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Abstract: We study generalized gauge theories engineered by taking the low energy
limit of the Dp branes wrapping X × Tp−3, with X a possibly singular surface in a
Calabi–Yau fourfold Z . For toric Z and X the partition function can be computed by
localization, making it a statistical mechanical model, called the gauge origami. The
random variables are the ensembles of Young diagrams. The building block of the gauge
origami is associated with a tetrahedron, whose edges are colored by vector spaces. We
show the properly normalized partition function is an entire function of the Coulomb
moduli, for generic values of the �-background parameters. The orbifold version of
the theory defines the qq-character operators, with and without the surface defects. The
analytic properties are the consequence of a relative compactness of the moduli spaces
M(�n, k) of crossed and spiked instantons, demonstrated in “BPS/CFT correspondence
II: instantons at crossroads, moduli and compactness theorem”.
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1. Introduction

This paper is a continuation of the series [Ne2,Ne3]. There we proposed a set of observ-
ables in quiver N = 2 supersymmetric gauge theories. These observables are useful in
organizing the non-perturbative Dyson-Schwinger equations. The latter relate different
instanton sectors contributions to the expectation values of gauge invariant chiral ring
observables. We also introduced the geometric setting to which these observables be-
long in a natural way. Namely, we defined the moduli spaces MX,G of what might be
called supersymmetric gauge fields in the generalized gauge theories, whose space-time
X contains several, possibly intersecting, components:

X =
⋃

A

X A. (1)

The gauge groups G|X A = G A on different components may be different. The inter-
sections X A ∪ X B lead to the matter fields charged under the product group G A × G B
(bi-fundamental multiplets). In this paper we shall be studying the integrals over the
moduli space MX,G , which we shall compute using equivariant localization.

2. Review of Notations

2.1. Sets and partitions.

2.1.1. Sequences. For two sets X and S let X S = Maps(S, X) denote the set of maps
from S to X . For a map f : S → X we sometimes use the notation

(xs)s∈S, (2)

with xs = f (s) ∈ X . For example, a sequence (an), n ∈ Nwould be denoted as (an)n∈N
or (an)n≥1, if the context is clear.

2.1.2. Non-negative integers. are denoted by Z≥0 = N ∪ {0}.

2.1.3. Finite sets. Let [n] denote the set { 1, 2, . . . , n } for n ∈ N. For a finite set X we
denote by #X the number of its elements. Thus, for finite X and S

#X S = (#X)#S (3)

2.1.4. Partitions. There are lots of sums over partitions in this paper. Let � denote the
set of all partitions. An element λ ∈ � is a non-increasing sequence λ = (λ1 ≥ λ2 ≥
· · · ≥ λ�(λ) > λ�(λ)+1 = λ�(λ)+2 = · · · = 0) of integers, with a finite number of positive
terms, sometimes called the parts of λ. The number �(λ) of positive terms is called the
length of the partition λ, the sum
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�(λ)∑

i=1
λi = |λ| (4)

is called its size. We also identify the partitions λ with the finite subsets of N2 = N×N,
as follows:

λ = { � | � = (i, j), i, j ≥ 1, 1 ≤ j ≤ λi } (5)

The size |λ| of the partition λ is the number of elements #λ of the corresponding finite
set. Not every finite subset of N2 corresponds to a partition, only those, for which the
complement N2\λ is preserved by the action of the semi-group Z≥0 × Z≥0 on N

2 by
translations. Equivalently, the partitions are in one-to-one correspondence with finite
codimension monomial ideals in the ring of polynomials in two variables: λ ↔ Iλ,
Iλ ⊂ C[x, y], Iλ = ∪�λ+1

i=1 C[x, y]xi−1yλi .
We denote by�[k] the set of partitions of k, i.e. the set of all λ ∈ �, such that |λ| = k.

We have:
� =

⊔

k≥0
�[k] (6)

The celebrated Euler formula:
∞∑

k=0
#�[k] qk =

∞∏

n=1

1

1− qn
(7)

2.2. Four and six. Let 4 denote the set [4] and let 6 denote the set of 2-element subsets
of 4 (we write ab instead of {a, b} to avoid the clutter):

4 = {1, 2, 3, 4} , 6 =
(
4
2

)
= { 12, 13, 14, 23, 24, 34 } (8)

In (8) we exhibit the lexicographic order of the sets 4 and 6which is used below in some
formulas. For example, 12 < 14 < 23 < 34. For A ∈ 6 we denote by Ā = 4\A its
complement. Let 3 denote the quotient 6/∼ where A ∼ Ā. Identify 3 = {1, 2, 3} ⊂ 4
by choosing a representative A = a4, a ∈ [3]. Define the map: ϕ : 6→ 4 by

ϕ(A) = inf Ā ∈ 4, (9)

so that
ϕ(12) = 3, ϕ(13) = ϕ(14) = 2, ϕ(24) = ϕ(23) = ϕ(34) = 1. (10)

We also define the following map ε : 6 → Z2: write A = {a, b}, a < b ∈ 4, write
Ā = {c, d}, c < d ∈ 4, then ε(A) = εabcd . Thus,

ε(12) = ε(34) = ε(14) = ε(23) = + 1, ε(13) = ε(24) = − 1. (11)

It may seem surprising that ε takes values + 1 four times and − 1 only two times, but
in fact it is natural, since ε(A) = ε( Ā), therefore ε is defined on 3. Since a two-valued
function on a set of odd cardinality cannot split it equally, more classes are bound to be
good rather then bad (assuming the values + 1 and − 1 are identified with “good” and
“bad”).
It is useful to view 4 as the set of faces (or vertices) of the tetrahedron, while 6 is the
set of edges. The edge ab connects the vertices a and b. Alternatively the edge ab is the
common boundary of the faces a and b.
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2.3. Finite groups and quiver varieties.

2.3.1. Abelian groups. We denote by �ab a finite abelian group. It is well-known that
any such �ab is a product of cyclic groups whose orders are powers of primes:

�ab =
d

κ=1

(
Z/plκ

κ Z

)
, lκ ∈ N, pκ − primes (12)

An element of �ab is a string t = (t1, . . . , td) of integers defined modulo lattice tκ ∼
tκ + plκ

κ Z. All irreducible representations L
 of �ab are complex one-dimensional,
labeled by a string of integers

ν =
(

n1, . . . , nd
)
∈ �∨ab , nκ ∈ Z (13)

also defined modulo lattice nκ ∼ nκ + plκ
κ Z:

TLν
(t) = exp 2π

√−1
∑

κ

tκnκ

plκ
κ

(14)

We set ν = 0 to label the trivial representation with all nκ = 0,

TL0(t) ≡ 1 (15)

The set �∨ab is also an abelian group, isomorphic to �ab, with multiplication given by the
tensor product of irreducible representations. We shall be using the addition symbol for
the group law on �∨ab:

Lν1+ν2 = Lν1 ⊗ Lν2 , L∗ν = L−ν (16)

Let
δ�∨ab : �∨ab → {0, 1} (17)

be the indicator function of the trivial representation:

δ�∨ab(0) = 1, δ�∨ab(ν) = 0, ν �= 0 (18)

2.3.2. Nonabelian subgroups of SU (2). Let γ denote the affine Dynkin diagram of type
D, or E , respectively (see the Fig. 1):

Fig. 1. Affine Dynkin diagrams of the D and E type
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Let Vertγ be the set of vertices of γ , Edgeγ be the set of oriented edges (we pick
any orientation). For the edge e ∈ Edgeγ let s(e), t (e) ∈ Vertγ denote its source and
target, respectively.

Let �γ ⊂ SU (2) denote the corresponding non-abelian finite subgroup. For γ =
Ẽ6,7,8 the group�γ is the binary tetrahedral, octahedral, icosahedral group, respectively.

In this correspondence i ∈ Vertγ labels the irreducible representations Ri ∈ �∨γ
of �γ . The edges Edgeγ show up in the tensor products: let 2 denote the defining
two-dimensional representation of SU (2). Then:

2⊗ Ri =
⊕

e∈s−1(i)
Rt (e) ⊕

⊕

e∈t−1(i)
Rs(e) (19)

where 2 is viewed as the representation of�γ ⊂ SU (2). The dimensions dimRi are indi-
cated on the corresponding nodes in the picture, the vector of dimensions is annihilated
by the affine Cartan matrix = 2−incidence matrix of γ , cf. (19):

2dimRi =
∑

e∈s−1(i)
dimRt (e) +

∑

e∈t−1(i)
dimRs(e) (20)

The trivial representation is colored pink on Fig. 1.

2.3.3. Walks on quivers. Let is, it ∈ Vertγ . A path p connecting is (the source of p)
to it (the target of p) of length �p on the quiver γ is the ordered sequence of pairs
pi = (ei , σi ), i = 1, . . . , �p where ei ∈ Edgeγ , σi = ±1, and
(1) the source of p: if σ1 = 1, then s(e1) = is , otherwise t (e1) = is
(2) the end-point of p: if σ�p = 1, then t (e�p ) = it , otherwise s(e�p ) = it
(3) concatenation: if σi = 1, σi+1 = 1, then t (ei ) = s(ei+1), if σi = 1, σi+1 = −1, then

t (ei ) = t (ei+1), if σi = −1, σi+1 = 1, then s(ei ) = s(ei+1), if σi = −1, σi+1 = −1,
then s(ei ) = t (ei+1)

Let us denote the set of all paths on γ connecting is to it by P it
is
[γ ]. There is an obvious

associative concatenation map:

� : P i2
i1
[γ ] × P i3

i2
[γ ] −→ P i3

i1
[γ ],

p × p̃ �→ p̃ � p , ( p̃ � p)i =
{

pi , 1 ≤ i ≤ �p′
p̃i−�p , �p < i ≤ �p + � p̃ = � p̃�p

(21)

and the inversion map

− : P it
is
[γ ] −→ P is

it
[γ ],

p �→ p̄, p̄i =
(
e�p+1−i ,−σ�p+1−i

)
, 1 ≤ i ≤ �p (22)

2.3.4. Nakajima varieties. Define the Nakajima varieties Mγ (v,w) associated with a

quiver γ and two dimension vectors v,w ∈ Z
Vertγ
≥0 [Na1,Na2,Na3].

Let γ be as before. To each vertex i ∈ Vertγ we associate two Hermitian vector
spaces Wi, Vi of dimensions wi, vi, respectively. Let

Uγ (v) =
i∈Vertγ

U (vi) (23)
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be the group of unitary transformations of V = (Vi)i∈Vertγ . First, form the Hermitian
vector space:

Hγ (v,w) = T ∗
⎛

⎝
⊕

e∈Edgeγ

Hom(Vs(e), Vt (e))
⊕ ⊕

i∈Vertγ
Hom(Wi, Vi)

⎞

⎠

=
{(

Be, B̃e

)

e∈Edgeγ

, (Ii, Ji)i∈Vertγ

∣∣∣∣ Ii : Wi → Vi , Ji : Vi → Wi , Be : Vs(e)

→ Vt (e) , B̃e : Vt (e) → Vs(e)

}
(24)

which is acted upon by Uγ (v) via:

(uω)ω∈Vertγ ·
((

Be, B̃e

)

e∈Edgeγ
, (Ii, Ji)i∈Vertγ

)

=
((

ut (e)Beu−1s(e), us(e) B̃eu−1t (e)

)

e∈Edgeγ
,
(

ui Ii, Jiu
−1
i

)

i∈Vertγ

)
(25)

For a path p ∈ P is
it
[γ ] define its holonomy Bp : Vis → Vit in the obvious way:

Bp =
←�p∏

i=1

{
Bei , σi = +1
B̃ei , σi = −1 (26)

This definition is compatible with the path multiplication:

Bp2Bp1 = Bp2�p1 (27)

The action (25) preserves the hyper-Kähler structure of Hγ (v,w), with the three sym-
plectic forms 
I,J,K given by:


I =
∑

e∈Edgeγ

Tr Vt (e)

(
d Be ∧ d B†

e − d B̃†
e ∧ d B̃e

)

+
∑

i∈Vertγ
Tr Wi

(
d Ji ∧ d J †

i − d I †i ∧ d Ii
)

,


J +
√−1
K =

∑

i∈Vertγ
Tr Wi (d Ji ∧ d Ii) +

∑

e∈Edgeγ

Tr Vt (e)

(
d Be ∧ d B̃e

)
(28)

Then perform the hyper-Kähler reduction with respect to the action (25):

Mγ (v,w) = �μ−1(�ζ )/Uγ (v) (29)

where �μ = (μI,i, μJ,i, μK ,i)i∈Vertγ ,

μI,i = Ii I
†
i − J †

i Ji +
∑

e∈t−1(i)

(
Be B†

e − B̃†
e B̃e

)

+
∑

e∈s−1(i)

(
B̃e B̃†

e − B†
e Be

)
,

μJ,i +
√−1μK ,i = Ii Ji +

∑

e∈t−1(i)
Be B̃e −

∑

e∈s−1(i)
B̃e Be, (30)
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and we take (this is not the most general definition)

�ζ = (ζi1Vi , 0, 0)i∈Vertγ (31)

with all ζi > 0.
Stabili t y. Instead of solving three equations �μ = �ζ one can actually solve only

μC ≡ μJ +
√−1μK = 0, and then take a quotient of the set of stable points in μ−1

C
(0)

by the action of

Gγ (v) =
i∈Vertγ

GL(vi;C) (32)

so that

Mγ (v,w) = μ−1
C

(0)stable/Gγ (v) (33)

The stable points are the Gγ (v)-orbits of (Be, B̃e, I, J ) s.t. the path algebra of γ repre-
sented by the products of Be and B̃e acting on the image

⊕
i∈Vertγ IiWi generates all of⊕

i∈Vertγ Vi:

Vi =
∑

i′∈Vertγ

∑

p∈P i
i′ [γ ]

Bp Ii′Wi′ . (34)

In other words: any collection V′ = (V ′
i )i∈Vertγ ⊂ V of vector subspaces V ′

i ⊂ Vi,
obeying:

S1) IiWi ⊂ V ′
i , for all i ∈ Vertγ ,

S2) Be(V ′
s(e)) ⊂ V ′

t (e), B̃e(V ′
t (e)) ⊂ V ′

s(e) , for all e ∈ Edgeγ

(35)

must coincide with V: V ′
i = Vi for all i ∈ Vertγ .

A simple proof of the equivalence of (29) and (33) can be found along the lines of the
arguments of the section 3.4 and [Ne3]: in one direction, any solution toμI,i = ζi ·1Vi is
stable. Indeed,V′ ⊂ V as in (35), and let Pi denote the orthogonal projection Vi → V

′⊥
i .

By (35) we have:

Pi Ii = 0 , Pt (e)Be(1− Ps(e)) = 0 , Ps(e) B̃e(1− Pt (e)) = 0 (36)

Define be = Pt (e)Be Ps(e), b̃e = Ps(e) B̃e Pt (e), b′e = (1 − Pt (e))Be Ps(e), b̃′e = (1 −
Ps(e))B̃e Pt (e). Then

ζidim
(
Vi/V ′

i
) = Tr Vi (PiμiPi)

= Tr (V ′
i )
⊥

⎛

⎝− j†i ji +
∑

e∈t−1(i)

(
beb†e − b̃†e b̃e − b̃

′†
e b̃′e

)

+
∑

e∈s−1(i)

(
b̃eb̃†e − b†e be − b

′†
e b′e

)
⎞

⎠ , (37)
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hence, after obvious cancellations,

0 ≤
∑

i∈Vertγ
ζidim

(
Vi/V ′

i
)

= −
⎛

⎝
∑

i∈Vertγ
Tr V

′⊥
i

j†i ji +
∑

e∈Edgeγ

Tr V
′⊥
t (e)

b̃
′†
e b̃′e + Tr V

′⊥
s(e)

b
′†
e b′e

⎞

⎠ ≤ 0 (38)

which impliesV ′
i = Vi for all i ∈ Vertγ . Conversely, given a stable solution (Be, B̃e, Ii, Ji)

to μC = 0 equations, run the gradient flow of the function:

f = 1

2

∑

i∈Vertγ
Tr Vi

(
μI,i − ζi1Vi

)2 (39)

which goes along the ×iGL(Vi) orbits. The end-point of the flow is either at f = 0
which would establish the rest of the equations in (29), or at the higher critical point.
There, the End(Vi)-matrices hi = μI,i − ζi1Vi solve:

ht (e)Be = Behs(e) , hs(e) B̃e = B̃eht (e) , hi Ii = 0 , Jihi = 0 (40)

Therefore V ′
i = kerhi obeys both (S1) and (S2) conditions of (35), therefore hi = 0 for

all i ∈ Vertγ .

2.3.5. Framing symmetries of Nakajima varieties. The Nakajima varietyMγ (v,w) has
a symmetry group

Uγ (w) =
i∈Vertγ

U (wi) (41)

acting in an obvious way on the operators (Ii, Ji). The maximal torus Tγ (w) ⊂ Uγ (w)

fixed point locus is the union

Mγ (v,w)Tγ (w) =
⊔

v= ∑
i∈Vertγ , α∈[wi]

vi,α i∈Vertγ α∈[wi]
Mγ (vi,α, δi) (42)

where vi,α ∈ Z
Vertγ
≥0 for each (i, α), i.e.

vi,α =
(
v
i,α
ĩ

)

ĩ∈Vertγ
, (43)

and
δi = (δi,j)j∈Vertγ (44)

We define the fundamental Nakajima variety

Mi
γ (v) =Mγ (v, δi) (45)

The Eq. (42) explains the importance of the fundamental Nakajima varieties.
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2.3.6. Nakajima–Young varieties. The Nakajima varieties Mγ (v,w) with the choice
(31) have a holomorphicC×-symmetry (its compact subgroupU (1) acts by an isometry):
u ∈ C

× acts via

u ·
(

Be, B̃e , Ii, Ji
)
=
(

u Be, u B̃e , u Ii, u Ji
)

(46)

DefineNakajima–Young varietyYi
γ (μ) to be the connected component of the fixed point

set:
Mi

γ (v)C
× =

⊔

μ∈�i
γ [v]

Yi
γ (μ) (47)

with
�i

γ [v] = π0

(
Mi

γ (v)C
×)

(48)

denoting the set of connected components. We define the sets �i
γ for i ∈ Vertγ :

�i
γ =

⊔

v∈ZVertγ
≥0

�i
γ

[
v
]

(49)

For μ ∈ �i
γ

[
v
]
we define:

|μ| = v ∈ Z
Vertγ
≥0 (50)

Each Nakajima–Young variety Yi
γ (μ) carries a set of vector bundles:

V i
j,n(μ) −→ Yi

γ (μ) (51)

where j ∈ Vertγ , n ≥ 0, and

V i
j,n(μ) =

∑

p∈P j
i [γ ], �p=n

Bp I (C). (52)

The stability condition (34) implies, for any j ∈ Vertγ :

Vj =
∞⊕

n=0
V i
j,n (53)

It is easy to show that J ≡ 0 on all Yi
γ (v;μ), and V i

j,0 = Cδi,j. Let us clarify the
origin of the direct sum decomposition (53). The C×-invariance of the Gγ (v)-orbit of
(Be, B̃e, I, J ) means that the transformation (46) can be compensated by an element
(gj(u))j∈Vertγ :

gt (e)(u)Begs(e)(u)−1 = u Be , gs(e)(s)B̃eg−1t (e)(u) = u B̃e ,

gi(u)I = u I , Jgi(u)−1 = u J (54)

Then
V i
j,n = Ker

(
gj(u)− un+1

)
⊂ Vj (55)
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are obviously mutually orthogonal for different n’s. The ranks νij,n(μ) = rkV i
j,n(μ) are

important local invariants of Yi
γ (μ). By definition:

∞∑

n=0
νij,n(μ) = vj (56)

The K -theory class of the tangent bundle TYi
γ (μ) to Y

i
γ (μ) can be expressed in terms of

those of V i
j,n :

[
TYi

γ (μ)

]
=
[
V i
i,0

]

+
∑

n≥0, e∈Edgeγ

[
Hom

(
V i

t (e),n, V i
s(e),n+1

)
⊕ Hom

(
V i

s(e),n, V i
t (e),n+1

)]

−
∑

n≥0, j∈Vertγ

[
Hom

(
V i
j,n, V i

j,n

)
⊕ Hom

(
V i
j,n, V i

j,n+2

)]
.

(57)
Remark. In the case of γ = Â0, whereEdgeγ = {e},Vertγ = {0}, s(e) = t (e) = 0,

the fundamental Nakajima variety is the Hilbert scheme of v points on C
2, a.k.a. the

moduli space of noncommutative U (1) instantons on R
4, while the Nakajima–Young

varieties are the connected components of the so-called graded Hilbert scheme of v

points.

2.4. The local model data. To specify the basic local model data we fix:

(1) The string
ε̄ = (εa)a∈4 (58)

of 4 complex numbers which sum to zero:

ε1 + ε2 + ε3 + ε4 = 0 (59)

(2) The string n̄ of 6 non-negative integers n A ≥ 0, A ∈ 6. Let

N =
⊔

A∈6
[n A] ≈ {(A, α) | A ∈ 6, α ∈ [n A]}. (60)

(3) The string ā ∈ C
N of

∑

A∈6
n A

complex numbers aA,α ∈ C, α = 1, . . . , n A, also denoted as

aA =
(
aA,α

)
α∈[n A] ≡

(
aA,1, . . . , aA,n A

) ∈ C
n A . (61)

(4) The fugacity
q ∈ C, (62)

|q| < 1.
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We also use the notations: for any a ∈ 4,

qa(β) = eβεa , Pa(β) = 1−qa(β), q∗a (β) = e−βεa , P∗a (β) = 1−q∗a (β), (63)

and for any S ⊂ 4

qS(β)=
∏

a∈S

qa(β), q∗S(β)=
∏

a∈S

q∗a (β), PS(β)=
∏

a∈S

Pa(β), P∗S (β)=
∏

a∈S

P∗a (β)

(64)
We shall often skip the argument β in the notations for qa, P∗S , etc. The notation (64),
in particular, implies [cf. (59)]

q4 = q∅ = 1, P4 = P1P2P3P4 = P∗4 , qĀ = q∗A (65)

and
P∗S = (−1)|S|q∗S PS (66)

We shall also encounter the relation

P4 = P3 + P∗3 (67)

in what follows.

2.4.1. Geometry of the local model data. The meaning of the parameters a, ε̄ is the
following. Define the gauge group G A corresponding to the stratum X A ≈ C

2
A of the

singular toric surface X to be
G A = U (n A) (68)

Let TA ⊂ G A denote its maximal torus. Let U (1)3ε ⊂ SU (4) be the maximal torus
of the (4, 0)-volume preserving unitary symmetries of Z = C

4. The U (1)3ε-action
preserves X . The Lie algebra LieTA ⊗ C is parametrized by diagonal matrices aA =
diag

(
aA,1, . . . , aA,n A

)
with complex entries aA,α ∈ C. The Lie algebra LieU (1)3ε ⊗ C

is parametrized by diag(ε1, ε2, ε3, ε4) with ε1 + ε2 + ε3 + ε4 = 0. Let

TH = U (1)3ε ×
A∈6

TA (69)

2.4.2. Additive to multiplicative. Let I± be two finite sets, I = I+ � I−. Let M be a
space with an action of a Lie group G, and let Ei , i ∈ I be a collection of G-equivariant
vector bundles over M. Let wi ∈ C. We combine them into the G× (C×)I -equivariant

virtual bundle E =
[⊕

i∈I+ Ei � ⊕
i∈I− Ei

]
. Let

Chβ(Ei ) =
∑

α

eβξi,α (70)

be the refined Chern character (with ξi,α equivariant Chern roots of Ei ), so that in the
non-equivariant setting

Chβ(E) =
∑

k≥0
βkchk(E),
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and define
f (β) =

∑

i∈I+

eβwiChβ(Ei )−
∑

i∈I−
eβwiChβ(Ei ) (71)

To f (β) we associate the equivariant characteristic class, a rational function of wi ’s:

ε[ f ] =
∏

i∈I+

cwi (E+,i )
∏

i∈I−
cwi (Ei )

−1. (72)

where

cw(E) =
rkE∑

k=0
wk crkE−k(E) (73)

is the usual G-equivariant Chern polynomial of E , evaluated at w ∈ H•
C×(pt) = C,

equivalently, it is the topC××G-equivariant Chern class of E . We define the ∗-operation
on the expressions f (β):

f ∗(β) ≡
∑

i∈I+

e−βwiChβ(E∗i )−
∑

i∈I−
e−βwiChβ(E∗i ) = f (−β) (74)

This definition is consistent with the notations (63).
We have:

ε[ f ] = (−1) f (0)ε[ f ∗] (75)
where

f (0) =
∑

i∈I+

rk(Ei )−
∑

i∈I−
rk(Ei ) (76)

Therefore,
ε[PS f ] = ε[PSqS̄ f ∗](−1)|S| , (77)

The definition (72) is the generalization of the notation used in [Ne3], where we defined
ε as a map from the space of Z-linear combinations of exponents to rational functions:

ε

[∑

i∈I+

eβwi −
∑

i∈I−
eβwi

]
=
⎛

⎝
∏

i∈I+

wi

⎞

⎠ ·
⎛

⎝
∏

i∈I−
wi

⎞

⎠
−1

. (78)

3. Partition Function of Spiked Instantons

In this section we define the statistical mechanical model. The random variables are the
strings of Young diagrams and the complex Boltzmann weights are rational functions of
the complex numbers (58), (61). The definitionmight look first a bit artificial. Its origin is
geometric.Namely, in [Ne3] themoduli space of spiked instantonsM(k, �n) is introduced,
with �n = (n A)A∈6. It has an action of the group H = ×A∈6U (n A) × U (1)3ε . The fixed
points of the maximal torus TH are in one-to-one correspondence with the strings λ of
partitions described below. TheBoltzmannweight is simply the localization contribution
to the integral of 1 overM(k, �n), multiplied by qk . This contribution is the product of the
weights of the TH-action on the virtual tangent space toM(k, �n), which is the difference
of the kernel and the cokernel of the linearization of the equations defining M(k, �n) at
the fixed point. The kernel is always a complex vector space, henceforth it is naturally
oriented and the product of weights is well-defined. The cokernel (the obstruction space)
is only a real vector space, hence the product of the weights depends on the choice of its
orientation. In what follows we specify the choice of the orientation with the help of the
choice of the order on 4 and 6. The resulting measure will not depend on this choice.
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3.1. The configuration space. The basic local model is a statistical ensemble. The ran-
dom variables are the strings

λ =
(
λ(A,α)

)

A∈6,α∈[n A]
∈ �N (79)

of [cf. (60)]

∑

A∈6
n A = #N

partitions λ(A,α) ∈ �. In other words, the configuration space is

�N. (80)

Define, cf. (5):

NA(β) =
n A∑

α=1
eβaA,α , K A(β) =

n A∑

α=1

∑

�∈λ(A,α)

eβcA,α(�) , (81)

with
cA,α(�) = aA,α + εa(i − 1) + εb( j − 1), for � = (i, j) (82)

and [cf. (74)]
TA = NA K ∗

A + qA N∗
A K A − PA K A K ∗

A (83)

Let

kA = K A(0) =
[n A]∑

α=1
| λ(A,α) | (84)

and
|λ| =

∑

A∈6
kA (85)

It is well-known [Ne1,NY,AGT] that

TA = qAT ∗
A (86)

is a pure character, i.e.

TA =
2n AkA∑

I=1
etA,I (87)

where tA,I are integral linear combinations of aA,α , α ∈ [n A], εa, εb, a, b ∈ A. Let us
assume aA, ε̄ are sufficiently generic, so that tA,I �= 0, tA,I + εā �= 0 for any ā ∈ Ā,
I ∈ [2n AkA].

Define, finally,

K (β) =
∑

A∈6
K A(β) (88)
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3.2. The statistical weight. The complex Boltzmann weight of λ is given by the follow-
ing expression:

Zλ = q|λ| ε
[−Tλ

]
, (89)

where [cf. (9)]:

Tλ(β) =
∑

A∈6

⎛

⎝Pϕ( Ā)TA + PĀ NA

∑

B �=A

K ∗
B

⎞

⎠ − P4

∑

A<B

K A K ∗
B (90)

The definition (89) depends explicitly on the choice of the ordering of the sets 4 and 6,
since it enters the definition of the maps ϕ : 6 → 4 and the meaning of A < B in (90).
Morally,

ε
[−Tλ

] ∼ ε

⎡

⎣−
∑

A∈6
PĀ NA K ∗

⎤

⎦
√

ε
[
P4K K ∗] (91)

so the Boltzmann weight is defined canonically up to a sign.
Note that for generic aA, ε̄ the measure (89) does not depend on the choice of the

order on 4 or 6:

ε [qāTA] = ε
[
q ∗̄a T ∗

A

] = ε
[
q ∗̄a q∗ATA

] = ε
[
qb̄TA

]
,

ε

[
P4

∑

A<B

K A K ∗
B

]
= ε

⎡

⎣P3

∑

A �=B

K A K ∗
B

⎤

⎦ (92)

where we used (86), (87), (67), and qāqb̄qA = 1 for Ā = {ā, b̄}. Define,

Z inst =
∑

λ∈�N

Zλ =
∞∑

k=0
qk Z inst

k (93)

3.2.1. The origins: spiked instantons, tori and characters. The partition function Z inst

is the TH-equivariant integral of 1 over the virtual fundamental cycle of the moduli space
of spiked instantons [Ne3]. The latter is the space of solutions to certain quadratic matrix
equations, generalizing the ADHM equations [ADHM], on four complex k×k matrices
Ba , their Hermitian conjugates B†

a , a ∈ 4, and twelve rectangular matrices IA, JA, of
sizes n A×k and k×n A, A ∈ 6, and their Hermitian conjugates. The definition (90) stems
from the equivariant localization. The strings of partitions λ are the TH-fixed points. The
matrices (Ba, IA, JA) of the construction [Ne3] obey, for such a fixed point:

[Ba, Bb] = 0, a, b ∈ 4, JA = 0, A ∈ 6 (94)

the vectors
|i, j;α; ab〉 = Bi−1

a B j−1
b Iab(Nab,α) (95)

with α ∈ [nab], 1 ≤ j ≤ λ(ab,α) forming the basis of the vector space K , Nab,α being
the eigenspace of Tab action on the framing space Nab (see [Ne3] for the notations and
more explanations).
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The equivariant weights of the matrices contribute

T+ =
∑

a∈4
qa K K ∗ +

∑

A∈6

(
K ∗NA + qA K N∗

A

)
(96)

with
K =

∑

A∈6
K A (97)

while the equivariant weights of the equations they obey, and the symmetries one divides
by, contribute (with the minus sign)

T− =
⎛

⎝1 +
∑

c∈3
qcq4

⎞

⎠ K K ∗ +
∑

A∈6

∑

ā∈ Ā

qā K ∗NA (98)

Moreover, the T+ part is defined canonically by using the complex structure of the space
of matrices (Ba, IA, JA). The T− part is defined non-canonically, as the expression (98)
does not respect the symmetry between qa’s. The real (i.e. such that χ∗ = χ ) character
T− + T ∗− is defined canonically. This subtlety has to do with the real, as opposed to
complex, nature of the equations defining the spiked instantons [Ne3]. So, ε[T−] may
have a sign ambiguity, as

√
ε[T− + T ∗−]. Also, ε[T−] and ε[T+] separately may vanish,

as some of the weights in (96) and (98) may vanish. It is easy to show that formally
ε[T− − T+] = ε[−Tλ]. One simply uses (75) several times. The details of the choice
of the sign will be clarified elsewhere (it uses the residue definition of the localization
contribution, which was worked out in [MNS], it is similar to what sometimes is referred
to as the Jeffrey–Kirwan residue [JK] in the mathematical literature, see also [W]).

The resulting measure factor

ε[T− − T+] = ε[Obsλ]
ε[Defλ] = ε[−Tλ] (99)

where Defλ, Obsλ are the TH-characters of kerDλ, cokerDλ, respectively. Here Dλ is
the linearization of the spiked instanton equations at the solution, corresponding to λ.

The expressions NA, K A, Tλ(β) etc. are the elements of the K-group K [TH], i.e. the
abelian group whose elements are the formal linear combinations

∑

w∈T∨H

nw Lw (100)

where nw ∈ Z,
Lw (101)

are the irreducible representations of the torus TH, i.e. the elements of the lattice T∨
H =

Hom (TH, U (1)). We assign to the weight w = (wA,α)⊕ (wa) a function of (a, ε̄), the
character of TC

H in the representation Lw:

Lw �→ expβ

⎛

⎝
∑

A,α

wA,αaA,α +
∑

a

waεa

⎞

⎠ (102)

Here wA,α ∈ Z, wa ∈ Z are defined up to a shift wa �→ wa + w, w ∈ Z.
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3.2.2. More general definition. The definition (93) is fine as long as a and ε̄ are generic.
However, e.g. if for some ab ∈ 6 the ratio εa/εb ∈ Q+ is a positive rational number, or

if for some α �= β ∈ [n A], aA,α = aA,β , the individual contributions Zλ to the formula
(93) have apparent poles. Actually, the poles cancel. Let us give the presentation of the
formula (93) which is applicable in these cases.

Z inst
k =

∑

(kA)A∈6,
∑

A kA=k

∫

×
A∈6

MkA (n A)

S�n,�k(a, ε̄) (103)

where Gieseker-Nakajima moduli spaces Mk(n) parametrize the charge k noncommu-
tative U (n) instantons on R

4 and framed rank n torsion free sheaves E on CP
2 with

ch2(E) = k, while S�n,�k(a, ε̄) is the equivariant characteristic class, given by [cf. (90)]:

S�n,�k(a, ε̄) =
∏

A

cm A

(
TMkA (n A)

)

×
∏

A �=B∈6

∏

α∈[n A]

∏
ā∈ Ā caA,α+εā (K B)

caA,α (K B) caA,α−εA (K B)

×
∏

A<B∈6

(c0 (Hom(K B, K A)))2
∏

C∈6 cεC (Hom(K B, K A)
∏

c∈4 cεc (Hom(K B, K A)) c−εc (Hom(K B, K A))
(104)

with K A being the tautological rank kA bundle over MkA (n A). Finally, m A = εā for
either ā ∈ Ā. The choice of ā is immaterial. Indeed, the moduli space MkA (n A) is a
complex symplectic manifold, as reflected by the symmetry TA = qAT ∗

A . It implies

cεā

(
TMkA (n A)

) = cεb̄

(
TMkA (n A)

)
(105)

for both ā, b̄ ∈ Ā.

3.2.3. One-instanton case. As an illustration, let us consider the case k = 1. There are
∑

A

n A

possibilities, with
K B = δA,B eβaA,α , A ∈ 6, α ∈ [n A] (106)

Thus, the 1-instanton partition function is given by:

Z inst
1 =

∑

A∈6

∑

α∈[n A]
Z A,α , (107)

with

Z A,α = E Ā − E A

E A

∏

α′∈[n A], α′ �=α

(
1 +

E Ā(
aA,α′ − aA,α

) (
aA,α′ − aA,α − εA

)
)

×
∏

B �=A

∏

γ∈[nB ]

(
1 +

EB̄(
aB,γ − aA,α

) (
aB,γ − aA,α − εB

)
) (108)

where
εS =

∑

s∈S

εs = −εS̄, ES =
∏

s∈S

εs (109)
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3.3. The perturbative prefactor. We introduce a common, i.e. λ-independent prefactor
in the statistical weight. The so completed statistical weight is equal to:

Wλ = Zpert(ā, ε̄) Zλ (110)

with

Zpert(ā, ε̄) =
∏

A∈6
Zpert,A

N=2∗(aA, ε̄)

×
∏

{a,b,c}⊂4
Zpert,a|bc
fold (aab, aac, ε̄)

×
∏

A∈6,A< Ā

Zpert,A
cross (aA, a Ā, ε̄) (111)

where
• for A = ab: define m A = εϕ(A), and

Zpert,A
N=2∗(aA, ε̄) =

n A∏

α,β=1
�2
(
aA,α − aA,β; εa, εb

)

×
n A∏

α,β=1
�−12

(
aA,α − aA,β + m A; εa, εb

)
(112)

with the Barnes double gamma functions �2(x; εa, εb) normalized in such a way so as
to have simple zeroes on a quadrant of the integral lattice spanned by εa, εb:

�2(x; εa, εb) ∼
∏

i, j≥1
(x + εa(i − 1) + εb( j − 1)) , (113)

it is defined by the analytic continuation of the integral formula

�2(x; εa, εb) = exp − d

ds

∣∣∣∣
s=0

1

�(s)

∫ ∞

0

dt

t
t s e−t x

(1− e−tεa )(1− e−tεb )
(114)

from the domain Re(x),Re(εa),Re(εb) > 0.
•

Zpert,a|bc
fold (aab, aac, ε̄) =

nab∏

α=1

nac∏

β=1
�1
(
aab,α − aac,β + εa + εc; εa

)
(115)

where �1(x; εa) is essentially the ordinary �-function:

�1(x; y) ∼
∞∏

i=1
(x + y(i − 1)) , (116)

Again, it can be defined by the analytic continuation of the integral

�1(x; y) = exp − d

ds

∣∣∣∣
s=0

1

�(s)

∫ ∞

0

dt

t
t s e−t x

(1− e−t y)
(117)
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from the domain Re(x),Re(y) > 0, giving

�1(x; y) =
√
2π/y

y
x
y �

(
x
y

) , (118)

•
Zpert,A
cross (aA, a Ā, ε̄) =

n A∏

α=1

n Ā∏

β=1

(
aA,α − a Ā,β + ε Ā

)
(119)

3.3.1. Anomalies and other definitions of perturbative factors. In [AGT] another nor-
malization for the perturbative prefactor is used: the second line in (112) would read, in
our notation, as

∏

1≤α<β≤n A

∏

ā∈ Ā

�−12

(
aA,α − aA,β + εā ; εa, εb

)

This normalization makes explicit the symmetry between ā ∈ Ā, however the gauge
invariance, i.e. the Weyl symmetry of U (n A) acting on aA,α is partly broken.

Unlike the instanton partition functionZ inst the perturbative factor does depend on the
choice of the order on 4 which is used in the definition of m A = εϕ(A). This dependence
will be analyzed elsewhere.

3.3.2. Subtleties for tuned parameters. When the equivariant parameters a, ε̄ are ratio-
nally dependent, the torus T̃H ⊂ TH they generate is strictly smaller than TH. Accord-
ingly, the fixed points on the moduli space of spiked instantons need not be isolated, and
the formula (103) is used. It can be further localized to the set of torus-fixed points on
MkA (n A), which are relatively well-understood in the case n A = 1 [I,IY,L]. We shall
encounter these complications when dealing with gauge theories on C

2/� spaces, or
on the complex surfaces in the C4/�

′ × �
′′
spaces, with finite SU (2) subgroups �, �′,

�′′ ⊂ SU (2) of D or E type.

3.4. The main result. Here is the main fact about the partition function of spiked in-
stantons: the compactness theorem proven in [Ne3] implies Zspiked(a, ε̄) defined by

Zspiked(a, ε̄) =
∑

λ

Wλ (120)

has no singularities in the variables:

xA = 1

n A

n A∑

α=1
aA,α (121)

with fixed
ãA,α = aA,α − xA (122)

Remark. The reason we have to keep the majority of our variables fixed is the denomi-
nator �−12 in the perturbative prefactors Zpert,A

N=2∗ . Without it the partition function would
have been an entire function of all aA,α’s.
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4. Orbi Folding

In this section we discuss the partition function of the generalized gauge theories defined
on the orbifolds with respect to a discrete (finite) group�. Both the worldvolume and the
transverse space of the theory may be subject to the orbifold projection. Geometrically,
the action of � factors through the linear action in C4, which we assume to preserve the
Calabi–Yau fourfold structure:

ρgeom : � −→ SU (4) (123)

This construction ismotivated by the consideration ofD-branes onC4/�. As is explained
in [DM], the orbifold projection involves an action of � on the Chan-Paton spaces:

ρCP : � −→
A∈6

U (n A) (124)

which amounts to the decomposition:

NA =
⊕

�∈�∨
NA,� ⊗R� (125)

The global symmetry group H is reduced to the �-centralizer: the subgroup H� ⊂ H
which commutes with �. The particular cases of this construction are the quiver gauge
theories, the theories in the presence of special surface operators, possibly intersecting,
and the theories on the ALE spaces.

Theparameters of the partition functionof the orbifolded theory are (̃a, ε̃) ∈ LieTH�
⊗

C, where ã is in the Cartan subalgebra of the centralizer of the image ρCP(�) in (124),
while ε̃ is in the Cartan subalgebra of the centralizer of the image of ρgeom(�) in SU (4).
In addition, the fugacity q of the original model fractionalizes:

q −→ q = (q� )�∈�∨ (126)

4.0.1. Choices of discrete groups. Since we want the action of � to admit the invariant
complex two-planes supporting the strata (X A, G A) of the generalized gauge theories,
at least for one A ∈ 6, the choice of � is reduced to the following three possibilities:

(1) The abelian case:
� = �ab, (127)

represented in U (1)3ε ⊂ SU (4) with the help of the homomorphism ρgeom =
diag(ρa)a∈4:

ρa

[ (
e

2π
√−1mκ

plκ
κ

)

κ

]
= exp

(
2π
√−1

∑

κ

mκnκ
a

plκ
κ

)
(128)

where nκ
a = 0, . . . , plκ

κ − 1, and

∑

a∈4
nκ

a = plκ
κ nκ nκ ∈ Z , (129)
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The Chan-Paton representation (124) amounts to the choice of multiplicities n A,ν :

ρCP :
(

e 2π
√−1mκ p−lκ

κ

)

κ
�→ diag

(
∏

κ

e 2π
√−1mκ nκ p−lκ

κ · 1n A,ν

)

ν∈�∨ab

∈ U (n A)

(130)
where ν = (nκ)κ ∈ �∨ab labels the irreducible (one-dimensional) representations of
�ab. The centralizer H� is equal to

H� = U (1)3ε ×
ν∈�∨ab A∈6

U (n A,ν) , (131)

its maximal torus

TH�
= U (1)3ε ×

ν∈�∨ab A∈6
Tn A,ν , (132)

with Tn A,ν ⊂ U (n A,ν) the maximal torus of diagonal matrices.
Define [cf. (60)]:

N�ab =
⊔

A∈6,ν∈�∨ab

[n A,ν] = { (A, ν, α) | A ∈ 6, ν ∈ �∨ab, α ∈ [n A,ν] } (133)

(2) The abelian × ALE case:
� = �ab × �γ (134)

represented in SU (4) with the help of the homomorphism

ρgeom =
⎛

⎜⎝

ρ1 = ρlρr
ρ2 = ρlρ

−1
r

ρ34 = ρ−1l T2 ∈ U (2)34

⎞

⎟⎠ , (135)

with

ρα

[ (
e2π

√−1mκ p−lκ
κ

)

κ
× h

]
=
∏

κ

e 2π
√−1mκρκ

α p−lκ
κ ∈ U (1) , α = l, r

(136)
where ρκ

α = 0, . . . , plκ
κ − 1, and

ρ34

[ (
e2π

√−1mκ p−lκ
κ

)

κ
× h

]
=
∏

κ

e−2π
√−1mκρκ

l p−lκ
κ T2(h) (137)

with T2 the defining two-dimensional representation of SU (2) � �γ .
The irreducible representations of the group � = �ab×�γ are the tensor products:

R� = Lν ⊗ Ri , (138)

labelled by the pairs � = (ν, i), ν ∈ �∨ab, i ∈ Vertγ . With the choice (134) of �

the only non-trivial Chan-Paton spaces are N12 and N34. The choice of the Chan-
Paton representation ρCP in this case amounts to the choice of multiplicity spaces
N12,� , N34,� , i.e. the dimension vectors

n� = dimN12,� , w� = dimN34,� , (139)
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The centralizer

H� = U (1)2γ ×
�∈�∨

U (n� )×U (w� ) (140)

where U (1)2γ ⊂ U (1)3ε consists of the diagonal matrices of the form:

⎛

⎜⎜⎝

e
√−1ϑ1

e
√−1ϑ2

e−
√−1
2 (ϑ1+ϑ2) · 12

⎞

⎟⎟⎠ ∈ SU (4), (141)

Define [cf. (60), (133)], for � = �ab × �γ :

N� = N+
� � N−� (142)

with

N+
� =

⊔

�∈�∨
[n� ] =

{
(� , α) |� ∈ �∨, α ∈ [n� ]

}
, N−� =

⊔

i∈Vertγ
Ni,−

� ,

Ni,−
� =

⊔

ν∈�∨ab

[wi,ν] =
{
(i, ν, β) | ν ∈ �∨ab, β ∈ [wi,ν]

}
(143)

(3) The ALE × ALE case:
� = �ab × �γ ′ × �γ ′′ (144)

represented in SU (4) with the help of the homomorphism

ρgeom
[
t × h′ × h′′

] =
(

ρ(t) · T2(h′) 0
0 ρ(t)−1 · T2(h′′)

)
∈ SU (4),

with h′ ∈ �γ ′ , h′′ ∈ �γ ′′ , ρ ∈ �∨ab. The irreducible representations of � are the
tensor products

R� = Lν ⊗ R′i′ ⊗ R′′i′′ (145)

labelled by � = (ν, i′, i′′), where ν ∈ �∨ab, i′ ∈ Vertγ ′ , i′′ ∈ Vertγ ′′ , and R′, R′′
are the irreps of �γ ′ , �γ ′′ , respectively. Again, with the choice (144) of � the only
non-trivial Chan-Paton spaces are N12 and N34. The choice of the Chan-Paton repre-
sentationρCP in this case amounts to the choice ofmultiplicity spaces N12,� , N34,� ,
i.e. the dimension vectors

n� = dimN12,� , w� = dimN34,� , (146)

for � = (ν, i′, i′′
) ∈ �∨. The centralizer

H� = U (1)γ ′,γ ′′ ×
�∈�∨

U (n� )×U (w� ) (147)

where U (1)γ ′,γ ′′ ⊂ U (1)3ε consists of diagonal matrices of the form:
(

e
√−1ϑ · 12

e−
√−1ϑ · 12

)
∈ SU (4), (148)
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Define [cf. (60), (133), (142)], for � = �ab × �γ ′ × �γ ′′ :

N� = N+
� � N−� (149)

with N+
� =

⊔
i′∈Vertγ ′

Ni′,+
� , N−� = ⊔

i′′∈Vertγ ′′
Ni′′,−

� , and

Ni′,+
� =

⊔

ν∈�∨ab, i′′∈Vertγ ′′
[nν,i′,i′′ ] =

{
(ν, i′, i′′, α) | ν ∈ �∨ab, i′′ ∈ Vertγ ′′ , α ∈ [nν,i′,i′′ ]

}
,

Ni′′,−
� =

⊔

ν∈�∨ab, i′∈Vertγ ′
[wν,i′,i′′ ] =

{
(ν, i′, i′′, β) | ν ∈ �∨ab, i′ ∈ Vertγ ′ , β ∈ [wν,i′,i′′ ]

}

(150)

In what follows the expressions NA, K A etc. are promoted toNA, KA etc. which are
valued in K [TH�

] ⊗ K [�], i.e. they are the formal linear combinations:
∑

w∈T∨H�
, �∈�∨

nw,� Lw ⊗R� (151)

where Lw are the characters of TH�
, and R� are the irreducible representations of �.

Likewise, the “tangent space” character TA is promoted to TA ∈ K [TH�
] ⊗ K [�].

4.0.2. Orbifold partition functions. The definition of the partition function in the orb-
ifold situation is the following. The random variable is a string λ of objects, which
now involve both Young diagrams and connected components of the Nakajima–Young
varieties, specifically:
(1) In the abelian case the random variables are again the Young diagrams (partitions)

λ(A,ν,α) ∈ �, now labeled by triples: :

λab =
(

λ(A,ν,α)
)

A∈6, ν∈�∨ab, α∈[n A,ν ]
∈ �N�ab (152)

(2) In the abelian × ALE case the random variables are the collections of two types
of objects: Young diagrams as before, and the connected components of Nakajima–
Young varieties:

λab×ale =
( (

λ(� ,α)
)

�∈�∨, α∈[n� ]
;
(
μ(� ,β)

)

�∈�∨, β∈[w� ]

)

∈ �N+
� ×

i∈Vertγ

(
�i

γ

)Ni,−
�

(153)

with λ(� ,α) ∈ �, � ∈ �∨, μ((i,ν),β) ∈ �i
γ , for i ∈ Vertγ , ν ∈ �∨ab.

(3) Finally, in the ALE × ALE case the random variables are the collections of con-
nected components of Nakajima–Young varieties:

λale×ale =
( (

μ(� ,α)
)

�∈�∨, α∈[n� ]
;
(
μ̃(� ,β)

)

�∈�∨, β∈[w� ]

)
(154)

with μ(� ,α) ∈ �i′
γ ′(v

′), μ̃(� ,β) ∈ �i′′
γ ′′(v

′′), with � = (ν, i′, i′′), ν ∈ �∨ab, i′ ∈
Vertγ ′ , i′′ ∈ Vertγ ′′ .
We first describe the case of abelian orbifolds, and then proceed with the somewhat

more restricted case of the non-abelian orbifolds. In the latter case our formulas are less
explicit.
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4.1. Abelian orbifolds. We define the statistical model, which is parametrized by the
following generalization of the data of the Sect. 2:

(1) The string ε̄ = (εa)a∈4 of 4 complex numbers εa , a ∈ 4 which sum up to zero, as
in (59)

(2) The string ρgeom = (ρa)a∈4 of 4 irreducible �ab-representations ρa ∈ �∨ab obeying
∑

a∈4
ρa = 0 ∈ �∨ab (155)

In other words, ρ is a homomorphism �ab → U (1)3ε ⊂ SU (4), so that

�SU (4) =
⊕

a∈4
Lρa

(156)

We shall also use the notation ρS with S ⊂ 4 for the sum:

ρS =
∑

s∈S

ρs . (157)

so that ρ∅ = ρ4 = ρ0 and

∧•�SU (4) =
⊕

S⊂4
LρS

(158)

(3) The string n̄ of 6 �ab-representations

NA =
⊕

ν∈�∨ab

NA,ν ⊗ Lν, A ∈ 6 (159)

with the multiplicity spaces NA,ν ≈ C
n A,ν of dimensions n A,ν = dimNA,ν .

(4) The string ā = (aA,ν,α

)
α∈[n A,ν ],ν∈�∨ab

∈ C
N�ab of

∑

A∈6,ν∈�∨ab

n A,ν = #N�ab (160)

complex numbers aA,ν,α , α ∈ [n A,ν].
The data (ā; ε̄) parametrizes the Cartan subalgebra of the centralizer H�ab . Define,
for A = (ab) ∈ 6, a, b ∈ 4, a < b:

NA =
∑

ν∈�∨ab

∑

α∈[n A,ν ]
eβaA,ν,αLν =

∑

ν∈�∨ab

NA,ν(β)Lν (161)

(5) The string q = (qν)ν∈� of |�ab| =∏κ plκ
κ fugacities

qν ∈ C , ν ∈ �∨ab (162)

obeying |qν | < 1.
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Define, for S ⊂ 4:

PS,ν(β) =
∑

J⊂S

∏

a∈J

(−eβεa
)

δ�∨

(
−ν +

∑

a∈J

ρa

)
, PS =

∑

ν∈�∨
PS,ν LρS

(163)

Define, for λ ∈ �N�ab , A ∈ 6, A = (ab) as before:

KA =
∑

ν∈�ab
∨

∑

α∈[n A,
 ]

∑

(i, j)∈λ(A,ν,α)

eβ(aA,ν,α+εa(i−1)+εb( j−1)) Lν+ρa(i−1)+ρb( j−1)

=
∑

ν∈�∨ab

K A,ν(β)Lν (164)

4.1.1. The abelian orbifold model statistical weights. Define, for A = {a, b},a < b ∈ 4,
cf. (163)

TA =
∑

ν∈�∨ab

TA,νLν = NAK∗
A + qAKAN ∗

A ⊗ Lρ A
−KAK∗

APA. (165)

The statistical weight of λ is given by the following expression:

Z�ab
λ =

⎛

⎝
∏

ν∈�∨ab

qkν
ν

⎞

⎠ ε
[
−T �ab

λ

]
(166)

where

kν =
∑

A∈6,α∈[n A,ν ]
|λ(A,ν,α)| , (167)

T �ab
λ =

∑

A∈6, ν∈�∨ab

⎛

⎝Pϕ(A),−νTA,ν +
∑

ν′∈�∨ab

⎛

⎝PĀ,ν NA,ν′

⎛

⎝
∑

B �=A

K B,ν+ν ′

⎞

⎠
∗

− P4,ν K A,ν′

(
∑

B>A

K B,ν+ν′

)∗))
, (168)

and the full abelian orbifold partition function is defined as

Z�ab
spiked(ã, ρ, ε̄; q̃) = Zpert,�ab(ã, ρ, ε̄)

∑

λ

Z�ab
λ (169)

where the prefactor is given by the following formulas:
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4.1.2. The abelian orbifold gauge origami perturbative factors. Define:

Zpert,�ab(ã, ρ, ε̄) =
∏

A∈6
Zpert,A,�ab
N=2∗ (aA, ρa, ρb, ε̄)

×
∏

{a,b,c}⊂4
Zpert,a|bc,�ab
fold (aab, aac, ρa, ρb, ρc, ε̄)

×
∏

A∈6,A< Ā

Zpert,A,�ab
cross (aA, a Ā, ρ, ε̄) (170)

where (A = ab):

Zpert,A,�ab
N=2∗ (aA, ρ, ε̄)

=
∏

ν,ν ′∈�∨ab

∏

α∈[n A,ν ],α′∈[n A,ν′ ]

�2,�ab

(
aA,ν,α − aA,ν ′,α′ ; εa, εb

ν − ν′ ; ρa, ρb

)

�2,�ab

(
aA,ν,α − aA,ν′,α′ + εϕ(A) ; εa, εb

ν − ν′ + ρϕ(A) ; ρa, ρb

) (171)

where the projected double gamma

�2,�ab

(
x ; y′, y′′
ν ; ρ′, ρ′′

)
∼
∏

i, j≥1

(
x + y′(i − 1) + y′′( j − 1)

)δ�∨ab(ν+ρ ′(i−1)+ρ ′′( j−1))

(172)
can be easily expressed in terms of the ordinary �2’s,
•

Zpert,a|bc,�ab
fold (aab, aac, ρ, ε̄)

=
∏

ν,ν ′∈�∨ab

∏

α∈[nab,ν ]

∏

β∈[nac,ν′ ]
�1,�ab

(
aab,ν,α − aac,ν′,β + εa + εc ; εa

ν − ν′ + ρa + ρc ; ρa

)

(173)

where

�1,�ab

(
x ; y
ν ; ρ

)
∼

∞∏

i=1
(x + y(i − 1))

δ�∨ab (ν+ρ(i−1))
(174)

can be easily expressed in terms of the ordinary gamma-functions,
•

Zpert,A,�ab
cross (aA, a Ā, ρ, ε̄)

=
∏

ν,ν′∈�∨ab

∏

α∈[n A,ν ]

∏

β∈[nB,ν′ ]

(
aA,ν,α − a Ā,ν′,β + ε Ā

)δ�∨ab (ν−ν′−ρ A)

(175)
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4.2. The abelian × ALE case. Fix �ab, γ of D or E type. Let � = �ab × �γ . The
irreps of � are labelled by the pairs � = (ν, i), ν ∈ �∨ab, i ∈ Vertγ . Fix the discrete
data: the dimension vectors n = (n� )�∈�∨ , w = (w� )�∈�∨ , and the two characters
ρl , ρr : �ab → U (1). The orbifold gauge origami in this case depends on the following
continuous data:

(1) Two complex numbers ε1, ε2, and ε = ε1 + ε2.
(2) Two sets of Coulomb parameters: a = (aν,i,α) ∈ C

N+
� , b = (bν,i,β) ∈ C

N−�

aν,i,α ∈ C, α ∈ [nν,i], bν,i,β ∈ C, β ∈ [wν,i] (176)

(3) The string q = (q� )�∈�∨ of |�| fugacities:
q� ∈ C , |q� | < 1 (177)

The geometric action � → SU (4) defines the following three representations:

C
1
1 ≡ Lρl+ρr

, C
1
2 ≡ Lρl−ρr

, C
2
34 = L−ρl

⊗ 2, (178)

which obey
C
1
1 ⊗ C

1
2 ⊗�2

C
2
34 = R0 , (179)

the trivial representation. Write P4 = P12P34, with:

P12 = 1− q1C
1
1 − q2C

1
2 + eβεL2ρl

, P34 = 1− q−
1
2C

2
34 + q−1L−2ρl

. (180)

Finally, define

N =
∑

�∈�∨

∑

α∈[n� ]
eβa� ,α R� , W =

∑

�∈�∨

∑

α̃∈[w� ]
eβb� ,α̃ R� (181)

• The random variables λab×ale in the �-orbifold gauge origami model were defined in
(153). The statisticalweight ofλab×ale is an integral over the product ofNakajima–Young
varieties:

Xλab×ale =
ν∈�∨ab i∈Vertγ α̃∈[wν,i]

Yi
γ

(
μν,i,α̃

)
, μν,i,α̃ ∈ �i

γ (182)

Define

K =
∑

ν∈�∨ab,i∈Vertγ ,α∈[nν,i]

∑

(i, j)∈λ(i,
,α)

eβaν,i,α qi−1
1 q j−1

2 Lν+ρl (i+ j−2)+ρr (i− j) ⊗ Ri ,

(183)

T12 = NK∗ +N ∗KqL2ρl
− P12KK∗ =

∑

�∈�∨
T12,� R� (184)

so that, in particular

T12,ν,0 =
∑

i∈Vertγ

∑

ν′∈�∨ab

(
Nν+ν′,iK∗

ν′,i + qN ∗
2ρl+ν′,iKν+ν ′,i −Kν+ν′,iK∗

ν′,i

+q1Kν+ν′,iK∗
ρl+ρr+ν′,i + q2Kν+ν′,iK∗

ρl−ρr+ν′,i + qKν+ν′,iK∗
2ρl+ν′,i

)
. (185)



BPS/CFT, QQ-Characters, Gauge Origami 889

Define:

V =
∑

i,ĩ∈Vertγ

∑

ν∈�∨ab

∑

α̃∈[wν,i]

∑

n≥0
eβbν,i,α̃ q−

n
2 Ch

(
V i
ĩ,n

(μν′,i′,α̃)
)
Lν−nρl

⊗ Rĩ (186)

T34 = WV∗ + q−1W∗VL−2ρl
− P34VV∗ =

∑

�∈�∨
T34,� R� (187)

We view N ,W,K,V, T12, T34 as the K [TH�
] ⊗ K (�)-valued linear combinations of

Chern characters of vector bundles over Xλab×ale , as well as P1 = 1 − q1C1
1, P2 =

1− q2C1
2.

Themeasure (89) dressedwith a partial perturbative contribution, the orbifold version
of (175), is generalized to

Zpert
�,crosszλab×ale =

⎛

⎝
∏

�∈�∨
qk�

⎞

⎠
∫

Xλab×ale
ε
[
− [R0] Tλab×ale + [L0R0] Tλab×ale

]
,

(188)
where [cf. (57)]:

[R0]Tλab×ale = [R0]
(−q L2ρl N ∗W + T12 + P34NV∗ + P1T34 + P12WK∗ − P4KV∗

)

− q−
1
2 [R0]

∑

ν∈�∨ab

∑

e∈Edgeγ

(
Nν+ρl ,t (e)K∗

ν,s(e)

− Kν+ρl ,t (e)K∗
ν,s(e) − q Kν−ρl ,t (e)K∗

ν,s(e)

+ q1Kν−ρr ,t (e)K∗
ν,s(e) + q2Kν+ρr ,t (e)K∗

ν,s(e)

)
,

[L0R0]Tλab×ale = [L0R0]T34 = TXλab×ale (189)

and [R0](. . .) denotes taking the �-invariant part in (. . .), i.e. the contribution of the
trivial representation of �, while [L0R0]T [cf. (101)] denotes the TH�

× �-invariant
part. Geometrically, the TH�

×�-invariant [L0R0]T34 is the tangent space to the variety
Xλab×ale so its contribution is subtracted from the measure as the rest is being integrated
over Xλab×ale (note that L0R0 = L0R0 as �ab action is contained in TH�

). Finally,

kν,i =
∑

ν′∈�∨ab

⎛

⎝
∑

α∈[nν′,i]

∑

(i, j)∈λ(ν′,i,α)

δ�∨ab
(
ν′ + ρl(i + j − 2) + ρr (i − j)− ν

)

+
∑

i′∈Vertγ

∑

α̃∈[wν′,i′ ]

∑

n≥0
δ�∨ab

(
ν′ − nρl − ν

)
νi
′
i,n(μν′,i′,α̃)

⎞

⎠ (190)

Of course, this formalism also applies to γ = Âk . In this case the formulas (190),
(188) reduce to the ε3 = ε4 limit of the abelian orbifold case of crossed instantons
[Ne3].
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4.3. The ALE × ALE case. Fix �ab, and two quivers γ ′, γ ′′of D or E type. In this
section � = �ab × �γ ′ × �γ ′′ , with its irreps � = (ν, i′, i′′), ν ∈ �∨ab, i′ ∈ Vertγ ′ ,
i′′ ∈ Vertγ ′′ .

Fix the discrete data: the dimension vectors n = (n� )�∈�∨ , w = (w� )�∈�∨ , one
character ρ : �ab → U (1), equivalently a representation Lρ ∈ �∨ab. The orbifold gauge
origami in this case depends on the following continuous data:

(1) A complex number ε ∈ C.
(2) Two sets of Coulomb parameters [cf. (149)]:

a = (a� ,α) ∈ C
N+

� , b = (b� ,β) ∈ C
N−� , (191)

where a� ,α ∈ C, α ∈ [n� ], b� ,β ∈ C, β ∈ [w� ].
(3) The string q = (q� )�∈�∨ of |�| fugacities:

q� ∈ C , |q� | < 1 (192)

The geometric action � → SU (4) defines the following two representations:

C
2
12 ≡ Lρ ⊗ 2′, C

2
34 = L−ρ ⊗ 2′′ (193)

Define:

P12 = 1− q
1
2C

2
12 + qL2ρ, P34 = 1− q−

1
2C

2
34 + q−1L−2ρ (194)

• The random variables λale×ale in the �-orbifold gauge origami model were defined
in (154). The statistical weight of λale×ale is given by the integral over the product of
Nakajima–Young varieties

Xλale×ale =
ν∈�∨ab i′∈Vertγ ′ ,i′′∈Vertγ ′′

⎛

⎝
α∈[nν,i′,i′′ ]

Yi′
γ ′(μ

(ν,i′,i′′;α)) ×
β∈[wν,i′,i′′ ]

Yi′′
γ ′′(μ̃

(ν,i′,i′′;β))

⎞

⎠

(195)
with μ(� ,α) ∈ �i′

γ ′ , μ̃
(� ,β) ∈ �i′′

γ ′′ . Define

N =
∑

ν∈�∨ab,i′∈Vertγ ′ ,i′′∈Vertγ ′′

∑

α∈[nν,i′,i′′ ]
eβaν,i′,i′′;α Lν ⊗ R′i′ ⊗ R′′i′′ , (196)

K =
∑

i, i′ ∈ Vert
γ ′

i′′ ∈ Vert
γ ′′

ν ∈ �ab
∨

∑

n ≥ 0
α ∈ [nν,i,i′′ ]

eβaν,i,i′′;α q
n
2 Ch

(
V i′
i,n

(
μ(ν,i′,i′′;α)

))
Lν+nρ ⊗ R′i′ ⊗ R′′i′′

=
∑

�∈�∨
K� R� , (197)

T12 = NK∗ +N ∗KqL2ρ − P12KK∗ , (198)
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and

W =
∑

ν∈�∨ab,i′∈Vertγ ′ ,ĩ′′∈Vertγ ′′

∑

α̃∈[wν,i′,i′′ ]
eβbν,i′,i′′;α̃ Lν ⊗ R′i′ ⊗ R′′i′′ , (199)

V =
∑

i′ ∈ Vert
γ ′

ĩ, i′′ ∈ Vert
γ ′′

ν ∈ �∨ab

∑

n ≥ 0
α̃ ∈ [wν,i,i′′ ]

eβb
ν,i,ĩ;α̃ q−

n
2 Ch

(
Ṽ i′′
ĩ,n

(
μ̃(ν,i′,i′′;β)

))
Lν−nρ ⊗ R′i′ ⊗ R′′

ĩ

=
∑

�∈�∨
V� R� , (200)

T34 = WV∗ +W∗Vq−1L−2ρ − P34VV∗ , (201)

a K [TH�
]⊗ K (�)-valued linear combination of vector bundles over Xλale×ale , where the

vector bundles over Xλale×ale denoted with some abuse of notation by V i
i′,n

(
μ(ν,i′,i′′;α)

)
,

Ṽ ĩ
ĩ′′,n

(
μ̃(ν,i′,i′′;β)

)
are thepullbacks of thebundlesV i

i′,n

(
μ(ν,i′,i′′;α)

)
→ Yi

γ ′
(
μ(ν,i′,i′′;α)

)
,

V ĩ
ĩ′′,n

(
μ̃(ν,i′,i′′;β)

)
→ Yi

γ ′′
(
μ̃(ν,i′,i′′;β)

)
under the projections to the respective factors

in (195).
The measure (89) dressed with a partial perturbative contribution, the �-orbifold

version of (175), is now generalized to

Zpert
�,crosszλale×ale =

⎛

⎝
∏

�∈�∨
qk�

⎞

⎠
∫

Xλale×ale
ε
[
− [R0] Tλale×ale + [L0R0] Tλale×ale

]
,

(202)
where [cf. (57)]:

[R0] Tλale×ale = [R0]
(−q L2ρ N ∗W + T12 + P34NV∗ + T34 + P12WK∗ − P4KV∗

)

− [R0]
(

q−
1
2C

2
34NK∗ + q

1
2C

2
12WV∗ − q−

1
2C

2
34KK∗ − q

1
2C

2
12VV∗

)

−
∑

ν∈�∨ab

∑

e′∈Edgeγ ′

∑

e′′∈Edgeγ ′′

(
Kν,t (e′),s(e′′)K∗

ν,s(e′),t (e′′) +Kν,t (e′),t (e′′)K∗
ν,s(e′),s(e′′)

)

−
∑

ν∈�∨ab

∑

e′∈Edgeγ ′

∑

e′′∈Edgeγ ′′

(
Vν,s(e′),t (e′′)V∗ν,t (e′),s(e′′) + Vν,t (e′),t (e′′)V∗ν,s(e′),s(e′′)

)

[L0R0]Tλale×ale = [L0R0] (T12 + T34) = TXλale×ale (203)

and

kν,i,ĩ =
∑

ν′∈�∨ab

∑

n≥0

⎛

⎝
∑

i′∈Vertγ ′

∑

α∈[n
ν′,i′,ĩ]

δ�∨ab
(
ν′ + nρ − ν

)
νi
′
i,n(μν′,i′,ĩ;α)+

+
∑

ĩ′′∈Vertγ ′′

∑

α̃∈[w
ν′,i,ĩ′′ ]

δ�∨ab
(
ν′ − nρ − ν

)
ν ĩ
′′
ĩ,n

(μ̃ν′,i,ĩ′′;α̃)

⎞

⎟⎠ (204)
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To compute the measure (204) we use (19) to write:

[R0]
(
2′ ⊗ 2′′ ⊗KK∗)

=
∑

ν∈�∨ab

∑

e′∈Edgeγ ′

∑

e′′∈Edgeγ ′′

(
Kν,s(e′),s(e′′)K∗

ν,t (e′),t (e′′) +Kν,t (e′),s(e′′)K∗
ν,s(e′),t (e′′)

+Kν,s(e′),t (e′′)K∗
ν,t (e′),s(e′′) +Kν,t (e′),t (e′′)K∗

ν,s(e′),s(e′′)

)
(205)

and similarly for 2′ ⊗ 2′′ ⊗ VV∗. To compute, e.g. the contribution [R0] (P12WK∗) to
(204) we also use (19):

[R0]
(
P12WK∗)

=
∑

ν∈�∨ab

∑

i′′∈Vertγ ′′

⎧
⎨

⎩
∑

i′∈Vertγ ′

(
Wν,i′,i′′K∗

ν+ρ,i′,i′′ + qWν,i′,i′′K∗
ν+2ρ,i′,i′′

)

− q
1
2

∑

e∈Edgeγ ′

(
Wν,t (e),i′′K∗

ν+ρ,s(e),i′′ +Wν,s(e),i′′K∗
ν+ρ,t (e),i′′

)
⎫
⎬

⎭ (206)

4.4. The main fact. For all �, let us denote by

xA = 1∑
�∈�∨ n A,�

∑

�∈�∨

∑

α∈[n A,� ]
aA,� (207)

The partition function of the orbifold gauge origami, defined by (169) in the abelian
case, by

Z�
cross(a, b; ε1, ε2; q) =

∑

λab×ale

Zpert
�,crosszλab×ale (208)

in the abelian × ALE case,

Z�
cross(a, b; ε; q) =

∑

λale×ale

Zpert
�,crosszλale×ale (209)

in theALE×ALE case, has no singularities in the xA variables, with ãA,� = aA,� −xA
fixed. Again, this follows from the compactness theorem proven in [Ne3].

5. Conclusions and Outlook

The partition function of the gauge origami model, can be viewed as the expectation
value in theN = 2∗ U (n A) theory onC2

A of an operator. In the crossed case, NA NB = 0,
A ∩ B �= ∅, this operator is the qq-character of the Â0-type [Ne2]. In the orbifolded
crossed case this operator is the qq-character of the ĝγ -type. The orbifold partition
functions in the abelian case describe the Â-type quiver gauge theories on the A-type
ALE spaces in the presence of various surface defects invariant under the rotational
symmetries of the maximal �-deformation. In the abelian×ALE case these partition
functions describe either the qq-characters of the D̂ or Ê-type quiver gauge theories,
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possibly with the surface defects, or the Â-type quiver gauge theory on the D or E-type
ALE space, possibly with a novel type of surface defect (which collapses to a point-
like defect in the orbifold limit of the ALE space), and a qq-character. Finally, in the
ALE×ALE case we are dealing with the D̂ or Ê-type quiver gauge theories, on the D
or E-type ALE space, with the qq-characters and novel surface defects.

The physics of these defects will be discussed in the companion paper [Ne7].
The regularity of these expectation valueswill be used in the forthcoming publications

[Ne8,SX] to derive the KZ and BPZ equations [BPZ,KZ] on the partition functions of
supersymmetric gauge theories with and without surface operators.
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