x in the sense that, for each x1, x2 ∈ D, z ∈ R

N \{0} and for all index 1 ≤ i ≤ N,∣∣∣∣∂K∂xi
(x1, z) − ∂K

∂xi
(x2, z)

∣∣∣∣ ≤ C
|x1 − x2|α

|z|N−1 ,

∣∣∣∣∂K∂zi
(x1, z) − ∂K

∂zi
(x2, z)

∣∣∣∣ ≤ C
|x1 − x2|α

|z|N .

Then, the generalized volume potential defines a bounded linear map for every positive
radius R > 0

NK : C0,α
c (BR(0)) −→ C1,α(D).

Moreover, for every 1 ≤ i ≤ N,

∂

∂xi
(NK ζ ) = N ∂K

∂xi
ζ +N ∂K

∂zi
ζ.
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Notice that the singular integral kernel ∂K
∂zi

has an associated singular integral operator
N ∂K

∂zi
, where the integrals require to be understood in the sense of Cauchy principal values

by virtue of the cancellation properties arising from the homogeneity in z of the original
kernel K (x, z). Another interesting remark, that explains some differences between
volume potentials in the whole RN and volume potentials in a bounded domain, is the
change of variables formula

(NK ζ )(x) =
∫
R
N
K (x, x − y)ζ(y) dy =

∫
R
N
K (x, z)ζ(x − z) dz, (75)

which lets us take derivatives in any of the fwo factors.When the kernel is not sufficiently
well behaved, we can put the derivatives on the density, or the other way round. Obvi-
ously, it is no longer valid for densities on G, where the integration by part argument in
the proof of Lemma A.2 is required, producing new boundary term that must be studied
via Theorem A.1.

As a consequence, one can prove the next two corollaries, where higher order deriva-
tives of these generalized volume potentials can be considered.

Corollary A.6. Let us consider 0 ≤ β ≤ N − 1, 0 < α < 1, k,m ∈ N so that
β + m ≤ N − 1 and K (x, z), x ∈ D, z ∈ R

N \{0}, a weakly singular integral kernel
of exponent β verifying the next hypothesis for each couple of multi-indices γ1, γ2 with
|γ1| ≤ k and |γ2| ≤ m:

(1) Dγ1+γ2
x K (x, z) is weakly singular with exponent β and Dγ1

x Dγ2
z K (x, z) is the sum

of weakly singular integral kernels with exponents raging from β to β + |γ2|, i.e.,
∣∣∣Dγ1+γ2

x K (x, z)
∣∣∣ ≤ C

|z|β ,
∣∣Dγ1

x Dγ2
z K (x, z)

∣∣ ≤ C

(
1

|z|β +
1

|z|β+|γ2|

)
.

(2) For every x ∈ D,

(Dγ1+γ2
x K )(x, ·), (Dγ1

x Dγ2
z K )(x, ·) ∈ C1(RN \{0}).

(3) For all x ∈ D, z ∈ R
N \{0},

∣∣∣∇z D
γ1+γ2
x K (x, z)

∣∣∣ ≤ C

(
1

|z|β +
1

|z|β+1
)

,
∣∣∇z D

γ1
x Dγ2

z K (x, z)
∣∣

≤ C

(
1

|z|β +
1

|z|β+|γ2|+1

)
.

(4) For any x1, x2 ∈ D, z ∈ R
N \{0},

|Dγ1+γ2
x K (x1, z) − Dγ1+γ2

x K (x2, z)| ≤ C

|z|β |x1 − x2|α,

|Dγ1
x Dγ2

z K (x1, z) − Dγ1
x Dγ2

z K (x2, z)| ≤ C

(
1

|z|β +
1

|z|β+|γ2|

)
|x1 − x2|α.

Then, the generalized volume potential defines a bounded linear operator for every
positive radius R

NK : Ck,α
c (BR(0)) −→ Ck+m,α(D).
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Moreover, for every multi-index γ = γ1 + γ2 so that |γ1| ≤ k and |γ2| ≤ m

Dγ (NK ζ ) =
∑
δ≤γ1

(
γ1

δ

)(
N

D
δ+γ2
x K

Dγ1−δζ +NDδ
x D

γ2
z K Dγ1−δζ

)
.

Corollary A.7. Let 0 < α < 1, k ∈ N, x ∈ D, z ∈ R
N \{0} and K (x, z) be a weakly

singular kernel, which has the following properties:

(1) K (x, z) is positively homogeneous of degree −(N − 1) in the second variable.
(2) K (x, z) has the regularity properties

Dγ
x K ∈ C1(D × (RN \{0})), (Dγ

x K )(x, ·) ∈ C2(RN \{0}),
∂

∂xi
Dγ
x K ∈ C(D × (RN \{0})),

(
∂

∂xi
Dγ
x K

)
(x, ·) ∈ C1(RN \{0}),

∂

∂zi
Dγ
x K ∈ C(D × (RN \{0})),

∂2

∂zi∂x j
Dγ
x K ∈ C(D × (RN \{0})), ∂2

∂zi∂z j
Dγ
x K ∈ C(D × (RN \{0})),

for each couple of indices 1 ≤ i, j ≤ N and each multi-index γ with |γ | ≤ k.
(3) The derivatives of K (x, z)with respect to x up to order k are α-Hölder continuous,∣∣∣∣

(
∂

∂xi
Dγ
x K

)
(x1, z) −

(
∂

∂xi
Dγ
x K

)
(x2, z)

∣∣∣∣ ≤C
|x1 − x2|α

|z|N−1 ,

∣∣∣∣
(

∂

∂zi
Dγ
x K

)
(x1, z) −

(
∂

∂zi
Dγ
x K

)
(x2, z)

∣∣∣∣ ≤C
|x1 − x2|α

|z|N ,

for each x1, x2 ∈ D, z ∈ R
N \{0}, each index 1 ≤ i ≤ N and |γ | ≤ k.

Then, the generalized volume potential defines a bounded linear operator for every
positive radius R

NK : Ck,α
c (BR(0)) −→ Ck+1,α(D).

Moreover, for every multi-index γ with |γ | ≤ k and any index 1 ≤ i ≤ N:

∂

∂xi
Dγ
x (NK ζ ) =

∑
δ≤γ

(
γ

δ

)(
N ∂

∂xi
Dγ
x K

Dδ−γ ζ +N ∂
∂zi

Dγ
x K

Dδ−γ ζ

)
.

When the constants C appearing in the statements of the above results do not depend
on the chosen bounded domain D, the above estimates can be extended from Hölder
estimates over D, to global estimates in R

N . This is the case for the integral kernels
which do not depend on the variable x (e.g., 	0(z), Rλ(z) and 	λ(z)). In this way, we
get the next result in the spirit of Lemmas A.2 and A.3.

Lemma A.8. The generalized volume potential in R
3 associated with the Helmholtz

equation

(Nλζ )(x) :=
∫
R
3
	λ(x − y)ζ(y) dy, x ∈ R

3,
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defines a bounded linear operator for every positive radius R

Nλ : Ck,α
c (BR(0)) −→ Ck+2,α(R3).

Combining the above results, we can estimate generalized volume potentials in �

whose densities have compact support in � by means of an appropriate splitting. Using
Calderón’s extension theorem (Proposition 3.1), for every ζ ∈ Ck,α

c (�) there exists an
extension ζ ∈ Ck,α

c (R3), so

N +
λ ζ = (Nλζ

)∣∣
�

− N +
λ

(
ζ
∣∣
G

)
in �.

Then, Lemmas A.3 and A.8 lead to the following result:

Theorem A.9 (Generalized volume potential). Let G ⊆ R
3 be a bounded domain with

regularity Ck+1,α , � := R
3 \G its exterior domain and S = ∂G the boundary surface.

The generalized volume potential associated with the Helmholtz equation and generated
by a density ζ in �,

(N +
λ ζ )(x) =

∫
�

	λ(x − y)ζ(y) dy, x ∈ �,

defines a bounded linear operator for every positive radius R

N +
λ : Ck,α

c (BR(0) \ G) −→ Ck+2,α(�).

A.2. Regularity of the boundary integral operator Tλ. The next step is to analyze the
regularity properties of the boundary integral operator Tλ (31) arising in the boundary
integral equation (30) associated with the boundary data η × u in Theorem 2.15. Firstly,
we split the operator Tλ into

Tλ = MT
λ + λST

λ .

MT
λ ζ is known as the magnetic dipole operator, which is the tangent component of the

electric field generated by a dipole distribution with density ζ ∈ X(S), i.e.,

(MT
λ ζ )(x) :=

∫
S
η(x) × curlx (	λ(x − y)ζ(y)) dy S, x ∈ S.

ST
λ is the tangential component of the generalized single layer potential generated by ζ ,

(ST
λ ζ )(x) =

∫
S
	λ(x − y)η(x) × ζ(y) dy S, x ∈ S.

The integral kernel of ST
λ is weakly singular over S, so this integral is absolutely con-

vergent under suitable hypotheses for ζ . The integral in MT
λ is absolutely convergent

under minimal assumption on ζ . Indeed, although the integral kernel looks singular over
S let us see this it is again weakly singular when ζ is a tangent vector field on S. Notice
that, given any tangent field along S, ζ ∈ Xk,α(S), one can split

η(x) × (∇x	λ(x − y) × ζ(y)) = (η(x) − η(y)) · ζ(y)∇x	λ(x − y)

−η(x) · ∇x	λ(x − y) ζ(y).
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Consequently, the j-th coordinates of the integrands read

(η(x) × (∇x	λ(x − y) × ζ(y))) j =
3∑

i=1

(ηi (x) − ηi (y))ζi (y) ∂x j 	λ(x − y)

− η(x) · ∇x	λ(x − y) ζ j (y),

(	λ(x − y)η(x) × ζ(y)) j =
3∑

i=1

	λ(x − y)(ei × e j ) · η(x)ζi (y).

Consider any extension η̃ ∈ Ck+4,α
c (R3) of the outward unit normal vector field η to the

compact surface S and define the kernels

KD
λ (x, z) = η̃(x) · ∇	λ(z),

Ki, j
λ (x, z) = (̃ηi (x) − η̃i (x − z)) ∂z j 	λ(z), K̃ i, j

λ (x, z) = (ei × e j ) · η̃(x) 	λ(z).
(76)

Then, we have the associated splitting of the operators MT
λ and ST

λ

(MT
λ ζ ) j (x) =

3∑
i=1

T
Ki, j

λ

ζi − TKD
λ

ζ j , (ST
λ ζ ) j (x) =

3∑
i=1

T
K̃ i, j

λ

ζi , (77)

where the integral operators in the above decomposition are

(TKD
λ

ζ j )(x) =
∫
S
KD

λ (x, x − y)ζ j (y) dy S,

(T
Ki, j

λ

ζi )(x) =
∫
S
K i, j

λ (x, x − y)ζi (y) dy S,

(T
K̃ i, j

λ

ζi )(x) =
∫
S
K̃ i, j

λ (x, x − y)ζi (y) dy S. (78)

Since every C2 compact surface satisfies

|η(x) · (x − y)| ≤ L|x − y|2, |η(x) − η(y)| ≤ L|x − y|,
for each x, y ∈ S, then all the preceding integral kernels areweakly singular. In particular,
it prevents these integrals from being considered in the Cauchy principal value sense.

The study ofHölder estimates for all these potentials can be performed along the same
lines as in [25, Satz 4.3, Satz 4.4]. In that work, the author dealt with the homogeneous
harmonic case λ = 0, where the kernels have a simpler form. In our case λ �= 0, we will
decompose the 3-dimensional kernels into a homogeneous part and an inhomogeneous
but less singular part as in (67). Then, we will consider a coordinate system over S which
allows transforming the integrals over S into integrals over planar domains by means
of a change of variables. The homogeneous and more singular parts will satisfy the
hypothesis in Corollary A.7 and the terms in the remainder will verify those in Corollary
A.6. We will need Ck+5 boundaries for the operators in (78) of first and second type
to be bounded from Ck,α(S) to Ck+1,α(S) whilst assuming Ck+4 boundaries suffices to
ensure the corresponding result for the third kind of operators in (78) (see [25, Satz 4.3,
Satz 4.4] for the homogeneous harmonic case λ = 0). Our regularity result then reads
as follows:
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Theorem A.10. Let G be a bounded domain of class Ck+5, S = ∂G the boundary
surface, η ∈ Ck+4(S,R3) the outward unit normal vector field along S and any extension
η̃ ∈ Ck+4

c (R3,R3) of η. Let KD
λ (x, z), Ki, j

λ (x, z) and K̃ i, j
λ (x, z) be the kernels given

by (76) Then, the associated boundary operators TKD
λ

, T
Ki, j

λ

and T
K̃ i, j

λ

given by (78)

are bounded

TKD
λ

: Ck,α(S) −→ Ck+1,α(S),

T
Ki, j

λ

: Ck,α(S) −→ Ck+1,α(S), T
K̃ i, j

λ

: Ck,α(S) −→ Ck+1,α(S).

As a consequence, the next linear operators are also bounded

MT
λ : Xk,α(S) −→ Xk+1,α(S), ST

λ : Xk,α(S) −→ Xk+1,α(S).

Proof. Since the kernel K̃ i, j
λ (x, z) can be analyzed through a similar reasoning (as shown

in [25] for the case λ = 0), we will restrict our analysis to the kernels Ki, j
λ (x, z) and

KD
λ (x, z), which were not explicitly studied in [25]. Let us then split these inhomoge-

neouskernels into ahomogeneouspart and some less singular part [see thedecomposition
(67) and the functions φλ and ψλ in (66)]. To this end, notice that

KD
λ (x, z) = φ′

λ(|z|)
|z| η̃(x) · z, K i, j

λ (x, z) = (̃ηi (x) − η̃i (x − z))
φ′

λ(|z|)
|z| z j , (79)

Consequently, one can decompose,

Ki, j
λ (x, z) = Ki, j

λ,0 + Ki, j
λ,1, KD

λ (x, z) = KD
λ,0 + KD

λ,1, (80)

where,

Ki, j
λ,0(x, z) := − 1

4π
(̃ηi (x) − η̃i (x − z))

z j
|z|3 , Ki, j

λ,1(x, z) := (̃ηi (x)

−η̃i (x − z))
ψ ′

λ(|z|)
|z| z j ,

KD
λ,0(x, z) := − 1

4π
η̃(x) · z

|z|3 , KD
λ,1(x, z) := η̃(x) · ψ ′

λ(|z|)z
|z| .

(81)
Notice that the associated integral operators only involve values x, y ∈ S. Define dS :=
2maxx,y∈S |x − y| and take x ∈ S, z ∈ BdS (0). Thus, an easy computation that will be
steadily used along the proof is

|z|−β1 + |z|−β2 ≤
(
1 + dM−m

S

)
|z|−M , |z|β1 + |z|β2 ≤

(
1 + dM−m

S

)
|z|m, (82)

for any couple of exponents β1, β2 ≥ 0 and any z ∈ BdS (0). Here m and M stand for
the minimum and maximum values i.e., m := min{β1, β2}, M := max{β1, β2}.

Another useful remark is that fλ(r) := ψ ′
λ(r)/r , arising in (81), can be controlled

by (68) as follows

| f (m)
λ (r)| ≤ C

(
1

r
+

1

rm+2

)
, r > 0,

| f (m)
λ (r)| ≤ C̃

1

rm+2 , r ∈ (0, dS) .

(83)
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for some C > 0 that does not depend on m and some C̃ depending on m and dS .
Let us study the boundedness of the integral operators associated with the integral

kernels Ki, j
λ,n and KD

λ,n for n = 0, 1. To this end, let us consider a finite covering of S
by M coordinate neighborhoods �1, . . . , �M ⊆ S endowed with the associated local
charts μm ∈ Ck+5(Dm, �m) that enjoy homeomorphic extensions up to the boundary
of the planar disks Dm ⊆ R

2. Also consider the associated partition of unity of class
Ck+5, {ϕm}Mm=1 ⊆ Ck+5(S), subordinated to the above open covering. The Jacobian of
each chart will be denoted by

Jm(s) :=
∣∣∣∣
(

∂μm

∂s1
× ∂μm

∂s2

)
(s)

∣∣∣∣ , s ∈ Dm .

All the above notation then yields the decompositions

(T
Ki, j

λ,n
ζ )(μm(s)) =

M∑
m′=1

∫
Dm′

Ki, j
λ,n(μm(s), μm(s) − μm′(t))

× ϕm′(μm′(t))ζ(μm′(t))Jm′(t) dt, (84)

(TKD
λ,n

ζ )(μm(s)) =
M∑

m′=1

∫
Dm′

KD
λ,n(μm(s), μm(s) − μm′(t))

× ϕm′(μm′(t))ζ(μm′(t))Jm′(t) dt. (85)

We will study the most singular case m′ = m and then show how the case m′ �= m
follows from it. An important fact is that we will extract the most singular homogeneous
parts of Ki, j

λ,0(x, z) and KD
λ,0(x, z) by virtue of the splitting (80). However, the change of

variables in the coordinate neighborhoods �m gives rise to new inhomogeneous planar
kernels, Ki, j

λ,0(μm(s), μm(s) − μm(t)) and KD
λ,0(μm(s), μm(s) − μm(t)). To solve this

difficulty, we will decompose them again into the more singular homogeneous part,
which stands for a planar homogeneous kernel of degree −1, and some inhomogeneous
but less singular term. Then, we will prove the corresponding regularity results for each
term through Corollaries A.6 and A.7.

Since both Ki, j
λ,0(x, z) and KD

λ,0(x, z) can be studied by means of a similar reasoning,

we will just analyze one of them, e.g. Ki, j
λ,0(x, z). In fact, KD

λ,0(x, z) stands for the
integral kernel of the adjoint operator of the harmonic Neumann–Poincaré operator, that
was studied in [25, Satz 4.4]. Inspired by [25, Lemma 4.2], let us expand μm(s)−μm(t)
though Taylor’s theorem up to second order; that is,

|μm(s) − μm(t)| = (Pm(s, s − t) + Qm(s, s − t))1/2 , (86)

where,

Pm(s, u) :=
2∑

p,q=1

∂μm

∂sp
(s) · ∂μm

∂sq
(s)u puq =

2∑
p,q=1

gpq
m (s)u puq = ((gpq

m (s))u) · u,

(87)
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Qm(s, u) := −2
2∑

p,q,r=1

∂μm

∂sp
(s) ·
(∫ 1

0
(1 − θ)

∂2μm

∂sq∂sr
(s − θu) dθ

)
u puqur

+
2∑

p,q,r,l=1

(∫ 1

0
(1 − θ)

∂2μm

∂sp∂sq
(s − θu) dθ

)

×
(∫ 1

0
(1 − θ)

∂2μm

∂sr∂sl
(s − θu) dθ

)
u puqurul . (88)

First, Pm(s, u) is positively homogeneous on u of degree 2 with respect to u and (see
[25, Satz 4.2])

1

C
|u|2 ≤ |Pm(s, u)| ≤ C |u|2,

|Qm(s, u)| ≤ C |u|3,
1

C
|u|2 ≤ |Pm(s, u) + Qm(s, u)| ≤ C |u|2.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∣∣Dγ
s Pm(s, u)

∣∣ ≤ C |u|2,∣∣Dγ
s Qm(s, u)

∣∣ ≤ C |u|3,∣∣Dγ
s (P(s, u) + Q(s, u))

∣∣ ≤ C |u|2,∣∣∣∣ ∂

∂ui
Dγ
s Pm(s, u)

∣∣∣∣ ≤ C |u|,∣∣∣∣ ∂

∂ui
Dγ
s Qm(s, u)

∣∣∣∣ ≤ C |u|2,∣∣∣∣ ∂

∂ui
Dγ
s (P(s, u) + Q(s, u))

∣∣∣∣ ≤ C |u|,∣∣∣∣ ∂2

∂ui∂u j
Dγ
s Pm(s, u)

∣∣∣∣ ≤ C |u|0,∣∣∣∣ ∂2

∂ui∂u j
Dγ
s Qm(s, u)

∣∣∣∣ ≤ C |u|,∣∣∣∣ ∂2

∂ui∂u j
Dγ
s (P(s, u) + Q(s, u))

∣∣∣∣ ≤ C |u|0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(89)

hold for each s ∈ Dm , u ∈ R
2 such that s−u ∈ Dm and every multi-index with |γ | ≤ k.

Our homogenization procedure follows from the next splitting

Ki, j
λ,0(μm(s), μm(s) − μm(t)) = Hi, j

λ,0(s, s − t) + Ri, j
λ,0(s, s − t),

where the homogeneous part Hi, j
λ,0(s, u) and the remainder Ri, j

λ,0(s, u) take the form

Hi, j
λ,0(s, u) := − 1

4π
Pm(s, u)−3/2

2∑
p,q=1

∂(̃η ◦ μm)i

∂sp
(s)

∂(μm) j

∂sq
(s)u puq ,

Ri, j
λ,0(s, u) := R̃i, j

λ,0(s, u) + R̂i, j
λ,0(s, u).

Above, the remainder is split into

R̃i, j
λ,0(s, u) := − 1

4π

(
(Pm(s, u) + Qm(s, u))−3/2 − Pm(s, u)−3/2

)

×
⎛
⎝ 2∑

p,q=1

∂(̃η ◦ μm)i

∂sp
(s)

∂(μm) j

∂sq
(s)u puq

⎞
⎠ ,
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R̂i, j
λ,0(s, u) := − 1

4π
(Pm(s, u) + Qm(s, u))−3/2

×
⎧⎨
⎩−

2∑
p,q,r=1

(∫ 1

0
(1 − θ)

∂2(̃η ◦ μm)i

∂sp∂sq
(s − θu) dθ

)
∂(μm) j

∂sr
(s)u puqur

−
2∑

p,q,r=1

∂(̃η ◦ μm)i

∂sp
(s)

(∫ 1

0
(1 − θ)

∂(μm) j

∂sq∂sr
(s − θu) dθ

)
u puqur

+
2∑

p,q,r,l=1

(∫ 1

0
(1 − θ)

∂2(̃η ◦ μm)i

∂sp∂sq
(s − θu) dθ

)

×
(∫ 1

0
(1 − θ)

∂2(μm) j

∂sr∂sl
(s − θu) dθ

)
u puqurul

}
.

Note again that small values of u = s − t are involved here, thus leading to estimates
like (82) for u.

Let us next analyze each term in the above decomposition for Ki, j
λ,0(μm(s), μm(s) −

μm(t)). Firstly, since Pm(s, u) is positively homogeneous on u with degree 2, then
Hi, j

λ,0(s, u) is positively homogeneous on u with degree −1. The regularity properties in
the second part in Corollary A.7 can be straightforwardly checked. Let us then concen-
trate on the regularity properties in the third part of such corollary and, to this end, let
us compute the next partial derivative

Dγ
s H

i, j
λ,0(s, u) = − 1

4π

∑
σ≤γ

(
γ

σ

)
Dσ
s

(
Pm(s, u)−3/2

)

×
⎡
⎣ 2∑

p,q=1

Dγ−σ
s

(
∂(̃η ◦ μm)i

∂sp
(s)

∂(μm) j

∂sq
(s)

)
u puq

⎤
⎦ .

Define the homogeneous function h(t) := t−3/2 and use the chain rule to arrive at

Dσ
s

(
Pm(s, u)−3/2

)
=
∑

(l,β,δ)∈D(σ )

(Dδh)(Pm(s, u))

l∏
r=1

1

δr !
(

1

βr !D
βr
s Pm(s, u)

)δr

.

(See the proof of Theorem 3.5 for the definition of D(σ )). By virtue of (89),
∣∣∣Dγ

s H
i, j
λ,0(s, u)

∣∣∣ ≤ C |u|−1.

Let us take derivatives with respect to u and arrive at

∇u D
γ
s H

i, j
λ,0(s, u) = − 1

4π

∑
σ≤γ

(
γ

σ

)
∇u D

η
s

(
Pm(s, u)−3/2

)

×
⎡
⎣ 2∑

p,q=1

Dσ−γ
s

(
∂(̃η ◦ μm)i

∂sp
(s)

∂(μm) j

∂sq
(s)

)
u puq

⎤
⎦
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− 1

4π

∑
σ≤γ

(
γ

σ

)
Dσ
s

(
Pm(s, u)−3/2

)

×
⎡
⎣ 2∑

p,q=1

Dσ−γ
s

(
∂(̃η ◦ μm)i

∂sp
(s)

∂(μm) j

∂sq
(s)

)
∇u(u puq)

⎤
⎦ ,

that can be similarly estimated by means of (89):

∣∣∣Dγ
s ∇u H

i, j
λ,0(s, u)

∣∣∣ ≤ C |u|−2.

Thus, Hi, j
λ,0 has the regularity properties required in Corollary A.7, so

∥∥∥∥
∫
Dm

Hi, j
λ,0(·, · − t)ϕm(μm(t))ζ(μm(t))Jm(t) dt

∥∥∥∥
Ck+1,α(Dm )

≤ M‖ζ‖Ck,α(�m ).

Let us nowmove to the remainder Ri, j
λ,0(s, u) and show that the hypothesis inCorollary

A.6 are satisfied too. On the one hand, in the first term R̃i, j
λ,0(s, u) in Ri, j

λ,0(s, u) one can
arrange terms by Barrow’s rule as

(Pm(s, u) + Qm(s, u))−3/2 − Pm(s, u)−3/2

= −3

2
Qm(s, u)

∫ 1

0
(Pm(s, u) + θQm(s, u))−5/2 dθ.

Therefore, a Dγ
s derivative of R̃i, j

λ,0(s, u) takes the form

Dγ
s R̃

i, j
λ,0(s, u) = 1

4π

3

2

∑
σ≤γ

(
γ

σ

)
Dσ
s

(
Qm(s, u)

∫ 1

0
(Pm(s, u) + θQm(s, u))−5/2 dθ

)

×
2∑

p,q=1

Dγ−σ

(
∂(̃η ◦ μm)i

∂sp
(s)

∂(μm) j

∂sq
(s)

)
u puq .

Define the homogeneous function h̃(t) = t−5/2, a similar argument shows that

Dσ
s

(
Qm(s, u)

∫ 1

0
(Pm(s, u) + θQm(s, u))−5/2 dθ

)

=
∑
ρ≤σ

(
σ

ρ

)
Dρ
s (Qm(s, u))

∫ 1

0
Dσ−ρ
s

(
(Pm(s, u) + θQm(s, u))−5/2

)
dθ

=
∑
ρ≤σ

(
σ

ρ

)
Dρ
s (Qm(s, u))

∫ 1

0

∑
(l,β,δ)∈D(σ−ρ)

(Dδ h̃)(Pm(s, u) + θQm(s, u))

×
l∏

r=1

1

δr !
(

1

βr !D
βr
s (Pm(s, u) + θQm(s, u))

)δr

dθ.
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Now, the estimates in (89) yields
∣∣∣Dγ

s R̃
i, j
λ,0(s, u)

∣∣∣ ≤ C |u|0,∣∣∣∂ul Dγ
s R̃

i, j
λ,0(s, u)

∣∣∣ ≤ C |u|−1,

∣∣∣∂ul1ul2 Dγ
s R̃

i, j
λ,0(s, u)

∣∣∣ ≤ C |u|−2.

These estimates ensure that all the hypotheses in Corollary A.6 are satisfied, so
∥∥∥∥
∫
Dm

R̃i, j
λ,0(·, · − t)ϕm(μm(t))ζ(μm(t))Jm(t) dt

∥∥∥∥
Ck+1,α(Dm )

≤ M‖ζ‖Ck,α(�m ).

Regarding the second term R̂i, j
λ,0(s, u) of Ri, j

λ,0(s, u)we can use a similar argument. First,

Dγ
s R̂

i, j
λ,0(s, u) = 1

4π

∑
σ≤γ

(
γ

σ

)
Dσ
s

(
(Pm(s, u) + Qm(s, u))−3/2

)

×
⎧⎨
⎩

2∑
p,q,r=1

Dγ−σ
s

((∫ 1

0
(1 − θ)

∂2(̃η ◦ μm)i

∂sp∂sq
(s − θu) dθ

)
∂(μm) j

∂sr
(s)

)
u puqur

+
2∑

p,q,r=1

Dγ−σ
s

(
∂(̃η ◦ μm)i

∂sp
(s)

(∫ 1

0
(1 − θ)

∂(μm) j

∂sq∂sr
(s − θu) dθ

))
u puqur

−
2∑

p,q,r,l=1

Dγ−σ
s

((∫ 1

0
(1 − θ)

∂2(̃η ◦ μm)i

∂sp∂sq
(s − θu) dθ

)

×
(∫ 1

0
(1 − θ)

∂2(μm) j

∂sr∂sl
(s − θu) dθ

))
u puqurul

⎫⎬
⎭ ,

and the higher-order chain formula leads again to

Dσ
s

(
(Pm(s, u) + Qm(s, u))−3/2

)

=
∑

(l,β,δ)∈D(σ )

(Dδh)(Pm(s, u) + Qm(s, u))

×
l∏

r=1

1

δr !
(

1

βr !D
βr
s (Pm(s, u) + Qm(s, u))

)δr

.

Consequently, the estimates in (89) show that
∣∣∣Dγ

s R̂
i, j
λ,0(s, u)

∣∣∣ ≤ C |u|0,∣∣∣∂ul Dγ
s R̂

i, j
λ,0(s, u)

∣∣∣ ≤ C |u|−1,

∣∣∣∂ul1ul2 Dγ
s R̂

i, j
λ,0(s, u)

∣∣∣ ≤ C |u|−2,

and Corollary A.6 yields
∥∥∥∥
∫
Dm

R̂i, j
λ,0(·, · − t)ϕm(μm(t))ζ(μm(t))Jm(t) dt

∥∥∥∥
Ck+1,α(Dm )

≤ M‖ζ‖Ck,α(�m )
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Now we move to Ki, j
λ,1(x, z) that can be expanded as

Ki, j
λ,1(μm(s), μm(s) − μm(s − u))

= fλ(|Pm(s, u) + Qm(s, u)|1/2)
2∑

p,q=1

(∫ 1

0

∂(̃ηi ◦ μm)

∂sq
(s − θu) dθ

)

×
(∫ 1

0

∂(μm) j

∂sq
(s − θu) dθ

)
u puq .

Then, the Dγ
s derivative of Ki, j

λ,1(μm(s), μm(s) − μm(t)) takes the form

Dγ
s K

i, j
λ,1(μm(s), μm(s) − μm(s − u))

=
∑
σ≤γ

(
γ

σ

)
Dσ
s

(
fλ(|Pm(s, u) + Qm(s, u)|1/2)

)

×
⎡
⎣ 2∑

p,q=1

Dγ−σ
s

((∫ 1

0

∂(̃ηi ◦ μm)

∂sq
(s − θu) dθ

)

×
(∫ 1

0

∂(μm) j

∂sq
(s − θu) dθ

))
u puq

⎤
⎦ .

Again, by the chain derivative formula we arrive at

Dσ
s

(
fλ((Pm(s, u) + Qm(s, u))1/2)

)
=
∑

(l,β,δ)∈D(σ )

Dδ( fλ(·1/2))
∣∣∣
Pm (s,u)+Qm (s,u)

×
l∏

r=1

1

δr !
(

1

βr !D
βr
s (Pm(s, u) + Qm(s, u))

)δr

.

Notice that (83) leads to
∣∣∣∣ d

k

drk

(
fλ(r

1/2)
)∣∣∣∣ ≤ C̃

1

rk+1
, ∀ r ∈ (0, dmS ) .

Consequently, (89) proves the upper bounds∣∣∣Dγ
s K

i, j
λ,1(μm(s), μm(s) − μm(s − u))

∣∣∣ ≤ C |u|0,∣∣∣∂ul1 Dγ
s K

i, j
λ,1(μm(s), μm(s) − μm(s − u))

∣∣∣ ≤ C |u|−1,∣∣∣∂ul1ul2 Dγ
s K

i, j
λ,1(μm(s), μm(s) − μm(s − u))

∣∣∣ ≤ C |u|−2,

so the hypotheses in Corollary A.6 are satisfied and∥∥∥∥
∫
Dm

K i, j
λ,1(μm(·), μm(·) − μm(t))ϕm(μm(t))ζ(μm(t))Jm(t) dt

∥∥∥∥
Ck+1,α(Dm )

≤ M‖ζ‖Ck,α(�m ).
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S

Σ
m

= μm(Dm)
Σm = μm (Dm )

Km = μm (Cm )

dm,m

Fig. 8. Overlapping coordinate neighborhoods �m and �m′

In order to complete the proof of the theorem, let us show how to deal with the terms
m′ �= m in (84) and (85). The idea is to obtain estimates over �m ∩ �m′ and �m \ �m′
separately. First,

∥∥∥∥∥
∫
Dm′

Ki, j
λ (μm(·), μm(·) − μm′(t))ϕm′(μm′(t))ζ(μm′(t))Jm′(t) dt

∥∥∥∥∥
Ck+1,α(μ−1

m (�m∩�m′ ))

≤ C

∥∥∥∥∥
∫
Dm′

Ki, j
λ (μm′(·), μm′(·) − μm′(t))ϕm′(μm′(t))ζ(μm′(t))Jm′(t) dt

∥∥∥∥∥
Ck+1,α(Dm′ )

≤ C̃‖ζ‖Ck,α(�m′ ).

Second, define Cm′ := μ−1
m′ (suppϕm′), Km′ := μm′(Cm′) and dm,m′ := dist

(
�m \

�m′, Km′
)

> 0 as in Fig. 8. This avoids the singularity near z = 0 in the preceding
kernels. Hence,

Dγ
s

∫
Dm′

Ki, j
λ (μm(s), μm(s) − μm′(t))ϕm′(μm′(t))ζ(μm′(t))Jm′(t) dt

=
∑

(l,(δ1,δ2),β)∈D(γ )

∫
Cm′

(
Dδ1

x Dδ2

z K i, j
λ

)
(μm(s), μm(s) − μm′(t))

×
[

l∏
r=1

1

δ1r !δ2r !
(

1

βr !D
βr μm(s)

)δ1r
(

1

βr !D
βr μm(s)

)δ2r
]

× ϕm′(μm′(t))ζ(μm′(t))Jm′(t) dt.

for each s ∈ μ−1
m (�m \ �m′). Since |Dδ1

x Dδ2

z K i, j
λ (x, z)| ≤ C̃ |z|−|δ2| for every z ∈

Bdm,m′ (0), then
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∣∣∣∣∣Dγ
s

∫
Dm′

Ki, j
λ (μm(s), μm(s) − μm′(t))ϕm′(μm′(t))ζ(μm′(t))Jm′(t) dt

∣∣∣∣∣
≤ C

d |γ | |Cm′ |‖ζ‖C0(�m′ ).

Here, 0 < d < 1 is such that d < dm,m′ for every m′ �= m. Since one can take any
|γ | ≤ k + 2 by the regularity of S, then we obtain the desired estimate for m′ �= m and
the result follows. ��

Appendix B: Obstructions to the Existence of Generalized Beltrami Fields

In this Appendix we will review the main results on the non-existence of Beltrami fields
with a non-constant factor proved in [20], as they are of direct interest for the theorems
that we have presented in this paper.

Hence, let us consider in this “Appendix” a solution to the Beltrami field equation
with a factor f :

curl u = f u , div u = 0 . (90)

Wewill not specify the domain of the solution as the results thatwewill review aremostly
local. The key observation is that, as the divergence of u is zero, f is a first integral of u,
i.e., u · ∇ f = 0. Since this first integral condition is very restrictive, it stands to reason
that Eq. (90) should not admit any nontrivial solutions for most functions f . Before we
make this idea precise in the next paragraphs, let us point out that the (well established)
idea of constructing the iterations starting by dragging a function along the integral
curves of a field, as we have done in the main body of this work, is fully consistent with
the intuition that the first integral condition is the heart of the matter.

The first obstruction to the existence of solutions to the Beltrami equation (90) is the
following:

Theorem B.1. Let D ⊆ R
3 be a domain and assume that the function f is nonconstant

and of class C6,α . Suppose that the vector field u satisfies Eq. (90) in D. Then, there
is a sixth order nonlinear partial differential operator P �= 0, which can be computed
explicitly, such that u ≡ 0 unless P[ f ] is identically zero in D. In particular, u ≡ 0 for
all f in a set of infinite codimension in Ck,α(U ) with any k ≥ 6.

It should be noticed that Theorem B.1 is of a purely local nature, as it provides
obstructions for the existence of nontrivial Beltrami fields in any open set and most
proportionality factors.

A less powerful but more conceivable obstruction is that if f has a regular level set
homeomorphic to the sphere, thenEq. (90) does not have nontrivial solutions. Then, there
are no Beltrami fields whenever f has strict local extrema or is radially symmetric. This
is related to the classical theorem of Cowling on the nonexistence of poloidal Beltrami
fields with nonconstant factor and axial symmetry [4]:

Theorem B.2. Suppose that the function f is of class C2,α in a domain D ⊆ R
3. If a

regular level set f −1(c) has a connected component in D homeomorphic to the sphere,
then any solution to Eq. (90) in D is identically zero.

Although we will not repeat here the proof of these results, which can be found
in [20], let us give a few words on the main idea. The proof of these theorems is based
on formulating the Beltrami equation (90) as a constrained evolution problem. Indeed,
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one can show that (90) is locally equivalent, in a precise sense, to the assertion that there
is a time-dependent 1-form β(t) on a surface � satisfying

∂tβ = T (t) β (91)

together with the differential constraint

dβ = 0 . (92)

Here T (t) is a time-dependent tensor field that depends on f and the exterior differential
d is computedwith respect to the coordinates on the surface�, which, in turn, is a regular
level set of f . It should be stressed that this formulation depends strongly on the choice
of coordinates.

This formulation lays bare the reason for which the Beltrami equation does not
generally admit nonzero solutions: the evolution (91) is not generally compatible with
the constraint (92), and the resulting compatibility conditions translate into equations
that f and its derivatives must satisfy. In Theorems B.1 and B.2 we have presented
the first two of these compatibility conditions, but in fact the method of proof yields a
whole hierarchy of explicitly computable obstructions (with increasingly cumbersome
expressions) to the existence of solutions. To ascertain how many of these obstructions
are actually independent remains an interesting open problem.

Furthermore, the above formulation provides an appealing explanation of the reason
for which the attempts at constructing solutions to (90) using variational techniques have
failed: while the regularity of the equation is indeed determined by an elliptic system, its
existence is in fact controlled by a constrained evolution problem for which the existence
theory is ill posed.
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