Mathematical Physics CrossMark

Brezis–Gallouet–Wainger Type Inequalities and Blow-Up Criteria for Navier–Stokes Equations in Unbounded Domains

Kohei Nakao¹, Yasushi Taniuchi^{[2](http://orcid.org/0000-0001-6090-2688)}

¹ Interdisciplinary Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621,

² Department of Mathematical Sciences, Shinshu University, Matsumoto 390-8621, Japan. E-mail: taniuchi@math.shinshu-u.ac.jp

Received: 2 May 2017 / Accepted: 17 October 2017 Published online: 19 December 2017 – © Springer-Verlag GmbH Germany, part of Springer Nature 2017

Abstract: We shall find the weakest norm that satisfies the Brezis–Gallouet–Wainger type inequality, under some conditions. As an application of the Brezis–Gallouet– Wainger type inequality, we shall establish Beale–Kato–Majda type blow-up criteria of smooth solutions to the 3-D Navier–Stokes equations in unbounded domains.

1. Introduction

Let Ω be a 3-dimensional domain with $\partial \Omega \in C^{\infty}$. The motion of a viscous incompressible fluid in Ω is governed by the Navier–Stokes equations:

$$
\text{(N–S)}\begin{cases} \partial_t u - \Delta u + u \cdot \nabla u + \nabla p = 0, & \text{div } u = 0, \\ u|_{\partial \Omega} = 0, & u|_{t=0} = u_0, \end{cases} \quad t \in (0, T), \quad x \in \Omega,
$$

where $u = (u^1(x, t), u^2(x, t), u^3(x, t))$ and $p = p(x, t)$ denote the velocity vector and the pressure, respectively, of the fluid at $(x, t) \in \Omega \times (0, T)$ and u_0 is the given initial velocity vector fields. In this paper, we consider Beale–Kato–Majda type blow-up criteria of classical solutions to (N–S). In the case that Ω is the whole space, Beale–Kato–Majda [\[1\]](#page-20-0) and Kato–Ponce [\[23\]](#page-21-0) showed that the L^{∞} -norm of the vorticity $\omega = \text{rot } u$ controls the breakdown of smooth solutions to the Euler and Navier–Stokes equations. To be precise, if the smooth solution *u* in $C([0, T); W^{s,p}(\mathbb{R}^n))$ ($s > n/p + 1$) breaks down at a finite time $t = T$, then

$$
\int_0^t \|\omega(\tau)\|_{L^\infty(\Omega)} d\tau \nearrow \infty \tag{1.1}
$$

as $t \nearrow T$. Chemin [\[9](#page-21-1)] and Kozono, Ogawa and the second author [\[24](#page-21-2)] proved similar blow-up criteria with $\|\omega\|_{L^{\infty}}$ replaced by $\|u\|_{B^1_{\infty,\infty}}$ and $\|\omega\|_{B^0_{\infty,\infty}}$, respectively. Note that Chemin [\[9](#page-21-1)] dealt with solutions in C^{α} , $\alpha > 1$. Chae [\[8\]](#page-21-3) also proved the same criterion via $\|\omega\|_{\dot{B}^0_{\infty,\infty}}$ for solutions in the Triebel–Lizorkin spaces. It is notable that Planchon [\[36\]](#page-21-4)

improved the criterion given in $[24]$. He showed that, if the solution *u* to the Euler equations in $C([0, T); B_{p,q}^s(\mathbb{R}^n))(s > n/p + 1, 1 \le p, q < \infty)$ cannot continue the solution in $C([0, T'); B_{p,q}^{s}(\mathbb{R}^{n}))$ for any $T' > T$, then $\lim_{\epsilon \to 0+} \sup_j \int_{T-\epsilon}^{T} ||\Delta_j \omega||_{\infty} dt$ must be greater then an absolute number *M*, where Δ is a frequency localization operator of ζ as greater than an absolute number *M*, where Δ_j is a frequency localization operator at $\xi \sim$ 2^j . For the Navier–Stokes equations in \mathbb{R}^n , Fan et al. [\[11](#page-21-5)] proved a logarithmically improved blow-up criterion: $\int_0^t ||\omega(\tau)||_{\dot{B}^0_{\infty,\infty}(\mathbb{R}^n)} / \sqrt{1 + \log(1 + ||\omega(\tau)||_{\dot{B}^0_{\infty,\infty}(\mathbb{R}^n)})} d\tau \nearrow$

 ∞ . Recently, for the 3-D Navier–Stokes equations in \mathbb{R}^3 , Bradshaw et al. [\[4](#page-20-1)] proved that the local existence time T_* of a unique smooth solution can be estimated from below as $T_* > c / \|\omega(0)\|_{L^\infty(\mathbb{R}^3)}$, if initial vorticity $\omega(0) \in L^2(\mathbb{R}^3) \cap L^\infty(\mathbb{R}^3)$. This estimate implies that if T is the maximal time of existence of the smooth solution, then

$$
\|\omega(t)\|_{L^{\infty}(\mathbb{R}^3)} \ge c/(T-t) \quad \text{for } t < T,\tag{1.2}
$$

which directly yields the Beale–Kato–Majda blow-up criterion (1.1) for the 3-D Navier– Stokes equations. See also Kukavica [\[28](#page-21-6)].

In the case where Ω is a bounded domain, for the 3-D Euler equations, Ferrari [\[14\]](#page-21-7) and Shirota–Yanagisawa [\[37\]](#page-21-8) succeeded in proving that the same result of breakdown as Beale–Kato–Majda holds. See also Zajaczkowski [\[46](#page-22-0)]. In [\[34\]](#page-21-9), Ogawa and the second author proved a similar blow-up criterion with $\|\omega\|_{L^{\infty}(\Omega)}$ replaced by $\|\omega\|_{bmo(\Omega)}$. To be precise, in [\[34\]](#page-21-9) it was shown that, if Ω is a 3-D bounded domain and if the smooth solution *u* in $C([0, T); H^m(\Omega)(m > 3/2 + 1)$ breaks down at a finite time $t = T$, then

$$
\int_0^t \|\omega(\tau)\|_{bmo(\Omega)} d\tau \nearrow \infty \tag{1.3}
$$

as $t \nearrow T$. However, in [\[34\]](#page-21-9), the blow-up criterion via $\|\omega\|_{bmo(\Omega)}$ was proven only for 3-D Euler equations. In the present paper, we prove the same criterion for 3-D Navier–Stokes equations in domains with $\partial \Omega \in C^{\infty}$. In [\[34\]](#page-21-9), the proof was based on the *H^m*-energy method. However, it seems difficult to apply the *Hm*-energy method to solutions of the Navier–Stokes equations in a domain with the no-slip boundary condition $u|_{\partial\Omega} = 0$, due to the diffusion term. In the present paper, instead of applying the H^m -energy method, we will use the integral equation of (N–S) and the smoothing effect of the Stokes semigroup. Moreover, by using a space of Morrey type we improve the *bmo*-criterion [\(1.3\)](#page-1-0) to

$$
\int_0^t \|\omega(\tau)\|_{M_1^{\log}(\Omega)} d\tau \nearrow \infty, \tag{1.4}
$$

as $t \nearrow T$. Here, $M_1^{\log}(\Omega)$ will be defined in Sect. [2.](#page-3-0)

It is notable that Grujic and Guberovic [\[18\]](#page-21-10) established a local version of the *bmo*criterion for the interior regularity of weak solutions to the 3-D Navier–Stokes equations by using the non-homogeneous div-curl lemma. It is also notable that Morrey type norms of ∇u and vorticity ω were utilized by Caffarelli et al. [\[7](#page-21-11)] and Gustafson et al. [\[19](#page-21-12)] for the interior regularity of suitable weak solutions to the Navier–Stokes equations. More precisely, in [\[7](#page-21-11)], it was shown that if *u* is a suitable weak solution and if

$$
\limsup_{r \to 0+} r^{-1} \int_{t-r^2}^t \int_{B(x,r)} |\nabla u(y,\tau)|^2 dy d\tau
$$
 is sufficiently small, (1.5)

then *u* is regular at (x, t) , i.e., $u \in L^{\infty}(B(x, r) \times (t - r^2, t))$ for some $r > 0$. In [\[19](#page-21-12)], this interior regularity criterion (1.5) was refined, replacing by the more general condition that

$$
\limsup_{r \to 0+} r^{-(3/p+2/q-2)} \Big[\int_{t-r^2}^t \Big(\int_{B(x,r)} |\omega(y,\tau)|^p \, dy \Big)^{q/p} d\tau \Big]^{1/q} \text{ is sufficiently small} \tag{1.6}
$$

for some *p*, *q* with $2 \le 3/p + 2/q \le 3$, $1 \le q \le \infty$, $(p, q) \ne (1, \infty)$.

In order to prove [\(1.3\)](#page-1-0) and [\(1.4\)](#page-1-2) for (N–S), the following Brezis–Gallouet–Wainger type inequalities play important roles:

$$
(BGW)_{\beta} \qquad \|f\|_{L^{\infty}(\Omega)} \leq C(1 + \|f\|_{X}) \log^{\beta}(e + \|f\|_{Y})).
$$

When $\Omega = \mathbb{R}^n$, by using the Fourier transform, Brezis–Gallouet–Wainger [\[5](#page-20-2)[,6](#page-20-3)] proved $(BGW)_\beta$ in the case

$$
\beta = 1 - 1/p, \quad X = W^{n/p, p}(\mathbb{R}^n), \quad Y = W^{n/q + \alpha, q}(\mathbb{R}^n) (\subset \dot{C}^{\alpha})(\alpha > 0).
$$

Engler [\[10](#page-21-13)] proved the same inequality for general domains Ω without using the Fourier transform. Ozawa [\[35](#page-21-14)] proved the Gagliardo–Nirenberg type inequality

$$
||f||_{L^{q}(\mathbb{R}^{n})} \leq C(p,n)q^{1-1/p}||(-\Delta)^{n/2p}f||_{L^{p}(\mathbb{R}^{n})}^{1-p/q}||f||_{L^{p}(\mathbb{R}^{n})}^{p/q} \text{ for all } q \in [p,\infty)
$$
 (1.7)

with the explicit growth rate with respect to *q* and that this estimate directly yields $(BGW)_{\beta}$ with $\beta = 1 - 1/p$. When Ω is a bounded domain, in [\[33,](#page-21-15)[34\]](#page-21-9), $(BGW)_{\beta}$ was proven in the cases

$$
\beta = 1, \quad X = bmo(\Omega), \quad Y = \dot{C}^{\alpha}(\Omega), \quad \text{or}
$$

$$
\beta = 1, \quad X = B_{\Theta}(\Omega) \text{ with } \Theta(q) = q, \quad Y = \dot{C}^{\alpha}(\Omega),
$$

where $B_{\Theta}(\Omega)$ is introduced by $|| f ||_{B_{\Theta}(\Omega)} := \sup_{q \geq 1} \frac{|| f ||_{L^q(\Omega)}}{\Theta(q)}$. Furthermore, in [\[1](#page-20-0),[9,](#page-21-1)[10,](#page-21-13) [14,](#page-21-7)[20](#page-21-16)[,23](#page-21-0)[–26](#page-21-17)[,29](#page-21-18)[,32](#page-21-19),[34,](#page-21-9)[35](#page-21-14)[,37](#page-21-8)[,42](#page-22-1),[46\]](#page-22-0) several inequalities of Brezis–Gallouet–Wainger type were established. Then, we have one question.

Question. What is the largest normed space *X* that satisfies $(BGW)_B$ with $Y =$ $\dot{C}^{\alpha}(\Omega)$?

In the present paper, we also consider this problem and find the largest normed space *X* under some additional assumptions.

Throughout this paper we impose the following assumption on the domain.

Assumption 1. $\Omega \subset \mathbb{R}^n$ is the half-space \mathbb{R}^n , the whole space \mathbb{R}^n , a bounded domain, an exterior domain, a perturbed half-space, or an aperture domain with $\partial \Omega \in C^{\infty}$.

For the definitions of perturbed half-spaces and aperture domains, see Kubo–Shibata [\[27\]](#page-21-20) and Farwig–Sohr [\[12](#page-21-21)].

The remainder of the present paper is organized as follows. In Sect. [2,](#page-3-0) some function spaces are introduced. In Sect. [3,](#page-4-0) the main results are described. In Sects. [4,](#page-7-0) [5](#page-13-0) and [6,](#page-15-0) the proofs of main results are presented.

In this paper, we denote by *C* various constants.

2. Function Spaces and Preliminaries

We first introduce Banach spaces of Morrey type and Besov type which are wider than L^{∞} . Let *E*₀ be the 0-extension operator from functions defined on Ω to functions on \mathbb{R}^n and R_{Ω} be the restriction operator from functions on \mathbb{R}^n to functions on Ω , i.e.,

$$
E_0 f(x) := \begin{cases} f(x) & \text{for } x \in \Omega \\ 0 & \text{for } x \in \mathbb{R}^n \setminus \Omega, \end{cases} \qquad R_{\Omega} f := f\big|_{\Omega},
$$

 $B(x, t) := \{y \in \mathbb{R}^n; \ |y - x| < t\}$ and let $L^1_{uloc}(\Omega)$ denote the uniformly local L^1 space, i.e.,

$$
L_{uloc}^1(\Omega) := \Big\{ f \in L_{loc}^1(\bar{\Omega}) \; ; \; \|f\|_{L_{uloc}^1(\Omega)} := \sup_{x \in \mathbb{R}^n} \frac{1}{|B(x, 1)|} \int_{B(x, 1) \cap \Omega} |f(y)| dy < \infty \Big\}.
$$

Definition 1. Let $\beta > 0$ and Ω be a domain in \mathbb{R}^n . Then,

• $M_\beta^{\log}(\Omega) := \{ f \in L^1_{uloc}(\Omega); ||f||_{M_\beta^{\log}} < \infty \}$ is introduced by the norm

$$
\|f\|_{M_{\beta}^{\log}(\Omega)} := \sup_{x \in \Omega, \ 0 < t < 1} \frac{1}{|B(x,t)| \log^{\beta}(e + \frac{1}{t})} \int_{B(x,t)} E_0|f(y)| dy.
$$

• $\tilde{M}^{\text{log}}_{\beta}(\Omega)$ is defined by

$$
\tilde{M}^{\log}_{\beta}(\Omega) := \overline{BC(\overline{\Omega})}^{\|\cdot\|_{M^{\log}_{\beta}(\Omega)}},
$$

where $BC(\Omega)$ denotes the set of all bounded continuous functions in Ω .

We note that, for any constant $\delta > 0$, $||f||_{M^{\log}_{\beta}(\Omega)}$ is equivalent to the following norms

$$
||f||_{M_{\beta,\delta}^{\log}(\Omega)} := \sup_{x \in \Omega, 0 < t < \delta} \frac{1}{|B(x,t)| \log^{\beta}(e + \frac{1}{t})} \int_{B(x,t)} E_0|f(y)| dy,
$$
\n
$$
||f||'_{M_{\beta,\delta}^{\log}(\Omega)} := \sup_{x \in \mathbf{R}^n, 0 < t < \delta} \frac{1}{|B(x,t)| \log^{\beta}(e + \frac{1}{t})} \int_{B(x,t)} E_0|f(y)| dy.
$$

Indeed, for $0 < \delta < r$, clearly $|| f ||_{M_{\beta,\delta}^{\log}(\Omega)} \leq || f ||_{M_{\beta,r}^{\log}(\Omega)} \leq || f ||'_{M_{\beta,r}^{\log}(\Omega)} \leq C(n, \beta, \delta, r)$ $||f||'_{M_{\beta,\delta}^{\log}(\Omega)}$ holds, where $C(n, \beta, \delta, r)$ is a constant independent of *f*. By Proposition [4.3](#page-9-0) [\(4.9\)](#page-9-1) in Sect. [4,](#page-7-0) we observe that $||f||'_{M_{\beta,\delta}^{\log}(\Omega)} \leq C(n)||f||_{M_{\beta,\delta}^{\log}(\Omega)}$. Then we have $|| f ||_{M_{\beta}^{\log}(\Omega)} \cong || f ||_{M_{\beta,\delta}^{\log}(\Omega)} \cong || f ||'_{M_{\beta,\delta}^{\log}(\Omega)}$ for all $\delta > 0$.

Definition 2 (*Modified Vishik's space*). Let $\beta > 0$ and $\psi \in S(\mathbb{R}^n)$ be a spherical symmetric function with $\hat{\psi}(\xi) = 1$ in $B(0, 1)$ and $\hat{\psi}(\xi) = 0$ in $B(0, 2)^c$. Then,

• $V_\beta(\mathbb{R}^n) = \{f \in \mathcal{S}'(\mathbb{R}^n); \|f\|_{V_\beta} < \infty\}$ is introduced by the norm

$$
||f||_{V_{\beta}} := \sup_{N=1,2,...} \frac{||\psi_N * f||_{\infty}}{N^{\beta}}, \text{ where } \psi_N(x) := 2^{nN} \psi(2^N x).
$$

Brezis–Gallouet–Wainger Type Inequalities and Blow-Up Criteria for Navier–Stokes 955

• V_β is defined by

$$
\tilde{V}_{\beta} := \overline{BUC(\mathbb{R}^n)}^{\|\cdot\|_{V_{\beta}}},
$$

where $BUC(\mathbb{R}^n)$ denotes the set of all bounded uniformly continuous functions in \mathbb{R}^n .

Note that the space V_β is a modified version of spaces introduced by Vishik [\[43](#page-22-2)]. We also note that the following inclusions hold:

$$
M_1^{\log}(\Omega) \supset bmo(\Omega) \supset L^{\infty}(\Omega), \text{ see Appendix},
$$

$$
V_1(\mathbb{R}^n) \supset B^0_{\infty,\infty}(\mathbb{R}^n) \supset bmo(\mathbb{R}^n) \supset L^{\infty}(\mathbb{R}^n).
$$

Here $bmo(\mathbb{R}^n) = BMO(\mathbb{R}^n) \cap L^1_{uloc}(\mathbb{R}^n)$ and $bmo(\Omega)$ is defined by the restriction of $bmo(\mathbb{R}^n)$ on Ω , i.e. $bmo(\Omega) := \{R_{\Omega} f; f \in bmo(\mathbb{R}^n)\}$, where $R_{\Omega} f$ is the restriction of *f* on Ω . The norm of *bmo*(Ω) is defined by

$$
\|f\|_{bmo(\Omega)} := \inf \{ \|\tilde{f}\|_{bmo(\mathbb{R}^n)}; \ \tilde{f} \in bmo(\mathbb{R}^n) \text{ with } \tilde{f} = f \text{ in } \Omega \}.
$$

Let $C_0^{\infty}(K)$ denote the set of all C^{∞} functions with compact support in the set *K*, $BC^{\infty}(K) := \{ g \in C^{\infty}(K) ; \ \partial^{\alpha} g \in L^{\infty}(K) \text{ for all multi-indices } \alpha \}$ and $C^{\infty}_{0,\sigma}(\Omega) =$ $C_{0,\sigma}^{\infty} := {\phi \in (C_0^{\infty}(\Omega))^n}$; div $\phi = 0$. Then L^r_{σ} , $1 < r < \infty$, is the closure of $C_{0,\sigma}^{\infty}$ with respect to the *L^r*-norm $\|\cdot\|_r$. Concerning Sobolev spaces we use the notations $W^{k,p}(\Omega)$ and $W_0^{k,p}(\Omega)$, $k \in \mathbb{N}$, $1 \le p \le \infty$. Note that very often we will simply write L^r and $W^{k,p}$ instead of $L^r(\Omega)$ and $W^{k,p}(\Omega)$, respectively. The symbol (\cdot, \cdot) denotes the L^2 inner product and the duality pairing between L^p and $L^{p'}$, where $1/p + 1/p' = 1$.

Let us recall the Helmholtz decomposition: $L^r(\Omega) = L^r_\sigma \oplus G_r$ $(1 < r < \infty)$, where $G_r = \{ \nabla p \in L^r; p \in L^r_{loc}(\overline{\Omega}) \}$, see Fujiwara and Morimoto [\[15\]](#page-21-22), Miyakawa [\[30](#page-21-23)], Simader and Sohr [\[38\]](#page-22-3), Borchers and Miyakawa [\[2](#page-20-4)] and Farwig–Sohr [\[13](#page-21-24)]; *Pr* denotes the projection operator from L^r onto L^r_σ along G_r . The Stokes operator A_r on L^r_σ is defined by $A_r = -P_r \Delta$ with domain $D(A_r) = W^{2,r} \cap W_0^{1,r} \cap L^r_{\sigma}$. It is known that $(L^r_\sigma)^*$ (the dual space of L^r_σ) = $L^{r'}_\sigma$ and A^*_r (the adjoint operator of A_r) = $A_{r'}$, where $1/r+1/r' = 1$. It is shown by Giga [\[16\]](#page-21-25), Borchers and Sohr [\[3\]](#page-20-5), Borchers and Miyakawa [\[2\]](#page-20-4), Iwashita [\[21\]](#page-21-26) and Farwig and Sohr [\[13\]](#page-21-24) that−*Ar* generates a holomorphic semigroup ${e^{-tA_r}}$; $t \ge 0$ of class C_0 in L^r_σ . Since $P_r u = P_q u$ for all $u \in L^r \cap L^q$ (1 < *r*, $q < \infty$) and since $A_r u = A_q u$ for all $u \in D(A_r) \cap D(A_q)$, for simplicity, we shall abbreviate *Pru*, *Pqu* as *Pu* for $u \in L^r \cap L^q$ and $A_r u$, $A_q u$ as Au for $u \in D(A_r) \cap D(A_q)$, respectively.

We very often use the notations f for integral means, i.e., $f_B f(y) dy := \frac{1}{|B|} \int_B f(y) dy$ and τ_y for the translation operator, i.e., $\tau_y f = f(-y)$. Let 1_Ω denote the characteristic function on Ω .

3. Main Theorems

Now our main results read as follows.

Theorem [1](#page-2-0). *Let* Ω ($\subset \mathbb{R}^n$) *satisfy Assumption* 1*.*

(a) *For any* $\alpha \in (0, 1)$ *and* $\beta > 0$ *, there exists a constant* $C(\Omega, \alpha, \beta, n) > 0$ *such that*

$$
\|f\|_{L^{\infty}(\Omega)} \le C\Big(1+\|f\|_{M_{\beta}^{\log}(\Omega)}\log^{\beta}\big(e+\|f\|_{\dot{C}^{\alpha}(\Omega)}\big)\Big) \text{ for all } f \in \dot{C}^{\alpha}(\Omega) \cap M_{\beta}^{\log}(\Omega). \tag{3.1}
$$

- (b) Let $\beta > 0$ and $X(\Omega)$ be a normed space. Assume that $X(\Omega)$ satisfies the following *conditions:*
	- $(A1)$ $C_0(\Omega)$ $\lim_{M \to \infty}$ \hookrightarrow $X(\Omega) \subset L^1_{uloc}(\Omega)$;
	- (A2) $X(\Omega)$ *is a translation invariant space, i.e.,* $\|R_{\Omega}(\tau_y f)\|_{X(\Omega)} \leq \|f\|_{X(\Omega)}$ *for all* $y \in \mathbb{R}^n$ *and all* $f \in C_0(\Omega)$ *;*
	- $(A3)$ $X(\Omega)$ -norm has the property: $|| f ||_{X(\Omega)} \leq || g ||_{X(\Omega)}$ if $f, g \in BC(\Omega) \cap X(\Omega)$ *and* $|f(x)| \le |g(x)|$ *a.e.* $x \in \Omega$;
	- (A4) *there exist constants* $\alpha \in (0, 1)$ *and* $C > 0$ *such that*

 $||f||_{L^{\infty}(\Omega)} \leq C\Big(1 + ||f||_X \log^{\beta} (e + ||f||_{\dot{C}^{\alpha}(\Omega)})\Big)$ *for all* $f \in \dot{C}^{\alpha}(\Omega) \cap X(\Omega)$ *. Then, there exists a constant* $C_0 > 0$ *such that*

$$
\|f\|_{M_{\beta}^{\log}(\Omega)} \leq C_0 \|f\|_{X(\Omega)} \text{ for all } f \in BC(\overline{\Omega}) \cap X(\Omega).
$$

In particular, if BC($\bar{\Omega}$) *is densely contained in* $X(\Omega)$ *, then* $X(\Omega) \hookrightarrow \tilde{M}^{\log}_{\beta}(\Omega)$ *.*

- *Remark 1.* (i) The condition (A2) implies that if both of *f* and $\tau_y f$ belong to $C_0(\Omega)$, then $|| f ||_{X(\Omega)} = || \tau_y f ||_{X(\Omega)}$, since $f = \tau_{-y} \tau_y f$. Hence we call (A2) the translation invariant property.
- (ii) By Definition [1](#page-3-1) and Theorem [1\(](#page-4-1)a) we see that $M_\beta^{\log}(\Omega)$ and $\tilde{M}_\beta^{\log}(\Omega)$ satisfy Condi-tions (A1)–(A4). We emphasize that Theorem [1\(](#page-4-1)b) implies that $\tilde{M}^{\text{log}}_{\beta}(\Omega)$ is the largest normed space that satisfies Conditions (A1)–(A4) and densely contains $BC(\Omega)$.

If we do not assume (A3), there is a normed space wider than M_β^{\log} , when $\Omega = \mathbb{R}^n$ as below.

Theorem 2. (a) *For any* $\alpha \in (0, 1)$ *and* $\beta > 0$ *, there exists a constant* $C(\alpha, \beta, n) > 0$ *such that*

$$
\|f\|_{L^{\infty}(\mathbb{R}^n)} \leq C\Big(1 + \|f\|_{V_{\beta}(\mathbb{R}^n)}\log^{\beta}\big(e + \|f\|_{\dot{C}^{\alpha}(\mathbb{R}^n)}\big)\Big) \text{ for all } f \in \dot{C}^{\alpha}(\mathbb{R}^n) \cap V_{\beta}.\tag{3.2}
$$

- (b) *Let* β > 0 *and X be a normed space. Assume that X satisfies the following conditions* $(B1)$ $BUC(\mathbb{R}^n) \hookrightarrow X$;
	- $(S2)$ $X \hookrightarrow S'(\mathbb{R}^n)$ or $X \subset L^1_{uloc}(\mathbb{R}^n)$;
	- (B3) *X is a translation invariant space, i.e.,*

$$
|| f(\cdot - y) ||_X = ||f||_X \text{ for all } y \in \mathbb{R}^n;
$$

(B4) *there exist constants* $\alpha \in (0, 1)$ *and* $C > 0$ *such that*

$$
||f||_{L^{\infty}(\mathbb{R}^n)} \leq C\Big(1+\|f\|_X\log^{\beta}\big(e+\|f\|_{\dot{C}^{\alpha}(\mathbb{R}^n)}\big)\Big) \text{ for all } f\in BC^{\infty}(\mathbb{R}^n).
$$

Then, there exists a constant $C_0 > 0$ *such that*

$$
||f||_{V_{\beta}} \leq C_0 ||f||_X \quad \text{for all } f \in BUC(\mathbb{R}^n).
$$

In particular, if BUC is densely contained in X, then $X \hookrightarrow V_\beta$ *.*

(c) *Let* β > 0 *and X be a normed space. Assume that X satisfies Conditions (B2)–(B4). Furthermore assume that*

(*C*) $\|\rho * f\|_X \le \|\rho\|_{L^1(\mathbb{R}^n)} \|f\|_X$ *holds for all* $\rho \in S$ *and all* $f \in X$.

Then, $X \hookrightarrow V_{\beta}$ *.*

- *Remark 2.* (i) From Theorem [2\(](#page-5-0)a) we observe that V_β and V_β satisfy Conditions (B1)– (B4). Hence, Theorem [2\(](#page-5-0)b) implies that V_β is the largest Banach space that satisfies Condition (B1)–(B4) and densely contains $BUC(\mathbb{R}^n)$.
- (ii) Since V_β satisfies (B2)–(B4) and (*C*), Theorem [2\(](#page-5-0)c) implies that V_β is the largest normed space that satisfies Conditions (B2)–(B4) and (*C*).
- (iii) Since $M_\beta^{\log}(\mathbb{R}^n)$ satisfies (B2)–(B4) and (*C*), from Theorem [2\(](#page-5-0)c) we observe that $M_\beta^{\log}(\mathbb{R}^n) \hookrightarrow V_\beta.$

(iv) If \overline{X} satisfies (B1)–(B3) and the following condition

 $(C)'$ *X* is a Banach space and $BUC(\mathbb{R}^n)$ is dense in *X*,

then *X* satisfies Condition (*C*).

Our results on (N–S) read as follows.

Theorem 3. Let the dimension $n = 3$, $\Omega(\subset \mathbb{R}^3)$ *satisfy Assumption* [1](#page-2-0)*, p* ≥ 3 *and u be a solution to (N–S) on* (0, *T*) *in the class*

$$
S_p(0,T) := C([0,T); L^p_\sigma) \cap C^1((0,T); L^p_\sigma) \cap C((0,T); W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)).
$$

Assume that $T < \infty$ and T is maximal, i.e., u cannot be continued to the solution of *(N–S) in the class* $S_p(0, T')$ *for any* $T' > T$ *. Then,*

$$
\int_{s}^{t} \|\omega(\tau)\|_{M_{1}^{\log}(\Omega)} d\tau \nearrow \infty \quad as \quad t \nearrow T \quad \text{for any } s \in (0, T), \tag{3.3}
$$

where ω = rot *u*.

- *Remark 3.* (i) Solutions in the class $S_p(0, T)$ are called strong L^p solutions on $(0, T)$. For $p \ge 3$, the existence of strong L^p solutions to (N–S) is proven in [\[17](#page-21-27)[,21](#page-21-26)[,22](#page-21-28),[44](#page-22-4)].
- (ii) The blow-up criterion (1.2) given in $[4]$ $[4]$ dose not directly imply (3.3) . Indeed, let *f* (*x*, *t*) := min{*c*/|*T* − *t*|, log⁺(1/|*x*|)}, then $|| f(t) ||_{\infty} = c/|T - t|$, while $\int_0^T \|f\|_{M_1^{\log}} dt \leq \int_0^T \|log^+(1/|x|) \|_{M_1^{\log}} dt = CT < \infty$. Here $log^+ s :=$ max{0, log *s*}.
- (iii) By using Theorem [3](#page-6-1) and the standard argument, we can also show the following regularity criterion for weak solutions. If $n = 3$, u is a Leray–Hopf weak solution with the energy inequality in the strong form and if *u* satisfies

$$
\int_0^T \|\omega(\tau)\|_{M_1^{\log}(\Omega)} d\tau < \infty,\tag{3.4}
$$

then *u* is smooth in $(0, T] \times \Omega$. Here, for the definitions of Leray–Hopf weak solutions and the energy inequality in the strong form, see e.g. [\[41](#page-22-5), Definition 2.1]. Note that there are no inclusion between Conditions [\(3.4\)](#page-6-2) and [\(1.6\)](#page-2-1). See Lemma [7.1](#page-18-0) in Appendix.

It holds that $|| f ||_{M_1^{\log}(\Omega)} \leq C || f ||_{bmo(\Omega)}$, see Appendix. Hence, we have:

Corollary 1. *Under the same assumptions as in Theorem* [3](#page-6-1)*, it holds that*

$$
\int_s^t \|\omega(\tau)\|_{bmo(\Omega)} d\tau \nearrow \infty
$$

as t \neq *T* for any $s \in (0, T)$ *.*

In the same way as in the proof of Theorem [3,](#page-6-1) we also have:

Corollary 2. Let $\Omega = \mathbb{R}^3$ $\Omega = \mathbb{R}^3$. Then, under the same assumptions as in Theorem 3, it holds *that*

$$
\int_s^t \|\omega(\tau)\|_{V_1(\mathbb{R}^3)} d\tau \nearrow \infty
$$

as t \neq *T* for any $s \in (0, T)$.

Before closing this section, we introduce an inequality equivalent to $(BGW)_\beta$.

Proposition 3.1. *Let X be a normed space, Y be a semi-normed space,* $Z(\subset X \cap Y)$ *be a linear space, and* $\beta > 0$. Then, $(BGW)_{\beta}$ holds for all $f \in Z$ if and only if there exists *a constant C* > 0 *such that*

$$
(BGW)'_{\beta} \qquad \|f\|_{L^{\infty}(\Omega)} \le C\left(\epsilon \|f\|_{Y} + \log^{\beta}\left(e + \frac{1}{\epsilon}\right)\|f\|_{X}\right)
$$

for all $f \in Z$ *and all* $\epsilon > 0$ *.*

Indeed, substituting $f = \frac{g}{\epsilon \|g\|_Y}$ into $(BGW)_\beta$, we see that $(BGW)_\beta$ yields $(BGW)_\beta'$. Conversely, letting $\epsilon = \frac{1}{\|f\|_{\mathcal{V}}}$, we see that $(BGW)'_{\beta}$ yields $(BGW)_{\beta}$.

4. Proof of Theorem [1](#page-4-1)

Proof of Theorem [1\(](#page-4-1)a). Here, we give the proof of the first part of Theorem [1,](#page-4-1) using arguments given in Engler $[10]$ $[10]$ and Ozawa $[35]$ $[35]$. See also $[34]$ $[34]$. For the sake of simplicity, we assume *n* = 3. By Assumption [1](#page-2-0) we see that $\partial \Omega$ satisfies the interior cone condition. Namely there are $\delta \in (0, 1)$ and $\theta \in (\pi/2, \pi)$ depending only on Ω with the following property: For any point $x \in \Omega$, there exists a spherical sector $C_{\delta}^{\theta}(x) = \{x + \xi \in \mathbb{R}^3 : 0 \leq \delta \}$ $|\xi| < \delta$, $-|\xi| \le \kappa(x) \cdot \xi < |\xi| \cos \theta$ having a vertex at *x* such that $C^{\theta}_{\delta}(x) \subset \Omega$, where $\kappa(x)$ is an appropriate unit vector from *x*. We note that for each $x \in \Omega$, $C^{\theta}_{\delta}(x)$ is congruent to $C_{\delta}^{\theta} \equiv {\xi \in \mathbb{R}^3; 0 < |\xi| < \delta, -|\xi| \leq \xi_3 < |\xi| \cos \theta}.$ In particular, for any boundary point $x \in \partial \Omega$, $C_{\delta}^{\theta}(x)$ can be expressed as $C_{\delta}^{\theta}(x) \equiv \{x + \xi \in \mathbb{R}^3 : 0 < |\xi|$ δ, −|ξ | ≤ ξ · ν(*x*) < |ξ | cos θ}, where ν(*x*) denotes the unit outward normal at *x*.

Let $0 < t \le \delta$ and $C_t^{\theta}(x) := C_{\delta}^{\theta}(x) \cap B(x, t)$. For any fixed $x \in \Omega$ and $y \in C_t^{\theta}(x) \subset$ $\Omega,$

$$
|f(x)| \le |f(x) - f(y)| + |f(y)| \le ||f||_{\dot{C}^{\alpha}}|x - y|^{\alpha} + |f(y)| \le ||f||_{\dot{C}^{\alpha}}t^{\alpha} + |f(y)|.
$$

Integrating both sides of the above inequality with respect to *y* over $C_t^{\theta}(x)$,

$$
|f(x)||C_t^{\theta}(x)| \le t^{\alpha} ||f||_{\dot{C}^{\alpha}(\Omega)}|C_t^{\theta}(x)| + \int_{y \in C_t^{\theta}(x)} |f(y)| dy
$$

\n
$$
\le t^{\alpha} ||f||_{\dot{C}^{\alpha}(\Omega)}|C_t^{\theta}(x)| + \int_{y \in B(x,t) \cap \Omega} |f(y)| dy
$$

\n
$$
\le t^{\alpha} ||f||_{\dot{C}^{\alpha}(\Omega)}|C_t^{\theta}(x)| + |B(x,t)| \log^{\beta}(\frac{1}{t} + e) ||f||_{M_{\beta}^{\log}(\Omega)}.
$$
 (4.1)

Since $|B(x, t)|/|C_t^{\theta}(x)| (=: K_{\theta})$ is a constant independent of *x*, *t*, we have

$$
|f(x)| \le t^{\alpha} \|f\|_{\dot{C}^{\alpha}(\Omega)} + K_{\theta} \log^{\beta}(\frac{1}{t} + e) \|f\|_{M_{\beta}^{\log}(\Omega)}
$$
(4.2)

for all $0 < t \leq \delta$. Then we optimize *t* by letting $t = (1/\|f\|_{\dot{C}^{\alpha}(\Omega)})^{1/\alpha}$ if $\|f\|_{\dot{C}^{\alpha}(\Omega)} \geq \delta^{-\alpha}$ and letting $t = \delta$ if $||f||_{\dot{C}^{\alpha}(\Omega)} \leq \delta^{-\alpha}$ to obtain [\(3.1\)](#page-5-1). \Box

In order to prove the second part of Theorem [1,](#page-4-1) we introduce the following propositions and lemmata. Although the propositions are elementary, for readers' convenience, we write proofs of those.

Proposition 4.1. *Let* $f \in L^1_{loc}(\mathbb{R}^n)$ *. Then, it holds that*

$$
\int_{B(x,t)} |f(y)| dy \le 2^n \int_{B(x,2t)} \left(\int_{B(y,t)} |f(z)| dz \right) dy \tag{4.3}
$$

for all $x \in \mathbb{R}^n$ *.*

Proof of Proposition [4.1.](#page-8-0) Clearly, by Fubini's theorem we have

R.H.S. =
$$
\frac{2^n}{|B(0, 2t)| |B(0, t)|} \int_{|y'| < 2t} \left(\int_{|z'| < t} |f(z' + y' + x)| dz' \right) dy'
$$

\n=
$$
\frac{2^n}{|B(0, 2t)| |B(0, t)|} \int_{|z'| < t} \left(\int_{|y'| < 2t} |f(z' + y' + x)| dy' \right) dz'
$$

\n=
$$
\frac{2^n}{|B(0, 2t)| |B(0, t)|} \int_{|z'| < t} \left(\int_{y'' \in B(z', 2t)} |f(y'' + x)| dy'' \right) dz' =: I. \quad (4.4)
$$

Since *B*(0, *t*) ⊂ *B*(*z*['], 2*t*) for $|z'| < t$,

$$
I \ge \frac{2^n}{|B(0, 2t)| |B(0, t)|} \int_{|z'| < t} \left(\int_{y'' \in B(0, t)} |f(y'' + x)| dy'' \right) dz' = \text{L.H.S.,} \quad (4.5)
$$

which proves Proposition [4.1.](#page-8-0) \Box

Proposition 4.2. *Let* $g \in L^{\infty}(\mathbb{R}^n)$ *. Then, the following inequalities hold:*

$$
\left| \oint_{B(x,t)} |g| dz - \oint_{B(y,t)} |g| dz \right| \le C(n) \frac{|x-y|}{t} ||g||_{\infty},\tag{4.6}
$$

$$
\left\| \nabla_x \int_{B(x,t)} |g| dz \right\|_{\infty} \le C(n) \frac{1}{t} \|g\|_{\infty},\tag{4.7}
$$

$$
\left\| \int_{B(x,t)} |g| dz \right\|_{\dot{C}^{\alpha}(\mathbb{R}^n)} \leq C(n,\alpha) \frac{1}{t^{\alpha}} \|g\|_{\infty} \text{ for } 0 < \alpha < 1. \tag{4.8}
$$

Proof of Proposition [4.2.](#page-8-1) For the simplicity, we assume $n = 3$. Let $B(x, t) \ominus B(y, t) :=$ $(B(x, t) \cup B(y, t))\setminus (B(x, t) \cap B(y, t))$. Since

$$
\left| \oint_{B(x,t)} |g| dz - \oint_{B(y,t)} |g| dz \right| \leq \frac{1}{|B(0,t)|} |B(x,t) \ominus B(y,t)| \|g\|_{\infty}
$$

and

$$
|B(x, t) \ominus B(y, t)| \le \begin{cases} 2\pi t^2 |x - y| & \text{if } |x - y| \le 2t \\ 2|B(0, t)| & \text{if } |x - y| > 2t \end{cases}
$$

$$
\le C|B(0, t)| \frac{|x - y|}{t},
$$

we obtain (4.6) . (4.7) is a direct consequence of (4.6) . The interpolation inequality *f* $||f||_{\dot{C}^{\alpha}} \leq C||f||_{\infty}^{1-\alpha} \|\nabla f\|_{\infty}^{\alpha}$ and [\(4.7\)](#page-8-2) yield [\(4.8\)](#page-8-2). $□$

Proposition 4.3. *There exists a constant* $C = C(n) > 0$ *such that*

$$
||m_t * |E_0 f||_{L^{\infty}(\mathbb{R}^n)} \le C ||R_{\Omega}(m_t * |E_0 f|)||_{L^{\infty}(\Omega)}
$$
\n(4.9)

for all t > 0 *and* $f \in L^1_{uloc}(\Omega)$, where $m_t(x) := \frac{1}{|B(0,t)|} 1_{B(0,t)}(x)$.

Proof of Proposition [4.3.](#page-9-0) Clearly, $B(x, t)$ can be covered by *N* balls $\{B_1, B_2, \ldots, B_N\}$ of radius $t/2$, where the natural number $N \in \mathbb{N}$ depends only on *n*. Thus,

$$
\sup_{x \in \mathbb{R}^n} \int_{B(x,t)} |E_0 f| dy \le N \sup_{x \in \mathbb{R}^n} \int_{B(x,t/2)} |E_0 f| dy
$$

= N \sup_{x \in \mathbb{R}^n, B(x,t/2) \cap \Omega \ne \emptyset} \int_{B(x,t/2) \cap \Omega} |E_0 f| dy.

If *B*(*x*, *t*/2)∩Ω \neq *Ø*, then there is *z_x* ∈ *B*(*x*, *t*/2)∩Ω. Since *B*(*x*, *t*/2) ⊂ *B*(*z_x*, *t*) and $z_x \in \Omega$, it holds that

$$
\sup_{x \in \mathbb{R}^n, B(x,t/2) \cap \Omega \neq \emptyset} \int_{B(x,t/2) \cap \Omega} |E_0 f| dy \le \sup_{z \in \Omega} \int_{B(z,t) \cap \Omega} |E_0 f| dy.
$$

Therefore we obtain

$$
\sup_{x \in \mathbb{R}^n} \int_{B(x,t)} |E_0 f| dy \le N \sup_{z \in \Omega} \int_{B(z,t) \cap \Omega} |E_0 f| dy, \tag{4.10}
$$

which yields the desired estimate (4.9) . \Box

Lemma 4.[1](#page-2-0). Let Ω satisfy Assumption 1. Assume that $X(\Omega)$ is a normed space and *satisfies Conditions (A1)–(A3) given in Theorem* [1](#page-4-1)*. Then, it holds that*

$$
||R_{\Omega}(1_B * E_0 h))||_{X(\Omega)} \le |B| ||h||_{X(\Omega)} \tag{4.11}
$$

for all $h \in C_0(\Omega)$ *and all* $B = B(0, r)$ *.*

Proof of Lemma [4.1.](#page-9-2) By Condition (A2), we have $||R_{\Omega}\tau_y(E_0h)||_{X(\Omega)} \le ||E_0h||_{X(\Omega)} =$ $||h||_{X(\Omega)}$ for all $y \in \mathbb{R}^n$. Since for all $x \in \Omega$ it holds that $R_{\Omega}(1_B * E_0 h)(x) =$ $||h||_{X(\Omega)}$ for all $y \in \mathbb{R}^n$. Since for all $x \in \Omega$ it holds that $R_{\Omega}(1_B * I_{\mathbb{R}^n} 1_B(y) \tau_y(E_0 h)(x) dy = \int_{\mathbb{R}^n} 1_B(y) R_{\Omega} \tau_y(E_0 h)(x) dy$, we formally obtain

$$
\begin{aligned} \|R_{\Omega}(1_B * E_0 h)\|_{X(\Omega)} &\leq \int_{\mathbb{R}^n} |1_B(y)| \|R_{\Omega} \tau_y(E_0 h)(\cdot)\|_{X(\Omega)} dy \\ &\leq \int_{\mathbb{R}^n} |1_B(y)| dy \|h\|_{X(\Omega)} .\end{aligned}
$$

More precisely, since $E_0h \in C_0(\mathbb{R}^n)$, we easily observe that the Riemann sum

$$
r_k(x) := \frac{1}{2^{nk}} \sum_{z_m \in (\mathbb{Z}/2^k)^n} 1_B(z_m)(E_0 h)(x - z_m)(\in C_0(\mathbb{R}^n))
$$

converges to $\int_{\mathbb{R}^n} 1_B(y)(E_0 h)(x - y) dy$ in $L^{\infty}(\Omega)$ as $k \to \infty$. Since $\overline{C_0(\overline{\Omega})}$ $\Big| \Big| \infty \hookrightarrow$ $X(\Omega)$, this convergence holds in $X(\Omega)$. Hence, we have

$$
||R_{\Omega}(1_B * E_0 h)||_{X(\Omega)} = \lim_{k \to \infty} ||R_{\Omega}r_k(x)||_{X(\Omega)}
$$

\n
$$
\leq \limsup_{k \to \infty} \frac{1}{2^{nk}} \sum |1_B(z_m)||R_{\Omega}((E_0 h)(\cdot - z_m))||_{X(\Omega)}
$$

\n
$$
\leq \lim_{k \to \infty} \frac{1}{2^{nk}} \sum |1_B(z_m)||h||_{X(\Omega)} = |B||h||_{X(\Omega)}
$$

for all $h \in C_0(\Omega)$. This proves Lemma [4.1.](#page-9-2) \Box

Lemma 4.2. Let Ω satisfy Assumption [1](#page-2-0) and $X(\Omega)$ satisfy the assumption in Lemma [4.1](#page-9-2). Then there exist positive constants $\epsilon_0 = \epsilon_0(\Omega)$ and $C = C(\Omega)$ such that

$$
||R_{\Omega}(m_{2t} * m_t * |E_0 f|)||_{X(\Omega)} \le C ||f||_{X(\Omega)}
$$
\n(4.12)

for all $f \in C_0(\Omega)$ *and all* $0 < t < \epsilon_0$ *, where* $m_t(x) := \frac{1}{|B(0,t)|} 1_{B(0,t)}(x)$ *.*

Proof of Lemma [4.2.](#page-10-0) We first prove Lemma [4.2](#page-10-0) in the case where Ω is unbounded. Let

$$
\Omega_{\epsilon} := \{ x \in \Omega \; ; \; \text{dist}(x, \partial \Omega) < \epsilon \} \quad \text{and} \quad \Omega^{\epsilon} := \Omega \backslash \Omega_{\epsilon}.
$$

Since Ω is unbounded, by Assumption [1,](#page-2-0) there is $y_0 \in \mathbb{R}^n$ such that

 $\Omega_1 + y_0 \subset \Omega$ and dist($\Omega_1 + y_0$, $\partial \Omega$) > 1.

Let $\varphi_1, \varphi_2 \in C(\Omega)$ satisfy

$$
\varphi_1 + \varphi_2 = 1 \text{ in } \Omega, \ \ 0 \le \varphi_1, \varphi_2 \le 1\n\varphi_1 = 1 \text{ in } \Omega_{1/2}, \ \ \varphi_1 = 0 \text{ in } \Omega^1.
$$
\n(4.13)

For $f \in C_0(\Omega)$ we decompose $|E_0 f|$ into two functions as follows.

$$
|E_0 f| = E_0(|f|\varphi_1) + E_0(|f|\varphi_2).
$$

Let $0 < t < 1/3$. Since $dist(\Omega_1 + y_0, \partial \Omega) > 1$ implies $\tau_{y_0}(m_{2t} * m_t * E_0(|f|\varphi_1)) \in$ $C_0(\Omega)$, by Condition (A2) and Lemma [4.1](#page-9-2) we have

$$
\|R_{\Omega}(m_{2t} * m_t * E_0(|f|\varphi_1))\|_{X(\Omega)}
$$

= $\|R_{\Omega}\tau_{-y_0}[\tau_{y_0}(m_{2t} * m_t * E_0(|f|\varphi_1))]\|_{X(\Omega)}$
 $\leq \|\tau_{y_0}(m_{2t} * m_t * E_0(|f|\varphi_1)\|_{X(\Omega)}$
= $\|m_{2t} * m_t * \tau_{y_0}E_0(|f|\varphi_1)\|_{X(\Omega)}$
= $\|R_{\Omega}\Big\{m_{2t} * E_0R_{\Omega}\Big(m_t * E_0R_{\Omega}\tau_{y_0}E_0(|f|\varphi_1)\Big)\Big\}\|_{X(\Omega)}$
 $\leq \|R_{\Omega}\tau_{y_0}(E_0(|f|\varphi_1))\|_{X(\Omega)}$. (4.14)

Since $E_0(|f|\varphi_1) \in C_0(\Omega)$, Conditions (A2)–(A3) yield $||R_{\Omega} \tau_{y_0}(E_0(|f|\varphi_1))||_{X(\Omega)} \le$ $|||f|\varphi_1||_{X(\Omega)} \le ||f||_{X(\Omega)}$. Hence, by [\(4.14\)](#page-11-0) we have

$$
||R_{\Omega}(m_{2t} * m_t * E_0(|f|\varphi_1))||_{X(\Omega)} \le ||f||_{X(\Omega)}.
$$
\n(4.15)

Similarly, since supp $\varphi_2 \subset \Omega^{1/2}$ and dist($\Omega^{1/2}$, $\partial \Omega$) = 1/2, by Lemma [4.1](#page-9-2) and Condition (A3) we have, for $0 < t < \frac{1}{6}$,

$$
||R_{\Omega}(m_{2t} * m_t * E_0(|f|\varphi_2))||_{X(\Omega)}= ||R_{\Omega} {m_{2t} * E_0 R_{\Omega}(m_t * E_0(|f|\varphi_2))} ||_{X(\Omega)}\leq ||f||\varphi_2||_{X(\Omega)} \leq ||f||_{X(\Omega)}.
$$
\n(4.16)

From [\(4.15\)](#page-11-1) and [\(4.16\)](#page-11-2) we obtain the desired estimate [\(4.12\)](#page-10-1) for $0 < t < \frac{1}{6}$.

Next, we prove [\(4.12\)](#page-10-1) in the case where Ω is bounded. We choose $r_0 > 0$ and $z_0 \in \Omega$ such that $B(z_0, 2r_0) \subset \Omega$. Now we consider partitions of unity. Since Ω is bounded, there are a finite collection of open sets $\{U_j\}_{j=1}^N$ and smooth functions $\{\varphi_j\}_{j=1}^N$ such that

$$
\Omega \subset \bigcup_{j=1}^{N} U_j, \quad \text{diam } U_j < r_0, \quad \sum_{j=1}^{N} \varphi_j = 1 \quad \text{in} \quad \Omega
$$
\n
$$
\text{supp } \varphi_j \subset U_j, \quad 0 \le \varphi_j \le 1 \quad \text{for} \quad j = 1, 2, \dots, N.
$$

Here diam $A := \sup_{x,y \in A} |x - y|$. Let $f \in C_0(\Omega)$. Since $|E_0 f(x)| =$ $\sum_{j=1}^{N} E_0(|f| \varphi_j)(x)$, we have

$$
||R_{\Omega}(m_{2t} * m_t * |E_0 f|)||_{X(\Omega)} \le \sum_{j=1}^N ||R_{\Omega}(m_{2t} * m_t * E_0(|f|\varphi_j))||_{X(\Omega)}.
$$
 (4.17)

Since diam $U_j < r_0$, for each $j = 1, 2, \ldots N$, there exists $y_j \in \mathbb{R}^n$ such that

$$
U_j + y_j \subset B(z_0, r_0) (\subset B(z_0, 2r_0) \subset \Omega).
$$

Let $0 < t < \frac{r_0}{3}$. Then, since dist $(U_j + y_j, \partial \Omega) \ge r_0$, we see that $\tau_{y_j}(m_{2t} * m_t *$ $E_0(|f|\varphi_j)$ $\in C_0(\Omega)$. Hence, in the same way as in the proof of [\(4.14\)](#page-11-0) from Condition (A2) and Lemma [4.1,](#page-9-2) we obtain

$$
||R_{\Omega}(m_{2t} * m_t * E_0(|f|\varphi_j))||_{X(\Omega)} \leq ||R_{\Omega} \tau_{y_j} E_0(|f|\varphi_j)||_{X(\Omega)}.
$$
 (4.18)

Since *f* ∈ *C*₀(Ω) implies *E*₀($|f|$ φ *j*) ∈ *C*₀(Ω), Conditions (A2)-(A3) yield

$$
||R_{\Omega}\tau_{y_j}E_0(|f|\varphi_j)||_{X(\Omega)} \leq ||E_0(|f|\varphi_j)||_{X(\Omega)} \leq ||f||_{X(\Omega)}.
$$

Hence, by [\(4.18\)](#page-11-3),

$$
\|R_{\Omega}\big(m_{2t} * m_t * E_0(|f|\varphi_j)\big)\|_{X(\Omega)} \le \|f\|_{X(\Omega)}.\tag{4.19}
$$

This estimate and [\(4.17\)](#page-11-4) yield the desired estimate [\(4.12\)](#page-10-1) for all $0 < t < r_0/3$, which proves Lemma $4.2.$ \Box

We are now in the position to prove the second part of Theorem [1.](#page-4-1)

Proof of Theorem [1](#page-4-1) (b). By Condition (A4) and Proposition [3.1](#page-7-1) we have

$$
\|g\|_{L^{\infty}(\Omega)} \le C\left(\epsilon \|g\|_{\dot{C}^{\alpha}(\Omega)} + \log^{\beta}\left(e + \frac{1}{\epsilon}\right) \|g\|_{X(\Omega)}\right) \tag{4.20}
$$

for all $g \in X(\Omega) \cap C^{\alpha}(\Omega)$ and all $\epsilon > 0$. Let $f \in C_0(\Omega)$, $0 < t < \epsilon_0$ where ϵ_0 is the constant given in Lemma [4.2,](#page-10-0) and let h be a function on \mathbb{R}^n defined by

$$
h(x) := (m_{2t} * m_t * |E_0 f|)(x) = \int_{B(x,2t)} \left(\int_{B(y,t)} |E_0 f|(z) dz \right) dy
$$

for $x \in \mathbb{R}^n$. From Proposition [4.2](#page-8-1) we see that $R_{\Omega} h \in C^{\alpha} \cap C_0(\overline{\Omega}) \subset C^{\alpha} \cap X(\Omega)$. Substituting $g = R_{\Omega}h$ into [\(4.20\)](#page-12-0), from Propositions [4.2](#page-10-0) and [4.3,](#page-9-0) and Lemma 4.2 we obtain

$$
\|R_{\Omega}h\|_{L^{\infty}(\Omega)} \leq C \Big(\epsilon \|R_{\Omega}h\|_{\dot{C}^{\alpha}(\Omega)} + \log^{\beta} \big(e + \frac{1}{\epsilon}\big) \|R_{\Omega}h\|_{X(\Omega)}\Big)
$$

\n
$$
\leq C \Big(\epsilon \|h\|_{\dot{C}^{\alpha}(\mathbb{R}^n)} + \log^{\beta} \big(e + \frac{1}{\epsilon}\big) \|R_{\Omega}h\|_{X(\Omega)}\Big)
$$

\n
$$
\leq C \Big(\epsilon (2t)^{-\alpha} \|m_t * |E_0 f|\|_{L^{\infty}(\mathbb{R}^n)} + \log^{\beta} \big(e + \frac{1}{\epsilon}\big) \|f\|_{X(\Omega)}\Big)
$$

\n
$$
\leq C \Big(\epsilon (2t)^{-\alpha} \|R_{\Omega}(m_t * |E_0 f|) \|_{L^{\infty}(\Omega)} + \log^{\beta} \big(e + \frac{1}{\epsilon}\big) \|f\|_{X(\Omega)}\Big) \quad (4.21)
$$

for all $\epsilon > 0$. By taking $L^{\infty}(\Omega)$ -norm of the both sides of inequality [\(4.3\)](#page-8-3) with *f* replaced by $|E_0 f|$, we have

$$
||R_{\Omega}(m_t*|E_0f|)||_{L^{\infty}(\Omega)} \le 2^n ||R_{\Omega}(m_{2t}*m_t*|E_0f|)||_{L^{\infty}(\Omega)} = 2^n ||R_{\Omega}h||_{L^{\infty}(\Omega)}.
$$
 (4.22)

Substituting $\epsilon := (2t)^{\alpha}/(2^{n+1}C)$ into [\(4.21\)](#page-12-1), from [\(4.22\)](#page-12-2) we observe that

$$
||R_{\Omega}(m_t * |E_0 f|)||_{L^{\infty}(\Omega)} \leq C_1 \log^{\beta} \left(e + \frac{1}{t}\right) ||f||_{X(\Omega)}
$$

holds for all $0 < t < \epsilon_0$ and all $f \in C_0(\Omega)$, where the constant C_1 is independent of *t* and *f*. This implies $||f||_{M_{\beta,\epsilon_0}^{log}(\Omega)} \leq C_1 ||f||_{X(\Omega)}$ for all $f \in C_0(\Omega)$. Therefore, since $M_{\beta, \epsilon_0}^{\log}(\Omega)$ -norm is equivalent to $M_{\beta}^{\log}(\Omega)$ -norm, we conclude that

$$
\|f\|_{M^{\log}_{\beta}(\Omega)} \le C \|f\|_{X(\Omega)} \quad \text{for all } f \in C_0(\Omega).
$$

Now, we consider the case where $f \in BC(\Omega) \cap X(\Omega)$. Clearly, there exists a sequence ${f_n}$ such that

$$
f_n \in C_0(\Omega)
$$
, $0 \le f_n(x) \le |f(x)|$ a.e. $x \in \Omega$ and $f_n(x) \to |f(x)|$ a.e. $x \in \Omega$.

By the definition of M_β^{\log} -norm, we see that for arbitrary $\epsilon > 0$, there are $x \in \Omega$ and $t \in (0, 1)$ such that

$$
\|f\|_{M_{\beta}^{\log}(\Omega)} - \epsilon < \frac{1}{|B(x,t)| \log^{\beta}(e+1/t)} \int_{B(x,t)} |E_0 f(y)| dy.
$$

Since Lebesgue's theorem yields $\lim_{n\to\infty} \int_{B(x,t)} |E_0 f_n(y)| dy = \int_{B(x,t)} |E_0 f(y)| dy$, there is n_0 such that

$$
\|f\|_{M_{\beta}^{\log}(\Omega)} - \epsilon < \frac{1}{|B(x,t)|\log^{\beta}(e+1/t)} \int_{B(x,t)} |E_0 f_{n_0}(y)| dy \le \|f_{n_0}\|_{M_{\beta}^{\log}(\Omega)}.
$$

As shown above, it holds that $||f_{n_0}||_{M_\beta^{\log}(\Omega)} \leq C ||f_{n_0}||_{X(\Omega)} \leq C ||f||_{X(\Omega)}$, since $f_{n_0} \in$ $C_0(\Omega)$ and since $|f_n(x)| \le |f(x)|$ a.e. $x \in \Omega$. Therefore, we get

$$
||f||_{M_{\beta}^{\log}(\Omega)} \leq C||f||_{X(\Omega)} \quad \text{for all } f \in BC(\overline{\Omega}) \cap X(\Omega).
$$

This proves Theorem [1\(](#page-4-1)b). \Box

5. Proof of Theorem [2](#page-5-0)

Proof of Theorem [2.](#page-5-0) (a) We now recall the Littlewood–Paley decomposition. Let ψ be the function given in Definition [2](#page-3-2) and let $\phi_j \in S$ be the functions defined by

$$
\hat{\phi}(\xi) := \hat{\psi}(\xi) - \hat{\psi}(2\xi) \quad \text{and} \quad \hat{\phi}_j(\xi) := \hat{\phi}(\xi/2^j) \quad \text{for } \xi \in \mathbb{R}^n.
$$

Then, supp $\hat{\phi}_i \subset \{2^{j-1} \leq |\xi| \leq 2^{j+1}\}\$ and

$$
1 = \hat{\psi}(\xi/2^N) + \sum_{j=N+1}^{\infty} \hat{\phi}(\xi/2^j) = \hat{\psi}_N(\xi) + \sum_{j=N+1}^{\infty} \hat{\phi}_j(\xi) \text{ for } \xi \in \mathbb{R}^n, N = 1, 2,
$$
\n(5.1)

Using (5.1) , we decompose f into two parts such that

$$
f(x) = \psi_N * f(x) + \sum_{j=N+1}^{\infty} \phi_j * f(x).
$$
 (5.2)

By Definition [2,](#page-3-2)

$$
\|\psi_N * f\|_{\infty} \le N^{\beta} \|f\|_{V_{\beta}}
$$
\n(5.3)

holds. Since $\dot{B}^{\alpha}_{\infty,\infty}(\mathbb{R}^n) = \dot{C}^{\alpha}(\mathbb{R}^n)$ for $0 < \alpha < 1$, we have

$$
\sum_{j=N+1}^{\infty} \|\phi_j * f\|_{\infty} = \sum_{j=N+1}^{\infty} 2^{\alpha j} \|\phi_j * f\|_{\infty} 2^{-\alpha j}
$$

$$
\leq \|f\|_{\dot{B}^{\alpha}_{\infty,\infty}} \sum_{j=N+1}^{\infty} 2^{-\alpha j} \leq C \|f\|_{\dot{C}^{\alpha}} 2^{-\alpha N}.
$$
 (5.4)

Gathering (5.3) and (5.4) with (5.2) , we obtain

$$
||f||_{\infty} \le C(2^{-\alpha N} ||f||_{\dot{C}^{\alpha}} + N^{\beta} ||f||_{V_{\beta}}).
$$
 (5.5)

Now we take $N = \left\lceil \frac{\log(\|f\|_{\mathcal{C}^{\alpha}} + e)}{\alpha \log 2} \right\rceil + 1$, where [·] denotes the Gauss symbol. Then we have the desired estimate [\(3.2\)](#page-5-2)

(b) Now we prove the second part of Theorem [2.](#page-5-0) By Proposition [3.1,](#page-7-1) we see that Condition (B4) is equivalent to the inequality:

$$
\|f\|_{\infty} \le C(\epsilon \|f\|_{\dot{C}^{\alpha}} + \left(\log(e + \frac{1}{\epsilon})\right)^{\beta} \|f\|_{X})
$$
\n(5.6)

for all $f \in BC^{\infty}$ and all $\epsilon > 0$.

Let $g \in BUC(\mathbb{R}^n)$. Then, $\psi_N * g \in BC^\infty$. Substituting $f = \psi_N * g$ into [\(5.6\)](#page-14-0), we obtain

$$
\|\psi_N * g\|_{\infty} \le C\epsilon \|\psi_N * g\|_{\dot{C}^{\alpha}} + C \Big(\log(e + \frac{1}{\epsilon})\Big)^{\beta} \|\psi_N * g\|_X. \tag{5.7}
$$

Since $\psi_N * f = \psi_{N+1} * \psi_N * f$, we have

$$
\|\psi_N * g\|_{\dot{C}^{\alpha}} = \|\psi_{N+1} * \psi_N * g\|_{\dot{C}^{\alpha}} \le C \|\psi_{N+1} * \psi_N * g\|_{\dot{B}^{\alpha}_{\infty,\infty}}
$$

= $C \sup_j 2^{\alpha j} \|\phi_j * \psi_{N+1} * \psi_N * g\|_{\infty}$
 $\le C \sup_{j \le N+2} 2^{\alpha j} \|\psi_N * g\|_{\infty} \le C 2^{\alpha N} \|\psi_N * g\|_{\infty}.$ (5.8)

Concerning the second term on the right-hand side of (5.7) , Condition $(B3)$ yields

$$
\|\psi_N * g\|_X \le \int_{\mathbb{R}^n} \|\psi_N(y)g(\cdot - y)\|_X dy = \int_{\mathbb{R}^n} |\psi_N(y)| \|g\|_X dy
$$

= $\|\psi_N\|_{L^1} \|g\|_X = C \|g\|_X,$ (5.9)

where the constant $C = ||\psi||_{L^1}$ is independent of *N*. (More precisely, the above estimate is justified by the fact that the Riemann sum $\frac{1}{2^{nk}} \sum_{z_m \in (\mathbb{Z}/2^k)^n} \psi_N(z_m) g(x - z_m)$ converges to $\psi_N * g(x)$ in $BUC(\mathbb{R}^n)(\hookrightarrow X)$ as $k \to \infty$.) Thus, gathering [\(5.8\)](#page-14-2) and (5.9) with (5.7) we obtain

$$
\|\psi_N * g\|_{\infty} \le C\epsilon 2^{\alpha N} \|\psi_N * g\|_{\infty} + C \Big(\log(e + \frac{1}{\epsilon})\Big)^{\beta} \|g\|_{X}
$$

for all $N = 1, 2, ...$ and all $\epsilon > 0$. Letting $\epsilon = \frac{1}{2C2^{\alpha N}}$, from the above inequality we get

$$
\|\psi_N * g\|_{\infty} \le C_0 (N+1)^{\beta} \|g\|_X \text{ for all } N = 1, 2, ...,
$$

where the constant $C_0 > 0$ is independent of *N* and *g*. This implies

$$
\|g\|_{V_{\beta}} \leq C_0 \|g\|_X
$$

for all $g \in BUC(\mathbb{R}^n)$.

(c) Next, we prove the third part of Theorem [2.](#page-5-0) From (B2)–(B3), we can observe that

$$
\psi_N * g \in L^\infty \quad \text{for all } g \in X. \tag{5.10}
$$

Indeed, if $X \subset L^1_{uloc}(\mathbb{R}^n)$, [\(5.10\)](#page-14-4) clearly holds. If $X \hookrightarrow S'(\mathbb{R}^n)$, by the standard contradiction argument, we easily see that for all $\phi \in S$ there exists a constant $K_{\phi} > 0$ such that

$$
| < g, \phi > \rvert \le K_{\phi} \|g\|_{X} \quad \text{for all } g \in X.
$$

See e.g. the proof of Proposition 1.4 in [\[40,](#page-22-6) Chap.3]. Since ψ_N is spherical symmetric, we have $\psi_N * g(x) = \langle g, \tau_x \psi_N \rangle = \langle \tau_{-x} g, \psi_N \rangle$. Thus, from Condition (B3), we obtain

$$
|\psi_N * g(x)| \le K_{\psi_N} \|\tau_{-x}g\|_X = K_{\psi_N} \|g\|_X \text{ for all } x \in \mathbb{R}^n,
$$

which implies [\(5.10\)](#page-14-4). Then, since $\psi_N * g = \psi_{N+1} * \psi_N * g$, we have $\psi_N * g \in BC^{\infty}$. By Condition (*C*) we have $\|\psi_N * g\|_X \le \|\psi_N\|_{L^1} \|g\|_X = \|\psi\|_{L^1} \|g\|_X$. Therefore, by using the same argument as in the proof of the second part of Theorem [2,](#page-5-0) we get

$$
\|g\|_{V_{\beta}} \leq C_0 \|g\|_X
$$

for all $g \in X$, which means $X \hookrightarrow V_{\beta}$. \Box

6. Proof of Theorem 3

Proof of Theorem [3.](#page-6-1) For the sake of simplicity, we prove Theorem [3](#page-6-1) only in the case

$$
p>3.
$$

Since *u* ∈ *C*((0, *T*); *D*(*A_p*)), without loss of generality, we may assume that *u*₀ ∈ $D(A_p)$. It is well-known that the local existence time T_* of strong L^p solutions can be estimated from below as

$$
T_* > C(p, \Omega) / \|u_0\|_p^{2p/(p-3)},
$$

see e.g. [\[17\]](#page-21-27). Hence, if $\sup_{0 \le \tau \le T} ||u(\tau)||_p < \infty$, then *u* can be continued to the solution in the class $S_p(0, T')$ for some $T' > T$. Therefore, in order to prove Theorem [3,](#page-6-1) it suffices to show that

$$
\sup_{0 \le \tau \le t} \|u(\tau)\|_{p} \le C \|u_0\|_{p} \exp\left(C \exp C \int_0^t \|\omega(\tau)\|_{M_1^{\log}} d\tau\right) \tag{6.1}
$$

for all $0 < t < T$ with some constant $C = C(u_0, p, \Omega, T) > 0$ which is independent of *t*. Recall that $u \cdot \nabla u = \omega \times u + \frac{1}{2} \nabla |u|^2$ and hence $P(u \cdot \nabla u) = P(\omega \times u)$. Then, *u* satisfies the following integral equation:

$$
(I.E.) \t u(t) = e^{-tA}u_0 - \int_0^t e^{-(t-s)A} P(\omega \times u)(s)ds \text{ for all } 0 < t < T.
$$

By (I.E.) we have

$$
||u(t)||_p \leq C ||u_0||_p + C \int_0^t ||\omega(s)||_{\infty} ||u(s)||_p ds,
$$

which yields

$$
\sup_{0 \le s \le t} \|u(s)\|_{p} \le C \|u_0\|_{p} \exp\left(C \int_0^t \|\omega(\tau)\|_{\infty} d\tau\right)
$$
\n(6.2)

for all $0 < t < T$. In order to estimate $\int_0^t ||\omega(\tau)||_{\infty} d\tau$, we use the Brezis–Gallouet– Wainger type inequality [\(3.1\)](#page-5-1). Let $0 < \alpha < 1 - 3/p$. Substituting $f = \frac{\omega(s)}{\epsilon |\omega(s)||_{\mathcal{C}^{\alpha}}}$ into [\(3.1\)](#page-5-1) with $\beta = 1$, we obtain

$$
\|\omega(s)\|_{\infty} \le C\left(\epsilon \|\omega(s)\|_{\dot{C}^{\alpha}(\Omega)} + \log(e + \frac{1}{\epsilon}) \|\omega(s)\|_{M_1^{\log}}\right)
$$

$$
\le C\left(\epsilon \|\mu(s)\|_{C^{1+\alpha}(\Omega)} + \log(e + \frac{1}{\epsilon}) \|\omega(s)\|_{M_1^{\log}}\right) \tag{6.3}
$$

for all $\epsilon > 0$, where C is a constant independent of s and ϵ . Let

$$
h(t) := \sup_{0 \le \tau \le t} ||u(\tau)||_p,
$$

$$
g(t) := \int_0^t ||\omega(\tau)||_{\infty} d\tau
$$

for $0 < t < T$. Then, from [\(6.3\)](#page-16-0), for any positive function $\epsilon(s)$ on (0, *T*) we see that

$$
g(t) \le C \int_0^t \epsilon(s) \|u(s)\|_{C^{1+\alpha}(\Omega)} ds + C \int_0^t \log(e + \frac{1}{\epsilon(s)}) \|\omega(s)\|_{M_1^{\log}} ds
$$

=: $I_1(t) + I_2(t)$. (6.4)

Let $\theta = 1 - \frac{3}{p} - \alpha$. Since it holds that

$$
\|e^{-tA} f\|_{C^{1+\alpha}(\Omega)} \le C \|e^{-tA} f\|_{C^{1-3/p}(\Omega)}^{\theta} \|e^{-tA} f\|_{C^{2-3/p}(\Omega)}^{1-\theta}
$$

\n
$$
\le C \|e^{-tA} f\|_{W^{1,p}(\Omega)}^{\theta} \|e^{-tA} f\|_{W^{2,p}(\Omega)}^{1-\theta}
$$

\n
$$
\le C \|e^{-tA} f\|_{L^p(\Omega)}^{\theta/2} \|e^{-tA} f\|_{W^{2,p}(\Omega)}^{\theta/2} \|e^{-tA} f\|_{W^{2,p}(\Omega)}^{1-\theta}
$$

\n
$$
\le C \|e^{-tA} f\|_{L^p(\Omega)}^{\theta/2} \| (1+A)e^{-tA} f\|_{L^p(\Omega)}^{1-\theta/2} \le C(1+t^{-\frac{1+\alpha}{2}-\frac{3}{2p}}) \|f\|_p,
$$

from (I.E.) we obtain

$$
||u(s)||_{C^{1+\alpha}(\Omega)} \le ||e^{-sA}u_0||_{C^{1+\alpha}(\Omega)} + C \int_0^s ||e^{-(s-\tau)A}P(\omega \times u)(\tau)||_{C^{1+\alpha}(\Omega)}d\tau
$$

\n
$$
\le C ||e^{-sA}u_0||_{D(A_p)} + C \int_0^s (1 + (s-\tau)^{-\frac{1+\alpha}{2}-\frac{3}{2p}})||\omega \times u(\tau)||_p d\tau
$$

\n
$$
\le C ||u_0||_{D(A_p)} + Ch(s) \int_0^s (1 + (s-\tau)^{-\frac{1+\alpha}{2}-\frac{3}{2p}})||\omega(\tau)||_{\infty} d\tau. \quad (6.5)
$$

Hence, for $0 < t < T$ we have

$$
I_1(t) \le CT \Big(\sup_{0 < s < T} \epsilon(s) \Big) \|u_0\|_{D(A_p)} + C \int_0^t \epsilon(s) h(s) \int_0^s (1 + (s - \tau)^{-\frac{1 + \alpha}{2} - \frac{3}{2p}}) \|\omega(\tau)\|_{\infty} d\tau \, ds. \tag{6.6}
$$

We now choose $\epsilon(s)$ such that

$$
\epsilon(s) := \frac{\delta}{Ch(s) + 1},
$$

where $\delta > 0$ is a sufficiently small constant. Then, since $-\frac{1+\alpha}{2} - \frac{3}{2p} > -1$, by Fubini's Theorem we have

$$
I_1(t) \leq CT\delta \|u_0\|_{D(A_p)} + \delta \int_0^t \int_0^s (1 + (s - \tau)^{-\frac{1+\alpha}{2} - \frac{3}{2p}}) \|\omega(\tau)\|_{\infty} d\tau \, ds
$$

\n
$$
\leq CT\delta \|u_0\|_{D(A_p)} + \delta \int_0^t \Big(\int_{\tau}^t (1 + (s - \tau)^{-\frac{1+\alpha}{2} - \frac{3}{2p}}) ds\Big) \|\omega(\tau)\|_{\infty} d\tau
$$

\n
$$
\leq CT\delta \|u_0\|_{D(A_p)} + C_1(T)\delta \int_0^t \|\omega(\tau)\|_{\infty} d\tau.
$$
 (6.7)

Since [\(6.2\)](#page-15-1) yields $h(s) + e \leq C(||u_0||_p + e) \exp(Cg(s))$, we see

$$
\log(e + \frac{1}{\epsilon(s)}) = \log(e + \frac{Ch(s) + 1}{\delta})
$$

$$
\leq \log(1 + \frac{C + 1}{\delta}) + \log(h(s) + e) \leq C(\|u_0\|_p, \delta) (1 + g(s)).
$$

Hence, we have

$$
I_2(t) \le C(\|u_0\|_p, \delta) \int_0^t \|\omega(s)\|_{M_1^{\log}} \big(1 + g(s)\big) ds. \tag{6.8}
$$

Gathering (6.7) and (6.8) with (6.4) , we obtain

$$
g(t) \leq CT\delta \|u_0\|_{D(A_p)} + C_1(T)\delta g(t) + C(\|u_0\|_p, \delta) \int_0^t \|\omega(s)\|_{M_1^{\log}} (1+g(s)) ds.
$$

Therefore, letting $\delta = 1/(2C_1(T))$, by the Gronwall lemma, we get

$$
g(t) \leq C(||u_0||_{D(A_p)}, T, ||u_0||_p) \exp\left(C \int_0^t ||\omega(s)||_{M_1^{\log}} ds\right)
$$

for all $0 < t < T$. This estimate and [\(6.2\)](#page-15-1) yield the desired estimate [\(6.1\)](#page-15-2). \Box

Acknowledgements. This work was supported by JSPS KAKENHI Grant Number No. 16K05228. The authors would also like to thank the anonymous referees for their valuable comments and suggestions.

7. Appendix

7.1. *Relation between bmo and* M_1^{\log} . In this section, we consider the inclusion between $bmo(\Omega)$ and $M_1^{\log}(\Omega)$. We first recall the space Y_{uloc}

$$
Y_{uloc} := \{ f \in L_{uloc}^1(\mathbb{R}^n); \|f\|_{Y_{uloc}} := \sup_{p \ge 1} \frac{\|f\|_{L_{uloc}^p(\mathbb{R}^n)}}{p} < \infty \},
$$

which is a modified version of Yudovich's space, see [\[45](#page-22-7)]. We will show

$$
bmo(\mathbb{R}^n) \hookrightarrow Y_{uloc}(\mathbb{R}^n) \hookrightarrow M_1^{\log}(\mathbb{R}^n). \tag{7.1}
$$

Proof of [\(7.1\)](#page-17-2). It is known that

$$
||f||_{L^p(B(x,1))} \leq C \cdot p \cdot ||f||_{bmo(\mathbb{R}^n)}
$$

for all $f \in bmo(\mathbb{R}^n)$, $p \in [1,\infty)$ and all $x \in \mathbb{R}^n$, where the constant *C* depends only on *n*, see Stein [\[39](#page-22-8), Ch.IV, Sect.1.3]. This estimate yields $|| f ||_{Y_{uloc}} \leq C || f ||_{bmo(\mathbb{R}^n)}$ and $bmo(\mathbb{R}^n) \hookrightarrow Y_{uloc}(\mathbb{R}^n)$. Using a similar argument to that in [\[35](#page-21-14)], we can observe that $Y_{uloc} \hookrightarrow M_1^{\log}(\mathbb{R}^n)$. Indeed, for all $0 < t < 1$ and all $p \ge 1$, we see

$$
\int_{B(x,t)} |f(y)| dy \le |B(x,t)|^{-1/p} ||f||_{L^p(B(x,1))} \le Ct^{-n/p} \cdot p \cdot ||f||_{Y_{uloc}}
$$
\n
$$
\le Ce^{\frac{n}{p} \log(1/t)} \cdot p \cdot ||f||_{Y_{uloc}}.
$$

Thus, letting $p = \log(e + 1/t)$, we have

$$
\int_{B(x,t)} |f(y)| dy \leq C \log(e + 1/t) ||f||_{Y_{uloc}}
$$

for all $0 < t < 1$, which implies $|| f ||_{M_1^{\log}(\mathbb{R}^n)} \leq C || f ||_{Y_{uloc}}$ and $Y_{uloc} \hookrightarrow M_1^{\log}(\mathbb{R}^n)$. \Box

Since $|| f ||_{M_1^{\log}(\Omega)} \leq || f ||_{M_1^{\log}(\mathbb{R}^n)} \leq C || f ||_{bmo(\mathbb{R}^n)}$ for any extension f of f from Ω to \mathbb{R}^n , we also have

$$
||f||_{M_1^{\log}(\Omega)} \leq C||f||_{bmo(\Omega)}, \quad i.e., \quad bmo(\Omega) \hookrightarrow M_1^{\log}(\Omega).
$$

7.2. Relation between the regularity conditions [\(1.6\)](#page-2-1) and [\(3.4\)](#page-6-2). As mentioned in In-troduction and Remark [3](#page-6-3) (iii), both of (1.6) and (3.4) guarantee the regularity of weak solutions. Here we will show that there are no inclusion between (1.6) and (3.4) in the following sense. There exists a function in the energy class which satisfies [\(3.4\)](#page-6-2), but not [\(1.6\)](#page-2-1). On the other hand, there also exists a function in the energy class which satisfies (1.6) , but not (3.4) . More precisely, we have:

Lemma 7.1. (a) *There exists a vector function u*₁ *on* $\mathbb{R}^3 \times [-1/2, 0)$ *such that*

$$
u_1 \in L^{\infty}(-1/2, 0; L^2_{\sigma}(\mathbb{R}^3)) \cap L^2(-1/2, 0; W^{1,2}(\mathbb{R}^3)),
$$

$$
\int_{-1/2}^0 \|\omega_1(t)\|_{M_1^{\log}(\mathbb{R}^3)} dt < \infty,
$$
 (7.2)

$$
\limsup_{r \to 0+} r^{-(3/p+2/q-2)} \Big[\int_{-r^2}^0 \Big(\int_{B(0,r)} |\omega_1(y,t)|^p \, dy \Big)^{q/p} dt \Big]^{1/q} = \infty \quad (7.3)
$$

for all $1 \leq p, q \leq \infty$ *. Here* $\omega_1 = \text{rot } u_1$ *.*

(b) There exists a vector function u₂ on $\mathbb{R}^3 \times [-1/2, 0)$ such that

$$
u_2 \in L^{\infty}(-1/2, 0; L^2_{\sigma}(\mathbb{R}^3)) \cap L^2(-1/2, 0; W^{1,2}(\mathbb{R}^3)),
$$

$$
\int_{-1/2}^0 \|\omega_2(t)\|_{M_1^{\log}(B(0,\epsilon))} dt = \infty \text{ for all } \epsilon > 0,
$$
 (7.4)

$$
\lim_{r \to 0+} \sup r^{-(3/p+2/q-2)} \Big[\int_{-r^2}^0 \Big(\int_{B(0,r)} |\omega_2(y,t)|^p \, dy \Big)^{q/p} dt \Big]^{1/q} = 0 \qquad (7.5)
$$

for $p = q = 2$ *. Here* $\omega_2 = \text{rot } u_2$ *.*

Proof. (a) Clearly, there exists a function $\phi = (\phi^1, \phi^2, \phi^3) \in C_{0,\sigma}^{\infty}(\mathbb{R}^3)$ with $\phi^1 \ge 1$ in *B*(0, 1). Let $0 < \delta < 1$,

$$
\omega_1(x,t) := \frac{\phi(x/|t|^{2/5})}{|t|(\log \frac{1}{|t|})^{\delta}} \quad \text{for } (x,t) \in \mathbb{R}^3 \times [-1/2, 0).
$$

Fix $-1/2 < t < 0$. For $0 < r \le |t|^{1/5}$, we have

$$
\frac{1}{|B(x,r)|\log(e+1/r)}\int_{B(x,r)}|\omega_1(y,t)|dy\leq \frac{1}{\log(1/|t|^{1/5})}\|\omega_1\|_{\infty}\leq \frac{5\|\phi\|_{\infty}}{|t|(\log\frac{1}{|t|})^{1+\delta}}.
$$

Let $|t|^{1/5} < r < 1$. Since $|t|^{3/5} \leq \frac{C}{\log \frac{1}{|t|}}$, we have

$$
\frac{1}{|B(x,r)| \log(e+1/r)} \int_{B(x,r)} |\omega_1(y,t)| dy \leq \frac{1}{|B(x,r)|} \int_{\mathbb{R}^3} |\omega_1(y,t)| dy
$$

$$
\leq \frac{|t|^{6/5}}{|B(x,r)|} \frac{\|\phi\|_{L^1}}{|t| (\log \frac{1}{|t|})^{\delta}} = C \frac{(|t|^{6/5}/r^3)}{|t| (\log \frac{1}{|t|})^{\delta}} \leq \frac{C|t|^{3/5}}{|t| (\log \frac{1}{|t|})^{\delta}} \leq C \frac{1}{|t| (\log \frac{1}{|t|})^{1+\delta}},
$$

where *C* is a constant independent of *t*. Hence, we obtain

$$
\|\omega_1(t)\|_{M_1^{\log}(\mathbb{R}^3)} \le C \frac{1}{|t|(\log \frac{1}{|t|})^{1+\delta}} \quad \text{for all } -1/2 < t < 0,
$$

which implies (7.2) .

Let $r > 0$ be sufficiently small and $1 \leq p \leq \infty$. Since $\|\phi(\cdot/|t|^{2/5})\|_{L^p(B(0,r))} \geq$ $\|\phi^1(\cdot/|t|^{2/5})\|_{L^p(B(0,r))} \ge \|1_{B(0,|t|^{2/5})}\|_{L^p(B(0,r))}$, we have

$$
\|\omega_1(\cdot,t)\|_{L^p(B(0,r))} \ge \frac{\|1_{B(0,|t|^{2/5})}\|_{L^p(B(0,r))}}{|t|(\log \frac{1}{|t|})^\delta}
$$

=
$$
C \begin{cases} \frac{1}{|t|^{1-6/(5p)}(\log \frac{1}{|t|})^\delta} & \text{for } -r^{5/2} \le t < 0\\ \frac{r^{3/p}}{|t|(\log \frac{1}{|t|})^\delta} & \text{for } -r^2 < t < -r^{5/2}. \end{cases}
$$

Hence, for $1 < q < \infty$ we have

$$
r^{-(3/p+2/q-2)} \Big\{ \int_{-r^2}^0 \|\omega_1(\cdot,t)\|_{L^p(B(0,r))}^q dt \Big\}^{1/q}
$$

\n
$$
\geq r^{-(3/p+2/q-2)} \Big\{ \int_{-r^{5/2}}^{-\frac{r^{5/2}}{2}} \frac{1}{|t|^{q(1-6/(5p))} (\log \frac{1}{|t|})^{q\delta}} dt \Big\}^{1/q}
$$

\n
$$
\geq \frac{C}{r^{\frac{1}{2}(1-\frac{1}{q})} (\log \frac{1}{r})^{\delta}} \to \infty \text{ as } r \to 0+.
$$

In the case $q = 1$, we have

$$
r^{-(3/p+2/1-2)} \Big\{ \int_{-r^2}^0 \|\omega_1(\cdot,t)\|_{L^p(B(0,r))} dt \Big\} \ge r^{-3/p} \int_{-r^2}^{-r^{5/2}} \frac{r^{3/p}}{|t| (\log \frac{1}{|t|})^\delta} dt
$$

$$
\ge \frac{C}{(\log \frac{1}{r^{5/2}})^\delta} \int_{-r^2}^{-r^{5/2}} \frac{1}{|t|} dt = C (\log \frac{1}{r})^{1-\delta} \to \infty \text{ as } r \to 0+,
$$

since $1 - \delta > 0$. In the case $q = \infty$, we have

$$
r^{-(3/p-2)}\sup_{-r^2 < t < 0} \|\omega_1(\cdot,t)\|_{L^p(B(0,r))} \ge r^{-(3/p-2)}\sup_{-r^{5/2} < t < 0} \frac{C}{|t|^{1-6/(5p)}(\log\frac{1}{|t|})^\delta} =: L(r).
$$

For $6/5 < p \le \infty$, clearly $L(r) = \infty$. For $1 \le p \le 6/5$, $L(r) = C \frac{r^{-(3/p-2)}}{r^{5/2-3/p} (\log \frac{1}{r^{5/2}})^{\delta}} =$ $C/(r^{1/2}(\log(1/r))^{\delta}) \rightarrow \infty$ as $r \rightarrow 0+$. Therefore, for all $1 \leq p, q \leq \infty$, [\(7.3\)](#page-18-1) holds. Since $\|\omega_1(\cdot, t)\|_{L^p(\mathbb{R}^3)} = \frac{\|\phi\|_{L^p(\mathbb{R}^3)}}{|t|^{1-6/(5p)}(\log \frac{1}{|t|})^{\delta}},$ it is straightforward to see that

$$
\omega_1 \in L^{\infty}(-1/2, 0; L^{{6}/{5}}_{\sigma}(\mathbb{R}^3)) \cap L^2(-1/2, 0; L^2_{\sigma}(\mathbb{R}^3)).
$$

Hence, letting $u_1 := \text{rot}(-\Delta)^{-1}\omega_1$, we have $u_1 \in L^\infty(-1/2, 0; L^2_\sigma(\mathbb{R}^3)) \cap L^2(-1/2, 0;$ $W^{1,2}(\mathbb{R}^3)$, which proves the assertion (a). (b) Let

$$
\omega_2(x,t) := \frac{\phi(x/|t|)}{|t|},
$$

where ϕ is the same vector function as in the proof of (a). Then, for $r = |t|$,

$$
\frac{\int_{B(0,r)} |\omega_2(y,t)| dy}{|B(0,r)| \log(e+1/r)} \ge \frac{\int_{B(0,|t|)} \frac{1}{|t|} dy}{|B(0,|t|)| \log(e+1/|t|)} = \frac{1}{|t| \log(e+1/|t|)}
$$

which yields $\|\omega_2(\cdot, t)\|_{M_1^{\log}(B(0,\epsilon))} \ge \frac{1}{|t|\log(e+1/|t|)}$ for all $-\epsilon < t < 0$. Hence we obtain [\(7.4\)](#page-18-2). Since $\|\omega_2(\cdot,t)\|_{L^p(\mathbb{R}^3)} = |t|^{3/p-1} \|\phi\|_{L^p(\mathbb{R}^3)}$, it is straightforward to see that ω_2 satisfies [\(7.5\)](#page-18-2) for $p = q = 2$ and belongs to $L^{\infty}(-1/2, 0; L^{\frac{6}{5}}(\mathbb{R}^3))$ $L^2(-1/2, 0; L^2(\mathbb{R}^3))$. Hence, *u*₂ := rot $(-\Delta)^{-1}\omega_2$ is the desired function. □

References

- 1. Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. **94**, 61–66 (1984)
- 2. Borchers, W., Miyakawa, T.: *L*² decay for the Navier–Stokes flow in halfspaces. Math. Ann. **282**, 139– 155 (1988)
- 3. Borchers, W., Sohr, H.: On the semigroup of the Stokes operator for exterior domains in *L^q* -spaces. Math. Z. **196**, 415–425 (1987)
- 4. Bradshaw, Z., Farhat, A., Grujic, Z.: An algebraic reduction of the 'scaling gap' in the Navier–Stokes regularity problem. [arXiv:1704.05546](http://arxiv.org/abs/1704.05546) (**preprint**)
- 5. Brezis, H., Gallouet, T.: Nonlinear Schrödinger evolution equations. Nonlinear Anal. Theory Methods Appl. **4**, 677–681 (1980)
- 6. Brezis, H., Wainger, S.: A note on limiting cases of Sobolev embeddings and convolution inequalities. Comm. Partial Differ. Equ. **5**, 773–789 (1980)
- 7. Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. **35**, 771–831 (1982)
- 8. Chae, D.: On the well-posedness of the Euler equations in the Triebel–Lizorkin spaces. Commun. Pure Appl. Math. **55**, 654–678 (2002)
- 9. Chemin, J.-Y.: Perfect Incompressible Fluids. Oxford Lecture Series in Mathematics and Its Applications. Oxford Science Publications, Oxford (1998)
- 10. Engler H.: An alternative proof of the Brezis–Wainger inequality. Commun. Partial Differ. Equ. **14**(4), 541–544 (1989)
- 11. Fan, J., Jiang, S., Nakamura, G., Zhou, Y.: Logarithmically improved regularity criteria for the Navier– Stokes and MHD equations. J. Math. Fluid Mech. **13**, 557–571 (2011)
- 12. Farwig, R., Sohr, H.: On the Stokes and Navier–Stokes system for domains with noncompact boundary in *L^q* -spaces. Math. Nachr. **170**, 53–77 (1994)
- 13. Farwig, R., Sohr, H.: Helmholtz decomposition and Stokes resolvent system for aperture domains in *L^q* -spaces. Analysis **16**, 1–26 (1996)
- 14. Ferrari, A.B.: On the blow-up of solutions of the 3-D Euler equations in a bounded domain. Commun. Math. Phys. **155**, 277–294 (1993)
- 15. Fujiwara, D., Morimoto, H.: An *Lr*-theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. **24**, 685–700 (1977)
- 16. Giga, Y.: Analyticity of the semigroup generated by the Stokes operator in *Lr* spaces. Math. Z. **178**, 297– 329 (1981)
- 17. Giga, Y., Miyakawa, T.: Solutions in *Lr* of the Navier–Stokes initial value problem. Arch. Ration. Mech. Anal. **89**, 267–281 (1985)
- 18. Grujic, Z., Guberovic, R.: A regularity criterion for the 3D NSE in a local version of the space of functions of bounded mean oscillations. Ann. I. H. Poincare **27**, 773–778 (2010)
- 19. Gustafson, S., Kang, K., Tsai, T.-P.: Interior regularity criteria for suitable weak solutions of the Navier– Stokes equations. Commun. Math. Phys. **273**, 161–176 (2007)
- 20. Ibrahim, S., Majdoub, M., Masmoudi, N.: Double logarithmic inequality with a sharp constant. Proc. AMS. **135**, 87–97 (2007)
- 21. Iwashita, H.: *Lq* − *Lr* estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier–Stokes initial value problems in *Lq* spaces. Math. Ann. **285**, 265–288 (1989)
- 22. Kato, T.: Strong L^p -solutions of the Navier–Stokes equation in \mathbb{R}^m , with applications to weak solutions. Math. Z. **187**, 471–480 (1984)
- 23. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. **41**, 891–907 (1988)
- 24. Kozono, H., Ogawa, T., Taniuchi, Y.: The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z. **242**, 251–278 (2002)
- 25. Kozono, H., Taniuchi, Y.: Limiting case of the Sobolev inequality in BMO, with application to the Euler equations. Commun. Math. Phys. **214**, 191–200 (2000)
- 26. Kozono, H., Wadade, H.: Remarks on Gagliardo–Nirenberg type inequality with critical Sobolev space and BMO. Math. Z. **259**, 935–950 (2008)
- 27. Kubo, T., Shibata, Y.: On some properties of solutions to the Stokes equation in the half-space and perturbed half-space. In: D'Ancona, P., Georgev, V. (eds.) Dispersive Nonlinear Problems in Mathematical Physics. Quad. Mat., vol. 15, pp. 149–220. Dept. Math., Seconda Univ. Napoli, Caserta (2004)
- 28. Kukavica, I.: On the dissipative scale for the Navier–Stokes equation. Indiana Univ. Math. J. **48**, 1057– 1081 (1999)
- 29. Matsumoto, T., Ogawa, T.: Interpolation inequality of logarithmic type in abstract Besov spaces and an application to semilinear evolution equations. Math. Nachr. **283**, 1810–1828 (2010)
- 30. Miyakawa, T.: On nonstationary solutions of the Navier–Stokes equations in an exterior domain. Hiroshima Math. J. **12**, 115–140 (1982)
- 31. Morii, K., Sato, T., Wadade, H.: Brézis–Gallouët–Wainger type inequality with a double logarithmic term in the Hölder space: Its sharp constants and extremal functions. Nonlinear Anal. **73**, 1747–1766 (2010)
- 32. Ogawa, T.: Sharp Sobolev inequality of logarithmic type and the limiting regularity condition to the harmonic heat flow. SIAM J. Math. Anal. **34**, 1318–1330 (2003)
- 33. Ogawa, T., Taniuchi, Y.: A note on blow-up criterion to the 3-D Euler equations in a bounded domain. J. Math. Fluid Mech. **5**, 17–23 (2003)
- 34. Ogawa, T., Taniuchi, Y.: On blow-up criteria of smooth solutions to the 3-D Euler equations in a bounded domain. J. Differ. Equ. **190**, 39–63 (2003)
- 35. Ozawa, T.: On critical cases of Sobolev's inequalities. J. Funct. Anal. **127**, 259–269 (1995)
- 36. Planchon, F.: An extension of the Beale–Kato–Majda criterion for the Euler equations. Commun. Math. Phys. **232**, 319–326 (2003)
- 37. Shirota, T., Yanagisawa, T.: A continuation principle for the 3-D Euler equations for incompressible fluids in a bounded domain. Proc. Jpn. Acad. Ser. A **69**, 77–82 (1993)
- 38. Simader, C.G., Sohr, H.: A new approach to the Helmholtz decomposition and the Neumann problem in *L^q* -spaces for bounded and exterior domains. In: Galdi, G.P. (ed.) Mathematical Problems Relating to the Navier–Stokes Equation, Series Advances in Mathematical Sciences and Applications, vol. 11, pp. 1–35. World Scientific, River Edge (1992)
- 39. Stein, E.M.: Harmonic Analysis. Princeton University Press, Princeton (1993)
- 40. Stein, E.M., Shakarchi, R.: Functional Analysis. Introduction to Further Topics in Analysis. Princeton Lectures in Analysis. Vol. 4, Princeton University Press, Princeton (2011)
- 41. Sohr, H.: A regularity class for the Navier–Stokes equations in Lorentz spaces. J. Evol. Equ. **1**, 441– 467 (2001)
- 42. Taylor, M.E.: Pseudodifferential Operators and Nonlinear PDE. Progress in Mathematics. Birkhäuser, Boston (1991)
- 43. Vishik, M.: Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type. Ann. Sci. École Norm. Sup. **32**, 769–812 (1999)
- 44. Weissler, F.B.: The Navier–Stokes initial value problem in L^p . Arch. Ration. Mech. Anal. **74**, 219– 230 (1980)
- 45. Yudovich, V.I.: Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid. Math. Res. Lett. **2**, 27–38 (1995)
- 46. Zajaczkowski, W.M.: Remarks on the breakdown of smooth solutions for the 3-d Euler equations in a bounded domain. Bull. Pol. Acad. Sci. Math. **37**, 169–181 (1989)

Communicated by W. Schlag