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Abstract: We show that the Hawking–Penrose singularity theorem, and the generali-
sation of this theorem due to Galloway and Senovilla, continue to hold for Lorentzian
metrics that are ofC1,1-regularity.We formulate appropriate weak versions of the strong
energy condition and genericity condition for C1,1-metrics, and of C0-trapped subman-
ifolds. By regularisation, we show that, under these weak conditions, causal geodesics
necessarily become non-maximising. This requires a detailed analysis of the matrix
Riccati equation for the approximating metrics, which may be of independent interest.

1. Introduction

The classical singularity theorems of General Relativity show that a Lorentzian mani-
fold that satisfies physically “sensible” conditions cannot be geodesically complete. In
particular, if one attempts to “extend” such a manifold, then one cannot extend with
a C2-Lorentzian metric. It is then natural to ask whether one can extend with a lower
regularity Lorentzian metric. In certain situations with a large amount of symmetry, one
can show that even a low level of regularity cannot be maintained. For example, in recent
work, Sbierski [32] has shown that the Schwarzschild solution cannot be extended as a
continuous Lorentzian metric.

Generally speaking, the singularity theorems of Penrose [30], Hawking [10] and
Hawking–Penrose [12] hold for C2-Lorentzian metrics. In [17] and [16], it has been
shown, however, that the theorems of Penrose and Hawking hold for metrics that are
C1,1, i.e., metrics that are differentiable, with all derivatives locally Lipschitz. Such a
level of regularity is of significance to us for a variety of reasons. From a mathematical
point of view, such metrics have the following properties:

(i) The Levi-Civita connection is locally Lipschitz. This is, therefore, the lowest regu-
larity where the classical Picard–Lindelöf theorem gives existence and uniqueness
of solutions of the geodesic equations for the metric. Moreover, the solution of the
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geodesic equation depends continuously (in fact, Lipschitz continuously) on the
initial data.

(ii) The curvature of the metric is well-defined in L∞loc. In particular, Rademacher’s
theorem implies that the curvature exists almost-everywhere.

From the point of view of physics, the curvature of a metric being bounded but dis-
continuous, rather than blowing up, would, via the Einstein field equations, give rise to
(or be generated by) a finite jump in the energy-momentum tensor of the matter vari-
ables. This scenario is quite acceptable physically, and arises in the classical example
of the Oppenheimer–Snyder solution [25] and the whole class of matched spacetimes
(see e.g. [18,19]). As such, there are both physical and mathematical motivations for
studying the class of C1,1-metrics.

When one attempts to generalise the proof of the singularity theorems to the case
of a C1,1-metric, however, the fact that the curvature tensor is only defined almost-
everywhere poses significant problems.1

The standard proof of the singularity theorems relies on the existence of conjugate
points (or focal points) along suitable classes of geodesics in the Lorentzian manifold.
Such conjugate points are shown to exist by a study of Jacobi fields (or, equivalently,
Riccati equations) along these geodesics. However, if the curvature tensor is only defined
almost-everywhere, it is quite possible that, since a geodesic curve has measure zero,
the curvature may not be defined along any given geodesic, so the Jacobi equation
(and, hence, the notion of a conjugate point) is not well-defined along said geodesic.
In Riemannian geometry, a standard example of a metric that is C1,1 but not C2 is the
metric on a hemisphere joined at the equator to a flat cylinder [27,29]. This metric has
strictly positive curvature on the hemisphere and zero curvature on the cylindrical part,
which implies that the curvature is not well-defined on the geodesic that traverses the
join between the two regions. A similar phenomenon occurs in Lorentzian geometry in
the Oppenheimer–Snyder model, where the curvature tensor is not well-defined along
the geodesics that generate the boundary between the interior and exterior regions of the
solution. As such, the notion of a Jacobi field is not defined along such geodesics.

The importance of conjugate points (or focal points) in the proof of the singularity
theorems is the connectionwithmaximising properties of causal geodesics. In particular,
a causal geodesic from a point stops being maximising if and only if either a) there
exists a distinct causal geodesic between the same endpoints of the same length or b)
the geodesic encounters a conjugate point.2 Given suitable geometrical conditions on
the Lorentzian metric (e.g. a Ricci curvature bound, a “convergence condition” such as
the existence of a trapped surface, and a completeness condition), one can use Riccati
comparison techniques to show that all causal geodesics of a suitable type will encounter
conjugate points, and hence stop being maximising curves between their endpoints. It
should perhaps be pointed out, however, that the cut-locus of a point in a Lorentzian
manifold is necessarily a closed set, of which conjugate points form a subset of zero
measure. Therefore, almost all geodesics stop maximising due to their intersection with
another geodesic with the same endpoint of the same length. As such, most causal
geodesics will no longer be maximising even before they encounter their first conjugate
point. However, since such an intersection of geodesics is related to the global geometry
of the manifold, there is no way to estimate (in terms of, say, the curvature) the distance
that one must traverse along a given curve before one encounters such an intersection.

1 A number of technical obstacles for a proof in theC1,1-case are listed in Sect. 6.1 of the review article [33],
see also [34, Sec. 8.1].

2 A similar statement holds for causal geodesics emanating from a submanifold of M .
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The power of conjugate points (and focal points) is the fact that they lead to geodesics
no longer being maximising and we can estimate when they occur.

In this paper, we show that the Hawking–Penrose singularity theorem [12] can be
generalised to C1,1-Lorentzian metrics. The Hawking–Penrose theorem is, perhaps, the
most refined of the classical singularity theorems, in the sense that it requires the most
delicate analysis of the effects of curvature. As a consequence, the technical issues
that arise from the lack of a suitable concept of a “conjugate point” are considerably
more pronounced when one attempts to generalise the Hawking–Penrose theorem to the
C1,1-setting than they were with the Penrose or Hawking theorems. The most general
version of the Hawking–Penrose theorem, which is stated in “causal” language, states
the following:

Theorem 1.1 [12, pp. 538] Let (M, g) be a spacetime with g a C2-metric with the
following properties:

(C.i) M is chronological, i.e., contains no closed timelike curves;
(C.ii) Every inextendible causal geodesic in M contains conjugate points;
(C.iii) There is an achronal set S such that E+(S) or E−(S) is compact.

Then (M, g) is causally geodesically incomplete.

Hawking and Penrose also prove the following more “analytical” result:3

Theorem 1.2 [12, Sec. 3, Cor.] A spacetime (M, g) with C2-metric that

(A.1) is chronological;
(A.2) satisfies the strong energy condition,

Ric(X, X) ≥ 0 ∀ causal X ∈ T M; (1.1)

(A.3) satisfies the genericity condition, i.e., along every causal geodesic γ there is a
point at which

γ̇ cγ̇ d γ̇[a Rb]cd[e γ̇ f ] �= 0; (1.2)

(A.4) contains at least one of the following
(i) a compact achronal set without edge,
(ii) a closed trapped surface or
(iii) a point p such that on every past (or every future) null geodesic from p the

expansion θ of the null geodesics from p becomes negative,

cannot be causally geodesically complete.

For C2-metrics, Theorem 1.2 is proved as a corollary of Theorem 1.1. In particular,
the genericity condition (1.2) along with strong energy condition (1.1) are used, in
conjunctionwith amatrixRiccati equation for the second fundamental formof a geodesic
congruence, to show that any of the conditions (A.4) imply that every inextendible causal
geodesic inM contains conjugate points, and that Condition (C.iii) of Theorem1.1 holds.
Therefore, the conditions of Theorem 1.2 imply those of Theorem 1.1.

In the C1,1-case, which we study in this paper, the logical structure of the argument
is very similar. We first prove an appropriate version of Theorem 1.1 for C1,1-metrics.
To this end, we first note that Condition (C.ii) in Theorem 1.1 explicitly depends on the

3 In [12], Theorem 1.2 is proved as a Corollary of Theorem 1.1. Since the bulk of this paper is dedicated
to proving the analogue of Theorem 1.2, we will hereafter refer to Theorem 1.2 as the “Hawking–Penrose
singularity theorem”.
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concept of a conjugate point, and so cannot be directly generalised to the case of C1,1-
metrics. However, an inspection of the proof of the Hawking–Penrose theorem shows
that, rather than Condition (C.ii), the property that is actually required for their result is
the following:

(C.ii′) Every inextendible causal geodesic in M stops being maximising;

One of our fundamental results is, therefore, Theorem 7.4, which states that, with mi-
nor modifications, Theorem 1.1, with Condition (C.ii) replaced with Condition (C.ii′)
continues to hold if the metric g is assumed to be C1,1. The web of causality results
required in the proof of Theorem 1.1, generalised to the C1,1-setting, is summarised in
Appendix A.

In theC1,1-case, however, the step from Theorem 1.1 to Theorem 1.2 is considerably
more complicated. We show that appropriate versions of the curvature conditions (1.1)
and (1.2) lead to causal geodesics becoming non-maximising between their endpoints.
We prove this result by studying appropriate smooth approximations gε to the C1,1-
metric g, where the gε satisfy appropriate weakened versions of (1.1) and (1.2). By a
refined analysis of the matrix Riccati equation along geodesics with respect to the gε-
metrics, we are able to show that gε-causal geodesics develop conjugate points,4 and,
hence, are non-maximising. From this, we argue that g-causal geodesics also become
non-maximising. At this point, our main results, Theorems 2.5 and 2.6 follow from
Theorem 7.4.

The techniques that we develop in going from Theorem 7.4 to Theorem 2.5 and The-
orem 2.6 are the main technical developments in this paper. In particular, the estimates
that we develop in Sects. 3 and 4 are new,5 and may well be of independent interest.6

We conclude this introduction by fixing our notation and conventions as well as
introducing an improved version of the smooth Hawking–Penrose theorem, which we
will also deal with during this work.

All manifolds will be denoted by M and assumed to be smooth, Hausdorff, second
countable, n-dimensional (with n ≥ 3), and connected. On such M we will consider
Lorentzian metrics g of regularity of at least C1,1 and signature (−,+ . . . ,+) with Levi-
Civita connection ∇ and with a time orientation fixed by a continuous vector field.
We say a curve γ : I → M from some interval I ⊆ R to M is timelike (causal,
null, future or past directed) if it is locally Lipschitz and γ̇ (t), which exists almost
everywhere by Rademacher’s theorem, is timelike (causal, null, future or past directed)
almost everywhere. Following standard notation, for p, q ∈ M we write p � q if
there exists a future directed timelike curve from p to q (and p ≤ q if there exists a
future directed causal curve from p to q or p = q) and set I +(A) := {q ∈ M : p �
q for some p ∈ A} and J+(A) := {q ∈ M : p ≤ q for some p ∈ A}. We note that we
require causal (timelike, …) curves to be Lipschitz, whereas other standard sources use
piecewiseC1 curves instead (see, e.g., [11,24]). However, as was shown in [21, Thm. 7],
[15, Cor. 3.10], this has no impact on the relations� and ≤ for C1,1-metrics. We call a
C1,1-spacetime (M, g) globally hyperbolic if it is causal (i.e., contains no closed causal
curves) and J (p, q) := J+(p) ∩ J−(q) is compact for all p, q ∈ M . We further define
the Riemann curvature tensor7 by R(X,Y )Z = [∇X ,∇Y ]Z − ∇[X,Y ]Z and the Ricci

4 Note that the metrics gε are smooth, so the classical notion of a conjugate point is well-defined.
5 To the best of our knowledge.
6 In particular, these are not estimates that follow from the standard Rauch comparison theorem for Jacobi

fields.
7 Note that we follow the convention of [11] for the curvature tensor, which is the opposite of that employed

in [16,17,24].
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tensor by Ric(X,Y ) = ∑n
i=1〈Ei , Ei 〉〈R(Ei , X)Y, Ei 〉, which in case of g being C1,1

are L∞loc-tensor fields. Here and in the following (Ei )
n
i=1 will denote (local) orthonormal

frame fields and (ei )ni=1 will denote orthonormal frames in individual tangent spaces
TpM . Generally we will consider embedded submanifolds S of codimension m. We
define the second fundamental form by II(V,W ) := nor(∇VW ) for all V,W tangent
to S and the shape operator derived from a normal unit field ν by Sν(X) = ∇Xν. For
any tangent vector v ∈ TpM we denote by γv the geodesic with γv(0) = p, γ̇v(0) = v.
Throughout, a codimension 2 submanifold of M will be referred to as a “surface”.

Condition (A.4)(ii) of Theorem 1.2 has been generalized in [6] to include trapped
submanifolds of arbitrary co-dimension m (1 < m < n) by adding an additional cur-
vature assumption, which in the classical case m = 2 automatically follows from the
energy condition. For a precise formulation let S be a (smooth) spacelike (n − m)-
dimensional submanifold and let e1(q), . . . , en−m(q) be an orthonormal basis for Tq S,
smoothly varying with q in a neighbourhood (in S) of p ∈ S. For a geodesic γ start-
ing at p let E1, . . . , En−m denote the parallel translates of e1(p), . . . , en−m(p) along
γ . Let HS := 1

n−m
∑n−m

i=1 II(ei , ei ) denote the mean curvature vector field of S, and
let kS(v) := g(H, v) be the convergence of v ∈ T M |S . Now a closed spacelike sub-
manifold S is called (future) trapped if for any future-directed null vector ν ∈ T S⊥
the convergence kS(ν) is positive. This is equivalent to the mean curvature vector field
HS being past pointing timelike on all of S. With this definition one has the following
extension of the classical Hawking–Penrose theorem ([6, Thm. 3]).

Theorem 1.3. A spacetime (M, g) with C2-metric satisfying conditions (A.1)–(A.3) of
Theorem 1.2 and

(A.4) (iv) contains a spacelike (future) trapped submanifold S of co-dimension
2 < m < n such that additionally

n−m∑

i=1
〈R(Ei , γ̇ )γ̇ , Ei 〉 ≥ 0 (1.3)

for any future directed null geodesic with γ̇ (0) orthogonal to S,

cannot be causally geodesically complete.

In Sect. 7, this result will also be shown to hold in the C1,1-setting.
This paper is organised in the following way. In Sect. 2, we first define the appro-

priate weak notions of curvature conditions on Lorentzian metrics and convergence
conditions on C0-submanifolds that are required for our study of metrics that are C1,1.
We then state our main results, Theorems 2.5 and 2.6, which are the analogues of the
Hawking–Penrose Theorem 1.2 and its generalisation, Theorem 1.3, to the C1,1-case.
The remainder of the paper is concerned with the proof of these results. In Sect. 3,
we consider the regularisation of the C1,1-metric and, in particular, study the effect of
smoothing on the curvature and genericity condition. In Sect. 4, we develop estimates
for matrix Riccati equations that allow us to show that geodesics with respect to the
smooth approximating metrics must develop conjugate (or focal) points. As mentioned
previously, the estimates obtained in Sect. 4 are, perhaps, the main technical advance in
this paper, and may be of independent interest in their own right. The results of Sect. 4
are used in Sect. 5 to yield Theorems 5.1 and 5.3, which show that, under our curvature
and genericity assumptions, causal geodesics will not remain maximising. In Sect. 6, we
show that if S is a submanifold of M satisfying any one of the conditions (A.4) of Theo-
rems 2.5 and 2.6, then E+(S) is compact, i.e., the submanifold is a trapped set. Finally,



1014 M. Graf, J. D. E. Grant, M. Kunzinger, R. Steinbauer

in Sect. 7, we first show, using results summarised in Appendix A, that Theorem 7.4,
the analogue of the “causal” version of the Hawking–Penrose Theorem (Theorem 1.1),
holds in the C1,1-setting. The results from Sects. 3–6 then quickly yield the main result
Theorems 2.5 and 2.6, i.e., the “analytical” version of the Hawking–Penrose theorem.

2. The Main Result

The aim of this paper is to generalise Theorems 1.2 and 1.3 to C1,1-metrics. Since not
all of the conditions in these theorems are well-defined at this lower level of regularity,
we begin by discussing the alternative formulations that we will use in the C1,1- case.

By the strong energy condition or causal convergence condition, we shall mean that

Ric(X, X) ≥ 0 for all Lipschitz continuous causal local vector fields X . (2.1)

We will also speak of the timelike (or null) convergence condition if (2.1) is only sup-
posed to hold for all Lipschitz continuous timelike (or null) local vector fields X .

Remark 2.1. This condition is natural in the C1,1-context and has been successfully
used in the proofs of other singularity theorems in this regularity (cf. [16, Rem. 1.2(i)]
and [17, Rem. 1.2(i)]). Note that the Lipschitz condition is only relevant in the null
case. Contrary to the situation with a timelike vector, which can clearly be extended to
a smooth timelike local vector field, it is, in general, not possible to extend a given null
vector to a smooth null local vector field. Indeed, parallel transporting a given null vector
at a given point along radial geodesics emanating from that point results in a null vector
field that is only Lipschitz continuous. It is possible that, with a C1,1-Lorentzian metric,
one can extend a given null vector to a C1,1-null local vector field, and the condition for
our results may be weakened to requiring (2.1) to hold for all C1,1-causal local vector
fields X . However, since we will explicitly use a null vector field obtained by parallel
transport (and, hence, Lipschitz) in the proof of Lemma 3.5, we have not investigated
this possibility. For simplicity, we also refrain from refining condition (2.1) to apply to
local smooth timelike and Lipschitz null vector fields, although this would be possible
throughout.

Looking at the classical proof of Theorem 1.2, one finds that it is not the genericity
condition itself that plays a role, but rather a derived condition on the tidal force operator
along causal geodesics γ . The required condition is that there exists t0 such that the
operator

R : (γ̇ (t0))
⊥ → (γ̇ (t0))

⊥, v �→ R(v, γ̇ )γ̇ (2.2)

is not identically zero. (The fact that this condition follows from the genericity condi-
tion (1.2) can be found in, e.g., [13, Cor. 9.1.1].) Thus, we will henceforth refer to (2.2)
as the genericity condition, which we now formulate for C1,1-metrics, and which repro-
duces (2.2) in the smooth case.

Definition 2.2. Let g ∈ C1,1 be a Lorentzian metric on M , and let γ : I → M be a
causal geodesic for g. Then we say the genericity condition holds along γ if there exists
some t0 ∈ I and a neighbourhood U of γ (t0), as well as continuous vector fields X and
V on U such that X (γ (t)) = γ̇ (t) and V (γ (t)) ∈ (γ̇ (t))⊥ for all t ∈ I with γ (t) ∈ U ,
and there exists some c > 0 such that either

〈R(V, X)X, V 〉 > c (2.3)

or
〈R(V, X)X, V 〉 < −c (2.4)

in L∞(U ). In this case, we say that the genericity condition is satisfied for γ at t0 ∈ I
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Regarding the initial conditions (A.4), we first remark that the definition of an
“achronal setwithout edge” and of a “smooth (or at leastC2) future trapped submanifold”
for C1,1-metrics can be carried across unchanged from the smooth case since the mean
curvature is still Lipschitz continuous. We will however wish to generalise the notion of
a future trapped submanifold slightly to allow us to use C0-submanifolds. We say that
a (n at least C2-) submanifold S̃ is a future support submanifold for a C0-submanifold
S at q ∈ S if dim(S̃) = dim S, q ∈ S̃, and S̃ is locally to the future of S near q, i.e.
there exists a neighbourhood U of q in M such that S̃ ∩ U ⊂ J+(S,U ). Using such
future support submanifolds we define past pointing timelike mean curvature at q ∈ S
by requiring the existence of a future support submanifold with past-pointing timelike
mean curvature at q (see, for instance, [1]).

This leads to the following definition of a future trapped submanifold of M (which
reduces to the usual one if S is at least C2).

Definition 2.3. A closed (C0-) submanifold S of codimension m (1 ≤ m < n) is called
future trapped if, for any p ∈ S, there exists a neighbourhoodUp of p such that S ∩Up
is achronal inUp and S has past-pointing timelike mean curvature at all of its points (in
the sense of support submanifolds).

Similarly, to replace the point condition (A.4)(iii) in Theorem 1.2, we define a (future)
trapped point as follows:

Definition 2.4. We say that a point p is future trapped if, for any future-pointing null
vector ν ∈ TpM , there exists a t such that there exists a spacelikeC2-surface S̃ ⊂ J+(p)
with γν(t) ∈ S̃ and kS̃(γ̇ν(t)) > 0.

While it is perhaps not immediately obvious that this provides a good generalisation of
the usual condition, one can show that for smoothmetrics there is a very clear relationship
between the expansion θ(t) along a geodesic γ defined in terms of Jacobi tensor classes
(cf. Lemma 4.1) and the shape operator Sγ̇ (t) derived from γ̇ for the submanifold
St := expp(t V ), where V is the set of all (properly normalised) null vectors contained
in some neighbourhood of γ̇ (0) (see Sect. 6.3 for details). Our definition then provides
a C1,1-generalisation of the trace of such a shape operator becoming negative.

With these definitions we will prove the following generalisation of Theorem 1.2:

Theorem 2.5 (Hawking–Penrose for C1,1-metrics). Let (M, g) be a spacetime with a
C1,1-metric. If M

(A.1) is causal;
(A.2) satisfies the strong energy condition (2.1);
(A.3) satisfies the genericity condition along any inextendible causal geodesic (Defini-

tion 2.2);
(A.4) contains at least one of the following

(i) a compact achronal set without edge;
(ii) a closed future trapped (C0-)surface (Definition 2.3);
(iii) a future trapped point (Definition 2.4),

then it cannot be causally geodesically complete.

Note that the C1,1-version requires that (M, g) be causal rather than chronological
since, contrary to the smooth case, the other conditions that we impose do not exclude the
existence of closed null curves. The problemwill be evident in the proof of Theorem 5.3,
where we will use approximations to show that no inextendible null geodesic can be
globally maximising, and our argument breaks down for closed null curves.

Finally, we will also prove a C1,1-generalization of Theorem 1.3.
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Theorem 2.6. Let (M, g)bea spacetimewith aC1,1-metric that satisfies conditions (A.1)
to (A.3) of Theorem 2.5 and

(A.4) (iv) contains a (future) trapped C0-submanifold (Definition 2.3) of co-dimension
2 < m < n such that the support submanifolds S̃ additionally satisfy the
following: For any future directed null geodesic γ starting orthogonally to S̃
there exist b > 1

kS̃(γ̇ (0)) , a neighbourhoodU of γ |[0,b], and continuous exten-
sions Ē1, . . . Ēn−m and N̄ of E1, . . . En−m (for S̃) and N := γ̇ , respectively,
to U such that

n−m∑

i=1
〈R(Ēi , N̄ )N̄ , Ēi 〉 ≥ 0 a.e. on U. (2.5)

Then M contains an incomplete causal geodesic.

3. Regularisation Results

In this section we establish a number of auxiliary results pertaining to regularisations of
C1,1-metrics, as well as the corresponding curvature quantities and geodesics. Our ap-
proach rests on the causality-respecting regularisation procedure introduced byChruściel
and Grant in [4]. In its formulation, we shall employ the following notation (cf. [22, Sec.
3.8.2], [4, Sec. 1.2]): Given Lorentzian metrics g1, g2, we say that g2 has strictly wider
light cones than g1, denoted by g1 ≺ g2, if for any tangent vector X �= 0, g1(X, X) ≤ 0
implies that g2(X, X) < 0. Thus any g1-causal vector is timelike for g2. Then [4, Prop.
1.2] (cf. also [15, Prop. 2.5]) gives:

Proposition 3.1. Let (M, g) be a C0-spacetime and let h be some smooth background
Riemannian metric on M. Then for any ε > 0, there exist smooth Lorentzian metrics
ǧε and ĝε on M such that for all 0 < ε < ε′, ǧε′ ≺ ǧε ≺ g ≺ ĝε ≺ ĝε′ , and
dh(ǧε, g) + dh(ĝε, g) < ε, where

dh(g1, g2) := sup
p∈M,0 �=X,Y∈TpM

|g1(X,Y )− g2(X,Y )|
‖X‖h‖Y‖h . (3.1)

Moreover, ĝε(p) and ǧε(p) depend smoothly on (ε, p) ∈ R
+×M, and if g ∈ C1,1 then,

letting gε be either ǧε or ĝε, we additionally have

(i) gε converges to g in the C1-topology as ε → 0, and
(ii) the second derivatives of gε are bounded, uniformly in ε, on compact sets.

Curvature quantities for gε-metrics will be denoted by a subscript, as in Rε or Ricε.
Next we recall the consequences of the strong energy condition (2.1) provided by [16,

Lemma 3.2] and [17, Lemma 2.4] for nets (gε)ε>0 (with gε = ǧε or gε = ĝε) of
approximating smooth metrics.

Lemma 3.2. Let M be a smooth manifold with a C1,1-Lorentzian metric g and smooth
Riemannian background metrics h, h̃ on M and T M, respectively. Let K � M and let
C, δ > 0. Then we have:

(i) If Ric(Y,Y ) ≥ 0 for every g-timelike smooth local vector field Y , then

∀κ < 0 ∃ε0 > 0 ∀ε < ε0 ∀X ∈ T M |K with g(X, X) ≤ κ

and ‖X‖h ≤ C : Ricε(X, X) > −δ.
(3.2)
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(ii) If Ric(Y,Y ) ≥ 0 for every Lipschitz-continuous g-null local vector field Y , then

∃η > 0 ∃ε0 > 0 ∀ε < ε0 : if p ∈ K, X ∈ TpM with ‖X‖h ≤ C

and ∃Y0 ∈ T M |K , g-null with dh̃(X,Y0) ≤ η and ‖Y0‖h ≤ C : (3.3)

Ricε(X, X) > −δ.

For later use, we also record the following result, cf. e.g. the proof of [16, Prop. 4.3]:

Lemma 3.3. Let (M, g) be a globally hyperbolic C1,1-spacetime and let p, q ∈ M.
Denote by d and dǧε

the time-separation functions with respect to g and ǧε, respectively.
Then, we have

dǧε
(p, q)→ d(p, q) (ε → 0).

The following basic Friedrichs-type Lemma collects some general convergence prop-
erties that will be used repeatedly in subsequent sections.

Lemma 3.4. Let a ∈ L∞loc(Rn), f ∈ C0(Rn), bε ∈ C0(Rn) (ε > 0), and bε → b locally
uniformly for ε → 0. Let ρ ∈ D(Rn) be a standard mollifier. Then

(i) (a · f · b) ∗ ρε − (a ∗ ρε) · ( f ∗ ρε) · bε → 0 (ε → 0) locally uniformly.
(ii) If ρ is non-negative and a · f · b ≥ c ∈ R then

∀c̃ < c ∀K � R
n ∃ε0 ∀ε < ε0 : (a ∗ ρε) · ( f ∗ ρε) · bε > c̃ on K .

Proof. (i) We have

(a · f · b) ∗ ρε − (a ∗ ρε) · ( f ∗ ρε) · bε = (a · f · b) ∗ ρε − (a · f ) ∗ ρε · b ∗ ρε

+ (a · f ) ∗ ρε · b ∗ ρε − (a ∗ ρε) · ( f ∗ ρε) · bε.

Here, both the first and the second term on the right hand side go to 0 locally uniformly
by a variant of the Friedrichs Lemma (cf. the proof of [16, Lemma 3.2]).

(ii) Since (a · f · b) ∗ ρε ≥ c, the claim follows from (i). ��
A convenient consequence of the previous Lemma concerns basic properties of cur-

vature quantities associated to a C1,1-metric g: Arguing in a local chart, Lemma 3.4
shows that if gε is as in Proposition 3.1, then Rε− R ∗ρε → 0 locally uniformly (cf. (5)
in [16]). Since, moreover, R ∗ρε → R in any L p

loc (1 ≤ p <∞), all the usual symmetry
properties of the Riemann tensor for smooth metrics carry over to R pointwise a.e.

Next we introduce some notation to deal with timelike and null geodesics simultane-
ously. Suppose that γ is a causal geodesic in a C1,1-spacetime (M, g). As is com-
mon in the smooth case (see e.g. [13, Sec. 4.6.3]) we consider the quotient space
[γ̇ (t)]⊥ := (γ̇ (t))⊥/Rγ̇ (t), i.e. vectors v,w ∈ (γ̇ (t))⊥ are equivalent if there exists
α ∈ R such that v = w + αγ̇ (t). In the case where γ is null, [γ̇ (t)]⊥ is an (n − 2)-
dimensional subspace of (γ̇ (t))⊥. When γ is timelike, [γ̇ (t)]⊥ coincides with (γ̇ (t))⊥.
In order to enable a unified notation we will henceforth denote the dimension of [γ̇ (t)]⊥
by d, i.e. d = n − 2 in the null case and d = n − 1 in the timelike case. Also we set
[γ̇ ]⊥ = ⋃

t [γ̇ (t)]⊥. Every normal tensor field A along γ then induces a unique tensor
class [A] along γ and the induced covariant derivative ∇γ̇ is well-defined for tensor
classes and denoted by [ Ȧ] = [∇γ̇ A]. The metric g|[γ̇ ]⊥ is positive definite in both the
null and the timelike case. Also recall that, for smooth metrics, the curvature (or tidal
force) operator [R](t) : [γ̇ (t)]⊥ → [γ̇ (t)]⊥, [v] �→ [R(v, γ̇ (t))γ̇ (t)] is well-defined
since R(γ̇ , γ̇ )γ̇ = 0.

Before we proceed to construct suitable frames for the approximating curvature op-
erators [Rε](t), we will show that our definition of genericity is equivalent to a definition
using only strict positivity (i.e., (2.3) only) if the strong energy condition (2.1) holds.
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Lemma 3.5. Let g ∈ C1,1 be a Lorentzian metric on M, and let γ : I → M be a
causal geodesic for g. Suppose that the genericity condition is satisfied for γ at t0 ∈
I . If the strong energy condition (2.1) holds then there exist a neighbourhood U of
γ (t0), as well as Lipschitz vector fields X and V on U such that X (γ (t)) = γ̇ (t) and
V (γ (t)) ∈ (γ̇ (t))⊥ for all t ∈ I with γ (t) ∈ U, and there exists some c > 0 such that
〈R(V, X)X, V 〉 > c on U.

Proof. We assume that (2.4) holds and treat the null and the timelike case separately.
Suppose first that γ is null. Then after reparametrisation we can find orthonormal

vectors en−1 and en in Tγ (t0)M such that en is timelike and γ̇ (t0) = (en−1+en). Since X is
only guaranteed to be null along γ we assume thatU is a totally normal neighbourhood of
γ (t0) ([14, Sec. 4]) and replace X by the null vector field obtained by parallel transporting
(en−1 + en) outwards from γ (t0) along radial geodesics, which we again denote by X .
We then replace V by the vector field obtained by transporting V (γ (t0)) outwards from
γ (t0) along radial geodesics. Then by possibly shrinking U and c we still retain the
genericity estimate (2.4) for X and V . By construction, the new V is either proportional
to X nowhere or everywhere, but the latter can’t occur by the symmetries of R and (2.4).
Hence V is spacelike and we normalise it.

Now let E1, . . . , En be an orthonormal Lipschitz frame on U such that E1 = V , En
is timelike and X = (En−1 + En). Then by the symmetries of R we have Ric(X, X) =
∑n−2

i=1 〈R(Ei , X)X, Ei 〉, so theremust exist 2 ≤ j ≤ n−2 such that 〈R(E j , X)X, E j 〉 >
c

n−3 .
In the case where γ is timelike, by shrinking U and c, we may assume that X

is a timelike unit vector field on all of U and replace V by V + 〈X, V 〉X and nor-
malize it. In addition, using parallel transport as in the null case above we may as-
sume that both X and V are Lipschitz continuous. Consequently, without loss of gen-
erality we may suppose that there exists a Lipschitz continuous orthonormal frame
E1 = V, E2, . . . , En = X on U . But then Ric(X, X) = ∑n−1

i=1 〈R(Ei , X)X, Ei 〉 ≥ 0
implies

∑n−1
i=2 〈R(Ei , X)X, Ei 〉 > c, hence there exists some 2 ≤ j ≤ n − 1 such that

〈R(E j , X)X, E j 〉 > c
n−2 . ��

Remark 3.6. As described in Remark 2.1, if the strong energy condition in the timelike
case is assumed to hold only for smooth local vector fields, the statement of Lemma 3.5
remains valid. In fact, smoothing X (via convolution in local charts) and otherwise
proceeding as above, for any given δ > 0 we can achieve that (for the original X )
Ric(X, X) =∑n−1

i=1 〈R(Ei , X)X, Ei 〉 ≥ −δ. The claim then follows in the same way.

The next step is to use the C1,1-genericity condition to derive a lower bound on the
tidal force operator for approximating metrics along approximating causal geodesics.

Lemma 3.7. Let g ∈ C1,1 be a Lorentzian metric on M such that the strong energy
condition is satisfied, and let γ : I → M be a causal geodesic for g. Suppose that
the genericity condition is satisfied for γ at t0 ∈ I . Then there exist constants r > 0,
c > 0, and C > 0 such that the following holds: Let gε = ǧε or gε = ĝε, and let γε be
gε-geodesics of the same causal character w.r.t. gε as that of γ w.r.t. g. Assume that γε

converges to γ in C1(I ) and for each ε, let

[Rε](t) := [Rε(. , γ̇ε(t))γ̇ε(t)] : [γ̇ε(t)]⊥ → [γ̇ε(t)]⊥.

Then there exists ε0 > 0 such that, for each ε ∈ (0, ε0) there is a smooth parallel
orthonormal frame [Eε

1](t), . . . , [Eε
d ](t) for [γ̇ε]⊥ such that
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[Rε](t) > diag(c,−C, . . . ,−C) on [t0 − r, t0 + r ] (3.4)

in terms of this frame.8

Remark 3.8. As the proof will show, the conclusion of Lemma 3.7 remains valid if, for
γ timelike resp. null, also the strong energy resp. genericity condition are assumed to
hold only for the timelike resp. null case.

Moreover, since in all the following results the strong energy condition only enters
via Lemmas 3.2, 3.5 and 3.7, the claim in the final sentence of Remark 2.1 indeed holds.

Proof of Lemma 3.7. As the claim is local, we may assume that M = R
n . We use the

notation of Definition 2.2, and may clearly set t0 = 0. Additionally we may assume that
γ is parametrised to unit speed (if γ is timelike) or such that γ̇ (0) = en−1 + en for two
orthonormal vectors en−1, en with en timelike (if γ is null). By Lemma 3.5 we also have
without loss of generality 〈R(V, X)X, V 〉 > c.

Using the parallel frames on a relatively compact normal neighbourhoodU of p0 :=
γ (0) as constructed in the proof of Lemma 3.5 (with V = E1, as well as X = En in
the timelike case and X = (En−1 + En) with En timelike in the null case), we will now
carry out the proof in several steps simultaneously in the timelike and the null case.

To begin with, let 0 < c1 < c. We claim that there exists some C1 > 0 such that,
setting Ri j := 〈R(Ei , X)X, E j 〉 we have (Ri j )

d
i, j=1 > diag(c1,−C1, . . . ,−C1) on U .

To establish this, we need to find C1 > 0 such that, for any w =: (w1, w̄) �= 0 in
R
d , w�(Ri j − diag(c1,−C1, . . . ,−C1))w > 0. Setting R̄ := (Ri j )

d
i, j=2, and denoting

by λmin the smallest eigenvalue of R̄ + C1id, we have

w�(Ri j − diag(c1,−C1, . . . ,− C1))w

= (R11 − c1)w
2
1 + 2

d∑

j=2
R1 jw jw1 + w̄�(R̄ + C1id)w̄

≥ (c − c1)w
2
1 + 2

d∑

j=2
R1 jw jw1 + λmin‖w̄‖2e

≥ (c − c1)w
2
1 − 2|w1|‖(R1 j ) j‖e‖w̄‖e + λmin‖w̄‖2e,

(3.5)

where ‖.‖e denotes the Euclidean norm. Setting CR := ‖(R1 j ) j‖e, we pick C1 > 0

such that λmin(x) ≥ C2
R

c−c1 for all x ∈ U . With this choice, the quadratic in the final line

of (3.5) has no real root, and therefore (3.5) is positive for all w ∈ R
d\{0}.

Since (component-wise) convolutionwith anon-negativemollifier as inLemma3.4(ii)
preserves positive-definiteness, it follows that given 0 < c2 < c1 and C2 > C1, we can
achieve Ri j ∗ ρε > diag(c2,−C2, . . . ,−C2) for ε small. Furthermore, by the same
argument as in (5) in [16], Rε − R ∗ ρε → 0 (ε → 0) locally uniformly and, by Lemma
3.4(i), Rεi j−Ri j ∗ρε → 0 locally uniformly, where thematrix elements Rεi j are defined
as Rεi j = (〈Rε(Ei , X)X, E j 〉gε )

d
i, j=1. This implies that there exists an ε0 such that

(Rεi j ) > diag(c2,−C2, . . . ,−C2) (3.6)

on U for all ε < ε0.

8 Here and below, for d × d matrices A, B, we write A > B if the matrix A − B is positive definite.
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Next we note that by the explicit bounds derived in [14, Sec. 2] we may assume that
U is gε-totally normal for each ε < ε0. Let pε := γε(0). Since pε → p0, we can also
achieve that pε ∈ U for all ε < ε0. Pick a gε-orthonormal frame eε

1, . . . , e
ε
n at pε such

that, as above, eε
n = γ̇ε(0) in the timelike case, whereas in the null case eε

n is timelike and
γ̇ε(0) ∝ eε

n−1+eε
n . In addition, wemay assume that eε

i → Ei (p0) as ε → 0. Now denote
by Eε

1, . . . , E
ε
n the gε-orthonormal frame on U that results from parallel transporting

eε
1, . . . , e

ε
n out from pε along radial gε-geodesics. Then, since Eε

i → Ei uniformly on
U , by further shrinking ε0, we obtain from (3.6) that the matrix elements with respect
to this frame satisfy

(
〈Rε(E

ε
i , X)X, Eε

j 〉gε

)d

i, j=1 > diag(c2,−C2, . . . ,−C2) (3.7)

on U for ε < ε0.
Fix r > 0 such that γ ([−r, r ]) ⊆ U , so that, without loss of generality we have

γε([−r, r ]) ⊆ U for all ε < ε0. Then, by construction, Eε
i (t) := Eε

i ◦ γε(t) is a
gε-orthonormal smooth parallel frame along γε, and (3.7) implies that

(〈Rε(E
ε
i (t), X ◦ γε(t))X ◦ γε(t), E

ε
j (t)〉gε◦γε )

d
i, j=1 > diag(c2,−C2, . . . ,−C2)

on [−r, r ] for ε ≤ ε0. The claimnow follows from the observation that 〈Rε(. , X)X, . 〉gε◦
γε − 〈Rε(. , γ̇ε)γ̇ε, . 〉gε → 0 uniformly on [−r, r ]. ��

4. Conjugate Points for Smooth Metrics

Given a causal geodesic γ without conjugate points, it is well known in the smooth
case that, under the strong energy condition, the initial expansion of the corresponding
geodesic congruence must be bounded. In the following Lemma, we explicitly derive
such bounds assuming only the weaker energy condition, Ric(γ̇ , γ̇ ) > −δ, that follows
from the C1,1-version of the strong energy condition, cf. Lemma 3.2. We respect the
conventions introduced in Sect. 3, so in particular d = n−1 for γ timelike and d = n−2
for γ null.

Lemma 4.1. Let g be a smooth Lorentzian metric on M. Then, for any T > 0, there
exists some δ = δ(T ) > 0 with the following property: Let γ be a future directed causal
geodesic without conjugate points on [−T, T ], and let [A] be the Jacobi tensor class
along γ assuming the data [A](−T ) = 0 and [A](0) = id. Then for any 0 < r < T/2
the expansion θ = tr([ Ȧ][A]−1) satisfies

sup
t∈[−r,r ]

|θ(t)| ≤ 4d

T
, (4.1)

provided that Ric(γ̇ , γ̇ ) ≥ −δ on [−T, T ].
Proof. Since [A](−T ) = 0, [B] := [ Ȧ][A]−1 is self-adjoint (cf., e.g., [13,Lemma4.6.19]),
so its vorticity ω = 1

2 ([B]−[B]t ) vanishes. By the Raychaudhuri equation we therefore
have

θ̇ = −Ric(γ̇ , γ̇ )− tr(σ 2)− 1

d
θ2 ≤ δ − 1

d
θ2, (4.2)
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where the shear σ is given by σ = [B] − 1
d θ · id. To estimate θ from below on [−r, r ],

assume that there exists t0 ∈ [−r, r ] such that θ(t0) < −√dδ. Writing β = θ(t0) < 0
and κ = − 1

d δ < 0, we analyse the comparison equation

ṡ +
1

d
s2 + d κ = 0, s(0) = β. (4.3)

Denote by sκβ : [0, bκβ)→ R the maximal solution of (4.3). Now if β ∈ (−∞,−√dδ),
one has (cf. [35])

sκβ(t) = d
√|κ| coth

(

t
√|κ| + arcoth

(
β

d
√|κ|

))

, (4.4)

bκβ = − 1√|κ| arcoth
(

β

d
√|κ|

)

. (4.5)

Since γ has no conjugate point before T , and since the maximal domain of definition of
θ(t0 + . )must be contained in that of sκβ by Riccati comparison, we obtain T − t0 ≤ bκβ .
Consequently,

−d√|κ| coth
(√|κ| (T − r)

)
≤ −d√|κ| coth

(√|κ| (T − t0)
)
≤ β. (4.6)

The left hand side of (4.6) goes to−d/(T − r) as κ → 0, so we may choose a κ < 0 of
small enough modulus such that β ≥ −2d/(T − r). Translating back to δ and recalling
that we assumed r ≤ T/2, we see that we may choose δ > 0 small enough such that, for
any t0 as above, β = θ(t0) ≥ −4d/T . So in total we have for sufficiently small δ that

inf
t∈[−r,r ] θ(t) ≥ min

(

−4d

T
,−√d δ

)

= −4d

T
. (4.7)

To obtain the analogous estimate from above, consider the Jacobi tensor t �→ [A](−t)
along t �→ γ (−t). Then the corresponding past-directed expansion θp(t) = −θ(−t)
satisfies aRiccati equationwith the same bounds as θ , so the above arguments imply (4.7)
also for θp, yielding the claim. ��

We may now prove the existence of conjugate points along causal geodesics in the
smooth case under the weakened version of the Ricci bounds derived in Lemma 3.2
from the strong energy condition (2.1), as well as the bounds on the curvature operator
derived in Lemma 3.7 from the C1,1-genericity condition.

Proposition 4.2. Let g be a smooth Lorentzian metric on M. Then given c > 0, C > 0,
and 0 < r < π

4
√
c
there exist δ = δ(c,C, r) > 0, and T = T (c,C, r) > 0 with the

following property:
If γ is a causal geodesic and t0 ∈ R is such that γ is defined at least on [t0 − T, t0 + T ]
and

(i) Ric(γ̇ , γ̇ ) ≥ −δ on [t0 − T, t0 + T ], as well as
(ii) there exists a smooth parallel orthonormal frame [E1](t), . . . , [Ed ](t) for [γ̇ ]⊥
such that, in terms of this frame the tidal force operator satisfies [R](t) >

diag(c,−C, . . . ,−C) on [t0 − r, t0 + r ],
then γ possesses a pair of conjugate points in [t0 − T, t0 + T ].
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Proof. Clearly we may assume that t0 = 0. Now suppose, to the contrary, that no
matter how small δ > 0 or how big T > 0 are chosen, there exists a γ satisfying
(i) and (ii) without conjugate points in [−T, T ]. Then for any such choice there is a
unique Jacobi tensor class [A] along γ (depending on T and δ) with [A](−T ) = 0 and
[A](0) = id. With [E1](t), . . . , [Ed ](t) as in (ii), henceforth we will consider all linear
endomorphisms of [γ̇ ]⊥ as matrices in this basis. Set [R̃](t) := diag(c,−C, . . . ,−C).
Then by (ii), [R̃](t) < [R](t) on [−r, r ].

Set [B] := [ Ȧ] · [A]−1. Then (cf., e.g., [2, ch. 12]) [B] is self-adjoint and satisfies
the matrix Riccati equation

[Ḃ] + [B]2 + [R] = 0. (4.8)

Denote by [B̃] the solution to (4.8), with [R] replaced by [R̃] and initial value prescribed
at some t1 ∈ [−r, r ]. We will show that we can find a t1 ∈ [−r, r ] and an initial value
[B̃](t1) satisfying [B̃](t1) ≥ [B](t1). Once this is established then, since [R] > [R̃]
on [−r, r ], the Riccati comparison theorem of [5] implies that [B](t) ≤ [B̃](t) for all
t ∈ [t1, r ].

We will in fact seek t1 in [−r, 0] and [B̃](t1) in the form β̃(t1) · id, where β̃(t1) is
greater or equal the largest eigenvalue of [B](t1). Since we can without loss of generality
assume that T > 2r and that δ < δ(T ), our assumption on the absence of conjugate
points in conjunction with Lemma 4.1 yields for the expansion θ = tr([B]):

max
t∈[−r,r ] |θ(t)| ≤ ν ≡ ν(T ) := 4d

T
. (4.9)

Also, θ satisfies the Raychaudhuri equation

θ̇ +
1

d
θ2 + tr(σ 2) + tr([R]) = 0, (4.10)

where, as before, σ = [B]− 1
d θ · id. Denoting the eigenvalues of [B] by βi (1 ≤ i ≤ d),

σ has eigenvalues βi − θ
d , and since tr([R]) ≥ −δ by assumption we find

θ̇ ≤ δ −
d∑

i=1

(
βi − θ

d

)2 ≤ δ −
(
βmax(t1)− θ(t1)

d

)2 =: −l. (4.11)

Here, βmax is the maximum eigenvalue of [B] and t1 ∈ [−r, 0] is chosen such that∣
∣βmax − θ

d

∣
∣ attains its minimum on [−r, 0] in t1. Using (4.9), we see

−ν ≤ θ(0) ≤ −lr + θ(−r) ≤ −lr + ν, which implies l ≤ 2ν

r
.

Combining this with (4.11) gives

βmax(t1) ≤
√(

2ν

r
+ δ

)

+
θ(t1)

d
≤

√(
2ν

r
+ δ

)

+
ν

d
=: f (ν, δ, r) ≡ f. (4.12)

Consequently, we may set β̃(t1) := f (ν, δ, r) and [B̃](t1) := f (ν, δ, r) · id to indeed
achieve that [B](t) ≤ [B̃](t) on [t1, r ].
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Since both [R̃] and [B̃](t1) are diagonal, the Riccati equation for [B̃] decouples and
has the explicit solution

[B̃](t) = 1

d
diag(Hc, f (t), H−C, f (t), . . . , H−C, f (t)).

Here (cf. [7,35])

Hc, f (t) = d
√
c cot(

√
c(t − t1) + arccot( f/

√
c)),

and

H−C, f (t) = d
√
C tanh

(√
C(t − t1) + artanh( f/

√
C)

)
,

and due to our assumption 0 < r < π
4
√
c
these functions are defined on [t1, r ] (for f

sufficiently small). As was noted above, since [R̃](t) < [R](t) for all t ∈ [−r, r ] and
[B](t1) ≤ [B̃](t1), Riccati comparison implies [B](t) ≤ [B̃](t) for all t ∈ [t1, r ]. In
particular, for the smallest eigenvalue βmin of [B] we obtain

βmin(t) ≤ 1

d
Hc, f (t) (t ∈ [t1, r ]). (4.13)

We are now going to show that for δ small enough and T large enough, Hc, f (t) < 0
for t ∈ [ r2 , r ]. In fact, since Hc, f is monotonically decreasing, it suffices to secure that
Hc, f (

r
2 ) < 0. Set k := arccot( f/

√
c) < π

2 . Then Hc, f (
r
2 ) < 0 if and only if

√
c
( r

2
− t1

)
+ k ∈

(π

2
, π

)
. (4.14)

To achieve this, first note that 3r
√
c < π , so that

√
c( r2 − t1) < π

2 . Since k < π
2 , (4.14)

can be satisfied by choosing δ and ν so small that
√
c( r2 − t1) + k > π

2 . Shrinking ν

further, we can also achieve that Hc, f (
r
2 ) < −ν, so altogether we obtain for t ∈ [ r2 , r ]:

βmin(t) ≤ 1

d
Hc, f

( r

2

)
< −ν

d
≤ θ(t)

d
.

By (4.11) this gives

θ̇ ≤ −
(
βmin − θ

d

)2
+ δ ≤ −

( 1

d

(
Hc, f

( r

2

)
+ ν

))2
+ δ

on [ r2 , r ]. Consequently,

−2ν ≤
∫ r

r
2

θ̇ (t) dt ≤ − r

2

[( 1

d

(
Hc, f

( r

2

)
+ ν

))2 − δ
]
,

and thereby

−d
√(

4ν

r
+ δ

)

− ν ≤ Hc, f

( r

2

)
.

However, as δ ↘ 0 and T →∞, the left hand side of this inequality tends to 0, while

the right hand side has the limit d
√
c cot

(√
c
(
r
2 − t1

)
+ π

2

)
< 0, a contradiction. ��
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5. Maximising Geodesics

We will next prove that in the C1,1-case under suitable causality conditions complete
causal geodesics stop being maximising, provided the strong energy condition (2.1) and
the genericity condition (Definition 2.2) hold. We will do so separately in the timelike
and in the null case with the respective causality conditions adapted to the later use of
the corresponding statements in the proof of the main theorem.

Theorem 5.1. Let g ∈ C1,1 be a globally hyperbolic Lorentzian metric on M that satis-
fies the timelike convergence condition. Moreover, suppose that the genericity condition
holds along any timelike geodesic. Then no complete timelike geodesic γ : R → M is
globally maximising.9

Proof. Let γ : R → M be a complete geodesic and suppose that γ were maximising
between any two of its points. We approximate g from the inside by a net ǧε, so each
ǧε is globally hyperbolic as well. Without loss of generality assume that γ satisfies the
genericity condition at t0 = 0. Then by Lemma 3.7 there exist c > 0, C > 0 and
0 < r < π

4
√
c
such that, whenever γε is a net of ǧε-geodesics that converge to γ in C1,

there exists some ε0 > 0 such that, for any ε < ε0, condition (ii) of Proposition 4.2 is
satisfied for Rε.

Choose δ = δ(c,C, r) > 0 and T = T (c,C, r) > 0 as in Proposition 4.2 and
let T̃ > T . Since ǧε is globally hyperbolic, for any ε > 0 sufficiently small there
exists a maximising ǧε-geodesic γε from γ (−T̃ ) to γ (T̃ ) (cf. [4, Prop. 1.21 and Th.
1.20]). We choose the parametrisation such that γε(−T̃ ) = γ (−T̃ ) and v := γ̇ (−T̃ )

and vε := γ̇ε(−T̃ ) have the same h-norm for a fixed Riemannian background metric h.
We define T̃ε by γε(T̃ε) = γ (T̃ ), so γε|[−T̃ ,T̃ε] ⊆ J−(γ (T̃ )) ∩ J+(γ (−T̃ )). Therefore
there is a subsequence εk such that vεk converges to a vector w with ‖w‖h = ‖v‖h and
T̃εk → b ∈ [−T̃ ,∞].

Consequently, γεk converges in C
1 to the (future) inextendible g-geodesic γw : [−T̃ ,

b0) → M with γw(−T̃ ) = γ (−T̃ ) and γ̇w(−T̃ ) = w. Since our spacetime is non-
totally imprisoning (which follows from global hyperbolicity by the same proof as for
smoothmetrics, [24, Lem. 14.13]), this geodesic must leave the compact set J−(γ (T̃ ))∩
J+(γ (−T̃ )), hence b0 > b and in particular b �= ∞ and γw(b) = γ (T̃ ). Also, γw|[0,b]
must be maximising since the distances converge by Lemma 3.3. We now distinguish
two cases:

If w �= v, then γw is a maximising geodesic from γ (−T̃ ) to γ (T̃ ) different from γ ,
so γ can’t be maximising beyond T̃ , contradicting our assumption.

If, on the other hand, v = w, then γw = γ and b = T̃ . Let K be a compact
neighbourhood of γ ([−T, T ]). Since γεk → γ in C1([−T, T ]), there exist k0 ∈ N,
C̃ > 0, and κ < 0 such that for all k ≥ k0 we have γεk ([−T, T ]) ⊆ K , as well as
‖γ̇εk (t)‖h ≤ C̃ and g(γ̇εk (t), γ̇εk (t)) < κ for all t ∈ [−T, T ]. Lemma 3.2(i) therefore
implies that Rεk (γ̇εk (t), γ̇εk (t)) ≥ −δ(c,C, r) on [−T, T ] for k sufficiently large. This
shows that γεk also satisfies condition (i) from Proposition 4.2 for k large. But then any
such γεk incurs a pair of conjugate points within [−T, T ], contradicting the fact that it
was supposed to be maximising even on [−T̃ , T̃εk ] ⊃ [−T, T ] since T̃εk → T̃ . ��

The proof of the previous Theorem uses Proposition 4.2 to guarantee the existence
of conjugate points for ǧε-geodesics close to γ , but the essence of the argument can be

9 Recall that a timelike geodesic is globally maximising if it maximises between any two of its points.



The Hawking–Penrose Singularity Theorem for C1,1-Lorentzian Metrics 1025

formulated in a much more general way using cut functions. Let T ⊆ T M be the set of
all future directed timelike vectors, then one defines the timelike cut function s : T → R

by

s(v) := sup{t : L(γv|[0,t]) = d(γ (0), γ (t))}. (5.1)

This function clearly depends on the metric and so a natural question is how, given
a C1,1-metric g, the ǧεk -cut functions sk relate to the g-cut function s. The following
theorem shows that at least for a globally hyperbolic spacetime a uniform upper bound
on the sk must also be an upper bound for s.

Theorem 5.2. Let (M, g) be a spacetime with a globally hyperbolic C1,1-metric and let
gk = ǧεk . Let U ⊆ T be open such that U ⊆ Tk for large k. If sk |U ≤ T then s|U ≤ T .

Proof. The proof uses the same arguments as in Theorem 5.1: Let v ∈ U , T̃ > T and
assume, for the sake of contradiction, that s(v) > T̃ . Then γv maximises the distance
between γv(0) and γv(T̃ ) and even remains maximising a bit further. Choosing γk as in
the previous proof, the same arguments give a sequence γk that converges in C1 to γ (in
particular, γ̇k(0) ∈ U for large k) and is maximising on [0, T̃k] ⊃ [0, T ] for large k, but
this contradicts sk |U ≤ T . ��

There is an analogous result to Theorem 5.1 for null instead of timelike curves. How-
ever, assuming global hyperbolicity in the null case renders such a statement mostly
useless for the proof of the Hawking–Penrose Theorem because inextendible yet max-
imising null curves need to be excluded everywhere in the spacetime and not just in
some globally hyperbolic subset (contrary to timelike curves, which will appear only
briefly at the end of the proof when one already works in some Cauchy development).
Fortunately in the null case there is a sharper distinction between maximising and non-
maximising geodesics because a null geodesic stops maximising if and only if it leaves
the boundary of a lightcone, and one can exploit the structure of such boundaries to show
that inextendible null geodesics which are not closed cannot be maximizing. However,
the methods of the following proof fail for closed null curves (which are not well be-
haved with respect to approximation), so these had to be excluded in the statement of
Theorem 2.5 by assuming that the spacetime is causal instead of merely chronological
in the classical theorem.

Theorem 5.3. Let g ∈ C1,1 be a Lorentzian metric on M such that (M, g) is causal.
Moreover, suppose that the null convergence condition holds and that the genericity
condition is satisfied along any null geodesic. Then no complete null geodesic γ : R→
M is globally maximising.

Proof. The general shape of the argument is similar to the timelike case, however, since
we do not assume global hyperbolicity we will have to choose the approximating ǧε-
geodesics differently.

Assume γ : R → M were a null geodesic that is maximizing between any of its
points and that without loss of generality satisfies the genericity condition at t0 = 0.
Then by Lemma 3.7 there exist c > 0, C > 0 and 0 < r < π

4
√
c
such that, whenever

γε is a net of ǧε-null geodesics that converge to γ in C1, there exists some ε0 > 0
such that, for any ε < ε0, condition (ii) of Proposition 4.2 is satisfied for Rε. Choose
δ = δ(c,C, r) > 0 and T = T (c,C, r) > 0 as in Proposition 4.2 and choose T̃ > T in
a such a way that p := γ (−T̃ ) is different from q := γ (T̃ ).
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Then, by assumption, q ∈ ∂ J+(p). We will now find a sequence εk → 0 and points
qk ∈ ∂ J+k (p) := ∂ J+ǧεk

(p) with qk → q: Let Uk be a sequence of neighbourhoods of q

with Uk+1 ⊆ Uk and
⋂

k Uk = {q}. Then for any Uk there exist points qek ∈ Uk\J+(p)
and qik ∈ Uk ∩ I +(p). Let εk be such that qik ∈ I +k (p) and εk ≤ 1

k and let ck be a curve

in Uk connecting qik and qek ∈ Uk\J+(p) ⊆ Uk\J+k (p). Then this curve must intersect
∂ J+k (p) and we choose qk to be such an intersection point.

Since qk ∈ ∂ J+k (p) there exists a past directed ǧεk -null geodesic starting at qk that
is contained in ∂ J+k (p) and is either (past) inextendible or ends in p (cf. Proposition
A.7). Let γk : Ik → M denote an inextendible future directed reparametrisation of
such a geodesic with γk(T̃ ) = qk and ‖γ̇k(T̃ )‖h = ‖γ̇ (T̃ )‖h . Since the h-norms of
γ̇k(T̃ ) ∈ Tqk M are bounded and qk → q, we may without loss of generality assume
that the sequence γ̇k(T̃ ) converges to some vector w ∈ TqM . This vector w must be
g-null since the γ̇k were ǧεk -null. Hence there exists a unique inextendible g-geodesic
γw : (aw, bw) → M with T̃ ∈ (aw, bw), γw(T̃ ) = q and γ̇w(T̃ ) = w and the γk
converge to γw in C1.

Due to our choice of the γk , for each k there either exists tk < T̃ such that γk(tk) = p
and γk |[tk ,T̃ ] ⊆ ∂ J+k (p) or γk ⊆ ∂ J+k (p). By extracting a subsequence we may assume
that the first or the second possibility applies in fact for each k. In the second case we
pick some s ∈ (aw, T̃ ) and note that by C1-convergence γk is defined on [s, T̃ ] for k
large.

In the first case, if the sequence tk is unbounded (below) we may again pick some
s ∈ (aw, T̃ ) such that γk([s, T̃ ]) ⊆ ∂ J+k (p) for k large. Finally, if (tk) is bounded, we
may without loss of generality assume that tk → t̃ with γw(t̃) = p. Since p �= q (by
our choice of T̃ ), t̃ < T̃ , so also in this case there exists max(t̃, aw) < s < T̃ such that
γk([s, T̃ ]) ⊆ ∂ J+k (p) ⊆ J+(p) for large k.

Thus in any case γw|[s,T̃ ] ⊆ J+(p). Therefore, if γw were not (a reparametrisation
of) γ , the concatenation γw|[s,T̃ ]γ |[T̃ ,T̃+1] would be a broken null curve from a point in

J+(p) to γ (T̃ + 1), hence γ (T̃ + 1) ∈ I +(p), which contradicts γ being maximising
between any of its points. This shows that (with our choice of parametrisations) γw must
actually be equal to γ .

But then in particular γ (t̃) = γw(t̃) = p (if (tk) is bounded) and thus since γ

cannot be closed by assumption of causality, we must have t0 = −T̃ . Thereby in
each of the above cases γk |[−T,T̃ ] ⊆ ∂ J+k (p) for k large. Consequently, any such seg-

ment must be maximising for the metric ǧεk . Also, since γk → γ in C1([−T, T ]),
there exist a compact neighbourhood K of γ ([−T, T ]), k0 ∈ N, C̃ > 0, and η > 0
such that for all k ≥ k0 we have γk([−T, T ]) ⊆ K , as well as ‖γ̇k(t)‖h ≤ C̃ and
dh̃(γ̇k(t), γ̇ (t)) < η and ‖γ̇ (t)‖h ≤ C̃ for all t ∈ [−T, T ]. Lemma 3.2(ii) therefore
implies that Rεk (γ̇k(t), γ̇k(t)) ≥ −δ(c,C, r) on [−T, T ] for k sufficiently large. This
shows that γk also satisfies condition (i) from Proposition 4.2 for k large. But then any
such γk incurs a pair of conjugate points within [−T, T ], contradicting the fact that it
was supposed to be maximising even on [−T, T̃ ]. ��

To conclude this section we want to briefly discuss the difference in causality con-
ditions imposed on M in the classical Theorem 1.2 (M being chronological) and in the
C1,1-Theorems 2.5 and 2.6 (M being causal). Causality assumptions (of any kind) on
M were first required in this section to prove Theorems 5.1 and 5.3. The results proven
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in previous sections did not require any causality assumption (with the exception of
Lemma 3.3, which is only used in the proof of Theorem 5.1). Contrary to our results
the smooth versions of these two theorems do not require any causality conditions. Re-
garding Theorem 5.1, we note that even in the proof of the (classical) Hawking–Penrose
theorem its smooth counterpart (despite being valid on all of M) is actually only applied
to an open globally hyperbolic subset of M . This is also true in the proof of our result
(see Theorem 7.4). However, Theorem 5.3 is required in multiple places (e.g., any result
requiring strong causality indirectly uses Theorem 5.3 by virtue of Lemma A.19). As
such, we have found it necessary to assume that the C1,1-spacetime is causal.

Nevertheless, the assumption of causality ofM only enters in the proof ofTheorem5.3
at a single point, namely where we argue that since γ cannot be closed the equality of
γ (t̃) and γ (−T̃ ) implies that t̃ = −T̃ . Moreover, this theorem is the only ingredient
in the proof of Theorems 2.5 and 2.6 where causality of M is required. For all other
steps it is sufficient that M be chronological. This can be seen from the following
argument: Both the classical proof of the Hawking–Penrose theorem and the proofs of
Theorems 2.5 and 2.6 presented here argue by contradiction, i.e., one assumes that M is
a causal geodesically complete spacetime (satisfying the conditions of the theorem) and
derives a contradiction. Hence if one could show that Theorem 5.3 remains true while
only assuming M to be chronological (and not causal), one could invoke Lemma A.19
to gain that M is even strongly causal and the rest of our proof would go through.

We expect that Theorems 2.5 and 2.6, in fact, even hold for chronological C1,1

spacetimes, but anticipate that a proof will require new methods.

6. Initial Conditions

In its classical version the Hawking–Penrose theorem comes with three distinct initial
conditions: the existence of a compact achronal set without edge (or equivalently an
achronal compact topological hypersurface, [16, Cor. A.19]), the existence of a trapped
surface, or the existence of a point such that along any future (or past) directed null
geodesic starting at this point the convergence becomes negative. An analogue of the
trapped surface condition for submanifolds of arbitrary co-dimension was introduced
in [6]. In this section we will study these initial conditions and their consequences in the
C1,1-case.

6.1. The hypersurface case. We begin with the most straightforward case: the exis-
tence of a compact achronal set without edge.

Proposition 6.1. Let (M, g) be a C1,1-spacetime, and let A be a compact achronal set
without edge. Then E+(A) = A, in particular it is compact.

Proof. This follows immediately from the fact that for an achronal set A any future
directed null geodesic starting in a point p /∈ edge(A) must immediately enter I +(A).
This can be seen as in [16, Prop. A.18]. ��
One should note that as in the smooth case one may even relax the causality assumptions
on A a little: By using a covering argument as in [16, Thm. A.34] it would be sufficient
to assume the existence of a compact spacelike hypersurface A in the Hawking–Penrose
theorem.
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6.2. Submanifolds of codimension 1 < m < n. In this section, we follow the ap-
proach of Galloway and Senovilla [6] and consider trapped submanifolds of arbitrary
codimension of a C1,1-spacetime (M, g). To work in full generality (and because we
will need this generality to deal with the codimension zero case later on) we will now
define C0-trapped submanifolds of codimension 1 < m < n. Our definition is similar in
spirit to the definition of lower mean curvature bounds for C0 spacelike hypersurfaces
in [1].

As mentioned in Sect. 2, we say that a submanifold S̃ is a future support submanifold
for aC0-submanifold S at q ∈ S if dim(S̃) = dim S, q ∈ S̃, and S̃ is locally to the future
of S near q, i.e. there exists a neighbourhoodU of q in M such that S̃ ∩U ⊆ J+(S,U ).
We use this to define ’past pointing timelike mean curvature’ for C0-submanifolds.

Definition 6.2. Let S be a C0-submanifold of codimension m (1 < m < n) in a C1,1-
spacetime (M, g). We say that S has past-pointing timelike mean curvature in q in the
sense of support submanifolds if there exists a C2 spacelike future support submanifold
S̃ for S in q with HS̃(q) past-pointing timelike.

This leads to the following definition of a future trappedC0-submanifold ofM (which
is obviously satisfied for C2-submanifolds that are future trapped in the classical sense
defined in [6]).

Definition 6.3. AC0-submanifold S of codimensionm (1 < m < n) of aC1,1-spacetime
(M, g) is called future trapped if it is closed (i.e., compact without boundary) and for
any p ∈ S there exists a neighbourhood Up of p such that S ∩ Up is achronal in Up
and S has past-pointing timelike mean curvature in all its points (in the sense of support
submanifolds).

Our aim is a generalisation of the main results of [6] to the C1,1-setting. In fact, we
will show that under some additional curvature assumptions any future directed null
geodesic starting at a point q of a trapped submanifold S in the above sense eventually
stopsmaximising the distance to the future support submanifold S̃ at q (provided it exists
for long enough times).

Using the notation introduced in Sect. 1 (i.e., letting E1, . . . , En−m denote the parallel
translates of an orthonormal basis e1(γ (0)), . . . , en−m(γ (0)) for Tγ (0)S along γ )we start
by proving the following mild extension of [6, Prop. 1]:

Lemma 6.4. Let S be a C2-spacelike submanifold of codimension m (1 < m < n) in
a smooth spacetime (M, g), and let γ be a geodesic such that ν := γ̇ (0) ∈ T M |S is a
future-pointing null normal to S. Suppose that c := kS(ν) > 0 and let b > 1/c. Then
there exists some δ = δ(b, c) > 0 such that, if

n−m∑

i=1
〈R(Ei , γ̇ )γ̇ , Ei 〉 ≥ −δ (6.1)

along γ , then γ |[0,b] is not maximising to S, provided that γ exists up to t = b.

Proof. We closely follow the proof of [6, Prop. 1]. For vector fields V , W along γ that
are orthogonal to γ and vanish at t = b we consider the energy index form (with V̇ etc.
denoting the induced covariant derivative along γ )

I (V,W ) :=
∫ b

0

[〈V̇ , Ẇ 〉 − 〈RV γ̇ γ̇ ,W 〉] dt − 〈γ̇ (0), II(V (0),W (0))〉.
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For 1 ≤ i ≤ n − m, let Xi := (1− t/b)Ei . Then

I (Xi , Xi ) =
∫ b

0

[
1/b2 − (1− t/b)2〈REi γ̇ γ̇ , Ei 〉

]
dt − 〈γ̇ (0), II(ei , ei )〉.

Hence

n−m∑

i=1
I (Xi , Xi ) = (n − m)

(1

b
− c

)
−

∫ b

0

(
1− t

b

)2 n−m∑

i=1
〈R(Ei , γ̇ )γ̇ , Ei 〉 dt

≤ (n − m)
(1

b
− c

)
+
bδ

3
.

Obviously this last expression can be made negative by choosing δ = δ(b, c) small
enough. It then follows that the energy index form is not positive-semidefinite, so there
must exist a focal point of S on γ within (0, b], giving the claim. ��
We now turn to the case of a C1,1-metric g. Let S̃ be a C2-spacelike submanifold of
co-dimension m, and let ν ∈ Tp S̃ be a future-pointing null vector normal to S̃. As in the
smooth setting above, assume that γ is a geodesic with affine parameter t with γ̇ (0) = ν,
and let e1, . . . , en−m be a local orthonormal frame on S̃ around p := γ (0) (of regularity
C1,1). Again, denote by E1, . . . , En−m the parallel translates of e1(p), . . . , en−m(p)
along γ (which are Lipschitz continuous vector fields along γ ).

In trying to formulate a natural analogue of (6.1) (with δ = 0) we again face the
problem that the curvature operator (being only defined almost everywhere) cannot be
restricted to theLebesgue null set γ ([0, b]). Similar to the case of the genericity condition
(Definition 2.2), we shall therefore require the existence of continuous extensions of
E1, . . . En−m and γ̇ to a neighbourhood of the geodesic γ . In fact, with the notation
introduced above we have:

Proposition 6.5. Let (M, g) be a strongly causal C1,1-spacetime, S̃ ⊆ M aC2 spacelike
submanifold and suppose that kS̃(ν) > c > 0 and let b > 1/c. If there exists a neigh-
bourhood U of γ |[0,b] and continuous extensions Ē1, . . . Ēn−m and N̄ of E1, . . . En−m
and γ̇ , respectively, to U such that

n−m∑

i=1
〈R(Ēi , N̄ )N̄ , Ēi 〉 ≥ 0, (6.2)

then γ |[0,b] is not maximising to S̃.

Proof. We again proceed by regularisation. Let gε = ǧε, then as in the proof of
Lemma 3.7 we may without loss of generality suppose that M = R

n , and that Rε =
R ∗ ρε. Since S̃ is a C2-submanifold, kS̃ is continuous on S̃ and kS̃,ε

→ kS̃ uniformly
on compact subsets. Thus, there exists a neighbourhood V in T M |S̃ of ν and an ε0 such
that for all ε ≤ ε0 one has kS̃,ε

(v) > c for all v ∈ V . Shrinking U , we may assume that

there exists ε0 such that for all gε with ε ≤ ε0 the submanifold U ∩ S̃ is gε-spacelike
and, shrinking V if necessary, we have that the projection W := π(V ) of V onto S̃ is
contained in U ∩ S̃.

Further shrinking ε0 and V if necessary, for each ε < ε0 let eε
1, . . . , e

ε
n−m be a gε-

orthonormal frame for S̃ on W such that eε
i → ei uniformly on W for ε → 0. For each
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v ∈ V , denote by Eε
i (t) the parallel transport of e

ε
i (π(v)) along the gε-geodesic γ ε

v with
γ̇ ε
v (0) = v.
By (6.2) we have

n−m∑

i=1
g(R(Ēi , N̄ )N̄ , Ēi ) ∗ ρε ≥ 0.

Since without loss of generality U is relatively compact and γ ε
v ([0, b]) ⊆ U for

all v ∈ V and all ε ≤ ε0, Lemma 3.4 (i) implies that g(R(Ēi , N̄ )N̄ , Ēi ) ∗ ρε −
gε(Rε(Ēi , N̄ )N̄ , Ēi )→ 0 uniformly on U , as well as

gε(Rε(Ēi , N̄ )N̄ , Ēi ) ◦ γ ε
v − gε(Rε(E

ε
i , γ̇

ε
v )γ̇ ε

v , Eε
i )→ 0

uniformly on [0, b] as (ε, v)→ (0, ν), for 1 ≤ i ≤ n − m.
Now let 1/c < b′ < b, and pick δ := δ(b′, c) as in Lemma 6.4. Then by the above

we may shrink V and ε0 in such a way that condition (6.1) is satisfied along γ ε
v on [0, b′]

for each v ∈ V and each ε ≤ ε0.
Consequently, any γ ε

v with v being gε-null stops maximising the gε-distance to S̃
at parameter t = b′ the latest (if v is not a gε-normal to S̃ it must stop maximising
the distance immediately (cf. Remark 6.6 (ii) below), if it is a null normal Lemma 6.4
applies).

Now assume that the g-null geodesic γ maximises the distance to Ū ∩ S̃ until the
parameter value b. We then proceed in parallel to the final part of the proof of The-
orem 5.3: Let b′′ be such that b′ < b′′ < b and set q := γ (b′′). There exist points
qk ∈ ∂ J+k (Ū ∩ S̃) with qk → q. By Proposition A.7, since qk ∈ ∂ J+k (Ū ∩ S̃) there
exists a past directed ǧεk -null geodesic starting at qk that is contained in ∂ J+k (Ū ∩ S̃)

and is either past inextendible or ends in Ū ∩ S̃. Again let γk : Ik → M denote an inex-
tendible future directed reparametrisation of such a geodesic, this time with γk(b′′) = qk
and ‖γ̇k(b′′)‖h = ‖γ̇ (b′′)‖h . As in Theorem 5.3 we may assume that γ̇k(b′′) con-
verges to a g-null vector v and that the γk converge to the corresponding geodesic γv

in C1.
For each k there either exists some 0 < tk < b′′ with γk(tk) ∈ Ū ∩ S̃ and γk |[tk ,b′′] ⊆

∂ J+k (Ū ∩ S̃), or γk |[0,b′′] ⊆ ∂ J+k (Ū ∩ S̃). In the second case we set tk = 0, to obtain
a sequence that without loss of generality converges to some t ′ and t ′ = 0 < b′′ or
γv(t ′) ∈ Ū ∩ S̃. Since q �∈ Ū ∩ S̃ the second case also gives t ′ < b′′ and there exists

t ′ < t ′′ < b′′ such that γk |[t ′′,b′′] ⊆ ∂ J+k (Ū ∩ S̃) ⊆ J+(Ū ∩ S̃) for large k. Consequently,

γv|[t ′′,b′′] ⊆ J+(Ū ∩ S̃), and as in Theorem 5.3 this implies that γ = γv .
We now note that by shrinkingU wemay assume that γ can only intersect Ū∩ S̃ once:

in fact, we may locally view S̃ ∩ Ū as a submanifold of some spacelike hypersurface Ŝ.
By [16, Lemma A.25], there exists an open set W in M such that W ∩ Ŝ is a Cauchy
hypersurface in W . Also, since M is strongly causal, W can be chosen in such a way
that γ can only intersect it once by Lemma A.18.

Consequently, wemust have t ′ = 0. Since γk |[tk ,b′′] ⊆ ∂ J+k (Ū∩ S̃), any such segment
must be maximising for ǧεk . For k large we have γ̇k(tk) ∈ V since γk → γ . Therefore,
by what was shown above, γk must stop maximising the distance to Ū ∩ S̃ already at
t = tk + b′ < b′′, a contradiction. ��
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Remark 6.6. (i) In case m = 2 (i.e., the traditional trapped surface case) a slightly
perturbed version of (6.2) (namely with right hand side −δ for any given δ > 0) is
automatically satisfied if the null convergence condition holds: Choose en−1, en such
that en is timelike, γ̇ (0) = en−1+en and e1, . . . , en is an orthonormal basis and denote the
parallel translates of e1, . . . , en along γ by E1, . . . , En . Now let Ē1, . . . , Ēn be arbitrary
continuous extensions of E1, . . . , En to a neighbourhoodU of γ and set N̄ = Ēn−1+ Ēn .

Cover γ by finitely many totally normal neighbourhoods. Then in each such neigh-
bourhood V we may parallelly transport E1, . . . , En from some point of γ in V radially
outward to obtain local orthonormal fields Ẽ1, . . . , Ẽn , and Ñ = Ẽn−1 + Ẽn . Then∑n−2

i=1 〈R(Ẽi , Ñ )Ñ , Ẽi 〉 = Ric(Ñ , Ñ ) ≥ 0 on V . Now, as in Sect. 3, shrinking U
produces (6.2) with right hand side negative but arbitrarily close to 0. The proof of
Proposition 6.5 then still gives the desired result.

(ii) If v ∈ T M |S̃ is future directed causal, but not a null normal to S̃, then γv enters
I +(S̃) immediately: This is well known for smooth metrics ([24, Lem. 10.50]). If g is
only C1,1 one cannot use the exponential map to construct a C2-variation with a given
variational vector field, but since this is a local question (and clearly true if v is timelike)
we may assume that M = R

n , γv(0) = 0 and v is null. We now construct suitable
variations as follows: Since v /∈ T0 S̃⊥ there exists y ∈ T0 S̃ such that 〈y, v〉g > 0. Let
α : [0, b] → S̃ be a C2-curve with α̇(0) = y (and α(0) = 0). We define a C2-variation
σ : [0, t0] × [0, s0] → R

n by σ(t, s) := γv(t) + (1 − t
t0

)α(s). Now let t0, s0 > 0 be
small enough such that 〈y, γ̇v(t)〉g(σ (t,s)) > c > 0 for all t ≤ t0 and s ≤ s0. We will
show that σ(., s) is a timelike curve for small s and t0, proving the claim. Expanding
α(s) and g(σ (t, s)) in a Taylor series around s = 0 gives α(s) = sy + O(s2) and
|g(σ (t, s)) − g(γv(t))| ≤ Cs(1 − t

t0
) + O(s2) (where C > 0 does not depend on s, t)

as s → 0 and thus

〈∂tσ(t, s), ∂tσ(t, s)〉g(σ (t,s)) = 〈γ̇v(t), γ̇v(t)〉g(σ (t,s)) − 2
s

t0
〈γ̇v(t), y〉g(σ (t,s)) + O(s2)

≤ s

(

C̃

(

1− t

t0

)

− c
2

t0

)

+ O(s2).

The bracketed term evidently is negative for small t0 and thus for such t0 the curve
t �→ σ(t, s) will be a timelike curve from 0 to γv(t0) for small s.

Proposition 6.7. Let (M, g) be a strongly causal C1,1-spacetime and let S be a (C0-)
trapped submanifold of co-dimension 1 < m < n such that, if m �= 2, the support
submanifolds S̃ from Definition 6.2 satisfy (6.2) for all null normals and, if m = 2, the
null convergence condition is satisfied. Then E+(S) is compact or M is null geodesically
incomplete.

Proof. Assume M is null geodesically complete and fix a Riemannian metric h on M
and let K := {v ∈ T M |S : v future directed, null, ‖v‖h = 1}. Clearly K is compact
and by Proposition 6.5 and Remark 6.6 for any v ∈ K there exists a time tv such that
exp(tv v) ∈ I +(S̃) ⊆ I +(S). Since (v, t) �→ exp(tv) is continuous there even exists a
neighbourhood Uv such that exp(tv w) ∈ I +(S) for all w ∈ Uv . By compactness we
may cover K by finitely many of these Uv and thus there exists T such that E+(S) ⊆
exp([0, T ] · K ). This shows that E+(S) is relatively compact.

It remains to show that E+(S) is closed. Let pi = exp(tivi ) ∈ E+(S) be a sequence
with pi → p for some p ∈ M . Clearly p /∈ I +(S), so it remains to show that p ∈ J+(S).
Since ti ≤ T and vi ∈ K we may assume that ti → t and vi → v ∈ K . But then since
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pi ∈ E+(S) we must have ti ≤ tv for i large, hence p = exp(tv) ∈ J+(S) and we are
done. ��
Corollary 6.8. Let (M, g) and S be as in the previous proposition. Then E+(S) ∩ S is
an achronal set and E+(E+(S) ∩ S) is compact or M is null geodesically incomplete.

Proof. This follows verbatim as in the smooth case, see [6, Prop. 4] or [33, Prop. 4.3],
using that by definition for any p ∈ S there exists a neighbourhoodUp such that S∩Up
is achronal in Up. ��
6.3. Trapped points. In the classical smooth version of the Hawking–Penrose theo-
rem there is a third initial condition concerning a ‘trapped point’ p, which is a point p
such that the expansion becomes negative for any future directed null geodesic starting
in p. This condition can again be formulated in a precise way in the language of Jacobi
tensors, see e.g. [2, Prop. 12.46], by demanding that for any future directed null geodesic
γ starting in p the expansion θ(t) associated to the unique Jacobi tensor class [A] along
γ with [A](0) = 0 and [ Ȧ](0) = id becomes negative for some t > 0. This formulation
unfortunately does not generalise to a C1,1-metric (one of the reasons for this being
that there is no sensible way to formulate the Jacobi equation). There is, however, an
equivalent formulation for smooth metrics using a shape operator of spacelike slices of
the lightcone of p (which is similar to the use of co-spacelike distance functions and
their level sets in the timelike or Riemannian case, cf. [2, Appendix B.3]):

Let γ be a null geodesic and assume that the expansion of the Jacobi tensor class [A]
along γ with [A](0) = 0 and [ Ȧ](0) = id becomes negative for some t > 0. We set
t0 := inf{t > η : θ(t) < 0}, where η > 0 is chosen such that [0, η] · γ̇ (0) is contained
in a neighbourhood where expp is a diffeomorphism. This ensures that γ (t0) must come
before the first conjugate point of p and so there exists t1 > t0 such that γ |[0,t1] does not
contain points conjugate to p along γ . Thus, there exists a neighbourhood U ⊆ TpM
of [0, t1] · γ̇ (0) such that expp |U is a diffeomorphism onto its image: It clearly is a
local diffeomorphism and if it were not injective on any such neighbourhood there
would exist vectors Xk,Yk ∈ TpM , Xk �= Yk , converging to X,Y ∈ [0, t1] · γ̇ (0)
with expp(Xk) = expp(Yk), hence expp(X) = expp(Y ). Since expp is locally injective
X �= Y but this contradicts expp being injective on [0, t1] · γ̇ (0) by causality of M .

Now, one can look at the level sets St := expp(t Ũ ), where Ũ := {v ∈ U :
v null, g(T, v) = g(γ̇ (0), T )} for some fixed timelike vector T ∈ TpM , and their
shape operators Sγ̇ (t)(t) : Tγ (t)St → Tγ (t)St derived from the normal γ̇ (t). Proceed-
ing as in [9, Prop. 3.4] one gets that this shape operator satisfies a Riccati equation
along γ and limt↘0 t Sγ̇ (t)(t) = id. Identifying Tγ (t)St with [γ̇ (t)]⊥, a quick calcula-
tion shows that the tensor class [B] along γ defined by [Ḃ] = Sγ̇ [B] on (0, t1) and
[B](t0) = [A](t0) also satisfies the Jacobi equation and hence can uniquely be extended
to (−∞,∞). From the limiting behaviour of Sγ̇ (t)(t) as t ↘ 0 one gets [B](0) = 0 and
thus by uniqueness of Jacobi tensors [B] = [A] on [0, t1), so Sγ̇ (t)(t) = [ Ȧ](t)[A]−1(t)
and θ(t) = tr Sγ̇ (t)(t) for t < t1. Consequently, a negative θ(t) corresponds to a negative
trace of the shape operator of the spacelike surface St with respect to the normal γ̇ . Since
kSt (γ̇ (t)) = −tr Sγ̇ (t)(t) this is equivalent to kSt (γ̇ (t)) being positive.

This condition can now be generalised to C1,1-metrics and, as introduced in Sect. 2,
we give the following definition of a (future) trapped point. Note that this can very
roughly be seen as a condition on the mean curvature of the level set St (which is now at
best Lipschitz) in the sense of support submanifolds and hence bears some similarities
to our definition of past-pointing timelike mean curvature for C0-submanifolds.
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Definition 6.9. We say that a point p is future trapped if for any future-pointing null
vector v ∈ TpM there exists a t such that there exists a spacelike C2-surface S̃ ⊆ J+(p)
with γv(t) ∈ S̃ and kS̃(γ̇v(t)) > 0.

Using this definition one can easily prove that E+(p) is compact for a trapped point p.

Proposition 6.10. Let (M, g) be a strongly causal C1,1-spacetime and assume that the
null convergence condition holds. If p ∈ M is a future trapped point and M is null
geodesically complete then E+(p) is compact.

Proof. The proof is completely analogous to the one of Proposition 6.7, using that S̃ is
a surface and thus condition (6.2) is not required if the null convergence condition holds
(cf. Remark 6.6). ��

7. Proof of the Main Result

As in the smooth case we will first prove a C1,1-version of Theorem 1.1. To do so,
we will roughly follow the original proof in [12]. However, we will split the argument
into smaller pieces to better highlight the places where the reduced regularity of the
metric has to be taken into account. In an attempt to keep our presentation concise
we start only with the proof of [12, Lemma 2.12] (which will be Corollary 7.2 here),
but for completeness all necessary preliminary results are collected in the appendix. Our
notation in this section follows, e.g., [24], but is also explicitly defined in the introduction
or the appendix. In what follows we always assume S to be non-empty.

Lemma 7.1. Let (M, g) be a spacetime with a C1,1-metric g, let S be an achronal and
closed subset of M and suppose that strong causality holds on M. Then H+(E+(S)) is
non-compact or empty.

Proof. The proof is completely analogous to the smooth one found in, e.g., [13, Lemma
9.3.2]. Note that Lemma 9.3.1 and Lemma 8.3.8 from that reference still hold (see
Corollary A.16 and Proposition A.10) and that the curve β1, which starts outside of
D+(E+(S)) and ends in S, must intersect H+(E+(S)) by Lemma A.12. ��
Corollary 7.2. 10 Let (M, g) be a spacetime with a C1,1-metric g that is strongly causal.
Let S ⊆ M be an achronal set and assume that E+(S) is compact. Then there exists a
future-inextendible timelike curve γ contained in D+

(
E+(S)

)◦
.

Proof. The proof is completely analogous to the smooth case, [12, Lemma 2.12]. By
Lemma A.8 we may assume that S is closed. The idea is that, if every timelike curve
that meets E+(S) also meets H+

(
E+(S)

)
(or equivalently leaves D+

(
E+(S)

)◦), then,
using that H+

(
∂ J+(S)

)
is a topological hypersurface by Lemma A.15, one can define

a continuous map from E+(S) to H+
(
E+(S)

)
via the flow of a smooth timelike vector

field. This gives a contradiction since E+(S) is non-empty and compact but H+
(
E+(S)

)

is empty or non-compact by Lemma 7.1. ��
The next Lemma will extract the part of the proof of Theorem 7.4, where the original

proof (and also the one in [33]) argues using the continuous dependence of conjugate
points on the geodesic, which is evidently a problem for C1,1-metrics. There are, how-
ever, smooth proofs that avoid this, see e.g. [13, Lemma 9.3.4]. While that proof should
also work in C1,1 (and we will refer to parts of it), we will still present a different
argument of the crucial step more in line with the original proof.

10 cf. [12, Lemma 2.12].
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Lemma 7.3. 11 Let (M, g) be a spacetime with a C1,1-metric g that is strongly causal
and assume that no inextendible null geodesic in M is globally maximising. Let S be
achronal and assume that E+(S) is compact, and let γ be a future inextendible timelike
curve contained in D+

(
E+(S)

)◦
. Then F := E+(S) ∩ J− (γ ) is achronal and E−(F)

is compact.

Proof. By Lemma A.8 we may without loss of generality assume that S is closed. Since
F ⊆ E+(S) and E+(S) is achronal, it follows that F is achronal. Moreover, E+(S) is, by
assumption, compact and J− (γ ) is closed, therefore F is compact.We need to show that
E−(F) is compact. To do so, first note that the same arguments as in [13, Lemma 9.3.4]
show that

E−(F) ⊆ F ∪ ∂ J−(γ ). (7.1)

Now let v ∈ T M |F be past pointing causal. Then, by the definition of F , the past
inextendible geodesic cv : [0, b)→ M with initial velocity ċv(0) = v must be contained
in J−(γ ). We show that cv ∩ I−(γ ) �= ∅: If cv never met I−(γ ) it would have to be a
null geodesic and lie entirely in ∂ J−(γ )\E−(γ ) (since E−(γ ) = ∅ because γ is future
inextendible timelike). In particular cv(0) ∈ ∂ J−(γ )\E−(γ ), so by Proposition A.7
(note that the image of γ is a closed set by Lemma A.20), there exists a future directed,
future inextendible null geodesic λ that starts at cv(0) and is contained in ∂ J−(γ ).
But then cvλ either is an inextendible broken null geodesic, hence not maximizing by
Lemma A.3, or it is an inextendible unbroken null geodesic, hence not maximizing
by assumption. Hence by Lemma A.2, cvλ cannot lie entirely in ∂ J−(γ ), giving a
contradiction. Consequently, for all v ∈ T M |F , there exists a tv with cv(tv) ∈ I−(γ ).
Since I−(γ ) is open there exists a neighbourhoodUv ⊆ T M of v such that cw is defined
on [0, tv) and cw(tv) ∈ I−(γ ) for all w ∈ Uv . By compactness of F one can cover
the set of all h-unit, past pointing causal vectors in T M |F by finitely many of these
neighbourhoods, which shows that E−(F) ∩ ∂ J−(γ ) is relatively compact. In fact, it
is actually compact as can easily be seen using a limit argument as in the final part of
the proof of Proposition 6.7 (which does not use null completeness). This shows that
E−(F) is compact by (7.1) and compactness of F . ��

Combining these preliminary results allows us to prove the low-regularity version of
Theorem 1.1. Again the argument proceeds very similarly to the smooth case, but we
nevertheless give a complete proof.

Theorem 7.4. Let (M, g) be a spacetime with a C1,1-metric g. Then the following four
conditions cannot all hold:

(C.i) M contains no closed timelike curves;
(C.ii) Every inextendible timelike geodesic contained in an open globally hyperbolic

subset stops being maximizing;
(C.iii) Every inextendible null geodesic stops being maximizing;
(C.iv) There is an achronal set S such that E+(S) or E−(S) is compact.

Proof. We assume, to the contrary, that all four conditions hold. From conditions (C.iii)
and (C.i), LemmaA.19 implies that M is strongly causal. In condition (C.iv) we assume,
without loss of generality, that E+(S) is compact.

Let γ be a future inextendible timelike curve contained in D+
(
E+(S)

)◦ given by

Corollary 7.2, and let F := E+(S) ∩ J−(γ ) as in Lemma 7.3. Then, by Lemma 7.3,

11 cf. [12, pp. 545].
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the set F is achronal and E−(F) is compact. Therefore, by Corollary 7.2, there exists a
past-inextendible timelike curve λ contained in the set D−(E−(F))◦.

Next we show γ ⊆ D+(E−(F))◦: We have γ ⊆ D+
(
E+(S)

)◦, so every past in-
extendible causal curve starting at γ must meet E+(S). This meeting point is obvi-
ously in J−(γ ) ⊆ J−(γ ), so every past inextendible causal curve starting at γ meets
E+(S) ∩ J−(γ ) = F , which gives γ ⊆ D+(F). Also γ cannot meet ∂D+(F), which is
equal to F ∪ H+(F) by Proposition A.10, since F ⊆ E+(S) and γ ⊆ D+(E+(S))◦ and
if γ met H+(F) it would also meet I +(H+(F)) by being timelike, hence leave D+(F)

(by Lemma A.13). This means that γ ⊆ D+(F)◦ ⊆ D+(E−(F))◦ (by achronality of
F).

So both γ and λ are contained in D(E−(F))◦. By [16, Thm. A.22], D(E−(F))◦ is
globally hyperbolic. Now choose sequences {pk} ⊆ λ and {qk} ⊆ γ with the following
properties:

(i) pk+1 ∈ I−(pk) and qk+1 ∈ I +(qk),
(ii) both {pk} and {qk} leave every compact subset of M , and
(iii) q1 ∈ I +(p1). To see that this is possible, note that λ ⊆ J−(E−(F)) ⊆ J−(F) ⊆

J−(J−(γ )) and since λ is timelike Lemma A.2 gives that λ ⊆ I−(J−(γ )) =
I−(γ ).

By [31, Prop. 6.4] there exist maximizing causal curves γk : [ak, bk] → M from pk to qk .
Each γk must intersect E−(F) (because it connects D−(E−(F))◦ with D+(E−(F))◦, cf.
the remark preceding [24], Lemma 14.37) in some point rk . By compactness of E−(F)

(see Lemma 7.3) wemay assume that rk → r after passing to a subsequence if necessary,
so there exists a causal limit curve γ̃ by Theorem A.6.

Now because every γk is maximising the sequence {γk} is limit maximising in the
sense of [20, Def. 2.11] and thus γ̃ has to be maximising (again by Theorem A.6). Also,
since {pk} and {qk} leave every compact set, γ̃ is inextendible. Because γ̃ is maximising
it has to be a geodesic (cf. [21, Thm. 1.23]).

If γ̃ is null this immediately contradicts the third assumption and we are done. Since
D(E−(F))◦ is globally hyperbolic, to establish a contradiction to condition (C.ii) it only
remains to show that γ̃ ⊆ D(E−(F))◦ if it is timelike. Since it is the limit of the γk’s
we certainly have γ̃ ⊆ D(E−(F)). Now, Proposition A.10 implies

∂D(E−(F)) ⊆ H+(E−(F)) ∪ E−(F) ∪ H−(E−(F)).

Since I +(H+(E−(F))) = I +(E−(F))\D+(E−(F)) (see Lemma A.13) it follows that
γ̃ ∩H+(E−(F)) = ∅ and, analogously, γ̃ ∩H−(E−(F)) = ∅. Now assume there exists
t0 such that γ̃ (t0) ∈ E−(F). We show that then γ̃ (t0) ∈ D(E−(F))◦. By achronality of
E−(F) and the above we get

γ̃ (t0 + 1) ∈ D+(E−(F))\(E−(F) ∪ H+(E−(F))) = D+(E−(F))◦ ⊆ D(E−(F))◦

and by the same argument also γ̃ (t0 − 1) ∈ D(E−(F))◦. But then since D(E−(F))◦
is globally hyperbolic we have that the causal diamond J (γ̃ (t0 − 1), γv(t0 + 1)) ⊆
D(E−(F))◦ and hence γ̃ (t0) ∈ D(E−(F))◦. ��

Collecting this and the results established in the previous sections, we are now in the
position to prove Theorems 2.5 and 2.6.
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Proof of the Hawking–Penrose theorem for C1,1-metrics.

We show that, for a causally geodesically complete spacetime (M, g), assumptions (A.1)
to (A.4) in Theorems 2.5 and 2.6 imply that conditions (C.i) to (C.iv) of Theorem 7.4
are satisfied.

Clearly, causality is a stronger assumption than being chronological, so (A.1) im-
plies (C.i). Theorem 5.1 shows that the strong energy and the genericity conditions (i.e.
assumptions (A.2) and (A.3) of Theorem 2.5) imply that condition (C.ii) of Theorem 7.4
is satisfied. Similarly, Theorem 5.3 shows that assumptions (A.1), (A.2) and (A.3) of
Theorem 2.5 imply that condition (C.iii) of Theorem 7.4 holds.

Finally, Proposition 6.1 shows that assumption (A.4.i) implies condition (C.iv). Since
we have already established that conditions (C.i) and (C.iii) of Theorem 7.4 hold,
Lemma A.19 in the appendix implies that (M, g) is strongly causal. Therefore, one can
apply Proposition 6.7 (with Corollary 6.8) and Proposition 6.10 to show that any one of
the assumptions (A.4.ii), (A.4.iii) or (A.4.iv) (together with assumptions (A.1)–(A.3)),
implies that condition (C.iv) of Theorem 7.4 is satisfied. ��
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A. Causality Results in C1,1

Standard expositions of causality theory ([3,8,11,23,33]) usually assume the metric to
be at least C2. Most results, however, remain true for C1,1-metrics, see [4,15,21] and
the appendix of [16]. In this appendix we will collect further results that are not included
in these previous works, but are necessary for the proof of Theorem 7.4.

In the following we will always assume that (M, g) is a spacetime with aC1,1-metric
unless explicitly stated otherwise. We also fix a smooth Riemannian background metric
h.

A.1. Limit curves and the structure of ∂ J+(S). Two important results from [4] are
that I±(S) is open ([4, Prop. 1.21]) and that the push-up principle remains true ([4,
Lem. 1.22]) for causally plain spacetimes. As these include the class of spacetimes with
Lipschitz continuous metrics ([4, Cor. 1.17]), we have

Lemma A.1. Let S ⊆ M. Then I±(S) is open.

Lemma A.2. Let p, q, r ∈ M be such that p ≤ q � r or p � q ≤ r . Then p � r .

We will also repeatedly be making use of the following result, see [21, Lem. 2]:

Lemma A.3. Let p, q ∈ M such that there exists a future directed causal curve c from
p to q. Then either q ∈ I +(p) or c is (can be reparametrised to) a maximising null
geodesic from p to q.

Using the usual notation, we set E+(S) := J+(S)\I +(S). It is easily checked that (as
for smooth metrics) we have:
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Lemma A.4. Let S ⊆ M. Then both E+(S) and ∂ J+(S) are achronal sets, ∂ J+(S) is
closed, but E+(S) need not be.

Lemma A.5. Let S ⊆ M. Then ∂ J+(S) is an achronal, closed topological hypersurface.

Proof. Clearly J+
(
J+(S)

) = J+(S), so [24, Corollary 14.27], which is easily verified
to hold for C1,1-metrics as well, gives the desired result. ��

To proceed further we are going to need some results on limits of causal curves. Thus
we will now state that what is essentially Theorem 3.1.(1) from [20] remains true for
C1,1-metrics.

Theorem A.6. Let y be an accumulation point of a sequence of (future directed) causal
curves. There is a subsequence parametrized with respect to h-length, γk : [ak, bk] → M
(ak and bk may be infinite), 0 ∈ [ak, bk] such that γk(0)→ y and such that the following
properties hold. There are a ≤ 0 and b ≥ 0, such that ak → a and bk → b. If there
is a neighbourhood U of y such that only a finite number of γk is entirely contained in
U then there is a causal curve γ : [a, b] → M, such that γk converges h-uniformly on
compact subsets to γ . This limit curve is past, respectively future, inextendible if and
only if a = −∞, respectively b = ∞. Further, if γk is limit maximising (in the sense
of [20, Def. 2.11]) then γ is maximising.

Proof. The existence of such a limit curve follows from the smooth version [20, Thm.
3.1.(1)] in the sameway as in the proof of [31, Thm. 1.5]. This also immediately gives the
statement about inextendibility. That the limit of a limit maximising sequence is max-
imising follows as in the smooth case (see [20, Thm. 2.13]), using that for C1,1-metrics
the Lorentzian distance function is still lower semi-continuous (see [16, Lemma A.16])
and that the length functional is still upper semi-continuous (see [31, Thm. 6.3] and note
that it does not require the same start and end points but only a uniform bound on the
Lipschitz constants). ��

We now use this to show that as in the smooth case the boundary of the causal future
∂ J+(S), is ruled by null geodesics that are either past inextendible or end in S̄. This
result is needed for the proof of both Theorem 5.3 and Proposition 6.5.

Proposition A.7. Let S ⊆ M.Any x ∈ ∂ J+(S)\S̄ is the future end point of a causal curve
γ ⊆ ∂ J+(S) that either is past inextendible (and never meets S̄) or has a past endpoint
in S̄. This γ is (can be reparametrised to) a maximising null geodesic. If S is closed and
x /∈ J+(S), then this curve is past inextendible and contained in ∂ J+(S)\J+(S).

Proof. Let x ∈ ∂ J+(S)\S̄. Then there exists a sequence {xk} ⊂ I + (S)with xk → x and
past directed timelike curves γk : [0, bk]→ M from γk (0) = xk to γk (bk) ∈ S. Since
x /∈ S̄ the γk’s leave a fixed neighbourhood of x and so by Theorem A.6 there exists
(a subsequence with) a limit curve γ with γ (0) = x that is either past inextendible or
bk → b < ∞ and γ (b) = lim γk (bk) ∈ S̄. Clearly, γ ⊆ J+(S). If γ were ever in
I + (S), then x ∈ I + (S) by Lemma A.2, a contradiction.

That γ is (can be reparametrised to) a maximizing null geodesic follows immediately
from Lemma A.3. Finally, if S is closed and x /∈ J+(S) there can be no causal curve
from x to S = S̄, so γ must be inextendible and γ ⊆ ∂ J+(S)\J+(S). ��
A.2. Cauchy development and Cauchy horizon. Next, we are interested in the
Cauchy developments and Cauchy horizons of both E+(S) and ∂ J+(S) (and their rela-
tionship with each other). From now on we will generally require S to be an achronal
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(non-empty) set. Note that this implies in particular

S ⊆ J+(S)\I +(S) = E+(S). (A.1)

From this one also immediately obtains the following Lemma:

Lemma A.8. Let S be achronal. Then S̄ is also achronal. Further, if E+(S) is compact,
then E+(S) = E+(S).

Proof. The first claim follows from the fact that I +(S̄) = I +(S) and openness of I +(S).
The same equality also immediately gives E+(S) ⊆ E+(S̄). Now if E+(S) is compact,
then (A.1) implies S̄ ⊆ E+(S). This gives E+(S̄) = J+(S̄)\I +(S̄) ⊆ J+(E+(S))\I +(S̄).
Since J+(E+(S)) = J+(S) and I +(S̄) = I +(S), this shows the other inclusion. ��
Definition A.9. Let A be achronal. The future Cauchy development D+(A) of A is
defined by12

D+(A) := {x ∈ M : every past inextendible causal curve through x meets A} (A.2)

and its future Cauchy horizon H+(A) is defined by

H+(A) := D+(A)\I− (
D+(A)

) =
{
x ∈ D+(A) : I +(x) ∩ D+(A) = ∅

}
. (A.3)

Two important properties of D+(A) for closed achronal sets A are given in the fol-
lowing proposition.

Proposition A.10. Let A be closed and achronal. Then

D+(A) = {x ∈ M : every past inextendible timelike curve through x meets A} .
(A.4)

Furthermore
∂D+(A) = A ∪ H+(A). (A.5)

Proof. The proofs can be found in [16, Lemma A.13] and [16, Lemma A.14]. ��
Lemma A.11. Let A be closed and achronal and let x ∈ D+(A)\H+(A). Then every
past inextendible causal curve through x must meet I−(A).

Proof. Any x ∈ D+(A)\H+(A) is either in A or in D+(A)◦, so the result follows
from [13, Lemma 8.3.6], which still holds for C1,1-metrics. ��
Lemma A.12. Let A be closed and achronal and x ∈ J+(A)\D+(A) or x ∈ I +(A)\
D+(A)◦. Then every causal curve from x to A must also meet H+(A).

Proof. Let x ∈ J+(A)\D+(A) or x ∈ I +(A)\D+(A)◦. If x ∈ D+(A), then x ∈
∂D+(A) = A ∪ H+(A) (see Proposition A.10). Thus x ∈ H+(A) since in either case x
cannot be in A because A ⊆ D+(A) and I +(A)∩ A = ∅ by achronality, so we are done.

Now assume x /∈ D+(A) and let λ be a causal curve from x to A ⊆ D+(A). Then
there exists t0 > 0 such that λ(t0) ∈ ∂D+(A) but λ(t) /∈ D+(A) for all t < t0. We have
to show that λ(t0) ∈ H+(A). Assume to the contrary that λ(t0) ∈ A\H+(A) (cf. (A.5)).
Then I +(λ(t0)) ∩ D+(A) �= ∅ by definition of H+. Now let p ∈ I +(λ(t0)) ∩ D+(A),
then I−(p) is an open neighbourhood of λ(t0) so there exists a t1 < t0 such that λ(t1)
is still in I−(p). Since t1 < t0 we have λ(t1) /∈ D+(A), so, by (A.4), there exists a

12 We follow the convention of [10,11,24], rather than that of [12,26,28].
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timelike past inextendible curve γ starting at λ(t1) that does not meet A. Concatenating
any timelike curve from p to λ(t1) with γ shows that this timelike curve from p to λ(t1)
must meet A in a point that cannot be λ(t1) itself (since λ(t1) /∈ D+(A)). But this means
that λ(t1) ∈ I−(A), giving a contradiction to λ(t1) ≥ λ(t0) ∈ A and achronality of A.
��
We use this to give a proof of [12, Equation (2.4)] in the C1,1-setting.

Lemma A.13. Let A be closed and achronal. Then I +
(
H+(A)

) = I +(A)\D+(A).

Proof. By Proposition A.10we have H+(A) ⊆ D+(A) ⊆ I + (A)∪A, so I +
(
H+ (A)

) ⊆
I + (A). Let x ∈ I +

(
H+(A)

)
and assume x ∈ D+(A), then there exists a neighbourhood

U of x such that U ∩ D+ (A) �= ∅ and U ⊆ I +
(
H+(A)

)
, contradicting I +

(
H+(A)

) ∩
D+ (A) = ∅ (cf. (A.3)). So I +

(
H+(A)

) ⊆ I +(A)\D+(A).
Now let x ∈ I +(A)\D+(A). Then by Lemma A.12 any timelike curve from x to A

must meet H+ (A) in some point p so, since x /∈ D+(A) ⊇ H+ (A) we have p �= x , and
thus x must be in I +

(
H+(A)

)
. ��

Lemma A.14. Let S be closed and achronal. Then

edge(H+(S)) ⊆ edge(S).

Proof. We basically follow the proof of [11, Prop. 6.5.2]. Let q ∈ edge(H+(S)) and let
Uk be a sequence of neighbourhoods of q withUk → {q}. By definition of edge (cf. [24,
14.23]), for each n there exist points pk ∈ I−(q,Uk) and rk ∈ I +(q,Uk) connected by
a future directed timelike curve λk that does not intersect H+(S). It then follows that λk
does not intersect D+(S) ⊇ S.

In particular, rk ∈ I +(q,Uk) ⊆ I +(q), so q ∈ I−(rk). Hence, I−(rk) is a neighbour-
hood of q, so I−(rk) ∩ H+(S) �= ∅, so rk ∈ I +(H+(S)). Therefore, by Lemma A.13,
rk ∈ I +(S), but rk �∈ D+(S). Thus, if λk would intersect D+(S), it would also have to
intersect the boundary of that set, i.e., S ∪ H+(S) (by (A.5)), and thereby S. But then
Lemma A.12, applied to x = rk would imply that λk intersects H+(S), a contradiction.

It remains to show that q ∈ S̄. Since q ∈ D+(S) we have I−(q) ⊆ I−(D+(S)) ⊆
I−(S)∪D+(S). It follows that pk ∈ I−(q)\D+(S) ⊆ I−(S). Let αk be a timelike curve
from q to pk contained in Uk and extend it to the past to become past inextendible. As
q ∈ edge(H+(S)) ⊆ H+(S) ⊆ D+(S), this curve must, by Proposition A.10, intersect
S in a point zk . Since pk ∈ I−(S) and S is achronal any such zk must lie between q and
pk , hence zk ∈ Uk . Thus zk → q, and therefore q ∈ S. ��
Lemma A.15. Let S be achronal. Then the Cauchy horizon H+

(
∂ J+(S)

)
of ∂ J+(S) is

a closed, achronal topological hypersurface.

Proof. Clearly H+
(
∂ J+(S)

)
is closed and achronality follows from Lemma A.13.

By Lemma A.14 (and Lemma A.4), edge
(
H+

(
∂ J+(S)

)) ⊆ edge(∂ J+(S)) = ∅ (see
Lemma A.5 and [16, Prop. A.18]), so the claim follows from [16, Prop. A.18]. ��
Lemma A.16. Let S be closed and achronal. Then H+(E+(S)) ⊆ H+

(
∂ J+(S)

)
.

Proof. We roughly follow the proof of [13, Lemma 9.3.1]. Assume to the contrary
that there exists p ∈ H+(E+(S))\H+

(
∂ J+(S)

)
. Since E+(S) ⊆ ∂ J+(S) we have

D+(E+(S)) ⊆ D+ (∂ J+(S)), so p ∈ I−(D+
(
∂ J+(S)

)
). Thus there exists q in I +(p) ∩
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D+
(
∂ J+(S)

)
and because p �∈ H+

(
∂ J+(S)

)
and H+

(
∂ J+(S)

)
is closed, we may addi-

tionally assume that q /∈ H+
(
∂ J+(S)

)
. This q is in I +(H+(E+(S))) so by Lemma A.13

q /∈ D+(E+(S)). Thus by Proposition A.10 there exists a past inextendible timelike
curve λ starting in q that never meets E+(S). However, as any such curve must meet
∂ J+(S) there exists z ∈ λ with z ∈ ∂ J+(S)\E+(S). By Proposition A.7 there exists a
past inextendible null curve μ ⊆ ∂ J+(S)\E+(S) starting in z. Finally by Lemma A.11
the concatenation of λ and μ must enter I−(∂ J+(S)), contradicting the achronality of
∂ J+(S). ��
A.3. Strong causality. Finally we are going to collect some results concerning strong
causality.

Definition A.17. Strong causality holds at a point p ∈ M if for every neighbourhoodU
of p there exists a neighbourhood V of p with V ⊆ U such that every causal curve in
M that starts and ends in V is entirely contained in U .

As in the smooth case there is the following alternative definition.

Lemma A.18. Strong causality holds at p if and only if for every neighbourhood U of
p there exists a neighbourhood V of p with V ⊆ U such that no causal curve in M
intersects V more than once.

Proof. See [22, Lem. 3.21]. ��
Lemma A.19. If M is chronological and every inextendible null geodesic is not max-
imising, then strong causality holds throughout M.

Proof. The proof is similar to the smooth case, see, e.g., [2, Prop. 12.39] or [13,
Lem. 8.3.7]. Assume to the contrary that strong causality does not hold at some point
p ∈ M . Then there exists a neighbourhood U of p and neighbourhoods Vk of p with⋂

k∈N Vk = {p} and future directed causal curves γ +
k parametrised with respect to h-

arclength that start at pk = γ +
k (0) ∈ Vk and end at qk = γ +

k (bk) ∈ Vk but leave U .
Hence by Theorem A.6, there exists a causal limit curve γ + starting at p. We may
assume that this limit curve is future inextendible: Otherwise bk → b < ∞ and
p = limk→∞ γ +

k (bk) = γ +(b), so γ + is a closed causal curve. But then Lemma A.2 and
Lemma A.3 show that two points on γ + could be connected by a timelike curve because
no inextendible null geodesic is maximising by assumption, contradicting chronology.

By the same argument, only using the (also future directed) curves γ−k : [−bk, 0] →
M defined by γ−k (t) := γ +

k (bk + t), one obtains a past inextendible causal limit curve
γ− starting at p. Together these two limit curves form an inextendible causal curve γ .

Since γ is inextendible there are points x = γ (t−) and y = γ (t+) on γ that can
be connected by a timelike curve. We may assume y ∈ J+(p) and x ∈ J−(p) by
Lemma A.2 and γ−k (t−) → γ (t−) and γ +

k (t+) → γ (t+). Since the relation� is open
(see [21, Sec. 1.4] or [15, Cor. 3.12]) this implies γ−k (t−) � γ +

k (t+) for k large. Then
γ−k (t−) = γ +

k (t− +bk)� γ +
k (t+) and by bk →∞we get t− +bk > t+ for large enough

k, but this yields γ +
k (t+) ≤ γ +

k (t− + bk)� γ +
k (t+), hence there exists a closed timelike

curve through γ +
k (t+), contradicting chronology of M . ��

As already remarked in [31, Def. 2.6], the proof of [24, Lem. 14.13] remains true
even for continuous metrics and so strong causality implies that the spacetime is both
non-totally and non-partially imprisoning, meaning that no future (or past) inextendible
causal curve can remain in a compact set or return to it infinitely often. This gives
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Lemma A.20. Let M be strongly causal and let γ be an inextendible causal curve in
M. Then (the image of) γ is a closed subset of M.
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