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Abstract: We prove a result on separation of particles in a two-dimensional Coulomb
plasma, which holds provided that the inverse temperature β satisfies β > 1. For large
β, separation is obtained at the same scale as the conjectural Abrikosov lattice optimal
separation.

Consider a large but finite system of identical point-charges {ζi }n1 in the plane C, in
the presence of an external field nQ, such that Q(ζ ) is “large” near ζ = ∞. The system is
picked randomly from the Boltzmann-Gibbs distribution at inverse temperature β > 1,

dP(β)
n (ζ ) = 1

Z (β)
n

e−βHn(ζ ) d A⊗n(ζ ), ζ = (ζ1, . . . , ζn) ∈ C
n .

Here Hn is the total energy

Hn (ζ1, . . . , ζn) =
∑

j �=k

log
1

| ζ j − ζk | + n
n∑

j=1

Q(ζ j ),

d A = dxdy/π is Lebesgue measure on C divided by π . The constant Z (β)
n =∫

e−βHn d A⊗n is the so-called partition function of the ensemble.
A random sample {ζ j }n1 might be termed “Coulomb gas”, “one-component plasma”,

or “β-ensemble”. For brevity, we use “system” as a synonym.
It is well-known that the system tends, on average, to follow Frostman’s equilibrium

measure in external potential Q. The support of the equilibrium measure is a compact
set, which we call the droplet.

The rough approximation afforded by the equilibrium measure is too crude to reveal
details on a microscopic scale. However, it is believed on physical grounds that the
particles should be evenly spread out in the interior of the droplet, with a non-trivial
behaviour near the boundary—the Hall effect. Everything of importance goes on in the
vicinity of the droplet.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-017-3027-2&domain=pdf


1080 Y. Ameur

In this note, we prove that the distance between neighbouring particles at a given
location in the plane is large with high probability. Further, the distance tends to increase
with β, and as β → ∞, we recover formally the separation theorem for Fekete sets from
the papers [1,5].

Remark. The case of minimum-energy configurations or “Fekete sets” is sometimes
referred to as “the case β = ∞”. We will follow this tradition, but we want to emphasize
that “β = ∞” is just a figure of thought, not a rigorous limit.

1. Formulation of Results

Let Q : C → R ∪ {+∞} be a suitable function of sufficient increase near ∞; precise
conditions are given below. We call Q the external potential.

Let μ be a compactly supported Borel probability measure on C. The weighted
logarithmic energy of μ is defined by

IQ[μ] =
∫∫

C2

log
1

| ζ − η | dμ(ζ )dμ(η) +
∫

C

Q dμ.

Assuming that Q obeys some natural conditions recalled below there is a unique com-
pactly supported probability measure σ whichminimizes IQ . This is Frostman’s equilib-
rium measure in external potential Q. The support S = supp σ is known as the droplet,
and the equilibrium measure takes the form (see [26])

dσ(ζ ) = χS(ζ )�Q(ζ ) d A(ζ ),

where we write � = ∂∂̄ for 1/4 times the standard Laplacian; χS is the characteristic
function of the set S.

Remark. Let {ζ j }n1 be a random sample with respect to P(β)
n . Write E(β)

n for the expecta-

tion with respect to P(β)
n . It is well-known thatE(β)

n [ 1n
∑n

j=1 f (ζ j )] → σ( f ) as n → ∞
for each continuous bounded function f on C. See [18,21].

The preceding remark shows that, in a sense, the equilibrium measure gives a first
approximation to the macroscopic behaviour of the system. We here want to study
microscopic properties. For this, we could fix a point p ∈ C, which might depend on n,
and zoom on it at an appropriate rate. However, for technical reasons it is easier to choose
the coordinate system so that p = 0. In other words, 0 will in the following denote the
origin of an n-dependent coordinate system which can be obtained from some static
reference system by rigid motion.

Let Dr = Dr (0) denote the disk center 0 radius r . By the microscopic scale rn at 0
we mean the radius such that

n
∫

Drn

�Q dA = 1.

We allow for any situation such that rn is well-defined. This is a mild restriction.
Indeed, we always have �Q ≥ 0 on S, since σ is a probability measure. By our as-
sumptions below, this implies that rn is always well-defined if 0 is in the interior of S.
Also, if we have �Q > 0 on some portion of ∂S, then rn is well-defined when 0 is in
some neighbourhood of that portion. Since the behaviour of the gas is of interest only
in a neighbourhood of the droplet, we can thus essentially treat all cases of interest.
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Given a sample {ζ j }n1, we rescale about 0 and consider the process {z j }n1 where
z j = r−1

n ζ j . (1)

We denote by P
(β)
n the image of P(β)

n under the map (1) and write E
(β)
n for the corre-

sponding expectation. Also let D = D1 be the unit disk.
Fix a large n and let Fn be the event that at least one of the z j falls in D. Denote

η = ηn = P
(β)
n (Fn).

Given a random sample {z j }n1 ∈ Fn we define a number s0 by

s0 = min
z j∈D

min
k �= j

|z j − zk |, ({z j }n1 ∈ Fn).

Thus s0 is the largest rescaled distance from a particle in D to its nearest neighbour. We
refer to s0 as the spacing of the sample, in the vicinity of the point 0.

We are now prepared to formulate our main results. The following result shows that
the strength of repulsion tends to increase with β.

Theorem. Suppose thatβ > 1 and fix n0 ≥ 1. Then there is a constant c = c(n0, β) > 0
such that if n ≥ n0 and 0 < ε < 1, then

P
(β)
n ({s0 ≥ c · n− 1

β−1 · (εη)
1

2(β−1) } |Fn) ≥ 1 − m0ε, (2)

where m0 = 16n
2

β−1 c−2(εη)
− 1

β−1 . Moreover, given any β0 > 1, c can be chosen inde-
pendent of β when β ≥ β0.

The left hand side in (2) should be understood as a conditional probability given that
Fn has occurred.

The next result gives a kind of separation which holds for large β. To this end, it is
natural to assume some kind of lower bound on the probability ηn . One possibility is
to assume that inf ηn > 0, which is certainly a reasonable assumption in many cases.
However, it will suffice to assume existence of some number ϑ ≥ 0 such that

ηn ≥ const.n−2ϑ , (const. > 0). (3)

For simplicity, we will also assume that we are zooming on a regular point,

�Q(0) ≥ const. > 0. (4)

Corollary. Below fix a positive number c with c < 1/(8
√
e).

(i) Suppose that (4) holds and let n be a given large integer. Then

lim
β→∞P

(β)
n ({s0 > c} |Fn) = 1.

(ii) Suppose that (3) and (4) hold. Also fix a parameter μ > 0. Then

lim
n→∞ inf

β≥μ log n
P

(β)
n

({
s0 > ce−(1+ϑ)/μ

}
|Fn

)
= 1.

Condition (3) is reasonable when the droplet is “sufficiently present” at 0, see con-
cluding remarks.
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Case (i) of the corollary comes close to an unpublished result due to Lieb in the zero
temperature case, see [24, Theorem 4] as well as [25]; cf. [5] for an independent proof.
Our estimate for the constant c should be compared with the asymptotic lower bound
1/

√
e for the distance between Fekete points obtained in [1, Theorem 1]. In fact, our

method of proof is somewhat related to the approach in [1,5], see concluding remarks
below.

In the present context, Abrikosov’s conjecture states that under the conditions in
Corollary, the system {z j }n1 should more and more resemble a honeycomb lattice as
β → ∞. The distance between neighbouring particles in this lattice can be computed,
leading naturally to the conjecture that the “right” bound for c in Corollary should be
c < 21/23−1/4. Cf. [1].

Here are precise assumptions to be used in the proofs below: (i) Q : C → R∪ {+∞}
is l.s.c.; (ii) the interior of the set � := {Q < ∞} is non-empty; (iii) Q is real-analytic
on Int�; (iv) lim infζ→∞ Q(ζ )/ log |ζ |2 > 1; (v) S ⊂ Int�.

In addition, we freely use the following notation: The d A-measure of a subset ω ⊂ C

is denoted |ω|. By Wn we mean the set of weighted polynomials f = pe−nQ/2 where
p is a holomorphic polynomial of degree at most n − 1. We denote averages by

ffl
ω
g =

1
|ω|

∫
ω
g d A. Dr (ζ ) denotes the disc center ζ radius r and we write Dr = Dr (0).

2. Proofs of the Main Results

Suppose that the Taylor expansion of �Q about 0 takes the form

�Q = P + “higher order terms”

where P ≥ 0, P �≡ 0, and P is homogeneous of some degree 2k − 2. The existence of
such a P is of course a consequence of the real-analyticity of Q.

Following [7] we write τ0 for the positive constant such that

τ−2k
0 = 1

2πk

∫ 2π

0
P(eiθ ) dθ.

Note that τ0 can be cast in the form

τ−2k
0 = �k Q(0)

k[(k − 1)!]2 .

This follows easily by expressing P as a polynomial in ζ and ζ̄ .
Using τ0, we conveniently express the microscopic scale to a negligible error, as

follows

rn = τ0n
−1/2k(1 + O(n−1/2k)), (n → ∞).

Note that if k = 1 then τ0 = 1/
√

�Q(0).
As in [7] we define a holomorphic polynomial H by

H(ζ ) := Q(0) + 2∂Q(0) ζ + · · · + 2

(2k)!∂
2k Q(0) ζ 2k . (5)
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We will also use the dominant homogeneous part of Q at 0, i.e., the function

Q0(ζ ) =
∑

i+ j=2k, i, j≥1

∂ i ∂̄ j Q(0)

i ! j ! ζ i ζ̄ j .

The point is that we have the canonical decomposition (cf. [7])

Q(ζ ) = Re H(ζ ) + Q0(ζ ) + O(|ζ |2k+1), (ζ → 0).

Belowwefix a large integer n0. The followingBernstein-type lemma is an elaboration
of [1, Lemma 2.1].

Lemma 1. Suppose that n ≥ n0. If f ∈ Wn and f (0) �= 0 then there is a constant
K = K (n0) such that

|∇| f |(0)| ≤ Kr−1
n

 

Drn

| f |.

If �Q(0) ≥ const. > 0 then we can take K (n0) = 4
√
e(1 + o(1)), (n0 → ∞).

Proof. Denote h = Re H where H is the polynomial in (5). Also write

q0 =
∑

i+ j=2k, i, j≥1

|∂ i ∂̄ j Q(0)|
i ! j ! .

Since rn = τ0n−1/2k(1 + O(n−1/2k)) we have

|ζ | ≤ rn ⇒ n|Q(ζ ) − h(ζ )| ≤ q0n|ζ |2k + O(n−1/2k) ≤ Cn, (6)

where Cn = τ 2k0 q0 + Cn−1/2k .

Now note that

|∇| f |(ζ )| = |p′(ζ ) − n∂Q(ζ )p(ζ )|e−nQ(ζ )/2

and
∣∣∣∇

(
|p|e−nh/2

)
(ζ )

∣∣∣ =
∣∣∣∣
d

dζ

(
pe−nH/2

)
(ζ )

∣∣∣∣ .

Inserting ζ = 0 it is now seen that

|∇| f |(0)| =
∣∣∣∣
d

dζ

(
pe−nH/2

)
(0)

∣∣∣∣ .

We now apply a Cauchy estimate to deduce that if rn/2 ≤ r ≤ rn then

∣∣∣∣
d

dζ

(
pe−H/2

)
(0)

∣∣∣∣ = 1

2π

∣∣∣∣∣

∫

|ζ |=r

p(ζ )e−nH(ζ )/2

ζ 2 dζ

∣∣∣∣∣ ≤ 2

πr2n

∫

|ζ |=r
|p|e−nh/2 |dζ |.

By (6) the last integral is dominated by

eCn/2
∫

|ζ |=r
|p|e−nQ/2 |dζ | = eCn/2

∫

|ζ |=r
| f | |dζ |.
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It follows that

|∇| f |(0)| ≤ 4eCn/2

πr3n

∫ rn

rn/2
dr

∫

|ζ |=r
| f | |dζ | ≤ Kr−1

n

 

Drn

| f |,

where K = 4 supn≥n0{eCn/2}. If �Q(0) ≥ const. > 0 then k = 1 and τ 20 q0 = 1, which

gives K ≤ 4e1/2+C/
√
n0 . ��

The weighted Lagrange interpolation polynomials associated with a configuration
{ζ j }n1 of distinct points are defined by

� j (ζ ) =
⎛

⎝
∏

i �= j

(ζ − ζi )/
∏

i �= j

(ζ j − ζi )

⎞

⎠ · e−n(Q(ζ )−Q(ζ j ))/2, ( j = 1, . . . , n).

Note that � j ∈ Wn and � j (ζk) = δ jk .

Now let {ζ j }n1 be a random sample from P(β)
n . Then � j (ζ ) is a random variable which

depends on the sample and on ζ . In the next few lemmas, we fix an index j , 1 ≤ j ≤ n.

Lemma 2. Suppose that U is a measurable subset of C of finite measure |U |. Then

E(β)
n

[
χU (ζ j ) ·

∫

C

|� j (ζ )|2β d A(ζ )

]
= |U |. (7)

Proof. We shall use the following identity, whose verification is left to the reader

|� j (ζ )|2βe−βHn(ζ1,...,ζ j ,...,ζn) = e−βHn(ζ1,...,ζ,...,ζn).

By this and Fubini’s theorem, integrating first in ζ j , we get
∫

C

d A(ζ )E(β)
n

[
|� j (ζ )|2β · χU (ζ j )

]

=
∫

U
d A(ζ j )

∫

Cn
dP(β)

n (ζ1, . . . , ζ, . . . , ζn) = |U |,

proving (7). ��
In the sequel, we assume that n ≥ n0 and recall the constant K = K (n0) provided

by Lemma 1. We will write K (n0, ζ ) the same constant with 0 replaced by ζ and let
rn(ζ ) be the microscopic scale at ζ . Finally, we fix a suitable, large enough, constant M ;
we may take M = 3 for example.

It is easy to see that there is a constant T = T (M, n0) ≥ 1 such that if ζ ∈ DMrn
and n ≥ n0 then T−1rn(ζ ) ≤ rn(0) ≤ Trn(ζ ). If �Q(0) ≥ const. > 0 we might take
T = 1 + o(1) as n0 → ∞.

Lemma 3. We have that

1

r2n
E(β)
n

[
χDrn

(ζ j ) ·
∫

C

|� j (ζ )|2β d A(ζ )

]
= 1. (8)

Now suppose that β ≥ 1/2, n ≥ n0, K = supζ∈DMrn
K (ζ ), and rn = rn(0). Then

1

r2n
E(β)
n

[
χDrn

(ζ j ) ·
∫

DMrn

|∇|� j |(ζ )|2β d A(ζ )

]
≤ T 2β+4K 2βr−2β

n . (9)
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Proof. The identity (8) follows from Lemma 2 with U = Drn .
To prove (9) we fix a non-zero f ∈ Wn and assume that f (ζ ) �= 0 where ζ ∈ DMrn .

By Lemma 1 and Jensen’s inequality, we have for all β ≥ 1/2 that

|∇| f |(ζ )|2β ≤ K 2βrn(ζ )−2β
 

Drn (ζ )(ζ )

| f |2β.

Applying this with f = � j and taking expectations, we get

E(β)
n

[∫

DMrn

|∇|� j |(ζ )|2β d A(ζ ) · χDrn
(ζ j )

]

≤ K 2β
∫

DMrn

d A(ζ ) rn(ζ )−2β−2
∫

Drn (ζ )(ζ )

d A(η)E(β)
n

[
χDrn

(ζ j ) |� j (η)|2β
]

≤ T 2β+2K 2βr−2β−2
n

∫

C

d A(η)E(β)
n

[
χDrn

(ζ j ) |� j (η)|2β
] ∫

DTrn (η)

d A(ζ )

= T 2β+4K 2βr−2β+2
n ,

where we used (8) in the last step. ��
In the following, we let z and ζ denote complex variables related via

z = r−1
n ζ.

We shall use the random functions � j defined by

� j (z) = |� j (ζ )| = |� j (rnz)|.
Thus � j (zk) = δ jk where {zk}n1 is the rescaled process.

Lemma 4. Let β ≥ 1/2. Then with notation as above

E
(β)
n

[
χD(z j ) ‖∇� j‖ 2β

L2β (DM )

]
≤ T 4(T K )2β. (10)

Proof. The inequality (9) says that

1

r2n
E(β)
n

[
χDrn

(ζ j )

∫

DMrn

(rn|∇|� j |(ζ )|)2β d A(ζ )

]
≤ T 4(T K )2β.

Rescaling we immediately obtain (10). ��
Suppose that β > 1. We will use Morrey’s inequality, which asserts that for all

real-valued f in the Sobolev space W 1,2β(DM ), all z, w ∈ DM/
√
2, we have

| f (z) − f (w)| ≤ C‖∇ f ‖L2β(DM )|z − w|1−1/β . (11)

See [10, Corollary 9.12] and its proof. In fact, the proof in [10, p. 283] shows that (11)
holds with C = C0(1 − 1/β)−1 where C0 ≤ 2π1/2β .

We are now ready to finish the proof of Theorem.
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Recall thatFn denotes the event that at least one particle hitsD and fix an arbitrary j ,
1 ≤ j ≤ n. Assuming that P(β)

n (Fn) ≥ η > 0, we deduce from Lemma 4 the following
inequality for the conditional expectation

E
(β)
n

(
χD(z j ) ‖∇� j‖ 2β

L2β(DM )

∣∣ Fn

)
≤ T 4(T K )2β

η
. (12)

Fix ε > 0 and recall that s0 denotes the distance from a point in {z j }n1∩D to its closest
neighbour, where we assume that {z j }n1 ∈ Fn . We must prove that s0 ≥ c(εη)1/2(β−1)

with (conditional) probability at least 1 − ε.
For each λ > 0 we have by Chebyshev’s inequality and (12)

P
(β)
n

({
χD(z j )‖∇� j‖ 2β

L2β(DM )
> λ

} ∣∣ Fn

)
≤ 1

λ
E

(β)
n

(
χD(z j )‖∇� j‖ 2β

L2β (DM )

∣∣ Fn

)

≤ T 4(T K )2β

ηλ
,

which implies

P
(β)
n

⎛

⎝

⎧
⎨

⎩

n∑

j=1

χD(z j )‖∇� j‖ 2β
L2β(DM )

> nλ

⎫
⎬

⎭
∣∣ Fn

⎞

⎠ ≤ n
T 4(T K )2β

ηλ
.

Given a random sample {z j }n1 ∈ Fn we let In = In({z j }n1) be the random, nonempty set
of indices j for which z j ∈ D; we then have

P
(β)
n

⎛

⎝

⎧
⎨

⎩
∑

j∈In
‖∇� j‖ 2β

L2β (DM )
> nλ

⎫
⎬

⎭
∣∣ Fn

⎞

⎠ ≤ n
T 4(T K )2β

ηλ
. (13)

We now set

λ = n · T 4(T K )2βη−1ε−1.

Consider the event An consisting of all samples {z j }n1 ∈ Fn such that there is a

j ∈ In({z j }n1) for which ‖∇� j‖ 2β
L2β (DM )

> nλ. By (13) and our choice of λ we have

P
(β)
n (An|Fn) ≤ ε. Hence, with conditional probability at least 1 − ε,

j ∈ In({z j }n1) ⇒ ‖∇� j‖L2β (DM ) ≤ (nλ)1/2β = n1/βT 2/β(T K )(εη)−1/2β. (14)

Now fix a sample {z j }n1 ∈ Fn and an index j ∈ In({z j }n1). Let zk be a closest
neighbour to z j . By Morrey’s inequality (11) and (14) there is another constant C =
C0(1 − 1/β)−1 such that, with conditional probability at least 1 − ε, we have either
|z j − zk | ≥ M/

√
2 or

1 = |� j (z j ) − � j (zk)| ≤ n1/β · CT 1+2/βK (εη)−1/2β |z j − zk |1−1/β, (15)

i.e., |z j − zk | ≥ cn− 1
β−1 (εη)

1
2(β−1) where we may chose

c = (CT 1+2/βK )−β/(β−1) = (1 − 1/β)β/(β−1)(C0T
1+2/βK )−β/(β−1). (16)
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We have shown that

min
k �= j

|z j − zk | ≥ cn− 1
β−1 (εη)

1
2(β−1) (17)

with probability at least 1−ε. The formula (16) shows that c can be chosen independent
of β when β ≥ β0 > 1.

Lemma 5. Let ND be the number of particles which fall in D. Also define r0 =
cn− 1

β−1 (εη)
1

2(β−1) /2 and m0 = 4/r20 . Then ND ≤ m0 and s0 ≥ cn− 1
β−1 (εη)

1
2(β−1)

with conditional probability at least 1 − m0ε.

Proof. Suppose that at least m particles, denoted z1, . . . , zm , fall in D. For 1 ≤ j ≤ m
let E j be the event that the disk Dr0(z j ) contains no point zk with 1 ≤ k ≤ n, k �= j .

Then P
(β)
n (Ec

j |Fn) ≤ ε, where Ec
j is the complementary event, so

P
(β)
n (∩m

j=1E j |Fn) = 1 − P
(β)
n (∪m

j=1E
c
j |Fn) ≥ 1 − mε.

It follows that if at least m particles fall in D then with probability at least 1 − mε

there are m disjoint disks of radius r0 inside D2. Comparing areas we see that mr20 ≤ 4,
i.e., m ≤ m0. ��

The lemma says that if m0 = m0(β, ε, η, n) = 16n
2

β−1 c−2(εη)
− 1

β−1 then

P
(β)
n ({s0 ≥ cn− 1

β−1 (εη)
1

2(β−1) }|Fn) ≥ 1 − εm0. (18)

This proves Theorem.
Now assume that �Q(0) ≥ const. > 0. Then by Lemma 1, the constant K there

might be taken as K = 4
√
e(1+o(1))while wemay take T = 1+o(1) as n → ∞. Hence

C0T 1+2/βK ≤ 8
√
e(πT 4)1/2β(1 + o(1)), and so, if c(β) denotes the largest constant

such that the estimate (17) holds asymptotically, as n0 → ∞, then

lim inf
β→∞ c(β) ≥ 1/(8

√
e).

Applying the assumptions that η ≥ const.n−2ϑ and β ≥ μ log n we deduce that (as
n → ∞)

n− 1
β−1 (εη)

1
2(β−1) ≥ e− 1

μ
− ϑ

μ (1 + o(1))

and

m0 ≤ 210e1+
2
μ
+ 2ϑ

μ (1 + o(1)).

It is now clear from (18) that Corollary is a consequence of Theorem. ��

3. Concluding Remarks

It is natural to ask for conditions implying that the probabilities ηn = P
(β)
n (Fn) satisfy

something like
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lim sup
n→∞

log(1/ηn)

log n
< ∞.

In the case β = 1, the ηn are bounded below if lim infn→∞ r2n |Drn ∩ S| > 0. (“The
proportion of the area of Drn which falls inside the droplet is bounded below.”) Proofs
depending on estimates for the Bergman function can be found in [3,4,6]. On the other
hand, if 0 is well in the exterior, or if 0 is a singular boundary point, ηn drops off to zero
quickly as n → ∞. It is natural to expect a similar behaviour for any given β.

The analysis of Fekete configurations in [1,5] depends on the inequality |� j | ≤ 1 for
the associated weighted Lagrange polynomials � j . This bound plays a similar role when
β = ∞ as the L2β -estimate in Lemma 2 does in the present case. The idea of using an
L2β -bound on Lagrange sections occurs in [14]. The context there is different, but in a
way, we have elaborated on this idea here.

When β = 1, limiting point fields {z j }∞1 have been identified in many cases, [3].
When β > 1, the determinantal structure is lost, and the problem of calculating limiting
point fields remains a challenge. The question is perhaps especially intriguing when we
rescale about a regular boundary point of S, or about some other kind of special point,
cf. [4,6,23].

At a regular boundary point, it seems plausible that the distribution should be trans-
lation invariant in the direction tangent to the boundary, i.e., in a suitable coordinate
system, the distribution depends only on x = Re z. The Hall effect is believed to give
rise to certain irregularities in the distribution, which are to be located slightly to the
inside of the boundary, see [12]. While our results provide more and more information
when β gets very large, the results in [12], by contrast, seem to be more accurate when
β is close to 1. A corresponding analysis was performed earlier in the bulk in [19]; see
[13,15,20] for more recent developments.

In the case of “moderately sized” β, 1 � β � ∞, neither of the methods seem
to give very clear pictures of the situation. However, the recent paper [16] gives some
results for the case β = 2. Moreover, the paper [11] suggests that a phase-transition
(“freezing”) should take place after a certain finite value β = β0. The study of existence
and possible size of melting temperature 1/β0 is currently an active area of research.

By the “hard edge β-ensemble” in external potential Q, we mean the ensemble
obtained by redefining Q to be +∞ outside of the droplet. Cf. [3,4,27] for the case
β = 1. The question of spacings in this setting will be taken up elsewhere.

Ward’s identity (or “loop equation”, “fundamental relation”) is a relation connecting
the one- and two-point functions of a β-ensemble. In the present context, it was used
systematically by Wiegmann and Zabrodin and their school, and it is an important tool
in conformal field theory (CFT). In fact a whole family of Ward identities is known, see
[22].

In the paper [2],Ward’s identity was used to give a relatively simple proof of Gaussian
field convergence of linear statistics of a β = 1 ensemble. A similar statement is believed
to hold for general β-ensembles. There has been progress on β-ensembles recently: the
paper [8] seems to prove Gaussian field convergence in the bulk of the droplet. To the
best of our knowledge, the full plane field convergence for general β still seems to be
an open problem. (Cf. however [9,17,21] for results in dimension 1.)

The microscopic version of Ward’s identity was introduced fairly recently in [3]. It
is calledWard’s equation. See [3, Section 7.7] for the general case of β-ensembles. It is
natural to ask how Ward’s equation fits into the present context. We hope to come back
to this later on.
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