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Abstract: This paper introduces a general perturbative quantization scheme for gauge
theories on manifolds with boundary, compatible with cutting and gluing, in the coho-
mological symplectic (BV-BFV) formalism. Explicit examples, like abelian BF theory
and its perturbations, including nontopological ones, are presented.
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1. Introduction

The goal of this paper is to lift Atiyah—Segal’s functors to the cochain level. We show
how to construct the data of such functors in terms of perturbative path integrals.

The natural framework for this construction is the Batalin—Vilkovisky formalism, or,
more precisely, its natural extension to the setting of spacetime manifolds with boundary
[23,24].

The formalism we propose also incorporates the idea of Wilsonian effective action.
In particular, partition functions for closed manifolds in our approach, rather than being
numbers, are half-densities on the space of residual fields (if the latter can be chosen
to be a point, we do get a number). Models for the space of residual fields are partially
ordered and one can pass from a larger to a smaller model by a certain fiber integration
procedure—in this way a version of Wilson’s renormalization flow is built into the pic-
ture. Also, in this context, the reduced spaces of states in the case of topological field the-
ories are not forced to be finite-dimensional, which allows one to accommodate for inter-
esting examples (e.g. BF theory) that do not fit into Atiyah’s axiomatics in its usual form.

Remark 1.1. In the text, manifolds, possibly with boundary, are always assumed to be
smooth, compact and oriented.

1.1. Functorial quantum field theory. The functorial point of view on quantum field
theory was first outlined in [5,53] in the context of topological and conformal field
theories; however, it is quite general and can be taken as a universal structure that is
present in any quantum field theory.

In this framework a quantum field theory is a monoidal functor from a category of
cobordisms to a given monoidal category. The target category is, usually, the category
of complex vector spaces, or appropriate infinite-dimensional versions. The category of
cobordisms depends on the type of field theory. For example, for topological field theories
these are usually smooth oriented cobordisms. For Yang—Mills theory and sigma models
this is a category of smooth Riemannian manifolds with a collar at the boundary. Other
examples of geometric structures on cobordisms are: framing, volume form, conformal
structure, spin and spinC-structures (on a Riemannian manifold).

When the target category is the category of vector spaces, such a functor does the
following. To an (n — 1)-dimensional manifold ¥ (equipped with collars [56] if we want
to have smooth compositions) it assigns a vector space:

T H(Z).
It should agree with the orientation reversing mapping
H(Z) = HE)*
and should have the monoidal property
H(X U X2) = H(X1) ® H(X2)

where the tensor product should be appropriately completed in the infinite-dimensional
case. Here H* is the dual vector space. Typically these vector spaces are infinite-
dimensional and the notion of the dual vector space may depend on the construction
of QFT.
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To an n-dimensional cobordism M : 0_M +— 0, M the functor assigns a linear map
M= Yy HO-M) — H(0:M).

Taking into account the orientation reversing mapping and the monoidal property, the
mapping ¥ 3s can be regarded as a vector:

Y € HQOM).

Here oM = 0_M U 9. M is the boundary of M. For a given M the space H(dM)
is called the space of boundary states.! The vector vy, is called the state (a.k.a. the
amplitude or the partition function or the wave function).

1.2. The functional integral. Inthe case of a theory without gauge symmetries, the space
of states associated to the boundary and the state associated to the bulk can be obtained
as follows in the functional integral formalism. We start from a field theory on a manifold
M defined in terms of a space of fields Fj; on M and an action functional Sj;, which
is a functional on Fj;. We refer to M as the space—time manifold as this is its physical
meaning in field theory (but not in string theory where space—time is the target of maps
defined on the worldsheet M).

Under mild assumptions, a local classical field theory naturally defines a symplectic
manifold F. g of boundary fields on a boundary manifold X. The space of states is then
defined as a quantization of Fg. In the simple, but common, situation when Fg is an
affine space, the quantization can be defined by choosing a Lagrangian polarization with
a smooth leaf space By. The space of states is then defined as the space of functions
on By.If ¥ = dM, there is a surjective submersion from the space of fields F), to the
space of boundary fields F. édM" We denote by pys the composition of this map with the

projection F. (,8 v — Bau. Then the state associated to M may be heuristically defined as

Y (B) = / ehSH@ o,

Pepy (B)

where S is a point in Bjyy.

The gluing procedure is formally obtained by pairing the two states coming from
two manifolds with the same boundary (component) ¥ via integration over By.> This
integral is not defined measure theoretically, but as a formal power series modelled on the
asymptotic expansion of an oscillatory integral around a critical point, with coefficients
given by Feynman diagrams.? Sometimes it is also convenient to “linearize” the space

of fields. Then the procedure consists in splitting the action into a sum Sy; = Sg,, + Sﬁfn,
where SOM is quadratic in the fields and SE;n is a small perturbation. One defines the

Gaussian integral for S,?,, as usual and then computes the effects of the perturbation in
. t. .
terms of expectation values of powers of Sﬁ;’r in the Gaussian theory.
' To be precise, as usual, states are density matrices on this space.
2 This procedure relies implicitly on a version of Fubini theorem which is heuristically expected to hold,
cf. Remark 2.40 and the preamble of “Appendix D”.

3 This formal power series is expected to be the asymptotic series for the non-perturbative state defined for
finite values of h.
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1.3. Gauge theories and the BV formalism. One of the results of this paper is the lift of
the above construction to the cochain level, which is needed to treat gauge theories (or,
more generally, theories with degenerate action functionals). The idea is to replace the
vector space H (X) by a cochain complex H*(X) (whose cohomology in degree zero is
H(X)). The state associated to a bulk M in such a theory is a cocycle in H°(dM). The
reason for this is that the construction of a state usually depends on gauge choices and
as a consequence the state is defined up to a coboundary.

The functional integral approach outlined above has to be modified to accommodate
for these changes. At first we assume that M has no boundary. In this case the most
general framework is the Batalin—Vilkovisky (BV) formalism [10]. It requires two steps:
extending the space of fields on a manifold M to an odd-symplectic supermanifold of
fields Fyy, and then extending the action functional to a function Sy; on F)y that satisfies
a certain condition called the master equation. The space of fields Fj; usually comes
with a special Lagrangian submanifold Ly that corresponds to the classical fields of
the theory and the infinitesimal generators of symmetry. The main result of Batalin and
Vilkovisky is that the integral of exp(iSys/h) over a Lagrangian submanifold £ of Fjy is
invariant under deformations of £. The application to field theory consists in replacing
the, usually ill-defined, integral over Ly with a well-defined integral over a deformation
L (this procedure is called the gauge-fixing).

Under mild assumptions, one can show [23,24] (see also [36]) that a local BV theory
naturally defines an even symplectic supermanifold .7-'% of boundary fields on a bound-
ary manifold ¥ endowed with an odd function S)a: that Poisson commutes with itself
(this structure is familiar from the BFV formalism; see [11,12] and, for a more recent
mathematical treatment, [48,55]). Again, we assume that we have a Lagrangian polar-
ization on F g with a smooth leaf space By,. The space of states, now a cochain complex,
is defined as the space of functions* on By, (in order to have a Z-graded complex, one
needs a Z-grading, a.k.a. ghost number, on the supermanifolds of fields, which is usu-
ally the case). The coboundary operator 2y, on the space of states is constructed as a
quantization of Sg which we assume to square to zero (otherwise the theory is called
anomalous).

If ¥ = 0M, there is a surjective submersion from the space of fields Fj, to the space
of boundary fields F. g - The master equation for Sy, turns out to be modified by terms
coming from .7-'3 1 (the classical master equation in this situation was analyzed in [23]
in the framework of BV-BFV theory). As we explain below (see Sect. 2.4), if we denote
by pa the composition of the map from Fj; to F. E(; 1 With the projection to the leaf space
By, the fibers of pys inherit an odd-symplectic structure and the restriction of Sy to the
fibers satisfies the master equation modified by a boundary term. The state associated to
M is then defined by integrating the exponentiated action over a Lagrangian submanifold
L in the fibers

Y (b) =f eSO DD b e Byy. (1.1)
deLCp,, (b)

Notice that in principle we need a choice of £ in each fiber p;,ll (b). We refrain from using
the notation L, for we will see that for the formalism to make sense one actually has to
assume that, at least locally, the fibration is a product manifold and that £ is a Lagrangian

4 The construction is in fact canonical if one works with half-densities instead of functions, which we will
actually do in the paper. For simplicity of exposition we consider functions in this Introduction.
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submanifold of the fibers independent of the base point.> Notice that the functional
integral corresponds to a choice of ordering. This yields a preferred quantization €23,
of the boundary action.

One of the goals of this paper is to show that, under natural assumptions, this is
a well-defined procedure and that a change of gauge fixing (i.e., a deformation of the
Lagrangian submanifolds £) changes the state 13 by an 2;,/-exact term.

1.4. Perturbation theory and residual fields. The functional integral (1.1) is understood
as an expansion in Feynman diagrams corresponding to the asymptotic expansion around
a critical point. We also consider perturbation theory where Sy = S/(‘),, +S§;n, where S,?,,
is quadratic and S}i;rt is a small perturbation. In this case, it is also interesting to allow for
non-isolated critical points of 81(\)4~ The idea is to consider critical points of 81?4 modulo
its own gauge symmetry as residual fields and to integrate in transversal directions to
the space of residual fields. The resulting state is a function on the space of residual
fields, which is a finite-dimensional supermanifold and comes equipped with a BV
Laplacian, i.e., an odd second order operator A that squares to zero (and anticommutes
with 447). The main result is that, under certain assumptions, the state is now closed
under the coboundary operator h2A + Q55 and changes by h>A + Qjy-exact terms
under changes of gauge-fixing. This has profound consequences, e.g., when one wants
to globalize the results (i.e., define the state as a function on the whole space of solutions
of Euler—Lagrange equations for Sy; modulo gauge symmetry, and not just on a formal
neighborhood of each point as in perturbation theory), cf. [14] for the detailed treatment
of globalization for the Poisson sigma model.

More general spaces of residual fields may be defined as submanifolds of Fj; com-
patible with the BV structure. This leads, e.g., to a Wilsonian picture, where one has a
hierarchy of spaces of residual (“low energy”) fields and can pass from larger to smaller
models by fiber BV integrals, see “Appendix F for more details. Choosing appropriate
spaces of residual fields is also important for the gluing procedure, see Sect. 2.4.4.

1.5. Main results. This paper contains two main results. The first one is the construc-
tion of a general framework of perturbative quantization of any local QFT with gauge
symmetry on manifolds with boundary. Some of the assumptions may be too strong for
specific examples. This is why the application of this framework requires extra work.
In particular, we do not address possible issues with renormalization that would be very
important for non-topological theories.

Our second main result concerns the application of the general framework to a class
of topological field theories, BF-like theories, see Sects. 3 and 4. The result can be
formulated as the following theorem.

Theorem. The following holds for BF-like theories such as BF theories, 2D Yang—Mills
theory, the nonlinear Poisson sigma-model and the first order formalism for quantum
mechanics, where the construction of Qgy and of the state Yy is given in terms of
configuration space integrals:

() @3, =0.
(2) The quantum master equation modified by the boundary term holds: (F*A +
Qom)ym = 0.

5 This assumption is natural in the setting of perturbative quantization in the formal neighborhood of a
fixed critical point of the action when the relevant spaces of fields/boundary fields are automatically equipped
with a linear structure.
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(3) A change of gauge changes the state (the partition function) by a coboundary:
U = Y+ (P A+ Qo).
(4) The gluing axiom holds, i.e. if M = My Uy, M», then

I///\/[ = P*(I//Ml ;WMZ),

where Py is the BV-pushforward with respect to the odd-symplectic fibration of
residual fields P: Vy, x Vg, — Vu (see Sect. 2.4.4), and *x, is the pairing of
states in H(X).

This theorem is proven in Sects. 3 and 4 with the beginning of Sect. 4 (specifically,
Sect. 4.1, 4.2) being the core part.

1.6. Summary. In Sect. 2 we give the framework of quantum BV-BFV theory. Later,
in Sects. 3 and 4 we use Feynman diagrams and integrals over configuration spaces to
make a precise mathematical construction of abelian BF theories and their perturba-
tions, including, in particular, non-abelian BF theories, 2D Yang—Mills theory and the
Poisson sigma model. Section 2 begins with a short review of the classical BV-BFV for-
malism for Lagrangian field theories on manifolds with boundaries [23,24]. Then, after
introducing in Sect. 2.2 the main construction underlying our quantization scheme—BYV
pushforward in a family—we continue with an abstract formulation of its quantum ver-
sion (Sect. 2.3) which will be substantiated by examples in the rest of the paper. Then
we present the construction of perturbative quantization which starts with a classical
BV-BFV theory and returns a quantum BV-BFV theory (Sect. 2.4). Here we focus on
finite-dimensional integrals and comment on the infinite-dimensional version defined
via the stationary phase asymptotical formula, with integrals defined by their Feynman
diagram expansions. In particular, we show how the functional integral formalism yields
a preferred quantization of the BFV action—i.e., roughly speaking, of the constraints
on boundary fields—which is compatible with the quantization in the bulk.

In Sect. 3, we consider the case of abelian BF theories. We discuss the space of residual
fields, the choice of gauge fixings (by Hodge theory on manifolds with boundary), and
the construction of propagators (some of the results of Sects. 3.2 and 3.3 were already
described in [60]). We compute the state explicitly, see (3.26), as

—~ i geff
Yy =Tyer™M,

where T}y is, up to a coefficient depending on Betti numbers of M, the torsion of M (to
the power £1) and

3;@”:1(/ IB%a—/ bA):I:/ By i A
M M O MxoM

is the effective action, where A and B denote the boundary fields, a and b the residual
fields and n the propagator (771 and 7y are just projections to the factors in the Cartesian
product). We show that the quantum BV-BFV axioms are satisfied. Finally, we discuss
the gluing procedure and show that it is a combination of the gluing formula for torsions
and of Mayer—Vietoris. In particular, we derive a formula for the gluing of propagators
(see also “Appendix D.3”).

In Sect. 4 we discuss examples of quantum BV-BFV theories that arise as a perturba-
tion of abelian BF theories. These include non-abelian BF theories, quantum mechanics,
the Poisson sigma model, two-dimensional Yang—Mills theory and particular cases of
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Chern—Simons theory. For this class of examples we show that gluing and the quantum
BV-BFV axioms are satisfied. Notice that, with the exception of quantum mechanics
and two-dimensional Yang—Mills theory, we only present topological field theories, yet
recall that the formalism of Sect. 2 is general. In the context of two-dimensional Yang—
Mills theory we also present a nontrivial example of the generalized Segal-Bargmann
transform. The Poisson sigma model provides an example where the boundary structure
gets quantum corrections.

“Appendix A” introduces the necessary background on Hodge theory on manifolds
with boundary. In “Appendix B” we present a construction of propagators on manifolds
with boundary by a version of the method of image charges. In “Appendix D” we present
the details of the gluing procedure for propagators. In “Appendices C and E” we provide
examples of propagators and of the gluing construction for propagators. In “Appendix F”
we comment on the globalization aspect of our formalism where perturbative quantiza-
tion is performed in a family over the moduli space of solutions of the Euler-Lagrange
equations of the classical system modulo gauge symmetry.

1.7. Final comments. The general setting described in Sect. 2 has a much wider scope
than the few examples presented in this paper, which are however particularly suitable
to point out the various features of the formalism. Depending on the reader’s taste, it
might actually be useful to start with the examples, at least Sect. 3, first and to return to
Sects. 2.2, 2.3 and 2.4 later.

Whereas we discuss abelian BF theory in full details, we only present the general
structure for its perturbations. Explicit computations of states are of course important in
relevant examples (see [26] for a computation in split Chern—Simons theory).

We also plan to present another instantiation of the general theory in the case of the
discrete version of BF theories in a separate paper [25].

The application of the formalism to other classes of theories, in particular to physical
theories like Yang—Mills with and without matter, is part of a long standing program.

2. The BV-BFV Formalism

The aim of this section is to describe a perturbative quantization scheme for gauge theo-
ries on manifolds with boundary in the framework of the BV-BFV formalism introduced
in [23,24]. For the reader’s convenience, we start by recalling the classical BV-BFV con-
struction (Sect. 2.1). In Sect. 2.3 we describe the mathematical structure of a quantum
BV-BFV theory, and in Sect. 2.4 we develop the perturbative quantization scheme which
starts with a classical BV-BFV theory and lands in the quantum one. The main technical
tool underlying the construction of quantization is the family (parametric) version of
the construction of pushforward for solutions of quantum master equation along odd-
symplectic fibrations; we present this construction in Sect. 2.2.

2.1. The classical BV-BFV formalism. Here we will recall basic definitions of BV-BFV
manifolds which are the fundamental structure for classical gauge theories on space—time
manifolds with boundary. The reader is referred to [23] for details and examples.

2.1.1. BV-BFV manifolds. Let F be a supermanifold with an additional Z-grading; we
will speak of a graded manifold. An odd vector field Q of degree +1 on F is called
cohomological if it commutes with itself, i.e., [Q, Q] = 0. A symplectic form (i.e., a
closed, nondegenerate 2-form) w is called a BV form if it is odd and has degree —1 and
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a BFV form if it is even and has degree 0. If w is exact, a specific « of the same parity
and degree with w = Sa will be called a BV/BFV 1-form.

Remark 2.1. In the application to field theory, the coordinates on the BV manifold are
the classical fields, the ghosts and the antifields for all of them. In particular, the de
Rham differential on such a supermanifold will correspond to the variation and for this
reason we use the symbol 8. This will also avoid confusion with the de Rham differential
d on the underlying spacetime manifold. Finally, observe that the degree in this context
is what is usually called ghost number. In the case when no classical fermionic fields
are present, the parity is equal to the ghost number modulo 2. This is the case in all the
examples discussed in this paper, but in this introductory section we prefer to be general.
As a result w is tri-graded: form degree 2, parity odd, ghost number —1.

A vector field Q is called symplectic if L gw = 0 and Hamiltonian if tpw = 65 for
a function S. In the BFV case, by degree reasons, if the cohomological vector field is
symplectic, it is also automatically Hamiltonian with a uniquely defined function S of
degree +1 called the BFV action. In the BV case, a Hamiltonian function of degree 0
for the cohomological vector field is called a BV action.

Definition 2.2. A BFV manifold is a triple (F, w, Q) where F is a graded manifold, w
isa BFV form and Q is a cohomological, symplectic vector field on F. A BFV manifold
is called exact if a BFV 1-form « is specified.

Definition 2.3. A BV-BFV manifold over a given exact BFV manifold (F I @w? =
sa?, 0% isa quintuple (F, w, S, Q, ) where F is a graded manifold, w is a BV form,
S is an even function of degree 0, Q is a cohomological vector field and 77 : F — F?
is a surjective submersion such that

(i) tpw =88 +ad,
(i) 0? = 87 Q.

Here 87 denotes the differential of the map . If 2 is a point, (F, w, S) is called a BV
manifold.

A consequence of the conditions of Definition 2.3 is the modified Classical Master
Equation (mCME):
0(S) = 1* (28" — 1 poa?). (2.1)

In the case when F9 is a point, it reduces to the usual CME, Q(S) = 0. The latter
is normally written as (S, §) = 0, where (, ) is the BV bracket defined by .% The
modified CME (2.1) can equivalently be rewritten as

1
5 totow = *S9. (2.2)

2.1.2. Classical BV-BFYV theories. An exact BV-BFV d-dimensional field theory is
the local association of an exact BFV manifold (F2, a)"E = 604%, Qaz) to every (d —
1)-dimensional compact manifold ¥ and of a BV manifold (Fys, war, Sy, Oms Tar)
over the BFV manifold (fg e a)g M= (Sag e Qg ) to every d-dimensional compact
manifold M with boundary 9 M. Here F)y is the space of fields on M (in the bulk) and

6 Note that (', ) is a Gerstenhaber bracket due to the odd degree of w. In the literature it is also called the
anti-bracket.



640 A. S. Cattaneo, P. Mnev, N. Reshetikhin

.7-";; 1 18 the space fields on the boundary 0 M (or the phase space). Local association
means that the graded manifolds 7, and F- % are modeled on spaces of sections of bundles
(or, more generally, sheaves) over M and ¥, whereas the function, symplectic forms and
cohomological vector fields are local (i.e., they are defined as integrals of functions of
finite jets of the fields). In particular, Fj;, F: g are, typically, infinite-dimensional Banach
or Fréchet manifolds (depending on the allowed class of sections).

Remark 2.4. The BV-BFV formalism may be generalized to the nonexact case (see
[23,24]), but we will not need it in this paper.

A classical BV-BFV theory can be seen, in the spirit of Atiyah—Segal axioms, as a
functor from the category of d-dimensional cobordisms endowed with some geometric
structure (depending on a particular model, it can be a Riemannian metric, a conformal
structure, a volume form, a principal bundle, a cell decomposition, etc.) with composition
given by gluing along common boundary, to the category with objects the BFV manifolds
and morphisms the BV-BFV manifolds over direct products of BFV manifolds, with
composition given by homotopy fiber products. This functor is compatible with the
monoidal structure on source (space—time) and target (BFV) categories, given by disjoint
unions and direct products, respectively (in particular, F, g is a point). See [23] for details.
See also [49] for the approach to gluing via synthetic geometry.

2.2. Finite-dimensional BV pushforward in families. Here we will recall the notion of
the BV integral (Sect. 2.2.1) and its refined version, the BV pushforward construction,
or fiber BV integral (Sect. 2.2.2). The latter is a model for a path integral over “fast” (or
“ultraviolet”) fields, depending on the “slow” (or “infrared”) residual fields (Wilson’s
effective action), within the Batalin—Vilkovisky approach to gauge theories. We then
introduce the family (or parametric) version of BV pushforward (Sect. 2.2.3), which
models the computation of matrix elements of the evolution operator in the effective
action framework. In this sense, the BV pushforward in families can be regarded as a
“hybrid effective action” formalism (i.e. a hybrid between effective action in BV for-
malism and an evolution operator/partition function, as in Atiyah—Segal axiomatics). In
Sect. 2.2.4 we specialize the construction of BV pushforward in family to “exponential”

half-densities, i.e. those of the form m% e%S and consider the asymptotics i — 0, which
sets the stage for the perturbative quantization scheme that is the focus of this paper.

Within this section, unless explicitly stated otherwise, we are assuming that all man-
ifolds are finite-dimensional and all integrals are convergent (see also [1] for the discus-
sion of finite-dimensional BV integrals; for classical BV formalism in finite-dimensional
setting, see [31]). We also assume that manifolds are equipped with orientations, so that
we can ignore the distinction between densities and Berezinians.

The logic is that we develop all the constructions in the setting of finite-dimensional
integrals, which are defined within measure theory. Then we can consider the fast oscil-
lating (A — 0) asymptotics of our integral and write it, using stationary phase formula,
as a sum of Feynman diagrams. In the case of path integrals over infinite-dimensional
spaces of fields, we instead define the integral perturbatively, i.e. as a formal power
series in i with coefficients given by sums of Feynman diagrams. In this perturbative
setting, theorems that are proven for measure-theoretic integrals have to be checked,
model by model, on the level of Feynman diagrams.

2.2.1. BV integral. Let ) be a Z-graded manifold with a degree —1 odd symplectic
form w.
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Theorem 2.5 ([37,54]). The space Dens? () of half-densities on Y carries a degree
+1 odd coboundary operator, the canonical BV Laplacian A, such that ll’l any local
Darboux coordinate chart (x', &) on ), the operator A has the form Zl oyl 75

Definition 2.6. We say that a Berezinian p on ) is compatible with the odd symplectic
structure w, if A ;ﬁ = 0 with A the canonical BV Laplacian.

Remark 2.7. Given a compatible Berezinian p on (), w), one can construct a -
dependent BV Laplacian on functions on ) (as opposed to half-densities), A,

C®(YV) — C®(Y) defined by uZ A, f = A(uz f) for any f € C®(Y). See [51]
for details.

Given a Lagrangian submanifold £ C ), a half-density & on ) can be restricted to
a 1-density &|- on £, which can in turn be integrated over £. The BV integral is the
composition

/ : Dens%(y) 2le, Dens(£) i) C, & / §le-
L L

Theorem 2.8 (Batalin—Vilkovisky—Schwarz, [10,51]).
(1) For every half-density & on Y and every Lagrangian submanifold L C ), one has

/EAg:o

assuming convergence of the integral.
(ii) For a half-density & on Y satisfying A& = 0 and a smooth family of Lagrangian
submanifolds L, C Y parametrized by t € [0, 1], one has

o= e

assuming convergence Offﬁr £ forallt € [0,1].7

2.2.2. BV pushforward. Assume that (), ) is a direct product of two odd-symplectic
manifolds (), @) and (), @"),i.e. Y =Y x V", o = ' + . Then the space of
half-densities on ) factorizes as

Dens? Q) = Dens? (V)@Dens% .

BV integration in the second factor, over a Lagrangian submanifold £ C )", defines a
pushforward map on half-densities

/ : Dens2 ) —fﬁ> Dens2 . 2.3)
L
This map is also known as the fiber BV integral.® The version of Theorem 2.8 in the
context of BV pushforwards is as follows.

7 In fact, in [51] a stronger version of this statement is proven.

8 Here Y’ is a model for “slow fields”, or “zero-modes”, or “classical backgrounds”, or “residual fields” in
the effective action formalism.
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Theorem 2.9. (i) For & a half-density on ),

foes

(ii) For L; C V" a smooth family of Lagrangian submanifolds parametrized by t €
[0, 1], and a half-density & on Y satisfying A& = 0, one has

/ E— | E=AV (2.4)
L Lo

for some ¥ € Dens% (V). Moreover; if L;4c is given, in the first order in €, as the
flow in time € of a Hamiltonian vector field (e, H;) with H; € C*°(L;)_1, then V¥
in (2.4) is given by

1
0 L

Proof. While (i) follows immediately from (2.8) and from the splitting of Laplacians
A = A"+ A", part (ii) is implied by the following calculation. Let i be a Berezinian on

Y compatible with w. Then it defines a BV Laplacian A, = ,u’% A(y,% ) on functions
on ). Expressing the half-density & as £ = /,L% f with f afunction, we have

0 1 1 1
p u?f=u/ w2 ((f, Hy) + f =div, (e, Hy))
tJe, L, 2
Ay H
= / W (A (fH) — Ap(f) Hy) = AN / wr fH,, 2.5)
L, ~—— t

0

using (i) and the assumption that A§ = 0 or equivalently A, f =0. O

We refer the reader to [22,45] for more details.

Theorem 2.9 implies in particular that the BV pushforward defines a pushforward
map from the cohomology of A to the cohomology of A’ dependent on a choice of a
Lagrangian £ modulo Lagrangian homotopy.’

Of particular interest is the case when the odd-symplectic manifolds ), ', )" are
equipped with compatible Berezinians 1, u’, u”” which then give rise to BV Laplacians
Ay, A;; ./ A;i ,» on functions on the respective manifolds. Assuming that u = ' ® u”,

the BV Laplacians satisfy A, = A;L , + A;i ». We can apply the BV pushforward to a

half-density of the form & = e%s w!/? 1tis A-closed if and only if S € C*®())g satisfies
the quantum master equation (QME):

MEFS =0 & 15,8 ~iha,S =0 2.6)

9 We say that two Lagrangians are Lagrangian homotopic if they can be connected by a smooth family of
Lagrangians.
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Remark 2.10. Assume that S has the form S = S® + hS! + .-+ € C®(Y)o[[A]]. Then
(2.6) implies, by expanding in powers in % and looking at the lowest order term, the
classical master equation (CME)

(8%, 8% =o0. (2.7)

Definition 2.11. We define the effective BV action S’ € C*°()”")g via BV pushforward

(2.3):
G%S/M/%Z :/elhslu .
L

D=

2.8)

Theorem 2.9 implies the following.

Corollary 2.12 ([22,45]).

(1) If S € C*®(Y)y satisfies the quantum master equation on Y, then S’ € C*()')g
defined by (2.8) satisfies the quantum master equation on)'.

(ii) Assume that L, C V" is a smooth family of Lagrangian submanifolds parametrized
byt € [0,1] and S satisfies the quantum master equation on ). Let S; be the
effective BV action defined using L;. Then Sy is a canonical BV transformation
of Sy, i.e.

enSt —enSo = AW 2.9)

for some W € C*()')_y. Infinitesimally, one has
a _, , e
55} = (S;, ¢r) — 1hAM/¢t
where the generator of the infinitesimal canonical transformation is
& =M’—%e—%5¥-/£ prerSH,, (2.10)
:

with Hy as in (ii) of Theorem 2.9. The generator ¥V of the finite canonical transfor-
mation (2.9) is:
1 .
v = / dt/ pierSH,.
0 L,

(iii) If S, S are solutions of the quantum master equation on ) differing by a canonical
transformation, then the corresponding effective actions S', S’ also differ by a
canonical transformation on ).

As a consequence, the BV pushforward gives a map from solutions of the QME on
Y modulo canonical transformations to solutions of the QME on )’ modulo canonical
transformations. This map depends on the choice of a class of Lagrangians £ C )"
modulo Lagrangian homotopy:

Solutions of QME on ) (L] Solutions of QME on )’
ﬁ .
can. transf. can. transf.
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Remark 2.13. Thedirect product) = )’ x )" setting for the BV pushforward introduced
above admits the following generalization. Let )" be an odd-symplectic manifold. An
odd-symplectic fiber bundle with typical fiber ) over an odd-symplectic manifold
YV’ consists of a pair (), )’) of odd-symplectic manifolds together with a surjective
submersion 7w: Y — )’ such that each point of ) has a neighborhood U with a
symplectomorphism ¢4 : 71 (U) — U x V" Notice that, by the nondegeneracy of the
symplectic forms, on the overlaps of two such neighborhoods i, and Upg the transition
functions ¢up : 7 U, N Ug) — YU, n Upg) are given by symplectomorphisms
of Y constant over ). If all these symplectomorphisms are connected to the identity,
the BV pushforward may be defined and we call such a fiber bundle a hedgehog, or a
hedgehog fibration. '

Remark 2.14. A more general version of BV pushforward is the following. Suppose
we have a coisotropic submanifold C of ) with a smooth reduction C. A half-density
on ) can then be integrated to a half density on C. This pushforward is also a chain
map for the BV Laplacians. An example of this is when we have a hedgehog fibration
Y — )'; the total space of the fiber bundle over )’ consisting of the (locally constant)
choice of Lagrangian submanifolds in the hedgehog fibers is a coisotropic submanifold
of Y with reduction )’. The hedgehog version, though less general, is more suitable for
applications to field theory as on the one hand we want to fix the reduction and on the
other hand the choice of Lagrangian submanifolds is an auxiliary piece of data.

2.2.3. Family version. Let (), w) be an odd-symplectic manifold as above and let B be
a Z-graded supermanifold endowed with a degree +1 odd differential operator 2 acting
on half-densities on B satisfying Q2 = 0.!!

Let 7 = B x Y be the product manifold. Then we have a coboundary operator
2 A + Q acting on

Dens? (F) = Dens? (B)&Dens? (). @2.11)

Assuming, as in Sect. 2.2.2, that )/ is split as a product of two odd-symplectic manifolds
(), @) and ()", @), we have a version of the BV pushforward (2.3) in family over B:

/ . Dens? (F) — Dens? (F') (2.12)
L

where 7/ = B x V' and £ C )" is a Lagrangian submanifold. Half-densities on F’ are
equipped with a coboundary operator > A’ + € where A’ is the canonical BV Laplacian
on ). We have the following family version of Theorem 2.9.

Theorem 2.15. (i) For every Lagrangian £ C )" and every & € Dens? (F), we have

/(h2A+Q)g = (th/+Q)/ £.
L L

10 An explanation for this terminology may be found on YouTube: Hedgehog BV.

1 In the setting of field theory, B will become the space of leaves of a Lagrangian foliation of the space of
boundary fields, i.e. the space parameterizing admissible boundary conditions for the path integral over field
configurations.


https://youtu.be/BhPtkIMEnjk
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(ii) For a half-density &€ on F satisfying (h*A + Q)& = 0 and a smooth family of
Lagrangians L; C )" parametrized by t € [0, 1], we have

/s-/ £ = (A +QW
Ly Ly

for some ¥ € Dens? (F). Explicitly, the generator is

1
U =h"2 / dt | &H,
0 L

with H; € C*°(L;)—1 as in (ii) of Theorem 2.9.

Proof. Part (i) follows immediately from (i) of Theorem 2.9 and the fact that the map
(2.12) is trivial in the first factor of (2.11) and hence commutes with €2. The proof of (ii)
is a minor modification of the proof of (ii): choose a Berezinian p on ) compatible with
w. We can write £ = ,u% f forsome f € Dens% (B)RC>®(Y). Repeating the calculation
(2.5) in the family setting we have

ad

- u%f=f ﬁ(AM(sz)—A,Af)H,):h*Z(hZAwQ)/ EH,.
t Lt l:t Lt

Here we used that A, (f) = M’%Aé = —h’z/f%Qé. O

2.2.4. Case of exponential half-densities and asymptotics h — 0. Now consider the
case when F is equipped with a Berezinian m = p - v where u is a Berezinian on Y
compatible with w and v is a Berezinian on 5 (we do not require any compatibility
between v and €2), and consider half-densities on F of the form

£=mzerS (2.13)
withS = S%+AS +- - - € C%°(F)[[A]]. Using Berezinians j, v, we define the BV Lapla-
cian A, = M’%A(,u%o) on C*°()) and the coboundary operator 2, = v’%Q(v%o)
on C®(B). Assume that Q, = Y_ - (—ih)PQ(,) where Q(,) = sz?p) + hsz(lp) +.-- €
Diff (B)[[/]] is a differential operator on B of order at most p. Denote by Symb Q?p) €
T'(B, SPTB) the leading symbol of Q0 ) and set Symb Q0 =3 .o Symb sz?p). View-
ing Symb Q0 as a function on 7*3, we can define a function Symb Q°0835S° € C°(F)

where 85 is the de Rham differential on B. Then the modified quantum master equa-
tion (QME)

(A +9Q) miehS =0 (2.14)

can be expanded, as h — 0, as
1 i
m? (—5(80, 8% + Symb ° 0 558° + 0(h)> ens =0. (2.15)

If b* are local coordinates on B3, one has

1 0 0

— _iRP — AUy (e By .
Q, =Y (~ih) = > QU (b b e 3h

pZO Af,...,0p

Q) eDiff (B)[[A]]
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Then (2.15) gives, in the lowest order in 7, the equation
1 0 <0 i asY a8
5(8,8)—2p > QN (bi0) — - —— =0. (2.16)

ab% ab%r
p=0 " ai..ap
This equation is the replacement of the classical master equation (2.7) in the family
setting.

Remark 2.16. Note that the Poisson bracket (, ) on ) and the symbol Symb Q0 do not
depend on the choice of Berezinians w, v. Thus, Eq. (2.16) is also independent of
Berezinians.

In analogy with (2.9), we say that two solutions Sy, S1 of the mQME (2.14) differ
by a canonical BV transformation, if

et S — e = (R2A, +Q,)W (2.17)

for some W € C*(F)_;. This is equivalent to having a family S; of solutions of the
mQME for r € [0, 1], satisfying

0 i i
aeﬁst = (BPA, + ) (h—zeﬁsqu,) (2.18)

with ¢, € C*°(F)_1[[h]]. Note that Eq. (2.18) together with the mQME can be pack-
aged into an extended version of the mQME satisfied by &; + dt - ¢, viewed as a non-
homogeneous differential form on the interval [0, 1] with values in functions on F:

0 i
<h2dt o RA, + sz) en(Srrdid) — .
In the lowest order in £, Eq. (2.18) reads

3 1
5 ST =@leh =3 3 e
p=0 " a0, B
Here ¢,0 = ¢ mod h.

Remark 2.17. One can introduce a sequence of multi-derivations with p > 0 inputs,

aS? 3S? 3¢?
s —L d’f. (2.19)
aber Qb Jbb

[o,---,0lg: C¥(B)x - x C¥(B) - C*(B), (2.20)
p
ap--0p f afp

fiaoes fP]Q—aIZa QU (b 0) o o

generated by the symbols Symb Q(()p).lz Then Eqgs. (2.16, 2.19) can be written, respec-
tively, as

1 w0 oy 1 o 07 _
S(8%.8% Zp![s,...,skz_o,

p=0 p

1
= 30 (7, ¢7) — ZE (S, ... S ¢l

>
p=0 4

12 Asa consequence of Q2 = 0, the operations (2.20) define on C°(B)[—1] the structure of a curved Lo
algebra (which is flat if Q(O) =0).
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Assume again that (), @) is a product of odd-symplectic manifolds (), »’) and
(), ") and that the Berezinian w on ) is of form pu = u’ - u” with i/, u”” compatible
Berezinians on ), )".

S

Given a half-density on F of the form & = m%e% , we can apply the pushforward

construction (2.12), producing a half-density on 7' = B x ) of form & = m’ 2enS
where m’ = u’ - v. The effective BV action S’ € C*®(F")[[h]] can be calculated by

stationary phase formula for the integral

Here we assume that there is a single simple isolated critical point of S on L. The
asymptotics h — 0 of the integral yields S’ as a formal power series in i with coefficients
given by Feynman diagrams.

Corollary 2.12 translates to the family setting in the following way.

Corollary 2.18. (i) The modified quantum master equation (2.14) on S implies the
mQOME on the effective BV action S’:

(A + Q) m2erS = 0.

In particular, 8 satisfies Eq. (2.16) with Poisson bracket (, ) on ) replaced by the
oneon)'.

(i) If L, € )" is a family of Lagrangian submanifolds, the respective effective actions
S satisfy Eq. (2.18) on F', with the generator ¢ of the infinitesimal canonical BV
transformation given by (2.10).

(iii) If S, S are solutions of the mQME on F related by a canonical transforma-
tion (2.17), then the respective effective actions S', S’ are also related by a
canonical transformation on F', with generator given by the pushforward V' =

_1 |
m'2 [mIw.

Definition 2.19. We call a fiber bundle F over a base B with odd-symplectic fiber (), w)
a BV bundle if the transition functions of F are given by locally constant fiberwise
symplectomorphisms.

Throughout this section, the direct product F = B x ) can be replaced by a more
general BV bundle. For the family BV pushforward, we can allow F to be a BV bundle
over B with fiber ) a hedgehog (cf. Remark 2.13; recall that a hedgehog is the same
as a BV bundle with an odd-symplectic base, satisfying the extra assumption that the
transition functions are homotopic to the identity). In this case we have a tower of BV
bundles ¥ — F' — B.

Remark 2.20. In the special case 2 = 0, Theorem 2.15 holds in a more general setting
where F — B is a general fiber bundle with fiber ) a hedgehog (i.e. no requirement on
transition functions to be constant on B). The Lagrangian submanifold £ in this setting
also does not have to be locally constant as a function on 5.
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2.2.5. Half-densities on an elliptic complex. For X = (X°®, d) a cochain complex, one
can use the canonical isomorphism of determinant lines Det X* = Det H*®(X) to define
the space of densities of weight « € R on X as

Dens®(X) = C®(X) ® (Det H*(X)/{£1})® ™. 2.21)

Here the second factor represents positive, constant (coordinate-independent) o-
densities on X.13

In the case of infinite-dimensional elliptic complexes, (2.21) gives a definition of the
space of densities, which is suitable for the setting of field theory on compact manifolds.
Here the typical X is the de Rham complex of the space—time manifold tensored with
some graded vector space of coefficients, X = Q°(M)®V (which corresponds to abelian
BF theory and its perturbations). In this case C*°(X) in (2.21) should be understood as
the space of smooth functions on X in Fréchet sense. In perturbative computations one
typically encounters h-dependent asymptotic families of functions on X of the form

fn= ene . o, where ¢ e (8°X%o, p=p"+hp' +--- € S X*[[A]].

Here 9(0) = Y o0 [y Pa ATFO N - Ai0 for 6 € X = Q°(M) ® V a test

differential form, and likewise p/ (6) = > >0 fM,, R,{ ATFON--- A0, Here @, R,{
are distributional differential forms (de Rham currents) on M"* = M x --- x M with
——————

n
values in S"V* and r; : M" — M is the projection to the i-th copy of M.
Note that the Reidemeister—Ray—Singer torsion (M) of M provides a natural refer-
ence constant density on X (in the sense above) and thus fixes an isomorphism

C*®(X) ~ Dens*(X)
f — f . .L,(M)—oz‘Sdim(V)

where Sdim(V) = ), (—1)" dim V' is the superdimension of the space of coefficients.
More generally, instead of Q2°(M) ® V one can allow X to be the space of differential
forms with coefficients in a flat graded vector bundle over M.

2.3. The quantum BV-BFV formalism. The goal of this section is to propose the defini-
tion of perturbative quantum BV-BFV theory.

Given a classical BV-BFV theory, its perturbative quantization consists of the fol-
lowing data:

(1) A graded vector space HE, the space of states, associated to each (d — 1)-man-
ifold ¥ with a choice of polarization P on .7-"% (to be constructed as a geometric
quantization'® of the symplectic manifold .7-"%).

13 In other words, an a-density & prescribes a number £(x, {x;}) to an element x € X and a basis {x;} in
cohomology H*®(X), in such a way that, for {x l’ } another basis, related to {x;} by a linear transformation 6 €
GL(H®(X)), one has &(x, {Xl./}) = |Ber 6|¥&(x, {x;}). Here Ber 6 € R is the Berezinian (superdeterminant)
of the linear transformation.

14 This is the case e.g. for perturbative Chern—Simons theory evaluated around a non-trivial flat connection,
see [7,8] and Remark 2.36 below. The bundle in this case is ad(P)[1]—the adjoint of the principal G-bundle
P carrying the flat connection, with a homological degree shift by 1.

15 Under the assumption that the 1-form oc% vanishes along P, the space of states is (a suitable model for) the

space of functions on F % constant in P-directions. Furthermore, in the case of P a real fibrating polarization,
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(2) A coboundary operator 8'27; on HE, the quantum BFV operator, which is a quan-
tization of S.

(3) A finite-dimensional graded manifold V), endowed with a degree —1 symplectic
form—the space of residual fields—associated to a d-manifold M and a polariza-
tion P on ]:gM. We define the graded vector space 7/-21‘7),1 = HfM®Dens%(VM)
endowed with two commuting coboundary operators QZ = QZ;M ® id and
/A\E = id ® Ay,,. Here Ay, is the canonical BV Laplacian on half-densities
on residual fields.'®

4) A state'” ¥y € H], which satisfies the modified quantum master equation
(mQME)

(RPAY + Q) v =0, (2.22)

which is the quantum version of (2.1).

Remark 2.21. The space ﬁf,, results from a partial integration of bulk fields. Hence one
can think of 7—75 as of the space of boundary states with values in half-densities on the
space of residual fields V. In the case of a real fibrating polarization on the boundary,
we have a trivial bundle of residual fields Zy; = B?))M X Vy — BgDM with fiber V.

One has then ﬁﬁp,l = Dens% (Zn) = HZ;M@Dens% (Vm). Note that the triviality of the
bundle Z), is implicitly built into the data (3) above.

Remark 2.22 (Change of data). The coboundary operator QZ,DM and the state @M are not
uniquely defined, but are allowed to change, infinitesimally, as follows'®
d

P P
3, S2am = [ 71,

d ~ PN
3 m = BN+ QDX —TVu,

where ¥ is an element of 7/-25, T is an operator on HZ)DM and T = 7 ® id is its extension
to HY

M-
Definition 2.23. We say that the space 7:{731 is equivalent to 7?[117),1 if there is a quasi-
isomorphism of bi-complexes I : (ﬁf,,, AZ, QZ) — (H?, Af,,, 97};).

Remark 2.24. If V) is a point (and thus ’)75 = Hﬁ and ZZ = 0), we call ¥y = IZM

the boundary state. It satisfies QgDM Yy = 0. Its QfM-cohomology class is called the
physical state.

Footnote 15 continued )
the space of states can be identified with the space of functions on the quotient (space of leaves) 8723 =F % /P.

A correction to this picture is that, instead of functions on 872), we should consider half-densities on Bg,

1

ie. Hg = Dens2 (Bg). More generally, the space of states is the space of P-horizontal sections of the
trivial (since we consider an exact boundary BFV theory) prequantum line bundle L over ]-')3:, with global
connection 1-form %a% , tensored with the appropriate bundle of half-densities (see e.g. [13]).

16 1 our notational system, objects depending on residual fields are decorated with hats.

17" As we will presently see, the state ¥, is not uniquely defined as it depends on the additional choice of a
“gauge fixing”.

18 The ambiguity stems from the freedom to choose different gauge-fixing Lagrangians in fiber BV integrals
which produce the coboundary operators and the state.
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An example where this program has been successfully completed is the one-dimen-
sional Chern—Simons theory [2]. Several other examples are presented in the rest of this

paper.

Remark 2.25. For M a closed manifold, the boundary space of states is H?;M: s =C.

In this case the state f/?M = e ig the exponential of the BV effective action induced

on the space of residual fields (see [2,14,21,22] for examples).19 If additionally there
are no residual fields, i.e. ﬁf,[ = H?,DM = C, then the state )y = Yps € C is the usual
partition function.

2.4. Perturbative quantization of classical BV-BFV theories. In this section we outline
a quantization scheme which produces a realization of quantum BV-BFV formalism of
Sect. 2.3 out of the data of a classical BV-BFV theory.

In this section we appeal to the intuition of the finite-dimensional setting. The fol-
lowing discussion is absolutely correct in the finite-dimensional case and provides a
motivating construction for the infinite-dimensional case where the formal reasoning
has to be checked, e.g., at the level of Feynman diagrams. Concrete examples will be
presented in Sects. 3 and 4.

2.4.1. From classical to quantum modified master equation. For the purposes of this
paper, it is enough to consider the special situation where the polarization P is given by
aLagrangian foliation with smooth leaf space, denoted by BE  and with the property that,
9,P .
z

for an appropriately chosen local functional fg , the restriction of the 1-form «
ocaz -4 fg to the fibers of P vanishes (see Sect. 3.1). In this case, Hg may be identified,

via multiplication by enf {’ with the space of half-densities on 8723.
Next we assume that X is the boundary d M of M. Notice that we may change the
BV action Sy, to

515 = SM +7'[1T4f£4,

This way we get a new BV-BFV manifold (simply replacing Sy, and ag u by SZ,D, and
ozaz’P). In particular, we still have the fundamental BV-BFV equation

toyom = 8S) + el (2.23)
and the nCME :
5 lotown = TSy (2.24)
Denoting by png the projection F, g v BgDM, we have a surjective submersion
pivorm: Fu — By (2.25)
We now assume that we have a section so that we can write
Fu=Bh,xY (2.26)

(we actually need this only locally; more generally, we could allow Fjs to be a BV
bundle over BZ)DM, cf. Definition 2.19).

S

—~ 1 ic . 1
19 More pedantically, one should write ¥y = “\ZJM e el with /L‘sz a reference half-density on V).
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Assumption 2.26. We assume that, in the splitting (2.26), wyy is a weakly nondegenerate
2-form on ) extended to the product BZ;)M x P.20

There is no contradiction between this assumption and wjs being weakly nondegenerate
on the whole space F), (in the finite-dimensional setting, instead, the BV-BFV formal-
ism is not consistent with nondegeneracy of w on the whole space and one precisely has
to assume nondegeneracy along the fibers). We may then write Q) = Qy + Op (the
decomposition induced by the splitting of the tangent bundle T Fy; = Ty Fy @ TgFum)
and § = &y + &p. The fundamental Eq. (2.23) now splits into two equations:

8ySi = toyoum, (2.27a)
55Sh = —miall. (2.27b)
The first equation implies (g, tp,,0u = Qy&'73 =: (SE, SE) (on the r.h.s. is the

fiberwise BV bracket, defined using the odd-symplectic structure on Y-fiber). By (2.24),
which now reads %LQyLan)M = JTIT/ISgM, we then have

1 .
3 (S, Sip) = 1St (2.28)
which is the fiberwise version of the modified classical master equation.

To interpret (2.27b), we assume we have Darboux coordinates (bi, pi) for a)g e
where the b'’s are coordinates on ngM and the p;’s are coordinates on the fiber of

pgDM: ng — BZ;M (which is part of ), such that ozg}‘f =-> pi8b' (indices may
also denote “continuous” coordinates here). Then we have
ISP = p (2.29)
8bi M — Pi- .

In the infinite-dimensional case, partial derivatives here should be replaced by variational
derivatives. This in particular shows that in a splitting with these properties SX,DI islinearin
the b;-coordinates. It follows that, if we define Q?M as the standard ordering quantization

of Sg - Obtained by replacing each p; by —ih%,

9
Qb =82, (b, —m%) , (2.30)

and putting all derivatives to the right, we get
i oP i oP
Qe =%, 82, - enu. (2.31)

We now assume that ) has a compatible Berezinian (in the infinite-dimensional case
this is formal), so we can define the BV Laplacian A. As usual we have

i i 1/i\? i
AehiSl = <%ASE + 3 (%) (S,E, S,E)) ehSH .

20 In the setting of local field theory this assumption forces one to choose a section BgDM — Fp of (2.25)
which extends boundary fields by zero in the bulk, see Remark 2.33 below.
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If ASZ,DI = 0, as is usually assumed, then (2.28) and (2.31) imply the modified quantum
master equation

(B2A+QD,) eiSi = 0. 2.32)

Remark 2.27. If SZ,D, depends on 7 and/or ASE # 0, from the assumption that the QME
holds in the bulk, we get the modified quantum master equation anyway by defining a
new boundary action Sg u= Sg y T O(h) via

5 1
Sy = E(S]E, S1)) —ihAS],

and setting QZ,DM to be the standard ordering quantization of 3‘3 e

Remark 2.28. To make sense of the interpretation of physical states as the cohomology
in degree zero of the operator i>A + QZ;M, we have to assume that it is a coboundary
operator. This is equivalent to the requirement (QZ,DM)2 = 0. If this is not the case, one

might still try to correct Q?fM (and SE) with higher order terms in /& so as to make it
square to zero. There may be cohomological obstructions (anomalies) to do that.

As a consequence of the two previous remarks, QZ,DM is a quantization of Sg ) but
not necessarily the one obtained by standard ordering. In Sect. 4 we will actually see
examples (notably the Poisson sigma model) where this phenomenon occurs (as AS (=
0 is not compatible with the regularization).

Remark 2.29. Using the coordinate reference half-density V= Il |db' |% on BGPM, we
1

w2
can identify COO(B;)M) X Dens? (Bg)M) and thus allow the operator Q;JM to act on
half-densities on BgDM. Then we can write the equivalent half-density version of (2.32):

(B2A+Q0,) mienSi =0, (2.33)

where m? = /L% -v7 is the reference half-density on F comprised of V7 and half-density

,u% on Y corresponding to the chosen Berezinian on ); A in (2.33) is the canonical BV
operator on half-densities on ).

Remark 2.30. In the setting of local quantum field theory, the modified quantum master
equation (2.32) is formal and requires a regularization (in particular higher order func-
tional derivatives have to be regularized). However, in some examples (see [2,25]) one
can replace the continuum theory by a cellular model, with finite-dimensional space of
fields, where Eq. (2.32) holds directly.?!

21 One can indeed say that the discretization is the regularization here. An important point in the cellular
examples of [2,25] is that a cellular aggregation (the inverse of subdivision) corresponds to a fiber BV integral,
and therefore these discretizations are exact: one does not have to take an asymptotical subdivision with mesh
tending to zero to recover the state/partition function of the theory as a limit—any cellular structure on the
space—time manifold gives the correct result outright.
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2.4.2. The state. The stateis now produced by a perturbative BV pushforward in a family
over BGPM. For this we have to assume that ) — V) is a hedgehog, where V), denotes
the space of residual fields, which we assume to be finite-dimensional. For simplicity
of notations, and also because this is the case in all the examples we discuss in this paper,
we assume that actually ) = Vy x )" and Fyy = ngM x Vu x V" The gauge fixing
then consists in choosing a Lagrangian submanifold £ in J”. We set Zy; = BZ;M x Vu
(the bundle of residual fields over Bg)M) and denote ZNM = Zy x L. We define

the space 7/-217‘3,1 = Dens%(ZM) = Dens%(BgDM)éz\)Dens% (Vu) and the BV Laplacian
AT =id ® Ay,,, as in Remark 2.21.

Assumption 2.31. For any ¢ € Z),, the restriction of the action SAE to Ly = {¢p} x L
has isolated critical points on Lg.

We finally define the state @M as the perturbative (Feynman diagram) computation
of the family BV pushforward from Fj; to Zj;:

(o) =elﬁf<'*74/ e SH =/e%35, ¢ < Zu. (2.34)
L L

In the finite-dimensional setting, it now follows from the preceding discussion that @M
solves the modified QME (2.22):

(R*Ay,, + QD) I = 0.

In the infinite-dimensional setting, where integration is replaced by Feynman diagram
computations, this equation is only expected to hold and requires an independent proof.

Remark 2.32. 1f V), is a different choice of the space of residual fields and Vy fibers
over V), as a hedgehog, then Z}, = BSDM x V), is a BV subbundle of Z); and the corre-
sponding quantum BV-BFYV theories are equivalent in the sense of Definition 2.23, with
the map / given by the BV pushforward from Zy to Z, (in a family over BfM). Gen-
erally, one can have a partially ordered set of realizations of the space of residual fields,
with partial order given by hedgehog fibrations acting on states by BV pushforwards
(cf. the setting of cellular BF theory of [25] where one can vary cell decompositions
T in the bulk while keeping the decomposition on the boundary T unchanged; differ-
ent T’s correspond to different choices of the space of residual fields Vi r; cellular
aggregations T — T’ correspond to hedgehog fibrations/BV pushforwards). The poset
of realizations has a minimal (final) object, corresponding to the minimal choice of the
space of residual fields V" for which Assumption 2.31 can be satisfied by a judicious
choice of L. In the case of abelian BF theory, V}f,}i“ is expressed in terms of de Rham
cohomology of M, see Sect. 3.2.

Remark 2.33. In the typical situation of local field theory, we have Fy, = I'(M, E),
B?,DM = T'(0M, E")—spaces of smooth sections of graded vector bundles E, E’ over
M, dM, respectively, with the odd-symplectic structure given by wy = [ 2 (0x, 8x).
Here (, ) is a fiberwise inner product on E with values in densities on M. Assumption
2.26 and Eq. (2.29) imply that the extension of the boundary fields o : BgDM — Fi has
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been done by discontinuously extending them by zero outside the boundary.?> A more
formal way consists in choosing a sequence of regular extensions oy, : BgDM — Fu that
converges to the discontinuous one as n — co. Each element of this sequence defines a
state ¥, that in general will not satisfy the mQME.?3

Remark 2.34. In many examples the action has the form
S = 8o + Spert (2.35)

a sum of a “free” (quadratic) part and a “perturbation”. The splitting carries over to the
cohomological vector field and the boundary BFV action. Then a choice of gauge-fixing
data for the free theory can also be used for the perturbed theory with action (2.35), under
certain “smallness” assumption on the perturbation. E.g. one can scale the perturbation
Spert With a parameter € and calculate the path integral (2.34) by perturbation theory in €,
instead of looking for e-dependent critical points of the perturbed action and calculating
their stationary phase contributions as series in /. For example, the Poisson sigma model
is a perturbation of the 2-dimensional abelian BF theory, and one can use the gauge-
fixing for the latter to define the perturbation theory (cf. e.g. [19]). Likewise, one can
use gauge-fixing for abelian Chern—Simons theory to define the perturbation theory for
the non-abelian Chern—Simons (cf. e.g. [22]). In this context, one first considers (2.32)
for the free theory. The functional integral (2.34) for Sp defines the unperturbed state
fﬁ m.,0(¢) which satisfies the mQME for the operator Q?Mp' One then computes the state

1//;M (¢) for the whole theory perturbatively and looks for a deformation QZ;M of Q?M,o
so that the mQME is satisfied. The further condition that this deformation squares to
zero must be checked separately, and there might be obstructions for it to be satisfied.

Remark 2.35. In the case of Chern—Simons theory with gauge group G on a closed
3-manifold M, the gauge-fixing of Remark 2.34 corresponds to choosing a Rieman-
nian metric on M. The metric induces the Hodge—de Rham decomposition of dif-
ferential forms into exact, harmonic and d*-exact (coexact) forms. We set Zy; =
Q2 osed (M, 9)[1] with g the Lie algebra of G. Then Zy; = H®*(M, g)[1], the g-valued
de Rham cohomology of M represented by harmonic forms. For every sufficiently small
harmonic 1-form anarm, there is an isolated critical point of the Chern—Simons action on
the subspace aparm + Qéoexact(M , §). But only if apam satisfies the (homotopy) Maurer—
Cartan equation on cohomology, the corresponding critical point will be a flat connection.
‘We refer the reader to [22] for details.

Remark 2.36. The framework described above assumes that one can introduce a global
gauge-fixing. A more general technique is to allow a family, parametrized by a choice
xo of “background” (or “reference”) solution of the Euler—Lagrange equations, of local
gauge-fixings, in a formal neighborhood of x( (e.g. one can have an xo-dependent split-
ting (2.35) and infer the local gauge-fixing as in Remark 2.34). This produces a family
of “local states” — a horizontal section of the vector bundle of local states over the base

22 One can write the action for a general extension and make sure, by integrating by parts, that no derivative
of the extension appears in the action (this is certainly possible if the theory is written in the first order
formalism). Then we see that the discontinuous extension by zero is enforced by (2.29).

23 Notice that the choice of a good splitting, compatible with Assumption 2.26 and leading to (2.29), is a
sufficient but not necessary condition for the formalism to work. For example, if we treat by BV a theory with
no symmetries, then Q?iDM will be zero, which puts us in the setting of Remark 2.20. A change of extension is
equivalent to a BZDM -dependent translation on the space of bulk fields ), and, in particular, nQME for a good
splitting implies mQME for arbitrary splitting.
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(the space of allowed x(’s), with respect to a version of the flat Grothendieck connection
on the base. In this framework, the global state is this family. See [14] for details on how
this technology applies to the Poisson sigma model on a closed surface, where one has a
family of gauge-fixings for fields in the neighborhood of a constant map to the Poisson
manifold (thus the parameter of the family here is the value of the constant map). The
treatment of non-abelian Chern—Simons theory by Axelrod—Singer [7,8] is also very
much in this vein, where x is the background flat connection. Since in [7,8] the back-
ground flat connection is assumed to be acyclic, there is no need for formal-geometric
gluing with the Grothendieck connection, as the base of the family is a discrete set. See
“Appendix F” for further discussion of the matter.

2.4.3. Transversal polarizations. A special case of gauge-fixing occurs when the polar-
ization P on F. 33 1 18 transversal to the Lagrangian submanifod £y := wy (£Ly), where
E Ly is the zero locus of Qs (the “Euler—Lagrange space”). In this case, one may take
BGPM = Ly and Zy = EL,,.>* The fibers of £L£,, are the moduli spaces of the vacua
of the theory. Note that, by this construction, we have a preferred (“minimal”) choice of
Zym.

Despite having this preferred choice, it is convenient to allow for more general Zy;’s
as they are useful for gluing. Also, it is convenient to consider polarizations that are not
transversal to L7, as we will see in the following.

2.4.4. Gluing. If a d-manifold M with boundary is cut along a (d — 1)-submanifold %
into components M and M, (i.e. M = M| Ux M>), then we can obtain the state v/
from the states ¥y, and ¥,. The product of the spaces of residual fields Vy, x Vy, is
a hedgehog fibration over V), and the gluing formula has the structure

Vm = P, <$M1 x %42) (2.36)

where * denotes the pairing in Hg and Py stands for the BV pushforward corresponding

to P: Vy, X Vi, — Vu. Observe that (2.22) is automatically satisfied.
Also note that it is convenient to choose two different, transversal polarizations P;

and P; to define the states 1//’\M1 and 1//7M2. If we can realize ]—"g as 37231 X 37;2, then (for
simplicity we ignore the distinction between functions and half-densities) the pairing

is the integral over }'g of the product of a function on Bg‘ times a function on B;’z

times the Segal-Bargmann kernel e/ 2ty ). The latter term may be used to define
the perturbative computation of the pairing.

To explain (2.36), one can consider gluing at the level of exponentials of actions.
For simplicity we assume that M| = ¥ = (dM>)°PP (i.e. the glued manifold M is
closed); the discussion generalizes straightforwardly to M with boundary. Let b, b} be

Darboux coordinates on .7-'% such that the polarizations Pj, P, are spanned by vector

fields % and a%’ respectively. Thus the b are coordinates on B := Bg‘ and the b;

24 Here we consider the fiberwise coisotropic reduction ££,,; which is a symplectic fiber bundle over £j;.
It is different from the full “Q-reduction” £Ly;/Q s (which is a bundle over the reduction Lj;/Q45s) and
from the coisotropic reduction of the total space of £L£,; in F); (called the “symplectic £L-moduli space”
in [23]). The reduction £L£,, can be seen as an appropriate BV extension of the space of gauge equivalence
classes of solutions of equations of motion, with gauge transformations acting trivially on boundary fields.
See [23] for details.
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are coordinates on B’ := sz We assume additionally that o2 Pr= ¥y, b!8b' and
. . P i /
a%’Pz = Zi b 6bl{; then in these coordinates we have eh(fZ -2 = e 70 The
spaces of ﬁeld~s decompose as Fy; = W1 x Bay = QN x Byy) x By, Fu, =
V) x BEZ) = Q1 x Bp)) x 822) and Fy = V1 x V». The subscripts (1), (2) are here to
distinguish between the copies of B, B’ appearing in Fj, and Fjy,. Then we have the
identity
Py 1 Py 1
e” Mimg % eh Mymy = ehSMm3, (2.37)

1
Here the notations are: m1 = u Idb(1)|2 m2 = ,u2 |db(2)|2 m? = ul p; with
1 1
,ulz, Mzz reference half-densities on )V, )»; the operation ; is defined as the pairing

U x Wy :=/ ~hlb-be) |db<1)|2|db(2)|2 U,
= B(])XB(Z)

The integral over by, bzz) in (2.37) is Gaussian (since the actions are linear in the
integration variables, by (2.29)) and boils down to evaluating the integrand at the critical
point which, due to (2.29), is given by b1y = b(), bzz) = bzl) Thus (2.37) comes from

P P, /
St +872 — (bay, blsy) = Sy, +Su
M M> (1> P(2) baty=be) bjpy=by, 1 2

|b(1)—b(2) b(z)—bu) SM
which is simply the statement of additivity of the action with respect to gluing. Perform-
ing the BV pushforwards Vi x V> — Vu, X Vy, — Vu in (2.37), we obtain the gluing
formula (2.36).

Remark 2.37. We assume that the states are (th + ©2)-closed and that, on the boundary
component where we glue, the Q2 for one polarization is the Segal-Bargmann trans-

. i P2 cP1 b b . .95
form with kernel e7/s "~/ ) = ¢~ 7 of the Q for the other polarization.?> As
a consequence of Theorem 2.15 the glued state will also be (7>A + Q)-closed. More-
over, if we change one state by an (A>A + Q)-exact term, the glued state will also

change by an (h2A + )-exact term, e.g. if ¥/, is shifted by (ﬁzAVMl + QZ)DAI,II) au,
with @y, some degree —1 element of ﬁf,,ll , then the glued state (2.36) gets shifted by

(hZAVM +Qom) Pi(@y, *x f/?Mz). Here we suppress in the notation the polarizations on
the boundary components of M, only denoting explicitly the polarization on the gluing
interface ¥; BV pushforward P, and the pairing *x are as in (2.36).

Remark 2.38. The gluing procedure may also be used to change the polarization by the
use of cylinders. Namely, suppose that we have a boundary component ¥ on which we
choose a polarization P; to compute the state. If we want to get the state in a polarization
P’, we glue in a cylinder ¥ x I, I an interval, with polarization P’ on one side and a
polarization P, transversal to P; on the other side, the one we glue in. In a topological

25 This is automatically satisfied if €2 is constructed as in Eq. (2.30). It is also satisfied in all the examples
considered in Sects. 3 and 4, also in the presence of quantum corrections. This is essentially due to locality:
the quantum corrections may be seen as arising from the standard quantization of a modified BFV boundary
action.
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field theory it does not matter which interval we take. In a non-topological theory, one
has to take the limit for the length of the interval going to zero; an alternative procedure
consists in putting on the cylinder a theory that is topological in the interval direction
and has the same BFV boundary structure. A canonical way to do this is by the AKSZ
formalism [3] with source T'[1]] and target the BFV manifold associated to X (notice
that in this version of the AKSZ model the target is usually infinite-dimensional). We
call this construction the generalized Segal-Bargmann transform.

Remark 2.39. The possibility to pass between different polarizations of F; )‘; via (gener-
alized) Segal-Bargmann transform leads, infinitesimally, to a projectively flat connec-
tion Vg on the vector bundle of spaces of states Hg over the space of polarizations
Px—the generalized Hitchin connection—so that the parallel transport of Vg is the
Segal-Bargmann transform Hg‘ — ng. E.g. in the case of Chern—Simons theory, the
moduli space of conformal structures M‘)::O“f on a surface ¥ embeds into Py, and the
pullback of Vg to ./\/lCEOnf is the Hitchin connection on the bundle of WZW conformal
blocks over the moduli of conformal structures (see e.g. [6]). In the case of perturbed
BF theories that are the focus of this paper, we prefer to work with a discrete subset
‘33’;’3 of P, consisting of 2#70(%) points which correspond to choosing either % or %
polarization (see Sect. 3.1) on each connected component of X. In this situation we do
not have infinitesimal transitions between points of &Bg’B and so it does not make sense
to speak of the connection Vy, only of the (finite) Segal-Bargmann transform between
the polarizations.

Remark 2.40. Note that our proof of the gluing formula (2.36) implicitly uses Fubini
theorem which is automatic for finite-dimensional integrals and which we expect to hold
for path integrals representing states in field theory. We follow this heuristics to derive
the gluing formulae for the states and the propagators in abelian BF theory (see Sect. 3.6
and “Appendix D”). However, these formulae can be proved to hold a posteriori (see
Theorem D.1 for propagators and Sect. 3.6.1 for states). This immediately implies the
gluing formulae for expectation values as they are determined by states and propagators.
Finally note that, as a consequence, gluing in perturbation theory (for BF-like theories of
Sect. 4) also automatically holds once we have proved it to hold for states and propagators
of the unperturbed theory.

3. Abelian BF Theory

Here we recollect basic notions on the BV-BFV formalism for the abelian BF theory
[50], which occurs as the unperturbed part in many AKSZ [3] theories, but also in
quantum mechanics and in Yang—Mills theory in the first-order formalism.

Fix a dimension d and an integer k. The d-dimensional abelian BF theory (with
shift k) associates to a compact d-manifold M (possibly with boundary) the space of
fields Fp = Q*(M)[k] ® Q2*(M)[d — k — 1]. Using the customary notation A @ B €
QE(M)[k] ® Q*(M)[d — k — 1] for the fields, we have the following odd-symplectic
form, action and cohomological vector field on Fy;:

a)sz SBSA, 3.1)
M
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Sm =/ BdA, (3.2)
M

8 b
g5 TIA L (3.3)

Om = (=1 / dB
M
where § denotes the de Rham differential on Fj;, d the de Rham differential on M, and
we omit the wedge symbols.

Remark 3.1. One way to read the formulae above is to understand A, B as arguments. A
more formal way, which helps understanding grading conventions, consists in viewing
A and B as maps A: Fy — Q*(M), B: Fyy — Q°*(M) obtained by composing the
projections from F); to the first and second summand with the shifted identity maps
Q*(M)[k] — Q*(M) and Q*(M)[d — k — 1] — Q°(M), respectively. The intrinsic
degree (“ghost number”) of the p-form components A(?), B(P) (i.e. A, B composed with
the projection Q°(M) — QP (M)) corresponding to the Z-grading on F; is k — p for
AP andd —k — 1 — p for B?),

Remark 3.2. If k = 1, one simply speaks of abelian BF theory. In this case the degree
zero component A of A is a 1-form, which can also be thought of as a connection for
a line bundle. The action restricted to the degree zero fields A and B—the latter being
now a (d — 2)-form—is just f y BF,where F = dA is the curvature of A. This explains
the name BF theory.

The exact BFV manifold (FZ, w% = 605)3:, Q%) assigned to a (d — 1)-dimensional
compact manifold X is given by FlL=Q* )kl ® Q*(Z)[d —k — 1] and

ol =(—1)"/ BSA,
)]
8

5
5B T A

0% = (—1)? f dB
b
where we denote again a field by A @ B € Q*(X)[k] ® Q°(X)[d — k — 1] (or regard
A, B as maps ]—"g — Q°(X)). The BFV action is

S3 :[ BdA.
x

Finally, the surjective submersion my : Fpr — fg )y 18 just given by the restriction
of forms to the boundary.

3.1. Polarizations. Let dM be the disjoint union of the two compact (possibly empty)
manifolds 9; M and 9, M, so .7:36 M= }"gl u X }"gz - We consider polarizations P on
fg ) given as direct products of polarizations on each factor.

On 91 M we choose the %-polarization and identify the quotient (space of leaves of
the associated foliation) with 31 := Q°(9; M)[k], whose coordinates are the A-fields. On
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0> M we choose the 7 -polarization and identify the quotient with By = Q* (0, M)[d —

k — 1], whose coordmates are the B-fields.2° Then BPM = B x B,. We have to subtract
the differential of

fhi=E=ni [ BA,
M

from ag 1o get the adapted BFV 1-form

aliP = (=1)? BaA+(—1)’</ SBA.
M M

We then get the modified action

SE:/ BdA + (—1)47* BA.
M M

We will denote by A the coordinate on B; and by B the coordinate on B, and by A
and B some prescribed extensions of these fields to Fj;. We write the fields in Fy, as

A=A+ K,

~ = 34
B=B+B,

where A is required to restrict to zero on d; M, whereas Bis required to restrict to zero

on dr M. This is our choice of a section of Fy; — B?;M. See Sect. 3.4 for a further
discussion. We then get

S}j:/ (@d&+]§dﬂ+§d&+§dﬂ)+(—1)‘1—k/ (BA +BA). (3.5)
M M

3.2. Residual fields. We now focus on the last bulk term Sy := =y BdA. Because of the

boundary conditions on Aand B its variations have no boundary terms. Its critical points
are given by dA = dB = 0. As Z) we now choose an embedding of the appropriate
cohomologies. Namely, for i = 1, 2, let us define the subcomplexes

Qpi(M) :=={y e Q*(M) : iy =0}

of Q°®(M), where ¢; is the inclusion map of 9; M into M. (Here D stands for Dirichlet.)
Observe that the corresponding cohomologies Hpj, (M) and Hpj,(M) are canonically

paired by integration over M.>’ Hence
Vi = Hp (M)[k] ® Hp,(M)[d — k — 1]

is a finite-dimensional BV manifold. Using Poincaré duality, we may also write Vy; =
T*[—1](HS; (M)[k]) = T*[-1](H3,(M)[d — k — 1]). This is the space of residual
fields. In the notations of Sect. 2.4, we have

Zy =V x By (3.6)

26 One can alternatively call these two polarizations the A- and B-representations, respectively, by analogy
with the coordinate and momentum representations in quantum mechanics

27 We have canonical identification with cohomology of pairs Hp; 2 (M) = H*(M, 0 M), H, 2 (M) =
H®*(M,9,M).
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as a tr1v1al bundle. According to our construction (cf. Remark 2.21), the space HT M 18

Dens 3 (Zm).

To define the BV Laplacian on Vy pick a basis {[x;]} of Hfj; (M) and its dual basis
{[x"1} of HS,(M) with chosen representatives x; and x' in Q) (M) and Qf,(M). In
particular, we have || M x'x = 6; We write

a=> x,
i
b= Z !
i
where {z/, z;“} are canonical coordinates on V,; with BV form

— Z(_l)k+(d7k)~degzisz;-82i .

i

Notice that deg 7' = k — de x; and degzf = —de zt — 1. The BV operator on Vi 1s
g g g7; g p

i d 0
= Z( 1)k+(d k)-deg z BZl y (37)

3.2.1. Boundary components and residual fields. Our choice of residual fields depends
on which components of the boundary we choose as 9 M and 9, M.

If 9 M is connected, there are only two choices: ()M = dM, oM = () and (1M =
@, 0oM = OM). The first yields Vyy = H*(M,oM)[k]® H*(M)[d — k — 1], the second
Vyu = H*(M)[k]l® H*(M, 0M)[d — k — 1]. The two are not BV symplectomorphic to
each other (unless 2k = d — 1).

If 9 M is not connected, there are more choices which yield other, generally inequiva-
lent, moduli spaces. For example, take M = % x [0, 1] where ¥ is acompact (d —1)-man-
ifold. Besides the choices (3; M = oM, 0, M = @) and (M = @, M = dM), which
yield Vyy = T*[—1](H*(2)[d — k — 1]) and Vy; = T*[—1](H*(X)[k]), we now also
have 9)M = ¥ x {0}, oM = X x {l}and /)M = X x {1}, M = ¥ x {0}, both of
which yield V), = {0}.

3.3. The propagator. We now write

o~

A=a+q,

B=b+ B, G5
where the fluctuation « is required to restrict to zero on dy M, whereas the fluctuation 8
is required to restrict to zero on d, M. Notice that we have Sy = / B da. We regard it
as a quadratic function on Qp), (M)[k] @ 21, (M)[d — k — 1]. Notice that critical points
are closed forms.

We now have to fix a Lagrangian subspace £ of a symplectic complement of Vy
on which Sy has an isolated critical point at the origin (i.e. d has no kernel). This can
be done, for example, using the Hodge theory on manifolds with boundary [16,32,46].
Namely, we pick a metric on M through which we define the Hodge star operator.
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We assume that the metric has a product structure near the boundary.?® This yields a
scalar product on Q2*(M), (y, A) = fM y *\, and the Hodge dual d* of the de Rham
differential. We define

L = (@5 (M) Ny (M)[K] & (@R (M) N b, (M)d —k — 11 (3.9)
where
QM) = {y € Q*(M): LgiM *xy = 0}

is the space of Neumann forms relative to d; M. The restriction of Sy to Lis nondegener-
ate. In “Appendix A”, see Lemma A.4, we show that £ is Lagrangian in the complement
of HS, (M)[k] ® Hp,(M)[d — k — 1] which, thanks to (A.5) and (A.6), is embedded
into $23, py (M)[k] & QI'\”’DZ(M)[d — k — 1] as the space of (d, d*)-closed forms.

In the notations of Sect. 2.4, the coisotropic subbundle Z, mof Fyy — BgDM , generating
Z)r as its fiberwise reduction, is

§M=ZMX£

with Z;s as in (3.6).

The propagator can then be explicitly constructed generalizing the construction by
Axelrod and Singer [7,8] for the boundaryless case. As a different option, one can use
a topologically constructed propagator following the philosophy of [15,38,52].

More concretely, we are interested in the integral kernel n (a.k.a. parametrix) of the
chain contraction K of the space of forms Q7), (M) onto the cohomology Hpy; (M),
which is related to the gauge-fixing Lagrangian by

£ = im(K)[k] ® im(K*)[d — k — 1]. (3.10)

One possible strategy is to choose the Hodge-theoretic chain contraction K : Q7 (M) —
Q]‘)_ll(M ) given by K = d*/(AHodge + PHarm) Where Py is the projection to (ultra-)
harmonic forms (we refer the reader to “Appendix A.3” for details). This choice corre-
sponds, via (3.10), to the gauge-fixing subspace (3.9).

Being the integral kernel of the inverse of an elliptic operator (composed with d*),
the propagator 7 restricts to a smooth form away from the diagonal of M x M. If we
define

CI(M) = {(x1.x2) € M : x1 # x2}
and denote by (o the inclusion of
D:={x; xx2€ (OMxM)YUM x M) : x| # x3}
into C9(M), we then have n € Q4=1(CY(M), D),* with
Q'(CS(M), D)={y e Q’(Cg) tpy =0} (3.11)
28 In other words, there is a diffeomorphism ¢ between a neighborhood U of dM in M and dM x [0, €) for

some € > 0, such that ¢|y,s = idyys and the metric on M restricted to U has the form ¢* (gyp + dtz). Here
gaMm 1s some Riemannian metric on the boundary and ¢ € [0, €) is the vertical coordinate on M x [0, €).

29 In fact, the Hodge-theoretic propagator outlined above satisfies stronger boundary conditions: ultra-
Dirichlet (see “Appendix A” for the definition) on d1 M in the first argument and ultra-Dirichlet on d, M in the
second argument, and also ultra-Neumann on dp M in the first argument and ultra-Neumann on 91 M in the
second argument, see Sect. A.3.3. The same is true for the propagator constructed in “Appendix B”.
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Its properties are defined by the formula

1 (_1)kd igM * *
T’:mT ﬁeh 7'[10{71’2/3, (312)
with
TM:/ ehoM, (3.13)
c

In (3.12), we denote by 1, > the projections from M x M to its first and second factor,
and, by abuse of notations, also the corresponding restricted maps Cg (M) > M.

3.3.1. On Ty and torsions. First we comment on the Gaussian functional integral (3.13)
which has to be prescribed a mathematical meaning using an appropriate regularization
procedure.

In the case dM = {J and with forms on M taken with coefficients in an acyclic
O (m)-local system E, Schwarz showed in [50] that T3, understood via zeta-function
regularization, is the Ray—Singer torsion (or its inverse, depending on k) of the complex
Q*(M, E): Ty = trs(M, E)(_l)k_1 . In the present case, we should think of it as a gen-
eralization to the relative complexes (one relevant model being the complex Q‘ﬁ 1 (M),
cf. “Appendix A”).

Since we consider forms on M with trivial coefficients, and the trivial local system
is not acyclic, Ty, is not a number, but a constant (i.e. not depending on a point in V)
complex-valued half-density on Vy, defined up to a sign:*

1 _1yk—1
Ty € C ® Dens, (Vi) /{£1} = C® (Det Hy, (M) ™" /{£1)

where Det Hpj, (M) is the determinant line of de Rham cohomology of M relative to
d1M and, by convention, for / a line, 171 = I* is the dual line. A choice of basis
{[x:1} in H; (M) induces a trivialization of the determinant line ¢ : Det HJ, (M) = R,
which makes ¢, T); € C/{£1} a number (defined up to sign). Choosing a different basis
{[x:1}in HJ, (M) induces a different trivialization ¢ of the determinant, and one has the
transformation property

~ 1k
¢+Ty = (Ber )V ¢, Ty

where 6 is the transformation matrix between the two bases, [Xi] = Y j 9;[ x;] and
Ber 6 is it’s Berezinian (superdeterminant).

The BV integral (3.13) does not depend on the choice of £ (cf. independence of
Ray-Singer torsion on the choice of Riemannian metric).

By comparison with the result of [25] in the combinatorial setting, T is expressed
in terms of the Reidemeister torsion (M, 01 M) € Det Hp, (M) /{%1} as

Ty =£-t(M, 9, M)V (3.14)

30 For the purposes of this paper we are working with partition functions as defined up to a sign. The
problem of fixing this sign is akin to fixing the sign of Reidemeister torsion, which requires the introduction
of additional orientation data, cf. [57].
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where the factor &, originating in the normalization of the integration measure, compat-
ible with gluing, is

d (=0t i1 dim 1Y oy (2 f—l)d j
&= (Znh)z": ( ey >dlm o ' (e_'zh)z'l_o< conen o (40 eC
(3.15)
Note that, by Milnor’s duality theorem for torsions, (3.14) can also be written as Ty =

£T(M, 3M)DT"

Remark 3.3. In (3.14) we use the Reidemeister torsion. On the other hand, the analytic
(Ray—Singer) torsion, as defined via zeta-function regularized determinants of Hodge—de

Rham Laplacians, is known to differ from the Reidemeister torsion by the factor 2 Fx@M)
with x (0 M) the Euler characteristic of the boundary (in the case of a product metric near
the boundary), see [41,58]. This means that the normalization of the functional integral
measure in (3.13) corresponding to the zeta-function regularization procedure is not the
one compatible with discretization and gluing as in [25].

Remark3 4. To be completely pedantic, we should also include in Tj; the factors
k 1 d k

(M ) and t(o M ) , coming from the fact that T); is also a constant
half- den51ty on boundary ﬁelds and identification between half-densities and functions
is via multiplication by an appropriate power of torsion, cf. Sect. 2.2.5. Note that, for
gluing, these boundary torsion factors coming from the two sides of the gluing interface
cancel each other due to the relation I(E)(_l)k_I . I(E)(_l)d_k = 1 for ¥ a closed
(d — 1)-manifold, arising from Milnor’s duality theorem.

3.3.2. Properties of propagators. For the computations, it is also useful to define
1 (=D (- )k
o Ty ih

/ ehSMn*An*B—n+ Zz ) XiZj n2xf (3.16)
L

By calculating |, A (eiﬁs’” nf‘ﬂ njg) in two different ways (taking A out by the
chain map property of BV pushforwards—Theorem 2.9, or by computing the integrand
directly), we get the relation (—1)?d7 = ThAyMﬁ, which implies

dp = (=D (=P kit iy (3.17)
]

Notice that in the case 9 M = { the sum defines a representative of the Euler class of M.
The other characteristic property of 7 is that its integral on the (d — 1)-cycle given
by fixing one of the two arguments in CS(M ) and letting the other vary on a small
(d — 1)-sphere centered on the first one is normalized to +131 (As a consequence, if
the first point is fixed on the boundary, then either the propagator is identically zero due
to boundary conditions (3.11), or otherwise the integral over the relative cycle given by

second point varying on a small half-sphere is £1.)
Instead of using the Hodge-theoretic propagator of “Appendix A.3”, one can construct
a “soft” propagator along the lines of [15,17,27]. More precisely, one may use the

31 More precisely, the integral is +1, if we fix the second argument and vary the first. In the opposite case,
the integral is (— 1)<,
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construction for boundaryless manifolds to produce the propagator for manifolds with
boundary by a version of the method of image charges, see “Appendix B”. The soft
propagator does not correspond to the gauge-fixing Lagrangian (3.9), but to another
one, constructed via (3.10) for the chain contraction

Keott: Qb (M) — Q' (M)

a = (D)) ATS(e) (3.18)

Remark 3.5 (Change of data). Notice that, once we have fixed representatives x;’s and
X g, still n is only defined up to the differential of a form A € Q-2 (Cg (M)). We may
also change the representatives x;’s and x’’s by exact forms and also perform a change
of basis. The latter corresponds to a linear BV transformation of V. If we denote the
former change by

Xi = doy, oi € QEEX T (), (3.19a)
X =do' ol e QEEX T (y, (3.19b)
then we get
i =dr+ (=D Y (=D K 3y 4 (1T (=D iy 3o
i i
(3.20)

Cf. the classification of infinitesimal deformations of gauge-fixing data for BV pushfor-
wards into types I, II, III in [22].

Remark 3.6. To study the properties of Feynman diagrams in theories that are pertur-
bations of abelian BF theories, it is useful to consider the ASFM compactifications of
configuration spaces [7,34]. The propagator, see “Appendix B”, extends to the compact-
ification C(M), which is a smooth manifold with corners, as a smooth form.

Remark 3.7. For M closed, the Hodge propagator of “Appendix A.3” has the property
T*n = (=1 (3.21)

where the map T : Co(M) — C2(M) sends (x1, x2) to (x2, x1), which corresponds to
the chain contraction K being skew self-adjoint. If M has boundary, one has instead

T*n = (—1)%n°P (3.22)

where n°P stands for the propagator (corresponding to the same metric on M) with
opposite boundary conditions. For soft propagators, see “Appendix B”, this 7'-symmetry
property is not automatic but can always be achieved. In Sect. 4.3 we explain how to
recover this property that might have been spoiled by the gluing procedure. Another
property that is automatic for the Hodge propagator is

(M)« (wiam A mt53m) =0 (3.23)

where 112, m23: C3(M) — C2(M) are the projections induced from taking the first or
the last pair of points in a triple (x1, x2, x3) and o : C3(M) — M takes the middle point
in a triple. Property (3.23) corresponds the property K% = 0 of the Hodge chain con-
traction. Properties (3.21, 3.22) and (3.23) are useful for simplifications in perturbation
theory, but our treatment does not rely on having them.
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3.4. Choosing the extensions. Let us choose the extensions A and B of the boundary
values A and B in such a way that the extension A has support in a neighborhood N of
01 M and the extension B has support in a neighborhood N, of d, M with N1 NN, = @.
Then (3.5) becomes

s}j:/ (@dﬂ+§d?&+§dﬂ)+(—1)d—k/ BA (3.24)
M oM

and the BV odd-symplectic form (3.1) becomes
oy = f (5B 5A + 5B 5A + 5A 5A) .
M

From the latter equation, we see that, in order to comply with Assumption 2.26, we are
forced to choose the discontinuous extension in which A and B drop to zero immediately
outside the boundary (cf. Remark 2.33)—only then does wy become independent of the

boundary fields A, B and attain the form wy; = f M 8B SA. The de Rham differential of
A in (3.24) is not defined, but this problem is easily remedied if we integrate by parts

S,E:/ (Edﬂ+(—1)d—kd§1§+§dﬂ)+(—1)d—" </ IB%K—/ @A).
M oM oM

The action for the discontinuous extension is then simply

S}j:/ BdA + (—1)¢* (/ Bﬂ—f §A). (3.25)
M M oM

Thus, with discontinuous extension of boundary fields, Assumption 2.26 and Eq.
(2.29) are satisfied. On the other hand, if we would have chosen a generic extension, the
formalism of Sect. 2.2 would not apply, and we would produce partition functions that
are not guaranteed to satisfy mQME and may change uncontrollably under a change of
gauge-fixing.

3.5. The state. Using the splitting (3.8), we may rewrite (3.25) as the sum of the quadratic
part in fluctuations, the residual part and the source term:
Sl = Su + S5 + Syguree

with
§M:/ Bda,
M
Ses = (—1)4*k </ Ba—/ bA),
M oM
Spee = (= * </ Ba —/ ,BA).
oM oM

To compute the state we just have to perform the Gaussian integral over the fluctuations
o and B. Using the notations of Sect. 3.3, we get

T = Ty ehSit| (3.26)
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with the effective action

St — (—pyd* ( / Ba — / bA)—(—l)d”‘d / TiBnaiA. (3.27)
M M M xo1M

By (3.7) and (3.17), we immediately see that {[/\M satisfies the mQME (2.22) with Kf,l
given by Ay, acting on the fibers of Z) = Vy X BE and with QZ the standard
quantization of Sg ) relative to the chosen polarization, acting on the base of Zy;:

~ b
QP = in(—1)¢ (/ dB — +/ dA — )
»M (SB M SA

Remark 3.8. (Change of data). Under the change of data (3.19) and (3.20), the operator
QP does not change, whereas the state 1//M changes as in Remark 2.22 with 7 = 0 and

X —1/fM g“w1th
S\ 2
= 1 ( deg 7 i d—k—degz! ¥ i
== (—1)¢e / Bz'oi — ) (=1 ¢ / Zjo'A
(ﬁ) Z HM l lZ M
+ (= yfdkekd / n{BATIA).
82M)<8|M

3.5.1. The space of states. What is left to describe is the space of states 7/-25 To do this
we first introduce the following vector spaces associated to a (d — 1)-manifold. For an
integer / and a nonnegative integer n, we define HY, ; as the vector space of n-linear
functionals on Q°(X)[/] of the form

Q*X)[]>D+— / yriD... 7D,

n

l
multiplied by t(E) (cf Sect. 2.2.5). Here y is a distributional form on £"; t(X)
is the Reidemeister torsion of X. We then define

(e.¢]
ny S 111
Hhu= 11 Huaior ® Mol
ny,n2=0

and

~ 1

7/'2;5, = H?;M ® Dens2 (V).

This is our model for the space of half-densities on Zj. In this description states are
regarded as families in the parameter /. Perturbative calculations of partition functions

and expectation values of observables for (possibly perturbed) BF theory yield asymp-
totic states of the form

Seff j j * * * *
Ty -ehoum Zh Z Ry @, 0) i (Ao ) Amy By, B
= n12=0 (81 M) x (9 M)"2

where the coefficients R,ﬁlnz (a, b) are distributional forms on (81 M)"! x (3, M)"2? with
values in half-densities on V. Here Ty is as in (3.14), whereas Sﬁ,}f should, in the case
of a perturbed BF theory, be replaced by the corresponding zero-loop effective action.

We will compute some examples of states arising as expectation values of observables
in Sect. D.1.
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3.6. Gluing. Suppose two manifolds with boundary M and M> have a common bound-
ary component X (X C dM; and X°PP C 9 M, where PP denotes X with the opposite
orientation). We want to get the state TPM for the glued manifold M = M| Uy M> by
pairing the states t/fM1 and ’»”Mz (More precisely, we start from a manifold with boundary
M and cut it along a codimension-one submanifold ¥ into two manifolds with boundary
M1 and M>.)

This pairing is better suited to functional integral computations if we choose trans-
verse polarizations on .7-"% viewed as a space of boundary fields coming from M; or
M,;. More precisely, we fix the boundary decompositions dM| = 01 M; U 9, M7 and
dMy = 91 M> U 9, M> in such a way that ¥ C 9; M and X°PP C 9, M;. Denoting by
AIE and IB%zE the coordinates on 2°(X)[k] and Q°(X)[d — k — 1], respectively, we get

~ d—k > -~
VM Z/Az BY eh VT REAY Gy, P, (3.28)

as a half-density on §M = ]7M X BgDM, with 17M = Vu, x Vu,. Notice that we have
oM = (01 M1\ 2)U o1 M>, oM = >, M1 U (d2M> \ ) and
BBM = QM \ )[k] ® Q*(aM)|[d — k — 1] ® 2° (31 M>)[k]
B (M \ D)[d —k — 1]
SAI®B; dA OB,

The integral may be explicitly computed and yields

i Qeff
Y = Tag, Tury e

with
Seff — (1) / biay + (—1)% f mibym iy — (=14 / 7B mms &
)] X x 01 My M x%

—(—l)kdf @By pim pim @i Ay
M| X x| My

+(—1)d_k </ B/Zaz +/ Bia; —/ bzAz —/ b]A/l)
D M\X My My M\

—(—1)d+kd (/ JTikB] UIH;A,1+/ ﬂfEénzﬂ;Az),
M x (91 M1\ X) (2 M2\E)x 01 M3

where a; and b;, i = 1, 2, are the corresponding a and b variables on M;, and n; denotes
the propagator for M; . In the fourth contribution we also used pullbacks by the following
projections:

wy : M| X X X 01 My — 9, M,
w3 . M| X X X 01My — 91 M>
p1 : oMy X XX o My+— oM x &
p2 2 oM X X X 91 Mo — X X 01 M>.

The propagator 77 on M can also be obtained by pairing the states on M and M, see
Sect. D.2.
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3.6.1. Reducing the residual fields. We now wish to reduce the space of residual fields
by integrating out those appearing in the term | s bras. We will refer to them as redshirt
residual fields. More precisely, let

1 HS,(My) — H*(X)
© : HY (My) — H*(Z)

be the restriction maps induced by the inclusion of ¥ into M and M,. We denote by L
(L») the image of 71 (12). We now choose sections

o1 : Ly — Hp, (M)
o2 : Ly — Hp(M>)

of 71 and 75. We will also need the orthogonal complements L+, L2l C H*(X) with
respect to the Poincaré pairing on H*®(X). By Lefschetz duality, LiJ- is the image of
H*(M;, 3; M;\X) in H*(%) fori = 1,23

Next, we choose a complement L of L; N Lé‘ in L; and a complement L} of
Lll N L7 in L. Finally, denoting H]52(M1)# = ker 71 and Hp, (M)* = ker 15, we end
up with the decompositions

Hy(My) = o1 (L1 N Ly) @ o1(L7) @ Hy(M)*
HY (M2) = 02 (L N Ly) ® 02(LY) ® Hpy (M)*

We use the notations by = b} + b} + b¥ and a, = a5’ + a; + a4 for the corresponding
decompositions of the residual fields. To fix notations for the following, we set

HYy (M) = o1(L1 N Ly) @ HY(M)* =17 ML N Ly)
HY (Ma) = oa(L{ N L) @ HYy (Mo)* = o, " (L N Lo)
HS (M1)° = (01(L1 N Ly))* @ (H3(M)™)* C HS (My) = (H3y(M1))*

HS,(M2)° = (02(Lt N Lo))* @ (HY (M2)")* C Hy(Ma) = (HS (Mp))*
and
HY (M, M) == Hp (M1)° & Hp (M)’
Hy (M, M) := Hpy(My) & HBy(M2)°

Notice that classes in o1 (L N L%‘) and ag(Lf- N L;) can be extended to the other
manifold. The other summands in the H’s contain classes that restrict to zero on X and

which can then also be extended. Thus, we get maps
hy : HS (My, My) — HS (M) (3.29a)
hy © Hpy(My, M) — Hpy(M) (3.29b)

We will return to this in Sect. 3.6.2, where we will prove that /11 and /5 are isomorphisms.

32 Tndeed, for [y] € H/ (Z)and ] € Hity '~/ (My), wehave ([y1, Ti[al)s = (B [y], [a]) where (, )5 is

the Poincaré pairing on H®(X) and (, ) is the Lefschetz pairing between H&rl (M) and ng_l_j (My); By is

B
a map in the long exact sequence - - - — H®(M, i M\ %) a, H*(X) N HISJI’I (M) — ---. Therefore,
due to nondegeneracy of Lefschetz pairing, Li =ker By = im(ry). Case of L2l is treated similarly.
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Notice that we have [ bja; = [, bj‘a). By writing
X _ _+Xx i
by =217 Xix
X __ i X
8 = 2ax X2

with {[X{X]} a basis of o1 (L) and {[x,;]} a basis of o2 (L5), we also get
with
AL = /2 155 Xl (3.30)

Note that the matrix A is invertible.??

We now reduce the space of residual fields by integrating over the zero section £* of
T*[—1)(o1(L)[d — k — 11@® 02 (L) [k]). Namely, we integrate out all the z}; and zéx
coordinates, the redshirt residual fields, and set their canonically conjugate variables to
zero. This way we obtain the state

= / T
£><
as a function on ZM = IV)M X Bg)M with
Vi = Hy (My, My)[k] ® HSy(My, My)[d — k — 1]. (3.31)

We denote by a1, 8, = ag‘ + ag, 51 = b? + bf and 52 the corresponding variables.
We represent them as (d, d*)-closed differential forms on M, M, with appropriate
Dirichlet/Neumann boundary conditions, as in (A.5, A.6).

The integral over £* can be easily computed and yields

v

I/\}M = TM e%sv;;f
with
fM =E- —TMI T,
Ber A
where Ber A denotes the Berezinian of A, and

Seff d+kd V X
Sy = (=D (/ by T]z?‘(z*Az—/ ni"BlmnfaZ)
Y xd; M> DM xE

—(—1)kd/ @ Bi pim pym @i A,
DM xZxd; M

+(_])d7k (/ B/zéz +/ Blél —/ BzAz —/ BlA/1>
0 Mx\Z M 01 Mo 9 M\ X

33 Thisis equivalent to the nondegeneracy of the restriction of Poincaré pairing on H® (%) to LI>< ® L; — R.

: (3.32)

To prove the latter, assume the opposite, i.e. that there is a nonzero [«] € le such that for any [B] € LZX ,one
has ([«], [B])x = 0. Then [«] is orthogonal to the whole L, since [«] being in L is certainly orthogonal
to LlL N Ly. Hence [@] € L1 N Lzl, which is a contradiction to [«] € Li(. Thus we have shown that the left
kernel of the pairing Li( ® L; — R vanishes. Vanishing of the right kernel is shown similarly, which finishes
the proof of nondegeneracy.
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— (—1)d+kd (/ 7B mnz*A’1+f ) /27727r2*A2>
0 My x (01 M1\ X) (02 M2\ X) x 01 M3

=Y (=pPhies ( / i By 73 gy — (— D / B’zx;)
) 02 M\X

i h M x %

j d+k+kd+(d+1)-deg x5
(f T Xy 275 Ao + (= 1) @ egle/
X X0 M>

XfXM)-
NMI\E

Here we denoted by V the inverse of the matrix A defined in (3.30).
The factor

. ldim(ﬁx)(’dd
H xyeven 2
E = (2i)2 dimLO™" (%) - EM%-A;M eC (3.33)
1 2

with & as in (3.15) appears in (3.32) because of the 2m, i and & factors coming from
the Gaussian integral over a superspace. (The last equality in (3.33) is non-obvious; we
refer the reader to [25] for details).

From now on we will denote the boundary fields on M by A and B. The restriction
of Atod 1M1\ T is what we denoted so far by A}, whereas the restriction of Atod 1M
is what we denoted so far by A,. Similarly, restriction of B to 0> M is what we denoted
so far by B, whereas the restriction of B to drM> \ X is what we denoted so far by IB%’Z.

For the residual fields we will adopt the collective notation & and b. The restriction

of & to M, is what we denoted so far by &,. On the other hand, the restriction of & to
M, is the sum &; + a5*". The extension aS* of &, to M is defined by

/ yagt = (-ptrdhier / iy m i
My M x%

— (_])d+(d—1).degV / 7-[1*)/ n ﬂ;a;,
Mix%

where y is a form on M. Similarly, the restriction of b to M, is what we denoted so far
by b;. On the other hand, the restriction of b to M5 is the sum b, + b?’“. The extension
b{* of by to M is defined by

f b?XlM — (_1)d+k+kd/ 7Tikb] 2 n;ﬂ — (_1)d+k+kdf JTl*bT 2 H;M’
M X x M, S x My

where  is a form on M.
With these notations and with the explicit form for the glued propagator 7 of
“Appendix D.3”, we finally get

el = (1) ( / Ba - / BA) — (1) / 7B 75 A,
M M O MxoM

which, upon the change of notations, coincides with the one in (3.27).
Observe that Ty is equal to Ty, by the gluing properties of Reidemeister torsions
(cf. e.g. [44]). This implies Yy = V¥ y.
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Remark 3.9. Residual fields &, b, as constructed above, are represented by closed forms
on M which are smooth away from ¥ but generally discontinuous through ¥ C M;
however they have a well-defined smooth pullback to X.

Remark 3.10. Representatives of the cohomology Hpj, (M), Hf, (M) constructed via the
extension defined above are exactly the ones appearing in the differential of the glued
propagator of “Appendix D.3”, as in (3.17). This can be checked either by a brute force
calculation, or, more concisely, via homological perturbation theory (see [25]).

3.6.2. The reduced space of residual fields.

Lemma 3.11. Maps hy, hy defined in (3.29) are isomorphisms.

Proof. We will consider %1; the case of &5 is treated similarly.
Recall that for a triple of topological spaces X D Y D Z one has the long exact
sequence of cohomology of the triple

o> H*(X,Y) > H*X,Z) = H*(Y,Z) > H*'(X,Y) —> --- (3.34)

Consider the triple X = M, Y = M U 91 M, Z = 91 M. Then the sequence (3.34)
becomes

oo HY(M, My U3, M) S H (M, 0, M) 2>
A H My U My, 0, M) L H™ (M, Ma U3 My) — - (3.35)
Note that, by excision property of cohomology, we have H*(M, M, U 91 M) =
H®*(My,01My) and H*(My U 01 M1, 01 M) = H®(M3, 391 M>). Thus (3.35) becomes

L] L] A L] L]
o> HY (M) S HS (M) S Hp (M) & HSY (M) — - (3.36)
Therefore for the cohomology of M we have
Hﬁl (My)
im(p)
Note that the connecting homomorphism p in (3.36) factorizes as Hp,(M>) =
H* (%) N Hls*l'l(Ml) (with By as in Footnote 32). This implies

HS (M) ~im(}) @ im(x) = ker p & (3.37)

ker p = 7, '(ker By) = t; "(Li{ N L) = HY (M2
For the image of p we have im(p) = Bi(L2) = Bi(L5) C Hpi(M)). Its annihilator in
Hp, (M) is
Ann(im p) = {[a] € H,(M)) : ([a], Bily]) =0 Iyl € Lo} =7, '(L3) = 7 "(L1 N L).
— ——
=(nlallyls
Therefore, for the second term in (3.37) we have
Hp, (M)
im(p)
Thus we have constructed the isomorphism

Hpy (M) >~ Hp, (M1)° & Hp(M>)".

= (Ann(imp))* = (rl_l(Ll n L;))* = HS (M))°.

By inspection of the construction, it is precisely the inverse of &1 of (3.29). O
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4. BF-Like Theories

In this section we consider interacting theories that deform abelian BF theories. This
means first that as unperturbed theory we consider n copies of an abelian BF theory,

= Bi dA',
Su.o ; /M d

with Al @ B; € Q*(M)[k;] ® Q*(M)[d — k; — 1] for some choice of k;. Equivalently,
we may define Fyy = (Q*(M) @ V[1]) ® (Q*(M) ® V*[d — 2]) where V is a graded
vector space and write>*

SM,():/ (B, dA),
M

where ( , ) denotes the canonical pairing between V* and V. The whole Sect. 3 can
now be extended with obvious modifications.

Next we consider an interacting term that is the integral of a density-valued function
V of the fields A and B,

'SM,pert 2/ V(A’ B)»
M

such that Sy := Sp.0 + St pert solves the classical master equation for M without
boundary. We view Sy pere as a “small” perturbation (cf. Remark 2.34). We further
require that V depends only on the fields, but not on their derivatives. We consider three
examples:

Example 4.1 (Quantum mechanics). This is the case when d = 1 and V = W[—1],
with W concentrated in degree zero. We denote by P and Q the degree-zero zero forms
components of B and A, respectively. We choose a volume form df on M and a function
H on T*W. We then set V(A, B) := H(A,B)dr = H(Q, P) dr. We then have

SM=/ (ZPiQi+H(Q, P)) dr,
M\

the classical action of mechanics in Hamilton’s formalism.

Example 4.2 (AKSZ theories [3]). In this case we assume that we are given a function ®
on T*[d — 1](V[1]) = V[1]@® V*[d — 2] that has degree d and Poisson commutes with
itself with respect to the canonical graded Poisson structure on the shifted cotangent
bundle. We then set V(A, B) to be the top degree part of © (A, B). Notice that this is a
special case of the construction in [3], where the target is not assumed to be a shifted
cotangent bundle but just a general graded symplectic manifold with symplectic form
of degree d — 1. We have three particular cases of interest:

BF theories: Here we assume V = g to be a Lie algebra and set ® = % (b, la,a])
witha € V[1]and b € V*[d — 2].

34 We recover the previous notation if we pick a graded basis €’ of V and its dual basis ;, setk; = 1 — |g;|
and writt A =>"""_ e'A;,B= Z?:l(—l)lfkf B'e;.
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Split Chern-Simons theory: If we are given a Lie algebra g with an invariant pairing,
we can define a function ® of degree 3 on g[1] by ® = %(a, [a, a]). This fits with our
setting if d = 3 and we have a decomposition of g, as a vector space, g = V @ W
where V and W are maximally isotropic subspaces. The pairing allows identifying W
with V*.

The Poisson sigma model: If (P, ) is a Poisson manifold, the Poisson sigma model
on M has as its space of fields

Fuy = Map(T[11M, T*[1]P)

and ©® is the Poisson bivector field 7 regarded as a function of degree d = 2 on
T*[1]P. This fits with our setting if P is a vector space W and we set V = W[—1].
More generally, we may perturb the general Poisson sigma model around a constant
map x: M — P and we fit again in our setting with V = T, P[—1].

Example 4.3 (2D Yang—Mills theory). The classical action of Yang—Mills (YM) theory
can be written in the first order formalism as fM (( B, Fa)+ %gz(B, *B)) where A is
a connection on a principal G-bundle over M, F, its curvature, B a (d — 2)-form of
the coadjoint type, (, ) a nondegenerate, invariant pairing on the dual g* of the Lie
algebra g of G, * the Hodge star for some reference metric, and g a coupling constant.
This action looks like a perturbation of BF theory, with V' = g, but for d > 2 the
perturbation |’ (B, xB) breaks the symmetry; hence the corresponding BV theory is
not a perturbation of the BV version of BF theory. This is due to the fact that one of the
symmetries of BF theory consists in adding the covariant derivative of a (d — 3)-form
to B. However, for d = 2 this symmetry is absent, so indeed in two dimensions YM
theory is a perturbation of BF theory. We can write the corresponding BV action as

SM=/ ((B, dA>+1<B, [A,A]>+lg2v(3, B>>
M 2 2

where v is the volume form associated to the fixed metric on M and B denotes the degree
zero zero-form in B. More generally, for any coad-invariant function f on g*, the BV
action

SM:/ <(B, dA)+1(B, [A,A])+vf(B)>
M 2

solves the classical master equation on a two-manifold M without boundary and perturbs
BF theory. Notice that, by degree reasons, we have

1 1
V(A,B) = 5 (B, [A,A]) +vf(B) = 5 (B, [A,A]) +vf(B).
We call this theory the generalized two-dimensional YM theory.

Notice that, whereas the AKSZ theories of Example 4.2 are topological, quantum
mechanics and YM theory are not.

Remark 4.4. YM theory in 4 dimensions can also be regarded as a perturbation of a
BF-like theory [30]. The main difference is that the d operator appearing in the unper-
turbed term is not the de Rham differential. This changes the propagator, but the algebraic
structure is the same as the one considered in this paper.
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4.1. Perturbative expansion. The assumption that V(A, B) does not depend on deriva-
tives of the field implies that the space of boundary fields on a (d — 1)-manifold X is
exactly the same as for the unperturbed theory, ]—'% =(R)QV[I]) & (R°(2) ®

V*[d — 2]), with the same symplectic structure a)a2 = 80[% and

ol =(—1)d/ (B, 5A).
z

On the other hand the perturbation may affect the boundary cohomological vector field
Q% and the boundary action Sg.

Remark 4.5. In the case of an AKSZ theory, one has [23]
S2 =/ (B, dA) + ©(A, B)).
o

Remark 4.6. In the case of the generalized two-dimensional YM theory, the non-AKSZ
term vf (B) produces a vertical term in Q. Hence, Qg 18 the same as for BF theory.
As a consequence,

S%:/ ((B,dA)+(~)(A,B)):/ <<B,dA)+%(B, [A,A])).
> >

We then proceed as in Sect. 3 and choose polarizations as in Sect. 3.1. Notice that the
term to be added to the action to make it compatible with the polarization now reads

f54=(—1)”"1/ (B, A).

M

We denote again by A the coordinate on B; and by B the coordinate on 3,, which we
have to extend by zero in the bulk. We have

A=a+a,
B=b+5,

where a and b denote the residual fields, and « and 8 denote the fluctuations. For the
unperturbed part we proceed exactly as in Sect. 3, getting

SAE =SSm0+ SM,pert + S}'S[S + S}s‘v([)urce
with
SM.O:/ (B, da),
M

Supert =V@+a,b+p),

S[rl;s:(_l)d—l(/ (B’a>_f (b,A>>,

M M

Si;urcez(_l)d—l (/ (IB%,O()—/ (,BvA))
HM M

The propagator is determined, exactly like in the abelian case, by S m.0- The perturbation
term Sy, pert has to be Taylor expanded around zero and produces the interaction vertices.
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In addition we have univalent vertices on the boundary. The Feynman diagrams of the
theory with boundary then also contain edges connecting to the boundary.
Ultimately, the perturbative expansion for the state takes the form

n i (_ih)loops([‘)

7 (ki)

I = TT7% exp (- / or(A.Bia b)) @1
E M h XF: |Aut @] Jer

where TA(; )is asin (3.14), for the field grading shift k. In the exponential, we sum over
connected Feynman diagrams—connected oriented graphs I'—with

BS+I

aAil -~3A,'S 9BJ1...9BJt
V(A, B) where s, t are the out- and in-valencies of the vertex,

e 11 > 0 boundary vertices on d; M with single incoming half-edge and no outgoing
half-edges decorated by A; evaluated at the point (vertex location) on 9; M,

e 1 > 0 boundary vertices on do M with single outgoing half-edge and no incoming
half-edges decorated by B evaluated at the point on 9, M,

e edges are decorated with the propagator 7 - 5; with 7 same as in Sect. 3.3,%

e loose half edges (leaves) are allowed and are decorated with the residual fields a;
(for out-orientation), b’ (for in-orientation).

e n > ( bulk vertices in M decorated by “vertex tensors”
A=B=0

The differential form wr (A, B; a, b) on the compactified configuration space Cr of
points on M (with n bulk points, 1 points on d; and n, points on 9d;) is the wedge
product of the decorations above, with field component indices i contracted according
to the combinatorics of I'. Note that wr is a polynomial in boundary and residual fields
of order determined by the numbers of boundary vertices and leaves in I.

Remark 4.7. (Short loops) The perturbative expansion has potential singularities when
we contract a fluctuation o with a fluctuation g in the same interaction vertex (short
loops). In AKSZ theories, short loops are absent if a unimodularity condition of the
target structure is satisfied.>®

Formally the gluing procedure is exactly as in Sect. 3.6. The integral over the boundary
fields forces the matching of the boundary vertices. Next one has to integrate over the
redshirt residual fields.

Proposition 4.8 (Gluing). Let M be cut along a codimension-one submanifold ¥ into
M\ and M. Let Yy, and iy, be the states for M| and My with a choice of residual
fields and propagators and transverse (A vs. B) polarizations on ¥. Then the gluing of
Ym, and Yy, is the state Yy for M with the consequent choice of residual fields and
propagators.

35 More generally, if the shifts k; are different for different field components, we put nki) . 8’} on the edge,

where n(k) is the propagator for abelian BF theory with field grading shift k.

36 If the Euler characteristic of M vanishes, one does not even have to impose the unimodularity condition
and one can simply disregard short loops. This is why, e.g., the Poisson sigma model is well defined on the
upper half plane and on the torus for every Poisson structure. Notice that short loops contributions are needed
for the (modified) quantum master equation to hold. To match (3.17), one has to assign a (d — 1)-form ng) to
a short loop on M such that

dng = (=D (P dee Xy y 1
i

Notice that the right hand side is precisely exact when the Euler characteristic of M vanishes.
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Sketch of the proof. The gluing of the prefactors (the torsions) and the BV pushforward
on the redshirt residual fields (Mayer—Vietoris) are as in the abelian theory. The explicit
integration over the boundary fields and the redshirt residual fields has the effect to
produce the M-propagators out of the M- and M,-propagators (see “Appendix D”).

O

4.1.1. The full state. The state as described above—to which we will refer as the prin-
cipal part of the state—is all what we need for gluing purposes. However, it may be
incorrect as for the modified quantum master equation. The problem lies in the fact
that in general 2 will contain higher functional derivatives and one has to be careful in
defining them appropriately.

Let us start the discussion with the present field theory version of (2.29). We focus
on the 9 M boundary where we work in the A-representation (the d, M boundary is
treated analogously). There the base coordinate b is A, whereas the fiber coordinate p
is L;l uB = L;;l w (B +Db). In the following we will refer to A (and similarly to B) as to
a base boundary field. Equation (2.29) works indeed. To make this more precise, we
average the functional derivatives at a point by a test form F (a smooth differential form
possibly depending on residual and on base boundary fields). We have

.8 .
F’—.sz(—l)d/ (Bi +b) F'.
v/i)]M SA! M nm '

To move to (2.32) we have to assume that a higher functional derivative with respect to A
applied to enSH will produce multiplication by the corresponding power of L;l u(B+Db).

This also works with the naive definition of a higher functional derivative. For example,

j_ 0 isp i\* igr N
FU o e = ( ﬁSM/ - +b;)(B; +b;) F.
/31M SATSAT © (;—L> © 8|M(ﬂl+ i)(Bj+Dbj)

Problems arise when we move to the functional integration. The point is that the right
hand side of the above equation now involves a quadratic vertex at the boundary. To

be more precise, the principal part of the state can be written as Z <e%(81r\;s+3/s\3ume) )

where Z is the product of torsions and () denotes the expectation value for the bulk
theory. The problem is that a higher functional derivative of this expectation value may
differ from the expectation value of the higher functional derivative, for the latter also
includes Feynman diagrams that remain connected after removing the boundary vertex
corresponding to the insertion of the higher power of .

The way out is to define the higher functional derivative in a way that agrees with
the naive expectation above but does not have this problem; at the same time one has
to define the product of functionals (as in the exponential) appropriately. This is easily
achieved by introducing composite fields (as e.g. in [4,29]) as higher powers of A at a
point and regarding higher functional derivatives as first-order functional derivatives with
respect to the corresponding composite field. To make this fit with the naive expectation
where a higher functional derivative concentrates the fields on some diagonal, we should
also understand the product of integrals as containing the diagonal contributions for the
corresponding composite field. Namely, we set
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/ ui A/ o/ vj A =
M M
(1) A= 1410, D+l @) </ I T Y +/
Cr(01 M) ?

where u and v are smooth differential forms depending on bulk and residual fields and
2

uivj[AiAj]> ,
M

PN : : ij 8
[A"A/] is our notation qu the (Scomposne field. Now the operator |, nM FY 35 has to
be interpreted as f8| u FY STATAT]» SO e get
82 . . y
FY ——— </ u<A’o/ v-Af)z/ ujv; FY
/i;lM SAISAT \ Jym oM om
in accordance with our naive expectation.
We now formalize the above construction. For a multi-index I = (i1, ..., ip), the
symbol [A’], or equivalently [A! - - - A’r], denotes a new composite field of degree
k — (p — 1)(d — 1) where k is the sum of the degrees of A’', ..., Al» (one way to

remember this is to think of the composite field as being obtained by integrating the A
fields around the point where we evaluate the composite field). The functional derivative

§P .. 5 . .
———— is interpr ———. Anal 1 nsider composite B-fields an
AT AT is interp eted as o air alogously we consider composite elds and

their corresponding functional derivatives. These operators act on the algebra generated
by linear combinations of expressions of the form

/ L{;IJ; nik [All] - n—;:ll I:Alm:l j'[ik [IB%JI] - 7-[;;2 I:BJ’"Z:I ,

Cuny (31 M) X Cpy (92M)

where the Ls are smooth differential forms depending on the fluctuations and on the
residual fields. The product (denoted by e) of two expressions as above is obtained by
adding all the possible ways of restricting to a diagonal in the product of the spaces;
whenever we do that, the As or the Bs from the different brackets are put together. We
give one more example:

/ Lij ni[A 5 [A] e f bk[A"]=/ iy Ly nf A 13 [AY 13 [AY]
Cr( M) oM C3(a1 M)

+(—1) A 1A% / Lijmyby i [AT AR [AT] +/ Lijsby i [A 5 [AT AF].
Cr(01 M) Cr (01 M)
With this piece of notation, where e, is the exponential defined by the e-product, we
now have that

I i res source 1 i TeS source
/ 7l 8 efL(SM +Sjguree) _ / Pl 8 ef(SM +Sjgureey
oM SAT oam  SAT ’

where F is a smooth differential form depending on residual, base boundary and (pos-
sibly) composite fields.

Finally, we come to the correct definition of the state, which we call the full state and
write in boldface:

)

;L(Sz/els+sls‘/(1)urce)>

'}M:Z<e.
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where we just have replaced the exponential with the e-exponential. In terms of Feynman
diagrams we now have additional boundary vertices of higher valency. The combinatorics
may be simplified by observing that, for any form y,

C.Zi falMA vi _ eZI:m>o \% fzalM[A[]V’7
where on the right hand side we have the usual exponential and €/ is a sign, implicitely
determined by

Ailyl.l ... Aip)’i,, = 6i1"-ipAil . Aip)/il Vi

We have an analoguous expression for B.

Note that, when gluing states we do not see the composite fields (the proof of this
statement relies on the explicit formula for the glued propagators). For this purposes it
is enough to consider the principal part 1/}M of the state.

In abelian BF theory, 2 contains functional derivatives up to the first order. For this

reason we did not bother introducing the e-exponential. Note that the full state is just
i geff

1/#\ u = Tuel S , whereas its principal part was @M =Ty e#Si . For perturbed BF
theories, the full state however is in general not just the bullet exponential of the effective
action appearing in the principal part.

The strategy for checking the modified quantum master equation as well as the fact
that Q squares to zero simply relies on computing boundary contributions in the com-
pactified configuration spaces appearing in the Feynman diagram expansion for the state.
Before doing this, we make the definition of the space of states and its algebra of differ-
ential operators more precise (essentially, the only addition to the above, is the possibility
of products of composite fields, for these contributions are generated by the application
of differential operators).

4.1.2. The space of states. In Sect. 3.5.1 we gave a description of the space of states for
(possibly perturbed) BF theories. Now we have to refine the structure of the distributional

forms R; \n,(a, b) to allow for a proper definition of the higher functional derivatives
with respect to A and B that may appear in €2 following the discussion of Sect. 4.1.1.
We then come to the following definition: A regular functional on the space of base
boundary fields is a linear combination of expressions of the form

- I Iy

! 1 1l . .
Jlegptylo 2. 1/ 1
L2 n'H[Al]'un*H[A”’l}n*H[B ]J‘r* l_[[]B]
]]1___1]*1 ]21___]2’2___ 1 o mi L 1 Jlf mo ‘]’{,2
J= J= J

/c,,,1 (1 M)XCoy (2 M) j=1 j=1

Jll"']lll 121...];2..
et n?e
tial form on the product of compactified configuration spaces C,, (31 M) and Cy,, (2 M)
depending on the residual fields.

We assume that at each point in the configuration space there is a field insertion
(otherwise we may integrate that point out and get a new L); i.e., we have the conditions

where the Il.j and Jl.j are (target) multi-indices and L "is a smooth differen-

UM+ 112+ + I > Oforalls = 1,...,my,

W+ 112+ -+ (I8 > 0foralls = 1,...,m).

The space of the states is the span of the regular functionals (multiplied by Tjy).



Perturbative Quantum Gauge Theories on Manifolds with Boundary 679

We may extend the bullet product to the regular functionals. Notice that the derivative
with respect to a residual field satisfies the Leibniz rule also with respect to the bullet
product.

Remark 4.9. Note that we have only allowed insertions of A and BB in the states but not of
their derivatives. If we only consider states that may appear from the bulk and from the
application of €2 to them, it is enough to work with this restricted definition: applying 2
will produce terms containing dA and dB, but it is always possible to integrate by parts
and move all the derivatives on the coefficients (see below).

4.1.3. Operators. We now come to the class of operators we consider acting on the
space of states defined above.

One term of 2 that is always present, as we work in perturbation theory, is the one
corresponding to abelian BF theory, i.e., the one that acts by the de Rham differential
(times if (—1)?) on A and B as well as on all composite fields. We will denote it by 2.
Integrating by parts, we may rewrite the result as an allowed state. Namely, on a regular
functional as above we get a term with L replaced by dL plus all the terms corresponding
to the boundary of the configuration space. As L is smooth, its restriction to the boundary
is also smooth and can be integrated on the fibers yielding a smooth form on the base
configuration space; the bracketings at the related points are instead put together at the
collapsing vertex. For example:

Qo/ L”[A’][A’]=iih/ dL;; [AT][A],
M M
Qo / Lk mi ([ATIIA D [AK]
Cr(01 M)

— +ih f dL1yx 7F (ATIA D3 TAKT + if / Lisk IMTIAY AR,
Cr(01 M) M

with Lijg = nfL”K, where 79 0C2(01M) — 01 M is the canonical projection.
Notice that for any two regular functionals S and S> we have Q¢(S1 e S2) = Q0(S1) @
Sy, £ 51 @ 20(52).

The other generators that we allow are products of expressions of the form

/SIML{I...H [AII]..[AI’] %

[t e
oM A e,

where the L’s are smooth differential forms on the boundary. We call these expressions
simple operators. Each of the factors in a product of operators acts independently on
a state. The action of a simple operator on a regular functional is defined by pairing a
derivative with the corresponding composite field in all possible ways. If there are no
derivatives (i.e., if |[I| = 0 or |J| = 0), then the factor is just e-multiplied with the rest.
Example:

iy 52 .
LY [AF——— / b, [A" / by[A*] ] =+ / LY bib;[A].
(Z[M Pl ](SAZ(SAJ)<Z -l ]-;W [A%) oy L DDA

ijk

or
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The algebra of differential operators that we consider is generated by products of €2¢
and simple operators. Note that the composition of two products of simple operators is
again a sum of products of simple operators. This composition is easy to describe: each
factor acts on a product either by multiplication (in the graded symmetric algebra) or
by pairing the multiple derivative with a corresponding composite field. Restricted to
the A-representation, this algebra is the space of (S, x S,)-invariants and coinvariants
@®m,nP(m,n)s, xs,, where in our case P is the prop envelope of the endomorphism
operad of SV tensored with €2°(3; M) (with the condition that the arguments must be
in S*V). It was shown in [42,43] that for a general (dg) operad this construction yields
a (dg) associative algebra. In the B-representation we get the same description with V
replaced by V* and 9; M replaced by 9, M.

Example of a composition of products of simple operators (here © is the graded
commutative product of simple operators):

) L 82 ) )
t Jk s p qgary_— t
(/W(Ll) i G/(;]M(Lz) M_,M,{)o(/alM(Nlm,[A HAYAT] Q/a,M(N”’[A])

Pl A Vi v2

S ) , b ;
=+ L) (L) (N3, / N A‘i/ L)* (NS L [AP]— / L) (Ny);
/MI( DL Nl © | (VAT E | L AT e | (L) (V)

; ) ; )
+2 Lo)K(Np)S - [AP]— +2 L) (N1, [ATA"]—
1@/311”( DT (ND ATl o O v 26/3,1\4( D' (NDjg, L 55 Ow

£20m0 [ (L) N2 +h1 © RO O
M
We call an operator principal if it is simple and each field insertion is linear (i.e.,

[I'|=-.-=|I"|=1or|J'|=---=|JI| = 1) orifitis a multiple of Q. Notice that,
on a boundary X, ¢ can be viewed as the standard quantization of

S%O:/ (B, dA).
z

By analogy, we will say that the principal operator

. ir /1
((_l)dih)m/ELiJl...,'r I:All]...[Al ] ;W

is the standard quantization, in the A-representation, of

/ L{ABy,
z

I ...,i" into the multi-index /. Similarly, we will say

where we grouped the indices i
that

' |
ndi ] jret 8
(—1%in) /EL’ [By]-[By] smr-
is the standard quantization, in the B-representation, of

/L{B,A’,
z

where we grouped the indices jl, ..., j" into the multi-index J.
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The 2 we will get in the modified QME is a linear combination of simple operators.
We will call the underlying linear combination of principal terms its principal part. In
most examples we will focus on the principal part only. By the above notation it can be
written as the standard quantization of some boundary functional.

4.2. The modified OME. 1In all these theories €2 may be explicitly obtained by the usual
techniques about integrals on compactified configurations spaces (see, e.g., [22]). Under
the assumption of “unimodular” perturbations and “tractable” contributions from hidden
faces in the bulk we have the following

Theorem 4.10 (The mQME). There is a quantization Q2 of S? that squares to zero and
such that the modified quantum master equation (mQME) is satisfied. This Q2 is com-
pletely determined by graph contributions at the boundary of compactified configuration
spaces.

We split the proof this result into three Lemmata.

Lemma 4.11. The modified OME is satisfied with Q = Q0 + Qper, Where Q is the
standard quantization of the unperturbed boundary action and Qp.y is determined by
the boundary configuration space integrals.

Sketch of the proof and construction of Qper;. Let I' be a Feynman graph (a disjoint
union of > 1 graphs of the type appearing in the exponential in (4.1 )) and wr the
corresponding differential form over the compactified configuration space Cr. Consider
Stokes theorem fCr dor = f aCy - The left hand side contains terms where d acts on
an A or a B and terms where d acts on the propagator. The former correspond to the
action of %Qo, the latter when summed over graphs I" assemble, due to (3.17), to the
action of —i1hAy,,, on the state. The right hand side contains three classes of terms:

(1) Integrals over boundary components where two vertices collapse in the bulk. The
combinatorics of the Feynman diagrams in the expansion ensures that these terms
cancel out when we sum over all the diagrams.?’

(2) Integrals over boundary components where more than two vertices collapse in the
bulk (“hidden faces”). The usual arguments—vanishing theorems—ensure the van-
ishing of all these terms apart, possibly, for faces where all the vertices of a connected
component of a graph collapse. In all the above mentioned theories, with the excep-
tion of Chern—Simons theory, also these terms vanish. In Chern—Simons theory, they
may possibly survive, but can be compensated by a framing dependent term (see
[7,8] and [15]).

(3) Terms where two or more (bulk and/or boundary) vertices collapse together at the
boundary or a single bulk vertex hits the boundary. The integral on such a boundary
face splits into an integral over a subgraph I'' of I" corresponding to the collapsed
vertices and an integral over I'/ I'/, the graph obtained by identifying all the vertices
in I'” and forgetting the edges inside I'". We define the action of £ Qperc by the sum
of the boundary contributions of the I'”’s. If we now sum over all graphs I', all these
terms will give £Qpert applied to the state.

37 This cancellation relies on the assumption that the perturbed action satisfies the classical master equation,
which is equivalent to Z?:l i%V(A, B)- a%V(A, B) = 0, which in turn implies a relation on contractions
1
of pairs of vertex tensors.
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As aresult we get the mQME. O
Remark 4.12. In QM we clearly have 2 = 0, by degree reasons.

Remark 4.13. In the (generalized) two-dimensional YM theory, the term v f (B) does not
contribute to Qpert, for the restriction of v to the boundary is zero. As a consequence, 2
for the (generalized) two-dimensional YM theory is the same as for BF theory.

Lemma 4.14. 2 squares to zero.

Sketch of the proof. This can be done again by the same techniques as in the previous
Lemma. Namely, let I'" be a graph appearing in the definition of Querx and oy the
corresponding differential form —a product of the propagators n and the boundary
fields A or B — over the compactified configuration space C1, obtained by modding out
translations along the boundary and scalings. Consider again Stokes theorem || Cr dopr =

facr, orv. The left hand side contains only terms where d acts on an A or a B, which

correspond to the action of %Qo. The right hand side contains again three classes of
terms. The first class contains the terms where two vertices collapse in the bulk (the bulk is
now aneighborhood of a point in the boundary); these terms cancel out when we sum over
all graphs. The second class contains the terms where more than two vertices collapse
in the bulk; these terms do not contribute by the usual vanishing theorems. Finally, the
third class contains terms when two or more (bulk and/or boundary) vertices collapse
together at the boundary or a single bulk vertex hits the boundary. When we sum over all

graphs, these terms yield the action of %me. This shows that $202pert + C2pert$20 + Qgert

vanishes. Since we know that Q% = 0, we conclude that Q2 = 0. O

Lemma 4.15. Q is given by the canonical quantization of S plus (possibly) higher
order corrections. More precisely, the canonical quantization of S° corresponds to Qq
plus the contributions of Qpeys corresponding to exactly one bulk point approaching the
boundary.

Sketch of the proof. Consider, e.g., the d; boundary (the 9, case is treated similarly).
Here we are in the A representation. In a boundary term of the type stated in the Lemma,
there will be one bulk vertex coming from V(A, B) and boundary vertices (A, 8) (in
d > 1 there are no contributions from composite fields as in this particular case they
would correspond to a multiple edge which vanishes by dimensional reasons, ford > 2,
or by parity reasons, for d = 2). The bulk As actually only contribute with « as a
vanishes on the boundary. So a monomial term of degree & in A in V(A, B) will actually
yield a boundary graph with k boundary vertices and with k propagators joining the bulk
vertex to each boundary vertex. The integration is over the configuration space of these
k + 1 vertices modulo horizontal translations (i.e. translations tangent to the boundary)
and scalings. All the A fields are grouped in the integration along the boundary. The
Bs in V correspond to applying (—l)diﬁ% to the rest of the state (as we explained
above, if this results in a higher functional derivative, it has to be interpreted as the first
order functional derivative with respect to the corresponding composite field). What
remains to be shown is that the coefficients are equal to 1. This is obvious for k£ = 0.
For k > 1, denote by gi the result of the integration of the graph with k boundary
vertices (notice that each g is a number as we are integrating a k x (d — 1)-form on a
k x (d — 1)-dimensional space). The simplest one, g;, corresponds to one bulk vertex
and one boundary vertex joined by a an edge. We fix the horizontal translations by
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fixing the boundary point and we fix the scalings on the bulk point. The integral yields
1 precisely because the propagator is normalized. Next, one shows that all other graphs
yield the same contribution. This is an application of Stokes’ theorem again. Consider
a graph with 2 bulk and k boundary vertices, k > 1, and exactly one edge joining the
bulk vertex 1 to each boundary vertex and to the bulk vertex 2. We take the differential
of the corresponding form and integrate over the corresponding boundary configuration
space. Notice that all propagators are closed as we are near the boundary, so we just get
an equality between the boundary contributions. There are actually two of them: the first
is when the two bulk points collapse together, and this yields gi; the second is when the
bulk point 2 goes to the boundary, and this yields g.1. So we have g1 = gi for all &,
which, together with g1 = 1, yields gz = 1 forall k. O

Remark 4.16. If we choose a different propagator, the higher order corrections might
change leading to a different, but equivalent, 2.

Remark 4.17. Using results from [15,27] one sees that the possible higher order cor-
rections depend on global forms, possibly appearing in the action, and on universal
coefficients that are invariant polynomials of the curvature of the connection used in the
construction of the propagator. The universal coefficients are Chern—Weil representa-
tives of certain universal polynomials, with real coefficients, in the Pontryagin classes
of the pull-back of the tangent bundle of M to d M. Note that, by the stability property,
these Pontryagin classes coincide in cohomology, H*/ (3 M), with classes of the tangent
bundle of dM, since TM|ypy = TOM @ NoM and the last term (the normal bundle
to the boundary) is a trivial rank 1 bundle. This implies that, up to equivalence as in
Remark 4.16, the boundary operator €2 does not depend on the bulk.

The principal part of the operator €2yt (see the end of Sect. 4.1.3) constructed in the
proof of Lemma 4.11 has the following general structure:

(- lh)loops(r) Jurede s in d: dj
Qe = Y Y Y e falM(Gm)il_"mA A (=1 ‘hm/ 1) lf(W

n,k>0 I"
(-=D%ih )
IB3/1 ) < ‘SE/k

lh)loops(r ) i1y .
" Z Z \Aut(F2)| ~/32M (JF2>. P B, <( )i

k>0 T J1Jk

where I'| runs over graphs with

e n vertices on d; M of valence 1 with adjacent half-edges oriented inwards and dec-

orated with boundary fields A;,,..., A; , all evaluated at the point of collapse
X € 81 M,
e k inward leaves decorated with variational derivatives in boundary fields
—Dih——, ..., (=D%iR
( )ISAjl ( )ISAjk

at the point of collapse,
e no outward leaves (graphs with them do not contribute).

The form or; on 1M is the universal coefficient of Remark 4.17 and is obtained as
the integral, over the compactified configuration space C r (with translations along

boundary and scalings modded out), of the product of limiting propagators at the point of
collapse and vertex tensors. The graphs I' correspond to a collapse at a point y € 9, M
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the Feynman rules for them are similar, but with opposite orientations for boundary
vertices and leaves, and with multiplications and derivations in the field B instead of A.
Note that €2 does not depend on residual fields.

Remark 4.18 (Change of data). Using the same techniques [22], one can show that under
achange of data, see Remark 3.5, the state changes consistently: (% v = RA+Q) (YD),
where ¢ can be computed explicitly in terms of Feynman diagrams.

Remark 4.19 (Open problem). When we glue two states Yy, and ¥y, as in Proposi-
tion 4.8 we get a new state . All three states satisfy the mQME as they are Feynman
diagram expansions of the theory. This shows that there is a relation between the opera-
tors €21 and €2 on the glulng submanifold ¥ regarded as a boundary component of M
or of M,. Namely, the pairing of ¥y, with (Q 1 — 2)Y¥y, vanishes, where Q 1 is the
functional Fourier transform of €21. Notice that in the pairing we only see the principal

parts. This leads then to the conjecture that ﬁrfrmc = Qgrmc.

4.3. The doubling trick. On amanifold without boundary one can choose the propagator
to be symmetric, up to a sign, under the exchange of @ and . The boundary polarizations
however break this symmetry. This asymmetry persists after gluing, even if at the end
we have a closed manifold. One can obviate this as follows. First we add an additional
abelian BF theory with the same field content:

Sut double (A, B, A, B) := Spr.0(A, B) + St pert (A, B) + Sy 0(A, B).

The states for this theory are tensor products of the states for the (A, B)-theory with the
states for the abelian (A, é)-theory, and we know the latter explicitly. In particular, on
a closed manifold, the partition function of the doubled theory will differ from the one
in the original theory just by a multiple of the torsion of M. Moreover, the expectation
values of (A, B)-observables will be the same for the two theories. Next we make the
change of variables:38

A=A +A,, A

A —A
B:Bl+Bz, B

2’
— By,

00«

‘We now have

Sy, double (A1, B1, Az, Ao) = 2Su,0(A1, B1) +2Su,0(A2, B2) + Spr,pert (A1
+A;, B1 + By).

The final step in this construction is the choice a polarization. Our choice will be to
choose opposite polarizations for the fields of type 1 and those of type 2. To stick to the
notations of Sect. 3.1, on 91 M we choose the % X a%z-polarization and on 0, M we

choose the (S(ST| X %—polarization. We then proceed with the splittings of the fields into
boundary, residual and fluctuation fields. Notice that the propagators for the theories 1
and 2 will have opposite boundary conditions and will be % of the propagators considered
before (because of the factor 2 in front of the Sus,0’s). On the other hand, to construct

38 In our setting the space of fields is a vector space. In more general settings, A and A contain a connection
in degree zero, so the space of fields is affine. In this case, Aj will still belong to the same affine space, whereas
A; will belong to its tangent space.
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the Feynman diagrams we will always have to contract a factor o1 + a2 from one vertex
with a factor 81 + B> from another vertex. This will produce the average of the two
propagators computed in Sect. 3 with the two opposite boundary conditions.

4.4. Quantum mechanics. We start with the simple case of quantum mechanics, see
Example 4.1. In this case, F 9 = T*W and, by degree reasons, we have S? = 0 and
2 = 0 (as the only connected zero dimensional manifold is a point, we do not write it
explicitly as an index).3? Also we take M to be the interval [¢1, £2].

The simplest way to compute QM is with the mixed polarization: namely, we take
01M = {t;} and 9, M = {1t} (or vice versa). In this case there are no residual fields and
we have n(s, t) = (s —t), with ® the Heaviside function. We also have Tj; = 1 (with
Ty asin Sect. 3.3.1). If H = 0, we then simply have

Wit 51,0 = e h 2 Pid

where we use the notation g = A and p = B. Notice that this state is the representaion of
the identity operator. One can easily compute (P-(7))o = ek Xipid' prand (Q% (7))o =

e i Piq’qY for all T € (¢1, ). Let 71, 7p be such that 11 < 71 < 70 < t». We then
have

(Q* (1) Py (11))o = ¢~ 1 2 P9 (¢ p, + D 8Y), (4.22)
(Py(r2) Q" (t1))o = ¢ F LiPi¥' g’ (4.2b)
(Py(2) Pr(ti))o = e F ZiPid' pop, (4.20)
(Q° (1) Q" (7))o = e~ F Zi Pid' g (4.2d)

Hence, if f and g are functions on T*W, we have

(F(Q(12). P(12)) g(Q(r1). P(t1)))o = e 5 Zi P14 £ x ¢(q. p)
Yin

Bq’.mg

where « is the star product defined by the ordering (4.2),i.e. fxg = fe
Finally, if we have a Hamiltonian function H, we may write f w H(O, P)dr as a limit
of Riemann sums. Taking the expectation value and computing the limit finally yields

_iN i A-)H
Wiy i) = e~ h 2 PR gy

We may also work in the A-representation on both sides. In this case, we have residual
fields

a=zv, b=z"
with v € Q([11, ©2]) satisfying fttlz v = 1. Notice that degz = —1 and deg z* = 0 and
that A =—)", % The corresponding propagator is then 7(s, t) = O (s —t) + ¥ (s)
with ¢ (s) = — ffl v. It follows that
\Il[ll,tz],o = e% Zi Zf(qé_q{),

39 More generally, we could take as target a superspace endowed with BFV data in addition to a Hamiltonian
function. In this case, 59 and Q may not be trivial.
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where ¢g; and g, denote A at {¢1} and at {#,}. Notice that we can make a BV integration
on residual fields by choosing the Lagrangian subspace {z = 0}. The integration over
7" yields, up to a normalization constant, §(g2 — ¢1), which is the g-representation of

the identity operator. We can now compute (P (7))o = ef Xi 4 (@ Wz +and
(0 (1)) = efi Z-*(qé—q“(qs +(q1 — q2)* Y (1))

— eh Z, Z; (42 ql IFLA(CH Z[Z (QQ ql Sw(f)),
for all T € (1, 1). Similarly, for t; < 71 < 7 < £, we get
(Q° () Pr(mn))o = eft 2 @40 (g ¥ +ih8)) — ihA(eh Li T @12 2y (1)),
(Po(12) Q" (1))o = ef T & @—aD gl —inA(eh X0 5@aD) 2ty (ry)),
(Py(12) Py (t1))o = efi T 5 @ —aD 7+
(0° (1) Q" (1)) = ef Zi T @D gigh — ihA(eh 2 7 B0 (g —g2)* 2 (1) ¥ (v2)).

More generally, we have
(f(Q(2), P(w2)) g(Q(n), P(x)))o = eh i 5 @1) fxg(qy, 2) —iRA(--).
If we integrate over z*, with z = 0, we finally get

9
f_o dz" (f(Q(12), P(12)) g(Q(11), P(t1))o = f * g <qz, —iha—q2> 8(q2 — q1).

Finally,

Lta—t)H
/ dz* Wy =l ( —171—) 3(g2 — q1).
z=0 0

4.5. Nonabelian BF theories. We continue with the case of nonabelian BF theories for
a Lie algebra g, see Example 4.2. The bulk BV action is

1
Sw =/ <<B, dA)+ 1 (B, [A,AJ>>
M 2
and, since this is an AKSZ theory, the boundary BFV action has the same form:
. 1
S3 =/ ((B, dA)+§(B, [A,A])).
)

The standard quantization is then

1)
Qetand = D4Ry " dB,
stand /SZM (=D% Z Z fbc 2 SB (SB

1 5
d: d: b
+/81M (-1) 1h§ dA“ SA“ +3 > fi (—DinA o )

a,b,c

where we have introduced a basis for the Lie algebra and denoted the corresponding
structure constants by f; . One can easily check that Qstand =0.



Perturbative Quantum Gauge Theories on Manifolds with Boundary 687

Lemma 4.20. If d is even, then the principal part of Q2 is Qsana. If d is odd, then the
principal part of 2 is the standard quantization of

&
SM — §M _ip Z / Vj TraddA74j,
=0 oM

where y; is a closed 4 j-form on 9 M which is an invariant polynomial, with universal
coefficients, of the curvature of the connection used in the construction of the propagator.

Sketch of the proof. As the interaction is cubic, the vertices are at most trivalent. Notice
that if the boundary diagram contains a univalent bulk vertex, then the integral is zero by
dimensional reasons unless this is the only vertex, in which case we get a contribution to
Qstand- This means that in the boundary graph we only have bivalent and trivalent bulk
vertices. We now use the following convention: edges in the graph are oriented pointing
from the A vertex to the B vertex. Notice that the trivalent vertex has one incoming and
two outgoing arrows, so it increases the number of outgoing arrows.

On 0, M we then have outgoing arrows from the boundary and the bulk vertices are
either bivalent, with one incoming and one outgoing arrow, or trivalent. Thus, the only
possibility is to have only the bivalent vertices and they have to be arranged in a loop.

On 0;1M we have instead arrows pointing to the boundary and the bulk vertices
are either bivalent, with two outgoing arrows, or trivalent. Suppose that the graph has
b bivalent bulk vertices, ¢ trivalent bulk vertices and m boundary vertices. By arrow
conservation we have 2b + t = m. Moreover, the total number of arrows is (3¢ + 2b +
m)/2 = 2t + 2b. This implies that the form degree is (2¢ + 2b)(d — 1). The dimension
of the boundary spaceisd(b+1t)+(d — 1)m —d = 3d —2)b + (2d — 1)t — d. If the
dimension is larger than the form degree, then the integral vanishes. Since the difference
between form degree and dimensionis d(1 —b) —t, we getd (b — 1) +¢ < 0. This cannot
hold if b > 1. For b = 1 we get t = 0, which is a contribution to Qgnq. Hence we are
left with b = 0 — i.e., no bivalent vertices — and ¢ < d. This means that the graph is
a wheel from which trees depart to hit the boundary. We claim that this graph vanishes
unless each vertex in the wheel is directly connected to a boundary vertex. In fact, if this
is not the case, there will be a bulk vertex not in the wheel with two emanating edges
that hit the boundary. Integrating a boundary vertex removes the corresponding edge, by
normalization of the propagator. Hence, integrating these two boundary vertices leaves
a univalent vertex, so the integral vanishes. Finally consider the wheels with each vertex
directly attached to a boundary vertex. Again, integrating the boundary vertices removes
the corresponding edges. Hence, the contribution of each such wheel is the same as the
contribution of the corresponding loop, as on d, M.

In Fig. 1 we give an example of a loop and the corresponding wheel that might give
a nontrivial contribution.

Let us denote by B the (d — k)-form on 0 M obtained by integrating the loop with
k vertices. Since the restriction of the propagators to these boundary faces is closed, by
Stokes theorem we get dBrs4+1 = £ 25 Vs.

As in Remark 4.17, we now have to recall, see [15,27], that B is an invariant poly-
nomial in the curvature of the connection used to define the propagator (if we define the
propagator by Hodge decomposition, the connection is the Levi-Civita connection for
the chosen metric). In particular, 8¢ = 0 if its degree is odd. Moreover, using compat-
ibility of the connection with reduction of the structure group of the tangent bundle to
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O M oM

Fig. 1. An example of a loop (only the internal edges, not leaves, of the collapsed graph are shown) and the
corresponding wheel

SO(d), we have that B can be nonzero only if d — k = 0 mod 4. The coefficients in
the polynomial are universal.

If d is even, then deg Ba,+1 is odd. This then implies that $25+; = 0 and hence also
Bos = 0 for all s.

If d is odd, then B = 0 for all s by the same reason. Moreover, fs41 iS zero
unless 2s + 1 = d mod 4. We then denote y; := B4_4; the potentially non-vanishing
polynomials. O

Remark 4.21. If we change the connection in the construction, each polynomial y;
changes by an exact form do;. Hence, S IM changes by

]

§BM,ihZ/ oj Trady ¥ 1,
j=0 7oM

where { , } is the Poisson bracket associated to a)g 11+ S0 we see explicitly that we get an
equivalent €2.

Remark 4.22. We do not know if the characteristic classes y; in odd dimension are non
zero. They might vanish if, e.g., we had a vanishing Lemma that ensures that bivalent
vertices with consecutive arrows yield zero. (This is easily shown to be true in two
dimensions.)

Remark 4.23. Notice that yy is a closed zero-form. Moreover, this constant is universal
(possibly zero). Denoting it by ¢4, we get a contribution ¢, [; gy 1T adﬁ. Notice that this
is the only contribution for d = 3 and for d = 5. In higher odd dimensions there may
be other contributions as well.

Example 4.24. We first consider the example when M is a ball and we work in the
B-representation. If we denote the propagators as arrows joining « to 8, then we have
arrows issuing from the boundary. The only vertex that reduces the number of arrows
corresponds to a term Saa. Because of the boundary conditions the residual fields a are
concentrated in cohomology degree 0. Hence we get univalent vertices which vanish
upon integration. There are two vertices that preserve the number of arrows: baa and
Baa. The first just gives an insertion of residual fields. The second produces loops.
However, since a is in degree zero, the form degree of a loop with n vertices is n(d — 1);
the dimension of the configuration space is however nd, so the integral vanishes. In
conclusion, the state for a ball in nonabelian BF theory is the same as for dim g copies
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of abelian BF theory plus the insertion baa. In particular, the effective action in d
dimensions reads

sﬁf(B,z,f):(—l)d*l/ (B, a)+/ l<b, [a,a])
sd—1 M2

1
_(_1\d a d—1 , = a _+._b_c
= (=1 ;z /sdlea +2Z The?a? 255

a,b,c

where we have written @ = z1 and b = z*v for a normalized volume form on M with
z € gand z* valued in g*. By BY~! we denote the (d — 1)-form component of B (which
has ghost number —1).

The same computation in the A-polarization is much more involved as in this case
nontrivial graphs appear. This case may be obtained from the previous one using the
generalized Segal-Bargmann transform, which is nontrivial as requires considering the
cylinder S~ x I with A-polarization on both boundary components.

4.6. 2D Yang—Mills theory. As explained in Example 4.3, the (generalized) two-dimen-
sional YM theory may be treated as a perturbation of BF theory with the same Lie algebra
g. As the perturbation does not affect the boundary, we get that Q = Qgang as in (4.3).

4.6.1. Examples. For simplicity we focus on the abelian case g = R. The vertices are
given by the Taylor expansion of f, f(x) = Y /2, % FOxk,

We first consider the example when M is a disk and we work in the B-representation.
In the bulk we expand B = b + 8. As b is concentrated in form degree 2, we get
Sy vfB) = [, vf(B) =272 %f(k) 3y vBX. Each o on the boundary can be paired
to a B in the interaction. The graphs contributing to the state are stars with one bulk
vertex, with coefficient vf ®) . and k boundary vertices. If we denote by oy the k-form
on (S")* obtained by integrating the bulk vertex of such a graph, we get

9]
1
Sif(]B%,z,H):—f IB%z+ZEf(k)/ o BB
s! k=0 " (Sl)k

o0

1

=z/s1 B'+) Ef(k) /(S])k ay B 1} BY, (4.4)
k=0 "

where B’ denotes the i-form component of B.

Next we consider the same example but in the A-representation. In this case b is
concentrated in form degree 0. On the other hand, there are no as to pair the Ss. If we
write b = z*1, with deg z* = 0, we get the effective action

SS(A, 2, 27 = / ANV = VI + f Al 4.5)
S S

with V = f uv the area of the disk and A the 1-form component of A (i.e., the classical
field).

One can pass from one polarization to the other by the generalized Segal-Bargmann
transform, see Remark 2.38. To do this we have to consider the cylinder S! x I with
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the topological theory corresponding to the 2D generalized YM theory. This is just BF
theory.

Suppose we start from the B-representation. Then we should consider the cylinder
with A-representation on both end sides. We denote the boundary fields by A and A to
distinguish the two boundary components. We write the residual fields as

a=wly +wu, b=w+1+wfxl,

with u a two-form and x1, x ' one-forms forming a basis in the cohomologies together
with 1. The effective action reads

S;?XI(A,A,w,wl,w*', w}'):w*’/1 Al — wf/l )(IA()—u)*'/l Ay +w1’/1 x!Ao.
s s s s

We now pair the A variables with the B variables in (4.4). This yields, after integration,
the exponent

w+/lgl —wf/lxlgo—zwf+Vf(w+).
s s

We now take the Lagrangian subspace {w; = 0, z* = 0}; integrating out z and w7}, and
using | (shyk Uk = V%0 yields the exponent

Viwh)+ w+/ Ay
1

S

which is (4.5) with a relabeling of the variables.

Next we start from the A-representation. We then consider the cylinder with B-repre-
sentation on both end sides. We now denote the boundary fields by B and B to distinguish
the two boundary components. We write the residual fields as

a=wl+w'y;, b=wix"+wu

We have the effective action

nglfxl(@,]]ﬂ%,w,wl,w*',wf):—/ §1w—/ §0w1X1+/ Blw+/ Bw!'x,.
st st St st

We pair the B variables with the A variables in (4.5). This yields, after integration, the
exponent

N S

where we have used |, 1 X1 = 1. We now choose the Lagrangian subspace {z = 0, w] =
0} and integrate out z* and w'. This yields the exponent

_/Sl §1w+Vf<—/Sl §0X1>, (4.6)

40 In fact, integrating the boundary vertices just removes the edges form the graph; at the end we are left
with [, v="V.
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which differs from (4.4) but actually just by a BV transformation. Recall that |, (shyk Uk =

(—D)*V. This shows that oz and B := (—l)kan)a -+~ x1 are in the same coho-
mology class. Let 7 be a path of k-forms interpolating between o and Si; e.g.,
(@) = (1 — oy + 1B, t € [0, 1]. We have that 7, = dyk, for some (kK — 1)-form
vk. We define

o0
1
eff 1 (k) * p0 * p0
B, i) = B+ — t BY---7nB",
o Bz, 275 1) Z/;l kg_ k!f /(Sl)k 7w (1) 7

Notice that the exponent computed above, Eq. (4.6), with a relabeling of the variables
is SS(B, z, z*; 1), whereas SSI(B, z, z*) is SSI(B, z, z*; 0). We now have

d

Seﬂ(B z, P ) lsetf(B z, P l‘) 1 (k) / 0 0
—eh —eh dye B - JT B
ar Z k' SHE Vi 7T k

Observe that

flkdykn;‘BO---n,j‘B():(—l)"flkykd(n;"BO---n,jBO)
(sh (sh

(_1)k+l 0 0
= Q 7{B” -7 B".
ih /(Sl)k VT k

Since QS;?(IB%, z,z%;t) = 0 for all ¢ and all the terms involved are A-closed, we have

d RSB ) _ —(2A+Q) (—=1)k+! e%gig(m,z.zﬂz)iif(k) 2¥BO ... g0
T 02 Lo fsy L

which shows that (4.4) and (4.6) are equivalent.

4.7. Split Chern—Simons theory. The split Chern—Simons theory, see Example 4.2, can
be treated like the nonabelian BF theory; cf. [26] for an example of a perturbative
calculation. There are more vertices and what causes more problem is the presence of
possibly nonvanishig hidden face contributions, which however can be dealt with using
framing (see [15,22]).

The principal part of the boundary operator 2 might now have additional contri-
butions to the canonical quantization of S?. By dimensional reasons and by the same
argument as in Sect. 4.5, the corrections are given by cubic terms with universal numer-
ical coefficients. Hence, the principal part of 2 will be the canonical quantization of the
boundary Chern—Simons action for a possibly deformed Lie algebra. We will return to
this example in a future paper (for low order results see [26]).

4.8. The Poisson sigma model. The Poisson sigma model, see Example 4.2, is important
in connection to deformation quantization [19,40]. It is also a deformation of abelian
BF theory. Its fields are usually denoted by X and # instead of A and B. For a source
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two-manifold M and target R”, we have X € Q*(M) @ R” and € Q°*(M) ® (R")*[1].
Given a Poisson bivector field 7w on R”, the BV action reads

n n
SM :/ Z)]ldxl + E Z 7'[”()()17,)71
M\ i=1

i,j=1

As an AKSZ theory its boundary BFV action has the same form:

n n
8% = /2 Z"ldxl + z E 7T”(X)1]ln]
i=1

i,j=1

We will denote by X and E the boundary fields corresponding to X and 7, respectively.
The standard quantization of Sg in the X-representation is a second-order differential
operator, whereas in the E-representation it is in general of unbounded order (unless
is polynomial).

For the quantization of the PSM one has to pick a background, i.e., a constant map
x: M — R", and expand around it (by abuse of notation we will write x also for
the image of this map). In the standard quantization of S% in the E-representation we
Taylor-expand 7 around x, thus getting in general a formal power series in X.

Recall that the quantization of the PSM on the upper half plane [19] yields Kontse-
vich’s star product [40]. This is an associative product on C*°(R")[[i%]]. We write

alfl gl ir . df dg
=fg+Y BY —f—g=fg—— UL > L o),
frg=1rg IEJ if 578 =185 Eij w2 i oy T O

where 7 and J are multi-indices (and i and j are indices) and B = 0 if |[I| = 0 or
|J]=0.

Lemma 4.25. In the E-representation, we have

sz:szo+/E >

IJKRS

(—iRm)IKI=1=1J]+] SIKI+IR|+[S]

dx B" (x) [E/ERI[E;Es] ————.
K|+ Rl +]SD! kB (x) [E;ER][E,Es] SExoE ok

Note that Q2 = 0 follows from the associativity of the star product. Also notice that
the principal part of 2 is the standard quantization of

~ - A (RN
Sg = /; Zﬂldxt +E Z Hll(x)ﬂtﬂ/ N
i=1

i,j=1
where

o BY — BT xlax —xJxxl p
nl] = 7 = 7 =7Tl‘] +O(h)
—1 —1
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Sketch of the proof. The main remark is that the propagator in a boundary face near
the boundary is Kontsevich’s propagator. To see this recall that the propagator on a
closed two-manifold M restricts to the boundary dC2(M) = ST M, with ST denoting
the sphere bundle of the tangent bundle, to a global angular form y. By choosing a
Riemannian metric, we may view STM as O(M) Xs0(2) S! where O denotes the
orthogonal frame bundle. The pullback of y to O (M) x S! is w — 6, where w is the
normalized invariant volume form on S' and 6 some metric connection (regarded as
an s0(2)-valued 1-form on O(M)). The propagator for a manifold with boundary is
constructed by the method of image charges, see “Appendix B”. Hence, 6 drops out and
w gets replaced by Kontsevich’s propagator (notice that in higher dimension connection
dependent terms in the propagator survive).

We use the following convention: edges in the graph are oriented pointing from the
n-vertex to the X-vertex.

In the E-representation we have arrows pointing to the boundary and the bulk vertices
have two outgoing arrows. If we have n bulk vertices and m boundary vertices, then the
form degree is 2n, whereas the dimension is 2n + m — 2. Since the propagators do not
depend on boundary variables, we must have equality between dimension and degree
for the integral not to vanish: hence, m = 2. The resulting graphs are the same as
in Kontsevich’s star product. The edges that leave the graph do either correspond to
derivatives of the coefficients or get directly attached to a boundary vertex. O

To deal with the X-representation, we have to consider graphs on the upper half
plane with opposite boundary conditions as in [19]. These boundary conditions have
been considered in [20]. In the present setting, we define

1 i 9lkl
A:} —— 00,0 -
& o K K7 ) 30k

where K is a multi-index and the 0s are the coordinates on R"[1]. Since 7 is Poisson, 77
is a MC element in the graded Lie algebra of multivector fields on R"[1]. The Poisson
sigma model on the upper half plane with the boundary conditions as in [20] produces
a (curved) Aqo-structure on C° (R [1])[[iA]1[(i%) '] that quantizes 7. We write

W@ k) = Gidadia+ Y Ap g 010y

1.0y

1 (ih)*! . . . .
=it t—o D 007 By () 91y 0 i+ O,
T djiy.i
where [y, ..., I} are multi-indices and i, j, i1, ..., i; are indices, and Ay, = 0 if

|I.] = 0 for some r. Derivatives with an upper (multi)index refer to the 6-coordinates:
' = 3%," Note that Ay, j, is a function of 6 (and of the background x).

Lemma 4.26. In the X-representation, we have
(R L= (14T D+

o0
1
Q=Qy— —/
i) X QLRI IRD

1...IxR1...Ry,

SILIHIR -+ Ry
SXLSXRI ... XK

.8LA11“'1"‘9:0 [Xllle] L [XIkXRk]
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Note that 2 = 0 follows from the A.-relations.

Sketch of the proof. The first part of the proof of Lemma 4.25 carries over. For the second
part, specific for the chosen representation, we just have to observe that the graphs we
obtain are those appearing in [20] to define the (curved) A o-structure. O

4.8.1. Example. Consider M the disk, 7r a constant Poisson structure and 9; M = oM =
Sl ie., we work in E-representation. We denote by z and z* the coefficients, in R”, for
the residual fields. The effective action is easily computed as

eff(Ezz)—Z/ iz +—Z ”/ i E; ¢ myE; +Zn”+/ iT
i 1 Ca(S 1) 1

J= ij=
where T € Q!(S!) is the result of the integral over the bulk vertex of the graph with
one bulk vertex connected to one boundary vertex and ¢ € QO(CL(Sh) is the result
of the integral over the bulk vertex of the graph with one bulk vertex connected to two
boundary vertices. Notice that f g1 T = 1and that ¢ is a propagator for S' satisfying

d¢ = n{t — ny 7. Itis not difficult to check that e g Sl( 220 is (%A + Q)-closed with

Q:/ 1thE +-Zn E,E;

4.8.2. The deformation quantization of the relational symplectic groupoid. In the appli-
cations to deformation quantization [19,20,40] one imposes boundary conditions, for
example y = 0 if no branes are present.

Let D, denote the disk with the boundary S' split into 2n intervals I intersecting
only at the end points and with the boundary condition = 0 on alternating intervals.
The remaining n intervals are free, so the space of boundary fields is -7:13),, = (]—"}")" with

Fl=Q"(H@R" @ Q) ® (RM*[1],

with Q8(7) denoting the subcomplex of forms whose restriction to the end points is
zero. We will denote by H the vector space that quantizes .7-'1a in one of the two usual
polarizations.

‘We may then view the state m, associated to D3 perturbing around a constant solution
X = x as a linear map ‘H ® H — 'H. There are two inequivalent ways to cut Dy
into gluings of two Ds3s. From this we see that m, defines an associative structure in
the (52A + 2)-cohomology for Dy4. This provides a way of defining the deformation
quantization of the relational symplectic groupoid of [18].

To compare this result with the deformation quantization of the Poisson manifold
W, we have to consider also Di. We view the state o, associated to it as a linear
map H — CJ[e]], with € = ih/2. If f is a function on W, we may also take the
expectation value of f (X (ug)) where ug is a point in the interior of the interval with
the boundary condition. We denote the result by t, f. We may view 7, as a linear map
C*® (W) ® C[[e]] — H. Kontsevich’s star product is then obtained by composition:

frg(x) =ox(my(ty f ® 128)).
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Remark 4.27. Notice that the classical field X on the boundary defines a path in the target
W. Thus, if we work in the X-representation, the degree zero part of H is Fun(PW) ®
Cl[e]l, where Fun(P W) denotes a convenient space of functions on the path space PW
of W. There is a canonical inclusion ¢(: W — P W that maps a point to a constant map
with that value. We may regard o as a deformation of ¢*: Fun(P W) — C*(W). Given
v e Q1) with [, v =1, wealsohaveamap p: PW — W, X > [, Xv. We may then
regard T as a deformation of p*: C°°(W) — Fun(P W) with v the result of integrating
the free boundary vertex of the graph with one edge joining the free boundary vertex to
uo.
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Appendix A. The Hodge Decomposition for Manifolds with Boundary

In this Appendix we describe a form of Hodge decomposition for manifolds with bound-
ary that in particular shows that (3.9) is a gauge fixing. In this section M is a smooth
compact Riemannian manifold with boundary, with the metric having product structure
near the boundary (cf. Footnote 28). We denote by * the Hodge operator and by d*
the corresponding adjoint of the de Rham differential. We call a form ultra-harmonic

if it closed with respect to both d and d*.*! We denote by %.(M) the space of
ultra-harmonic forms on M.

A.l. Ultra-Dirichlet and Ultra-Neumann forms. For the following construction we need
arefinement of the notion of Dirichlet and Neumann forms. Let M be a compact manifold
with boundary d M. We fix a given boundary component 9; M.

Definition A.1. We say that a differential form p on M is ultra-Dirichlet relative to 9; M
if the pullbacks to 9; M of all the even normal derivatives of u and the pullbacks of all the
odd normal derivatives of *u vanish. Similarly, we say that u is ultra-Neumann relative
to 9; M if the pullbacks to d; M of all the even normal derivatives of xu and the pullbacks
of all the odd normal derivatives of u vanish. We denote by 91.31‘ (M) and by Ql%” (M)
the spaces of ultra-Dirichlet and ultra-Neumann forms, respectively. Notice that they are
subcomplexes both for d and for d*.*?

Near the boundary component d; M, we can write a form p as
n=«a+Adt,

where ¢ is the normal coordinate, and o and A are ¢t-dependent forms on 9; M. With
this notation, w is ultra-Dirichlet if and only if (%)T ,o = Oforn =0,2,4,...and
=l
41 Notice that this implies that the form is harmonic, but, in the presence of a boundary, this is a stronger
condition.
42 This property relies on having a product metric near the boundary.



696 A. S. Cattaneo, P. Mnev, N. Reshetikhin

(%)" A =0forn =1,3,5,....Itis ultra-Neumann if and only if (%)'lo A = 0 for

lr=0 le

n=20,2,4,...and (él—[)‘ri_o a=0forn=1,3,5,....In the following we are going to

need the following formulae:

dpu = d'a+ (@ +d'1)de, (A.1)
w = * A+ (x'o)dr, (A.2)
= (dYa + 1) + (d¥0)ds, (A.3)

where d’ is the de Rham differential on 9; M, %’ is the Hodge operator for the induced
metric, d* is the formal adjoint of d’, and the dot denotes the derivative with respect to
t. These formulae immediately imply the following

Lemma A.2. An ultra-harmonic Dirichlet form is ultra-Dirichlet and an ultra-harmonic
Neumann form is ultra-Neumann.

With a bit more work, we also have the following

Lemma A.3. Fix a neighborhood U; of a boundary component 3; M. Let 1 € QF(M)
for some 0 < k < d. The following statements hold:

(1) Ifdp = 0O, then thereisa v € Qlf)l_.l with support in U; such that @ — dv € Q%l_.

Moreover,

(a)ifue QNl, then dv € Q{ih

(b) ifn € QDl, then one can choose v as above such that in addition p — dv € Q%i
(2) If d*u = O, then thereisa v € Q’Iif;l with support in U; such that u — d*v € Qkﬁl_.

Moreover,

: k k .
(@) if u € Qpy;, then d*v € Q,;
(b) ifu € Qllih., then one can choose v as above such that in addition u — d*v € Q%i

Proof. For (1), we pick a t-dependent form y on 9; M to be determined below. We pull
it back to a neighborhood of 9; M and multiply it by a bump function supported in U;
and equal to 1 in a neighborhood of 9; M. This will define v. In the latter neighborhood
we have dv =d'y + ydt, sou —dv = (@ —d'y) + (A — p)dr =: &’ + A'dr. This shows
that we can choose y so that A’ = 0. Since u is closed, this automatically implies that
&' = 0. In particular, this shows that u —dv € Qg;. This immediately implies (1a). If u
is Dirichlet, then «|;—9 = 0. By choosing y with y|;—o = 0, we get o’|;—¢9 = 0 which,
together with ¢’ = 0, implies that &’ = 0. In conclusion, u — dv vanishes in a whole
neighborhood of 9; M and in particular is ultra-Dirichlet.

Statement (2) follows from (1) by applying Hodge star % : 2°* — Q7= to all objects
and renaming *u — W, *v > v, k+—>d —k. O

Now, as in Sect. 3, we split the boundary of M into two disjoint components d; M and
d> M. The above Lemma can be used in a neighborhood of each boundary component.
In particular, we may choose the neighborhoods U; and U to be disjoint. We thus get
isomorphisms

HE, 5,(M) = H*(M, M) = H,(M), (A4a)

HE, 5, (M) =~ H*(M, 91 M) = Hg, (M), (A.4b)
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with HNl o (M) the de Rham cohomology of Q' (M) N SZ' (M) and H.

de Rham cohomology of Q% (M) N 23, (M).43

N2 Dl(M) the

A.2. Doubling the manifold (twice). Pick a second copy of M with opposite orientation
and glue it to M along 9y M. This defines a new compact Riemannian manifold with
boundary, which we denote by M’. On this manifold we can define an (orientation
reversing) involution S; that maps a point in one copy of M to the same point in the
other copy.

We now repeat the operation with M’ by gluing it to a second copy of itself with opposite
orientation along the whole boundary. We now get a compact closed Riemannian mani-
fold M"”. We can extend the involution S to it, but we can also define a new (orientation
reversing) involution S that maps a point in one copy of M’ to the same point in the
other copy. Notice that, by construction, the metric on M” is invariant under S; and S.
As a consequence, pullbacks on differential forms, S]k and Si“, anticommute with % and
commute with d, and hence also commute with d*.

We denote by Q'e 5 (M") the (d, d*)-subcomplex** of forms that are even with respect

to S} and odd W1th respect to S3. Similarly, we denote by Q% ¢, (M "y the (d, d*)-sub-
2°71

complex of forms that are even with respect to S5 and odd with respect to S}. Setting
QN B, M) = QI%H M)n Q]'Sj (M),i # jin{l, 2}, we have the following isomorphisms

of (d, d*)-complexes:
M) — Q’e SO(M”)
(M) > Qo (M),

q12 - Nl D2
921 - N2 bi

which are obtained by extending the differential forms from M to M”. Thanks to (A.4),
we then get the isomorphisms
H3 (M) ~ gf,sg(MN) = Harmgfgsg(M”), (A.5a)
HS (M) ~ S.§>510(MN) = Harm};isf(M”), (A.5b)

where Harm® denotes the space of harmonic forms and we have used Hodge’s theorem
on M". Notice that, by the g;;’s, Harm$ Se.s9 (M") and Harm? S¢.50 (M) are the subspaces

of ultra-Harmonic forms in Qp, (M) and Q D1 (M), respectlvely. More precisely,

o closed
2]1.52
(M) <~ 132 (M) sends a cohomology class

43 1n the case of (A.4a), the map iy :
e closed
QD2

L] ic 1 H o1 5.
Nl D2(M) — Hp, (M) is induced by the inclusion i :

while the map in the opposite direction j: Nl B2

o closed e closed
[n]of p € Qpyy to the class of the form u — dv € QNl b2

H2 (M). These two maps are obviously mutually inverse. One point that requires a comment is that j is

NI, D2
well-defined (or, equivalently, that i is mJectlve) ifa € Q% (M) isexact,i.e.a = dBwithB € "El (M),

constructed using (1) of Lemma A.3, in

N1,D2
then one can find another primitive y € ﬁl ﬁ (M) such that @ = dy. To construct such y, choose a smooth
map ®: [0, I]x M — M suchthat &y = 1dM, @ the identity on d M for any = € [0, 1], and such that normal

derivatives of @1 of all orders vanish on the boundary. Then we construct the primitive as y = fO d*Fa+ <I>*1< B;
it satisfies the required boundary conditions. The second isomorphism (A.4b) is constructed similarly.

“ By a (d, d*)-complex we simply mean a Z-graded vector space which is simultaneously a cochain complex
with respect to d and a chain complex with respect to d*. Since d and d* do not commute, this is obviously
not a bi-complex.
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qpy (Harm, o0 (M")) = Harmy; py (M), (A.62)
q{ll (Harmgg’sf M) = Harmy, p; (M). (A.6b)

Lemma A 4. Fix two integers 0 < k,l < d satisfying k + 1 = d. Then the symplectic
orthogonal of

(d* Q& (M) Nk (M)
L= D
@ Qi () nal, M)

in Q5 (M) @ QL, (M) is

/\k

Harmy, p; (M) @ (d*Q&5H (M) N Q% (M)
®

/\l

Harmy, p, (M) & (d*Ql+1 (M) N p2(M).

Proof. We have to prove that § € ! D2 (M) satlsﬁes Sy B yBa = 0 for every a €
(d*QksH (M) N QK (M) if and only if B € g1, (Harmse SO(M”)) ® (@l (M) n
Q{DZ(M ). Similarly, we have to prove that o € Qk 1(M ) satisfies f y Ba =0 for every
B e (d*Q! (M))NQL, (M) ifand only if o € g5, (Harm M) @ (d* Q& (M))N
Qk,(M).

We prove the first statement only, as the proof of the second is identical (by exchanging
the role of the boundary indices 1 and 2, and interchanging k and /). We start with the
(easier) “if” part. We write « = d*y with y € QII‘\IE] (M) and d*y € 52]]51 (M). Up to
sign, we have that fM B« is equal to fM (xB)d * y. Since d*B = 0, this is equal to the
boundary term which, up to a sign, is | ap (8) (xy). This boundary term vanishes since
y € Q&5 (M) and B € Q4 (M).

‘We now have to prove the ¢ only if” part Writingw = d*y, we have that f y*B)dxy =0
forevery y € Qk+1 (M) with d*y e QF b1 (M). In particular, we may take y to be a bump
form near any pomt in the bulk and vanishing on the boundary (so that we can integrate
by parts). This implies

S"’,Sf(

d*g = 0.

This in turns implies [;,,(xf) (xy) = 0 for every y as above. Since y € Qk” (M), we
actually have /. o u(kB) (xy) = 0 for every y as above. If, in a nelghborhood of 91 M,
we write y as o + Adz, we get, as in (A.3), d*y = (d¥o + 1) + (d*A)dz. The condition
d*y € QF b1 (M) implies that d*'o + A vanishes on 8; M, but this puts no condition on the
restriction *'A of *y to ;M. As a consequence, we get that *8 must vanish on 9; M,
1.e.,

B e QM)

To summarize, we now know that d*8 = 0 and 8 € Qf\l 1.D2" Thanks to Lemma A.3,
part (2), picking v approprlately near each boundary component, we conclude that there
isav e QNllNz with d*v € QDZ(M) such that 8’ := B — d*v belongs to QN] D2(M)'

Soqgn(B) € Q! e 59 (M") and d*q12(B8") = 0. By the Hodge decomposition theorem on
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M" (which has no boundary), we get g12(8’) € HarmlST’SE, M ® d*QlS?ESS(M”) and

M")) & d*QE1 . (M) and, in turn,

I —1
hence 8" € g, (Harm N

1

s;’,sg(
Beap (Harmlslg, s (M) @ (d* (N 2 (M) + Q] 5, (M))) N (M)
Cyq;y (Harmgf’ 5 (M) ® (d* QR (M) N QL (M).

A.3. The Hodge propagator.

A.3.1. Strong and weak Hodge decompositions

Definition A.5. We say that a cochain complex of real (possibly, infinite-dimensional)
vector spaces (V*, d) admits a strong Hodge decomposition if it is equipped with a
positive inner product (,): V/ ® V/ — R, d has an adjoint d*: V* — V*~! with

respect to (, ) and V*® splits as a direct sum of eigenspaces of the Laplacian Apogge =
dd* +d*d: V* — V*°. As aconsequence, V* splits as

Ve = V]-.Iarm EBd(V'_l) o d*(vo+l)

with V3

Harm = Ker AHodge 2 H*® (V) the harmonic representatives of cohomology.

Definition A.6. For a cochain complex (W*®, d), we call a weak Hodge decomposition
a decomposition of the form

W = (H*(W)) @d(W* ) @ K(W*H) (A7)

where (: H*(W) — W* is achoice of representatives of cohomology, K : W* — We*~!
is a linear map (the chain contraction) satisfying

dK+Kd=id—top, Kot=poK =0
with p: W® — H*(W) a choice of projection onto cohomology.

To a strong Hodge decomposition of V*®, one can canonically associate the data of
the weak Hodge decomposition of V*, where ¢ represents the cohomology class by a
harmonic cochain, p takes the cohomology class of the orthogonal projection of the
input cochain onto harmonic cochains, and the chain contraction is given by

KHodge = d*/(AHodge + PHarm) (A.8)

where Pyarm = ¢ o p is the orthogonal projection onto harmonic cochains.
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A.3.2. The hierarchy of boundary conditions on differential forms. Returning to the
setting of a Riemannian manifold M with boundary 0M = ;M U 9, M, consider the
tower of inclusions

Qp (M) D QY o (M) D QP apsa (M) D Q% o, (M). (A9)

D1,N2
Here, following [28,47], we say that a form « satisfies relative boundary condition on
M if aly, i = d*als,m = 0 and satisfies absolute boundary condition on 9, M if
*a|g,m = *daly, i = 0. Similarly, we have a tower related to (A.9) by applying the
Hodge star to all terms:

Qpo (M) D Q1 o (M) D gt rein (M) D Q2% 5, (M). (A.10)

Note that only the rightmost terms in (A.9,A.10) are closed with respect to d and d*.
Leftmost terms are closed with respect to d but not d*, and middle terms are closed with
respect to neither (in particular, they are not cochain complexes).

All the graded vector spaces in (A.9,A.10) are equipped with the Hodge inner product
(o, B) = fM o A#B.On QP po (M) the operators d and d* are mutually adjoint, i.e.
(da, B) = (a, d*B), and the spectral problem for the Laplacian is well-posed, however,
as pointed out above, these operators spoil the relative/absolute boundary conditions,
i.e. are not endomorphisms of Qr‘ell’ absa (M). Moreover, if o € Qr'ell,abs2(M ) (or even
in QI‘)I Nz(M )) is an eigenform of the Laplacian Agodge, then it is automatically in

(M).* The case of Q¢ (M) vs. Q% = (M) works analogously.

Dl N2 absl,rel N1,D2
A.3.3. The Hodge propagator. As follows from the discussion of Sects. A.2, A.3.2, the

complexes QD] Nz(M ) and QN] Dz(M ) possess a strong Hodge decomposition, whereas
all other terms of (A9,A.10) do not. On 91.31 ﬁz(M ) we construct the chain contraction
as in (A.8): ’

KDI,NZ

Hodge — d*/(AHodge + PHarm) Ql.)l NZ(M) — Q2 (M). (A.11)

DI, N2

Similarly, on Qm 5o We have the chain contraction

N1,D2 * . b
KHodge =d /(AHodge + PHarm)- Q’.ﬁl’ﬁz(M) - QNI DZ(M)
Being the inverse of an elliptic operator (composed with d*), the chain contractions
above are integral operators
D1.N2 N1,D2 /
KHOdge = (1)« (MHodge N 77;(_)), KHodge = (nl)*(nﬂodge A 77;(_))
45 Indeed, assume that & € QS],Nz(M) is an eigenform of Apodge With eigenvalue A. For i =
2
d—z with ¢ the normal coor-

dr
dinate near boundary. Thus, near 3; M we have « = ), 0(p) (ar COi(w(p)f) +br gm(w(p) )) +dt -

1,2, near 9; M the Laplacian decomposes as AHodge = AHodge,d; —

> 9517 S_l) (cx cos(w§ t) +dy sm(w(p l)t)) where sums are over the eigenforms O, of the boundary
i\

Laplacian on 9; M of degrees p and p — 1, respectively, with r, s the indices enumerating the boundary spec-

trum in these degrees. Denoting eigenvalues of the latter by 115, , for the (possibly, imaginary) frequencies
—1

M2, g;v)r _ (wgp ))2 +

o we have A = (o ,u(gp :D. Relative boundary condition on 9 M enforces

ar = dy = 0, which implies the hltra-Dirichlet condition; similarly, the absolute boundary condition on dp M
enforces by = ¢y = 0, which implies the ultra-Neumann condition.
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with integral kernels nHodge, Uf_lodge given by smooth (d — 1)-forms on the configuration

space of two points C2 (M). Since the complexes Q% ~ (M) and Q2% ~ (M) are dual

D1,K2 N1,D2
to each other by Poincaré pairing | v @A B, we have
T*NHodge = (— 1) Miodge (A.12)

where T : Cg(M) — CS(M) maps (x1, x2) — (x2, x1). Equation (A.12) implies that
NHodge Satisfies boundary conditions D1, N2 in the first argument and N1, D2 in the
second argument nHOdge satisfies the opposite boundary conditions: N1, D2 in the first

argument and D1, N2 in the second argument.

Definition A.7. We call the form nHodge € Qd-1 (Cg (M)) defined as above, i.e. as the
integral kernel of the chain contraction (A.11), the Hodge propagator on M.

This is the adaptation of the propagator of Axelrod—Singer [7,8] to manifolds with
boundary.

Finally, notice that one can use nHodge to define the chain contraction of the whole
complex 7, (M), given by the same formula Kxodge = (1)« (MHodge A 772*( )) (i.e.

we extend the domain of Kg;dlgez by relaxing the boundary conditions from D1, N2 to

D1). This defines a weak Hodge decomposition (A.7) of Qp, (M):

Qp; (M) = Harmp, (M) ® 4205, (M) @ d* Q%' nap,

im(d) im(KHodge)

Appendix B. Constructing the Propagator: “Soft” Method and the Method of Image
Charges

Recall that, if N is a closed, compact d-manifold, then it is possible to construct a
propagator ny on N as in [15,17,27].

Namely, one has first to choose an inclusion ¢ of H®*(N) into 2°(N). This determines
arepresentative of the Poincaré dual x of the diagonal A in N x N and, by restriction,
a representative ey of the Euler class of N:

XA:Z( Dddeetimiy N miyl,

N = Z(—l)dengx;'vxiN,
i

where 71 and ; are the projections from N x N to N, {x; N1 is the image under ¢ of a

basis of H*(N) and { X,N } is the image of the dual basis.

Next one picks a global angular form ¢ on the sphere bundle ST N such that d?
is the pullback of the representative of ey. By explicit construction, one can obtain a
(d — 1)-form o with the following properties:

doy = 7" xa,
Loy =0,

T*on = (—1)%oy,
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where 7 is the projection Co(N) — N x N, i3 is the inclusion map STN = 0C(N) —
Cy(N), and T is the 1nV01ut10n of C>(N) the sends (x, y) to (y, x).

It follows that ny := (—1)4~ oy is a propagator for the abelian BF theory on N.

We now want to use the above construction to get a propagator for the manifold with
boundary M by using a variant of the method of image charges. First we double it twice
to M" as in “Appendix A.2”. By using the involutions S| and S, defined there, we may
write

Q'(M//) _ Ef,sg(M//) ® Q.T,SQ(M//) ® Q.j’,SE(M//) ® Q.f,sg(M)’

and similarly in cohomology. Notice that, since S and S, are orientation reversing, an
S{ component is paired to an S component. We choose the embedding ¢: H*(M") —
Q°*(M") to respect this decomposition and construct a propagator 1~ accordingly. Next
we define

CIM"y = {(x.y) e M" x M" :x #y, S1(x) #y, x # S1(y). S1(x) # SH(»)}
as a subspace of Cg (M. We extend to é‘g (M") the involutions S; and S, as
S1(x, y) := ($1(x), ),
Sa(x, y) i= (x, S2(1)).

Finally, we denote by 7 the restriction of the propagator 1, to C g (M") and define n as
the extension to the compactification C» (M) of the restriction to C g (M) C ég (M") of

i =-S5 Szn+SlS217
It is readily verified that n is a propagator on M with respect to the embeddings of
H'(M 01 M) and H®*(M, 9, M) into 7, (M) and 7y, (M) (actually, 2 Dl Nz(M) and

N1 D2(M )) given by the following forms

M",89,8%
Xz =203 X; ,

= 2[ ,
X' MXM//,sf,sg
with ¢y the inclusion M — M".

Remark B.1. The Hodge propagator of “Appendix A.3” is a special case of this construc-
tion, corresponding to 1~ being the Hodge propagator on M”.

Remark B.2. (One boundary component) If we group all the boundary components of

M into 0\ M, so oM = {J, the formulae get simplified as follows. First, we have

the decomposition Q*(M') = Q$.(M') © Q%,(M"), and similarly in cohomology,
1 1

where M’ is the doubling of M defined in “Appendix A.2”. We choose the embed-
ding t: H*(M") — Q°*(M’) to respect this decomposition and construct a propagator
ny accordingly. Next we define

CIM') :={(x,y) e M x M :x #y, S1(x) # y}

as a subspace of CS(M "). We extend to ég(M ") the involution S; as

S1(x, y) i= (S1(x), y).
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Finally, we denote by 7 the restriction of the propagator 1, to C’g (M) and define n as
the extension to the compactification C> (M) of the restriction to CS(M ) C C‘g (M) of

i =i = 51

Again, it is readily verified that n is a propagator on M with respect to the embedding
of H*(M, 01 M) into Qp,, (M) (actually, Q%l(M )) given by the following forms

M/ SO
Ak 25
Xi = 2LMX,' s

i * 0
X = LMXM’,ST’

with ¢ the inclusion M < M.

Appendix C. Examples of Propagators

Example C.I (Interval with opposite polarization on the endpoints). Let M = [0, 1] be
an interval with coordinate 7. We set 9 M = {1}, oM = {0}. Then the space of residual
fields is empty Vs = 0 and the propagator is

() = -0 —n) € QCIM), D) (€.
. 1 x>0 . .
with ®(x) = 0 x<0 the step function (which we never have to evaluate at zero,

since the diagonal #; = #, is removed from the configuration space where 7 is defined).
The ®©-boundary condition (3.11) simply means that 1 (¢, #2) vanishes if either f; = 1
or t; = 0. The associated chain contraction of 1), (M) (which is an acyclic complex) is

1 1
K: f+gdt— /o n(t, n)g(t)dt = —/ g(h)dt. (C.2)
t

It satisfies dK + Kd = idgg (m), which is equivalent to dy = 0 accompanied by the
discontinuity condition
nt+0,1) —n—0,1t)=1. (C.3)

The propagator (C.1) is in fact unique and does indeed extend to the ASMF compacti-
fication, which simply amounts to attaching boundary strata {(r + 0,¢) | € [0, 1]} and
{(t—0,1)|t €[0,1]} to CY.

Example C.2 (Interval with same polarization on the endpoints). Consider again the unit
interval, but now set 9 M = {0} U {1} and 3, M = &. Then the space of residual fields
is non-empty, since H51(M )y=R = ngz(M) (the other cohomology spaces vanish),
and we choose the basis [x1] = [df] € H (M) and [x'] = [1] € HJ,(M). Thus
Vi = R[k — 1] ® R[—k] and we write the residual fields asa = z! - d¢, b = zT - 1 with
coordinates z', z; of degrees k — 1 and —k, respectively. We have

n(t,n) =0 —n) —1 (C4)

which satisfies the equation dn = —d#; A 1, (cf. (3.17)), the discontinuity condition
(C.3) and ®-boundary condition 1 (0, t2) = n(1, 1) = 0.
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The case of the interval with both boundary points marked as d» works similarly. The
propagator in this case is:

n(t, ) =—0( —1n)+n. (C.5)

Example C.3 (Circle). Let M = § ! be a circle with coordinate ¢ € [0, 1] with points
t = 0 and t = 1 identified. The basis in cohomology is [xo] = [1] € HO(M), [x1] =
[dt] € H'(M); the Poincaré-dual basis is [x°] = [dr] € H (M), [x'1=[1] € HO(M).
Hence Vi = R[k] & R[k — 1] & R[—1 — k] & R[—k] and the residual fields are
a=7"1+zl-dt,b= z¢ - dt +z7 - 1 where the coordinates 0, 71, 23, z1 have degrees
k,k — 1, —1 — k, —k respectively. The propagator is:

1
nt,n) =0 —6) -+ — 3

it is periodic in #1, #» and moreover is a smooth function on the configuration space
Cg (S1). Tt also clearly satisfies the discontinuity condition (C.3) and the Eq. (3.17):
dn = —dty A 14 + 14 A dt. The propagator also satisfies the anti-symmetry property

n(r2, t1) = —n(t1, 22). (C.6)

Example C.4 (The 2-sphere). Let M = S? be the 2-sphere which we endow with a
complex coordinate z € C U {oo} via stereographic projection. The cohomology is
HO(M) = H*(M) = R, H' (M) = 0 and we choose the basis [xo] = [1] € H*(M),
[x1] = [u] € H*(M) with

1 idzAadz

= 2 A+ €7

uw

the SO (3)-invariant volume form on the sphere of total volume 1. The dual basis is
(X1 = (1] € H* (M), [x'] = [1] € H*(M). We have Vi = R[k] ® R[k — 2] ®
R[—1 — k] ® R[1 — k], with residual fieldsa = 2% - 1+z' - u,b =z - w+zf - I
coordinates z°, 7!, z(’;, zT have degrees k, k —2, —1 — k, 1 — k, respectively. The SO (3)-
invariant propagator is

1 11 +21222 ( (m—m) <Zz—z1 ))
= — d; ar — ) +dy ar - C.8
"= o (1+1z112) (1 +1z2/%) 1ate 1+2z122 2 e 1+ 2071 €5

where d| = dz; 3371 +dz; 8871’ d, = de% + d@a% are the de Rham differentials in

z1 and zp, respectively. It is smooth on the configuration space Cg(SZ) and extends
smoothly to the compactification by the tangent circle bundle of Sgiag, it satisfies (3.17):
dn = —pz A1l — 15, A g, Instead of the discontinuity property (C.3), we have the
property

2

lim Nz =z +e-e? ) =1.
e—0 $=0

Moreover, the propagator (C.8) is symmetric with respect to interchanging z; and z;:

T"n=n (C.9)
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where T: C(5?) — C9(5%) sends (z1, 22) + (22, 21), cf. (C.6). Note also that (C.8)
can be obtained as the S O (3)-invariant extension of the propagator with z, fixed to 0:4’

1
,O = — —
@0 = T

The properties above do not characterize n uniquely: one can add to (C.8) a term of
the form d ® (Dist(z1, z2)) where Dist(z1, z2) is the geodesic distance between the two
points with respect to the round metric on S and ® can be any smooth even function
onR/2nZ.

One can show that (C.8) is in fact the Hodge propagator (cf. “Appendix A.3”) corre-

sponding to the round metric on SZ, while shifting 7 by d ® (Dist(z1, z2)) destroys this
property.
Example C.5. Let M = D be a 2-disk, which we view as the unit disk in the complex
plane, or a hemisphere (via stereographic projection) {z € C : |z] < 1}.SetojM = oM
the boundary circle and 0, M = @. We choose the basis vector [xo] = [21] in Hl%l (M)
and the dual one [XO] = [1] in ng(M)- Here w is given by (C.7); note that p has
volume 1/2 on the hemisphere, hence the normalization of the class [2u]. The space of
residual fields is V) = R[k — 2] & R[1 — k]. The propagator can be constructed by the
method of “Appendix B” for the propagator (C.8) for the sphere:

d arg(z)). (C.10)

1(z1,22) = ng2(21, 22) — N2 (Z1 1, 22)

Here we denoted 742 the propagator (C.8). For the method of image charges, we are
using the involution z — z~! on $? which has the equator |z| = 1 as its locus of fixed
points.

If instead we assign the boundary circle as d, M, the relevant cohomology becomes
H]())l (M) = Span([1]), HI%Z(M) = Span([2u]); the space of residual fields becomes
Vu = R[k] & R[—1 — k]. The corresponding propagator is

n(z1, z22) = ns2(21, 22) — Ns2(21, 22_1)

Another example of a propagator on a disk was considered in [21].

C.1. Axial gauge on a cylinder. The following example comes from the construction
of axial gauge-fixing, in the sense of [14], a special case of the construction of tensor
product for induction data in homological perturbation theory [25,45].

The propagators we construct here are not smooth differential forms on the compact-
ified configuration space, but rather distributional forms on M x M. Properties (3.17)
and normalization of the integral over the (d — 1)-cycle given by one point spanning
an infinitesimal sphere around the other point, are replaced by the distributional identity

dn = 8ﬁ?diag + (=D (=X xi s 1. Here Sﬁ?diag is the distributional
d-form on M x M supported on the diagonal, the integral kernel of the identity map

QM) — Q*(M).

Example C.6 (Two distributional propagators on a cylinder). Let X be a closed (d — 1)-
dimensional manifold with [x(x);] a basis in H*(X), [sz)] the dual basis and ny €

46 Note that one cannot expect such a property for a propagator on a manifold with boundary, as there are
different boundary conditions on the two arguments.

47 Le. we recover the first term of (C.9) (with dy) by pulling back (C.10) by a zp-dependent Mobius
transformation Fz, : z = =2 (which is in the image of SO(3) in PSL(2, C)). The second term of (C.8)
is recovered by enforcing the symmetry (C.9).
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Q4=2(CY(X)) a propagator. Let M = ¥ x [0, 1], with assignments 3; M = = x {1},
oM = X x {0}. Then Hj, (M) = Hj,(M) = 0 and hence V) = 0. Then there are the
following two distributional propagators on M:

(1, 1), (2, 12)) = ot ) - 897D (x, x2), (C.1D
" (1, 1), (2, 1)) = =8t — 1) - (At — dia) - g (x1, x2)
+ Z(—1)("’1)'(ngX(Z)”l)n[o,l](ll, ) X)) - x(p(x2).  (C.12)

1
Here we denote by ¢ the coordinate on [0 1] and x stands for a point of X; §@=1 (x1, x2)
is the distributional (d — 1)-form 82 dlag’ no,11 = —©(t2 — 1) is the propagator (C.1).
The distributional propagators (C.11,C.12) are the integral kernels of the well-defined
chain contractions

K™ —idy ® Kjo.17, K" = Kz ®idjo.1] + Paex) ® K[o.1]

acting on smooth forms Q*(M) = Z}:o Q1 (2)®KQ/([0, 1]). Here Ppe(x) is the
projection from 2°(M) onto cohomology H®(X); Ky is the chain contraction for X
associated to the propagator ny via (3.18) and Ko 1 is the chain contraction (C.2) for
the interval. A propagator closely related to (C.12), for the case ¥ = R? (which is
non-compact and hence outside of the scope of our treatment), was used in [9,33,39]
for constructing knot invariants. Also note that in the case of ¥ being a point, both
propagators (C.11,C.12) become (C.1).

Example C.7 (Cylinder with the same polarization on the top and the base). As a modifi-
cation of Example C.6, wecantake M = X x [0, [JwithoM = oM = £ x{0} LU X x {1}
and »M = @. Then we have [(—1)?~!x(x); - df] a basis in H, (M) = H*"/(2)
and [sz)] the dual basis in HS;'(M) = HY*(X). The space of residual fields is

Vyu = H*(X)[k —1]1® H*(X)[d — k — 1]. The corresponding propagators are:

N (0, (2, 0)) = njg 1yt 1) - 897D (k1L x0) — diy - pp(x1 x),
(C.13)

" ((x1, 1), (x2, ) = —8(t1 — 1) - (dty — dBp) -z (x1, X2)
+ Y (=D desxemit Dy L (11, 1) - xemyi(x1) - Xy (X2). (C.14)
i

Here n[lo_ll] is the propagator (C.4).

The case of the opposite boundary conditions,i.e. b M = X x {0} U X x {1}, M = &,
works similarly. Now [x(x)] is the basis in H3;(M) = H*(X) and [df - x(’):)] is the
dual basis in ng_ ‘M) =H d_l_'(E). The corresponding space of residual fields is
Vyu = H*(2)[k] ® H*(2)[d — k — 2]. Formulae (C.13,C.14) become

7™ (xp, 1), (X2,t2))—77[0 1](t1,t2) 897D (x1, x2) + dp - s (x1, x2),
(C.15)
NN ((x1, 1), (X2, 1)) = —8(t1 — 1) - (At — d2) - s (x1, x2)
+ Y (=D @D et Dy BR (1, 1) - xemyi (01 - x{) (2. (C.16)

Here 77|20_,12| is the propagator (C.5).
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Appendix D. Gluing Formula for Propagators

In this Appendix we complement the discussion of gluing of states in abelian BF theory
in Sect. 3.6 by deriving the gluing formula for propagators, first for the convenient non-
minimal realization of the space of residual fields (the direct sum of spaces of residual
fields for the manifolds being glued), and then for the minimal (reduced) residual fields. In
the first case we implicitly use Fubini theorem for the relevant path integrals, representing
a path integral for the glued manifold M = M| Uy M as a triple integral: over fields on
M and M, with boundary conditions on the interface ¥ and over the boundary conditions
on X.*8 We verify by a direct computation that the resulting glued propagator does indeed
satisfy the defining properties of a propagator on M, as stated in Sect. 3.3.2,—Theorem
D.1. (Thus, using also the Mayer-Vietoris formula for torsions [58], one can prove a
posteriori the relevant case of Fubini theorem for path integrals.) Also, in [25] we give a
different derivation of the same gluing formula for propagators in the language of chain
contractions, using standard constructions of homological perturbation theory; from the
latter point of view, the desired properties of the propagator are satisfied automatically.

D.1. Expectation values in abelian BF theory. We expand the discussion in Sect. 3.5.
We are in particular interested in the expectation values of the fields A and B. In the
interior of M they do not differ from A and B, so for test forms y and u with support
away from 0 M, we have

</ vA) :=/ e%‘%’/ yA = (/ ya+<—1>d+<d*”'de“/ iy nﬂ§A> Um
M L M M Mx M
(/ Bu) :=/ e%SE/ Bu = (f bu — (—1)d7k+kd/ NTBnn§M> Um

M L M M HMxM

Next, we are interested in the expectation value of A and B located at two different points
(i.e., we assume the supports of y and u to be disjoint),

{ / yA / Bm:[(—l)"'degyih / Ty N
M M MxM
+</ J/a+(—1)d+‘d‘”‘degyf Ty nmy >
M Mxo M
(/ by — (_l)d—k+kd/ nl*Bnn;u)]@M.
M OMxM

This is related to the propagator by

. . 1 ( )ddegy B
g T = -
/MxM 1Y N Tor I / / M) z=z+ =A=B=0-

48 This kind of Fubini theorem for path integrals with insertions of local observables, also for more general
field theories, is the grounds for the gluing formula 2.36, and is expected to hold. It can be checked directly in
the framework of perturbation theory (e.g. for BF-like theories of Sect. 4) using the calculus of configuration
space integrals, cf. Remark 2.40.
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D.2. Gluing propagators for nonreduced residual fields. Using the discussion in
Sect. D.1, we can compute the propagator 7 € Q4=1(C2(M)) on M with the choice
Vu = Vum, X Vu, of residual fields described in Sect. 3.6.49

By yi € Q*(M)[d — k] and pu; € Q*(M)[k + 1],i = 1,2, we denote test forms with
support in the interior of M;. We recover the propagator by computing first, similarly to
what we did in (3.16), a “state” 77 by

/ Ty = _L e </ 71 (i Ay (Bu -)>
s AT Ty Ty, ik My TR

and then setting all the boundary and residual fields to zero. This way, we get

1 = 1|/ =B, =A,=B)=a;=b; =a,=b,=0-

Fori = j (where we assume the supports of y; and w; to be disjoint), we have

</ 7 (A3 Bui)) = (— 1 e / eh DT BEAT <f vif f Bim>.
MxM AT B M; M;

This yields fori = j =1,

{ / T AT Bre) = [ (- DM i Ty m T
MxM M xM;

+ (=1 tdezr ( / yia) + (=t ( / iy m 3A)
M M x (3 Mi1\X)

+/ Tyt mmiay — (—1)k+kd/ @Y1 P P wgkAz))
M| xX% M| xZx01 Mo

~

: < brui — (—1)d7k+kd/ 7By ﬂf/u) ] V.
M M x M

Similarly, fori = j = 2 we get,

([ atoamms @) = [0 [ ainmwati
MxM Max M

+(_1)d~(k+degy2) (/ 7/232 + (_1)d+(d—1)‘degy2/
M M,

([ bapa+ 1yt (- / 7B 02 75 12
M» (02 M2\E) x M3

* *
Y212 ﬂ2A2>
X 01 M2

~

+/ by nzﬂfu2+(—1)k+kd/ @ B1 pim p3m w;;u))] VM.
XXM DM xEXM>

As a consequence, if i = j, we simply get [\, v Vi TS i = [0 701 Vi 00 705 i
viz., the propagator 77 on M coincides with the propagator n; on M; when both arguments
are in M;.

49 This propagator may actually be discontinuous through ¥ (however the pullback to X is well-defined),
but this is not a problem. See also Sect. 4.3.
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For i # j, we have instead

<f nf‘(nA)nf(Buj))=(—1>d'<"+deg%>/ e%<—l>"’kszzzAF</ yiAi></ Bjuj).
MxM A M; M;

The simpler case is when i = 2, j = 1, for in this case the observables do not depend
on A, IB%?. By Sect. D.1 and by (3.28), we simply get

X RE
I’BZ

</ 7 (y2A)my (Bur))
MxM

— (_1)d‘(k+deg ¥2) </ yoan + (_1)d+(d—1).degyz[
M

* *
T Y2270, Az)
Mo x 01 M>

: ( biur — (—1)d_k+kd/ 7B m ﬂf#l) s
M, 0y My x My

This implies that 77', and hence 7 vanishes, when the first argument is on M, and the
second argument is on M.

Next, we come to the case i = | and j = 2. In this case the observables give nontrivial
extra contributions to the integration over A, IB%ZE. We get

( i (YA 5 (Bua)) = C1 + C2 + C4 + Cy
MxM

with

C1 = (- ey ( /M yiag + (- hdeen /M Tiim ni“M)
1

1x(01 M1\ %)

/ bwg—(—l)d‘k*’“’/ 7By m w5 ua | .
My (0 M2 \X) x My

Cy = (—1)d+dkedeg ) (/M ] iy mria — (_1)k+kdf

@'y pim pim @5 Ay
M| xExd; My

1X

: f bapy — (—1)dH+kd / 7By maiua | Vu.
My (I M\ ) x My

C3 = (mpdirdden ( /M yiay + (-HTDdeen /M L8] mn&*M)
1

1 %01 M1\X)
. *p * 1 k+kd *B * * * it
by +(—1) @By pim pym oz | Y.
X x My M| xEXxMy

Cy = (—1)PHkdr@=Ddegy) [ih/ @iy pim pim @312
M| xXxMy

+(—Dk (/ iy mmyay — (*l)k”‘d/ @iy pim pym w3*A2>
M xXZ M| xX %31 My
. *h * 1 k+kd By p* * * T
by nymyup +(=1) @By pim pym oz | | ¥m-
X xMy O M xEx My
This finally implies

/ TN i e = (—1)dHd=Ddeen / @iy pEm Pine @ .
MxM M xXx My
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Fig. 2. Gluing of propagators: first case

In other words, when the first argument is on M and the second on M5, the propagator
7 is simply obtained by taking the product of n; and 7, and integrating out the middle
point over X.

D.3. The glued propagator for reduced residual fields. We now do the final step in
computing the propagator on M for the reduced space of residual fields Vs of (3.31).
Namely, we define 77 as a (d — 1)-form on Cp(M) by

. 1 i
/ nf‘ymn;uj:v——(/ ( nf(yiA)nz‘(Bum)\_
MxM Ty h < Jmxm =0

Notice that this simply amounts to integrating out the redshirt variables a3 and b*. Since
we put all remaining residual fields and all boundary fields to zero, the only summands
which contribute are those which contain no redshirt variables and those that contain
exactly one a5 and one b{* variables. By Gaussian integration, the latter terms produce a

pairing by the inverse V of the matrix A defined in (3.30). We then get the following:>°

n(x1, x2) = n1(x1, x2) — Z(—l)degxé V]’/

ij ye

ML X My (x2)  forxy, xp € My,
X

(D.1)
W1, x2) = mxn, x) — Yy (—1)*e v / Ko GO X] (v, x2)  for x1, x2 € My,
ij yeX
(D.2)
fx) = — Y (=DM 3 Xy () forxg € My, xy € My, (D.3)

ij

(x1, x2) = (—U"f . m @1, YNy, x2)
NS

+Z(—1)de“z:V}f / M@ )Xo D] (Dn2(z, x2) for x1 € My, x2€ Ma.
i yeX JzeX

(D.4)

Pictorially we can represent the four cases of gluing as in Figs. 2, 3, 4, 5. Our graphic
notations are as follows: propagators in the submanifolds are denoted by arrows, with the
convention that on the L.h.s. the propagator vanishes when its tail goes to the boundary,
whereas on the r.h.s it vanishes when its head goes to the boundary; the propagator in
the glued manifold is denoted by a point—dash arrow; a dashed line denotes cohomology
classes at its endpoints; finally, a bullet denotes a point on which we integrate.

50 We use notation n(x1, x2) for the value of a propagator at (x1, x2) € Cg (M) as an element of the exterior

power of the cotangent bundle: n(xy, xp) € Ad—1 T&l .XZ)Cg(M) = @i;é(/\l’ Tx*] M)® (/\d*]*PT;‘2 M).
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Fig. 5. Gluing of propagators: fourth case

The above construction shows heuristically that 77 should be a propagator. This is indeed
the case:

Theorem D.1. Form 11 € Qd_l(Cg(M)) defined by (D.1-D.4) is a propagator on M.

Proof. The property lime_,¢ fn cgd—1 1(x1, x2) = 1, where sz_él is the sphere of radius
X).€ s

€ (w.r.t. some fixed metric) centered at x, follows immediately from the respective prop-
erty of propagators 11 and 7;. Similarly, one has lim,_, ¢ fxz cgd-1 n(x1, x2) = (—=D4.
Xl N3

Let us check the property (3.17) for 7. For x1, x, € Mj, we have from (D.1) the
following:

v J . .
dif(xr, x2) = dii(x1, x2) — Y _ (= D)*Ex V! / dn1 Ger, 9)58 )y (x2)
ij yeX

_ . _ . J .
— Z(_l)d 1+ddegx|1X”(xl)Xll(x2) _ ZZ(_I)d I+d-deg x17+deg xj V;
1

i1
></Exlz(xl)x{(y)xfi(y)xfx(xz)

= Y (=D ey ()

1
=YY (e VAL x5 ) (2)
- N
ij 1 M
J
= D (=D () X (x). (D.5)

o
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Here 1, a are the indices for the bases in Hy;(M1), Hy;(M1)° and the dual bases in
HS,(My), HS, (My) (cf. Sect. 3.6.1 for notations). Here we used the property (3.17)
for 171 and the orthogonality of pullbacks to % of classes from Hg, (M)’ to pullbacks
of classes from HJ3; (M>)*. By a similar computation, for x, x, € M> we obtain from
(D.2) that

difer,x2) = 3 (=D ) () (D.6)
B

where B is an index for the basis in Hj, (M>)' and the dual one in Hp,(M>)°. For the
case x| € Ma, x» € My, (D.3) implies immediately that

di(x1, x2) = 0. (D.7)

Lastly, for x; € M1, xo € M3, we have from (D.4) the following:

dﬁ(x17x2)=/ —dn1 (x1, ) m(y, x2) + (= D1 (x1, y) dna (v, x2)
yex

£ e / / A (o1, O (D2, 32)
ij yEX JzeX

(L VX)X (2)dna(z, x2)
= Z(—l)d’fdeg"faxfa(xl) (/ X (ma(y, x2)>
o yex

- Z(—l)d'degxéﬂ (/ § ni(xi, y)xéﬁ(y)> Xh(x2). (D.8)
B e

Here we are replacing dn, dny everywhere with the respective r.h.s. of (3.17); cancel-
lation of redshirt cohomology classes works similarly to (D.5).

Finally, notice that (D.5-D.8) assembles into property (3.17) for 77 on the glued man-
ifold M, with a particular choice of representatives of cohomology of M. Namely, for
HS, (M) ~ HS,(M)° & HS,(M>)', we extend representatives x;, (x) by zero into M
and we extend representatives x; 8 (x) as (—=1)? f vex M, Y) X3 8 (y) into M (note that
this extension, though being generally non-smooth, has the property of having well-
defined pullback to X). Similarly, for HS,(M) ~ HS,(M1) @ HS,(M>)°, we extend
representatives Xfo (x) by zero into My, while representatives x{,(x) are extended into
M; as —(—1)4Ddegx Jyes x5m2(y, x). (Cf. the construction of residual fields &, b
on M in Sect. 3.6.1 and Remark 3.9).

The fact that 77 has well-defined pull-back as one of the points restricts to ¥ (and thus
that d7 does not contain a delta-function on ) follows from computing respective limits
of (D.1-D.4) as one of the points approaches a point on X. For this one uses that, for
« € Q*(M)),onehaslim,, ,, —(—1)@=Ddeee [~ a(y)ny(y, x) = a(xo) where xo €
Y. and likewise for B € Q°(M>;) one has limx_mo(—l)d fyeZ ni(x, Y)B(y) = B(xo).
(These properties follow from the normalization of the integral over a small sphere for
n1, 2, cf. Sect. 3.3.2).

This finishes the proof. O
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Appendix E. Examples of Gluing of Propagators

Example E.1. Let M1 = [0, 1], M> = [1, 2] be two intervals. We glue the right endpoint
of M to the left endpoint of M, to form M = M; Uy My = [0,2]. We denote
the coordinate on M by ¢t € [0,2]. We set 01 M| = .My = {1} = X, o.M = {0},
01 M> = {2}. All the relevant cohomology (and hence spaces of residual fields) vanish for
My, M>, M. Using the propagator (C.1) for M, M5, we obtain by the gluing construction
of “Appendix D” the following propagator on M:

ni(t1, 1) if 11,6 €10,1],
St 1) = n2(t1, 12) if t,0€[l,2], -1 ifn <,
ML) =19 if 1 e[l,2], bel0,1] — )0 ift >t

=@, ) -m(, ) if 1 €[0,1], n €[l,2],
This is precisely the propagator (C.1) for the glued interval.

Example E.2. In the setting of Example E.1, let us change the labelling of boundary
to oyM; = {0} U {1}, oM = & = 1Mz, >M> = {1} U {2}. The glued interval
M = [0,2] has oM = {0}, oM = {2}. Here one has residual fields both on M| and
M, (cf. Example C.2), but no residual fields on M. Thus the whole space Vi, & Vi,
consists of redshirt residual fields. The relevant cohomology is:

Hp, (M) = Span([dr]), HJ (M>) = Span( [1]),
—— —

[x10] [x20]
HS,(My) = Span( [11), Hp,(M3) = Span([dr]).

—— ——

x)1 [x3

We also have L; = L = L, = L; = HO({1}) = R - 1. For the propagator on M
we take (C.4) and on M, we take (C.5) where we make the shift #1 » — #1 2 — I (since
now we parametrize My by the coordinate ¢ € [1, 2]), i.e. n1(t;, ) = O(t) — ) — 11

for 11,10 € [0, 1], m(t1.12) = —O(ta — 1) + 12 — 1 for 11, 1, € [1,2]. Formulae of
“Appendix D.3” yield:
m(tr, 12) — (i, Dxao (D x{ (12) if 1,1 €0, 1],
F(th 1) = ma(t, 12) — x20(t) x V(D2 (1, 12) if 1.0 €[l 2].
' x20(t1) xV(12) it 1 e[1,2], 1 € [0, 1],

=i, D) - m (1 ) + 01, Dxao(Wx)(Dna(1, 1) if 11 €[0,1], 1 €[1,2]

Ot — 1) ift,n e|0,1],
_ O —n) ifn,nell,2], _ B
=11 i1 e[l.2]. hel0.1], - Ot — 1) for 115 €[0,2].

0 if 1 €[0,1], © €[1,2]

Thus we obtain exactly the propagator (C.1), where we have to make a change of coor-
dinates ¢ +— 2 — 2t to switch from [0, 1] with 2 — 1 boundary condition to [0, 2] with
1 — 2 boundary condition.

Example E.3. Consider gluing two intervals as in Example E.2 but in addition let us
identify the points = 0 and # = 2. Thus we are gluing a circle M = S' out of two
intervals My = [0, 1], M, = [1, 2] along two points ¥ = {0} U {1}. Then we have no
redshirt residual fields, Vi = Vy, @ Vu,, with Vi, Vi, as in Example E.2. For the
glued propagator, we obtain:
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n(t, ) if #,n €]0,1],
Nt ) = g if 1 e[l.2], 1 e[0.1].

—n1(t1, Dna(1, 2) + 91 (t1, On2(0, 12) if £ € [0, 1], 12 € [1,2]
O —n)—n if 1,6 €[0,1],

Ot —h)+tr —2 if 1, €[1,2],

— 10 if t €[1,2], ©» € [0, 1],

—H+t—1 if t1 €[0,1], 1 €[1,2].

This does not coincide with the propagator of Example C.3 but is also a valid propagator
for the circle, corresponding to different representatives of cohomology of M = §'—the
representatives obtained from the gluing procedure for residual fields of Sect. 3.6.1:

%o = =it Do) + 71, 0)x20(2) on My _

X20 on M ’
v _ Jxio on My o 0 [0 on M o
=10 on wy =OU-0-di } _{XS on M, =@U-D-dr.
)\61: X? on M] -1

X Om22, 1) — x(m(1,1) on Mj

With these representatives, we have Eq. (3.17) for 77. Note that these representatives are
not continuous (but still closed). Also, the propagator 7 is continuous (for ¢; # #;) but
not differentiable when one of the points hit ¥ = {0} u {1}.

E. 1. Attaching a cylinder with axial gauge-fixing.

Example E.4 (Attaching a cylinder with opposite polarizations on top and bottom). Let
M> be some d-manifold and ¥ C 9, M a boundary component (or a union of several
boundary components). Set M| = X x [0, 1] with 9 M| = ¥ x {1} (the gluing interface)
and 9, M| = ¥ x {0}. Assume that on M> we have fixed a basis in cohomology [x2i] €
HJ, (M) together with its dual [ xé] € H]Siz_ *(M>) and fixed a propagator 7. Attaching
the cylinder (which has V), = 0) does not change cohomology, so Vi = Vi, ; there are
no redshirt residual fields. Denote by ¢ : M — M, the deformation retraction of M onto
M> which is constant on M3 and collapses the cylinder M} = ¥ x [0, 1] onto the top
% x {1}. Choosing the gauge-fixing of Example C.6, we have the glued representatives
of cohomology x; = ¢* x2i, X' = ¢* X, (the latter are identically zero on M), for both
choices of the propagator on M. If we take n; = ™! (C.11), for the glued propagator
we obtain

n(x1,x2) = n2(x1, x2), for x1,x2 € My,
A1, 1), (2. 10)) = =0t — 1) - 8“9V (1, y2), for (yi.1;) € T x [0, 1],
n(x1, (y2,12) =0, for (y2,) € X x[0,1], x1 € Mp,
(1, 1), x2) = m(y1, x2), for (y1,11) € X x [0,1], x2 € M>.
2112

(pxid)*n
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hor

Taking instead 1 = n"°", we obtain the glued propagator

n(x1, x2) = na(x1, x2,), for x1,x2 € My,
(1, 1), (02, 1)) = =8(t1 — 1) - (dty —dn) - nx(y1, y2)
- Z(—1)(d_1)'(deg’((2”+l)®(t2 — 1) X)Xz (32)s

1
for (y;, ;) € £ x [0, 1],
n(x1, (y2,12)) =0, for (y2,0) € ¥ x [0,1], x; € My,

B, 1), x2) = diy 5(1 — n)/ ns s Y)Y x2)
)

+ E X(Z)i()’l)'/ X(s) ) m(, x2),
: >
14

((@* Pye(5)t5,)®id) n2
for (y1,t1) € £ x [0, 1], x2 € Ms.

Here [ x(x)i] is some basis in H°*(X) and [X(iz)] the dual one; ¢y is the embedding of ¥
into M>, Pye(x) is the projection to the representatives of cohomology H*(X).

Example E.5 (Changing the polarization by attaching a cylinder). Let us change the setup
of Example E.4 by setting 01 M1 = X x {0} U ¥ x {1}. Le. we attach a cylinder with 1-1
boundary condition, which can be viewed as a way to change the boundary condition
on M, since ¥ C dpM; but ¥ x {0} C 9; M. In the notations of Sect. 3.6.1, we have
Li=H*X);, L, = L; C H*(X) is generally nontrivial. The glued cohomology is:

o e H._I(E)
Hpj (M) = H5 (M, Mp) =drt - L—2 @ ker 13,
H3,(M) = Hy(My, My) = 1, - Ly @ Ann 03(L>)
S—— e’
CHS, (M)

We have a generally non-empty space of redshirt residual fields:

x . CHN®) O HS, (M) \
Vit m, = (dt Lz@az(Lz))[k]@(lt i Annaz(L2)>[d k—1]

Choosing n; = ™ (C.13) as the propagator on M1, we obtain the following glued
propagator:

n(xr, x2)

= m(x1,xp) — Y (—=D)*Exi Vi /2 Ko 0 X1, (v’ x2). - for x1,x2 € My,
ij

(s 1), (y2, 1))
= Ot —t) — 1) -8 V(y1, y2) —dtr -z (1, y2)

=Y (e y (tlxzf- (y1)x1jx(yz)+dt1f):nz(yl,y/)xﬁ(y/)xfx(yz))
-~

for ](y,-, ) e X x|[0,1],
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n(xi, (y2, 12))

== Y (=D )X (2), for (2.1) € E x [0,1], x1 € M,
i,J

(i, 1), x2) = f1772()’1,xz)+dl1/ ns (v, YOm(y', x2)
5

= (=1)eEnivi (H/Zngi(yl)xfx(y/)nz(y/,X2)

i,j
+dn / N1 Y) x5 O X Om (Y, xz)) ,
YxX
for (y1,11) € £ x [0, 1], x2 € Ms.

Here we have chosen some basis [X{X] in H‘(E)/LzL and a basis [xz’;] in op(Ly) C
HS, (M>); V} are the matrix elements of the inverse matrix of A defined by (3.30).

o—1
The corresponding representatives of Hpj, (M) are extensions of HL—Z(E) - dt by

zero to M> and extensions of ker tp by zero to M;. For Hp,(M), we extend Lé‘ .
1; by the corresponding representatives of H(Mj, 9M>\¥) given by x*'(x) =
—(—=1)=Ddeex [y (y)n2(y', x). Elements of Ann 05(L) are extended by zero on
M;.

Next, if instead we choose 71 as nh"r (C.14), we obtain the following:

n(xy, x2)

= m(x1,x) — Y (=D)*EXI V] /E Koy DX GOM G x2), for x1,x0 € Mo,
ij
(1, 11), (32, 12))
= —4(t) — 1) - (dty —drp) - nx(y1, y2)
+ ) (=D leexmt ) @ — ) — 1) - xm)i ) - x(x)(2)
i
— 11 Yy (DT VI K (y)x{, (v2), for (yi,ti) € T x [0, 1],
i,J
n(xr, (y2. 1))
=— Y (=DPR0VE X x)xi, (), for (y2,12) € B x [0, 1], x; € My,
i,
(1, 1), x2)
=drn (1 — tl)/): s LY Im (Y x2) + 1 ZX(Z)I()’I) : /z ng)(y’)nz(y’,xz)
1

—11Z(—l)d‘degxzfvszxi(yl)/zXfx(y/)nz(y’,xz), for (y1,11)€ £ x[0, 11, xp€M,.
)

E.2. Gluing Kontsevich’s propagators on two half-planes. This example falls slightly
outside of the scope of our construction as the manifolds in question are non-compact,
but we find it otherwise instructive.
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LetIly = {z € C | Im(z) > 0}and I[1_ = {z € C | Im(z) < 0} be the upper and
lower halves of the complex plane. On I1, one has the Kontsevich’s propagator

1 zZ—w
nm, (2, w) = ~—darg - (E.1)
21 Z—w
and on IT_ one has
o 1
n_(z, w) = —nm, (W, z7) = ~—d arg (E.2)
2 Z—w

Here we regard the real line R C C as the 9;-boundary of IT; and d>-boundary of TT_,
which corresponds to boundary conditions nr, (z, w)|;=0 = nn_(z, w)|w=0 = 0.

Remark E.6. One canrecover the propagators (E. 1 ,E.2) from the Euclidean (SO (2) x R2-
invariant) propagator on the plane, ng2 (z, w) = 5~ s d arg(z —w), via the method of image
charges of “Appendix B”. Indeed, we have

N, (z, w) = nr2(z, w) — g2z, w)  for Im(z) >0, Im(w) >0
and
nn_(z, w) = np2(z, w) — nR2(z, w) for Im(z) <0, Im(w) < O.

Let us calculate the glued propagator 7 on the plane R? ~ C. In this example we
may regard T+ as disks relative to a point on the boundary ({oc} € TI4+) and C as
CP! relative to a point; the corresponding relative cohomology vanishes, so there are
no residual fields (neither before nor after gluing).

The non-trivial case is Im(z) > 0 and Im(w) < 0, then we calculate

n(z, w)=/ N, (2, X) Anm_(x, w)
xeR
1 7z —
- d. log =
272 R( =

+dxlog§ /\dwlog _w>
-

—w
x/\dxlogx
X X —

X —w

1 (( dz  dz )A (w—w) -dx
Q2m)? Jyer \\z2—x  Z—x (x —w)(x —w)

(z—2z)-dx ( dw dw ))
+ — A — —
x—2)(x—2) w—x wW-x

27i dz dz N dw dw
Q) \z—w Zz-w w—-z w-—2
i — 1
= —Ldlog % li) = —darg(z — w). (E.3)
I—w 7

Here the integral over x is computed straightforwardly by residues. Note that on the
r.h.s. of (E.3) we obtained twice the Euclidean propagator on the plane 2.
Thus, the full result for the glued propagator on the plane is:

s=darg &2 if Im(z) > 0, Im(w) > 0,
s=darg &2 if Im(z) <0, Im(w) <O,
0 if Im(z) <0, Im(w) > 0,
Ldarg(z —w) if Im(z) >0, Im(w) <0

n(z, w) =
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Remark E.7. Note that reversing the assignment for boundary conditions on T4 (i.e.
regarding R as d,I1; and as 0,I1_) yields a new glued propagator on the plane,
Nreversed (2, w) = 7(w, z). Therefore, applying to 7 the doubling trick of Sect. 4.3, we
obtain the symmetrized propagator on the plane

1. . 1
Nsym (2, w) = E("(Z’ w) +1n(w, 7)) = 2—d arg(z — w),
T

which is again the Euclidean propagator np2.

Appendix F. On Semi-classical BV Theories via Effective Actions

Here we outline the setup for perturbative quantization in formal neighborhoods of solu-
tions of equations of motion, done in a family over the body of the Euler—Lagrange
moduli space. Over every point of the moduli space we allow a hierarchy (a poset) of
“realizations”, and one can pass from “larger” to “smaller” realizations via BV pushfor-
wards. Thus, this setup has a version of Wilson’s renormalization flow (in a family over
the Euler—Lagrange moduli space) built into it. We also consider in detail a 1-dimensional
example with realizations associated to triangulations of a circle.

FE 1. General setup. We assume that a classical BV theory M — (F, Q, w, S) is fixed.
Let My = ELp/Q be the graded odd-symplectic Euler-Lagrange moduli space (see

[23] for details) and ./\/lﬁ,l;:o = EL)/Q its body, i.e. the set of gauge-equivalence
classes of (degree zero) solutions of Euler-Lagrange equations (in our notation, €L
is the graded zero locus of Q and E Ly, is its body; Q in the denominator stands for
passing to the quotient over the distribution induced by Q on the zero locus).

For M a space—time manifold, fix xo € E L, a solution of Euler-Lagrange equations.
Also, fix a “formal exponential map” ¢ (xo, ¢) from an open subset U C T, F containing
the origin to F, satisfying ¢ (xg, 0) = xo and d¢ (xo, ®)|(xy,0) = id: Ty F — TXO]-'.S]
For simplicity, we assume that ¢ has the “Darboux property”, i.e. that the 2-form
#(x0, ®)*w € Q2(U)_, is constant on U.

The oo-jetof Q at xp defines, via the map ¢, an Lo algebra (T, [—11F, {{,,}4>1) where [,
are the n-linear operations on T, [—1]F. Moreover, this algebra is cyclic, with invariant
(i.e. cyclic) inner product of degree —3 given by wxo.52 The data of this algebra are
related to the “linearization” of the action S at x( by

S(@(x0,0)) = S(xo) + Z wx0(9 (8, ,0))

where 6 € U C Ty, F is a tangent vector.

51 In the case when JF has linear structure, one natural choice is to set ¢ (xq, 6) = xo + 6.

2 Degree —3 comes about for the following reason. For V a Z-graded vector space, a degree —1 symplectic
form on V[1] corresponds to a degree —3 = —1 + 2(—1) inner product on V. Factor 2 appears because the
inner product is a binary operation; first —1 is the degree of the symplectic form and second —1 comes from
the shift from V[1]to V.
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We have a poset (more precisely, a downward directed category) R of deformation
retracts of the complex (7, [—1]F, [1) compatible with the inner product5 3 (we call them
“realizations”), which inherit, via homotopy transfer, an “induced” cyclic L, structure

(Vx(),r[_ 1]7 {lﬁo’r}nzl s a)xw).

Here r € R is the label of the particular retract. Note that the operations /;,*" depend on

a particular choice of retraction Ty, [—1]F L, Vyo,r[—11; different choices of g induce
isomorphic cyclic Lo structures on Vi, -[—1]. (We refer the reader to [22] for details
on homotopy transfer for cyclic L, algebras.)

Remark F.1. Of particular interest is the final (“minimal”) object ryj, of R, which cor-
responds to cohomology of /1 (with the induced cyclic L, structure). The case when all
induced operations on Vy, ri [—11 = l.l vanish corresponds to the gauge equivalence
class [xo] being a smooth point of the EL. moduli space My, cf. Appendix C of [23].
In this case, the tangent space to My at [x¢] is Hl: [1]; in particular, the tangent space at

[x0] to the body M}gd;:o is H, ll. . We have from homological perturbation theory the L,
morphism (extending the chosen embedding i : H;, — Ty,[—1]F by higher polylinear
operations) from on,rw [—1]to T, [—1]F; the latter defines a non-linear map of formal
pointed dg manifolds i : Vi, . — Ty F. Assuming that [xo] is a smooth point of

(x0,9)

M, we have, by reduction by the Q-distribution of the map Vy, ... 5N Ty F KA

ELy C F, aformal exponential map W (xp, ®): Vi — My.

0"min

The graded vector space Vy,  is our space of (formal) residual fields. A perturbative

BV theory assigns to the pair (xo, ) and a retraction Ty [—1]F &, Vyo,r[—11 (the
gauge-fixing data) “the state”

g _ %(8<xo>+z,,z. ﬁ%o,r(y,lﬁo'r"g(y,“.,y))) >11loops
Yior = € * Vxo,rg

>1loops

1 1 -~ .

where V5, g € Densg (Vo )I[R]] = Denslyp (Vig,r) ® S*Vy -[A1] is a half-
density on Vy, » which is a formal power series in y, a coordinate on V,, , as well as in
h; we put the index g on operations /,, to emphasize their dependence on gauge-fixing.

53 For a cochain complex (V*®,d) with inner product (,) : vig vkl - R (for the case in hand,
k = 3) with cyclic property (da, b) = —(—1)!?l(a, db), we say that (V'®,d’, (,)") is a deformation retract
compatible with the inner product, if a chain inclusion i : V'® < V*® and a chain projection p : V® —»
V’® are given and have the following properties. Maps i and p should induce identity on cohomology and
should satisfy p o i = idy, and (a, i(b')) = (p(a), b’) . It follows that the splitting V = i(V’) & ker p is
orthogonal with respect to (, ) and induces the pairing (, )’ on V’. If additionally K : V® > ve~!lisa chain
contraction of V onto V' (i.e. dK + Kd = id — i p, K =Ki = pK = 0 and K is skew self-adjoint),
then we say that the triple (i, p, K) is a retraction compatible with the inner product from V onto V'

i.p.K . . . . . ..
and denote V ( £ ) V’. We view retractions as morphisms in the category of retracts. The composition

rule is (i1, p1, K1) o (iz, p2, K2) = (i2i1, p1 p2, K2 +i2K1 p2). The space of retractions between a cochain
complex and its fixed retract, inducing a fixed isomorphism on cohomology via ix, px, is contractible. We will
be omitting “compatible with inner products” for retracts and retractions, as it is always assumed throughout
this Appendix, unless stated otherwise.
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F.1.1. Axioms.

(1) Letr £ r’ be an ordered pair of realizations with a fixed morphism P = (i, p, K)
between them (in the sense of Footnote 53), i.e. we have

Vig.r = iWVxg.r) © V_ (F.1)
ker p

— a splitting into a retract and an acyclic subcomplex w.r.t. /1, which is orthogonal
W.I.L. @y, » and induces wy, ,» on the first term. Then the states for r and  are related
by a BV pushforward:

P
wa?f/ = P*wfo,r = [jc]N} W)(?o,r (Fz)

where £ = im K—the gauge-fixing Lagrangian defined by the chain contraction.

(2) The state satisfies the quantum master equation Alp;?w = O where A is the canonical
BV Laplacian on half-densities on Vy, ,.

(3) Changing the gauge-fixing data g changes the state K”S?,o, » by a A-exact term (i.e. the
corresponding effective action changes by a canonical BV transformation).

(4) Allowing x() to vary, one has a hierarchy (parametrized by r) of graded vector bun-

dles Densformal(v.,,) over the EL moduli space ELy;/Q = Mgh =0 Note that one
can indeed compare realizations r over open subsets of M via homologlcal per-

1
turbation theory. The bundle Dens?ormal (V) is typically defined over M s minus
some singular strata (if r is too small, so that the increase of cohomology of /4
over the singular locus obstructs the extension). The bundle corresponding to the
minimal realization ry;,, defined over the smooth locus of M%},IZO, is endowed with

flat Grothendieck connection®* Vg, and the minimal realization of the state is a
horizontal section:

VGV rin = 0.

We assume here that the gauge-fixing data T, [—1]F &, vo.rmin [ —11 18 chosen in
a family over M}gd;:o

Remark F.2. The connection Vg is constructed as follows. For [x(] a smooth point of
My, the restriction of the map W of Remark F.1 to degree zero residual fields yields

the formal exponential map WO(xp, e): M%,k;:o. We define

X() Fmin

h= ()
Vg : TXOMg %formal( X0.F m)
v > T( _a e —daV(x0, ) ') (E3)
EVQO "min €l VXO "min

We understand formal vector fields on VOO as endomorphisms of Densformal( Yo rmin)
and extending trivially to residual fields of nonzero degree, as endomorphisms of

54 This connection corresponds to the possibility to translate an infinitesimal tangential shift along the base
(the moduli space) into a fiber shift in the degree zero part of Vs ;, ;.- The terminology is motivated by the
terminology of formal geometry [35], see also [14].



Perturbative Quantum Gauge Theories on Manifolds with Boundary 721

1
Densfzormal(vxo,rmin); T stands for converting an actual vector field (defined in a neigh-
borhood of the origin) on V)?O i (0 @ formal vector field, via taking co-jet in a at the
or1g1n Thus (F.3) does indeed define Vg as an Ehresmann connection on the bundle

gh= O
Densformal(V. ) over M,

>"'min

F.1.2. Number-valued pamnon function. By Remark F.1, the minimal realization of

the state V5, ... € Densformal( S = Densformal(T[xo]M ) defines a half-density
on the EL moduli space. One can deﬁne the number-valued partition function of the
theory as a BV integral over a Lagrangian submanifold in the EL moduli space (assuming
that it converges):

Zy = / Vermly €C (F4)
,CCMM

Here ¥§, . ]0 refers to putting degree zero residual fields in ¥, . to zero.
A special case of this construction is as follows. Assume that the body of the moduli

space M%;:O contains an open dense subset ./\A/I m such that, for any [xg] € M M
one has H[l = 0 for i # 1,2 (note that, by Poincaré duality/cyclicity, the vector
spaces H, !and Hj/ 2 are mutually dual). Then M ; has an open dense subset of the form

T*[— 1]/\/1 M- The mlmmal realization of the state on roin € Densformal( [1])0 =
Densformal(T[xO]M M ) defines a (fiberwise, formal in fiber direction) den51ty on the

tangent bundle of the moduli space M%}Ilzo and thus its restriction to the zero-section
can be integrated. The integral

ZM = /~ 1p:gqrmin 0
My

ifit converges, is a special gauge-fixing for the BV integral (F.4), with some singular strata
of the moduli space removed, corresponding to the Lagrangian submanifold My C
T*[—11Mypy.

eC, (F.5)

F.2. Example: non-abelian B F theory on polygons twisted by a background connection.

F.2.1. Model on a circle. Consider the 1-dimensional non-abelian BF theory on a circle
(cf. Example 4.2). We view the circle as being parametrized either by ¢ € R defined
modulo 1, or by ¢ € [0, 1] with the points t+ = 0 and ¢ = 1 identified. Additionally,
we will assume that the Lie algebra of coefficients g is equipped with an invariant non-
degenerate inner product (, ), so that g* can be identified with g.

The space of fields of the model is F = Q*(S!, g)[1]1® Q2°(S', g)[—1] and the action is

1 1
S(A, B) zyﬁ (B, dA+2 A, Al) =f (BO, dAO+AD AOBD)] E[A(O),A(O)]).
N st

(F.6)
Here on the r.h.s. we expressed the action in terms of homogeneous components of fields,
A=A0 1L AD B =BO 4+ BM where the upper index is the de Rham degree of the
component; the internal degrees (ghost numbers) are

AQ =1, |ADI=0, BO=-1, BV =-2. (E7)
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Note that the only classical (i.e. degree zero) field is AV —the connection 1-form on
the circle. The classical action (i.e. S restricted to degree zero fields) is identically zero.
However, there is a gauge symmetry generated by the BV action, A — rhAMp~1 4
hdh=" with h : ' — G. Here G is the simply-connected Lie group integrating g. Thus
the ghost number zero part of the Euler—Lagrange moduli space is

E=0 _ A e Qs 9} ~ G/G
AD ~ phADp=1 + pdh=1  Vh € C®(S', G)

where G/G stands for the stratified manifold of conjugacy classes in G, arising as
holonomy U = P exp fol AW of the connection defined by A(!) around the circle modulo

conjugation U +— h(0)-U - h(0)~! by a group element (the value /(0) of the generator
of the gauge transformation at the base point on the circle).
Fix a background flat connection Ag € 2'(S!, g). The formal exponential map is

$(Ao, =) TaF =S, gl @ (S, @l-1]1 — F= (5", 911 @ 2°(S", @[~ 1]
(A,B) > (Ag+A,B)

Here the pair (,A\, @) = (A\(O) +AM , BO® +§(1)) is the formal variation of the field (which
is allowed to have ghost number # 0 components in addition to a formal variation of
the connection A). In the notations of Sect. E.1, xo = Ag and § = (A, B). We have
~ A ~ A —~ ~ 1 ~ ~
S(¢(Aop; A, B)) =S(Ag+A,B) = ?g (B, da,A+ E[A’ Al) (E8)
s1

where dy, = d + [Ao, —1]: QoS! g) — Qlst, g) is the de Rham operator twisted
by the background connection. We denote U = P exp fol Ao the holonomy around the
circle.

It is convenient to introduce the complex of quasi-periodic forms (or, equivalently,
forms on the universal covering of the circle equivariant w.r.t. covering transformations):

Q) =lee QR g lat+1)=Ua)U™"}, j=0,1

with ordinary de Rham differential @ — do. As a complex, (€27, d) is isomorphic to
(S, g), da,) with isomorphism given by

D (Q.d) = (Q°(S!, g).day) (F.9)
alt) — U lanU; .

where U; = Pexp fé Ay is the holonomy along the interval [0, 7]. Note that ® sends
quasi-periodic forms to strictly periodic.
Denoting by @ = ®~'A, b = ®~!B the reparametrized fields, we can write (F.8) as

o~ ~ 1
S(Ap + da, db) =5£ (b, da + Efé,éﬂ)
Sl

which looks exactly like the original non-twisted action (F.6) but is defined on quasi-
periodic forms (@, b) € Q7 [1] @ Q3 [—11.
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F.2.2. Polygon realizations. Now let us introduce the realization of the theory associated
to equipping the circle with cell decomposition with N > 1 0-cells (vertices) and N
1-cells (edges), thus realizing the circle as an N-gon. We denote this realization ry;
we also denote this cell decomposition of S! by Ty. Next, we introduce the complex
of quasi-periodic cell cochains on Ty (or, equivalently, cochains on the covering cell
decomposition Ty of R, equivariant w.r.t. covering transformations):

Cl(Ty) ={a € C/(Ty.g) | T"a =UaU™'},  j=0,1

where 7 : Ty — Ty is the covering transformation corresponding to going around S'
once in the direction of orientation. We equip Cp,(Ty) with a coboundary operator d
induced from the standard cellular coboundary operator on C *(Ty. g) (acting trivially
in g coefficients).

As a graded vector space (but not as a complex) Cg;(Ty) is isomorphic to C*(Ty, g).
We introduce the cellular bases {ex}, {ex k+1} in CY(Ty) and C1(Ty), respectively, with
k=0,1,..., N — 1. The coboundary operator of C,(Ty) then operates as

xpeo + -+ xy_1en—1 > (X1 —xp)egr + -+ (XN_1 — XN_2)eN_2 N—]
+(xy —xy-_1)eN—1I,N

where xg, ..., xy—1 € garecoefficientsinthe Lie algebraand xy : = UxoU~!.Forx €
gand k € Z, we identify the O-cochain xej with the element Z;oz_oo UPxU Per_pn €
C?/ (Ty) and likewise the 1-cochain xei x+1 with the element Z;o:_oo UPxU—P
€k—pN k+1—pN € Cg,(TN). Here ¢;, €41 with [ € Z stand for the cellular bases in
0- and 1-cochains of TN.

In complete analogy with the discussion above, we introduce the dual cell decomposi-

tion of the circle Ty and the corresponding complex of quasi-periodic cochains C7, (T ).

We denote the cellular bases in cochains of T by {¢;'}, {e;_; ;}, withk =0, ..., N—1.
We think of cells of Ty as being slightly displaced in the direction of orientation
w.r.t. the corresponding cells of Tx. The intersection pairing is: (e, el\i] = ki

(ekx+1.€)) = Skl
We define the space of residual fields in realization ry to be

Vagry: = Cp(TnI11 @ Cp(Ty)[—1]

parametrized by a = Z,Icvz_ol axer + A k+1€kk+1 and b = Z,ICV:_OI bre! + bk_l,kekv_l’k
where all the coefficients take values in g and have ghost numbers |a;| = 1, | k+1] =
0, [bx| = —1, |bg—1k| = —2. The odd-symplectic form on V4, ,, comes from the
intersection pairing: wa,, -y = (b, da) = ,]cvz_ol (8bx, 8@k k+1) + (8bk—_1.k, da).
Assume that k-th vertex of the polygon is geometrically realized as the point t = 1

onthe circle withfo =0 <t < --- <ty_1 <ty = 1 (e.g. one can choose 7, = k/N).

. i,p. K .
We construct a retraction> Qy .20 Cp (Ty) with

55 This is a retraction without any compatibility with inner product.
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N—1
i Z Xek + Xk 1€k k+1 >
k=0
teal — t t—t dt )
= X4l + Xkl | (O — 1) — O(fg1 — 1))
Z (tk+1 - fk tk+1 — I " Tetl — 1tk ’ *
(F.10)
— Tie+1 , ,
pi [ +g)di = Y f () ex+ (/ g(t")dr ) ek ke+1, (F.11)
k=0 &

k+1

N-1 t t — tk Tkl
K:g@)ydim Y ([ g(t’)dt’—t _tk/ g(t’)dt’> (O — tr) — Oltge1 — 1)).
k=0 K
(F.12)

Here ®(¢) is the Heaviside step function. This retraction defines in a unique way a
retraction compatible with the inner product

(i®pY,p®iV,KOKY)
Ay

Qy © Qpl-2] Cy(Tn) ® C(Ty)[-2] (F.13)

where the superscript V for maps i, p, K stands for the adjoint map w.r.t. the Poincaré
pairing between the two copies of 27, and intersection pairing between cochains of Ty
and 7. This, upon composition with the isomorphism (F.9) gives the gauge-fixing data

Tao[—11F &, Vao.ry [—11. The state for the realization ry is defined as the correspond-
ing BV pushforward

wio . — / B e%S(AQ+<Dl'a+a,<I>pvb+ﬁ)(da)l/Z(dﬂ)l/Z(da)l/Z(db)l/Z
N Jimk @imk vV [—11cP

with (a, b) € Vy,,y the residual fields and (o, B) € Y fluctuations. This integral can
be computed exactly, following [45], and yields

(205 (k-1 bl {br, Faday ., Do (@i —a) +Hlag ke, H73k51 1))

wAO»’N =e
N—-1 ]
1 detgGaday,,,) - &y - (da)'*(db)'/ € Dens? (Vay) (F.14)
k=0

where we introduced the notation F, G for the two functions
X X 2 . x
F(x) = = coth -, G(x) = —sinh —.
2 2 X 2

_xi \Ndimg

The factor &,, = (e” 2 h comes from the normalization of the integration mea-

sure, cf. (2.13) and [25].
The quantum master equation reads

’S G O B | WOV R
= \dak dbe-1] \dagk b/ ) A0
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It can be checked by an explicit computation, cf. Sect. 5.5.1 of [45].
For N =1, (F.14) becomes

v e% (<b,1,o, 1 [ao,a0]>+<b0,F(adam )o(Ady —id)oag+} aday, o(Ady +id)oao>)
0,71

_zi \dimg
detgGladay ) - (€7F0) " - (dag)"/(daon) /2 (dby) /(b1 0)'/2

€ Dens? (g[1] ® g @ g[—1] @ g[—2]). (E.15)

Vag.ry

. . aggy .
One can define cellular aggregation morphisms V4, -y ~> Vay,ry_; corresponding

to merging edges [k, k + 1] and [k + 1, k + 2] together, for k = 0,1..., N — 1. Here
» € [0, 1] is a parameter of the morphism. To define agg;®, we start by introducing a

4

. ir.pr . - -
retraction C,(Tn) R Cp (Ty—1) (without compatibility with inner products):

N2 k-1
i) xie +xienisn = (leel +x1,l+1el,1+1> +xper + (1 — 20) - X + 22 - Xpp1) €l
1=0 1=0

N=2
Xkt (02 epprt + (1= 20) - e k) + ( > wer +x1,l+1el+1,l+z> ,

I=k+1
N—1
P;fi xiep + Xj1+1€l1,i+1
1=0
-1 N—1
= ( xiep +X1,1+1€1,/+1> + Xxpek + (X k+1 + Xkt 1 k+2) €k ket + ( Z (xe1—1 +x1,1+1€1—1,/) ,
I= I=k+2
N-1
K7 xpgrtenl B> (1= 36) - Xk ka1l — 3¢ Xt 1 k+2) * €1
1=0

Next, we define the corresponding aggregation morphism between spaces of residual
fields (now, a retraction compatible with the inner product) by the doubling construction
as in (F.13):

agef*: = (7 @pf . pF @I K OK[Y)
PUNN

Cy(Tn) © Cp(Ty)[-2] Cy(Tn-1) ® Cy(Ty-1I-2]

Viagury [-1] Viagury_y [-1]

One has the automorphic property of the state (F.14) with respect to aggregations:
g )W,y = Viory (F.16)

cf. (F.2), which can be checked by calculating the BV pushforward explicitly; the com-
putation is analogous to the one in section 3.2.2 of [2]. Note that the BV pushforward
yields precisely the state for the standard gauge-fixing (F.10,F.11,F.12), not up to a
A-exact term.>®

56 i : : I

This corresponds to the observation that gauge-fixings agg,f o gr1>, and gry_, f0£ the rearhzatlon rN—1
precisely coincide if we place the (k + 1)-st vertex in rp at the point tkfl ={1- %)tkN + ”tkivz on §' and
assignter_' = ter forl =0,..., kandt;N_1 = t[rivl forl =k+1, ..., N—1.Also note that the state cannot

depend on the positions of vertices of the polygon, since the continuum theory is diffeomorphism-invariant.
For clarity, here we indicated the realization explicitly.
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F2.3. Minimal realization. The complex Cp,(T) is

O—>g————>AdU_id g— 0.

Its cohomology (which is the same as cohomology of 7, and Cf,(Ty) for any N) is

Hy=gu, Hj=g/9p~gv
where we denoted gy C g the subspace comprised of elements of the Lie algebra

commuting with the holonomy U’; gi; is the orthogonal complement of gy in g w.r.t. the
inner product (, ). According to Remark F.1, we set

Vi = HY 11 @ HE[—1].

We denote the corresponding residual fields a®, a), b©@ b e g;; with upper index
standing for the form (or cochain) degree, as in Sect. F.2.1; ghost numbers are as in (F.7).

(imin > Pmin» Kmin)

We have a retraction Cg,(T1) Hy, where imin, pmin correspond to the
inclusion of the first summand and the projection onto the first summand in the splitting
g=gu ® gf, in degrees 0 and 1. The chain homotopy K, is (Ady —id)~" on g[L] C
Cllj (T1) and vanishes on gy C Cllj (T7). By doubling, as in (F.13), we produce a gauge-

. . P . - . g
fixing morphism Va,r; ~ Vag,ry,- The state in the minimal representation ¥, .

with gauge-fixing ¢ = P o g'! can be computed from (F.15) as a BV pushforward

g _ 8r1 .
Vitormin = PV ag.r, - The result is:

g _ (0041820 )+ [aD.a0)
wA[)J”min -

1
detg G(adg) - detys (F(adam) o (Ady ~id) + 5 adg0) o(Ady +id))

Epn - (da®)12(da0)12(gb @)1 2(abM)1 /2 e Dens? (gu[11® gu @ gul—11® gul—2]).

VAo rmin

(F.17)

xi \K(G)
Here &, ., = (e‘T h) with tk(G) = dim G /G the rank of the group G.

Note that there is an open dense subset G C G consisting of elements U € G such
that gy is a maximal abelian (Cartan) subalgebra of g. These are the group elements
with the “maximal” conjugacy class; the set of these maximal conjugacy classes G/G
is the smooth locus of the moduli space M2=0 = G/G. .

In the case when the holonomy of the background connection satisfies U € G, the
result (F.17) simplifies to

%‘;O’rmm = detgé (AdU_exp(a(l)) —id) Ep (da 172 @aM172(gp@)172(gpy1/2,

(F.18)

Allowing the background connection Ag to vary as long as the holonomy U is in G,
we view ¥ 8 i &S @ section of the vector bundle

Dens?2(V_, ) — G (F.19)

»"min

(where the dash stands for the background connection and the bundle projection consists
in taking the holonomy of the connection). Simultaneous conjugation of U and the
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residual fields by group elements # € G induce an action of G on the bundle (F.19) by
bundle automorphisms. The section wf’rmm is equivariant w.r.t. the G action. Thus we

can regard wfq_] ry 48 @ section of the bundle over the smooth locus of the moduli space

Dens? (Vi_y...) — G/G, (F.20)

=1, 7min

where [—] stands for the gauge equivalence class of the background connection.
We can introduce a partial connection®’ on the bundle (F.19):

TUE ~g D) gu — x(Dens%(VA()»rmin))

3
[ d —\v, m
Passing to the quotient by G action in (F.19), we obtain the Grothendieck connection on
the bundle over the moduli space (F.20). Explicitly, we can write

0

VG=d—<m,

U—ldU>.

Since the state (F.18) manifestly only depends on the combination U - exp(al), it

satisfies the horizontality condition
Ve

=1, min =
The formal exponential map W° of Remark F.2 sends al’ — U - exp(a(V).

Remark F.3. Note that the full Euler-Lagrange moduli space of the model M, as opposed
to M&=0_ contains formal directions spanned by a©® bD on which the state (F.18)
does not depend. Therefore there is no choice of gauge-fixing Lagrangian £L C M
which would produce a convergent nonzero integral (F.4) for the number-valued partition
function.

Remark F.4. The one-dimensional model presented here admits a meaningful generaliza-
tion to graphs. Under certain assumptions on a graph, one can define the number-valued
partition function. We plan to present this generalization in a future paper.

F.3. Example: partition function of 2D non-abelian BF theory on a closed surface.
Consider non-abelian BF theory on a closed surface ¥ of genus y > 2. We fix a
compact-simply connected Lie group G with Lie algebra g. As in Sect. F.2, we identify
g* with g using a non-degenerate invariant inner product (, ) on g.

We have fields (A = Y t_oA®,B = Y7_BY) e F = Q*(Z, 9)[1] ® Q*(T, )
where the upper index stands for the form degree. Ghost numbers are |A®)| = 1 — k,
B®) = —k. The moduli space of classical solutions of equations of motion is

{(AD By e (2, g) @ Q%Z, g) | AAD + LAD AD] =0, dB@ + [AD, BO] = 0}
(A, BO) ~ (RADOL=T + hdh=1, hBBOR~1) Vh:% - G

MEN=0 —

It projects onto the moduli space of flat G-connectionson X, My, ¢ = Hom(w (%), G)/G
(by taking holonomy of AWM), with fiber H(?A(U where dao) 1 Q°(%, g) — QHl(z, a)

57 “partjal” means here that we only define covariant derivatives along vector fields tangent to a particular
distribution on G.
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is the de Rham operator twisted by the flat connection A" Note also that HdlAm o~

Tiam M, g—the tangent space to moduli space of flat connections, here [AM] is the
class of the connection modulo gauge transformations.
Denote M;Teg C Msx ¢ the moduli space of irreducible flat connections (i.e. those

with Hc(l)A(l) = 0). For a surface ¥ of genus > 2 (which we requested precisely for

this reason), Mizrre(‘;1 is open dense in My . Hence, Mi)fre(‘;i c Meh=0

is an open dense
subset; the inclusion maps [AD] [(A(l), 0)]. Moreover, the odd cotangent bundle
T*[— I]Mgf%i is open dense in the full (i.e. not just the ghost number zero part) Euler—
Lagrange moduli space M.

Fix a classical solution of equations of motion of the form xo = (A, 0) with Ag

an irreducible flat connection. Then HJ is concentrated in degree 1, thus the mini-
mal realization for the space of residual fields on the background defined by (Ag, 0)
1S V(40,0),rmin = Hdle ® Hdle[—l] >~ T*[—1]T{4eMx,c. We denote an element of

V(40.0).rmin BY (@1, b)), The state in the minimal realization is given by

W(A(),O),rmin(a(l),b(l)) :/ o1 S(Ag+a®+abD+p) ((da)l/z(dﬁ)l/2)|£(da(l))l/Z(db(l))l/Z

L
(F21)
where «, § are fluctuations over which we integrate, restricting to the gauge-fixing
Lagrangian L. The action in the exponential expands as

1 1
S(Ag+a +a, b+ p) = / (B, dager + Sl el + (@, ] + {2V, @),
z

The path integral on the r.h.s. of (F.21) can be calculated perturbatively and yields

I)[/.(A(),O)J’m'm (a(l)a b(l)) = TZ eW(a(l))

where T, is as in (3.14) adjusted for the nontrivial local system defined by [Ag] and
W (@) is the sum of 1-loop graphs (a collection of binary trees with leaves decorated
by a'" with roots attached to the cycle); W is a function on HdlAO with zero of order at

least 2 at the origin. One can calculate Ty, explicitly:

wAn

|
€ Dens(Tja,)Mx,c) >~ Dens?2 (T[(AQ,O)JM)

Ts = Q)" 2 By*/? -
— =
©(2,[Apl)=da) ~(da)!/2(dbM)!/2
wheren = (y —1)dim G = % dim My, ¢ and w is the Atiyah—Bott symplectic structure
on My, g; factor & isasin (3.15). The symplectic volume form »”" / n! coincides with the
Reidemeister torsion of the surface equipped with the non-acyclic local system defined
by the flat connection Ag (in adjoint representation), cf. e.g. [59].

Now we can define the number-valued partition function of the theory as in (E.5). Since
it only depends on the value of ¥/(4,,0),r;, at the origin of the tangent space to the moduli
space, we do not need to know the function W to define Zx. Explicitly, we obtain that
the partition function is, up to the factor &, the symplectic volume of the moduli space
of flat connections on X [59]:

An 1

- o 2y—2
Zy =& £ - #2(G) - Vol(G)? ZR:W'

irred n' B
MZ,G

Here #z(G) is the number of elements in the center of G and the sum in L.h.s. runs over
irreducible representations R of G.
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