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Abstract: We shall find the weakest norm that satisfies the Brezis–Gallouet–Wainger
type inequality, under some conditions. As an application of the Brezis–Gallouet–
Wainger type inequality, we shall establish Beale–Kato–Majda type blow-up criteria
of smooth solutions to the 3-D Navier–Stokes equations in unbounded domains.

1. Introduction

Let � be a 3-dimensional domain with ∂� ∈ C∞. The motion of a viscous incompress-
ible fluid in � is governed by the Navier–Stokes equations:

(N–S)

{
∂t u − �u + u · ∇u + ∇ p = 0, div u = 0 t ∈ (0, T ), x ∈ �,

u|∂� = 0, u|t=0 = u0,

where u = (u1(x, t), u2(x, t), u3(x, t)) and p = p(x, t) denote the velocity vector and
the pressure, respectively, of the fluid at (x, t) ∈ � × (0, T ) and u0 is the given initial
velocity vector fields. In this paper,we considerBeale–Kato–Majda type blow-up criteria
of classical solutions to (N–S). In the case that� is the whole space, Beale–Kato–Majda
[1] and Kato–Ponce [23] showed that the L∞-norm of the vorticity ω = rot u controls
the breakdown of smooth solutions to the Euler and Navier–Stokes equations. To be
precise, if the smooth solution u in C([0, T );Ws,p(Rn))(s > n/p + 1) breaks down at
a finite time t = T , then ∫ t

0
‖ω(τ)‖L∞(�)dτ ↗ ∞ (1.1)

as t ↗ T . Chemin [9] and Kozono, Ogawa and the second author [24] proved similar
blow-up criteria with ‖ω‖L∞ replaced by ‖u‖B1∞,∞ and ‖ω‖Ḃ0∞,∞ , respectively. Note that
Chemin [9] dealt with solutions inCα , α > 1. Chae [8] also proved the same criterion via
‖ω‖Ḃ0∞,∞ for solutions in the Triebel–Lizorkin spaces. It is notable that Planchon [36]

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-017-3061-0&domain=pdf
http://orcid.org/0000-0001-6090-2688


952 K. Nakao, Y. Taniuchi

improved the criterion given in [24]. He showed that, if the solution u to the Euler equa-
tions in C([0, T ); Bs

p,q(R
n))(s > n/p+1, 1 ≤ p, q < ∞) cannot continue the solution

in C([0, T ′); Bs
p,q(R

n)) for any T ′ > T , then limε→0+ sup j

∫ T
T−ε

‖� jω‖∞dt must be
greater than an absolute numberM , where� j is a frequency localization operator at ξ ∼
2 j . For the Navier–Stokes equations in Rn , Fan et al. [11] proved a logarithmically im-

proved blow-up criterion:
∫ t
0 ‖ω(τ)‖Ḃ0∞,∞(Rn)

/√
1 + log(1 + ‖ω(τ)‖Ḃ0∞,∞(Rn)) dτ ↗

∞. Recently, for the 3-D Navier–Stokes equations inR3, Bradshaw et al. [4] proved that
the local existence time T∗ of a unique smooth solution can be estimated from below
as T∗ > c/‖ω(0)‖L∞(R3), if initial vorticity ω(0) ∈ L2(R3) ∩ L∞(R3). This estimate
implies that if T is the maximal time of existence of the smooth solution, then

‖ω(t)‖L∞(R3) ≥ c/(T − t) for t < T, (1.2)

which directly yields the Beale–Kato–Majda blow-up criterion (1.1) for the 3-DNavier–
Stokes equations. See also Kukavica [28].

In the case where � is a bounded domain, for the 3-D Euler equations, Ferrari [14]
and Shirota–Yanagisawa [37] succeeded in proving that the same result of breakdown as
Beale–Kato–Majda holds. See also Zajaczkowski [46]. In [34], Ogawa and the second
author proved a similar blow-up criterion with ‖ω‖L∞(�) replaced by ‖ω‖bmo(�). To
be precise, in [34] it was shown that, if � is a 3-D bounded domain and if the smooth
solution u in C([0, T ); Hm(�))(m > 3/2 + 1) breaks down at a finite time t = T , then

∫ t

0
‖ω(τ)‖bmo(�)dτ ↗ ∞ (1.3)

as t ↗ T . However, in [34], the blow-up criterion via ‖ω‖bmo(�) was proven only for 3-D
Euler equations. In the present paper, we prove the same criterion for 3-DNavier–Stokes
equations in domains with ∂� ∈ C∞. In [34], the proof was based on the Hm-energy
method. However, it seems difficult to apply the Hm-energy method to solutions of the
Navier–Stokes equations in a domain with the no-slip boundary condition u|∂� = 0, due
to the diffusion term. In the present paper, instead of applying the Hm -energymethod,we
will use the integral equation of (N–S) and the smoothing effect of the Stokes semigroup.
Moreover, by using a space of Morrey type we improve the bmo-criterion (1.3) to

∫ t

0
‖ω(τ)‖

M log
1 (�)

dτ ↗ ∞, (1.4)

as t ↗ T . Here, M log
1 (�) will be defined in Sect. 2.

It is notable that Grujic and Guberovic [18] established a local version of the bmo-
criterion for the interior regularity of weak solutions to the 3-D Navier–Stokes equations
by using the non-homogeneous div-curl lemma. It is also notable thatMorrey type norms
of ∇u and vorticity ω were utilized by Caffarelli et al. [7] and Gustafson et al. [19] for
the interior regularity of suitable weak solutions to the Navier–Stokes equations. More
precisely, in [7], it was shown that if u is a suitable weak solution and if

lim sup
r→0+

r−1
∫ t

t−r2

∫
B(x,r)

|∇u(y, τ )|2 dydτ is sufficiently small, (1.5)
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then u is regular at (x, t), i.e., u ∈ L∞(B(x, r)×(t−r2, t)) for some r > 0. In [19], this
interior regularity criterion (1.5) was refined, replacing by the more general condition
that

lim sup
r→0+

r−(3/p+2/q−2)
{ ∫ t

t−r2

( ∫
B(x,r)

|ω(y, τ )|p dy
)q/p

dτ
}1/q

is sufficiently small

(1.6)
for some p, q with 2 ≤ 3/p + 2/q ≤ 3, 1 ≤ q ≤ ∞, (p, q) �= (1,∞).

In order to prove (1.3) and (1.4) for (N–S), the following Brezis–Gallouet–Wainger
type inequalities play important roles:

(BGW )β ‖ f ‖L∞(�) ≤ C(1 + ‖ f ‖X logβ(e + ‖ f ‖Y )).

When � = R
n , by using the Fourier transform, Brezis–Gallouet–Wainger [5,6] proved

(BGW )β in the case

β = 1 − 1/p, X = Wn/p,p(Rn), Y = Wn/q+α,q(Rn)(⊂ Ċα)(α > 0).

Engler [10] proved the same inequality for general domains �without using the Fourier
transform. Ozawa [35] proved the Gagliardo–Nirenberg type inequality

‖ f ‖Lq (Rn) ≤ C(p, n)q1−1/p‖(−�)n/2p f ‖1−p/q
L p(Rn)

‖ f ‖p/q
L p(Rn)

for all q ∈ [p,∞) (1.7)

with the explicit growth rate with respect to q and that this estimate directly yields
(BGW )β with β = 1 − 1/p. When � is a bounded domain, in [33,34], (BGW )β was
proven in the cases

β = 1, X = bmo(�), Y = Ċα(�), or

β = 1, X = B�(�) with �(q) = q, Y = Ċα(�),

where B�(�) is introduced by ‖ f ‖B�(�) := supq≥1
‖ f ‖Lq (�)

�(q)
. Furthermore, in [1,9,10,

14,20,23–26,29,32,34,35,37,42,46] several inequalities of Brezis–Gallouet–Wainger
type were established. Then, we have one question.

Question. What is the largest normed space X that satisfies (BGW )β with Y =
Ċα(�)?
In the present paper, we also consider this problem and find the largest normed space X
under some additional assumptions.

Throughout this paper we impose the following assumption on the domain.

Assumption 1. � ⊂ R
n is the half-space Rn

+, the whole space R
n , a bounded domain,

an exterior domain, a perturbed half-space, or an aperture domain with ∂� ∈ C∞.

For the definitions of perturbed half-spaces and aperture domains, see Kubo–Shibata
[27] and Farwig–Sohr [12].

The remainder of the present paper is organized as follows. In Sect. 2, some function
spaces are introduced. In Sect. 3, the main results are described. In Sects. 4, 5 and 6, the
proofs of main results are presented.

In this paper, we denote by C various constants.
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2. Function Spaces and Preliminaries

We first introduce Banach spaces of Morrey type and Besov type which are wider than
L∞. Let E0 be the 0-extension operator from functions defined on � to functions onRn

and R� be the restriction operator from functions on Rn to functions on �, i.e.,

E0 f (x) :=
{
f (x) for x ∈ �

0 for x ∈ R
n\�,

R� f := f
∣∣
�

,

B(x, t) := {y ∈ R
n; |y− x | < t} and let L1

uloc(�) denote the uniformly local L1 space,
i.e.,

L1
uloc(�) :=

{
f ∈ L1

loc(�̄) ; ‖ f ‖L1
uloc(�) := sup

x∈Rn

1

|B(x, 1)|
∫
B(x,1)∩�

| f (y)|dy < ∞
}
.

Definition 1. Let β > 0 and � be a domain in Rn . Then,

• M log
β (�) := { f ∈ L1

uloc(�); ‖ f ‖
M log

β

< ∞} is introduced by the norm

‖ f ‖
M log

β (�)
:= sup

x∈�, 0<t<1

1

|B(x, t)| logβ(e + 1
t )

∫
B(x,t)

E0| f (y)|dy.

• M̃ log
β (�) is defined by

M̃ log
β (�) := BC(�̄)

‖·‖
M
log
β

(�)
,

where BC(�̄) denotes the set of all bounded continuous functions in �̄.

We note that, for any constant δ > 0, ‖ f ‖
M log

β (�)
is equivalent to the following norms

‖ f ‖
M log

β,δ(�)
:= sup

x∈�, 0<t<δ

1

|B(x, t)| logβ(e + 1
t )

∫
B(x,t)

E0| f (y)|dy,

‖ f ‖′
M log

β,δ(�)
:= sup

x∈Rn, 0<t<δ

1

|B(x, t)| logβ(e + 1
t )

∫
B(x,t)

E0| f (y)|dy.

Indeed, for 0 < δ < r , clearly ‖ f ‖
M log

β,δ(�)
≤ ‖ f ‖

M log
β,r (�)

≤ ‖ f ‖′
M log

β,r (�)
≤ C(n, β, δ, r)

‖ f ‖′
M log

β,δ(�)
holds, where C(n, β, δ, r) is a constant independent of f . By Proposition

4.3 (4.9) in Sect. 4, we observe that ‖ f ‖′
M log

β,δ(�)
≤ C(n)‖ f ‖

M log
β,δ(�)

. Then we have

‖ f ‖
M log

β (�)
∼= ‖ f ‖

M log
β,δ(�)

∼= ‖ f ‖′
M log

β,δ(�)
for all δ > 0.

Definition 2 (Modified Vishik’s space). Let β > 0 and ψ ∈ S(Rn) be a spherical
symmetric function with ψ̂(ξ) = 1 in B(0, 1) and ψ̂(ξ) = 0 in B(0, 2)c. Then,

• Vβ(Rn) = { f ∈ S ′(Rn); ‖ f ‖Vβ < ∞} is introduced by the norm

‖ f ‖Vβ := sup
N=1,2,...

‖ψN ∗ f ‖∞
Nβ

, where ψN (x) := 2nNψ(2N x).
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• Ṽβ is defined by

Ṽβ := BUC(Rn)
‖·‖Vβ ,

where BUC(Rn) denotes the set of all bounded uniformly continuous functions in
R
n .

Note that the space Vβ is a modified version of spaces introduced by Vishik [43]. We
also note that the following inclusions hold:

M log
1 (�) ⊃ bmo(�) ⊃ L∞(�), see Appendix,

V1(R
n) ⊃ B0∞,∞(Rn) ⊃ bmo(Rn) ⊃ L∞(Rn).

Here bmo(Rn) = BMO(Rn) ∩ L1
uloc(R

n) and bmo(�) is defined by the restriction of
bmo(Rn) on �, i.e. bmo(�) := {R� f ; f ∈ bmo(Rn)}, where R� f is the restriction of
f on �. The norm of bmo(�) is defined by

‖ f ‖bmo(�) := inf{‖ f̃ ‖bmo(Rn); f̃ ∈ bmo(Rn) with f̃ = f in �}.
Let C∞

0 (K ) denote the set of all C∞ functions with compact support in the set K ,
BC∞(K ) := {g ∈ C∞(K ); ∂αg ∈ L∞(K ) for all multi-indices α} and C∞

0,σ (�) =
C∞
0,σ := {φ ∈ (C∞

0 (�))n; div φ = 0}. Then Lr
σ , 1 < r < ∞, is the closure of C∞

0,σ with

respect to the Lr -norm ‖ · ‖r . Concerning Sobolev spaces we use the notationsWk,p(�)

and Wk,p
0 (�), k ∈ N, 1 ≤ p ≤ ∞. Note that very often we will simply write Lr and

Wk,p instead of Lr (�) and Wk,p(�), respectively. The symbol (·, ·) denotes the L2-
inner product and the duality pairing between L p and L p′

, where 1/p + 1/p′ = 1.
Let us recall the Helmholtz decomposition: Lr (�) = Lr

σ ⊕Gr (1 < r < ∞), where
Gr = {∇ p ∈ Lr ; p ∈ Lr

loc(�)}, see Fujiwara and Morimoto [15], Miyakawa [30],
Simader and Sohr [38], Borchers and Miyakawa [2] and Farwig–Sohr [13]; Pr denotes
the projection operator from Lr onto Lr

σ along Gr . The Stokes operator Ar on Lr
σ is

defined by Ar = −Pr� with domain D(Ar ) = W 2,r ∩ W 1,r
0 ∩ Lr

σ . It is known that
(Lr

σ )∗ (the dual space of Lr
σ ) = Lr ′

σ and A∗
r (the adjoint operator of Ar ) = Ar ′ , where

1/r +1/r ′ = 1. It is shown byGiga [16], Borchers and Sohr [3], Borchers andMiyakawa
[2], Iwashita [21] andFarwig andSohr [13] that−Ar generates a holomorphic semigroup
{e−t Ar ; t ≥ 0} of class C0 in Lr

σ . Since Pru = Pqu for all u ∈ Lr ∩ Lq (1 < r, q < ∞)

and since Aru = Aqu for all u ∈ D(Ar ) ∩ D(Aq), for simplicity, we shall abbreviate
Pru, Pqu as Pu for u ∈ Lr ∩ Lq and Aru, Aqu as Au for u ∈ D(Ar ) ∩ D(Aq),
respectively.

We very often use the notations−
∫
for integral means, i.e.,−

∫
B f (y)dy := 1

|B|
∫
B f (y)dy

and τy for the translation operator, i.e., τy f = f (·− y). Let 1� denote the characteristic
function on �.

3. Main Theorems

Now our main results read as follows.

Theorem 1. Let �(⊂ R
n) satisfy Assumption 1.
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(a) For any α ∈ (0, 1) and β > 0, there exists a constant C(�, α, β, n) > 0 such that

‖ f ‖L∞(�) ≤ C
(
1+‖ f ‖

M log
β (�)

logβ
(
e+‖ f ‖Ċα(�)

))
for all f ∈ Ċα(�)∩M log

β (�).

(3.1)
(b) Let β > 0 and X (�) be a normed space. Assume that X (�) satisfies the following

conditions:

(A1) C0(�)
‖·‖∞

↪→ X (�) ⊂ L1
uloc(�) ;

(A2) X (�) is a translation invariant space, i.e.,‖R�(τy f )‖X (�) ≤ ‖ f ‖X (�) for all
y ∈ R

n and all f ∈ C0(�);
(A3) X (�)-norm has the property: ‖ f ‖X (�) ≤ ‖g‖X (�) if f, g ∈ BC(�̄)∩X (�)

and | f (x)| ≤ |g(x)| a.e. x ∈ �;
(A4) there exist constants α ∈ (0, 1) and C > 0 such that

‖ f ‖L∞(�) ≤ C
(
1 + ‖ f ‖X logβ

(
e + ‖ f ‖Ċα(�)

))
for all f ∈ Ċα(�) ∩ X (�).

Then, there exists a constant C0 > 0 such that

‖ f ‖
M log

β (�)
≤ C0‖ f ‖X (�) for all f ∈ BC(�̄) ∩ X (�).

In particular, if BC(�̄) is densely contained in X (�), then X (�) ↪→ M̃ log
β (�).

Remark 1. (i) The condition (A2) implies that if both of f and τy f belong to C0(�),
then ‖ f ‖X (�) = ‖τy f ‖X (�), since f = τ−yτy f . Hence we call (A2) the translation
invariant property.

(ii) By Definition 1 and Theorem 1(a) we see that M log
β (�) and M̃ log

β (�) satisfy Condi-

tions (A1)–(A4). We emphasize that Theorem 1(b) implies that M̃ log
β (�) is the

largest normed space that satisfies Conditions (A1)–(A4) and densely contains
BC(�̄).

If we do not assume (A3), there is a normed space wider than M log
β , when � = R

n

as below.

Theorem 2. (a) For any α ∈ (0, 1) and β > 0, there exists a constant C(α, β, n) > 0
such that

‖ f ‖L∞(Rn) ≤ C
(
1 + ‖ f ‖Vβ(Rn) log

β
(
e + ‖ f ‖Ċα(Rn)

))
for all f ∈ Ċα(Rn) ∩ Vβ.

(3.2)
(b) Letβ > 0 and X be a normed space. Assume that X satisfies the following conditions

(B1) BUC(Rn) ↪→ X;
(B2) X ↪→ S ′(Rn) or X ⊂ L1

uloc(R
n);

(B3) X is a translation invariant space, i.e.,

‖ f (· − y)‖X = ‖ f ‖X for all y ∈ R
n;

(B4) there exist constants α ∈ (0, 1) and C > 0 such that

‖ f ‖L∞(Rn) ≤ C
(
1 + ‖ f ‖X logβ

(
e + ‖ f ‖Ċα(Rn)

))
for all f ∈ BC∞(Rn).

Then, there exists a constant C0 > 0 such that

‖ f ‖Vβ ≤ C0‖ f ‖X for all f ∈ BUC(Rn).

In particular, if BUC is densely contained in X, then X ↪→ Ṽβ .



Brezis–Gallouet–Wainger Type Inequalities and Blow-Up Criteria for Navier–Stokes 957

(c) Let β > 0 and X be a normed space. Assume that X satisfies Conditions (B2)–(B4).
Furthermore assume that

(C) ‖ρ ∗ f ‖X ≤ ‖ρ‖L1(Rn)‖ f ‖X holds for all ρ ∈ S and all f ∈ X.

Then, X ↪→ Vβ .

Remark 2. (i) From Theorem 2(a) we observe that Vβ and Ṽβ satisfy Conditions (B1)–
(B4). Hence, Theorem 2(b) implies that Ṽβ is the largest Banach space that satisfies
Condition (B1)–(B4) and densely contains BUC(Rn).

(ii) Since Vβ satisfies (B2)–(B4) and (C), Theorem 2(c) implies that Vβ is the largest
normed space that satisfies Conditions (B2)–(B4) and (C).

(iii) Since M log
β (Rn) satisfies (B2)–(B4) and (C), from Theorem 2(c) we observe that

M log
β (Rn) ↪→ Vβ .

(iv) If X satisfies (B1)–(B3) and the following condition

(C)′ X is a Banach space and BUC(Rn) is dense in X,

then X satisfies Condition (C).

Our results on (N–S) read as follows.

Theorem 3. Let the dimension n = 3, �(⊂ R
3) satisfy Assumption 1, p ≥ 3 and u be

a solution to (N–S) on (0, T ) in the class

Sp(0, T ) := C([0, T ); L p
σ ) ∩ C1((0, T ); L p

σ ) ∩ C((0, T );W 2,p(�) ∩ W 1,p
0 (�)).

Assume that T < ∞ and T is maximal, i.e., u cannot be continued to the solution of
(N–S) in the class Sp(0, T ′) for any T ′ > T . Then,

∫ t

s
‖ω(τ)‖

M log
1 (�)

dτ ↗ ∞ as t ↗ T for any s ∈ (0, T ), (3.3)

where ω = rot u.

Remark 3. (i) Solutions in the class Sp(0, T ) are called strong L p solutions on (0, T ).
For p ≥ 3, the existence of strong L p solutions to (N–S) is proven in [17,21,22,44].

(ii) The blow-up criterion (1.2) given in [4] dose not directly imply (3.3). Indeed,
let f (x, t) := min{c/|T − t |, log+(1/|x |)}, then ‖ f (t)‖∞ = c/|T − t |, while∫ T
0 ‖ f ‖

M log
1

dt ≤ ∫ T
0 ‖ log+(1/|x |)‖

M log
1

dt = CT < ∞. Here log+ s :=
max{0, log s}.

(iii) By using Theorem 3 and the standard argument, we can also show the following
regularity criterion for weak solutions. If n = 3, u is a Leray–Hopf weak solution
with the energy inequality in the strong form and if u satisfies

∫ T

0
‖ω(τ)‖

M log
1 (�)

dτ < ∞, (3.4)

then u is smooth in (0, T ] × �̄. Here, for the definitions of Leray–Hopf weak
solutions and the energy inequality in the strong form, see e.g. [41, Definition 2.1].
Note that there are no inclusion between Conditions (3.4) and (1.6). See Lemma
7.1 in Appendix.
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It holds that ‖ f ‖
M log

1 (�)
≤ C‖ f ‖bmo(�), see Appendix. Hence, we have:

Corollary 1. Under the same assumptions as in Theorem 3, it holds that

∫ t

s
‖ω(τ)‖bmo(�)dτ ↗ ∞

as t ↗ T for any s ∈ (0, T ).

In the same way as in the proof of Theorem 3, we also have:

Corollary 2. Let � = R
3. Then, under the same assumptions as in Theorem 3, it holds

that
∫ t

s
‖ω(τ)‖V1(R3)dτ ↗ ∞

as t ↗ T for any s ∈ (0, T ).

Before closing this section, we introduce an inequality equivalent to (BGW )β .

Proposition 3.1. Let X be a normed space, Y be a semi-normed space, Z(⊂ X ∩ Y ) be
a linear space, and β > 0. Then, (BGW )β holds for all f ∈ Z if and only if there exists
a constant C > 0 such that

(BGW )′β ‖ f ‖L∞(�) ≤ C
(
ε‖ f ‖Y + logβ(e +

1

ε
)‖ f ‖X

)

for all f ∈ Z and all ε > 0.

Indeed, substituting f = g
ε‖g‖Y into (BGW )β , we see that (BGW )β yields (BGW )′β .

Conversely, letting ε = 1
‖ f ‖Y , we see that (BGW )′β yields (BGW )β .

4. Proof of Theorem 1

Proof of Theorem 1(a). Here, we give the proof of the first part of Theorem 1, using
arguments given in Engler [10] and Ozawa [35]. See also [34]. For the sake of simplicity,
we assume n = 3. By Assumption 1 we see that ∂� satisfies the interior cone condition.
Namely there are δ ∈ (0, 1) and θ ∈ (π/2, π) depending only on � with the following
property: For any point x ∈ �, there exists a spherical sector Cθ

δ (x) = {x + ξ ∈ R
3; 0 <

|ξ | < δ, −|ξ | ≤ κ(x) · ξ < |ξ | cos θ} having a vertex at x such that Cθ
δ (x) ⊂ �,

where κ(x) is an appropriate unit vector from x . We note that for each x ∈ �, Cθ
δ (x) is

congruent to Cθ
δ ≡ {ξ ∈ R

3; 0 < |ξ | < δ, −|ξ | ≤ ξ3 < |ξ | cos θ}. In particular, for any
boundary point x ∈ ∂�, Cθ

δ (x) can be expressed as Cθ
δ (x) ≡ {x + ξ ∈ R

3; 0 < |ξ | <

δ, −|ξ | ≤ ξ · ν(x) < |ξ | cos θ}, where ν(x) denotes the unit outward normal at x .
Let 0 < t ≤ δ and Cθ

t (x) := Cθ
δ (x)∩ B(x, t). For any fixed x ∈ � and y ∈ Cθ

t (x) ⊂
�,

| f (x)| ≤ | f (x) − f (y)| + | f (y)| ≤ ‖ f ‖Ċα |x − y|α + | f (y)| ≤ ‖ f ‖Ċα tα + | f (y)|.
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Integrating both sides of the above inequality with respect to y over Cθ
t (x),

| f (x)||Cθ
t (x)| ≤ tα‖ f ‖Ċα(�)|Cθ

t (x)| +
∫
y∈Cθ

t (x)
| f (y)|dy

≤ tα‖ f ‖Ċα(�)|Cθ
t (x)| +

∫
y∈B(x,t)∩�

| f (y)|dy

≤ tα‖ f ‖Ċα(�)|Cθ
t (x)| + |B(x, t)| logβ(

1

t
+ e)‖ f ‖

M log
β (�)

. (4.1)

Since |B(x, t)|/|Cθ
t (x)|(=: Kθ ) is a constant independent of x, t , we have

| f (x)| ≤ tα‖ f ‖Ċα(�) + Kθ log
β(

1

t
+ e)‖ f ‖

M log
β (�)

(4.2)

for all 0 < t ≤ δ. Thenweoptimize t by letting t = (1/‖ f ‖Ċα(�))
1/α if ‖ f ‖Ċα(�) ≥ δ−α

and letting t = δ if ‖ f ‖Ċα(�) ≤ δ−α to obtain (3.1). ��
In order to prove the second part of Theorem 1, we introduce the following proposi-

tions and lemmata. Although the propositions are elementary, for readers’ convenience,
we write proofs of those.

Proposition 4.1. Let f ∈ L1
loc(R

n). Then, it holds that

−
∫
B(x,t)

| f (y)|dy ≤ 2n−
∫
B(x,2t)

(
−
∫
B(y,t)

| f (z)|dz
)
dy (4.3)

for all x ∈ R
n.

Proof of Proposition 4.1. Clearly, by Fubini’s theorem we have

R.H.S. = 2n

|B(0, 2t)| |B(0, t)|
∫

|y′|<2t

(∫
|z′|<t

| f (z′ + y′ + x)|dz′
)
dy′

= 2n

|B(0, 2t)| |B(0, t)|
∫

|z′|<t

(∫
|y′|<2t

| f (z′ + y′ + x)|dy′
)
dz′

= 2n

|B(0, 2t)| |B(0, t)|
∫

|z′|<t

(∫
y′′∈B(z′,2t)

| f (y′′ + x)|dy′′
)
dz′ =: I. (4.4)

Since B(0, t) ⊂ B(z′, 2t) for |z′| < t ,

I ≥ 2n

|B(0, 2t)| |B(0, t)|
∫

|z′|<t

(∫
y′′∈B(0,t)

| f (y′′ + x)|dy′′
)
dz′ = L.H.S., (4.5)

which proves Proposition 4.1. ��
Proposition 4.2. Let g ∈ L∞(Rn). Then, the following inequalities hold:∣∣∣∣−

∫
B(x,t)

|g|dz − −
∫
B(y,t)

|g|dz
∣∣∣∣ ≤ C(n)

|x − y|
t

‖g‖∞, (4.6)

∥∥∥∥∇x −
∫
B(x,t)

|g|dz
∥∥∥∥

∞
≤ C(n)

1

t
‖g‖∞, (4.7)

∥∥∥∥−
∫
B(x,t)

|g|dz
∥∥∥∥
Ċα(Rn)

≤ C(n, α)
1

tα
‖g‖∞ for 0 < α < 1. (4.8)
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Proof of Proposition 4.2. For the simplicity, we assume n = 3. Let B(x, t)�B(y, t) :=
(B(x, t) ∪ B(y, t))\(B(x, t) ∩ B(y, t)). Since

∣∣∣∣−
∫
B(x,t)

|g|dz − −
∫
B(y,t)

|g|dz
∣∣∣∣ ≤ 1

|B(0, t)| |B(x, t) � B(y, t)| ‖g‖∞

and

|B(x, t) � B(y, t)| ≤
{

2π t2|x − y| if |x − y| ≤ 2t
2|B(0, t)| if |x − y| > 2t

≤ C |B(0, t)| |x − y|
t

,

we obtain (4.6). (4.7) is a direct consequence of (4.6). The interpolation inequality
‖ f ‖Ċα ≤ C‖ f ‖1−α∞ ‖∇ f ‖α∞ and (4.7) yield (4.8). ��
Proposition 4.3. There exists a constant C = C(n) > 0 such that

‖mt ∗ |E0 f |‖L∞(Rn) ≤ C‖R�(mt ∗ |E0 f |)‖L∞(�) (4.9)

for all t > 0 and f ∈ L1
uloc(�), where mt (x) := 1

|B(0,t)|1B(0,t)(x).

Proof of Proposition 4.3. Clearly, B(x, t) can be covered by N balls {B1, B2, . . . BN }
of radius t/2, where the natural number N ∈ N depends only on n. Thus,

sup
x∈Rn

∫
B(x,t)

|E0 f |dy ≤ N sup
x∈Rn

∫
B(x,t/2)

|E0 f |dy

= N sup
x∈Rn ,B(x,t/2)∩� �=∅

∫
B(x,t/2)∩�

|E0 f |dy.

If B(x, t/2)∩� �= ∅, then there is zx ∈ B(x, t/2)∩�. Since B(x, t/2) ⊂ B(zx , t) and
zx ∈ �, it holds that

sup
x∈Rn ,B(x,t/2)∩� �=∅

∫
B(x,t/2)∩�

|E0 f |dy ≤ sup
z∈�

∫
B(z,t)∩�

|E0 f |dy.

Therefore we obtain

sup
x∈Rn

∫
B(x,t)

|E0 f |dy ≤ N sup
z∈�

∫
B(z,t)∩�

|E0 f |dy, (4.10)

which yields the desired estimate (4.9). ��
Lemma 4.1. Let � satisfy Assumption 1. Assume that X (�) is a normed space and
satisfies Conditions (A1)–(A3) given in Theorem 1. Then, it holds that

‖R�(1B ∗ E0h))‖X (�) ≤ |B|‖h‖X (�) (4.11)

for all h ∈ C0(�) and all B = B(0, r).
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Proof of Lemma 4.1. By Condition (A2), we have ‖R�τy(E0h)‖X (�) ≤ ‖E0h‖X (�) =
‖h‖X (�) for all y ∈ R

n . Since for all x ∈ � it holds that R�(1B ∗ E0h)(x) =∫
Rn 1B(y)τy(E0h)(x)dy = ∫

Rn 1B(y)R�τy(E0h)(x)dy, we formally obtain

‖R�(1B ∗ E0h)‖X (�) ≤
∫
Rn

|1B(y)|‖R�τy(E0h)(·)‖X (�)dy

≤
∫
Rn

|1B(y)|dy ‖h‖X (�).

More precisely, since E0h ∈ C0(R
n), we easily observe that the Riemann sum

rk(x) := 1

2nk
∑

zm∈(Z/2k)
n

1B(zm)(E0h)(x − zm)(∈ C0(R
n))

converges to
∫
Rn 1B(y)(E0h)(x − y)dy in L∞(�) as k → ∞. Since C0(�)

‖·‖∞
↪→

X (�), this convergence holds in X (�). Hence, we have

‖R�(1B ∗ E0h)‖X (�) = lim
k→∞ ‖R�rk(x)‖X (�)

≤ lim sup
k→∞

1

2nk
∑

|1B(zm)|‖R�((E0h)(· − zm))‖X (�)

≤ lim
k→∞

1

2nk
∑

|1B(zm)|‖h‖X (�) = |B|‖h‖X (�)

for all h ∈ C0(�). This proves Lemma 4.1. ��
Lemma 4.2. Let � satisfy Assumption 1 and X (�) satisfy the assumption in Lemma
4.1. Then there exist positive constants ε0 = ε0(�) and C = C(�) such that

‖R�(m2t ∗ mt ∗ |E0 f |)‖X (�) ≤ C‖ f ‖X (�) (4.12)

for all f ∈ C0(�) and all 0 < t < ε0, where mt (x) := 1
|B(0,t)|1B(0,t)(x).

Proof of Lemma 4.2. We first prove Lemma 4.2 in the case where � is unbounded. Let

�ε := {x ∈ � ; dist(x, ∂�) < ε} and �ε := �\�ε.

Since � is unbounded, by Assumption 1, there is y0 ∈ R
n such that

�1 + y0 ⊂ � and dist(�1 + y0, ∂�) > 1.

Let ϕ1, ϕ2 ∈ C(�̄) satisfy

ϕ1 + ϕ2 = 1 in �, 0 ≤ ϕ1, ϕ2 ≤ 1

ϕ1 = 1 in �1/2, ϕ1 = 0 in �1. (4.13)

For f ∈ C0(�) we decompose |E0 f | into two functions as follows.

|E0 f | = E0(| f |ϕ1) + E0(| f |ϕ2).
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Let 0 < t < 1/3. Since dist(�1 + y0, ∂�) > 1 implies τy0(m2t ∗ mt ∗ E0(| f |ϕ1)) ∈
C0(�), by Condition (A2) and Lemma 4.1 we have

‖R�(m2t ∗ mt ∗ E0(| f |ϕ1))‖X (�)

= ‖R�τ−y0 [τy0(m2t ∗ mt ∗ E0(| f |ϕ1))]‖X (�)

≤ ‖τy0(m2t ∗ mt ∗ E0(| f |ϕ1)‖X (�)

= ‖m2t ∗ mt ∗ τy0E0(| f |ϕ1)‖X (�)

= ‖R�

{
m2t ∗ E0R�

(
mt ∗ E0R�τy0E0(| f |ϕ1)

)}
‖X (�)

≤ ‖R�τy0(E0(| f |ϕ1))‖X (�). (4.14)

Since E0(| f |ϕ1) ∈ C0(�), Conditions (A2)–(A3) yield ‖R�τy0(E0(| f |ϕ1))‖X (�) ≤
‖| f |ϕ1‖X (�) ≤ ‖ f ‖X (�). Hence, by (4.14) we have

‖R�(m2t ∗ mt ∗ E0(| f |ϕ1))‖X (�) ≤ ‖ f ‖X (�). (4.15)

Similarly, since supp ϕ2 ⊂ �1/2 and dist(�1/2, ∂�) = 1/2, by Lemma 4.1 and Condi-
tion (A3) we have, for 0 < t < 1

6 ,

‖R�(m2t ∗ mt ∗ E0(| f |ϕ2))‖X (�)

= ‖R�

{
m2t ∗ E0R�

(
mt ∗ E0(| f |ϕ2)

)} ‖X (�)

≤ ‖| f |ϕ2‖X (�) ≤ ‖ f ‖X (�). (4.16)

From (4.15) and (4.16) we obtain the desired estimate (4.12) for 0 < t < 1
6 .

Next, we prove (4.12) in the case where� is bounded. We choose r0 > 0 and z0 ∈ �

such that B(z0, 2r0) ⊂ �. Now we consider partitions of unity. Since �̄ is bounded,
there are a finite collection of open sets {Uj }Nj=1 and smooth functions {ϕ j }Nj=1 such that

� ⊂
N⋃
j=1

Uj , diam Uj < r0,
N∑
j=1

ϕ j = 1 in �

supp ϕ j ⊂ Uj , 0 ≤ ϕ j ≤ 1 for j = 1, 2, . . . , N .

Here diam A := supx,y∈A |x − y|. Let f ∈ C0(�). Since |E0 f (x)| =∑N
j=1 E0(| f |ϕ j )(x), we have

‖R�(m2t ∗ mt ∗ |E0 f |)‖X (�) ≤
N∑
j=1

‖R�

(
m2t ∗ mt ∗ E0(| f |ϕ j )

)‖X (�). (4.17)

Since diam Uj < r0, for each j = 1, 2, . . . N , there exists y j ∈ R
n such that

Uj + y j ⊂ B(z0, r0)(⊂ B(z0, 2r0) ⊂ �).

Let 0 < t < r0
3 . Then, since dist(Uj + y j , ∂�) ≥ r0, we see that τy j

(
m2t ∗ mt ∗

E0(| f |ϕ j )
) ∈ C0(�). Hence, in the same way as in the proof of (4.14) from Condition

(A2) and Lemma 4.1, we obtain

‖R�

(
m2t ∗ mt ∗ E0(| f |ϕ j )

)‖X (�) ≤ ‖R�τy j E0(| f |ϕ j )‖X (�). (4.18)
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Since f ∈ C0(�) implies E0(| f |ϕ j ) ∈ C0(�), Conditions (A2)-(A3) yield

‖R�τy j E0(| f |ϕ j )‖X (�) ≤ ‖E0(| f |ϕ j )‖X (�) ≤ ‖ f ‖X (�).

Hence, by (4.18),

‖R�

(
m2t ∗ mt ∗ E0(| f |ϕ j )

)‖X (�) ≤ ‖ f ‖X (�). (4.19)

This estimate and (4.17) yield the desired estimate (4.12) for all 0 < t < r0/3, which
proves Lemma 4.2. ��

We are now in the position to prove the second part of Theorem 1.

Proof of Theorem 1 (b). By Condition (A4) and Proposition 3.1 we have

‖g‖L∞(�) ≤ C
(
ε‖g‖Ċα(�) + logβ

(
e +

1

ε

)‖g‖X (�)

)
(4.20)

for all g ∈ X (�) ∩ Ċα(�) and all ε > 0. Let f ∈ C0(�), 0 < t < ε0 where ε0 is the
constant given in Lemma 4.2, and let h be a function on R

n defined by

h(x) := (m2t ∗ mt ∗ |E0 f |)(x) = −
∫
B(x,2t)

(
−
∫
B(y,t)

|E0 f |(z)dz
)
dy

for x ∈ R
n . From Proposition 4.2 we see that R�h ∈ Ċα ∩ C0(�)(⊂ Ċα ∩ X (�)).

Substituting g = R�h into (4.20), from Propositions 4.2 and 4.3, and Lemma 4.2 we
obtain

‖R�h‖L∞(�) ≤ C
(
ε‖R�h‖Ċα(�) + logβ

(
e +

1

ε

)‖R�h‖X (�)

)

≤ C
(
ε‖h‖Ċα(Rn) + logβ

(
e +

1

ε

)‖R�h‖X (�)

)

≤ C
(
ε(2t)−α‖mt ∗ |E0 f |‖L∞(Rn) + logβ

(
e +

1

ε

)‖ f ‖X (�)

)

≤ C
(
ε(2t)−α‖R�(mt ∗ |E0 f |)‖L∞(�) + logβ

(
e +

1

ε

)‖ f ‖X (�)

)
(4.21)

for all ε > 0. By taking L∞(�)-norm of the both sides of inequality (4.3) with f
replaced by |E0 f |, we have
‖R�(mt∗|E0 f |)‖L∞(�) ≤ 2n‖R�(m2t∗mt∗|E0 f |)‖L∞(�) = 2n‖R�h‖L∞(�). (4.22)

Substituting ε := (2t)α/(2n+1C) into (4.21), from (4.22) we observe that

‖R�(mt ∗ |E0 f |)‖L∞(�) ≤ C1 log
β

(
e +

1

t

)‖ f ‖X (�)

holds for all 0 < t < ε0 and all f ∈ C0(�), where the constant C1 is independent of
t and f . This implies ‖ f ‖

M log
β,ε0

(�)
≤ C1‖ f ‖X (�) for all f ∈ C0(�). Therefore, since

M log
β,ε0

(�)-norm is equivalent to M log
β (�)-norm, we conclude that

‖ f ‖
M log

β (�)
≤ C‖ f ‖X (�) for all f ∈ C0(�).
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Now, we consider the case where f ∈ BC(�̄) ∩ X (�). Clearly, there exists a sequence
{ fn} such that
fn ∈ C0(�), 0 ≤ fn(x) ≤ | f (x)| a.e. x ∈ � and fn(x) → | f (x)| a.e. x ∈ �.

By the definition of M log
β -norm, we see that for arbitrary ε > 0, there are x ∈ � and

t ∈ (0, 1) such that

‖ f ‖
M log

β (�)
− ε <

1

|B(x, t)| logβ(e + 1/t)

∫
B(x,t)

|E0 f (y)|dy.

Since Lebesgue’s theorem yields limn→∞
∫
B(x,t) |E0 fn(y)|dy = ∫

B(x,t) |E0 f (y)|dy,
there is n0 such that

‖ f ‖
M log

β (�)
− ε <

1

|B(x, t)| logβ(e + 1/t)

∫
B(x,t)

|E0 fn0(y)|dy ≤ ‖ fn0‖M log
β (�)

.

As shown above, it holds that ‖ fn0‖M log
β (�)

≤ C‖ fn0‖X (�) ≤ C‖ f ‖X (�), since fn0 ∈
C0(�) and since | fn(x)| ≤ | f (x)| a.e. x ∈ �. Therefore, we get

‖ f ‖
M log

β (�)
≤ C‖ f ‖X (�) for all f ∈ BC(�̄) ∩ X (�).

This proves Theorem 1(b). ��

5. Proof of Theorem 2

Proof of Theorem 2. (a) We now recall the Littlewood–Paley decomposition. Let ψ be
the function given in Definition 2 and let φ j ∈ S be the functions defined by

φ̂(ξ) := ψ̂(ξ) − ψ̂(2ξ) and φ̂ j (ξ) := φ̂(ξ/2 j ) for ξ ∈ R
n .

Then, supp φ̂ j ⊂ {2 j−1 ≤ |ξ | ≤ 2 j+1} and

1 = ψ̂(ξ/2N ) +
∞∑

j=N+1

φ̂(ξ/2 j ) = ψ̂N (ξ) +
∞∑

j=N+1

φ̂ j (ξ) for ξ ∈ R
n, N = 1, 2, . . . .

(5.1)
Using (5.1), we decompose f into two parts such that

f (x) = ψN ∗ f (x) +
∞∑

j=N+1

φ j ∗ f (x). (5.2)

By Definition 2,
‖ψN ∗ f ‖∞ ≤ Nβ‖ f ‖Vβ (5.3)

holds. Since Ḃα∞,∞(Rn) = Ċα(Rn) for 0 < α < 1, we have

∞∑
j=N+1

‖φ j ∗ f ‖∞ =
∞∑

j=N+1

2α j‖φ j ∗ f ‖∞2−α j

≤ ‖ f ‖Ḃα∞,∞

∞∑
j=N+1

2−α j ≤ C‖ f ‖Ċα2−αN . (5.4)
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Gathering (5.3) and (5.4) with (5.2), we obtain

‖ f ‖∞ ≤ C(2−αN‖ f ‖Ċα + Nβ‖ f ‖Vβ ). (5.5)

Now we take N =
[
log(‖ f ‖Ċα+e)

α log 2

]
+ 1, where [·] denotes the Gauss symbol. Then we

have the desired estimate (3.2)
(b) Now we prove the second part of Theorem 2. By Proposition 3.1, we see that

Condition (B4) is equivalent to the inequality:

‖ f ‖∞ ≤ C(ε‖ f ‖Ċα +
(
log(e +

1

ε
)
)β‖ f ‖X ) (5.6)

for all f ∈ BC∞ and all ε > 0.
Let g ∈ BUC(Rn). Then, ψN ∗ g ∈ BC∞. Substituting f = ψN ∗ g into (5.6), we

obtain

‖ψN ∗ g‖∞ ≤ Cε‖ψN ∗ g‖Ċα + C
(
log(e +

1

ε
)
)β‖ψN ∗ g‖X . (5.7)

Since ψN ∗ f = ψN+1 ∗ ψN ∗ f , we have

‖ψN ∗ g‖Ċα = ‖ψN+1 ∗ ψN ∗ g‖Ċα ≤ C‖ψN+1 ∗ ψN ∗ g‖Ḃα∞,∞

= C sup
j
2α j‖φ j ∗ ψN+1 ∗ ψN ∗ g‖∞

≤ C sup
j≤N+2

2α j‖ψN ∗ g‖∞ ≤ C2αN‖ψN ∗ g‖∞. (5.8)

Concerning the second term on the right-hand side of (5.7), Condition (B3) yields

‖ψN ∗ g‖X ≤
∫
Rn

‖ψN (y)g(· − y)‖Xdy =
∫
Rn

|ψN (y)|‖g‖Xdy
= ‖ψN‖L1‖g‖X = C‖g‖X , (5.9)

where the constant C(= ‖ψ‖L1) is independent of N . (More precisely, the above esti-
mate is justified by the fact that the Riemann sum 1

2nk
∑

zm∈(Z/2k)
n ψN (zm)g(x − zm)

converges to ψN ∗ g(x) in BUC(Rn)(↪→ X) as k → ∞.) Thus, gathering (5.8) and
(5.9) with (5.7) we obtain

‖ψN ∗ g‖∞ ≤ Cε2αN‖ψN ∗ g‖∞ + C
(
log(e +

1

ε
)
)β‖g‖X

for all N = 1, 2, . . . and all ε > 0. Letting ε = 1
2C2αN , from the above inequality we get

‖ψN ∗ g‖∞ ≤ C0 (N + 1)β‖g‖X for all N = 1, 2, . . . ,

where the constant C0 > 0 is independent of N and g. This implies

‖g‖Vβ ≤ C0‖g‖X
for all g ∈ BUC(Rn).

(c) Next, we prove the third part of Theorem 2. From (B2)–(B3), we can observe that

ψN ∗ g ∈ L∞ for all g ∈ X. (5.10)
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Indeed, if X ⊂ L1
uloc(R

n), (5.10) clearly holds. If X ↪→ S ′(Rn), by the standard
contradiction argument, we easily see that for all φ ∈ S there exists a constant Kφ > 0
such that

| < g, φ > | ≤ Kφ‖g‖X for all g ∈ X.

See e.g. the proof of Proposition 1.4 in [40, Chap.3]. Since ψN is spherical symmetric,
we have ψN ∗ g(x) =< g, τxψN >=< τ−x g, ψN >. Thus, from Condition (B3), we
obtain

|ψN ∗ g(x)| ≤ KψN ‖τ−x g‖X = KψN ‖g‖X for all x ∈ R
n,

which implies (5.10). Then, since ψN ∗ g = ψN+1 ∗ ψN ∗ g, we have ψN ∗ g ∈ BC∞.
By Condition (C) we have ‖ψN ∗ g‖X ≤ ‖ψN‖L1‖g‖X = ‖ψ‖L1‖g‖X . Therefore, by
using the same argument as in the proof of the second part of Theorem 2, we get

‖g‖Vβ ≤ C0‖g‖X
for all g ∈ X , which means X ↪→ Vβ . ��

6. Proof of Theorem 3

Proof of Theorem 3. For the sake of simplicity, we prove Theorem 3 only in the case

p > 3.

Since u ∈ C((0, T ); D(Ap)), without loss of generality, we may assume that u0 ∈
D(Ap). It is well-known that the local existence time T∗ of strong L p solutions can be
estimated from below as

T∗ > C(p,�)/‖u0‖p
2p/(p−3),

see e.g. [17]. Hence, if sup0≤τ<T ‖u(τ )‖p < ∞, then u can be continued to the solution
in the class Sp(0, T ′) for some T ′ > T . Therefore, in order to prove Theorem 3, it
suffices to show that

sup
0≤τ≤t

‖u(τ )‖p ≤ C‖u0‖p exp

(
C expC

∫ t

0
‖ω(τ)‖

M log
1
dτ

)
(6.1)

for all 0 < t < T with some constant C = C(u0, p,�, T ) > 0 which is independent
of t . Recall that u · ∇u = ω × u + 1

2∇|u|2 and hence P(u · ∇u) = P(ω × u). Then, u
satisfies the following integral equation:

(I.E .) u(t) = e−t Au0 −
∫ t

0
e−(t−s)AP(ω × u)(s)ds for all 0 < t < T .

By (I.E.) we have

‖u(t)‖p ≤ C‖u0‖p + C
∫ t

0
‖ω(s)‖∞‖u(s)‖pds,

which yields

sup
0≤s≤t

‖u(s)‖p ≤ C‖u0‖p exp
(
C

∫ t

0
‖ω(τ)‖∞dτ

)
(6.2)
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for all 0 < t < T . In order to estimate
∫ t
0 ‖ω(τ)‖∞dτ , we use the Brezis–Gallouet–

Wainger type inequality (3.1). Let 0 < α < 1 − 3/p. Substituting f = ω(s)
ε‖ω(s)‖Ċα

into
(3.1) with β = 1, we obtain

‖ω(s)‖∞ ≤ C
(
ε‖ω(s)‖Ċα(�) + log(e +

1

ε
)‖ω(s)‖

M log
1

)

≤ C
(
ε‖u(s)‖C1+α(�) + log(e +

1

ε
)‖ω(s)‖

M log
1

)
(6.3)

for all ε > 0, where C is a constant independent of s and ε. Let

h(t) := sup
0≤τ≤t

‖u(τ )‖p,

g(t) :=
∫ t

0
‖ω(τ)‖∞dτ

for 0 < t < T . Then, from (6.3), for any positive function ε(s) on (0, T ) we see that

g(t) ≤ C
∫ t

0
ε(s)‖u(s)‖C1+α(�)ds + C

∫ t

0
log(e +

1

ε(s)
)‖ω(s)‖

M log
1
ds

=: I1(t) + I2(t). (6.4)

Let θ = 1 − 3
p − α. Since it holds that

‖e−t A f ‖C1+α(�) ≤ C‖e−t A f ‖θ
C1−3/p(�)

‖e−t A f ‖1−θ

C2−3/p(�)

≤ C‖e−t A f ‖θ
W 1,p(�)

‖e−t A f ‖1−θ

W 2,p(�)

≤ C‖e−t A f ‖θ/2
L p(�)‖e−t A f ‖θ/2

W 2,p(�)
‖e−t A f ‖1−θ

W 2,p(�)

≤ C‖e−t A f ‖θ/2
L p(�)‖(1 + A)e−t A f ‖1−θ/2

L p(�) ≤ C(1 + t−
1+α
2 − 3

2p )‖ f ‖p,

from (I.E.) we obtain

‖u(s)‖C1+α(�) ≤ ‖e−s Au0‖C1+α(�) + C
∫ s

0
‖e−(s−τ)AP(ω × u)(τ )‖C1+α(�)dτ

≤ C‖e−s Au0‖D(Ap) + C
∫ s

0
(1 + (s − τ)

− 1+α
2 − 3

2p )‖ω × u(τ )‖pdτ

≤ C‖u0‖D(Ap) + Ch(s)
∫ s

0
(1 + (s − τ)

− 1+α
2 − 3

2p )‖ω(τ)‖∞dτ. (6.5)

Hence, for 0 < t < T we have

I1(t) ≤ CT
(

sup
0<s<T

ε(s)
)‖u0‖D(Ap)

+C
∫ t

0
ε(s)h(s)

∫ s

0
(1 + (s − τ)

− 1+α
2 − 3

2p )‖ω(τ)‖∞dτ ds. (6.6)

We now choose ε(s) such that

ε(s) := δ

Ch(s) + 1
,
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where δ > 0 is a sufficiently small constant. Then, since − 1+α
2 − 3

2p > −1, by Fubini’s
Theorem we have

I1(t) ≤ CT δ‖u0‖D(Ap) + δ

∫ t

0

∫ s

0
(1 + (s − τ)

− 1+α
2 − 3

2p )‖ω(τ)‖∞dτ ds

≤ CT δ‖u0‖D(Ap) + δ

∫ t

0

( ∫ t

τ

(1 + (s − τ)
− 1+α

2 − 3
2p )ds

)
‖ω(τ)‖∞dτ

≤ CT δ‖u0‖D(Ap) + C1(T )δ

∫ t

0
‖ω(τ)‖∞dτ. (6.7)

Since (6.2) yields h(s) + e ≤ C(‖u0‖p + e) exp(Cg(s)), we see

log(e +
1

ε(s)
) = log(e +

Ch(s) + 1

δ
)

≤ log(1 +
C + 1

δ
) + log(h(s) + e) ≤ C(‖u0‖p, δ)

(
1 + g(s)

)
.

Hence, we have

I2(t) ≤ C(‖u0‖p, δ)

∫ t

0
‖ω(s)‖

M log
1

(
1 + g(s)

)
ds. (6.8)

Gathering (6.7) and (6.8) with (6.4), we obtain

g(t) ≤ CT δ‖u0‖D(Ap) + C1(T )δg(t) + C(‖u0‖p, δ)

∫ t

0
‖ω(s)‖

M log
1

(
1 + g(s)

)
ds.

Therefore, letting δ = 1/(2C1(T )), by the Gronwall lemma, we get

g(t) ≤ C(‖u0‖D(Ap), T, ‖u0‖p) exp
(
C

∫ t

0
‖ω(s)‖

M log
1
ds

)

for all 0 < t < T . This estimate and (6.2) yield the desired estimate (6.1). ��
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7. Appendix

7.1. Relation between bmo and M log
1 . In this section, we consider the inclusion between

bmo(�) and M log
1 (�). We first recall the space Yuloc

Yuloc := { f ∈ L1
uloc(R

n); ‖ f ‖Yuloc := sup
p≥1

‖ f ‖L p
uloc(R

n)

p
< ∞},

which is a modified version of Yudovich’s space, see [45]. We will show

bmo(Rn) ↪→ Yuloc(R
n) ↪→ M log

1 (Rn). (7.1)
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Proof of (7.1). It is known that

‖ f ‖L p(B(x,1)) ≤ C · p · ‖ f ‖bmo(Rn)

for all f ∈ bmo(Rn), p ∈ [1,∞) and all x ∈ R
n , where the constant C depends only

on n, see Stein [39, Ch.IV, Sect.1.3]. This estimate yields ‖ f ‖Yuloc ≤ C‖ f ‖bmo(Rn) and
bmo(Rn) ↪→ Yuloc(Rn). Using a similar argument to that in [35], we can observe that
Yuloc ↪→ M log

1 (Rn). Indeed, for all 0 < t < 1 and all p ≥ 1, we see

−
∫
B(x,t)

| f (y)|dy ≤ |B(x, t)|−1/p‖ f ‖L p(B(x,1)) ≤ Ct−n/p · p · ‖ f ‖Yuloc
≤ Ce

n
p log(1/t) · p · ‖ f ‖Yuloc .

Thus, letting p = log(e + 1/t), we have

−
∫
B(x,t)

| f (y)|dy ≤ C log(e + 1/t)‖ f ‖Yuloc

for all 0 < t < 1, which implies ‖ f ‖
M log

1 (Rn)
≤ C‖ f ‖Yuloc and Yuloc ↪→ M log

1 (Rn). ��
Since ‖ f ‖

M log
1 (�)

≤ ‖ f̃ ‖
M log

1 (Rn)
≤ C‖ f̃ ‖bmo(Rn) for any extension f̃ of f from � to

R
n , we also have

‖ f ‖
M log

1 (�)
≤ C‖ f ‖bmo(�), i.e., bmo(�) ↪→ M log

1 (�).

7.2. Relation between the regularity conditions (1.6) and (3.4). As mentioned in In-
troduction and Remark 3 (iii), both of (1.6) and (3.4) guarantee the regularity of weak
solutions. Here we will show that there are no inclusion between (1.6) and (3.4) in the
following sense. There exists a function in the energy class which satisfies (3.4), but not
(1.6). On the other hand, there also exists a function in the energy class which satisfies
(1.6), but not (3.4). More precisely, we have:

Lemma 7.1. (a) There exists a vector function u1 on R
3 × [−1/2, 0) such that

u1 ∈ L∞(−1/2, 0; L2
σ (R3)) ∩ L2(−1/2, 0;W 1,2(R3)),∫ 0

−1/2
‖ω1(t)‖M log

1 (R3)
dt < ∞, (7.2)

lim sup
r→0+

r−(3/p+2/q−2)
{ ∫ 0

−r2

( ∫
B(0,r)

|ω1(y, t)|p dy
)q/p

dt
}1/q = ∞ (7.3)

for all 1 ≤ p, q ≤ ∞. Here ω1 = rot u1.
(b) There exists a vector function u2 on R3 × [−1/2, 0) such that

u2 ∈ L∞(−1/2, 0; L2
σ (R3)) ∩ L2(−1/2, 0;W 1,2(R3)),∫ 0

−1/2
‖ω2(t)‖M log

1 (B(0,ε))
dt = ∞ for all ε > 0, (7.4)

lim sup
r→0+

r−(3/p+2/q−2)
{ ∫ 0

−r2

( ∫
B(0,r)

|ω2(y, t)|p dy
)q/p

dt
}1/q = 0 (7.5)

for p = q = 2. Here ω2 = rot u2.
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Proof. (a) Clearly, there exists a function φ = (φ1, φ2, φ3) ∈ C∞
0,σ (R3) with φ1 ≥ 1 in

B(0, 1). Let 0 < δ < 1,

ω1(x, t) := φ(x/|t |2/5)
|t |(log 1

|t | )δ
for (x, t) ∈ R

3 × [−1/2, 0).

Fix −1/2 < t < 0. For 0 < r ≤ |t |1/5, we have
1

|B(x, r)| log(e + 1/r)

∫
B(x,r)

|ω1(y, t)|dy ≤ 1

log(1/|t |1/5)‖ω1‖∞ ≤ 5‖φ‖∞
|t |(log 1

|t | )1+δ
.

Let |t |1/5 < r < 1. Since |t |3/5 ≤ C
log 1

|t |
, we have

1

|B(x, r)| log(e + 1/r)

∫
B(x,r)

|ω1(y, t)|dy ≤ 1

|B(x, r)|
∫
R3

|ω1(y, t)|dy

≤ |t |6/5
|B(x, r)|

‖φ‖L1

|t |(log 1
|t | )δ

= C
(|t |6/5/r3)
|t |(log 1

|t | )δ
≤ C |t |3/5

|t |(log 1
|t | )δ

≤ C
1

|t |(log 1
|t | )1+δ

,

where C is a constant independent of t . Hence, we obtain

‖ω1(t)‖M log
1 (R3)

≤ C
1

|t |(log 1
|t | )1+δ

for all − 1/2 < t < 0,

which implies (7.2).
Let r > 0 be sufficiently small and 1 ≤ p ≤ ∞. Since ‖φ(·/|t |2/5)‖L p(B(0,r)) ≥
‖φ1(·/|t |2/5)‖L p(B(0,r)) ≥ ‖1B(0,|t |2/5)‖L p(B(0,r)), we have

‖ω1(·, t)‖L p(B(0,r)) ≥ ‖1B(0,|t |2/5)‖L p(B(0,r))

|t |(log 1
|t | )δ

= C

⎧⎨
⎩

1
|t |1−6/(5p)(log 1

|t | )δ
for − r5/2 ≤ t < 0

r3/p

|t |(log 1
|t | )δ

for − r2 < t < −r5/2.

Hence, for 1 < q < ∞ we have

r−(3/p+2/q−2)
{ ∫ 0

−r2
‖ω1(·, t)‖qL p(B(0,r))dt

}1/q

≥ r−(3/p+2/q−2)
{ ∫ − r5/2

2

−r5/2

1

|t |q(1−6/(5p))(log 1
|t | )qδ

dt
}1/q

≥ C

r
1
2 (1− 1

q )
(log 1

r )
δ

→ ∞ as r → 0 + .
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In the case q = 1, we have

r−(3/p+2/1−2)
{ ∫ 0

−r2
‖ω1(·, t)‖L p(B(0,r))dt

}
≥ r−3/p

∫ −r5/2

−r2

r3/p

|t |(log 1
|t | )δ

dt

≥ C

(log 1
r5/2

)δ

∫ −r5/2

−r2

1

|t |dt = C(log
1

r
)1−δ → ∞ as r → 0+,

since 1 − δ > 0. In the case q = ∞, we have

r−(3/p−2) sup
−r2<t<0

‖ω1(·, t)‖L p(B(0,r)) ≥ r−(3/p−2) sup
−r5/2<t<0

C

|t |1−6/(5p)(log 1
|t | )δ

=: L(r).

For 6/5 < p ≤ ∞, clearly L(r) = ∞. For 1 ≤ p ≤ 6/5, L(r) = C r−(3/p−2)

r5/2−3/p(log 1
r5/2

)δ
=

C/(r1/2(log(1/r))δ) → ∞ as r → 0+. Therefore, for all 1 ≤ p, q ≤ ∞, (7.3) holds.

Since ‖ω1(·, t)‖L p(R3) = ‖φ‖L p (R3)

|t |1−6/(5p)(log 1
|t | )δ

, it is straightforward to see that

ω1 ∈ L∞(−1/2, 0; L6/5
σ (R3)) ∩ L2(−1/2, 0; L2

σ (R3)).

Hence, lettingu1 := rot (−�)−1ω1,wehaveu1 ∈ L∞(−1/2, 0; L2
σ (R3))∩L2(−1/2, 0;

W 1,2(R3)), which proves the assertion (a).
(b) Let

ω2(x, t) := φ(x/|t |)
|t | ,

where φ is the same vector function as in the proof of (a). Then, for r = |t |,
∫
B(0,r) |ω2(y, t)|dy

|B(0, r)| log(e + 1/r)
≥

∫
B(0,|t |)

1
|t |dy

|B(0, |t |)| log(e + 1/|t |) = 1

|t | log(e + 1/|t |)
which yields ‖ω2(·, t)‖M log

1 (B(0,ε))
≥ 1

|t | log(e+1/|t |) for all −ε < t < 0. Hence we

obtain (7.4). Since ‖ω2(·, t)‖L p(R3) = |t |3/p−1‖φ‖L p(R3), it is straightforward to see

that ω2 satisfies (7.5) for p = q = 2 and belongs to L∞(−1/2, 0; L6/5
σ (R3)) ∩

L2(−1/2, 0; L2
σ (R3)). Hence, u2 := rot (−�)−1ω2 is the desired function. ��
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