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Abstract: We study the quantization of Hitchin systems in terms of β-deformations of
generalized matrix models related to conformal blocks of Liouville theory on punctured
Riemann surfaces. We show that in a suitable limit, corresponding to the Nekrasov–
Shatashvili one, the loop equations of the matrix model reproduce the Hamiltonians
of the quantum Hitchin system on the sphere and the torus with marked points. The
eigenvalues of these Hamiltonians are shown to be the ε1-deformation of the chiral
observables of the corresponding N = 2 four dimensional gauge theory. Moreover,
we find the exact wave-functions in terms of the matrix model representation of the
conformal blocks with degenerate field insertions.

1. Introduction

N = 2 supersymmetric gauge theories in four dimensions display very interesting
mathematical structures in their supersymmetrically saturated sectors. These structures
allow an exact characterization of several important physical aspects, such as their low
energy behavior and stable spectra. These data are encoded in the celebrated Seiberg–
Witten solution [1,2]. It was soon realized that the Seiberg–Witten data can be recovered
from integrable systems in terms of their spectral curves [3–8]. In this context theHitchin
integrable system has emerged as the fundamental geometric structure underlying the
M-theory description of N = 2 theories [9–11].

On the other hand the Seiberg–Witten solution can also be recovered, at least in
the case of linear and elliptic quiver N = 2 theories, via equivariant localization on
the instanton moduli space [12–16]. Indeed, this approach contains further information
encoded in the expansion in the equivariant parameters of the�-background. This opens
the issue of relating the full Nekrasov partition function to a suitable quantization of the
Hitchin system.

A crucial result in this context is provided by the AGT correspondence [17] relating
the Nekrasov partition function to conformal blocks of Liouville/Toda field theories in
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two dimensions. In [18,19] it was proposed that this correspondence should be regarded
as a two parameter quantization of the Hitchin system itself, or, in field theory language,
as its second quantization. Here we will address these issues in the particular limiting
case in which one of the two equivariant parameters is vanishing. This was identified by
Nekrasov and Shatashvili [20] to provide the first quantization of the integrable system.1

In the context of AGT correspondence the instanton partition function in the Nekrasov–
Shatashvili limit can be related to the insertion of degenerate fields in the Liouville theory
[37,38], which corresponds to the insertion of surface operators in the gauge theory side
[39–45].

In our approach, we will make use of the matrix model perspective on AGT corre-
spondence developed in [46]. This was further elaborated for Liouville theory on the
sphere in [47–62], on the torus in [63,64] and in [65] at all genera. In this context
the equivariant parameters of the Nekrasov partition function are encoded in the β-
deformation of the standard Van-der-Monde measure [46]. Notice that for β-deformed
matrix models the algebraic equation defining the spectral curve gets deformed into a
differential equation which can be interpreted as a Schrödinger equation [66–68]. Our
proposal identifies this differential equation, in the Nekrasov–Shatashvili limit, as pro-
viding the quantumHamiltonians of the associatedHitchin integrable system.Moreover,
the associated wave-function is described in terms of the β-deformed generalized matrix
model corresponding to degenerate field insertions in the Liouville theory [38–40].

Let us notice also that the quantization of Hitchin systems plays a vital rôle in the
context of Langlands duality [69].

The organization of this paper is as follows. In Sect. 2, we review the M-theory
perspective on the Hitchin system and some basic facts on its quantization at low genera,
namely the sphere and the torus with marked points. We derive the loop equation for
the generalized β-deformed matrix model both in the sphere and torus case in Sects. 3
and 4 respectively, and we show that in the Nekrasov–Shatashvili limit these reproduce
the Hamiltonians of the quantized Hitchin system. Moreover, we provide a description
of the associated wave-functions in terms of the β-deformed generalized matrix model
describing degenerate field insertions in the Liouville theory [38–40]. In Sect. 5, we
present some final comments and further directions.

2. Quantum Hitchin Systems in Nuce

In the M-theory framework, the Hitchin system arises by considering the geometry of
a system of N M5-branes wrapped on a manifold Y6 with topology C × R4 × {pt} in
T ∗C ×R4 ×R3 where C is a Riemann surface. This [46] should be equipped with a non
trivial fibration of R4 over C which specifies the �-background of Nekrasov [12,13].
The geometry of theM5-branes bound state is described by an N -fold branched covering
of C given by the algebraic equation

xN =
N∑

j=2

φ j (z)x
N− j (2.1)

where x is a section of T ∗C and φ j are ( j, 0)-holomorphic differentials on C whose
singularity structure at the punctures identifies the matter content of the gauge theory.
The quantummechanics of this latter structure passes by interpreting (2.1) as the spectral

1 See also [21–36] for the relation between the gauge theory and the quantized integrable system.
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curve of the associated classical system encoding the Seiberg–Witten solution (2.1), and
then quantizing via a suitable deformation.

In what follows, we focus on the case with two M5-branes and the corresponding
Hitchin systems. In this case, theM-theory curve is specified by the quadratic differential:
x2 = W2(z). We further focus on the situation where the singularities of the quadratic
differential are all of regular type meaning the poles of at most degree 2. There is
one kind of regular punctures in this two M5-branes case, so the Riemann surface C
is just specified by genus and the number of punctures. Thus, we denote this by Cg,n .
Under the particular marking of Cg,n , the worldvolume low energy theory is the weakly
coupled SU (2)n+3g−3 superconformal quiver gauge theory [10,70]. The Hitchin system
is associated with this gauge theory.

In order to have explicit parametrization of the Hamiltonians, let’s review and specify
Hitchin systems and their quantization at low genera, that is sphere and torus with an
arbitrary number of punctures, following the approach of [71].

Let us start from some general features of the system. The Higgs field satisfies the
condition

∂̄A� =
∑

k

λkδwk

which can be simplified by Ā = h−1∂̄h and � = h−1�̃h to

∂̄�̃ =
∑

k

νkδwk , (2.2)

where νk = h−1(wk)λkh(wk). Equation (2.2) admits a unique solution iff
∑

k νk = 0,
given by

�̃ =
∑

k

νk ωwk ,z∗ + �0 (2.3)

where ωPQ is the unique normalized abelian differential of third kind, i.e. holomorphic
on �\{P, Q} with simple poles at P and Q with residues respectively +1 and −1 and
vanishing A-periods, while�0 = φ0

IωI is a Lie algebra valued holomorphic differential
and ωI is a basis of normalized holomorphic differentials on �.

As explained in [71], the Poisson brackets are induced by the Lie algebra of the com-
plexified gauge group. At every puncture the residues are expanded as νk = ∑

a νak t
a ,

where ta is a basis of the Lie algebra and the Poisson brackets are {νak , νbl }PB =
iδkl f abcνck .

The Hamiltonians are the Chern polynomials of the Higgs field, namely the coeffi-
cients of the expansion of the spectral curve (2.1) as

det (� − x · 1) = 0.

The quantization of the integrable system, as proposed in [71], is induced by the
quantization of the Poisson brackets above.

The case of our interest is a projection to the Cartan degrees of freedom of the general
integrable system specified to SL(2,C).
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In the sphere case, there are no holomorphic differentials and the Higgs field reads
(see also [19])

�̃ =
∑

k

νk

z − wk

dz

2π i

where νk is the only Cartan element. The corresponding relevant Hamiltonians are gen-
erated by

Tr�2 =
∑

k

(
J2k

(z − wk)2
+

H(0)
k

z − wk

) (
dz

2π i

)2

(2.4)

where

J2k = Tr ν2k H(0)
k = 2

∑

l �=k

1

wk − wl
Tr νlνk (2.5)

According to the general discussion above, the quantization of these operators is provided
by replacing νk at each puncture with the corresponding spin operators.

Analogously, in the torus case, the Higgs field is

�̃ =
(

∑

k

νk
ϑ ′
1(z − wk)

ϑ1(z − wk)
+ 2π i p

)
dz

2π i
(2.6)

from which it follows that

Tr�2 =
∑

k

(
P(z − wk)J2k +

ϑ ′
1(z − wk)

ϑ1(z − wk)
H(1)

k +H(1)
0

) (
dz

2π i

)2

, (2.7)

where2

H(1)
k = 2

∑

l �=k

Tr νkνl
ϑ ′
1(wk − wl)

ϑ1(wk − wl)
+ 4π i Tr νk p,

H(1)
0 = −4π2 Tr p2 − η1

∑

k

J2k +
1

2

∑

k,l;k �=l

Tr νkνl
ϑ ′′
1 (wk − wl)

ϑ1(wk − wl)
. (2.8)

See Appendix A for the definition of the theta functions. In (2.7),P is theWeierstrassP-
function. To obtain (2.7) we used the identity (A.8) relating the Weierstrass P-function
and its primitive ζ ′(z) = −P(z).

In what follows, we will see the appearing of the above Hitchin Hamiltonians via the
generalized beta-deformed matrix model.

2 Notice that with respect to (4.10) in [71], inH(1)
0 we find also a term proportional to η1, which will reveal

to be crucial in comparing with the quantum Seiberg–Witten curve. This term was invisible to the authors of
[71], being the absolute normalization of the differential which they admittedly do not check.
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3. Matrix Model: Genus Zero

The AGT relation associated with a sphere is the one between the Nekrasov partition
function ofN = 2 superconformal SU (2)n−3 linear quiver gauge theory and the n-point
conformal block on the sphere. Both of them are specified by the marking of C0,n We
can obtain the beta-deformed matrix model starting from the Dotsenko-Fateev integral
representation of the conformal block [72,73] as follows. (See [46,56]). In terms of the
free field φ(z) (whose OPE is φ(z)φ(ω) ∼ − 1

2 log(z−ω)), the n-point conformal block
is described by inserting the screening operators

ZC0,n =
〈(∫

dλI : e2bφ(λI ) :
)N n−1∏

k=0

Vmk (wk)

〉

free on C0
, (3.1)

where the vertex operator Vmk (wk) is given by : e2mkφ(wk ) :. The momentum conserva-
tion condition relates the external momenta and the number of integrals as

∑n−1
k=0 mk =

bN − Q. By evaluating the OPEs, it is easy to obtain

ZC0,n = C(mk, wk)Z̃
C0,n ≡ eF

C0,n /g2s , (3.2)

where Z̃C0,n is the beta-deformation of one matrix model

Z̃C0,n =
∫ N∏

I=1

dλI

∏

I<J

(λI − λJ )
−2b2e

b
gs

∑
I W (λI ) ≡ eF̃

C0,n /g2s , (3.3)

and

W (z) =
n−2∑

k=0

2mk log(z − wk), C(mk, wk) =
∏

k<�≤n−2

(wk − w�)
− 2mkm�

g2s . (3.4)

We have introduced the parameter gs by rescaling mk → mk
gs
. We relate mk with the

mass parameters of the gauge theory. Also, we have chosen three insertion points as
w0 = 0, w1 = 1 and wn−1 = ∞. The remaining parameters are identified with the
gauge theory coupling constants qi = e2π iτi (i = 1, . . . , n − 3) as follows:

w2 = q1, w3 = q1q2, . . . , wn−2 = q1q2 . . . qn−3. (3.5)

While the dependence on mn−1 disappeared in the potential, this is recovered by the
momentum conservation condition

n−2∑

k=0

mk + mn−1 = bgs N − gsQ. (3.6)

We will refer to Fm as free energy.
The identification of the parameter b with the Nekrasov’s deformation parameters is

given by

ε1 = bgs, ε2 = gs
b

. (3.7)

Note that, in the case of b = i (c = 1), this reduces to the usual hermitian matrix model
and this case corresponds to the self-dual background ε1 = −ε2.
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Here we define the resolvent of the matrix model as

R(z1, . . . , zk) = (bgs)
k
∑

I1

1

z1 − λI1
....

∑

Ik

1

zk − λIk
. (3.8)

For k = 1, this reduces to the usual resolvent.

3.1. Wave-function and conformal block. In the following, we mainly concentrate on
the limit where ε2 → 0 with ε1 and the other parameters keeping fixed. In other words,
the limit is b → ∞ and gs → 0 with bgs and N keeping finite. This is the limit by
Nekrasov and Shatashvili [20]. In [19,38], it was shown that the conformal blocks on a

sphere with the additional insertion of the degenerate fields V 1
2b

(z) = e− φ(z)
b capture the

quantization of the integrable systems.
In this limit, the beta-deformed partition function can be written as

∫ ∏N
I=1 dλI

exp(− 1
ε2
W̃ ) where

W̃ =
∑

I

W (λI ) + 2ε1
∑

I<J

log(λI − λJ ). (3.9)

Thus the leading order part of the free energy can be obtained from the value of the
critical points which solve the equations of motion:

W ′(λI ) + 2ε1
∑

J �=I

1

λI − λJ
= 0. (3.10)

We note that these two terms are of the same order in the limit because N and ε1 are
kept finite.

In this section, we will show that under the identification the beta-deformed matrix
model ZC0,n with the n-point conformal block, the integral representation of the degen-
erate conformal block can be written in terms of the resolvent of the original matrix
model (3.8), in the ε2 → 0 limit. More explicitly, we will show

Z
C0,n+n
deg

ZC0,n (z1, z2, . . . , zn) =
n∏

i=1

�i (zi ), �i (zi ) = exp

(
1

ε1

∫ zi
x(z′)dz′

)
, (3.11)

in the ε2 → 0 limit, where Z
C0,n+n
deg is thematrixmodel partition function corresponding to

the 2n-point conformal blockwith n degenerate fields inserted at z = zi . This property of
“separation of variables” agrees with the corresponding result of the Virasoro conformal
block as in [19,41]. The differential x(z)dz is identified with the “quantized” Seiberg–
Witten differential which is given, in terms of matrix model language, by

x(z) = 〈R(z)〉 − W ′(z)
2

, (3.12)

where 〈. . .〉 = 1
ZCg,n

∫ ∏
dλ

∏
(λI − λJ )

−2b2eb
∑

W/gs . . .. This relation (3.11) is a
simple generalization of the one obtained in [29] for the single degenerate field insertion.
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First of all, we consider a more generic expression: the (n +�)-point conformal block
where � degenerate fields are inserted

Z
C0,n+�

deg =
〈

�∏

i=1

V 1
2b

(zi )

(∫
dλe2bφ(λ)

)N n−1∏

k=0

Vmk
gs

(wk)

〉

=
∏

i< j

(zi − z j )
− 1

2b2
∏

0≤k<�≤n−2

(wk − w�)
− 2mkm�

g2s

�∏

i=1

n−2∏

k=0

(zi − wk)
− mk

bgs

×
∫ N∏

I=1

dλI

∏

I<J

(λI − λJ )
−2b2

∏

I

n−2∏

k=0

(λI − wk)
2bmk
gs

�∏

i=1

(zi − λI ),

(3.13)

where the potential W (z) is the same as (3.4). We have taken wn−1 to infinity and
omitted the factor including this, as we have done above. The momentum conservation
is however modified by the degenerate field insertion as

n−1∑

k=0

mk +
�gs
2b

= bgs N − gsQ. (3.14)

By dividing by ZC0,n and taking a log, we obtain

log
Z
C0,n+�

deg

ZC0,n = − 1

2b2
∑

i< j

log(zi − z j ) −
∑

i

W (zi )

2bgs
+ log

〈
∏

i,I

(zi − λI )

〉
. (3.15)

Notice that the expectation value is defined as above, but with the modified momentum
conservation (3.14). By defining eL = ∏

i,I (zi − λI ), we notice that

L =
∑

i,I

log(zi − λI ) =
∑

i,I

∫ zi dz′i
z′i − λI

, (3.16)

where we have ignored irrelevant terms due to the end points of the integrations. Then,
we use that the expectation value of eL can be written as log

〈
eL

〉 = ∑∞
k=1

1
k!

〈
Lk

〉
conn

[29], where 〈. . .〉conn means the connected part of the correlator, 〈L2〉conn = 〈L2〉−〈L〉2,
etc. Thus, (3.15) can be expressed, by using (3.16), as

log
Z
C0,n+�

deg

ZC0,n = −
∑

i

W (zi )

2ε1
+

∞∑

k=1

1

k!

〈⎛

⎝
∑

i,I

∫ zi dz′

z′ − λI

⎞

⎠
k〉

conn

. (3.17)

We will now consider the limit where ε2 → 0. In this limit, the terms with k > 1 are
subleading contributions compared with the k = 1 terms since the connected part of the
expectation value can be ignored in this limit. Thus, we obtain

log
Z
C0,n+�

deg

ZC0,n → 1

ε1

∑

i

∫ zi
x(z′)dz′, (3.18)

where we have used (3.12). Thus, by setting � = n, we have obtained (3.11). This
indicates that the properties of the conformal block with degenerate field insertions are
build in the resolvent of the matrix model in the ε2 → 0 limit.
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3.2. Loop equations. The argument in the previous section shows that the relation with
the integrable system can be seen by analyzing the resolvent, in particular, the loop
equations. Thus, we derive it here with finite β. First of all, we keep the potential
arbitrary and obtain

0 = 1

Z̃C0,n

∫ N∏

I=1

dλI

∑

K

∂

∂λK

[
1

z − λK

∏

I<J

(λI − λJ )
−2b2e

b
gs

∑
I W (λI )

]

= − 1

g2s
〈R(z, z)〉 − b + 1

b

gs
〈R(z)′〉 + 1

g2s
W ′(z)〈R(z)〉 − f (z)

g2s
, (3.19)

where R′ is the z-derivative of the resolvent and we have defined

f (z) = bgs

〈
∑

I

W ′(z) − W ′(λI )

z − λI

〉
. (3.20)

The expectation value is defined as the matrix model average. By multiplying (3.19) by
g2s , we obtain

0 = −〈R(z, z)〉 − (ε1 + ε2)〈R(z)′〉 + 〈R(z)〉W ′(z) − f (z). (3.21)

In the case of the hermitian matrix model b = i , the second term vanishes and the
equation reduces to the well-known one.

Let us then analyze f (z) by specifying the potential to the Penner type one (3.4). In
this case,

f (z) =
n−2∑

k=0

ck
z − wk

, (3.22)

where for k ≥ 2

ck = −bgs

〈
∑

I

2mk

λI − wk

〉
= g2s

∂ log Z̃C0,n
∂wk

= ∂ F̃m
∂wk

. (3.23)

While we cannot write c0 and c1 as above because we have chosen w0 = 0 and w1 = 1,
we can see that they are written in terms of ck with k ≥ 2. First of all, due to the equations
of motion:

〈∑
I W

′(λI )
〉 = 0, the sum of ck is constrained to vanish

∑n−2
k=0 ck = 0. In

order to find another constraint,we consider the asymptotic at large z of the loop equation.
The asymptotic of the resolvent is 〈R(z)〉 ∼ bgs N

z , so that the leading terms at large z in
the loop equations satisfy

−(bgs N )2 + (ε1 + ε2)bgs N + bgs N
n−2∑

k=0

2mk −
n−2∑

k=0

wkck = 0. (3.24)

The leading term of order 1/z in f (z) vanishes via the first constraint. Thus, we obtain

n−2∑

k=0

wkck =
(
n−2∑

k=0

mk + mn−1 +
ngs
2b

+ gsQ

)(
n−2∑

k=0

mk − mn−1 +
ngs
2b

)
≡ M2,

(3.25)
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where we have used the momentum conservation3 (3.14) with � = n. Therefore, c0 and
c1 can be written in terms of ck (3.23). These constraints are related to the Virasoro
constraints [74].

ε2 → 0 limit As above, in the ε2 → 0 limit, the connected part of (3.8) can be ignored
in this limit: 〈R(z, z)〉 → 〈R(z)〉2. Taking this into account, the loop equation (3.21)
becomes

0 = −〈R̃(z)〉2 − ε1〈R̃(z)′〉 + 〈R̃(z)〉W ′(z) − f̃ (z), (3.26)

where R̃ and f̃ are R|ε2→0 and f |ε2→0 respectively. In the following, we will omit the

tildes of R and f . Then, in terms of x = 〈R(z)〉 − W ′(z)
2 , the equation becomes

0 = −x2 − ε1x
′ +U (z), (3.27)

where

U (z) = W ′(z)2

4
− ε1

2
W ′′(z) − f (z). (3.28)

This equation is similar to the one obtained in [66]. It is easy to see that this can be
written as the Schrödinger-type equation:

0 = −ε21
∂2

∂z2
�(z) +U (z)�(z), (3.29)

where �(z) is defined in (3.11).
The above argument is applicable for an arbitrary potential W (z). Here we return

to the Penner-type one (3.4) and see the relation with the Gaudin Hamiltonian.4 (3.28)
becomes in this case

U (z) =
n−2∑

k=0

mk(mk + ε1)

(z − wk)2
+

∑

k

Hk

z − wk
−

n−2∑

k=0

ck
z − wk

(3.30)

where

Hk =
∑

�( �=k)

2mkm�

wk − w�

. (3.31)

U (z) is the vacuum expectation value of (2.4). In particular, notice that the residue of
the quadratic pole in (3.30) corresponds to the eigenvalue of J2k quantized in ε1 units and

that Hk − ck are the vacuum energies of the quantum Hamiltonians H(0)
k (2.5).

Let us rewrite ck in terms of the gauge theory variables. Since the moduli of the
sphere are related with the gauge coupling constants of the linear quiver gauge theory as
in (3.5), the derivatives with respect to wk can be written as 2π iwk

∂
∂wk

= ∂
∂τk−1

− ∂
∂τk

,

3 We are using the modified momentum conservation to apply this to the argument in the previous section.
However, the difference will disappear in the ε2 → 0 limit.

4 A relation with Gaudin system at finite ε2 has been noticed also in [66].
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where the second term vanished when k = n − 2. Therefore, for k = 2, . . . , n − 2, by
using (3.23), we obtain

ck = 1

2π iwk

(
∂ F̃C0,n
∂τk−1

− ∂ F̃C0,n
∂τk

)
= 1

2π iwk
(uk−1 − uk) . (3.32)

where uk are closely related with the gauge theory variables 〈trφ2
k 〉, φk being the vector

multiplet scalar of the k-th gauge group. Indeed, supposing that the free energy FC0,n
is identified with the prepotential (with ε1 and ε2) of the gauge theory (this has indeed
been checked for n = 4 in [53–55,64] in some orders in the moduli), we can use the
ε-deformed version [18,75,76] of the Matone relation [77–79] to relate uk with 〈trφ2

k 〉.
Note that there is still difference between F̃C0,n and FC0,n , we will explicitly consider
this in an example below. Instead, for c0 and c1, we can use the two constraints derived
above and obtain

c0 =
n−2∑

k=2

(wk − 1)ck − M2 = 1

2π i

n−2∑

k=2

wk − 1

wk
(uk−1 − uk) − M2,

c1 = −
n−2∑

k=2

wkck + M2 = − 1

2π i

n−2∑

k=2

(uk−1 − uk) + M2. (3.33)

We have obtained the differential equations for � = ∏
i �i (zi ) each of which is

(3.29) satisfied by �i (zi ). These are similar to the differential equations satisfied by
the (n + n)-point Virasoro conformal block where n vertex operators are chosen to be

degenerate V (z) = e− φ(z)
b , as in [19]. As an example, we will explicitly see in the

subsequent section the differential equation for n = 4 is the same as that obtained from
the Virasoro conformal block.

3.3. Sphere with four punctures. We now consider the case corresponding to a sphere
with four puncture where the matrix model potential is given by

W (z) =
2∑

k=0

2mk log(z − wk), w0 = 0, w1 = 1, w2 = q. (3.34)

This corresponds to SU (2) gauge theory with four flavors and the Gaudin model on a
sphere with four punctures where the number of commuting Hamiltonian is just one.

Thus we simply consider the wave-function �(z) = e
1
ε1

∫ z xdz′
and the differential

equation satisfied by it.
In this case, U (z) can be evaluated in terms of c2 as

U (z) =
2∑

k=0

m2
k + ε1mk

(z − wk)2
+
m2

3 − ∑2
i=0 m

2
i + ε1(m3 − ∑2

k=0 mk)

z(z − 1)

+
−q(q − 1)c2 + 2(qm1m2 + (q − 1)m2m0)

z(z − 1)(z − q)
, (3.35)

Let us relate this with the one obtained from the Virasoro conformal block. We consider
the last line ofU (z). Let us recall the definition of the free energy (3.2) and (3.3). Since
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the difference of them is expressed by C = q
− 2m2m0

g2s (1 − q)
−m1m2

g2s in this case, the free
energies are related by

FC0,4 = F̃C0,4 − 2m1m2 log(1 − q) − 2m2m0 log q. (3.36)

Therefore, its derivative is

q(1 − q)
∂FC0,4

∂q
= q(1 − q)

∂ F̃C0,4
∂q

+ 2qm1m2 − 2(1 − q)m2m0. (3.37)

We notice that the right hand side is the numerator of the last line of U (z).
Here let us redefine the mass parameters as

m̃0 = m0 +
ε1

2
, m̃3 = m3 − ε1

2
. (3.38)

In this notation, U can be written as

U (z) = m̃2
0 − ε21

4

z2
+
m1(m1 + ε1)

(z − 1)2
+
m2(m2 + ε1)

(z − q)2

− −m̃2
3 + m̃2

0 + m1(m1 + ε1) + m2(m2 + ε1)

z(z − 1)
+

q(1 − q)

z(z − 1)(z − q)

∂F

∂q
. (3.39)

Note here that the first four terms are exactly the potential which considered in [38] V (z).
Also, the last term might correspond to the “eigenvalue” in [38]. The Schrödinger-like
equation becomes

−ε21
∂2

∂z2
�(z) + V (z)�(z) = − q(1 − q)

z(z − 1)(z − q)

∂F

∂q
�(z). (3.40)

Note that this differential equation has also been derived in [29] from the free field
expression, the first line of (3.13).

4. Matrix Model: Genus One

In this section, we consider the matrix model corresponding to the conformal block on a
torus with punctures [46,63–65]. We will derive the loop equations of the matrix model
and relate it with the differential equations of the corresponding Hitchin system.

We consider the n-point conformal block on a torus whose integral description is

ZC1,n = eF
C1,n /g2s

=
∫ ∏

I

dλI

∏

I<J

[
ϑ1(λI − λJ )

η(τ )3

]−2b2 ∏

I

n∏

k=1

[
ϑ1(λI − wk)

η(τ )3

] 2bmk
gs

e
4πbp
gs

∑
I λI

×
∏

k<�

[
ϑ1(wk − w�)

η(τ)3

]− 2mkm�

g2s e
− 4πp

∑
k mkwk
g2s

= C(wk,mk, p)Z̃
C1,n , (4.1)
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where C(wk,mk, p) is the λ independent coefficient

C(wk,mk, p) = η
−3(−b2N (N−1)+ 2bN

gs

∑
k mk+

2
g2s

∑
k<� mkm�)

×
∏

k<�

ϑ1(wk − w�)
− 2mkm�

g2s e
− 4πp

∑
k mkwk
g2s (4.2)

and thus,

Z̃C1,n = eF̃
C1,n /g2s =

∫ ∏

I

dλI

∏

I<J

ϑ1(λI − λJ )
−2b2e

b
gs

∑
I W (λI ) (4.3)

with the potential

W (z) =
n∑

k=1

2mk logϑ1(z − wk) + 4πpz. (4.4)

While we do not know the representation of this in terms of a matrix, we refer to
this as (generalized) matrix model. As the matrix model in the case of the sphere, this
expression has been obtained [63,65] from the free field expression, similar to (3.1)
but on the torus, following from the Liouville correlator by the method in [81]. The
parameters must satisfy the momentum conservation

n∑

k=1

mk = bgs N . (4.5)

See Appendix A for the definition of the elliptic theta functions.
This matrix model is related with theN = 2 elliptic SU (2) quiver gauge theory [70]

which is obtained from two M5-branes on C1,n with specifying its marking. The gauge
theory coupling constants qi = e2π iτi (i = 1, . . . , n) are identified with the moduli of
the torus as

e2π iwk =
n−1∏

i=k

qi , q ≡ e2π iτ =
n∏

i=1

qi . (4.6)

The parameters mk are directly identified with the mass parameters of the bifundamen-
tals. The remaining parameters of the matrix model, the filling fractions and momentum
p in the potential determine the Coulomb moduli of the gauge theory.

4.1. Wave-function and conformal block. As in the previous section, we can show the
relation between the resolvent of this matrix model and the conformal block with the
degenerate fields �1,2 = e− 1

b φ(z). The integral representation of the latter is

Z
C1,n+�

deg (zi ) = C(wk,mk, p)
∫ ∏

I

dλI

∏

I<J

ϑ1(λI − λJ )
−2b2

×
∏

I

ϑ1(λI − w1)
2bm1
gs e

4πbp
gs

∑
I λI
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×
�∏

i=1

(
∏

k

[
ϑ1(zi − wk)

η(τ )3

]− mk
bgs ∏

I

[
ϑ1(zi − λI )

η(τ )3

]
e− 2πp

bgs
zi

)

×
∏

i< j

[
ϑ1(zi − z j )

η(τ )3

]− 1
2b2

, (4.7)

where zi are the insertion points of the degenerate fields and themomentum conservation
is slightly deformed from the original one to

n∑

k=1

mk +
�gs
2b

= bgs N . (4.8)

As before, we consider log
Z
C1,n+�
deg

ZC1,n . The main object we want to know is

log
〈∏

I,i ϑ1(zi − λI )
〉
, where the expectation value is defined in the same way as in

the sphere case. Note that we are using the momentum conservation (4.8). Then, if we

define eL = ∏
I,i ϑ1(zi −λI ), we can rewrite it as L = ∑

I,i

∫ zi ϑ ′
1(z

′
i−λI )

ϑ1(z′i−λI )
dz′i . By using

the same argument as the sphere case: log
〈
eL

〉 = ∑
k

1
k!

〈
Lk

〉
conn , we therefore obtain

log
Z
C1,n+�

deg

ZC1,n = −
∑

i

W (zi )

2bgs
− 3�(� + 1)

4b2
log η − 1

2b2
∑

i< j

logϑ(zi − z j )

+
∞∑

k=1

1

k!

〈⎛

⎝
∑

I,i

∫ zi ϑ ′
1(z

′
i − λI )

ϑ1(z′i − λI )
dz′i

⎞

⎠
k〉

conn

. (4.9)

where we have used the momentum conservation in the second term.
We introduce the deformation parameters and take the limit where ε2 → 0 while

ε1 keeping fixed. In this limit, the path integral is dominated by the solutions of the
equations of motion

W ′(λI ) − 2bgs
∏

J �=I

ϑ ′
1(λI − λJ )

ϑ1(λI − λJ )
= 0, (4.10)

as we have seen in the previous section, and the connected part with k ≥ 2 in (4.9) is
negligible. Thus we obtain

log
Z
C1,n+�

deg

ZC1,n → 1

ε1

∑

i

∫ zi
(〈

R(z′i )
〉 − W ′(z′i )

2

)
dz′i ≡ log

∏

i

�(zi ). (4.11)

where R is an analog of the resolvent of the sphere case

R(z1, . . . , zk) = (bgs)
k
∑

I1

ϑ ′
1(z1 − λI1)

ϑ1(z1 − λI1)
. . .

∑

Ik

ϑ ′
1(zk − λIk )

ϑ1(zk − λIk )
. (4.12)

Thus, we have related Z
C1,n+�

deg with the resolvent or � at least in the ε2 → 0 limit.
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One simple consequence which follows from the above formulas is about the mon-

odromies of� or Z
C1,n+1
deg . (For simplicity, we consider the � = 1 case. The generalization

to � ≥ 2 might be straightforward.) Along the A cycle, Z
C1,n+1
deg behaves as

Z
C1,n+1
deg (z + π) = (−1)N−

∑
k mk
bgs e− 2π2

bgs
p Z

C1,n+1
deg (z) = (−1)

1
2b2 e− 2π2

bgs
p Z

C1,n+1
deg (z),

(4.13)

where we have used themomentum conservation. Similarly, we can evaluate the B-cycle
monodromy

Z
C1,n+1
deg (z + πτ)

ZC1,n

= e−W (z)
2bgs η

− 3
2b2

〈
∏

I

ϑ1(z − λI )e
2i

∑
I λI

〉
exp

(
− i z

b2
− π iτ

2b2
− 2π2τp

bgs

)
. (4.14)

On the other hand, let us consider the shift of p → p − gs
2π ib in Z

C1,n+1
deg , which gives the

additional factor exp
(
− i z

b2
+ 2i

∑
I λI

)
in the integrals. Therefore, we obtain

Z
C1,n+1
deg (z + πτ ; p) = Z

C1,n+1
deg (z; p − gs

2π ib
)e

− 2π2τp
bgs

− π iτ
2b2 . (4.15)

We note that these are indeed the same monodromies as those of the conformal block
with the degenerate field [38,39].

We can further proceed to derive the special geometry (ε1-deformed Seiberg–Witten)

relation for the resolvent. In the ε2 → 0 limit, (4.11) shows that Z
C1,n+1
deg can be expanded

as

Z
C1,n+1
deg (z) = exp

(F(ε1)

ε1ε2
+

1

ε1

∫ z

x(z′)dz′ +O(ε2)

)
, (4.16)

where the first term is F(ε1) = limε2→0 FC1,n . The above A and B cycle monodromies
indicate that for the second term

∮

A
x(z)dz = −2π2 p,

∮

B
x(z)dz = −2π2τp − 1

2π i

∂F(ε1)

∂p
. (4.17)

This corresponds to the Seiberg–Witten relation in the presence of the ε1 dependence
[21,22]. For other independent cycles which correspond to the legs of the pants decom-
position of the torus, it is natural to expect that the similar relation is satisfied.

4.2. Loop equations. Let us derive the loop equations of the matrix model for the torus.
As discussed above, in order to relate with the conformal block, we will use the momen-
tum conservation (4.8). From the Schwinger–Dyson equation for an arbitrary transfor-

mation δλK = ϑ ′
1(z−λK )

ϑ1(z−λK )
, we derive
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0 = g2s

〈
∑

I

(
ϑ ′
1(z − λI )

ϑ1(z − λI )

)2
〉

− g2s

〈
∑

I

ϑ ′′
1 (z − λI )

ϑ1(z − λI )

〉
+ bgsW

′(z)
〈
∑

I

ϑ ′
1(z − λI )

ϑ1(z − λI )

〉

+ t (z) − 2b2g2s

〈
∑

I<J

ϑ ′
1(λI − λJ )

ϑ1(λI − λJ )

(
ϑ ′
1(z − λI )

ϑ1(z − λI )
− ϑ ′

1(z − λJ )

ϑ1(z − λJ )

)〉
, (4.18)

where we have multiplied the both sides by g2s and defined

t (z) = bgs

〈
∑

I

ϑ ′
1(z − λI )

ϑ1(z − λI )
(W ′(λI ) − W ′(z))

〉
. (4.19)

We then use the formula (A.9) to calculate the last term and, after some algebra, we
obtain

0 = −〈R(z, z)〉 −
(
b +

1

b

)
gs

〈
R′(z)

〉
+W ′(z) 〈R(z)〉 + b2g2s N

〈
∑

I

ϑ ′′
1 (z − λI )

ϑ1(z − λI )

〉

+ t (z) + b2g2s

〈
∑

I<J

ϑ ′′
1 (λI − λJ )

ϑ1(λI − λJ )

〉
+ 3b2g2s η1N (N − 1). (4.20)

This equation is valid for an arbitrary potential.
From now on, let us consider the potential corresponding to the toric conformal block

(4.4). In this case, t (z) can be evaluated by using (A.9) again as

t (z) = 2bgs

n∑

k=1

mk
ϑ ′
1(z − wk)

ϑ1(z − wk)

〈
∑

I

ϑ ′
1(λI − wk)

ϑ1(λI − wk)

〉
− bgs

n∑

k=1

mk

〈
ϑ ′′
1 (λI − wk)

ϑ1(λI − wk)

〉

− bgs N
n∑

k=1

mk
ϑ ′′
1 (z − wk)

ϑ1(z − wk)
− bgs

n∑

k=1

mk

〈
∑

I

ϑ ′′
1 (z − λI )

ϑ1(z − λI )

〉

− 6bgs Nη1

n∑

k=1

mk . (4.21)

By substituting this into (4.20) and using the momentum conservation, we obtain

0 = −〈R(z, z)〉 −
(
b +

1

b

)
gs

〈
R′(z)

〉
+W ′(z) 〈R(z)〉 − 3bgs(N + 1)η1

∑

k

mk

+ 2bgs

n∑

k=1

mk
ϑ ′
1(z − wk)

ϑ1(z − wk)

〈
∑

I

ϑ ′
1(λI − wk)

ϑ1(λI − wk)

〉
− bgs N

∑

k

mk
ϑ ′′
1 (z − wk)

ϑ1(z − wk)

− bgs
∑

k

mk

〈
∑

I

ϑ ′′
1 (λI − wk)

ϑ1(λI − wk)

〉
+ b2g2s

〈
∑

I<J

ϑ ′′
1 (λI − λJ )

ϑ1(λI − λJ )

〉

+
g2s �

2

〈
∑

I

ϑ ′′
1 (z − λI )

ϑ1(z − λI )

〉
+
3�

2
g2s η1(N − 1). (4.22)
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where the last two terms come from the deformation of the momentum conservation.
Let us note that the τ -derivative of the partition function Z̃C1,n

4g2s
Z̃C1,n

∂ Z̃C1,n
∂ ln q

= −bgs
∑

k

mk

〈
∑

I

ϑ ′′
1 (λI − wk)

ϑ1(λI − wk)

〉
+ b2g2s

〈
∑

I<J

ϑ ′′
1 (λI − λJ )

ϑ1(λI − λJ )

〉
,

(4.23)

where we have used −8 ∂
∂ ln qϑ1(a) = ϑ ′′

1 (a). This is the third line in (4.22). Similarly,
the derivatives with respect to wk produce the first term in the second line of (4.22):

− g2s
Z̃C1,n

∂ Z̃C1,n
∂wk

= 2bgsmk

〈
∑

I

ϑ ′
1(λI − wk)

ϑ1(λI − wk)

〉
. (4.24)

We will fix one of the moduli of the torus as wn = 0 below. In this case, the derivative
with respect town is understood as the right hand side of (4.24). Putting all these together,
we finally obtain

0 = −〈R(z, z)〉 −
(
b +

1

b

)
gs

〈
R′(z)

〉
+W ′(z) 〈R(z)〉 − 3bgs(N + 1)η1

∑

k

mk

− g2s

n∑

k=1

ϑ ′
1(z − wk)

ϑ1(z − wk)

∂ ln Z̃C1,n
∂wk

− bgs N
∑

k

mk
ϑ ′′
1 (z − wk)

ϑ1(z − wk)
+ 4g2s

∂ ln Z̃C1,n
∂ ln q

+
g2s �

2

〈
∑

I

θ ′′
1 (z − λI )

θ1(z − λI )

〉
+
3�

2
g2s η1(N − 1). (4.25)

ε2 → 0 limit We consider the ε2 → 0 limit. We can use under this limit the equations of
motion (4.10). Furthermore, as discussed in the previous section, 〈R(z, z)〉 ∼ 〈R(z)〉2.
Also, the last two terms in (4.25) disappears in this limit. Naively, the terms with the
derivative of ln Z̃C1,n also disappear due to the factor g2s (= ε1ε2). However, they does
not because ln Z̃C1,n behaves as F̃C1,n/g2s . Thus, the loop equation (4.25) becomes

0 = −〈R(z)〉2
∣∣∣
ε2→0

− ε1
〈
R′(z)

〉 ∣∣∣
ε2→0

+W ′(z) 〈R(z)〉
∣∣∣
ε2→0

−3η1(
∑

�

m�)(
∑

k

mk + ε1)

− (
∑

�

m�)
∑

k

mk
ϑ ′′
1 (z − wk)

ϑ1(z − wk)
−

n∑

k=1

ϑ ′
1(z − wk)

ϑ1(z − wk)

∂ F̃C1,n
∂wk

∣∣∣
ε2→0

+ 4
∂ F̃C1,n
∂ ln q

∣∣∣
ε2→0

. (4.26)

We will omit
∣∣∣
ε2→0

in what follows. After some algebra (by introducing x = 〈R(z)〉 −
W ′/2 and by using the formula of the theta function), we obtain

0 = −x2 − ε1x
′ +

∑

k

mk(mk + ε1)P(z − wk)

+
∑

k

ϑ ′
1(z − wk)

ϑ1(z − wk)

(
Hk − ∂ F̃C1,n

∂wk

)
+ H0 + 4

∂ F̃C1,n
∂ ln q

, (4.27)
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where P(z) is the Weierstrass elliptic function (A.3) and

Hk = 4πpmk + 2
∑

�( �=k)

mkm�

ϑ ′
1(wk − w�)

ϑ1(wk − w�)
,

H0 = 4π2 p2 − η1
∑

k

mk(mk + ε1) +
1

2

∑

k �=�

mkm�

ϑ ′′
1 (wk − w�)

ϑ1(wk − w�)
. (4.28)

Therefore, we obtain that Hk − ∂ F̃C1,n
∂wk

and H0 + 4 ∂ F̃C1,n
∂ ln q are the vacuum energies of the

quantumHitchin HamiltoniansH(1)
k andH(1)

0 in (2.7). This shows that this matrix model
captures the quantization of the Hitchin system associated with the torus.

We can write this equation in the form of the differential equation satisfied by the

wave-function �(z) = e
1
ε1

∫ z x(z′)dz′
:

(
−ε21

∂2

∂z2
+

∑

k

mk(mk + ε1)P(z − wk) +
∑

k

ϑ ′
1(z − wk)

ϑ1(z − wk)
Hk + H0

)
�(z)

=
(

∑

k

ϑ ′
1(z − wk)

ϑ1(z − wk)

∂ F̃C1,n
∂wk

− 4
∂ F̃C1,n
∂ ln q

)
�(z) (4.29)

By considering
∏n

i=1 �(zi ), this satisfies the above differential equations for each zi .
This is related with the KZB equation [82–84] as discussed in [37] (see also [85]).

It is easy to translate the terms in the right hand side in (4.29) to the gauge theory
variables. By the identification of the moduli, the derivatives with respect to wk are
written as ∂

∂wk
= ∂

∂τk
− ∂

∂τk−1
(for k = 1, . . . , n − 1), where τ0 = τn , and also ∂

∂ ln q =
1

2π i
∂

∂τn
. Therefore, we obtain

∂ F̃C1,n
∂wk

= uk − uk−1, (4.30)

for k = 1, . . . , n − 1, where we have defined uk = ∂ F̃C1,n
∂τk

and u0 ≡ un . For k = n, we
calculate

∂ F̃C1,n
∂wn

= −
n−1∑

k=1

∂ F̃C1,n
∂wk

+ 4πp
n∑

k=1

mk = −un−1 + un + 4πp
n∑

k=1

mk (4.31)

where we have used the equations of motion and the momentum conservation. (We also
ignored the term depending on ε2.) Also, for the derivative with respect to q we obtain

−4
∂ F̃C1,n
∂ ln q

= − 2

π i
un . (4.32)

As in the sphere case, these uk are related with 〈trφ2
k 〉. Note however that there could be

a difference of them since uk here are the derivatives of F̃ , which will be seen below.
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For completeness, let us rewrite the above equation in terms of the original partition
function ZC1,n . The difference between ZC1,n and Z̃C1,n is given by C (4.2), which gives
rise to

4
∂ F̃C1,n
∂ ln q

= 4
∂FC1,n
∂ ln q

+ 3
∑

k

mk(mk + ε1)η1 −
∑

k<�

mkm�

ϑ ′′
1 (wk − w�)

ϑ1(wk − w�)
,

−∂ F̃C1,n
∂wk

= −∂FC1,n
∂wk

− 2
∑

�( �=k)

mkm�

ϑ ′
1(wk − w�)

ϑ1(wk − w�)
− 4πpmk, (k = 1, . . . , n − 1)

−∂ F̃C1,n
∂wn

=
n−1∑

k=1

∂FC1,n
∂wk

+
∑

�( �=n)

mnm�

ϑ ′
1(w�)

ϑ1(w�)
− 4πpmn, (4.33)

where we have used (4.31). Thus, we obtain from (4.27)

0 = −x2 − ε1x
′ +

∑

k

mk(mk + ε1)P(z − wk) + 2
∑

k

mk(mk + ε1)η1

−
n−1∑

k=1

ϑ ′
1(z − wk)

ϑ1(z − wk)

∂FC1,n
∂wk

+
ϑ ′
1(z)

ϑ1(z)

⎛

⎝
n−1∑

k=1

∂FC1,n
∂wk

+
∑

�( �=n)

mnm�

ϑ ′
1(w�)

ϑ1(w�)

⎞

⎠

+ 4π2 p2 + 4
∂FC1,n
∂ ln q

. (4.34)

4.3. One-punctured torus. In the n = 1 case, we can see the relation with the elliptic
Calogero-Moser model. We will take w1 = 0. The potential is

W (z) = 2m1 logϑ1(z) + 4πpz. (4.35)

In this case, it is easy to calculate the loop equation (4.34):

0 = −x(z)2 − ε1x
′(z) + m1(m1 + ε1)P(z) − 4u(ε1), (4.36)

where

u(ε1) = −π2 p2 − g2s
∂ ln ZC1,1

∂ ln q
− m1(m1 + ε1)η1

2

= −π2 p2 +
∂

∂ ln q

(
FC1,1 − 2m1(m1 + ε1) ln η

)
, (4.37)

where we have used that η1 = 4 ∂ ln η
∂ ln q (See Appendix A) and defined the free energy as

FC1,1 = limε2→0 FC1,1 . Note that the free energy is the one evaluated in the ε2 → 0 limit.
Eq. (4.37) is the ε1-deformed version of the relation between 〈trφ2〉 and the Coulomb
modulus u [76] which coincides with the one found in [33].

By introducing the “wave-function” � = e
1
ε1

∫ z dz′x(z′)
, we finally obtain

[
−ε21

∂2

∂z2
+ m1(m1 + ε1)P(z)

]
� = 4u�. (4.38)
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The left hand side is the Calogero–Moser Hamiltonian and u in the right hand side can
be considered as the eigenvalue of the Hamiltonian. Note that similar equations have
been derived from the Virasoro conformal block [38] and affine sl̂2 conformal block
[37]. Indeed, by assuming the equivalence of the partition function of the matrix model
ZC1,1 with the one-point conformal block on a torus, (4.38) becomes the exactly same
equation as the one obtained from the conformal block with the degenerate field. (See
Section 3.1.2 in [38]. The identification of the parameter is a = iπp.)

We also emphasize that the differential xdz in the wave-function satisfies the special
geometry relation (4.17). This is equivalent to the proposal in [21] stating that the ε1-
deformed prepotential can be obtained from the ε1-deformed special geometry relation
for the N = 2∗ theory, by using the same argument as in [38].

4.3.1. Large N limit and prepotential. Before going to next, let us consider the loop
equation in the large N limit which can be obtain by taking ε1 → 0 further in (4.36):

x2 = m2P(z) − 4u(ε1 = 0), (4.39)

which is the Seiberg–Witten curve of theN = 2∗ gauge theory [9]. Indeed, the parameter
u can be written as

u(ε1 = 0) = −π2 p2 +
∂

∂ ln q

(
FC1,1
0 − 2m2

1 ln η
)

. (4.40)

where FC1,1
0 is the leading contribution of the full free energy in the limit where ε1,2 →

0. The first term corresponds the classical contribution to the prepotential. The last
term denotes the shift of the Coulomb moduli parameter from the value of the physical
expectation value 〈Tr φ2〉 [1,2,76,86].

Indeed, we can be more precise. Under the identification iπp with the vev of the
vector multiplet scalar a, it is easy to show from (4.13) that

a = iπp = 1

2π i

∫ π

0
xdz. (4.41)

This and the fact that the form of x here is the same as the Seiberg–Witten differential of

the N = 2∗ gauge theory where FC1,1
0 is changed to the prepotential (see [38,87]) lead

to the conclusion that the free energy in the large N limit of this matrix model is exactly
the same as the prepotential of the gauge theory (under the identification above).

5. Conclusions

In this paper we proposed that the β-deformation ofmatrixmodels provides, in a suitable
limit, the quantization of the associated integrable system. In particular we have shown
that the loop equations for the β-deformed generalized matrix models [63,65] reproduce
in the Nekrasov–Shatashvili limit the Hamiltonians of the quantum Hitchin system
associated to the sphere and torus with marked points. Moreover, we have shown how
to obtain the wave function from degenerate field insertions.

It would be interesting to understand if this procedure could provide a general quanti-
zation prescription of integrable systems that can be linked to specific matrix models. To
this end it would be very useful to provide further evidence and examples. For instance,
it would be interesting to investigate the β-deformed Chern–Simons matrix model [58]
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in this direction. Furthermore, the extension of our approach to q-deformed conformal
blocks, along the lines of [88], would be worth analyzing with the aim of connecting
our results with topological strings.

On a more specific side, a natural extension of our analysis concerns Hitchin systems
on curves of higher genera, the point being a generalization of the identity (A.8). A
further explorable direction would be the extension to higher rank gauge groups with a
multi-matrix model approach.

The problem of understanding the proper quantization of the Seiberg–Witten geome-
try has been explored recently also from a different viewpoint consisting in a saddle point
analysis of the instanton partition in the Nekrasov–Shatashvili limit [28,33,36]. In Sect.
4, we have seen that for the N = 2∗ theory the eigenvalues of the Hamiltonian match.
It would be interesting to further explore the relation between the two quantizations.
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Appendix

A. Elliptic Functions

The elliptic theta function is defined by

ϑ1(z|τ) = 2q1/8 sin z
∞∏

n=1

(1 − qn)
(
1 − 2qn cos 2z + q2n

)
(A.1)

which has pseudo periodicity

ϑ1(z + π |τ) = −ϑ1(z|τ), ϑ1(z + πτ |τ) = e−i(2z+πτ)ϑ1(z|τ). (A.2)

This function satisfies ϑ ′′
1 (z|τ) = −8 ∂

∂ ln qϑ1(z|τ) where ϑ ′
1(z|τ) = ∂

∂zϑ1(z|τ).
The Weierstrass elliptic function P is double periodic with periods π and πτ and is
expressed as

P(z) = −ζ ′(z), ζ(z) = ϑ ′
1(z|τ)

ϑ1(z|τ)
+ 2η1z, η1 = −1

6

ϑ ′′′
1 (z|τ)|z=0

ϑ ′
1(z|τ)|z=0

, (A.3)

where ϑ1(z|τ) is elliptic theta function. The Weierstrass function satisfies

P(z)′ = 4P(z)3 − g2P(z) − g3, (A.4)

where

g2 = 4

3

(
1 + 240

∞∑

n=1

n3qn

1 − qn

)
,

g3 = 8

27

(
1 − 504

∞∑

n=1

n5qn

1 − qn

)
, (A.5)
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We also define g1 whose expansion is

g1 = −1

3

(
1 − 24

∞∑

n=1

nqn

1 − qn

)
, (A.6)

which is related with η1 as g1 = −2η1:

η1 = 1

6

(
1 − 24

∞∑

n=1

nqn

1 − qn

)
= 4

∂

∂ ln q
ln η, (A.7)

where η = q1/24
∏∞

n=1(1 − qn) is the Dedekind eta function.
The Weierstrass and zeta functions satisfies the identity

P(a + b) + P(a) + P(b) = (ζ(a + b) − ζ(a) − ζ(b))2. (A.8)

This leads to the following formula of the theta function

ϑ ′
1(b − a)

ϑ1(b − a)

(
ϑ ′
1(a)

ϑ1(a)
− ϑ ′

1(b)

ϑ1(b)

)
= ϑ ′

1(a)

ϑ1(a)

ϑ ′
1(b)

ϑ1(b)

− 1

2

(
ϑ ′′
1 (a)

ϑ1(a)
+

ϑ ′′
1 (b)

ϑ1(b)
+

ϑ ′′
1 (b − a)

ϑ1(b − a)

)
− 3η1. (A.9)
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