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Abstract: It is well known that tensor models for a tensor with no symmetry admit a
1/N expansion dominated by melonic graphs. This result relies crucially on identifying
jackets, which are globally defined ribbon graphs embedded in the tensor graph. In
contrast, no result of this kind has so far been established for symmetric tensors because
global jackets do not exist. In this paper we introduce a new approach to the 1/N
expansion in tensor models adapted to symmetric tensors. In particular we do not use
any global structure like the jackets. We prove that, for any rank D, a tensor model
with two symmetric tensors and interactions the complete graph KD+1 admits a 1/N
expansion dominated by melonic graphs.
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1. Introduction and Discussion

The twomain families of tensor models for a non symmetric tensor1, the colored models
[3–7] and the general invariant models [8–10], have been thoroughly studied over the
past several years. Their 1/N expansion has been established in arbitrary rank [4–6,8–
11] and, for some models, non perturbatively [12]. Similar results hold for the multi-
orientable tensor model in rank 3 [13,14] In all cases, the large N limit is dominated
by melonic graphs [15]. The 1/N expansion in tensor models gives the third (and last)
universality class of such expansions, different from both the vector and the matrix case.
Starting from these results a new large D limit in models with a large number D of
matrices [16–18] has been discovered.

However, the first tensor models considered in the literature [19,20] were formulated
for symmetric tensors. In spite of the many successes of the theory of random non
symmetric tensors, until recently, there has been no result concerning the 1/N expansion
in the symmetric case. Developments in a very different area bring a renewed interest in
tensor models with symmetric tensors.

The Sachdev–Ye–Kitaev (SYK) model [21,22], which is a model of N fermions with
quenched random couplings, provides in the large N limit a one dimensional nearly
conformal field theory which is the CFT1 dual of a black hole in AdS2. This concrete
realization of the AdS/CFT duality has been studied in depth [23–28]. Themain feature
of the SYKmodel is that its large N limit is solvable. It turns out that this limit is solvable
because the SYK model is a tensor model in disguise: the random tensor is the tensor of
random couplings. As for all tensor models for which a large N limit has been proven to
exist, the large N limit of the SYK model is dominated by melonic graphs [23,24,29].
The melonic large N limit is universal [30] in non symmetric random tensors; hence it is
only natural to consider a tensor version of the SYKmodel [31–36]. Besides eliminating
the quenching, the tensor SYK models are genuine gauge theories and come equipped
with a full set of invariant observables, clarifying in particular the status of the singlets
in the usual SYK model. The 1/N corrections are also accessible in the tensor SYK
models [37,38]2.

A feature of tensor models for non symmetric tensors is that they have a rather large
gauge group consisting in many copies of the unitary or the orthogonal group [8]. In
order to have a gauge theory for only one copy of the unitary or the orthogonal group,
one would like to use symmetric or antisymmetric tensors.

The problem is that no result concerning the 1/N expansion for models with sym-
metric or antisymmetric tensors has so far been established. In fact, if a large N limit
exists for models with one symmetric tensor, it cannot be dominated by melonic graphs:
symmetric tensors generate a family of pathological graphs, which scale faster with N
than the melonic family.

An elegant solution to this problem has been proposed recently by Klebanov and
Tarnopolsky [39] the authors considered a model for a symmetric traceless tensor. The
“tracelessness” condition eliminates the pathological graphs at low orders (up to order 8
[39]). This led the authors to conjecture that tensor models for symmetric traceless (and
antisymmetric) tensors in rank 3 have a 1/N expansion dominated by melonic graphs.

Proving this conjecture is impossible with themethods developed for the study of non
symmetric tensors. Indeed, for non symmetric tensors one relies entirely on identifying

1 See [1,2] for the algebraic properties of non symmetric tensors.
2 We note however that the results of [38] in this direction are only partial as they ignore the effect of the

explicit breaking of conformality in the leading order four point function [23].
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jackets, which are global ribbon graph embedded in the tensor graphs. Jackets do not
exist for symmetric or antisymmetric tensors.

In this paperwe introduce a new approach to the 1/N expansion adapted to symmetric
(and antisymmetric) tensors. Crucially, we do not introduce any global structure like the
jackets, but only local moves on the graphs that can be controlled.

We study here a model with two symmetric tensors in arbitrary rank. This is done for
convenience. Indeed, while the same method is expected to work for one antisymmetric
or symmetric traceless tensor, it is significantly more complicated to check. Using two
tensors has several consequences:

• the graphs of the model are bipartite which drastically simplifies the analysis,
• in the symmetric case, the tensors need not be traceless and the propagator has only

6 terms (in rank 3) and not 15 (see [39]).

Using this method to establish the 1/N expansion for models with one antisymmetric
or one symmetric traceless tensor is straightforward. However, as establishing the 1/N
expansion in the bipartite case is already somewhat involved, this generalization is
expected to be quite challenging.

2. The Model and its Feynman Graphs

From now on D denotes an integer larger or equal to 3. We consider two real symmetric
tensors of rank D, denoted T and P , transforming in the fundamental representation of
the orthogonal group O(N ):

T O
a1...aD =

∑

b1,...bD

Oa1b1 . . . OaDbDTb1...bD , Ta1...aD = Taσ(1)...aσ(D)
,

PO
a1...aD =

∑

b1,...bD

Oa1b1 . . . OaDbD Pb1...bD , Pa1...aD = Paσ(1)...aσ(D)
,

for any O ∈ O(N ) and σ ∈ S(D) permutation of D elements. The action of the two
tensor model with KD+1 interaction in rank D = 3 is:

S(T, P) =
∑

a1,a2,a3

Ta1a2a3 Pa1a2a3 +
λ

N 3/2

∑

a1...a6

Ta1a2a3Ta3a4a5Ta5a2a6Ta6a4a1

+
λ

N 3/2

∑

a1,...a6

Pa1a2a3 Pa3a4a5 Pa5a2a6 Pa6a4a1 , (1)

while in arbitrary rank D it is3:

S(T, P) =
∑

a1,...,aD

Ta1...aD Pa1...aD +
λ

ND(D−1)/4

∑

ai j

(
D∏

i=0

Taii⊕1...aii⊕D

)
∏

0≤i< j≤D

δai j a ji

+
λ

ND(D−1)/4

∑

ai j

(
D+1∏

i=1

Paii⊕1...aii⊕D

)
∏

0≤i< j≤D

δai j a ji , (2)

3 In all rigor one defined the model as the ε → 0 limit of a model with covariance

(
ε ı
ı ε

)
. We will spare

the reader such tedious details.
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....

Fig. 1. The vertex and propagator of the model for D = 3, and the vertex and some of the contributions to the
propagator in D = 4

where ⊕ denotes addition modulo D + 1. Observe that if one represents each tensor as
a vertex and each contraction of two indices as an edge, the contraction pattern of the
indices in the interaction term reproduces the complete graph with D+1 vertices, KD+1.
The action has an O(N ) gauge invariance, S(T O , PO) = S(T, P) for any O ∈ O(N ).
We stress that the gauge group is just one copy of the orthogonal group. Our aim is to
evaluate the two point function of the model:

1∫ [dTdP] e−S(T,P)

∫
[dTdP] 1

ND

(
∑

a1...aD

Ta1...aD Pa1...aD

)
e−S(T,P) .

The two point function is a sum over connected, stranded Feynman graphs, where
each strand represents an index of the tensor [3,4,6]. One edge of the graph is marked
with an oriented arrow and represents the insertion

∑
a1...aD Ta1...aD Pa1...aD (and the

arrow is oriented from T to P). The vertex and the propagator of the model in D = 3
and 4 are depicted in Fig. 1.

Due to the symmetry of the tensors there are D! distinct contributions to the propa-
gator:

〈
Ta1...aD Pb1...bD

〉
0 = 1

D!
∑

σ∈S(D)

D∏

i=1

δai bσ(i) ,

where the subscript zero indicates that the expectation is taken at λ = 0. In D = 3 for
instance the propagator is the sum of six terms:

1

6
δa1b1(δa2b2δa3b3 + δa2b3δa3b2) +

1

6
δa1b2(δa2b1δa3b3 + δa2b3δa3b1)

+
1

6
δa1b3(δa2b1δa3b2 + δa2b2δa3b1).

The D strands of the propagator always connect an index at one end of the propagator
to an index at the other end. This is different from the traceless model of [39], where
indices on the same side of the propagator can be connected by a strand (the 9 extra
terms one can find in the propagator of [39]). Adding such terms is quite tedious, and
this is one of the challenges of dealing with models with only one tensor. However, we
stress that these 9 extra terms are crucial in the one tensor case, as they actively kill the
pathological contributions in the Feynman expansion. Luckily, the two tensor model we
deal with here does not generate the pathological contributions to begin with and one
can just use symmetric tensors with no tracelessness condition.
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TheFeynmangraphs are built by gluing stranded propagators on the stranded vertices:
strands are glued together and ultimately close into the faces of the graph. Observe that,
as the propagator only connects a T and a P , the Feynman graphs are bipartite. This
will prove crucial later on.

When computing the Feynman amplitude of a connected graph one obtains a free
sum over an index for every face of the graph and an explicit scaling factor for every
vertex. Denoting V (G) the number of vertices of a connected graphG, F(G) the number
of its faces, and taking into account the explicit prefactor N−D the amplitude of G is:

N−D− D(D−1)
4 V (G)+F(G) ≡ N−ω(G) ,

where we define the degree of a connected graph to be:

ω(G) = D +
D(D − 1)

4
V (G) − F(G) , (3)

and the degree of a disconnected graph to be the sum of the degrees of its connected
components.

In principle the degree ω(G) of a graph G can be any integer4: positive, zero or
negative. A tensor model has a 1/N expansion if, for all the graphs, the degree is non
negative and there exist graphs of degree 0. This ensures that the two point function of
the model has a non trivial large N limit. If the two point function has a non trivial large
N limit, then the free energy per degree of freedom and the expectations of invariant
observables will also have non trivial large N limits.

Non symmetric tensors. Let us briefly recall how the 1/N expansion works for non
symmetric tensors [3,4,6,8,9] The Feynman graphs can still be represented as stranded
graphs (although more concise representations as colored graphs exist), but in the
stranded representation all the propagators have parallel strands. Using this, one can
define global jacketswhich are ribbon graphs embedded in a tensor graph and use them to
count the number of faces. It turns out that the degree is the average genus of the jackets,
hence, in particular, non negative. It follows that the tensor models for non symmetric
tensors admit a 1/N expansion. This works for the colored models [4,6], the invariant
models [8,10] and the multi orientable model [13,14].

The leading order graphs (of degree 0) are called [15]melonic and have a very simple
structure. Several equivalent definitions of melonic graphs exist [11,15]. Observe that
the zero order contribution to the two point function is represented as a graph with no
vertex, consisting in one (marked) edge closing onto itself. We call this graph the ring
graph. It is the melonic graph of degree 0.

Definition 1 (See Fig. 2). A graph G is called melonic if:

• either G is the ring graph,
• orG can be obtained from amelonic graphG ′ with strictly fewer vertices by inserting

two vertices connected by D edges on one of the edges of G ′.

For tensor models of rank D, the vertices should be interpreted as stranded vertices
and the edges as stranded edges with D parallel strands. It is easy to check that all the
melonic graphs have degree zero. It is slightly less trivial to show [15] that for non
symmetric tensors a graph of degree zero must be melonic.

4 The number of vertices of any graph is even as the graphs are bipartite.
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Fig. 2. The (melonic) ring graph and a more complicated melonic graph for D = 3

Fig. 3. A graph with no jackets in D = 3

The key to the 1/N expansion for non symmetric tensors is the existence of the
jackets. For example in D = 3 the simplest jacket [40] (there are another two jackets
for D = 3 [4]) is obtained by deleting the middle stands on all the propagators. As the
propagators all have parallel strands, a middle strand will always connect to a middle
strands, and deleting the middle strands leaves just the outer strands on all the vertices
which form a well defined ribbon graph.

Symmetric tensors.All this fails if the tensors have some symmetry properties. Indeed,
for symmetric or antisymmetric tensors one must allow an arbitrary permutation of the
strands along the propagators. In this case there is no notion of “middle” and “outer”
strands, and no way to obtain a ribbon graph embedded in the tensor graph. For instance,
in the case presented inFig. 3, if one attempts to delete the blue face, one obtains a residual
graph which has one propagator with three strands, and another three propagators with
only one strand.

For this reason, if one wants to establish the 1/N expansions in models involving
symmetric or antisymmetric tensors, one needs to find a completely new approach to
the problem. This is what we do in this paper.

3. The 1/N Expansion for Two Symmetric Tensors

Embeddings. Using the symmetries of the tensors one can always embed the graphs
in the plane in a convenient manner. Any edge connects a vertex T and a vertex P . By
permuting the half edges around one of the vertices, an edge can always be embedded
such that all the strands of the edge are parallel. There are D! such embeddings corre-
sponding to a simultaneous permutation of all the half edges on T and all the half edges
on P .

In fact, for any combinatorial tree in a graph, one can always chose an embedding
such that all the edges in the tree are embedded with parallel strands. This is done by
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Fig. 4. Ring graphs

untwisting the edges starting from some arbitrary root vertex. This fixes iteratively the
order of the half edges around every vertex in the graph. We stress that the choice of the
combinatorial tree fixes the embedding as a plane tree, that is the remaining half edges of
the graph have assigned positions around the vertices of the tree. The loop edges, which
pair the remaining half edges together, are then embedded with nontrivial permutations
of strands and can cross5.

Rings. As arbitrary permutations of the strands are allowed one obtains D! ring graphs.
They have no vertices (indeed they are the only “bipartite” stranded graphs with zero
vertices) and atmost D faces, hence, fromEq. (3), have non negative degree.We depicted
in Fig. 4 the ring graphs in D = 3. They have degrees, from left to right 0, 1 and 2.

The ring graph with identity permutation on the strands is the only one which has
exactly D faces and degree 0. We call it the melonic ring graph.

Graphs with two vertices. As the graphs are bipartite, a graph with two vertices has
D+1 edges which connect the two vertices (in particular the graph is always connected).

Lemma 1. A graph G with two vertices has non negative degree.

Proof. A vertex contributes
(D+1

2

)
corners to the faces. If a graph has two vertices, it has

a total of 2
(D+1

2

)
corners and, as a face has at least two corners, we have:

F(G) ≤
(
D + 1

2

)
⇒ ω(G) ≥ D +

D(D − 1)

4
2 −

(
D + 1

2

)
= 0 .


�
Remark 1. Graphs with two vertices and degree 0. Let us consider a graph with two
vertices and degree zero. This graph can always be embedded in the plane in such a way
that all the edges have parallel strands as in Fig. 5. In order to show this, let us introduce
some notation.

We label the two vertices of the graph T and P and we label the marked edge 0 (with
the arrow pointing from T to P). We can always embed the graph is the plane is such a
way that all the strands of the edge 0 are parallel. This fixes the order of the remaining
half edges around both vertices6. Starting from the edge 0, we label the half edges
1T , . . . DT turning counterclockwise around the vertex T and respectively 1P , . . . DP
turning clockwise around the vertex P . Every strand going through the vertex T belongs
to two half edges of T and forms a corner. We label a strand (and the corresponding
corner) by the couple of labels of the half edges: for instance 0T 1T denotes the strand
common to the half edges 0T and 1T on T and so on.

5 One can eliminate the crossing by embedding in a higher genus surface but the permutations of the strands
can not be eliminated.

6 Up to an irrelevant simultaneous permutation of the half edges on T and P .



992 R. Gurau

T P0
3
2
1

0

3

2

1

Fig. 5. The melonic graph with two vertices in D = 3

Now, every face has two corners. For any C = 1, . . . D, the corner 0TCT and CP0P
are connected along the edge 0, and they must be connected by a second edge, hence
necessarily the half edges CT and CP are connected by an edge. We label this edge C .
Finally, for every C1,C2 �= 0, the corner C1

TC
2
T belongs to a face which goes trough the

edges C1 and C2. As every face has length two, this face must close trough one corner
of the vertex P , but the only corner common to the halfedgeC1

P andC2
P isC1

PC
2
P . Using

this iteratively proves that all the edges C are embedded with parallel strands.

Because arbitrary permutations of the strands are allowed, we must adapt the defini-
tion of melonic graphs to our case.

Definition 2. A graph G is called melonic if it admits an embedding such that:

• either G is the melonic ring graph,
• orG can be obtained from amelonic graphG ′ with strictly fewer vertices by inserting

two vertices connected by D parallel (embedded) edges with parallel strands on one
of the edges of G ′.

We have so far proven that the graphs with zero or two vertices have non negative
degree and they have zero degree if only if they are melonic in the sense of Definition 2,

Graphs with more than two vertices. We turn our attention to general graphs. Let us
denote Fq(G) the number of faces with q corners (i.e. of length q) of a graphG. Observe
that, as G is bipartite, the faces can only have even length. The faces of length 2 play a
distinguished role.

Lemma 2. If a nontrivial connected graph G has no face of length two, then it has
strictly positive degree.

Proof. A vertex contributes D(D+1)
2 corners to the faces, hence:

2F2(G) + 4F4(G) + · · · = D(D + 1)

2
V (G) ,

and if F2(G) = 0 we have:

ω(G) ≥ D +
D(D − 1)

4
V (G) − D(D + 1)

8
V (G) = D +

D(D − 3)

8
V (G) > 0 .


�
A more refined statement can be made.
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Proposition 1. Consider a connected graph G with more than two vertices and assume
that for every vertex in G, at most

(D−1
2

) − 1 corners belong to faces of length two and
the remaining corners belong to faces of length at least four. Then G has strictly positive
degree.

Proof. We can rewrite the relation between the length of the faces of G and the number
of vertices of G as:

2F2(G) + 4F4(G) + 6F6(G) . . . =
(
D + 1

2

)
V (G) ⇒

4F4(G) + 6F6(G) + . . . =
(
D + 1

2

)
V (G) − 2F2(G) .

The total number of faces of a graph is then bounded by:

F(G) = F2(G) + F4(G) + F6(G) + . . .

≤ F2(G) +
1

4

[(
D + 1

2

)
V (G) − 2F2(G)

]
= 1

4

(
D + 1

2

)
V (G) +

1

2
F2(G) ,

and consequently the degree is bounded by:

ω(G) = D +
D(D − 1)

4
V (G) − F(G) ≥ D +

D(D − 3)

8
V (G) − 1

2
F2(G) .

Now, let us assume that at most
(D−1

2

)−1 corners of any vertex belong to faces of length

two. Then F2(G) ≤ 1
2

[(D−1
2

) − 1
]
V (G), and:

ω(G) ≥ D +
D(D − 3)

8
V (G) − 1

4

[(
D − 1

2

)
− 1

]
V (G) = D .


�
If the conditions in the hypothesis of Proposition 1 are not met, we have the following

result.

Proposition 2. If a connected graph with more than two vertices G has a vertex such
that at least

(D−1
2

)
corners of the vertex belong to faces of length two, then there exists

a (possibly disconnected) graph G ′ having strictly fewer vertices such that the degree
of G ′ is not larger than the one of G, ω(G ′) ≤ ω(G).

Proof. See Sect. 4 
�
We emphasize that G ′ can be disconnected and some of its connected components

can be ring graphs. The 1/N expansion of the model defined by Eq. 1 and Eq. (2) is
encoded in the following theorem.

Theorem 1. For any connected graph G, ω(G) ≥ 0.

Proof. If G has no vertex such that at least
(D−1

2

)
corners of the vertex belong to faces

of length two, we conclude by Proposition 1. If G has such a vertex, from Proposition 2
its degree is greater or equal than the one of a (possibly disconnected) graph G ′ having
fewer vertices. We iterate on the connected components of G ′. The end graphs of the
iteration either have no vertex such that at least

(D−1
2

)
of its corners belong to faces of

length two, hence have strictly positive degree from Proposition 1, or they have exactly
two vertices, hence have non negative degree by Lemma 1. 
�

The rest of this paper is quite technical.
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4. Proof of Proposition 2

4.1. Dipoles. Any face of length two is bounded by two edges connecting a pair of
vertices. The converse however is not true: not any pair of edges connecting two vertices
bounds a face of length two.

Definition 3. For D ≥ q ≥ 2, we call a q-dipole two vertices (T and P) connected by
exactly q edges. We call the q parallel edges internal and the other 2(D + 1− q) edges
hooked to the vertices of the dipole external.

A q-dipole has:

• qD strands of length one coming from the internal edges.
• 2

(q
2

)
internal corners formed by the internal edges:

(q
2

)
on the vertex T and

(q
2

)
on

the vertex P .
• 2q(D+1−q)mixed corners formed by an internal and an external edge: q(D+1−q)

with the external edges incident at the vertex T and q(D + 1− q) with the external
edges incident at the vertex P .

• 2
(D+1−q

2

)
external corners formed by couples of external edges:

(D+1−q
2

)
between

the external edges incident at T and
(D+1−q

2

)
between the external edges incident at

P .
• F int internal faces which only pass through internal corners.
• 2

(D+1−q
2

)
vertical external faces passing through only one external corner each,

which connect external edges on the same side of the dipole (either both on T or
both on P).

• q(D+1−q) horizontal external faces involving either only mixed corners or mixed
and internal corners. The horizontal faces can connect either two external edges on
different sides of the dipole or two external edges on same side of the dipole. A
horizontal external face which connects a T and a T (or a P and a P) has even
length, and it has odd length if it connects a T and a P .

As the internal faces have at least length two, F int ≤ (q
2

)
. If F int = (q

2

)
we say that

the dipole is saturated (and in this case all the internal faces have length exactly two),
and we say it has deficit

(q
2

) − F int if not.

4.2. D-dipoles. We first assume that the graph G (which by the hypothesis of Proposi-
tion 2 has a vertex such that at least

(D−1
2

)
corners of the vertex belong to faces of length

two) has a D-dipole. We then conclude by the following Proposition.

Proposition 3. If a graph connected graph G has a D-dipole (saturated or not), then
there exists a connected graph G ′ having strictly fewer vertices such that the degree of
G ′ is not larger than the degree of G, ω(G ′) ≤ ω(G).

Proof. Let us label the external half edges of the D-dipole by 0T and 0P , and the internal
edges 1, 2 . . . D. The dipole has F int internal faces, D horizontal external faces and no
vertical external face. Among the horizontal external faces t ≥ 0 traverse the dipole
from 0T to 0P , and 2p = D− t do not, hence they return and close on the same external
half edge (see Fig. 6, bottom left).

A D-dipole can be deleted by deleting the two vertices T and P and all the internal
faces of the dipole, and reconnecting the external half edges by strands which traverse.
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T P...

0

D

1

0 0

0 0 0

...

Fig. 6. A D-dipole and its deletion

For this reconnection we keep in place all the traversing strands, and pick any pairing
of left and right returning strands, which we break and reconnect by two traversing
strands (see Fig. 6, bottom right). At the end of this procedure we obtain a graph G ′
having V (G ′) = V (G) − 2 and F(G ′) ≥ F(G) − F int − p because every reconnection
of returning external strands deletes at most a face of G. Every propagator brings D
strands of length 1, therefore we have a total of D2 strands. They divide into internal
faces (each of which has length at least 2) and external strands. The external strands
have either odd length, in which case they are traversing, or even length, in which case
they are returning. We obtain:

F int ≤ 1

2

[
D2 − t − 4p

]
.

It follows that:

ω(G ′) ≤ D +
D(D − 1)

4

[
V (G) − 2

]
−

[
F(G) − F int − p

]
≤ ω(G) +

D − t − 2p

2
,

therefore, as D = t + 2p, the degree can not increase with the deletion. 
�

4.3. Graphs with no D-dipoles. We now assume that the graph G does not have any
D-dipole. Then any two vertices in G can be connected by at most D − 1 edges.

By the hypothesis of Proposition 2, G has a vertex such that at least
(D−1

2

)
corners of

the vertex belong to faces of length two. As a function of the dimension we have several
cases:

For D = 3. In order for a vertex in G to be incident to at least a face of length 2, the
vertex must belong to a saturated 2-dipole.

For D = 4. In order for a vertex in G to be incident to at least 3 faces of length 2, the
vertex must:

• belong to a saturated 3-dipole,
• or belong to a 3-dipole with deficit 1 and to another saturated 2-dipole.

Indeed, if a vertex belongs to a 3-dipole with deficit at least 2, then even adding
a saturated 2-dipole can not add enough faces of length two on the vertex. If
the graph has no 3-dipoles then a vertex can belong to at most two saturated
2-dipoles, hence be incident to at most two faces of length two.

For D = 5. In order for a vertex in G to be incident to at least 6 faces of length 2, the
vertex must:
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D=4,5,6,...

D=5
...

deficit 1

...D=3,4,5,6,... ...

saturated

saturated

saturated

saturated

Fig. 7. All the cases of vertices incident to at least
(D−1

2
)
faces of length two in a graph with no D-dipoles

• belong to saturated 4-dipole,
• or belong to a 4-dipole with deficit 1 and to another saturated 2-dipole,
• or belong to two saturated 3-dipoles.

Indeed, if a vertex belongs to a 4-dipole with deficit at least 2, then even adding
a saturated 2-dipole can not add enough faces of length two on the vertex. If a
vertex does not belong to a 4-dipole, then it can belong to two different 3-dipoles,
but if at least one of them is not saturated, then the vertex is incident to at most
5 faces of degree two. In all other cases, at most 3 faces of length two can meet
at the vertex.

For D ≥ 6. In order for a vertex in G to be incident to at least
(D−1

2

)
faces of length 2,

the vertex must:
• belong to a saturated (D − 1)-dipole,
• or belong to a (D − 1)-dipole with deficit 1 and to another saturated 2-dipole.

Indeed, if a vertex belongs to a (D − 1)-dipole with a larger deficit, then even
adding a saturated 2-dipole can not add enough faces of length two on the vertex.
If a vertex does not belong to a (D − 1)-dipole, then the largest number of faces
of length two incident at the vertex is attained if the vertex belongs to a saturated
(D − 2)-dipole and a saturated 3-dipole, and this number is:

(
D − 2

2

)
+ 3 ≤

(
D − 1

2

)
− 1 .

The situation is presented in Fig. 7.

4.3.1. Saturated (D − 1)-dipole. If G has a saturated (D − 1)-dipole we conclude by
the following Proposition.

Proposition 4. If a connected graph G has a saturated (D−1)-dipole, then there exists
a (possibly disconnected) graph G ′ having strictly fewer vertices such that the degree
of G ′ is not larger than the degree of G, ω(G ′) ≤ ω(G).

Proof. Let us label the external half edges of the (D − 1)-dipole by 0T , 1T and 0P , 1P .
As the dipole is saturated, all the 2

(D−1
2

)
internal corners are paired into

(D−1
2

)
internal

faces of length 2. The dipole has two vertical external faces going through one external
corner each. The horizontal external faces can not go through any internal corner (as none
is available), hence always connect two mixed corners. This can also be seen as follows:
the edges bring a total of D(D − 1) strands of length 1, out of which (D − 1)(D − 2)
belong to the internal faces. As 4(D − 1) mixed corners must be paired and there are
exactly 2(D − 1) remaining strands, it follows that all the horizontal external faces of
the dipole have length 1, and they connect one of the half edges 0T or 1T with one of
the half edges 0P and 1P in one step.
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0 0

1 1

...

T P

1

0
D

2

0

1

0 0

1 1

0 0

1 1

D

D

Fig. 8. A saturated (D − 1)-dipole and its deletion

After at most a relabeling (if needed) of the half edges OP and 1P , two of the
horizontal external faces of the dipole will be 0T DT DP0P and 1T DT DP1P . In Fig. 8
we presented a saturated (D − 1)-dipole and, at the bottom left, its external faces.

The vertical external faces connect 0T with 1T and 0P with 1P . Any edge C =
2, . . . D − 1 of the dipole has exactly D − 2 strands involved in the internal faces and
2 strands forming two horizontal external faces. The horizontal external faces always
go from left (T ) to right (P). If 0TCT is connected to CP0P (respectively CP1P ) by a
strand of the edge C then, as C has D strands but D − 2 of them are involved in the
internal faces, 1TCT must connect to CP1P (respectively Cp0P ).

If we are in the case 0TCTCP0P and 1TCTCP1P we say that the couple of faces
is parallel (as they are parallel with the two horizontal external faces 0T DT DP0P and
1T DT DP1P ) and we denote the number of such couples of external faces t|| (including
the couple of faces 0T DT DP0P and 1T DT DP1P ). If not, we say that the couple of
faces is crossing, and we denote the number of couples of faces which are crossing by
t×. We have:

1 ≤ t|| ≤ D − 1 , 0 ≤ t× ≤ D − 2 , t|| + t× = D − 1 .

A saturated (D − 1)-dipole can be deleted by deleting the two vertices T and P and
all the internal faces of the dipole and reconnecting the external half edges to form two
new edges. This can be done in two ways:

The parallel channel. In the parallel channel one joins the half edge 0T with the half
edge 0P and the half edge 1T with the half edge 1P . The parallel horizontal external
faces are left untouched, but the crossing horizontal external faces (and the two
vertical external faces) are opened and reconnected as depicted inFig. 8.Oneperforms
t× + 1 reconnections in this case.

The crossing channel. In the crossing channel one joins the half edge 0T with the half
edge 1P and the half edge 1T with the half edge 0P . The crossing horizontal external
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faces are left untouched, but the parallel horizontal external faces (and the two vertical
external faces) are opened and reconnected as depicted in Fig. 8. One performs t|| +1
reconnections in this case.

Each reconnection can at most decrease the number of faces by 1 (if the two faces
of G involved in the reconnection are different). However, if the two strands which are
broken and reconnected belong to the same face of G, the reconnection can create a face
and increase the number of faces by 1 or it can leave it unchanged. The graph G ′ can
have two connected components in which case we say that the deletion is separating.
We have several cases:

The case t× = 0. If t× = 0, we perform a deletion in the parallel channel. Two sub
cases arise:

• Separating deletion. If the deletion is separating, thenG splits into two connected
components:G ′

0 containing the new edge 0 andG ′
1 containing the new edge 1. In

this case, following the vertical external face of the dipole 1T 0T in G as it enters
the (future) connected component G ′

0, we notice that it can exit G
′
0 only through

the second vertical external face of the dipole 0P1P , hence the breaking and
regluing of the vertical external strands will split a face of G into two different
faces in G ′ = G ′

0 ∪ G ′
1 and F(G ′

0) + F(G ′
1) = F(G) − (D−1

2

)
+ 1, thus:

ω(G ′
0) + ω(G ′

1) = 2D +
D(D − 1)

4

[
V (G) − 2

]
−

[
F(G) −

(
D − 1

2

)
+ 1

]

= ω(G) .

• Non separating deletion If the deletion is non separating, then F(G ′) ≥ F(G)−(D−1
2

) − 1 and:

ω(G ′) ≤ D +
D(D − 1)

4

[
V (G) − 2

]
−

[
F(G) −

(
D − 1

2

)
− 1

]

= ω(G) − D + 2 < ω(G) .

The case t× ≥ 1. If t× ≥ 1, we can perform a deletion in either of the two channels.
Observe that the deletion can not be separating in both channels at
the same time. Choosing a channel which is not separating we have:

parallel channel: ω(G ′) ≤ D +
D(D − 1)

4

[
V (G) − 2

]

−
[
F(G) −

(
D − 1

2

)
− t× − 1

]

= ω(G) − D + 2 + t× ≤ ω(G) ,

crossing channel: ω(G ′) ≤ D +
D(D − 1)

4

[
V (G) − 2

]

−
[
F(G) −

(
D − 1

2

)
− t|| − 1

]

= ω(G) − D + 2 + t|| = ω(G) − t× + 1 ≤ ω(G) .


�
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4.3.2. (D−1)-dipole with deficit 1 and saturated 2-dipole. If G has a vertex belonging
to a (D−1)-dipolewith deficit 1 and to a saturated 2-dipolewe conclude by the following
Proposition.

Proposition 5. For D ≥ 4, if a connected graph G has a vertex belonging to a (D− 1)-
dipole with deficit 1 and to a saturated 2-dipole, then there exists a connected graph
G ′ having strictly fewer vertices such that the degree of G ′ is strictly smaller than the
degree of G, ω(G ′) < ω(G).

Proof. Weuse the same notation as in Proposition 4 and assume that the vertex belonging
to a saturated 2-dipole is T : the only way for T to have

(D−1
2

)
corners belonging to faces

of length two is for the corner 0T 1T to belong to such a face.
Let us detail the structure of the (D − 1)-dipole. As it has exactly

(D−1
2

) − 1 faces of
length two, several cases are possible:

Short horizontal faces.
(D−1

2

) − 2 internal corners on each vertex are paired in faces
of length two, and the remaining 4 internal corners (2 on each vertex) all belong
to the same internal face of length 4. The analysis of Proposition 4 goes through:
the horizontal external faces can not go through any internal corner (as none is
available), hence always connect two mixed corners directly. Every edge C has two
mixed corners at each end of the edge 0TCT and 1TCT respectivelyCP0P andCP1P ,
which are connected either parallel or crossing. The external faces of the dipole have
the same structure as in the case of the saturated (D−1)-dipole, reproduced in Fig. 9.

Long horizontal faces. Another possibility is to have
(D−1

2

) − 1 internal corners on
each vertex paired in faces of length 2. The two remaining internal corners areC1

TC
2
T

andC1
PC

2
P for someC1 �= C2,C1,C2 ∈ {2, . . . D}. As D ≥ 4, one can always chose

C1,C2 �= D and embed the edge D with parallel strands as before. The edgesC1 and
C2 only have D − 3 strands belonging to internal faces, and 3 strands belonging to
the external faces. The edges C �= C1,C2 have, as before, D − 2 strands belonging
to internal faces and 2 strands belonging to external faces. The external faces passing
through the edges C �= C1,C2 have as before length 1 (and can be either parallel or
crossing).
There are several cases:

• both C1
TC

2
T and C2

PC
1
P belong to the same horizontal face of length three. In this

case again the structure of the external faces is identical to the one of the saturated
(D − 1)-dipole reproduced in Fig. 9.

• each one of the two corners C1
TC

2
T and C2

PC
1
P belongs to a different horizontal

face of length two. Then one horizontal face originating on the vertex T must go
back to the vertex T (passing through the corner C2

PC
1
P ), and one face originating

on the vertex P must go back to the vertex P (passing through the corner C1
TC

2
T ).

The other external faces are as before and have length 1. All the possibilities of
connections of external faces are presented in Fig. 10.

As long as the external faces have the same structure as in the case of the saturated
(D−1)-dipole, we perform the deletions as in Proposition 4. The only difference is that
one less internal face is deleted, hence in all cases the degree strictly decreases:

ω(G ′) < ω(G).

It remains to perform the deletions in the cases presented in Fig. 10. Observe that
we can start by breaking the two red external faces and reconnect them the other way
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D

D

0 0

1 1
Fig. 9. External faces of a (D − 1)-dipole with deficit 1 and short horizontal external faces
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Fig. 10. External faces for (D−1)-dipoles with deficit 1.We represented in red (respectively blue) the external
faces with length 2 (respectively 1) involving the edges C1 and C2

around, such that each of them goes from T to P making sure that the new red faces can
be paired with the blue faces into either parallel or crossing pairs (each pair has a red
and a blue face). This can decrease the number of faces in G by 1, but the D-dipole has
deficit 1. Observe that the deletion can not be separating in any channel (as both edges
0T and 1T connect on the same vertex, the second vertex of the saturated 2-dipole). It
follows that, in the notation of Proposition 4 (Fig. 11):

ω(G ′) ≤
⎧
⎨

⎩

ω(G) − D + 2 , t× = 0

min

{
ω(G) − D + 2 + t× , ω(G) − t× + 1

}
1≤t× ≤ D −2

< ω(G) ,

for all D ≥ 4. 
�

4.3.3. Two saturated 3-dipoles in D = 5. This concerns only the case D = 5. IfG has a
vertex belonging to two saturated 3-dipoles, we conclude by the following Proposition.

Proposition 6. For D = 5, if a connected graph G has a vertex belonging to two
saturated 3-dipoles, then there exists a connected graph G ′ having strictly fewer vertices
such that the degree of G ′ is strictly smaller than the degree of G, ω(G ′) < ω(G).

Proof. Let us consider a saturated 3-dipole in D = 5. We label its internal edges 4, 5
and 0, and the external half edges 1, 2 and 3 on both vertices. We delete the dipole and
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Fig. 11. The channels of deletion of a 3-dipole in D = 5
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1

2

3

1
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Fig. 12. External faces of a saturated 3-dipole in D = 5. The blue faces go through the edge 4 and are
connected by some permutation σ and the red ones through the edge 5 and are connected by some permutation
τ

reconstruct three edges. There are six possible channels of deletion: the half edge 1T
can be connected with any half edge 1P , 2P or 3P and so on.

In the process the three internal faces of length two are deleted, and three vertical
external faces must be broken and reconnected (in the channel 1T 1P , 2T 2P , 3T 3P for
instance the external faces 1T 2T and 1P2P are cut and reglued into two faces 1T 1P and
2T 2P , 1T 3T and 1P3P are cut and reglued into 1T 1P and 3T 3P respectively 2T 3T and
finally 2P3P are cut and reglued into 2T 2P and 3T 3P ). We will show below that in all
cases at most three cuts and regluings of horizontal external faces are needed in order
to create the remaining faces of the new edges. As the number of faces goes down by at
most one for each cut and reglue, we have in all cases F(G ′) ≥ F(G) − 3− 3− 3 and:

ω(G ′) ≤ 5 + 5

[
V (G) − 2

]
−

[
F(G) − 9

]
= ω(G) − 1 .

The external faces of the dipole have the structure presented in Fig. 12. We embed
the dipole it in the plane with the edge 0 with parallel strands (which can always be
done after at moset a relabeling of the half edges 1P , 2P and 3P ). The external faces
going through the edges 4 (in blue in Fig. 12) and 5 (in red Fig. 12) are connected by
arbitrary permutations. We denote the permutation on the edge 4 (respectively 5) by σ

(respectively τ ), that is the corner 1T 4T is connected by a strand to 4Pσ(1)P and so
on. Both σ and τ are permutations over three elements and are (in cycle notation) either
even (1)(2)(3), (123), (132) or odd (1)(23), (2)(13) and (3)(12).

We always delete the dipole in the channel 1T 1P , 2T 2P and 3T 3P . If the permutation
σ is odd, it can be turned into the identity permutation by one cut and regluing of faces.
If σ is even, two cuts are needed. We have the following cases:

• One of σ or τ is the identity. Then at most two cuts are needed.
• At least one of σ or τ is odd. Then at most three cuts are needed.
• σ = τ and σ is even. By permuting the half edges on the right to 1′

P = σ(1)P , 2′
P =

σ(2)P , 3′ = σ(3)P both the edges 4 and 5 are embedded with parallel strands (but



1002 R. Gurau

the edge 0 picks up the permutation σ−1). Reconnecting the edges in the channel
1T 1′

P , 2T 2
′
T and 3T 3′

T , at most two cuts are needed.
• Both σ and τ are even, neither of the two is the identity and they are different. Then

three cuts are needed. Let’s assume that σ = (123) and τ = (132). We then:
– cut the blue (defined by σ ) face 1T 4T 4P2P and the red (defined by τ ) face

2T 5T 5P1P and reglue then as two faces 1T 1P and 2T 2P ,
– cut the blue (defined by σ ) face 2T 4T 4P3P and the red (defined by τ ) face

3T 5T 5P2P and reglue then as two faces 2T 2P and 3T 3P ,
– cut the blue (defined by σ ) face 3T 4T 4P1P and the red (defined by τ ) face

1T 5T 5P3P and reglue then as two faces 1T 1P and 3T 3P .
Observe that the new faces mix a blue and a red, that is we cut and reglue faces
which used to go through different internal propagators in the dipole. 
�

5. The Leading Order

In this last sectionwe identify the leading order graphs of degree zero. Their classification
relies on Theorem 1. We have the following result.

Lemma 3. If a connected graph G has degree 0, then the D strands of any edge in G
belong to D different faces of G.

Proof. Take any edge in G and cut it. As G is bipartite, the cut can not disconnect G
and one obtains a two point graph G̃. If p < D faces of G are cut, then the number of
internal faces of G̃ is:

F int(G̃) = F int(G) = (D − p) +
D(D − 1)

4
V (G) .

We build a graph Gr by connecting a chain of r graphs G̃ together. We have:

F(Gr ) > r

[
(D − p) +

D(D − 1)

4
V (G)

]
,

therefore:

ω(Gr ) < D +
D(D − 1)

4
rV (G) − r

[
(D − p) +

D(D − 1)

4
V (G)

]
= D − r(D − p) ,

which becomes arbitrarily negative for r large enough, contradicting Theorem 1. 
�
Corollary 1. If a connected graph G of degree 0 has a D-dipole, then the D-dipole is
saturated.

Proof. AsG has degree zero, a D-dipole inG can not have any horizontal external faces
which return on the same external edge. In the notation used in Proposition 3, we have
p = 0 and t = D. The degree of the graph can not decrease with the deletion of the
D-dipole, hence the dipole must have exactly

(D
2

)
internal faces. 
�

From Proposition 1 and Sect. 4 we conclude that a graph with degree zero can only
have:

• a D-dipole, which in view of Corollary 1 is saturated. The D-dipoles can be deleted
iteratively.
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0 0 D

D1 1

0 0

1 1

Fig. 13. (D − 1)-dipoles with t× = 1 or t× = D − 2 which are separating in the appropriate channel. The
dipole has

(D−1
2

)
additional internal faces which are not represented

• or has a saturated (D − 1)-dipole such that:
– the (D−1)-dipole has t× = 0 and the deletion in the parallel channel is separating,
– or the (D − 1)-dipole has t× ≥ 1 but then one of the three must hold:

• t× = 1 and the deletion is separating in the parallel channel,
• t× = D − 2 and the deletion is separating in the crossing channel,
• D = 3, t× = 1 and the deletion is not separating in either channel.

In the last case, in Proposition 4we chose to perform the deletion in the non separating
channel, and the degree did not increase with the deletion. For graphs of degree zero,
we proceed differently. We show that in fact the last three cases are excluded.

Proposition 7. If a connected graph G has a saturated (D − 1)-dipole which is either:

• t× = 1 and separating in the parallel channel,
• t× = D − 2 and separating in the crossing channel,

then ω(G) > 0.

Proof. Assume that a graph G with degree zero has such dipoles. The two cases are
represented in Fig. 13 By performing the (D − 1)-dipole deletion in the separating
channel, G splits into two graphs G0 and G1, such that the new edge 0 belongs to G0
and the new edge 1 belongs to G1. By Theorem 1, both G0 and G1 have non negative
degree:

F(G0) = D +
D(D − 1)

4
V (G0) − ω(G0) ,

F(G1) = D +
D(D − 1)

4
V (G1) − ω(G1) .

Observe thatwehavenot proven that the deletion of such (D−1)-dipoles in the separating
channel does not increase the degree. In Proposition 4 we have only shown that the
deletion in the non separating channel does not increase the degree, but nothing is know
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Fig. 14. A graph in D = 3 with a non separating 2-dipole with t× = 1

so far about the deletion in the separating channel: in principle G0 and G1 could have
strictly positive degrees.

Following in G the strands as they enter one of the connected components and taking
into account that, by Lemma 3, on any edge in G the D strands must belong to different
faces, it follows that the external faces of the dipole necessarily have the structure in
Fig. 13. We have in both cases:

V (G) = V (G0) + V (G1) + 2 ,

F(G) =
[
F(G0) − D

]
+

[
F(G1) − D

]
+

(
D − 1

2

)
+ 2(D − 2) + 2 ,

hence:

ω(G) = ω(G0) + ω(G1) + 1 ,

which contradicts the assumption that G had zero degree. 
�
Finally, the last case is excluded by the following Proposition.

Proposition 8. In D = 3, if a connected graph G has a non separating 2-dipole with
t× = 1 then ω(G) > 0.

Proof. Assume that a graph of degree zero has such a dipole. Observe the faces 0T 1T
and 0P1P , the faces 0T 0P , and 1T 1P and the faces 0T 1P and 1T 0P must all be different,
otherwise there exists a deletion channel of the 2-dipole in which the number of faces
goes down by only 1 (instead of going down by 3) and the degree strictly decreases
by performing the deletion in this channel. Taking this and Lemma 3 into account, the
structure of the external faces of the dipole must be the one presented in Fig. 14.

By cutting the four edges incident to the dipole one obtains a four point graph Ĝ,
having F int(Ĝ) internal faces and:

F(G) = 3 +
3

2
V (G) , V (Ĝ) = V (G) − 2 , F(G) = 7 + F int(Ĝ) ,
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Fig. 15. A chain graph built from Ĝ

hence F int(Ĝ) = −1+ 3
2V (Ĝ). One can chain several copies of Ĝ and build a graph Gr

as depicted in Fig. 15.
The number of faces and vertices of a chain of length r is:

F(Gr ) = 1 + 2r + r F int(Ĝ) , V (Gr ) = rV (Ĝ) ,

hence the degree of the chain graph is:

ω(Gr ) = 3 +
3

2
rV (Ĝ) −

[
1 + 2r + r F int(Ĝ)

]
= 2 − r ,

which can be arbitrarily negative, contradicting Theorem 1. 
�
Theorem 2. Agraphhas degree zero if andonly if it ismelonic in the sense ofDefinition2.

Proof. From the previous discussion we conclude that a graph of degree zero reduces
to a union of melonic graphs with two vertices by iterated deletions of:

• saturated D-dipoles,
• completely separating deletions of saturated (D − 1)-dipoles with t× = 0.

Observe that both the saturated D-dipoles and the saturated (D − 1)-dipoles with
t× = 0 can be embedded in the plane in such a way that all the edges are embedded as
parallel edges with parallel strands. Obviously all graphs of degree 0 are generated by
doing the reverse, namely adding saturated D-dipoles or joining at separating, saturated
t× = 0, (D − 1)-dipoles. 
�
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