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Abstract: Associated to quantum affine general linear Lie superalgebras are two fami-
lies of short exact sequences of representationswhosefirst and third terms are irreducible:
the Baxter TQ relations involving infinite-dimensional representations; the extended T-
systems of Kirillov–Reshetikhin modules. We make use of these representations over
the full quantum affine superalgebra to define Baxter operators as transfer matrices for
the quantum integrable model and to deduce Bethe Ansatz Equations, under genericity
conditions.
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Introduction

Fix g := gl(M |N ) a general linear Lie superalgebra and q a non-zero complex number
that is not a root of unity. Let Uq (̂g) be the associated quantum affine superalgebra [48].
This is a Hopf superalgebra neither commutative nor co-commutative, and it can be seen
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as a q-deformation of the universal enveloping algebra of the affine Lie superalgebra of
central charge zero ĝ := g ⊗ C[t, t−1].

In this paper we study a tensor category of (finite- and infinite-dimensional) repre-
sentations of Uq (̂g). Its Grothendieck ring turns out to be commutative as is common
in Lie Theory. We produce various identities of isomorphism classes of representations,
and interpret them as functional relations of transfer matrices in the quantum integrable
system attached to Uq (̂g), the XXZ spin chain.

1. Baxter operators. In an exactly solvable model a common problem is to find the
spectrum of a family T (z) of commuting endomorphisms of a vector space V depending
on a complex spectral parameter z, called transfer matrices. The Bethe Ansatz method,
initiated by H. Bethe, gives explicit eigenvectors and eigenfunctions of T (z) in terms of
solutions to a system of algebraic equations, the Bethe Ansatz equations (BAE). Typical
examples are the Heisenberg spin chain and the ice model.

In [2], for the 6-vertex model R. Baxter related T (z) to another family of commuting
endomorphisms Q(z) on V by the relation:

TQ relation : T (z) = a(z)
Q(zq2)

Q(z)
+ d(z)

Q(zq−2)

Q(z)
.

Here a(z), d(z) are scalar functions and q is the parameter of the model. Q(z) is a
polynomial in z, called the Baxter operator. The cancellation of poles at the right-hand
side becomes Bethe Ansatz equations for the roots of Q(z). A similar operator equation
holds for the 8-vertex model [2], where the Bethe Ansatz method fails.

Within the framework of Quantum Inverse Scattering Method, the transfer matrix
T (z) is defined in terms of representations of a quantum group U. Let R(z) ∈ U⊗2 be
the universal R-matrix with spectral parameter z and let V, W be two representations of
U. Then tW (z) := trW (R(z)W⊗V ) forms a commuting family of endomorphisms on V ,
thanks to the quasi-triangularity of (U,R(z)). As examples, the transfer matrix for the
6-vertex model (resp. XXX spin chain) comes from tensor products of two-dimensional
irreducible representations of the affine quantum groupUq(̂sl2) (resp. Yangian Y�(sl2)),
while the face-type model of Andrews–Baxter–Forrester, which is equivalent to the 8-
vertex model by a vertex-IRF correspondence, requires Felder’s elliptic quantum group
Eτ,η(sl2) [20,21].

The representation meaning of the Q(z) was understood in the pioneer work of
Bazhanov–Lukyanov–Zamolodchikov [3] forUq(̂sl2), and extended to an arbitrary non-
twisted affine quantum group Uq (̂a) of a finite-dimensional simple Lie algebra a in
the recent work of Frenkel–Hernandez [24]. One observes that the first tensor factor of
R(z) lies in aBorel subalgebraUq(b) ofUq (̂a), so the above transfer-matrix construction
makes sense forUq(b)-modules. Notably the Baxter operators Q(z) are transfermatrices
of L+

i,a , the positive prefundamental modules over Uq(b), for i a Dynkin node of a and
a ∈ C

×. The L+
i,a are irreducible objects of a categoryOHJ ofUq(b)-modules introduced

by Hernandez–Jimbo [34].
Making use of the prefundamental modules, Frenkel–Hernandez [24] solved a con-

jecture of Frenkel–Reshetikhin [27] on the spectra of the quantum integrable system,
which connects eigenvalues of transfer matrices tW (z), for W finite-dimensional Uq (̂a)-
modules, with polynomials arising as eigenvalues of the Baxter operators.

The two-term TQ relations, as a tool to derive Bethe Ansatz Equations for the roots of
Baxter polynomials, are consequences of identities in the Grothendieck ring K0(OHJ) of
category OHJ [18,19,24,25,35]. Such identities are also examples of cluster mutations
of Fomin–Zelevinsky [35].
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In the elliptic case, the triangular structure of R(z) is less clear as there is not yet a
formulation of Borel subalgebras. Still the eigenvalues of T (z) admit TQ relations by a
BetheAnsatz in [21]. In a jointworkwithG. Felder [22],wewere able to construct elliptic
Baxter operator Q(z) for Eτ,η(sl2) as a transfer matrix of certain infinite-dimensional
representations over the full elliptic quantum group.

Then a natural question is whether the Baxter operators can always be realized from
representations of the full quantumgroup (of typeYangian, affine, or elliptic). Inspired by
[22], in the present paper we provide a partial answer for the quantum affine superalgebra
Uq (̂g), based on the asymptotic representations, which we introduced in a previous work
[53].

Let us mention the appearance of quantum affine superalgebras and Yangians in
other supersymmetric integrable models like the deformed Hubbard model and anti de
Sitter/conformal field theory correspondences; see [7,8] and references therein.

Compared to the intense works on affine quantum groups (see the reviews [13,40]),
the representation theory of Uq (̂g) is still less understood as the super case poses one
essential difficulty, the smallness of Weyl group symmetry.

2. Asymptotic representations.Before stating themain results of this paper, let us recall
from [53] the asymptotic modules over Uq (̂g).

Let I0 := {1, 2, . . . , M +N −1} be the set of Dynkin nodes of the Lie superalgebra g.
There areUq (̂g)-valued power seriesφ±

i (z) in z±1 for i ∈ I0 whose coefficientsmutually
commute; they can be viewed as q-analogs of A⊗t±n ∈ ĝwith A being a diagonalmatrix
in g and n a positive integer. Algebra Uq (̂g) admits a triangular decomposition whose
Cartan part is generated by the φ±

i (z). The highest weight representation theory built
from this decomposition is suitable for the classification of finite-dimensional irreducible
representations [49] in terms of rational functions.

Fix a Dynkin node i ∈ I0 and a spectral parameter a ∈ C
×. To each positive integer

k is attached a Kirillov–Reshetikhin module. It is a finite-dimensional irreducibleUq (̂g)-
module generated by a highest weight vector ω such that

φ±
j (z)ω = ω if j �= i, φ±

i (z)ω = qk
i − zaq−k

i

1 − za
ω.

Here qi = q for i ≤ M and qi = q−1 for i > M . In [53], we made an “analytic contin-
uation” by taking qk

i to be a fixed c ∈ C
× as k → ∞ to obtain a Uq (̂g)-module W (i)

c,a .
This is what we call an asymptotic module. It is a modification of the limit construction
of prefundamental modules over Borel subalgebras in [3,34].

Wedefined in [53] a categoryOg of representations ofUq (̂g)by imposing the standard
weight condition as for Kac–Moody algebras [37] and dropping integrability condition
[32,41]. It contains the W (i)

c,a and all the finite-dimensional Uq (̂g)-modules. Category
Og is monoidal and abelian.1

3. Main results.We prove the following property of Grothendieck ring K0(Og):

(i) If W is an asymptotic module, then there exist three modules D, S′, S′′ in category
Og such that [D][W ] = [S′] + [S′′] and S′, S′′ are tensor products of asymptotic
modules; see Theorem 5.3.

1 In the main text we also study categoryO of representations of a Borel subalgebra ofUq (̂g), which admits
prefundamental modules as in [34]; see Definition 1.4. Here Og is the full subcategory of O consisting of
Uq (̂g)-modules.
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Consider the XXZ spin chain of Uq (̂g). For i ∈ I0, we define the Baxter operator

Qi (u) to be the transfer matrix of W (i)
u,1 evaluated at 1 (Definition 9.6), as in the elliptic

case [22]. To justify the definition, we prove the following facts.

(ii) If V is a finite-dimensional Uq (̂g)-module, then tV (z−2) is a sum of monomials
of the d(z) Qi (zac)

Qi (za)
where i ∈ I0, a, c ∈ C

×, and the d(z) are scalar functions, the
number of terms being dim V ; see Corollary 9.7.

(iii) Each Qi (z) satisfies a two-term TQ relation; see Eq. (9.38).

Note that (ii) reduces the transfer matrix of an arbitrary finite-dimensional Uq (̂g) to the
finite set {Qi (u) | i ∈ I0} up to scalar functions. It forms generalized Baxter TQ relations
in the sense of Frenkel–Hernandez [24].

4. Proofs. This requires the q-character map of Frenkel–Reshetikhin [27], which is an
injective ring homomorphism from the Grothendieck ring K0(Og) to a commutative
ring of I0-tuples of rational functions with parity (Proposition 1.8).

The q-character of an asymptotic module is fairly easy thanks to its limit construction
in [53]. We obtain a separation of variable identity (SOV, Lemma 9.5),

[W (i)
c,1 ][W (i)

1,a2
] = [W (i)

ca,a2
][W (i)

a−1,1
] ∈ K0(Og).

This identity puts the parameters c, a ∈ C
× in W (i)

c,a at an equal role. It categorifies

c − zc−1

1 − z
× 1 − za2

1 − za2 = ca − zc−1a

1 − za2 × a−1 − za

1 − z
.

In [53] we established generalized TQ relations in category Og, which together with
SOV proves (ii). Similarly (iii) follows from (i) and SOV.

Along the proof of (i) we obtain results of independent interest:

• q-character formulas of four families of finite-dimensional irreducible Uq (̂g)-
modules, including all the Kirillov–Reshetikhin modules (Theorem 2.4);

• a criteria for a tensor product of Kirillov–Reshetikhin modules to admit an irre-
ducible head (i.e. of highest weight, Theorem 6.1);

• short exact sequences of tensor products of Kirillov–Reshetikhin modules (Theo-
rem 3.3).

The third point includes the T-system [31,42,44] as a special case.

5. Perspectives.Weexpect that ourmain results (i)–(iii) have analogy in elliptic quantum
groups Eτ,�(a), based on twistor theory relating affine quantum groups to elliptic quan-
tum groups [29,36,39]. For a = slN this has been verified in [22,54]. For a of general
type, a category of Eτ,�(a)-modules was studied in [30] with well-behaved q-character
theory, although its tensor product structure is unclear.

It is possible to adapt the arguments to the case of Yangians (not necessarily of type
A) in view of [29]. One could avoid degenerate Yangian [4,5,28], whose prefundamental
representations lead to Baxter operators but do not carry natural action of the ordinary
Yangian. [22, Appendix] discussed the gl2 case. The Yangian of centrally extended
psl(2|2) [7] is of special interest in AdS/CFT. We do not know of any representation
category O with well-behaved highest weight theory, yet there are limit constructions
of infinite-dimensional representations [1].

For twisted quantum affine algebrasU, there are conjectural TQ relations in category
OHJ [25]. Onemay ask for such relations in terms ofU-modules. This is interesting from
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another point of view: the correspondence between twisted quantum affine algebras and
non-twisted quantum affine superalgebras [17,55]. (This is different from Langlands
duality in that the Cartan matrices for these algebras are identical.) A typical example
is the equivalence [17] of categories Oint of integrable representations over Uq(A(2)

2n )

and Uq( ̂osp(1|2n)). Let us mention an earlier work of Z. Tsuboi [45] on Bethe Ansatz
Equations for orthosymplectic Lie superalgebras, the representation theory meaning of
which is to be understood. One should need the Drinfeld second realization of quantum
affine superalgebras [47].

The paper is structured as follows. In Sect. 1 we review the quantum affine superal-
gebra Uq (̂g) and its Borel subalgebra Yq(g), and study the basic properties of category
O of Yq(g)-modules. Section 5 presents the main result (i). In Sect. 9, for the Uq (̂g)

XXZ spin chain, we construct Baxter operators from the W (i)
c,a and derive Bethe Ansatz

Equations from (i).
The two basics ingredients are: the q-character formulas in terms of Young tableaux,

proved in Sect. 2; cyclicity of tensor products of Kirillov–Reshetikhin modules studied
in Sect. 6. The q-characters already lead to TQ relations of positive prefundamental
modules over Yq(g) in Sects. 3 and 4. The proof of (i) is completed in Sect. 7 upon
realizing D as a suitable asymptotic limit.

The extended T-systems of Kirillov–Reshetikhin modules are proved in Sect. 8. Al-
though they are not needed in the proof of the main theorem, we include them here as
applications of q-characters and cyclicity.

1. Basics on Quantum Affine Superalgebras

Fix M, N ∈ Z>0. In this sectionwe collect basic facts on the quantumaffine superalgebra
associatedwith the general linearLie superalgebrag := gl(M |N ) and its representations.
Themain references are [51–53], some of whose results are modified to be coherent with
the non-graded quantum affine algebras.

Set κ := M + N , I := {1, 2, . . . , κ} and I0 := I\{κ}. Let Z2 denote the ring
Z/2Z = {0, 1}. The weight lattice P is the abelian group freely generated by the εi for
i ∈ I . Let || be the morphism of additive groups P −→ Z2 such that

|ε1| = |ε2| = · · · = |εM | = 0, |εM+1| = |εM+2| = · · · = |εM+N | = 1.

P is equipped with a symmetric bilinear form (, ) : P × P −→ Z,

(εi , ε j ) = δi j (−1)|εi | where (−1)0 := 1, (−1)1 := −1.

Define αi := εi −εi+1 for i ∈ I0, and the root lattice Q to be the subgroup of P generated
by the αi . Set ql := q(εl ,εl ) and qi j := q(αi ,α j ) for i, j ∈ I0 and l ∈ I .

If W is a vector superspace andw ∈ W is aZ2-homogeneous vector, then by abuse of
language let |w| ∈ Z2 denote the parity of w. (It is not to be confused with the absolute
value |n| of an integer n.)

Let V be the vector superspace with basis (vi )i∈I and parity |vi | := |εi |. Define the
elementary matrices Ei j ∈ End(V) by Ei jvk = δ jkvi for i, j, k ∈ I . They form a basis
of the vector superspace End(V) and |Ei j | = |εi | + |ε j |.
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1.1. Quantum superalgebras. Recall the Perk–Schultz matrix [43]

R(z, w) =
∑

i∈I

(zqi − wq−1
i )Eii ⊗ Eii + (z − w)

∑

i �= j

Eii ⊗ E j j

+ z
∑

i< j

(qi − q−1
i )E ji ⊗ Ei j + w

∑

i< j

(q j − q−1
j )Ei j ⊗ E ji .

It is well-known that R(z, w) satisfies the quantum Yang–Baxter equation:

R12(z1, z2)R13(z1, z3)R23(z2, z3) = R23(z2, z3)R13(z1, z3)R12(z1, z2) ∈ End(V)⊗3.

The convention for the tensor subscripts is as usual. Let n ≥ 2 and A1, A2, . . . , An be
unital superalgebras. Let 1 ≤ i < j ≤ n. If x ∈ Ai and y ∈ A j , then

(x ⊗ y)i j := (⊗i−1
k=11Ak ) ⊗ x ⊗ (⊗ j−1

k=i+11Ak ) ⊗ y ⊗ (⊗n
k= j+11Ak ) ∈ ⊗n

k=1Ak .

Now we can define the quantum affine superalgebra associated to g.

Definition 1.1 [51, Section 3.1]. Uq (̂g) is the superalgebra with presentation:

(R1) RTT-generators s(n)
i j , t (n)

i j of parity |εi | + |ε j | for i, j ∈ I and n ∈ Z≥0;

(R2) RTT-relations in Uq (̂g) ⊗ (End(V)⊗2)[[z, z−1, w,w−1]]
R23(z, w)T12(z)T13(w) = T13(w)T12(z)R23(z, w),

R23(z, w)S12(z)S13(w) = S13(w)S12(z)R23(z, w),

R23(z, w)T12(z)S13(w) = S13(w)T12(z)R23(z, w);
(R3) t (0)i j = s(0)

j i = 0 and s(0)
kk t (0)kk = 1 for i, j, k ∈ I and i < j .

T (z) ∈ Uq (̂g) ⊗ End(V)[[z−1]] and S(z) ∈ Uq (̂g) ⊗ End(V)[[z]] are power series

T (z) =
∑

i j

ti j (z) ⊗ Ei j , ti j (z) =
∑

n∈Z≥0

t (n)
i j z−n,

S(z) =
∑

i j

si j (z) ⊗ Ei j , si j (z) =
∑

n∈Z≥0

s(n)
i j zn .

TheBorel subalgebra Yq(g), also calledq-Yangian,2 is the subalgebra ofUq (̂g)generated

by the s(n)
i j and (s(0)

i i )−1. The finite-type quantum supergroup Uq(g) is the subalgebra of

Uq (̂g) generated by the s(0)
i j and t (0)i j .

Uq (̂g) has a Hopf superalgebra structure with counit ε : Uq (̂g) −→ C defined by

ε(s(n)
i j ) = ε(t (n)

i j ) = δi jδn0, and coproduct � : Uq (̂g) −→ Uq (̂g)⊗2:

�(s(n)
i j ) =

n
∑

m=0

∑

k∈I

εi jks(m)
ik ⊗ s(n−m)

k j , �(t (n)
i j ) =

n
∑

m=0

∑

k∈I

εi jk t (m)
ik ⊗ t (n−m)

k j .

2 This is because the algebra Yq (g) admits an RTT = TTR type presentation, as does the ordinary Yangian
Y (g). Here q is a parameter of R.
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Here εi jk := (−1)|Eik ||Ekj |. The antipode S : Uq (̂g) −→ Uq (̂g) is determined by

(S ⊗ Id)(S(z)) = S(z)−1, (S ⊗ Id)(T (z)) = T (z)−1.

S(z)−1 and T (z)−1 are well-defined owing to Definition 1.1 (R3). Notice that Yq(g) and
Uq(g) are sub-Hopf-superalgebras of Uq (̂g).

We shall need Uq−1 (̂g), whose RTT generators are denoted by s(n)
i j , t (n)

i j .
Recall the following are isomorphisms of Hopf superalgebras (a ∈ C

×):

�a : Uq (̂g) −→ Uq (̂g), s(n)
i j 
→ ans(n)

i j , t (n)
i j 
→ a−nt (n)

i j , (1.1)


 : Uq (̂g) −→ Uq (̂g)cop, s(n)
i j 
→ ε j i t

(n)
j i , t (n)

i j 
→ ε j i s
(n)
j i , (1.2)

h : Uq−1 (̂g) −→ Uq (̂g)cop, S(z) 
→ S(z)−1, T (z) 
→ T (z)−1. (1.3)

Here εi j := (−1)|εi |+|εi ||ε j | and Acop of a Hopf superalgebra A takes the same under-
lying superalgebra but the twisted coproduct �cop := cA,A�, with cA,A : x ⊗ y 
→
(−1)|x ||y|y ⊗ x the graded permutation, and antipode S

−1. There are superalgebra mor-
phisms for p(z) ∈ C[[z]]×, p1(z) ∈ C[[z−1]]× with p(0)p1(∞) = 1:

ev+a : Uq (̂g) −→ Uq(g), si j (z) 
→ s(0)
i j − zat (0)i j

1 − za
, ti j (z) 
→ t (0)i j − z−1a−1s(0)

i j

1 − z−1a−1 ,

(1.4)

φ[p,p1] : Uq (̂g) −→ Uq (̂g), si j (z) 
→ p(z)si j (z), ti j (z) 
→ p1(z)ti j (z). (1.5)

�a, h, ev+a , φ[p,p1] restrict to Yq(g) or Yq(g′), denoted by �a, h, ev+a , φp. Let ev+a :
Uq−1 (̂g) −→ Uq−1(g) be the corresponding morphisms when replacing q by q−1. This
gives rise to (notice that h(Uq−1(g)) = Uq(g)):

ev−
a : Uq (̂g) −→ Uq(g), ev−

a = h ◦ ev+a ◦ h−1. (1.6)

Uq (̂g) isQ-graded: x ∈ Uq (̂g) is of weight λ ∈ Q if s(0)
i i x = q(λ,εi )xs(0)

i i for all i ∈ I .

For example s(n)
i j and t (n)

i j are of weight εi − ε j [51, (3.14)]. Let Uq (̂g)λ be the weight
space of weight λ. The Q-grading restricts to Yq(g) and Uq(g).

We recall the Drinfeld second realization of Uq (̂g) from [51, Section 3.1.4]. Write

⎧

⎪

⎨

⎪

⎩

S(z) = (
∑

i< j
e+i j (z) ⊗ Ei j + 1)(

∑

l
K +

l (z) ⊗ Ell)(
∑

i< j
f +j i (z) ⊗ E ji + 1),

T (z) = (
∑

i< j
e−

i j (z) ⊗ Ei j + 1)(
∑

l
K −

l (z) ⊗ Ell)(
∑

i< j
f −

j i (z) ⊗ E ji + 1),

as invertible power series in z±1 over Uq (̂g)⊗End(V); the subscripts i, j, l ∈ I . Notice
that K +

κ (z) = sκκ(z). For i ∈ I0, j ∈ I let us define τi , θ j :

τi := q M−N+1−i for 1 ≤ i ≤ M, τM+l := ql+1−N for 1 ≤ l < N , (1.7)

θ j := q2(M−N+1− j) for 1 ≤ j ≤ M, θM+l := q2(l−N ) for 1 ≤ l ≤ N . (1.8)
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The Drinfeld loop generators are defined by generating series: let i ∈ I0,

x+i (z) =
∑

n∈Z

x+i,nzn := e+i,i+1(zτi ) − e−
i,i+1(zτi )

qi − q−1
i

∈ Uq (̂g)[[z, z−1]],

x−
i (z) =

∑

n∈Z

x−
i,nzn := f −

i+1,i (zτi ) − f +i+1,i (zτi )

q−1
i − qi

∈ Uq (̂g)[[z, z−1]],

φ±
i (z) =

∑

n≥0

φ±
i,±nz±n := K ±

i (zτi )K ±
i+1(zτi )

−1 ∈ Uq (̂g)[[z±1]].

From Gauss decomposition we have K +
l (z), φ+

i (z) ∈ Yq(g)[[z]] for l ∈ I and i ∈ I0.

Remark 1.2. In [51, Section 3.1.4] a different Gauss decomposition of S(z), T (z) was
considered ( f always ahead of e). If Xi

±
(z), K

±
l (z) with i ∈ I0, l ∈ I denote the

Drinfeld generating series of Uq−1 (̂g) in loc. cit., then

h(K
±
l (z)) = K ±

l (z)−1, h(X
±
i (z)) = ±(q−1

i − qi )x±
i (zτ−1

i ).

Let us rewrite [51, Theorem 3.5] in terms of the x±
i (z), φ±

i (z), K ±
l (z). First, the coeffi-

cients of these series generate the whole algebra Uq (̂g). Second, for i, j ∈ I0, l, l ′ ∈ I
and η, η′ ∈ {±} we have: (recall qi j = q(αi ,α j ))

K η
l (z)K η′

l ′ (w) = K η′
l ′ (w)K η

l (z), K +
l (0)K −

l (∞) = 1,

K η
M+N (z)x±

i (w) =
(

zq−1 − wq

z − w

)±δi+1,M+N

x±
i (w)K η

M+N (z),

φ
η
i (z)x±

j (w) = z − wq±1
i j

zq±1
i j − w

x±
j (w)φ

η
i (z),

[x+i (z), x−
j (w)] = δi j

φ+
i (z) − φ−

i (w)

qi − q−1
i

δ(
z

w
),

(zq±1
i j − w)x±

i (z)x±
j (w) = (z − wq±1

i j )x±
j (w)x±

i (z) if (i, j) �= (M, M),

[x±
i (z1), [x±

i (z2), x±
j (w)]q ]q−1 + {z1 ↔ z2} = 0 if (i �= M, | j − i | = 1),

x±
M (z)x±

M (w) = −x±
M (w)x±

M (z), x±
i (z)x±

j (w) = x±
j (w)x±

i (z) if |i − j | > 1,

together with the degree 4 oscillator relation when M, N > 1:

[[[x±
M−1(u), x±

M (z1)]q , x±
M+1(v)]q−1, x±

M (z2)] + {z1 ↔ z2} = 0.

Here [x, y]a := xy − a(−1)|x ||y|yx for x, y ∈ Uq (̂g) and a ∈ C. These relations
are coherent with the Drinfeld second realization of quantum affine algebras (e.g. [32,
Section 3.2]) and superalgebras [48, Theorem 8.5.1]. For i ∈ I0\{M}, the subalgebra of
Uq (̂g) generated by (x±

i,n, φ±
i,n)n∈Z is a quotient algebra of Uqi (

̂sl2).
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Let Q+ := ⊕i∈I0Z≥0αi ⊂ P and Q− := −Q+. By [51, Proposition 3.6]:

�(K ±
i (z)) ∈ K ±

i (z) ⊗ K ±
i (z)+

∑

0 �=α∈Q+

Uq (̂g)−α ⊗ Uq (̂g)α[[z±1]], (1.9)

�(x+i (z)) ∈ x+i (z) ⊗ 1+
∑

0 �=α∈Q+

Uq (̂g)αi −α ⊗ Uq (̂g)α[[z, z−1]], (1.10)

�(x−
i (z)) ∈ 1 ⊗ x−

i (z)+
∑

0 �=α∈Q+

Uq (̂g)−α ⊗ Uq (̂g)α−αi [[z, z−1]]. (1.11)

The coproduct shares the same triangular property as [27, Lemma 1].

1.2. Category O. We first recall the notion of weights from [53, Section 6]. Define

P := (C×)I × Z2, ̂P := (C[[z]]×)I × Z2.

The multiplicative group structure on C
×, C[[z]]× and the additive group structure on

the ring Z2 make P,̂P into multiplicative abelian groups. P is naturally a subgroup of
̂P, and C[[z]]× −→ C

×, f (z) 
→ f (0) induces a projection � : ̂P −→ P. There is
an injective homomorphism of abelian groups (see also [19, Section 3.1])

q : P −→ P, λ 
→ qλ := ((q(εi ,λ))i∈I ; |λ|). (1.12)

Elements of ̂P will usually be denoted by f, g, . . ., or f(z), g(z), . . . when their depen-
dence on z is needed. For instance, if f = (( fi (z))i∈I ; s) ∈ ̂P, then for a ∈ C

×
we have f(za) = (( fi (za))i∈I ; s) ∈ ̂P. We view h(z) ∈ C[[z]]× as the element
(h(z), . . . , h(z); 0) ∈ ̂P, which makes C[[z]]× a subgroup of ̂P.

Let V be a Yq(g)-module. For p = ((pi )i∈I ; s) ∈ P, define

Vp := {v ∈ Vs | s(0)
i i v = piv for i ∈ I }.

If Vp �= 0, then p is called a weight of V , and Vp the weight space of weight p. Let

wt(V ) denote the set of weights of V . We have s(n)
i j Vp ⊆ Vqεi −ε j p for p ∈ wt(V ).

Similarly, for f = (( fi (z))i∈I ; s) ∈ ̂P define

Vf := {v ∈ Vs | ∃d ∈ Z>0 such that (K +
i (z) − fi (z))

dv = 0 for i ∈ I }.
If Vf �= 0, then f is an �-weight of V , and Vf the �-weight space of �-weight f . Let
wt�(V ) be the set of �-weights of V .

One should be aware that in [53, Section 6] the definition of �-weight spaces involves
different Drinfeld generators. Nevertheless making use of Remark 1.2 and the involution
h, we can translate all the results concerning Yq−1(g)- and Uq−1(g)-modules in [53], so
as to obtain parallel results on Yq(g)- and Uq (̂g)-modules.

Example 1.3. To f = h(z)p ∈ ̂P with h(z) ∈ 1 + zC[[z]] and p = ((pi )i∈I ; s) ∈ P is
associated a representation ofYq(g) on the one-dimensional vector superspaceCs := C1
of parity s = |1|, defined by si j (z)1 = δi j h(z)pi1. Let Cf denote this Yq(g)-module.
We have {f} = wt�(Cf ) and {p} = wt(Cf ).

Definition 1.4. [53, Definition 6.3] A Yq(g)-module V is in category O if:
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(i) V has a weight space decomposition V = ⊕p∈PVp;
(ii) dim Vp < ∞ for all p ∈ P;
(iii) there exist μ1, μ2, . . . , μd ∈ P such that wt(V ) ⊆ ∪d

j=1(q
Q−

μ j ).

Let V be a Yq(g)-module in category O. A non-zero ω ∈ V is called a highest �-
weight vector if it belongs to Vf for certain f = (( fi (z))i∈I ; s) ∈ ̂P and it is annihilated
by the si j (z) for i < j . Necessarily K +

i (z)ω = fi (z)ω. Call V a highest �-weightmodule
if it is generated as a Yq(g)-module by a highest �-weight vector ω, in which case ω is
unique up to scalar multiple and its �-weight is called the highest �-weight of V . Lowest
�-weight vector/module is defined similarly by replacing the condition i < j with i > j .

In Example 1.3 the vector 1 ∈ Cf is both of highest and of lowest �-weight.

Attention! If ω is a lowest �-weight vector of �-weight f = (( fi (z))i∈I ; s), then we
have sii (z)ω = fi (z)ω for i ∈ I ; see also [53, Section 6]. This is not necessarily true if
“lowest” is replaced by “highest”.

Let R be the subset of ̂P consisting of the f = (( fi (z))i∈I ; s) such that fi (z)
fi+1(z)

is the
Taylor expansion at z = 0 of a rational function for i ∈ I0.

Lemma 1.5 [53, Lemma 6.8 & Proposition 6.10]. Let f = (( fi (z))i∈I ; s) ∈ R.

(1) In category O there exists a unique irreducible highest �-weight module L(f) of
highest �-weight f up to isomorphism. The L(g) for g ∈ R form the set of irreducible
objects (two-by-two non-isomorphic) of category O.

(2) dim L(f) = 1 if and only if fi (z)
fi+1(z)

∈ C
× for i ∈ I0, i.e. f ∈ C[[z]]×̂P.

(3) dim L(f) < ∞ if and only if for i ∈ I0\{M} there exist Pi (z) ∈ 1 + zC[z] and

ci ∈ C
× such that fi (z)

fi+1(z)
= ci

Pi (zq−1
i )

Pi (zqi )
.

(4) L(f) can be extended to a Uq (̂g)-module if and only if fi (z)
fi+1(z)

is a product of the

c 1−zac−2

1−za with a, c ∈ C
× for i ∈ I0.

Based on (4), let RU be the subset of R consisting of f = (( fi (z))i∈I ; s) such that
for i ∈ I , the rational function fi (z) is a product of the c 1−zac−2

1−za with a, c ∈ C
×. For

f ∈ RU , the Yq(g)-module L(f) is extended uniquely to a Uq (̂g)-module by

K +
i (z)ω = fi (z)ω = K −

i (z)ω for i ∈ I.

Hereω is a highest �-weight vector, and in the second identity one views fi (z) ∈ C[[z−1]]
by taking the its Taylor expansion of at z = ∞. We continue to let L(f) denote the
irreducible Uq (̂g)-module thus obtained for f ∈ RU .

Example 1.6. For i ∈ I0 and a ∈ C
× define the prefundamental �-weight 
i,a ∈ R, the

fundamental weight �i ∈ P, and [a]i ∈ R by:

i ≤ M i > M

i,a (h(z), . . . , h(z)

︸ ︷︷ ︸

i

, 1, . . . , 1
︸ ︷︷ ︸

κ−i

; 0) (1, . . . , 1
︸ ︷︷ ︸

i

, h(z)−1, . . . , h(z)−1
︸ ︷︷ ︸

κ−i

; 0)

[a]i (a, . . . , a
︸ ︷︷ ︸

i

, 1, . . . , 1
︸ ︷︷ ︸

κ−i

; 0) (1, . . . , 1
︸ ︷︷ ︸

i

, a−1, . . . , a−1
︸ ︷︷ ︸

κ−i

; 0)

�i ε1 + ε2 + · · · + εi −εi+1 − εi+2 − · · · − εκ
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where h(z) = 1 − zaτ−1
i . For i, j ∈ I0 let us write i ∼ j if |i − j | = 1. Define

ai j := a(αi ,α j ), q̂i = qi if i �= M, q̂M = q−1.

Let us introduce the following elements of R for c ∈ C
× and m ∈ Z>0:

n+i,a :=

i,aq−2

i


i,a

∏

j∈I0: j∼i


 j,aq−1
i j

, n−
i,a := 
i,a


i,aq̂2
i

∏

j∈I0: j∼i


−1
j,aqi j

,

ω(i)
c,a := [c]i


i,ac−2


i,a
, �(i)

m,a := qm�i

i,aq1−2m

i


i,aqi

, Yi,a := q�i

i,aq−1

i


i,aqi

,

n(i)
c,a := ω

(i)
q̂i ,aq̂2

i

∏

j∈I0: j∼i

ω
( j)

c−1
i j ,aqi j

, m(i)
c,a := ω(i)

qi ,a

∏

j∈I0: j∼i

ω
( j)

c−1
i j ,aq−1

i j c−2
i j

,

Ai,a := (1, . . . , 1
︸ ︷︷ ︸

i−1

, qi
1 − zaτi q−1θ−1

i q−1
i

1 − zaτi q−1θ−1
i qi

, q−1
i+1

1 − zaτi q−1θ−1
i qi q2

i+1

1 − zaτi q−1θ−1
i qi

1, . . . , 1
︸ ︷︷ ︸

κ−i−1

; |αi |).

The irreducible Yq(g)-modules L±
i,a := L(
±1

i,a ) are called positive/negative prefunda-
mental modules. If ω is a highest �-weight vector of L+

i,a , then

φ+
j (z)ω = ω for j �= i, φ+

i (z)ω = (1 − za)ω.

So 
i,a is a super analog of [34, (3.16)]. Define the irreducible Yq(g)-modules:

N±
i,a := L(n±

i,a), M (i)
c,a := L(m(i)

c,a), W (i)
m,a := L(�(i)

m,a).

Call W (i)
m,a a Kirillov–Reshetikhin module (KR module). By Lemma 1.5, the M, W are

Uq (̂g)-modules with W finite-dimensional. (In Sects. 7 and 8 N (i)
m,a will denote the

irreducible module L(m(i)
qm ,a) for m ∈ Z>0, so here we do not use N (i)

c,a .)

Remark 1.7. Later in Sects. 6 and 7 we work with Uq (̂g)-modules in categoryO. Such a
module V is called a highest �-weight Uq (̂g)-module in [52, Section 1.2] if there exists
a non-zero Z2-homogeneous vector ω such that V = Uq (̂g)ω and

s(n)
i j ω = t (n)

i j ω = 0, s(n)
ll ω ∈ Cω � t (n)

ll ω for i < j.

Indeed V is of highest �-weight as a Uq (̂g)-module if and only it is of highest �-weight
as a Yq(g)-module. (The “if” part comes from weight grading, while the “only if”
part from the Drinfeld relations in Remark 1.2.) It also follows that V is an irreducible
Uq (̂g)-module if and only if it is an irreducible Yq(g)-module, as in [34, Proposition 3.5].
Therefore when we say V is of highest �-weight or irreducible, we make no reference
to Yq(g) or Uq (̂g).

As in [35, Section 3.2], let E� be the set of formal sums
∑

f∈̂P cf f with integer

coefficients cf ∈ Z such that⊕f∈̂PC
⊕|cf |
f is an object of categoryO. It is a ring: addition

is the usual one of formal sums; multiplication is induced by that of ̂P. (One views E�

as a completion of the group ring Z[̂P].)
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For V an object of category O, its weight space decomposition can be refined to an
�-weight decomposition because of condition (ii) in Definition 1.4. Following [27] we
define its q-character and classical character

χq(V ) =
∑

f∈wt�(V )

dim(Vf )f, χ(V ) =
∑

p∈wt(V )

dim(Vp)p ∈ E�. (1.13)

In Example 1.3 we have χq(Cf ) = f and χ(Cf ) = �(f).
We shall need the completed Grothendieck group K0(O). Its definition is the same

as that in [35, Section 3.2]: elements are formal sums
∑

f∈R cf [L(f)]with integer coeffi-
cients cf ∈ Z such that⊕f∈RL(f)⊕|cf | is in categoryO; addition is the usual one of formal
sums. For f ∈ R andV in categoryO, themultiplicity of the irreduciblemodule L(f) inV
is well-defined due to Definition 1.4, as in the case of Kac–Moody algebras [37, Section
9.6]; it is denoted bymL(f),V ∈ Z≥0.Necessarily [V ] :=∑f∈R mL(f),V [L(f)] ∈ K0(O).
In the case V = L(f) the right-hand side is simply [L(f)] because mL(g),L(f) = δgf for
g ∈ R.

Make K0(O) into a ring by [V ][W ] := [V ⊗ W ]. Equation (1.13) extends uniquely
to morphisms of additive groups χq : K0(O) −→ E� and χ : K0(O) −→ E�, called
q-character map and character map respectively. As in [27, Theorem 3], we have

Proposition 1.8 [53, Corollary 6.9]. The q-character map χq is an injective morphism
of rings. Consequently the ring K0(O) is commutative.

The tensor product L(f)⊗ L(g) contains an irreducible sub-quotient L(fg) for f, g ∈
R. Let us define the normalized q-character χ̃q(L(f)) := f−1χq(L(f)).

For V, W in category O, write V � W if there is a one-dimensional module D in
category O such that V ∼= W ⊗ D as Yq(g)-modules. By Lemma 1.5 (2) and Propo-
sition 1.8 we have L(f) � L(g) if and only if g−1f ∈ C[[z]]×̂P, in which case the
normalized q-characters of L(f) and L(g) are identical and we write f ≡ g.

As an example, for the generalized simple root Ai,a ∈ RU we have

Ai,a ≡

i,aq−2

i


i,aq̂2
i

∏

j∈I0: j∼i


 j,aq−1
i j


 j,aqi j

. (1.14)

1.3. Category O′. As in [52, Section 1], let gl(N |M) =: g′ be another Lie superalgebra,
which is not to be confused with the derived algebra of g. Define the Hopf superalgebras
Uq(̂g′), Yq(g′), Uq(g′) in the same way as for Uq (̂g), Yq(g), Uq(g) in Sect. 1.1, except
that M, N are interchanged. We start from the same weight/root lattices P,Q andP,̂P
but with different parity map |?|′ : P −→ Z2:

|ε1|′ = |ε2|′ = · · · = |εN |′ = 0, |εN+1|′ = |εN+2|′ = · · · = |εN+M |′ = 1,

bilinear form (εi , ε j )
′ = δi j (−1)|εi |′ , and embedding q ′λ := ((q(λ,εi )

′
)i∈I ; |λ|′) of P in

P. One defines category O′ of Yq(g′)-modules as in Sect. 1.2. Let us summarize the
modifications of notations related to g′ to be used later on:

g, Uq(g), Yq(g), Uq (̂g) g′, Uq(g′), Yq(g′), Uq(̂g′) algebras

s(n)
i j , t (n)

i j , qi , qi j , τi , θ j s′(n)
i j , t ′(n)

i j , q ′
i , q ′

i j , τ ′
i , θ ′

j RTT
x±

i (z), K ±
i (z), φ±

i (z) x ′±
i (z), K ′±

i (z), φ′±
i (z) currents

O, L(f), L±
i,a, N±

i,a, W (i)
m,a O′, L ′(f), L ′±

i,a, N ′±
i,a, W ′(i)

m,a categories

(1.15)
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In case M = N one can simply remove all the primes in the table.
For i, j ∈ I , set̂i := κ + 1 − i and ε′

i j := (−1)|εi |′+|εi |′|ε j |′ . Then

F : Uq(̂g′) −→ Uq (̂g)cop, s′(n)
i j 
→ ε′

j i s
(n)
̂ĵi

, t ′(n)
i j 
→ ε′

j i t
(n)
̂ĵi

. (1.16)

defines a Hopf superalgebra isomorphism. Let F : Uq−1(̂g′) −→ Uq−1 (̂g)cop and h′ :
Uq−1(̂g′) −→ Uq(̂g′)cop be analogs of Eqs. (1.16) and (1.3). They induce

G : Uq(̂g′) −→ Uq (̂g)cop, G := h ◦ F ◦ h′−1 (1.17)

a Hopf superalgebra isomorphism which restricts to G : Yq(g′) −→ Yq(g).

Lemma 1.9. The pullback by G is an anti-equivalence of monoidal categories G∗ :
O −→ O′. If f = ( f1(z), f2(z), . . . , fκ (z); s) ∈ R, then as Yq(g′)-modules

G∗(L(f)) ∼= L ′( fκ(z), fκ−1(z), . . . , f1(z); s).

In particular, G∗(L±
i,a) � L ′∓

M+N−i,aq N−M for 1 ≤ i < M + N.

Proof. Let V be a Yq(g)-module in category O. If p ∈ P, then Vp = (G∗V )p′ where
p′ = (( p̂i )i∈I ; s), and so Vqnαi p = (G∗V )q ′nακ−i p′ for i ∈ I0 and n ∈ Z. This implies
that G∗V is in category O′. The first statement is now clear.

Let V = L(f) and let ω ∈ V be a highest �-weight vector. In h∗V we have

K
+
l (z)h∗ω = fl(z)

−1h∗ω, si j (z)h
∗ω = 0 for i, j, l ∈ I with i < j.

From the Gauss decomposition of h−1(S(z)) we get sll(z)h∗ω = K
+
l (z)h∗ω. Similar

identities hold when replacing h∗ω by F∗
h∗ω. This implies:

K
′+
i (z)F∗

h∗ω = s′
i i (z)F

∗
h∗ω = F∗ (

ŝi,̂i (z)h
∗ω
)

= F∗ (
K

+
̂i (z)h∗ω

)

= f̂i (z)
−1F∗

h∗ω,

K ′+
i (z)G∗ω = K ′+

i (z)(h′−1)∗F∗
h∗ω = (h′−1)∗

(

K
′+
i (z)−1F∗

h∗ω
)

= f̂i (z)(h
′−1)∗F∗

h∗ω = f̂i (z)G∗ω,

leading to the second statement; here the s′
i i (z), K

′+
i (z) denote the RTT generators and

Drinfeld generators of Uq−1(̂g′) arising from [51]; see Remark 1.2. The last statement
is a comparison of highest �-weights based on τ ′

M+N−i = τi q N−M . ��

G∗ can be viewed as a categorification of the duality function of Grothendieck rings
in [35, Theorem 5.17]. We shall make extensive use of it: to change the signature of the
L±

i,a ; to pass from Dynkin nodes i ≤ M to i ≥ M .



828 H. Zhang

2. Tableau-Sum Formulas of q-Characters

We compute χq(L(m)) form ∈ RU coming from Young diagrams.

Definition 2.1 [9, Section 4.2]. P is the set of λ =∑i λiεi ∈ P such that:

• we have λ1 ≥ λ2 ≥ · · · ≥ λM ≥ 0 and λM+1 ≥ λM+2 ≥ · · · ≥ λκ ≥ 0;
• if λM+ j > 0 for some 1 ≤ j ≤ N , then λM ≥ j .

To λ ∈ P we attach a subset Y λ
+ of Z

2
>0 consisting of (k, l) such that: l ≤ λk for

1 ≤ k ≤ M ; if k > M then l ≤ N and k ≤ M + λM+l . Let B+(λ) be the set of functions
T : Y λ

+ −→ I such that:

• T (k, l) ≤ T (k′, l ′) if k ≤ k′, l ≤ l ′ and (k, l), (k′, l ′) ∈ Y λ
+ ;

• T (k, l) < T (k + 1, l) if (k, l), (k + 1, l) ∈ Y λ
+ and T (k, l) ≤ M ;

• T (k, l) < T (k, l + 1) if (k, l), (k, l + 1) ∈ Y λ
+ and T (k, l) > M .

Let Y λ− = −Y λ
+ ⊂ Z

2
<0 and define B−(λ) as the set of functions Y λ− −→ I satisfying

the above three conditions with Y λ
+ replaced by Y λ−.

We view Y λ
+ , Y λ− as Young diagrams at the southeast and northwest positions respec-

tively, so that (k, l) ∈ Y λ± correspond to the box at row ±k and column ±l. For example,
take g = gl(2|2) and λ = 4ε1 + 2ε2 + 2ε3 + ε4 ∈ P:

Y λ
+ = , Y λ− =

Definition 2.2. Let i ∈ I0, j ∈ I and a ∈ C
×. Define the �-weights in RU :

j
a

:= (1, . . . , 1
︸ ︷︷ ︸

j−1

, q j
1 − zaθ−1

j q−1
j

1 − zaθ−1
j q j

, 1, . . . , 1
︸ ︷︷ ︸

κ− j

; |ε j |),

Define the j
∗
a
, j

′
a
inductively by 1

∗
a := 1

−1

aθ1
, κ

′
a := κ

−1
a and

i + 1
∗
a := i

∗
a Ai,aτi q−1 , i + 1

′
a =: i

′
a Ai,aτi q−1 .

Call a the spectral parameter of the boxes j
a
, j

∗
a
, j

′
a
.

One checks that Ai,a = i aτi q−1 i + 1
−1

aτi q−1 using θi+1 = θi q
−1
i q−1

i+1.

Example 2.3. If g := gl(2|3), then τ1 = q−1 and (compare with [27, Section 5.4.1])

1 a

A−1
1,aq2−−−→ 2 a

A−1
2,aq3−−−→ 3 a

A−1
3,aq2−−−→ 4 a

A−1
4,aq−−−→ 5 a,

1
∗
a

A1,aq−2−−−−→ 2
∗
a

A2,aq−3−−−−→ 3
∗
a

A3,aq−2−−−−→ 4
∗
a

A4,aq−1−−−−→ 5
∗
a .
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To p = ((pi )i∈I ; s) ∈ P is associated a unique irreducible Uq(g)-module Vq(p),
which is generated by a vector v of parity s subject to the following relations:

s(0)
i i v = piv, s(0)

jk v = 0 for i, j, k ∈ I with j < k.

For λ ∈ P, set Vq(λ) := Vq(qλ). (It was denoted by V (λ) in [9, Section 3.3].)
For λ ∈ P , the Uq(g)-module Vq(λ) is finite-dimensional [9, Section 3.3]; its dual

space V ∗
q (λ) := HomC(Vq(λ), C) is equipped with a Uq(g)-module structure:

〈xϕ, v〉 := (−1)|ϕ||x |〈ϕ, S(x)v〉 for x ∈ Uq(g), ϕ ∈ V ∗
q (λ), v ∈ Vq(λ).

Theorem 2.4. Let a ∈ C
× and λ ∈ P . Let V ±

q (λ; a), V ±∗
q (λ; a) be the pullbacks of the

Uq(g)-modules Vq(λ), V ∗
q (λ) by ev±

a respectively. Then we have

χq

(

V +
q (λ; a)

)

=
∑

T ∈B−(λ)

∏

(i, j)∈Y λ−

T (i, j)
aq2( j−i)+1

, (2.18)

χq

(

V +∗
q (λ; a)

)

=
∑

T ∈B−(λ)

∏

(i, j)∈Y λ−

T (i, j)
∗
aq2(i− j)+1

, (2.19)

χq

(

V −
q (λ; a)

)

=
∑

T ∈B+(λ)

∏

(i, j)∈Y λ
+

T (i, j)
aq2( j−i+M−N )+1

, (2.20)

χq

(

V −∗
q (λ; a)

)

=
∑

T ∈B+(λ)

∏

(i, j)∈Y λ
+

T (i, j)
′
aq2(i− j)+1

. (2.21)

In particular, V ±
q (λ; a) and V ±∗

q (λ; a) have multiplicity free q-characters.

Remark 2.5. Applying � : ̂P −→ P to Eq. (2.20) recovers the character formula of
Vq(λ) in [9, Theorem 5.1].

We shall prove Eqs. (2.18)–(2.19); the idea is similar to [26, Lemma 4.7]. The proof
of Eqs. (2.20)–(2.21) is parallel and will be omitted.

For i ∈ I , let U≥i
q (̂g) (resp. U≥i

q (g)) be the subalgebra of Uq (̂g) generated by the

s(n)
jk , t (n)

jk (resp. for n = 0) with j, k ≥ i . Define

Ci (z) :=
∏

j≥i

K +
j (zθ j )

(ε j ,ε j ) ∈ Yq(g)[[z]]. (2.22)

The coefficients of Ci (z) are central elements of U≥i
q (̂g); see [53, Proposition 6.1].

Lemma 2.6. Let i, l ∈ I . The spectra of Ci (z) on �-weight spaces of �-weights l a, l
∗
a

are (q 1−zaq−1

1−zaq )δi≤l and (q−1 1−zati q
1−zati q−1 )

δi≤l respectively, where t1 = θ1 and ti = τ 2i−1q−2

for i > 1. Moreover l
∗
a = (1−zaq−3)(1−zaq)

(1−zaq−1)2
l

′
a.
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Proof. The l -case is from Definition 2.2. In particular the A j,b for j �= i − 1 do not

contribute to the spectra of Ci (z). The l
∗
-case is now clear from l

∗
a = 1

−1

aθ1
A1,aτ1q−1

A2,aτ2q−1 · · · Al−1,aτl−1q−1 . To compare l
∗
with l

′
one may assume l = κ by Defini-

tion 2.2; the spectrum of Ci (z) associated to the �-weight κ
′
a is q−1 1−zaq

1−zaq−1 , leading
to the last identity. ��

Let S be V +
q (λ; a) or V +∗

q (λ; a). If μ ∈ P and v ∈ S are such that s(0)
i i v = q(μ,εi )v

for all i ∈ I , then |v| = |μ|. To compute the q-character of S, it is enough to determine
the action of the Ci (z) since it in turn implies the parity.

Let S1 be an irreducible sub-U≥i
q (g)-module of S and 0 �= v1 ∈ S1, μ ∈ P with

t (0)jk v1 = 0, s(0)
ll v1 = q(μ,εl )v1 for j, k, l ∈ I, j > k.

Call μ the lowest weight of S1. By Schur Lemma and Gauss decomposition,

Ci (z)v =
∏

j≥i

(

q(μ,ε j ) − zaθ j q−(μ,ε j )

1 − zaθ j

)(ε j ,ε j )

v for v ∈ S1. (2.23)

The strategy is to find all such triples (i, S1, μ).
Following Table (1.15) and Definition 2.1, define for g′ the similar objects

P ′ ⊂ P, Y ′λ± ⊂ Z
2, B′±(λ), V ′

q(λ), V ′∗
q (λ)

with (M, N ) replaced by (N , M). The transpose of Young diagrams induces a bijection
P −→ P ′, λ 
→ λ� such that (k, l) ∈ Y λ

+ if and only if (l, k) ∈ Y ′λ�

+ .

Lemma 2.7. Let λ ∈ P .

(1) As Uq(g′)-modules F∗ (Vq(λ)
) ∼= V ′∗

q (λ�) and F∗
(

V ∗
q (λ)

) ∼= V ′
q(λ�).

(2) If T ∈ B−(λ), then T ′(k, l) := M + N + 1 − T (−l,−k) defines an element T ′ ∈
B′
+(λ

�). Moreover T 
→ T ′ is a bijection B−(λ) −→ B′
+(λ

�).

Proof. (2) is a lengthy but straightforward check by Definition 2.2. For (1), it suffices
to establish the second isomorphism since F respects Hopf superalgebra structures. Let
μ be the lowest weight of Vq(λ) and define

ri := �{ j ∈ Z>0 | (i, j) ∈ Y λ
+ }, c j := �{i ∈ Z>0 | (i, j) ∈ Y λ

+ };
r ′

i := max(ri − N , 0), c′
j := max(c j − M, 0).

Then from [9, (4.1)–(4.2)] we have

λ =
M
∑

i=1

riεi +
N
∑

j=1

c′
jεM+ j , μ =

M
∑

i=1

r ′
M+1−iεi +

N
∑

j=1

cN+1− jεM+ j .

If v is a lowest weight vector of Vq(λ), then V ∗
q (λ) contains a highest weight vector v∗

of weight −μ, and F∗(v∗) ∈ F∗
(

V ∗
q (λ)

)

is a highest weight vector of weight

c1ε1 + c2ε2 + · · · + cN εN + r ′
1εN+1 + r ′

2εN+2 + · · · + r ′
MεM+N ,

which is exactly λ�, leading to the desired isomorphism. ��
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For i ∈ I let U≤i
q (g′) := F−1(U≥κ+1−i

q (g)); it is the subalgebra of Uq(g′) generated
by the s′(0)

jk , t ′(0)jk with j, k ≤ i . To decompose Vq(λ) (resp. V ∗
q (λ))with respect to lowest

weights along the ascending chain of subalgebras of Uq(g)

U≥κ
q (g) ⊂ U≥κ−1

q (g) ⊂ · · · ⊂ U≥2
q (g) ⊂ U≥1

q (g) = Uq(g)

is to decompose V ′
q(λ�) with respect to highest (resp. lowest) weights along

U≤1
q (g′) ⊂ U≤2

q (g′) ⊂ · · · ⊂ U≤κ−1
q (g′) ⊂ U≤κ

q (g′) = Uq(g′),

Remark 2.8. By [9], V ′
q(λ�) is an irreducible submodule of a tensor power of V ′

q(ε1),
and all such tensor powers are semi-simple Uq(g′)-modules. So the decomposition for
V ′

q(λ�) is equivalent to that for the character formula in Remark 2.5, and then to the
branching rule of g′-modules in [10, Section 5]. We reformulate the latter in terms of
B′
+(λ

�), equivalently B−(λ) by Lemma 2.7, as follows.

(1) Vq(λ) admits a basis (vT : T ∈ B−(λ)) such that vT is contained in an irreducible
sub-U≥i

q (g)-module of lowest weight μ≥i
T for i ∈ I .

(2) V ∗
q (λ) admits a basis (wT : T ∈ B−(λ)) such that wT is contained in an irreducible

sub-U≥i
q (g)-module of lowest weight −ν

≥i
T for i ∈ I .

μ
≥i
T and ν

≥i
T are defined as follows. Set Y ≥i

T := {(k, l) ∈ Y λ− | T (k, l) ≥ i} and
rk := �{l ∈ Z | (−k,−l) ∈ Y ≥i

T }, cl := �{k ∈ Z | (−k,−l) ∈ Y ≥i
T }.

If i > M , then

{

μ
≥i
T = c1εM+N + c2εM+N−1 + · · · + cM+N+1−iεi ,

ν
≥i
T = c1εi + c2εi+1 + · · · + cM+N+1−iεM+N .

If i ≤ M , then

μ
≥i
T = c1εM+N + c2εM+N−1 + · · · + cN εM+1 + r ′

1εM + r ′
2εM−1 + · · · + r ′

M+1−iεi ,

ν
≥i
T = r1εi + r2εi+1 + · · · + rM+1−iεM + c′

1εM+1 + c′
2εM+2 + · · · + c′

N εM+N ,

where r ′
k := max(rk − N , 0) and c′

l := max(cl − M + i − 1, 0).

Example 2.9. To illustrate Lemma 2.7 (2) and Remark 2.8, let g = gl(2|3) and λ =
4ε1 + 2ε2 + ε3 ∈ P . We represent elements in B−(λ) and B′

+(λ
�) by Young tableaux of

shapes λ, λ� respectively. Let T ∈ B−(λ) be such that

B−(4ε1 + 2ε2 + ε3) � T =
1

2 2
1 3 4 5


→
1 4 5
2 4
3
5

= T ′ ∈ B′
+(3ε1 + 2ε2 + ε3 + ε4).

The Young diagrams Y ≥i
T with descending order on 5 ≥ i ≥ 1 become:

, , , , .

Correspondingly, the pairs (μ
≥i
T , ν

≥i
T ) from i = 5 to i = 1 are:

(ε5, ε5), (ε4 + ε5, ε4 + ε5), (ε3 + ε4 + ε5, ε3 + ε4 + ε5),

(ε3 + 2ε4 + 2ε5, 3ε2 + ε3 + ε4), (ε2 + ε3 + 2ε4 + 3ε5, 4ε1 + 2ε2 + ε3).
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Proof of Equations. (2.18)–(2.19). Let us define gi (z), g∗
i (z) ∈ C[[z]]× for i ∈ I :

gi (z) :=
∏

(k,l)∈Y ≥i
T

q
1 − zaq2(l−k)

1 − zaq2(l−k+1)
, g∗

i (z) :=
∏

(k,l)∈Y ≥i
T

(

q−1 1 − zati q2(k−l+1)

1 − zati q2(k−l)

)

.

By Lemma 2.6, it suffices to prove that: for i ∈ I ,

Ci (z)vT = gi (z)vT in V +
q (λ; a), Ci (z)wT = g∗(z)wT in V +∗

q (λ; a).

This is divided into two cases: i > M or i ≤ M .
Assume i > M . Then T (−k,−l) ≥ i if and only if 1 ≤ l ≤ M + N − i + 1 and

1 ≤ k ≤ cl . It follows from Eq. (1.8) that

gi (z) =
M+N−i+1
∏

l=1

cl
∏

k=1

q
1 − zaq2(k−l)

1 − zaq2(k−l+1)
=

M+N−i+1
∏

l=1

1 − zaq2(1−l)

q−cl − zaq2(1−l)+cl

=
M+N
∏

j=i

(

q(μ
≥i
T ,ε j ) − zaθ j q−(μ

≥i
T ,ε j )

1 − zaθ j

)(ε j ,ε j )

,

g∗
i (z) =

M+N−i+1
∏

l=1

cl
∏

k=1

q−1 1 − zati q2(l−k+1)

1 − zati q2(l−k)
=

M+N−i+1
∏

l=1

1 − zati q2l

qcl − zati q2l−ci

=
M+N
∏

j=i

(

q−(ν
≥i
T ,εi ) − zaθ j q(μ

≥i
T ,εi )

1 − zaθ j

)(ε j ,ε j )

.

Here in the last equation we used ti q2l = τ 2i−1q2l−2 = θi q2l−2 = θi+l−1.
Assume i ≤ M . Then T (−k,−l) ≥ i if and only if (1 ≤ l ≤ N , 1 ≤ k ≤ cl) or

(1 ≤ k ≤ M + 1 − i, N + 1 ≤ l ≤ N + r ′
k). This gives

gi (z) =
(

N
∏

l=1

cl
∏

k=1

q
1 − zaq2(k−l)

1 − zaq2(k−l+1)

)

×
⎛

⎝

M+1−i
∏

k=1

r ′
k
∏

l=1

q
1 − zaq2(k−l−N )

1 − zaq2(k−l−N+1)

⎞

⎠

=
M+N
∏

j=i

(

q(μ
≥i
T ,ε j ) − zaθ j q−(μ

≥i
T ,ε j )

1 − zaθ j

)(ε j ,ε j )

.

Notice that T (−k,−l) ≥ i if and only if (1 ≤ k ≤ M + 1 − i, 1 ≤ l ≤ rk) or
(1 ≤ l ≤ N , M − i + 2 ≤ k ≤ M − i + 1 + c′

l). This gives

g∗
i (z) =

(

M+1−i
∏

k=1

rk
∏

l=1

q−1 1 − zati q2(l−k+1)

1 − zati q2(l−k)

)

⎛

⎝

N
∏

l=1

c′
l
∏

k=1

q−1 1 − zati q2(l−k−M+i)

1 − zati q2(l−k−M+i−1)

⎞

⎠

=
(

M+1−i
∏

k=1

q−rk − zati q2(1−k+rk )

1 − zati q2(1−k)

)(

N
∏

l=1

1 − zati q2(l−1−M+i)

qc′
l − zati q2(l−1−M+i−c′

l )

)

=
M+N
∏

j=i

(

q−(ν
≥i
T ,εi ) − zaθ j q(μ

≥i
T ,εi )

1 − zaθ j

)(ε j ,ε j )

.
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The last identity comes from ti q2(l−1−M+i) = θM+l and ti q2(1−k) = θi+k−1.
In both cases, gi (z) and g∗

i (z)becomeEq. (2.23)withμ = μ
≥i
T and−ν

≥i
T respectively,

and this completes the proof of Eqs. (2.18)–(2.19). ��
Let ̂Q− be the submonoid of R generated by the A−1

i,a with i ∈ I0 and a ∈ C
×.

Corollary 2.10. Let i ∈ I0, a ∈ C
× and m ∈ C

×. We have

W (i)
m,a

∼= V +
q (m�i ; aq M−N−i ) ∼= V −

q (m�i ; aq N−M+i−2m) if i ≤ M, (2.24)

W (i)
m,a

∼= V −∗
q (λ(i)

m ; aq M+N−2−i ) � V +∗
q (λ(i)

m ; aqi−M−N+2m−2) if i > M. (2.25)

Here for i > M, the Young diagram of λ
(i)
m ∈ P is a rectangle with m rows and κ − i

columns. An �-weight of W (i)
m,a different from �

(i)
m,a must belong to �

(i)
m,a A−1

i,aqi
̂Q−.

Proof. Assume i ≤ M . The Young diagram Y m�i− is a rectangle with i rows and m
columns. Let H ∈ B−(m�i ) be such that H(−k,−l) = i + 1 − k for 1 ≤ k ≤ i . Then
vH ∈ V +

q (m�i ; aτi q−1) in Remark 2.8 is a highest �-weight vector of �-weight

m H =
m
∏

l=1

i
∏

k=1

k aτi q2(i+1−k−l) =
m
∏

l=1

Yi,aq2−2l = �(i)
m,a .

Here we used
∏i

k=1 k aτi q2(i+1−k−l) = Yi,aq2−2l and θi = τ 2i = q2(M−N+1−i) for 1 ≤
i ≤ M , based on Example 1.6. This proves the first isomorphism of (2.24); the second
one is a consequence of Eqs. (2.18) and (2.20). If T ∈ B−(m�i ) and T �= H , then
T (−k,−l) ≥ i + 1 − k and T (−1,−1) > i . The �-weight property of W (i)

m,a follows
from Definition 2.2 and Eq. (2.18):

mT m−1
H ∈ i + 1 aτi

i
−1

aτi
̂Q− = A−1

i,aq
̂Q−.

Assume i > M . Let v be the highest �-weight of V −∗
q (λ

(i)
m ; b). By Eq. (1.6),

K +
p(z)v = v for p ≤ i, K +

p(z)v = 1 − zb

q−m − zbqm
v for p > i.

v is of �-weight �
( j)
m,bτ j q

, proving the first isomorphism of (2.25).Since l
∗
a ≡ l

′
a for

l ∈ I , the second isomorphism of (2.25) is deduced from Eqs. (2.19) and (2.21). let
H ∈ B+(λ

(i)
m ) be such that H(k, l) = i + l for 1 ≤ l ≤ M + N − i . The monomial m′

H
associated to H in Eq. (2.21) is the highest �-weight. If T ∈ B+(λ

i
m) and T �= H , then

T (k, l) ≤ i + l and T (1, 1) ≤ i . By Definition 2.2 and Eq. (2.21):

m′
T m′−1

H ∈ i
′
aτ−1

i
i + 1

′−1

aτ−1
i

̂Q− = A−1
i,aq−1

̂Q−,

proving the �-weight property of W (i)
m,a . ��

The �-weight property is similar to [31, Lemma 4.4]; W (i)
m,a in [31] is W (i)

m,aq2m−2
i

here.

Let �(M−)
m,a :=∏m

l=1 Y −1
M,aq2l−2 and W (M−)

m,a := L(�
(M−)
m,a ). Similarly we have

W (M−)
m,a

∼= V −∗
q (λm; aq N−2) � V +∗

q (λm; aq2m−2−N ). (2.26)

where λm ∈ P is such that its Young diagram is a rectangle with m rows and N columns.
If �

(M−)
m,a n ∈ wt�(W (M−)

m,a ) and n �= 1, then n ∈ A−1
M,aq−1

̂Q−.
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3. Length-Two Representations

A Yq(g)-module V in categoryO is of length-two if it admits a Jordan–Hölder series of
length two, namely, it fits in a short exact sequence 0 → S → V → S′ → 0 in category
O such that both S′ and S′ are irreducible. We shall simply write such a sequence as
S ↪→ V � S′.

In this section we describe length-two modules by tensor products.
For i ∈ I0, a ∈ C

×, m ∈ Z>0 and s ∈ Z≥0, let us define d
(i,s)
m,a ∈ RU to be

�
(i)
m,aq2m+1

i
�

(i)
m+s,aq2m−1

i

m
∏

l=1

A−1
i,aq2l

i
if i �= M, �

(M)

s,aq−1

∏

j∈I0: j∼M

�
( j)
m,aq2m

j
if i = M.

Let D(i,s)
m,a := L(d(i,s)

m,a ) be the irreducible Uq (̂g)-module.

Remark 3.1. Let us rewrite d(i,s)
m,a in terms of the 
 using Eq. (1.14):

d(i,s)
m,a ≡


i,aq−2s
i


i,a

∏

j∈I0: j∼i


 j,aq−1
i j


 j,aq−2m−1
i j

.

In the non-graded case N = 0, we can identify n+i,a with 
 in [35, (6.13)] and m
(2)
i,a

in [19, (6.2)], d(i,s)
m,a with ˜
(−s,2m−1)

i in [25, Section 4.3]. Notice that d(i,s)
m,a satisfies the

condition of “minimal affinization by parts” in [14, Theorem 2].

Theorem 3.2. Let i ∈ I0 and a ∈ C
×. The Yq(g)-module N+

i,a ⊗ L+
i,a has a Jordan–

Hölder series of length two and in the Grothendieck ring K0(O):

[N+
i,a ⊗ L+

i,a] = [L+
i,aq−2

i
]
∏

j∈I0: j∼i

[L+
j,aq−1

i j
] + [D][L+

i,aq̂2
i
]
∏

j∈I0: j∼i

[L+
j,aqi j

]. (3.27)

Here D = L(n+i,a
i,a
−1
i,aq̂2

i
A−1

i,a

∏

j∼i 
−1
j,aqi j

) is one-dimensional.

When i = M , the two monomials at the right-hand side of Eq. (3.27) has a common
factor [L+

M,aq−2 ]. This is a special feature of quantum affine superalgebras.

Theorem 3.3. Let i ∈ I0\{M}, a ∈ C
× and m, s ∈ Z>0. There are short exact se-

quences of Uq (̂g)-modules whose first and third terms are irreducible:

D(i,s)
m,a ↪→ W (i)

m,aq2m+1
i

⊗ W (i)
m+s,aq2m−1

i
� W (i)

m+s+1,aq2m+1
i

⊗ W (i)
m−1,aq2m−1

i
,

D(i,0)
m+s,aq−2s

i
⊗ W (i)

m,aq2m+1
i

↪→ W (i)
m+s,aq2m+1

i
⊗ D(i,s)

m,a � W (i)
m+s+1,aq2m+1

i
⊗ D(i,s−1)

m,a .

The assumption i �= M is necessary because dim W (M)
m,a = 2M N form ≥ N . Equation

(3.27) corresponds to [35, (6.14)] and [19, Proposition 6.8], and can be thought of as a
two-termBaxter TQ relation forYq(g). The exact sequences of Theorem3.3 are extended
T-systems [31,42], the initial case s = 0 being the T-system in [44]; see Theorem 8.3.

The proof of Theorem 3.2, given in Sect. 4, is similar to [35, (6.14)], based on q-
characters. Theorem 3.3 is more involved and requires cyclicity of tensor products of
KR modules; its proof is postponed to Sect. 8.

We make crucial use of the idea that D(i,s)
m,a admits an injective resolution by tensor

products of KR modules of the same Dynkin node for i �= M .
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Lemma 3.4. Let m ∈ Z>0, a ∈ C
× and i ∈ I0\{M}. If �

(i)
m,an ∈ wt�(W (i)

m,a) and
n �= 1, then either n = A−1

i,aqi
A−1

i,aq−1
i

· · · A−1
i,aq3−2l

i
for some 1 ≤ l ≤ m, or n belongs to

A−1
i,aqi

A−1
j,aq2

i

̂Q− where j ∈ I0 and j ∼ i .

Proof. We only consider the case i < M ; the other case is similar. Let us be in the
situation of the proof of Corollary 2.10. By Eq. (2.18), n = mT m−1

H for a unique
T ∈ B−(m�i ) with T (−1,−1) > i and T (−k,−l) ≥ i + 1− k. If T (−1,−1) > i + 1,
then using τi+1 = q−1τi we obtain

mT m−1
H ∈ i + 2 aτi

i
−1

aτi
̂Q− = A−1

i,aq A−1
i+1,aq2

̂Q−.

If T (−2,−1) > i − 1, then together with T (−1,−1) > i we have

mT m−1
H ∈ i + 1 aτi

i
−1

aτi
i aτi q2 i − 1

−1

aτi q2
̂Q− = A−1

i,aq A−1
i−1,aq2

̂Q−.

Suppose T (−1,−1) = i + 1 and T (−2,−1) = i − 1. There exists 1 ≤ l ≤ m such that
the only difference between T, H is at (−1,− j) with 1 ≤ j ≤ l, and

mT m−1
H =

l
∏

j=1

i + 1 aτi q2−2 j i
−1

aτi q2−2 j =
l
∏

j=1

A−1
i,aq3−2 j .

This completes the proof of the lemma. ��
Corollary 3.5. Let m, s ∈ Z>0, a ∈ C

× and i ∈ I0\{M}.
(1) For 1 ≤ l ≤ s, we have d(i,s)

m,a A−1
i,a A−1

i,aq−2
i

· · · A−1
i,aq2−2l

i
∈ wt�(D(i,s)

m,a ) and its associ-

ated �-weight space is one-dimensional.
(2) If d(i,s)

m,a n ∈ wt�(D(i,s)
m,a ) is not of the form of (1) and n �= 1, then n ∈ {A−1

j,aq2m+1
i

,

A−1
i,aq2m+2

i
| j ∈ I0, j ∼ i}̂Q−.

Proof. For non-graded quantum affine algebras this corollary is [25, Lemma 4.8], the
proof utilized a delicate elimination theorem of �-weights [33, Theorem 5.1]. Here our
proof is aweaker version of elimination based on the restriction to the diagramsubalgebra
Ui of Uq (̂g) generated by (x±

i,n, φ±
i,n)n∈Z. By Remark 1.2, the algebra Ui is a quotient of

Uqi (
̂sl2).

Set T := W (i)
m,aq2m+1

i
⊗ W (i)

m+s,aq2m−1
i

and S := L(�
(i)
m,aq2m+1

i
�

(i)
m+s,aq2m−1

i
). Then S is a

sub-quotient of T . Let λ := (2m + s)�i . By Corollary 2.10,

(A) dim Tqλ−kαi = min(m + 1, k + 1) for 0 ≤ k ≤ m + s.

1. Let v0 ∈ S be a highest �-weight vector and Si := Uiv0 ⊆ S. Viewed as a
Uqi (

̂sl2)-module, Si is of highest �-weight [27, Section 2]

mi := (Yaq2m+1
i

Yaq2m−1
i

· · · Yaq3
i
)(Yaq2m−1

i
Yi,aq2m−3

i
· · · Yaq1−2s

i
).
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Si is spanned by the x−
i,n1

x−
i,n2

· · · x−
i,nk

v0. If w ∈ Si is annihilated by the x+i,n , then

x+j,nw = 0 ∈ S for all j ∈ I0\{i} (because [x+j,n, x−
i,k] = 0) and w ∈ Cv0. The

Uqi (
̂sl2)-module Si is irreducible and has a factorization [15, Theorem 4.8]:

Si ∼= Li (Yaq2m+1
i

Yaq2m−1
i

· · · Yaq1−2s
i

) ⊗ Li (Yaq2m−1
i

Yaq2m−3
i

· · · Yaq3
i
),

where Li (n) denotes the irreducible Uqi (
̂sl2)-module of highest �-weight n (for n

a product of the Yb). For k ∈ Z>0, let Vk ⊆ Si be the subspace spanned by the
x−

i,n1
x−

i,n2
· · · x−

i,nk
v0 with nl ∈ Z for 1 ≤ l ≤ k. Then Vk = Sqλ−kαi . Based on the q-

character of Si with respect to the spectra of φ+
i (z) in [27, Section 4.1], for −1 ≤ l < s

we have:

(B) dim Sqλ−kαi = min(m, k + 1) for 1 ≤ k ≤ m + s;

(C) mi
∏m

t=−l(Y
−1
aq2t+1

i
Y −1

aq2t−1
i

) is not an �-weight of the Uqi (
̂sl2)-module Si .

2. By (A)–(B), {n ∈ wt�(T )\wt�(S) | �(n) = λ − (m + l)αi } = {nl} for 0 ≤ l ≤
s, the multiplicity of nl in χq(T ) − χq(S) is one, and L(n0) is a sub-quotient of T .

Comparing the spectra of φ+
i (z) by (C) and Lemma 3.4, we obtain: n0 = d(i,s)

m,a and

nl = d(i,s)
m,a A−1

i,a A−1
i,aq−2

i
· · · A−1

i,aq2−2l
i

. Part (2) follows by viewing D(i,s)
m,a as a sub-quotient

of T . If (D(i,s)
m,a )qλ−(m+l)αi �= 0 for 1 ≤ l ≤ s, then necessarily nl ∈ wt�(D(i,s)

m,a ) and its
�-weight space is one-dimensional, proving (1).

3. Letw0 ∈ D(i,s)
m,a be a highest �-weight vector. Then x+i,0w0 = 0 andφ+

i,0w0 = qs
i w0.

Since the triple (x+i,0, x−
i,0, φ+

i,0) generates a quotient algebra of Uqi (sl2), we have

(D(i,s)
m,a )qλ−(m+l)αi � (x−

i,0)
lw0 �= 0 for 1 ≤ l ≤ s. ��

The case i = M is distinguished since UM is not related to Uq(̂sl2).

Corollary 3.6. Let m, s ∈ Z>0 and a ∈ C
×.

(1) d(M,s)
m,a A−1

M,a ∈ wt�(D(M,s)
m,a ) and the �-weight space is one-dimensional.

(2) (d(M,s)
m,a )−1wt�(D(M,s)

m,a ) ⊂
(

{A−1
j,aq2m+1

j
| j ∈ I0, j ∼ M}̂Q−

)

∪ {1, A−1
M,a}.

Proof. Assume M, N > 1 without loss of generality. Let n ∈ (d(M,s)
m,a )−1wt�(D(M,s)

m,a )

with n /∈ {A−1
M+1,aq−2m−1 , A−1

M−1,aq2m+1}̂Q− and n �= 1.

Firstly, set λ := s�M +m�M−1. Then λ ∈ P and its Young diagram Y λ
+ is formed of

(k, l) where either (1 ≤ k < M, 1 ≤ l ≤ s + m) or (k = M, 1 ≤ l ≤ s). Consider the
evaluation module S := V −

q (λ; aq N−2s−1). Let H ∈ B+(λ) be such that H(k, l) = k.
The monomial m H attached to H in Eq. (2.20) is the highest �-weight of S. From the
proof of Corollary 2.10 we see that

m H = (YM,aq1−2s · · · YM,aq−3YM,aq−1)(YM−1,aq2YM−1,aq4 · · · YM−1,aq2m ).

In particular, the spectral parameters at the boxes (M, s) and (M − 1, s + m) of H are
aτMq−1 and aτM−1q2m respectively. Let T ∈ B+(λ) and T �= H . If T (M −1, s +m) ≥
M , then by Definition 2.2 and Eq. (2.20),

mT m−1
H ∈ M aτM−1q2m M − 1

−1

aτM−1q2m
̂Q− = A−1

M−1,aq2m+1
̂Q−.

If T (M − 1, s + m) < M , then T (k, l) = k for k < M and by Eq. (2.20):
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(i) the �-weight space SmT is also the one-dimensional weight space S�(mT );
(ii) mT m−1

H AM,a is a product of the A−1
j,b with j ≥ M ;

(iii) if mT m−1
H AM,a is a product of the A−1

M,b, then mT m−1
H AM,a = 1.

Here we used Definition 2.1 and T (M, l) ≥ M, T (M, s) > M .
Secondly, viewing D(M,s)

m,a as a sub-quotient of S ⊗ W (M+1)
m,aq−2m gives n = n1n2 with

m Hn1 ∈ wt�(S) and n2�
(M+1)
m,aq−2m ∈ wt�(W (M+1)

m,aq−2m ). Since n /∈ A−1
M+1,aq−2m−1

̂Q−, by
Corollary 2.10, n2 = 1 and m Hn ∈ wt�(S). Since n /∈ A−1

M−1,aq2m+1
̂Q−, (ii)–(iii) hold

by replacing mT m−1
H with n, and dim(DM,s

m,a )d(M,s)
m,a n = 1.

Thirdly, for t ∈ Z>0, let μt ∈ P be such that its Young diagram Y μt− is formed
of (−k,−l) where either (1 ≤ l < N , 1 ≤ k ≤ m + t) or (l = N , 1 ≤ k ≤ t).
Consider the evaluation module St := V +∗

q (μt ; aq2t−1−N ). Let Ht ∈ B−(μt ) be such
that Ht (−k,−l) = M + N + 1 − l. The monomial m∗

Ht
in Eq. (2.19) is the highest

�-weight of St and by Corollary 2.10 and Eq. (2.26):

m∗
Ht

≡ �
(M+1)
m,aq−2m �

(M−)
t,aq .

The spectral parameters at the boxes (−t,−N ) and (−t −m, 1−N ) of Ht are aτ−1
M q and

aτ−1
M+1q−2m respectively. Let T ∈ B−(μt ) and T �= Ht . If T (−t − m, 1− N ) < M + 2,

then by Definition 2.2 and Eq. (2.19),

m∗
T m∗−1

Ht
∈ M + 1

∗
aτ−1

M+1q−2m M + 2
∗−1

aτ−1
M+1q−2m

̂Q− = A−1
M+1,aq−2m−1

̂Q−.

If T (−t − m, 1 − N ) = M + 2, then T (−k,−l) = M + N + 1 − l for 1 ≤ l < N .
Equation (2.19) implies that m∗

T m∗−1
Ht

AM,a is a product of the A−1
j,b with j ≤ M .

Lastly, viewing D(M,s)
m,a (after tensoring with a one-dimensional module) as a sub-

quotient of St ⊗ W (M)

t+s,aq2t−1 ⊗ W (M−1)
m,aq2m and choosing t ∈ Z>0 so large that n /∈

A−1
M,aq2t

̂Q−, we obtain m∗
Ht
n ∈ wt�(St ), and so nAM,a is a product of the A−1

j,b with
j ≤ M . From (ii)–(iii) it follows that nAM,a = 1.

It remains to show that d(M,s)
m,a A−1

M,a ∈ wt�(D(M,s)
m,a ). Indeed, as a Uq(g)-module,

D(M,s)
m,a has a highest weight vector of highest weight qm�M−1+s�M+m�M+1 , and so

qm�M−1+s�M+m�M+1−αM ∈ wt(D(M,s)
m,a ). This means that there exists n ∈ (d(M,s)

m,a )−1

wt�(D(M,s)
m,a ) with �(n) = q−αM , which forces n = A−1

M,a . ��
As an illustration, for g = gl(3|4) and (m, s, t) = (2, 3, 1) we have

H =
1 1 1 1 1
2 2 2 2 2
3 3 3

∈ B+(3�3 + 2�2), Ht =
5 6 7
5 6 7

4 5 6 7
∈ B−(3�3 + �1).

4. Proof of TQ Relations: Theorem 3.2

The crucial part in the proof is the irreducibility of arbitrary tensor products of positive
prefundamental modules. In the case of quantum affine algebras this was proved in [24,
Theorem 4.11] and [19, Lemma 5.1]. Our approach is similar to [19], based on the
duality functor G∗ in Lemma 1.9.
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Lemma 4.1. Let a ∈ C
× and i ∈ I0. We have

χq(L+
i,a) = 
i,a × χ(L+

i,a).

Proof. We can adapt the proof of [24, Theorem 4.1]. Essentially we just need a weaker
version of [24, Lemma 4.5]: any �-weight of W (i)

m,a different from �
(i)
m,a belongs to

�
(i)
m,a A−1

i,aqi
̂Q−, which is Corollary 2.10. ��

For negative prefundamental modules we recall the main results of [53].

Lemma 4.2 [53, Lemma 6.7 & Corollary 7.4]. Let a, c ∈ C
× and i ∈ I0.

(i) The χ̃q(W (i)
m,aq−1

i
) for m ∈ Z>0 are polynomials in Z[A−1

j,b]( j,b)∈I0×aqZ , and as

m → ∞ they converge to a formal power series in Z[[A−1
j,b]]( j,b)∈I0×aqZ , which is

exactly the normalized q-character χ̃q(L−
i,a).

(ii) There exists a Uq (̂g)-module W (i)
c,a in category O such that

χq(W (i)
c,a ) = ω(i)

c,a × χ̃q(L−
i,a).

It is irreducible if c /∈ ±qZ.

In particular, any �-weight of L−
i,a different from 
i,a belongs to 
i,a A−1

i,a
̂Q−.

By [53, Section 4], the Uq (̂g)-moduleW (i)
c,a is a “generic asymptotic limit” of the KR

modules W (i)
m,aq−1

i
; see also the proof of Lemma 9.4.

Corollary 4.3. Any tensor product of positive (resp. negative) prefundamental modules
in category O is irreducible.

Proof. In viewofLemmas 4.1–4.2, the proof of [19, Lemma5.1]works here by replacing
the duality of [19, Lemma 3.5] with the functor G∗ in Lemma 1.9. ��
Proof of Theorem 3.2. In the non-graded case this was sketched in [35, Section 6.1.3].
Here our proof is in the spirit of [25, Lemma 4.8], by replacing the elimination theorem
of �-weights therein with Corollaries 3.5–3.6.

Let T := N+
i,a ⊗ L+

i,a . We need to prove that T has exactly two irreducible sub-

quotient S′ := L(n+i,a
i,a) and S′′ := L(n+i,a
i,a A−1
i,a )ofmultiplicity one,which implies

Theorem 3.2 since S′ and S′′ are irreducible tensor products of positive prefundamental
modules with D. Clearly S′ is an irreducible sub-quotient of T , and χq(S′) + χq(S′′) =
n+i,a
i,a(1 + A−1

i,a )χ(L+
i,1)
∏

j∼i χ(L+
j,1) by Corollary 4.3.

That S′′ is a sub-quotient of T , i.e. χq(T ) is bounded below by χq(S′) + χq(S′′),
is proved in the same way as in the first half of the comment after [35, (6.13)]. For
the reverse inequality, it suffices to show that χq(N+

i,a) is bounded above by n+i,a(1 +

A−1
i,a )
∏

j∼i χ(L+
j,1).

Assume n+i,an ∈ wt�(N+
i,a) and n �= 1. For m ∈ Z>0 let Sm := L(n+i,a(d(i,1)

m,a )−1) and

view N+
i,a as a sub-quotient of D(i,1)

m,a ⊗ Sm . Write
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n = n′
mn

′′
m, n′

md
(i,1)
m,a ∈ wt�(D(i,1)

m,a ), n′′
mn

+
i,a(d(i,1)

m,a )−1 ∈ wt�(Sm).

ByRemark 3.1,we haven+i,a(d(i,1)
m,a )−1 ≡∏ j∼i 
 j,aq−2m−1

i j
. It follows fromCorollary 4.3

that n′′
m ∈ qQ−

, χ(Sm) =∏ j∼i χ(L+
j,1), and so n ∈ ̂Q−qQ−

.

Choose t ∈ Z>0 large enough so that n ∈ ̂Q−
t qQ−

where ̂Q−
t is the submonoid

of ̂Q generated by the A−1
j,aql with −t < l < t . Then for m > t , we must have

n′
m ∈ {1, A−1

i,a } by Corollaries 3.5–3.6. This implies that n′′
m is uniquely determined by

n and dim(N+
i,a)n ≤ dim(Sm)n′′

m
. As a consequence, the coefficient of any f ∈ ̂P in

n+i,a(1 + A−1
i,a )
∏

j∼i χ(L+
j,1) − χq(N+

i,a) is non-negative. ��

5. Main Result: Asymptotic TQ Relations

We replace the L , N in Eq. (3.27) by Uq (̂g)-modules using the functor G∗.

Corollary 5.1. Let i ∈ I0 and a ∈ C
×. In the Grothendieck ring K0(O):

[N−
i,a][L−

i,a] = [L−
i,aq̂2

i
]
∏

j∈I0: j∼i

[L−
j,aqi j

] + [D][L−
i,aq−2

i
]
∏

j∈I0: j∼i

[L−
j,aq−1

i j
] (5.28)

where D = L(n−
i,a
−1

i,a A−1
i,a 
i,aq−2

i

∏

j∼i 
 j,aq−1
i j

) is one-dimensional.

Proof. Applying G∗−1 to Eq. (3.27) in K0(O′) gives (5.28) by Lemma 1.9. Take q-
characters in Eq. (5.28). By Lemma 4.2, n−

i,a
−1
i,a A−1

i,a appears at the left-hand side, but

in none of theχq(L−
j,b) at the right-hand side. This forcesχq(D)
−1

i,aq−2
i

∏

j∼i 
−1
j,aq−1

i j
=

n−
i,a
−1

i,a A−1
i,a and proves the second statement. ��

Equation (5.28) becomes [35, Example 7.8] when N = 0.

Proposition 5.2. Let i ∈ I0 and a, c ∈ C
×. There exists a Uq (̂g)-module N (i)

c,a in cate-
gory O whose q-character is

χq(N (i)
c,a) = n(i)

c,a × χ̃q(N−
i,a).

If c2 /∈ qZ, then N (i)
c,a is irreducible.

The proof of this proposition will be given in Sect. 7. Assuming this proposition, we
are able to prove the main result of the paper.

Theorem 5.3. Let i ∈ I0 and a, c, d ∈ C
×. In the Grothendieck ring K0(O):

[N (i)
c,a][W (i)

d,a ] = [W (i)
dq̂i ,aq̂2

i
]
∏

j∈I0: j∼i

[W ( j)

c−1
i j ,aqi j

]

+[D−
i ][W (i)

dq−1
i ,aq−2

i
]
∏

j∈I0: j∼i

[W ( j)

c−1
i j q−1

i j ,aq−1
i j

] (5.29)
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where D−
i = L(n(i)

c,aω
(i)
d,a A−1

i,a (ω
(i)
dq−1

i ,aq−2
i

∏

j∼i ω
( j)

c−1
i j q−1

i j ,aq−1
i j

)−1) is a one-dimensional

Uq (̂g)-module. If c2 /∈ qZ, then in K0(O)

[M (i)
c,a][W (i)

d,ad2 ] = [W (i)
dqi ,ad2 ]

∏

j∈I0: j∼i

[W ( j)

c−1
i j ,aq−1

i j c−2
i j

]

+ [Di ][W (i)
dq̂−1

i ,ad2 ]
∏

j∈I0: j∼i

[W ( j)

c−1
i j q−1

i j ,aq−1
i j c−2

i j
] (5.30)

with Di = L(m(i)
c,aω

(i)
d,ad2 A−1

i,a (ω
(i)
dq̂−1

i ,ad2

∏

j∼i ω
( j)

c−1
i j q−1

i j ,aq−1
i j c−2

i j
)−1) one-dimensional.

The advantage of Eq. (5.30) over (5.29) is that for fixed j ∈ I0 the spectral parameter
a in W ( j)

c,a is also fixed. This is crucial in deriving BAE in Sect. 9.

Proof. D−
i is one-dimensional by the formulas in Example 1.6:

n(i)
c,aω

(i)
d,a A−1

i,a ≡
⎛

⎝


i,a


i,aq̂2
i

∏

j∼i


 j,aqi j c2i j


 j,aqi j

⎞

⎠× 
i,ad−2


i,a
×
⎛

⎝


i,aq−2
i


i,aq̂2
i

∏

j∼i


 j,aq−1
i j


 j,aqi j

⎞

⎠

−1

≡ 
i,ad−2


i,aq−2
i

∏

j∼i


 j,aqi j c2i j


 j,aq−1
i j

≡ ω
(i)
dq−1

i ,aq−2
i

∏

j∈I0: j∼i

ω
( j)

c−1
i j q−1

i j ,aq−1
i j

.

Dividing the q-characters of both sides of (5.29) by n(i)
c,aω

(i)
d,a , we obtain the normalized

q-characters of (5.28) by Lemma 4.2 and Proposition 5.2. This proves (5.29). For (5.30),
let us assume first d /∈ ±qZ.

As in Table (1.15), letN ′(i)
c,a ,W ′(i)

c,a be the corresponding Uq(̂g′)-modules in category

O′. Since c2,±d /∈ qZ, by Lemma 4.2, Proposition 5.2 and Lemma 1.9, G∗(M (i)
c,a) �

N ′(M+N−i)
c,aq N−M and G∗(W (i)

c,a ) � W ′(M+N−i)
c−1,ac−2q N−M as irreducible Uq(̂g′)-modules in category

O′. ApplyingG∗−1 to (5.29) in K0(O′) gives (5.30). The �-weight of Di is fixed similarly
as in the proof of Corollary 5.1. This implies

χq(M (i)
c,a) = m(i)

c,a(1 + A−1
i,a )

∏

j∈I0: j∼i

χ̃q(L−
j,aq−1

i j c−2
i j

),

from which follows (5.30) for arbitrary c ∈ C
×. ��

One can give an alternative proof to Eq. (5.30), by slightly modifying that of The-
orem 3.2; see a closer situation in [54, Theorem 6.1]. This approach is independent of
Theorem 3.3 and results in Sects. 6, 7 and 8.

6. Cyclicity of Tensor Products

We provide a criteria for a tensor product of Kirillov–Reshetikhin modules to be of
highest �-weight, which is needed to prove Theorem 3.3 and Proposition 5.2.

For i, j ∈ Z>0 let us define the q-segment

S(i, j) := {q−i− j+2r | 0 ≤ r < min(i, j)} ⊂ C
×.

It is q j−i�(i, j)−1 in [52, Section 5] and is symmetric in i, j .
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Theorem 6.1. Let s ∈ Z>0. For 1 ≤ l ≤ s let 1 ≤ il ≤ M and (ml , al) ∈ Z>0 × C
×.

The Uq (̂g)-module W (i1)
m1,a1 ⊗ W (i2)

m2,a2 ⊗ · · · ⊗ W (is )
ms ,as is of highest �-weight if

a j

ak
/∈

m j
⋃

p=1

q2p−2mkS(i j , ik) for 1 ≤ j < k ≤ s. (6.31)

The idea is similar to [51,52], which in turn was inspired by [12], by restricting to
diagram subalgebras. Let A, B beHopf superalgebras and let ι : A −→ B be amorphism
of superalgebras. If W is a B-module and W ′ is a sub-A-module of the A-module ι∗(W ),
then let ι•(W ′) denote the A-module structure on W ′.

For 1 ≤ p ≤ 3, define the quantum affine superalgebra Up with RTT generators

s(n)
i j;p, t (n)

i j;p and the superalgebra morphism ιp : Up −→ Uq (̂g) as follows: U1 :=
Uq(ĝl(1|1)), U2 := Uq−1(ĝl(1|1)) and U3 := Uq( ̂gl(M − 1|N )), so that in s(n)

i j;p, t (n)
i j;p

we understand either (1 ≤ i, j, p ≤ 2) or (1 ≤ i, j < M + N , p = 3);

ι1 : U1 −→ Uq (̂g), s(n)
i j;1 
→ s(n)

i ′ j ′ , t (n)
i j;1 
→ t (n)

i ′ j ′ ;
ι2 : U2 −→ Uq (̂g), s(n)

i j;2 
→ h(s(n)

i ′ j ′), t (n)
i j;2 
→ h(t (n)

i ′ j ′);
ι3 : U3 −→ Uq (̂g), s(n)

i j;3 
→ s(n)
i+1, j+1, t (n)

i j;3 
→ t (n)
i+1, j+1.

Here h is the involution in Eq. (1.3) and 1′ = 1, 2′ = M + N .

Lemma 6.2 [51, Lemma 3.7]. The tensor product of a lowest �-weight Uq (̂g)-module
with a highest �-weight module is generated, as a Uq (̂g)-module, by a tensor product of
a lowest �-weight vector with a highest �-weight vector.

Let 1 ≤ p ≤ 2. We recall the notion of Weyl module over Up from [52]. Let
f (z) ∈ C(z) be a product of the c 1−za

1−zac2
with a, c ∈ C

× and let P(z) ∈ 1 + zC[z] be
such that P(z)

f (z) ∈ C[z]. The Weyl module Wp( f ; P) is the Up-module generated by a
highest �-weight vector w of even parity such that

s11;p(z)w = f (z)w = t11;p(z)w, s22;p(z)w = w = t22;p(z)w,

and P(z)
f (z) s21;p(z)w, as a formal power series in z with coefficients in Wp( f ; P), is a

polynomial in z of degree ≤ deg P . Given another pair (g, Q), if the polynomials P(z)
f (z)

and Q(z) are co-prime, thenWp( f ; P) ⊗Wp(g; Q) is a quotient ofWp( f g; P Q) and
is of highest �-weight; see [52, Proposition 14].

Example 6.3. In the situation of Theorem 6.1, fix vl ∈ W (il )
ml ,al a highest �-weight vector.

Let Wp be the sub-Up-module of ι∗p(⊗s
l=1W (il )

ml ,al ) generated by ⊗s
l=1vl . Then ι•p(Wp) is

a quotient of the Weyl module Wp for 1 ≤ p ≤ 2 where

W1 := W1

(

s
∏

l=1

qml − zalq M−N−il−ml

1 − zalq M−N−il
;

s
∏

l=1

(1 − zalq
M−N−il−2ml )

)

,

W2 := W2

(

s
∏

l=1

q−ml − zalq N−M+il−ml

1 − zalq N−M+il−2ml
;

s
∏

l=1

(1 − zalq
N−M+il )

)

.



842 H. Zhang

ι•3(W3) is the tensor product ⊗s
l=1W 3(il−1)

ml ,al of KR modules over U3. The proof is the
same as [52, Lemmas 18 & 20], based on Corollary 2.10.

For p ∈ Z>0, let gp := gl(1|p) and let Uq (̂gp) be the quantum affine superalgebra

with RTT generators s(n)
i j |p, t (n)

i j |p for 1 ≤ i, j ≤ p + 1. Similarly Uq−1 (̂gp) with RTT

generators s(n)
i j |p, t (n)

i j |p and the involution h p : Uq−1 (̂gp) −→ Uq (̂gp) are defined. For
1 ≤ p ≤ N , the following extends uniquely to a superalgebra morphism

ϑp : Uq (̂gp) −→ Uq (̂g), s(n)
i j |p 
→ s(n)

i ′ j ′ , t (n)
i j |p 
→ t (n)

i ′ j ′ (6.32)

where 1′ = 1 and i ′ = M + N − p − 1 + i for 2 ≤ i ≤ p + 1.

Definition 6.4. Let s ∈ Z>0 and (ml , al) ∈ Z>0 × C
× for 1 ≤ l ≤ s. The Weyl module

W p(
∏s

l=1 �ml ,al ) is the Uq (̂gp)-module generated by a highest �-weight vector w of
even parity such that for 2 ≤ j ≤ p + 1,

s11|p(z)w = w

s
∏

l=1

qml − zalq−p−ml

1 − zalq−p
= t11|p(z)w,

h p(s11|p(z))w = w

s
∏

l=1

q−ml − zalq p−ml

1 − zalq p−2ml
= h p(t11|p(z))w,

s j j |p(z)w = t j j |p(z)w = h p(s j j |p(z))w = h p(t j j |p(z))w = w,

and the following vector-valued polynomials in z are of degree ≤ s:

s
∏

l=1

(1 − zalq
−p) × s j1|p(z)w,

s
∏

l=1

(1 − zalq
p−2ml ) × h p(s j1|p(z))w.

Let L p(
∏s

l=1 �ml ,al ) denote its irreducible quotient of W p(
∏s

l=1 �ml ,al ).

Example 6.5. Let 1 ≤ p ≤ N . In Example 6.3, let W p be the sub-Uq (̂gp)-module of

ϑ∗
p(⊗s

l=2W (il )
ml ,al ) generated by ⊗s

l=2vl . Then ϑ•
p(W p) is a quotient of the Weyl module

W p
(

∏s
l=2 �ml ,al q M−N−il+p

)

over Uq (̂gp).

Example 6.6. Supposem1 ≤ N and take p = m1. In W (i1)
m1,a1 there is a non-zero vector v

1
1

whose �-weight corresponds to the tableau T 1
1 ∈ B−(m1�i1) such that: T 1

1 (−i1,− j) =
1 for 1 ≤ j ≤ m1 and T 1

1 (−i,− j) = N + M − j + 1 for 1 ≤ i < i1 and 1 ≤ j ≤ m1.

Let X be the sub-Uq (̂gm1)-module of ϑ∗
m1

(W (i1)
m1,a1) generated by v11. By comparing the

character formulas in Remark 2.5 we see that theUq (̂gm1)-module ϑ•
m1

(X) is irreducible
and in terms of evaluation modules:

ϑ•
m1

(X) ∼= V +
q (m1ε1 +

m1
∑

j=1

(i1 − 1)ε j+1; a1q M−N−i1)

� V +
q ((m1 + i1 − 1)ε1; a1q M−N+i1−2) ∼= V −

q ((m1 + i1 − 1)ε1; a1q M−N−i1)

∼= Lm1(�m1+i1−1,a1q M−N+i1+m1−2).
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Let v21 be a lowest �-weight vector of theUq (̂gm1)-module ϑ•
m1

(X). Then v21 corresponds
to the tableau T 2

1 ∈ B−(m1�i1) such that T 2
1 (−i,− j) = N + M − j + 1 for 1 ≤ i ≤ i1

and ≤ j ≤ m1; it is a lowest �-weight vector of the Uq (̂g)-module W (i1)
m1,a1 . Notice

that s(n)
i j X = 0 if 2 ≤ j ≤ M + N − m1. Combining with Example 6.5, we observe

that X ⊗ W m1 is stable by ϑm1(Uq (̂gm1)) and the identity map is an isomorphism of
Uq (̂gm1)-modules ϑ•

m1
(X ⊗ W m1) ∼= ϑ•

m1
(X) ⊗ ϑ•

m1
(W m1).

Lemma 6.7. Let p, s ∈ Z>0 and let (ml , al) ∈ Z>0 × C
× for 1 ≤ l ≤ s. Assume

m1 ≥ p. The Uq (̂gp)-module L p(�m1,a1) ⊗W p(
∏s

l=2 �ml ,al ) is of highest �-weight if
a1 �= alq2t−2ml−2 for 2 ≤ l ≤ s and 1 ≤ t ≤ p.

Proof. By induction on p: for p = 1 we are led to consider the tensor product

W1

(

qm1 − za1q−1−m1

1 − za1q−1 ; 1 − za1q−1−2m1

)

⊗

W1

(

s
∏

l=2

qml − zalq−1−ml

1 − zalq−p
;

s
∏

l=2

(1 − zalq
−1−2ml )

)

of Weyl modules over U1 = Uq (̂g1), which is of highest �-weight if a1 �= alq−2ml

for 2 ≤ l ≤ s. Assume therefore p > 1. In Eq. (6.32) let us take (p, M, N ) to be
(p − 1, 1, p). This defines a superalgebra morphism

ϑp−1 : Uq (̂gp−1) −→ Uq (̂gp), s(n)
i j |p−1 
→ s(n)

i ′ j ′|p, t (n)
i j |p−1 
→ t (n)

i ′ j ′|p

where 1′ = 1 and i ′ = i + 1 for 1 < i ≤ p. Let v1, w be highest �-weight vectors of the
Uq (̂gp)-modules L p(�m1,a1) and W p(

∏s
l=2 �ml ,al ) respectively. Set

X1 := ϑp−1(Uq (̂gp−1))v1, Y1 := ϑp−1(Uq (̂gp−1))w.

Using evaluation modules over Uq (̂gp) we have by Corollary 2.10 and Definition 6.4:

L p(�m1,a1)
∼= V +

q (m1ε1; a1q−p) ∼= V −
q (m1ε1; a1q p−2m1).

It follows that s(n)
i2|p X1 = 0 if i �= 2.This implies that X1⊗Y1 is stable byϑp−1(Uq (̂gp−1))

and the identity map is an isomorphism of Uq (̂gp−1)-modules:

ϑ•
p−1(X1 ⊗ Y1) ∼= ϑ•

p−1(X1) ⊗ ϑ•
p−1(Y1).

As in Example 6.6, the Uq (̂gp−1)-module ϑ•
p−1(X1) is irreducible and isomorphic

to L p−1(�m1,a1q−1). By Definition 6.4, ϑ•
p−1(Y1) is a quotient of the Weyl module

W p−1(
∏s

l=2 �ml ,al q−1). The induction hypothesis applied to p − 1 shows that L p−1

(�m1,a1q−1) ⊗ W p−1(
∏s

l=2 �ml ,al q−1) and so ϑ•
p−1(X1) ⊗ ϑ•

p−1(Y1) are of highest
�-weight. Let v′

1 be the lowest �-weight vector of the Uq (̂gp−1)-module ϑ•
p−1(X1);

it corresponds to the tableau T ∈ B−(m1ε1) such that T (−1,− j) = p + 2 − j for
1 ≤ j ≤ p − 1 and T (−1,− j) = 1 for p ≤ j ≤ m1. We have

v′
1 ⊗ w ∈ ϑp−1(Uq (̂gp−1))(v1 ⊗ w) = X1 ⊗ Y1. (*)
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Notice that s(n)
i j;2 
→ h p(s

(n)
i j |p) and t (n)

i j;2 
→ h p(t
(n)
i j |p) extend uniquely to a superalgebra

morphism ι : U2 −→ Uq (̂gp). Let X2 := ι(U2)v
′
1 and Y2 := ι(U2)w. The identification

L p(�m1,a1)
∼= V −

q (m1ε1; a1q p−2m1) gives X2 := Cv′
1 + Cv′′

1 where v′′
1 is a lowest

�-weight vector of L p(�m1,a1). This implies h p(s
(n)
i j |p)X2 = 0 if i /∈ {1, 2}, meaning

that X2 ⊗ Y2 is stable by ι(U2) and the graded permutation map is an isomorphism
of U2-modules ι•(X2 ⊗ Y2) ∼= ι•(Y2) ⊗ ι•(X2). By Definition 6.4 the tensor product
ι•(Y2) ⊗ ι•(X2) of U2-modules is a quotient of

W2

(

s
∏

l=2

q−ml − zalq p−ml

1 − zalq p−2ml
;

s
∏

l=2

(1 − zalq
p)

)

⊗

W2

(

q−m1+p−1 − za1q−m1+1

1 − za1q p−2m1
; 1 − za1q2−p

)

,

which is of highest �-weight since alq p−2ml �= a1q2−p for 2 ≤ l ≤ s. The U2-module
ι•(X2⊗Y2) is of highest �-weight and v′′

1 ⊗w ∈ ι(U2)(v
′
1⊗w), which together with (∗)

implies v′′
1 ⊗ w ∈ Uq (̂gp)(v1 ⊗ w). The Uq (̂gp)-module L p(�m1,a1) being generated

by the lowest �-weight vector v′′
1 , we conclude by Lemma 6.2. ��

For gl(1|3) we related the highest/lowest �-weight vectors of L3(�5,a) by:

v1 = 1 1 1 1 1
ϑ2:(134)q−−−−−→ v′

1 = 1 1 1 3 4
ι:(12)q−1

−−−−−→ v′′
1 = 1 1 2 3 4 .

Proof of Theorem 6.1. Let us assume first that ml ≤ N for all 1 ≤ l ≤ s. We use
a double induction on (M, s) with Lemma 6.7 being the initial case M = 1. Under
Condition (6.31), the induction hypothesis on M applied to the tensor product of KR
modules over U3 in Example 6.3 shows that ι•3(W3) is of highest �-weight and v11 ⊗
(⊗s

l=2vl) ∈ ι3(U3)(⊗s
l=1vl). It suffices to prove that the Uq (̂gm1)-module ϑ•

m1
(X) ⊗

ϑ•
m1

(W m1) in Example 6.6 is of highest �-weight, from which follows v21 ⊗ (⊗s
l=2vl) ∈

ϑm1(Uq (̂gm1))ι3(U3)(⊗s
l=1vl). TheUq (̂g)-module W (i1)

m1,a1 being generated by the lowest
�-weight vector v21, we can use the second induction on s and Lemma 6.2 to conclude.

By Examples 6.5 and 6.6, ϑ•
m1

(X) ⊗ ϑ•
m1

(W m1) is, up to tensor product by one-
dimensional modules, a quotient of the Uq (̂gm1)-module

Lm1(�m1+i1−1,a1q M−N+i1+m1−2) ⊗ Wm1

(

s
∏

l=1

�ml ,al q M−N−il+m1

)

,

which by Lemma 6.7 is of highest �-weight if for 2 ≤ l ≤ s and 1 ≤ t ≤ m1:

a1q M−N+i1+m1−2 �= alq
M−N−il+m1 × q2t−2−2ml ,

namely, a1 �= alq2t−2ml−i1−il . This is included in Condition (6.31).
Suppose ml > N for some 1 ≤ l ≤ s. Let m := max(ml : 1 ≤ l ≤ s) and

let U4 := Uq( ̂gl(M |N + m)) be the quantum affine superalgebra with RTT generators

s(n)
i j;4, t (n)

i j;4 for 1 ≤ i, j ≤ M + N + m. There is a unique superalgebra morphism

ι4 : Uq (̂g) −→ U4, s(n)
i j 
→ s(n)

i j;4, t (n)
i j 
→ t (n)

i j;4.
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Under Condition (6.31), the tensor product ⊗s
l=1W 4(il )

ml ,al of KR modules over U4 is of

highest �-weight. For 1 ≤ l ≤ s, let Xl := ι4(Uq (̂g))vl where vl ∈ W 4(il )
ml ,al is a highest

�-weight vector. Then a weight argument and Corollary 2.10 show that

ι4(Uq (̂g))(⊗s
l=1vl) = ⊗s

l=1Xl ,

and as Uq (̂g)-modules ι•4(⊗s
l=1Xl) ∼= ⊗s

l=1W (il )
ml ,al q−m . This implies that the Uq (̂g)-

module ⊗s
l=1W (il )

ml ,al q−m is of highest �-weight, proving the theorem. ��

For gl(3|6) we related the highest/lowest �-weight vectors of W (3)
4,a by:

v1 =
1 1 1 1
2 2 2 2
3 3 3 3

ι3:(23456789)q−−−−−−−−→ v11 =
1 1 1 1
6 7 8 9
6 7 8 9

ϑ4:(16789)q−−−−−−−→ v21 =
6 7 8 9
6 7 8 9
6 7 8 9

.

For λ ∈ P and a ∈ C
× define the Uq−1 (̂g)-module V +

q−1(λ; a) to be the pullback of

the Uq−1(g)-module Vq−1(λ) by ev+a , as in Theorem 2.4. By Eq. (1.6),

h∗ (V −
q (λ; a)

) ∼= V +
q−1(λ; a).

Corollary 6.8. The tensor product in Theorem 6.1 is of highest �-weight if

a j

ak
/∈

mk
⋃

p=1

q2p−2mkS(i j , ik) for 1 ≤ j < k ≤ s. (6.33)

Proof. The tensor product T in Theorem 6.1 is of highest �-weight if and only if so is
the Uq−1 (̂g)-module h∗(T ). By Corollary 2.10 we have

h∗(T ) ∼= ⊗1
l=s V +

q−1(ml�il ; alq
N−M−2ml+il ).

Applying Theorem 6.1 to Uq−1 (̂g), by viewing W (i)
m,a first as V +

q (m�i ; aq M−N−i ) and
then as V +

q−1(m�i ; aq N−M+i ), we have that h∗(T ) is of highest �-weight if

akq−2mk

a j q−2m j
/∈

mk
⋃

p=1

q−2p+2m jS(ik, i j )
−1 for 1 ≤ j < k ≤ s.

This is Condition (6.33) since S(ik, i j ) = S(i j , ik). ��
Let V be a finite-dimensional Uq (̂g)-module. Its twisted dual is the dual space

HomC(V, C) =: V ∨ endowed with the Uq (̂g)-module structure [52, Section 6]:

〈xϕ, v〉 := (−1)|ϕ||x |〈ϕ, S
(x)〉 for x ∈ Uq (̂g), ϕ ∈ V ∨, v ∈ V .

By Eq. (1.2), (V ⊗ W )∨ ∼= V ∨ ⊗ W ∨ if W is another finite-dimensional Uq (̂g)-module.
V is irreducible if and only if both V and V ∨ are of highest �-weight.

We recall the notion of fundamental representations from [52]. Let 1 ≤ r ≤ M and
1 ≤ s < N . Define (compare [52, Lemmas 5 & 6] with Corollary 2.10)

V +
r,a := W (r)

1,aq N−M−r , V −
s,a := W (M+N−s)

1,aqs+2 , V −
N ,a := W (M−)

1,aq N+2 . (6.34)
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Lemma 6.9. Let 1 ≤ i ≤ M < j < M + N and (m, a) ∈ Z>0 × C
×. We have:

(W (i)
m,a)∨ � W (i)

m,a−1q2m , (W ( j)
m,a)∨ � W ( j)

m,a−1q4−2m , (W (M−)
m,a )∨ � W (M−)

m,a−1q4−2m .

Proof. The twisted dual of a fundamental module is known [52, Lemma 27]:

(V +
i,a)∨ � V +

i,a−1q2(M−N+i+1) , (V −
M+N− j,a)∨ � V −

M+N− j;a−1q−2(M+N+1− j) .

By Eq. (6.34), (W (i)
1,a)∨ ∼= W (i)

1,a−1q2 and (W ( j)
1,a )∨ � W ( j)

m,a−1q2 . Viewing W (i)
m,a as the

unique irreducible sub-quotient of ⊗m
l=1W (i)

1,aq2−2l
i

of highest �-weight �(i)
m,a , and taking

twisted duals, we obtain the desired formulas. ��
Corollary 6.10. Let 1 < i < M, a ∈ C

× and m ∈ Z>0. The Uq (̂g)-module W (i−1)
m,a ⊗

W (i+1)
m,a is irreducible.

Proof. The tensor product and its twisted dual, which is � W (i−1)
m,a−1q2m ⊗ W (i+1)

m,a−1q2m by
Lemma 6.9, satisfy Condition (6.33) and are of highest �-weight. ��

The following special result on Dynkin node M is needed in Sect. 7.

Lemma 6.11. [52] For m ∈ Z>0, the Uq (̂g)-module V −
N ,aq−3 ⊗ (⊗m

l=1V −
N−1,aq2l−1) ⊗

(⊗m
k=1V +

M−1,aq2M−2k−1) is of highest �-weight. Moreover for 1 ≤ k, l ≤ m we have

V −
N−1,aq2l−1 ⊗ V +

M−1,aq2M−2k−1
∼= V +

M−1,aq2M−2k−1 ⊗ V −
N−1,aq2l−1 .

Proof. The first statement is induced from [52, Theorem 15] by the involution h as in
[52, Remarks 3 & 4], and the second is a particular case of [52, Example 5]. ��

7. Asymptotic Representations

In this section we construct the Uq (̂g)-module N (i)
c,a of Proposition 5.2 for i ∈ I0 and

a, c ∈ C
× from finite-dimensional representations.

For m ∈ Z>0, let N (i)
m,a := L(n(i)

qm ,a) be the irreducible Uq (̂g)-module; it is finite-

dimensional by Lemma 1.5 (3). Fix vm ∈ N (i)
m,a to be a highest �-weight vector.

The main step is to construct an inductive system (N (i)
m,a)m∈Z>0 compatible with

(normalized) q-characters, as in [34, Section 4.2] and [35, Theorem 7.6]. We shall need
the cyclicity results in Sect. 6 to adapt the arguments of [34,35].

Lemma 7.1. If n(i)
qm ,am ∈ wt�(N (i)

m,a), then n−
i,am ∈ wt�(N−

i,a) and

dim(N (i)
m,a)n(i)

qm ,am
≤ dim(N−

i,a)n−
i,am

.

Proof. The first paragraph of the proof of [35, Theorem 7.6] can be copied here, based
on Lemma 4.1 and the fact thatm is a product of the A−1

j,b with j ∈ I0 and b ∈ aqZ. For

the latter fact, we realize N (i)
m,a as a tensor product of KR modules with one-dimensional

modules and apply Corollary 2.10. ��
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Lemma 7.2. Let c ∈ C
× be such that c2 /∈ qZ. If n−

i,am ∈ wt�(N−
i,a), then n(i)

c,am ∈
wt�(L(n(i)

c,a)) and dim(N−
i,a)n−

i,am
≤ dim L(n(i)

c,a)n(i)
c,am

.

Proof. From Example 1.6 we obtain

n−
i,a ≡ n(i)

c,a

∏

j∼i


−1
j,aqi j c2i j

.

Viewing N−
i,a as a sub-quotient of L(n(i)

c,a) ⊗ (⊗ j∼i L−
j,aqi j c2i j

) ⊗ D with D being a one-

dimensional Yq(g)-module, we have m = m′∏
j∼i m

j with

n(i)
c,am

′ ∈ wt�(L(n(i)
c,a)), 
−1

j,aqi j c2i j
m j ∈ wt�(L−

j,aqi j c2i j
) for j ∼ i.

By Corollary 5.1 and Lemmas 4.1–4.2 we have:

(1) m,m′ ∈ ̂Q−qQ−
and m is a monomial in the A−1

i ′,b with i ′ ∈ I0 and b ∈ aqZ;

(2) m j is a monomial in the A−1
i ′,b′ with i ′ ∈ I0 and b′ ∈ {ac2, ac−2}qZ for j ∼ i .

Since {ac2, ac−2}qZ and aqZ do not intersect, m j = 1 and m′ = m. ��
For m1, m2 ∈ Z>0 with m1 < m2, let Zm1,m2

i,a be the irreducible Uq (̂g)-module of

highest �-weight n(i)
qm2 ,a(n(i)

qm1 ,a)−1 = ∏

j∼i ω
( j)

q
m1−m2
i j ,aq

1+2m1
i j

; by Lemma 1.5 (3) it is

finite-dimensional. Fix vm1,m2 ∈ Zm1,m2
i,a to be a highest �-weight vector.

Lemma 7.3. The Uq (̂g)-module N (i)
m1,a ⊗ Zm1,m2

i,a ⊗ Zm2,m3
i,a is of highest �-weight for

0 < m1 < m2 < m3.

Proof. We shall assume 1 ≤ i ≤ M . The case M + 1 < i < M + N can be deduced
from 1 ≤ i < M using G∗. (See typical arguments in the proof of Lemma 8.2.)

Suppose 1 ≤ i < M . By Corollary 6.10, Zm1,m2
i,a � ⊗ j∼i W

( j)
m2−m1,aq−2m1−2 . The

tensor product W (i)
1,aq ⊗ (⊗ j∼i W

( j)
m1,aq−2) satisfies Condition (6.33) and is of highest

�-weight. Its irreducible quotient is � N (i)
m1,a . Next,

W (i)
1,aq ⊗ (⊗ j∼i W

( j)
m1,aq−2) ⊗ (⊗ j∼i W

( j)
m2−m1,aq−2m1−2) ⊗ (⊗ j∼i W

( j)
m3−m2,aq−2m2−2)

also satisfiesCondition (6.33), and is of highest �-weight, implying that N (i)
m1,a⊗Zm1,m2

i,a ⊗
Zm2,m3

i,a is of highest �-weight.
Suppose i = M . Consider the tensor product of fundamental modules:

T := V −
N ,aq−N−3 ⊗ (⊗m3

l=1V −
N−1,aq−N+2l−1) ⊗ (⊗m3

k=1V +
M−1,aq−N+2M−2k−1).

By Lemma 6.11, T is of highest �-weight and

T ∼= V −
N ,aq−N−3 ⊗ (⊗m1

l=1V −
N−1,aq−N+2l−1) ⊗ (⊗m1

k=1V +
M−1,aq−N+2M−2k−1)⊗

(⊗m2
l=m1+1

V −
N−1,aq−N+2l−1) ⊗ (⊗m2

k=m1+1
V +

M−1,aq−N+2M−2k−1)

(⊗m3
l=m2+1

V −
N−1,aq−N+2l−1) ⊗ (⊗m3

k=m2+1
V +

M−1,aq−N+2M−2k−1).
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Let T1, T2, T3 denote the above tensor products of the first, second, and third row at the
right-hand side. They are of highest �-weight. By Eq. (6.34),

V −
N ,aq−N−3 � W (M−)

1,aq−1, V −
N−1,aq−N+1 � W (M+1)

1,aq2 , V −
M−1,aq−N+2M−3 � W (M−1)

1,aq−2 .

ByExample 1.6, the irreducible quotients of T1, T2, T3 are� N (M)
m1,a, Zm1,m2

M,a and Zm2,m3
M,a ,

proving the cyclicity statement. ��

Let 0 < m1 < m2. The tensor product N (i)
m1,a ⊗ Zm1,m2

i,a being of highest �-weight, its

irreducible quotient is isomorphic to N (i)
m2,a . There exists a unique morphism of Uq (̂g)-

modules Fm2,m1 : N (i)
m1,a ⊗ Zm1,m2

i,a −→ N (i)
m2,a which sends vm1 ⊗ vm1,m2 to vm2 . As

in [34, Section 4.2], define

Fm2,m1 : N (i)
m1,a −→ N (i)

m2,a, w 
→ Fm2,m1(w ⊗ vm1,m2).

Then ({N (i)
m,a}, {Fm2,m1}) constitutes an inductive system of vector superspaces: Fm3,m2

Fm2,m1 = Fm3,m1 for 0 < m1 < m2 < m3. The proof is the same as that of [53,
Proposition 4.1 (2)], based on Lemma 7.3.

Lemma 7.4. Let 0 < m1 < m2. We have Fm2,m1x+j,n = x+j,n Fm2,m1 for j ∈ I0 and
n ∈ Z. The linear map Fm2,m1 is injective.

Proof. This is [34, Theorem 3.15]. For a proof independent of �-weights, we refer to the
first two paragraphs of the proof of [53, Proposition 4.3]; the coproduct �(e+i ) therein
should be replaced by the �(x+j,n) in Eq. (1.10). ��

Lemma 7.5. Let us write (h1(z), h2(z), . . . , hκ(z); 0) := n(i)
qm2 ,a(n(i)

qm1 ,a)−1 ∈ RU for
m2 > m1 > 0. Then for j ∈ I0 we have

K ±
j (z)Fm2,m1 = h j (z) × Fm2,m1 K ±

j (z) ∈ HomC(N (i)
m1,a, N (i)

m2,a)[[z±1]].

Here for ± we take Taylor expansions of h j (z) at z = 0, z = ∞ respectively.

Proof. The same as [34, Proposition 4.2] in view of Eq. (1.9). ��
All the h j (z) ∈ C[[z]] are of the form A(z)q−m2 + B(z) + C(z)qm2 where A(z), B(z),
C(z) ∈ C[[z]] are independent of m2. Let j ∈ I0. If j ∼ i , then

φ±
j (z)Fm2,m1 = qm1−m2

i j

1 − zaq1+2m2
i j

1 − zaq1+2m1
i j

× Fm2,m1φ
±
j (z).

Otherwise, Fm2,m1 commutes with φ±
j (z) for | j − i | �= 1.

From Lemmas 7.1 and 7.4–7.5, we conclude that: the normalized q-characters χ̃q

(N (i)
m,a) for m ∈ Z>0 are polynomials in Z[A−1

j,b]( j,b)∈I0×aqZ , and as m → ∞ they

converge to a formal power series lim
m→∞ χ̃q(N (i)

m,a) ∈ Z[[A−1
j,b]]( j,b)∈I0×aqZ , which is

bounded above by the normalized q-character χ̃q(N−
i,a).
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Lemma 7.6. For j ∈ I0 and m2 − 1 > m > 0 we have

x−
j,0Fm2,m = Fm2,m x−

j,0 if | j − i | �= 1,

x−
j,0Fm2,m = Fm2,m+1(q

m2 A j,m + q−m2C j,m) if | j − i | = 1.

Here A j,m, C j,m : N (i)
m,a −→ N (i)

m+1,a are linear maps of parity |α j |.
Proof. This corresponds to [34, Lemma 4.4 & Proposition 4.5]. Here we give a straight-
forward proof without induction arguments.

By Lemma 7.3, the Uq (̂g)-module Zm,m+1
i,a ⊗ Zm+1,m2

i,a is of highest �-weight with

irreducible quotient Zm,m2
i,a ; let Gm2,m be the quotient map sending vm,m+1 ⊗ vm+1,m2 to

vm,m2 . We claim that for v ∈ N (i)
m,a, v′ ∈ Zm,m+1

i,a and j ∈ I0:

(i) Fm2,m(v ⊗ Gm2,m(v′ ⊗ vm+1,m2)) = Fm2,m+1Fm+1,m(v ⊗ v′);
(ii) x−

j,0v
m,m2 = [(m2 − m)δ| j−i |,1]q × Gm2,m(x−

j,0v
m,m+1 ⊗ vm+1,m2).

Here [n]q := qn−q−n

q−q−1 for n ∈ Z. Assume the claim for the moment. For v ∈ N (i)
m,a , based

on �(x−
j,0) = 1 ⊗ x−

j,0 + x−
j,0 ⊗ φ−

j,0 we compute x−
j,0Fm2,m(v)

= x−
j,0Fm2,m(v ⊗ vm,m2) = Fm2,m�(x−

j,0)(v ⊗ vm,m2)

= Fm2,m(x−
j,0v ⊗ φ−

j,0v
m,m2) + (−1)|v||α j |Fm2,m(v ⊗ x−

j,0v
m,m2)

= q
(m2−m)δ| j−i |,1
i j Fm2,m(x−

j,0v)+

(−1)|v||α j |[(m2 − m)δ| j−i |,1]qFm2,m(v ⊗ Gm2,m(x−
j,0v

m,m+1 ⊗ vm+1,m2))

= q
(m2−m)δ| j−i |,1
i j Fm2,m(x−

j,0v)+

(−1)|v||α j |[(m2 − m)δ| j−i |,1]q Fm2,m+1Fm+1,m(v ⊗ x−
j,0v

m,m+1),

which proves the lemma. The third and fourth identities used (ii) and (i).
Note thatFm2,m(1

N (i)
m,a

⊗Gm2,m) andFm2,m+1(Fm+1,m ⊗ 1
Z

m+1,m2
i,a

), as Uq (̂g)-linear

maps from the highest �-weightmodule N (i)
m,a ⊗Zm,m+1

i,a ⊗Zm+1,m2
i,a to N (i)

m2,a , are identical

because they both send the highest �-weight vector vm ⊗ vm,m+1 ⊗ vm+1,m2 to vm2 .
Applying them to v ⊗ v′ ⊗ vm+1,m2 gives (i).

From the proof of Lemma 7.3 it follows that Zm,m2
i,a is � irreducible quotient of a

tensor product of KR modules associated to j ′ ∈ I0 with j ′ ∼ i . Let μ be the weight
of vm,m2 . If | j − i | �= 1, then by Lemma 3.4, μq−α j /∈ wt(Zm,m2

i,a ) and x−
j,0v

m,m2 = 0.

Suppose j ∼ i . Then (Zm,m2
i,a )

μq−α j = Cx−
j,0v

m,m2 and qi j = q±1. The equation

x−
j,0Gm2,m = Gm2,m x−

j,0 applied to vm,m+1 ⊗ vm+1,m2 gives

x−
j,0v

m,m2 = Gm2,m(qm2−m−1
i j x−

j,0v
m,m+1 ⊗ vm+1,m2 + vm,m+1 ⊗ x−

j,0v
m+1,m2).

Consider the following vector in Zm,m+1
i,a ⊗ Zm+1,m2

i,a of weight μq−α j :

w := q−1
i j

qm+1−m2
i j − qm2−m−1

i j

q−1
i j − qi j

x−
j,0v

m,m+1 ⊗ vm+1,m2 − vm,m+1 ⊗ x−
j,0v

m+1,m2 .
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We have Gm2,m(w) ∈ Cx−
j,0v

m,m2 and x+j,0w = 0. So x+j,0Gm2,m(w) = 0. Now x+j,0x−
j,0

vm,m2 �= 0 forces Gm2,m(w) = 0. We express x−
j,0v

m,m2

= Gm2,m(qm2−m−1
i j x−

j,0v
m,m+1 ⊗ vm+1,m2 + vm,m+1 ⊗ x−

j,0v
m+1,m2) + Gm2,m(w)

=
(

qm2−m−1
i j +

qm−m2
i j − qm2−m−2

i j

q−1
i j − qi j

)

× Gm2,m(x−
j,0v

m,m+1 ⊗ vm+1,m2)

= [m2 − m]qi j × Gm2,m(x−
j,0v

m,m+1 ⊗ vm+1,m2),

which proves (ii) because [n]qi j = [n]q for n ∈ Z. ��
Proof of Proposition 5.2. For r ∈ Z≥0 and l ∈ I let K ±

l,±r be the coefficient of z±r in

K ±
l (z) ∈ Uq (̂g)[[z±1]]. The superalgebra Uq (̂g) is generated by:

S := {K ±
l,±r , x−

j,0, x+j,n | r ∈ Z≥0, n ∈ Z, j ∈ I0, l ∈ I }.

By Lemmas 7.4–7.6, there are HomC(N (i)
m,a, N (i)

m+1,a)-valued Laurent polynomials
Ps;m(u) for m ∈ Z>0 and s ∈ S such that

s Fm2,m = Fm2,m+1Ps;m(qm2) ∈ HomC(N (i)
m,a, N (i)

m2,a) for m2 > m + 1.

These polynomials have non-zero coefficients only at u, 1, u−1. Since q is not a root
of unity, the generic asymptotic construction of [53, Section 2] can be applied to the
inductive system ({N (i)

m,a}, {Fm2,m1}). Let N∞ be its inductive limit. Fix c ∈ C
×. There

exists a unique representation of Uq (̂g) on N∞ on which s ∈ S acts as

lim
m→∞ Ps;m(c) ∈ End(N∞)

Here the Ps;m(c) : N (i)
m,a −→ N (i)

m+1,a for m ∈ Z>0 form a morphism of the inductive
system, so their inductive limit limm→∞ Ps;m(c) makes sense. As in the proof of [53,
Lemma 6.7], the resulting Uq (̂g)-module N (i)

c,a is in category O with q-character

χq(N (i)
c,a) = n(i)

c,a × lim
m→∞ χ̃q(N (i)

m,a).

Let us prove lim
m→∞ χ̃q(N (i)

m,a) = χ̃q(N−
i,a). We have seen above Lemma 7.6 that the left-

hand side is bounded above by the right-hand side. View L(n(i)
c,a) as a sub-quotient of

N (i)
c,a . If c2 /∈ qZ, then by Lemma 7.2, χ̃q(N−

i,a) is bounded above by χ̃q(L(n(i)
c,a)) and

so by (n(i)
c,a)−1χq(N (i)

c,a), which is the left-hand side. This implies the reverse inequality

and the irreducibility of N (i)
c,a for c2 /∈ qZ. ��

One can have asymptoticmodulesM(i)
c,a overUq (̂g) as limits of M (i)

qm ,a (as in [34, Sec-

tion 7.2], which is slightly different from the limit construction ofN (i)
c,a). Then Eq. (5.30)

holds with M replaced by M for all c, d ∈ C
×.

Proposition 7.7. The Uq (̂g)-module W (i1)
c1,a1 ⊗ W (i2)

c2,a2 ⊗ · · · ⊗ W (is )
cs ,as , with il ∈ I0 and

cl , al ∈ C
×, is irreducible if alc

−2
l /∈ akqZ for all 1 ≤ l, k ≤ s.
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Proof. Let L := ⊗s
l=1L−

il ,al
and S = L(

∏s
l=1 ω

(il )
cl ,al ), viewed as irreducible Yq(g)-

modules by Corollary 4.3. S is a sub-quotient of the tensor product T in the proposition.
Let ω,ω′ be the highest �-weights of L , S respectively. Then χq(T ) = ω′χ̃q(L) by
Lemma 4.2. It suffices to prove that dim Lnω ≤ dim Snω′ for all nω ∈ wt�(L). Viewing
L as a sub-quotient of S ⊗ D where D � ⊗s

l=1L−
il ,al c

−2
l
, we can adapt the proof of

Lemma 7.2 to the present situation. ��
It follows that the tensor products of theW at the right-hand side of Eqs. (5.29)–(5.30)

are irreducible Uq (̂g)-modules for c2, d2 /∈ qZ.

8. Proof of Extended T-Systems: Theorem 3.3

The idea is to provide lower and upper bounds for dim(D(i,s)
m,a ). We recall from the

proof of Corollary 3.5 that the Uq (̂g)-module W (i)
m,aq2m+1

i
⊗ W (i)

m+s,aq2m−1
i

has at least two

irreducible sub-quotients: L(�
(i)
m+s+1,aq2m+1

i
�

(i)
m−1,aq2m−1

i
) and D(i,s)

m,a .

Lemma 8.1. For i ∈ I0\{M}, the Uq (̂g)-module W (i)
m+s,aq2m+1

i
⊗ D(i,s)

m,a has at least two

sub-quotients: L(d(i,s−1)
m,a �

(i)
m+s+1,aq2m+1

i
) and L(d(i,0)

m+s,aq−2s
i

�
(i)
m,aq2m+1

i
).

Proof. Set T := W (i)
m+s,aq2m+1

i
⊗ D(i,s)

m,a and S := L(d(i,s−1)
m,a �

(i)
m+s+1,aq2m+1

i
). By Exam-

ple 1.6, S is an irreducible sub-quotient of T . By Corollary 3.5,

m′ := m
s
∏

l=1

A−1
i,aq2−2l

i
= d(i,0)

m+s,aq−2s
i

�
(i)
m,aq2m+1

i
∈ wt�(T ).

Viewing S as an irreducible sub-quotient ofW (i)
m+s+1,aq2m+1

i
⊗D(i,s−1)

m,a andusingLemma3.4

and Corollary 3.5, we have m′ /∈ wt�(S). Let μ := (3m + 2s)�i − mαi so that
�(m) = qμ and �(m′) = qμ−sαi . Then dim Tqμ−tαi = t + 1 for 0 ≤ t ≤ s.

Let v0 ∈ S be a highest �-weight vector and let Ui be the subalgebra in the proof of
Corollary 3.5. Then Uiv0 is an irreducible Uqi (

̂sl2)-module of highest �-weight

mi := (Yaq−1
i

Yi,aq−3
i

· · · Yi,aq1−2s
i

)(Yi,aq2m+1
i

Yi,aq2m−1
i

· · · Yi,aq3−2s
i

)

and factorizes as Li (Yaq−1
i

Yi,aq−3
i

· · · Yi,aq3−2s
i

) ⊗ Li (Yi,aq2m+1
i

Yi,aq2m−1
i

· · · Yi,aq1−2s
i

); if

s = 1 then the first tensor factor is trivial. For 1 ≤ t ≤ s, the weight space Sqμ−tαi is
spanned by the x−

i,n1
x−

i,n2
· · · x−

i,nt
v0 ∈ Uiv0 with nl ∈ Z for 1 ≤ l ≤ t and is therefore of

dimension min(s, t +1). Sincemi
∏s

l=1(Yaq1−2l
i

Yaq3−2l
i

)−1 is not an �-weight of Li (mi ),

we must have m′ /∈ wt�(S), as in the proof of Corollary 3.5.
It follows that χq(T ) − χq(S) is m′ plus terms of the form m′′ ∈ R with �(m′′) /∈

�(m′)qQ+
, forcing L(m′) to be an irreducible sub-quotient of T . ��

Lemma 8.2. Let i ∈ I0\{M}. The Uq (̂g)-modules W (i)
m,aq2m+1

i
⊗ W (i)

m+s,aq2m−1
i

and

W (i)
m+s,aq2m+1

i
⊗ D(i,s)

m,a are of highest �-weight, while W (i)
m+s+1,aq2m+1

i
⊗ W (i)

m−1,aq2m−1
i

,

D(i,0)
m+s,aq−2s

i
⊗ W (i)

m,aq2m+1
i

and W (i)
m+s+1,aq2m+1

i
⊗ D(i,s−1)

m,a are irreducible.
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Proof. Assume i < M . Notice that T (i,s)
m,a := W (i+1)

m,aq2m ⊗ W (i−1)
m,aq2m ⊗ W (i)

s,aq−1 satisfies
Condition (6.33) and is of highest �-weight. By Remark 3.1, the irreducible quotient
of T (i,s)

m,a is � D(i,s)
m,a . To prove that the five tensor products in the lemma are of highest

�-weight, we can replace D by T and show that the resulting tensor products of KR
modules satisfy Condition (6.33). For example the last tensor product corresponds to
W (i)

m+s+1,aq2m+1 ⊗ W (i+1)
m,aq2m ⊗ W (i−1)

m,aq2m ⊗ W (i)
s−1,aq−1 .

Next, S(i,s)
m,a := W (i)

s,a−1q2s+1 ⊗ W (i−1)
m,a−1 ⊗ W (i+1)

m,a−1 also satisfies Condition (6.33) and

is of highest �-weight, the irreducible quotient of which is � (T (i,s)
m,a )∨. To establish the

irreducibility of the last three tensor products in the lemma, we take twisted duals as in
Lemma6.9, replace D∨ by S, and checkCondition (6.33) for the resulting tensor products
of KRmodules. Take the fourth as an example: W (i−1)

m+s,a−1q2s ⊗ W (i+1)
m+s,a−1q2s ⊗ W (i)

m,a−1q−1

is of highest �-weight.
This proves the lemma in the case i < M .
Assume i > M . By Lemma 1.9, G∗(W (i)

m,a) � W ′(M+N−i)
m,aq N−M−2+2m as Uq(̂g′)-modules.

Applying G∗−1 to the Uq(̂g′)-modules T ′(M+N−i,s)
m,a , S′(M+N−i,s)

m,a we obtain that D(i,s)
m,a

and (D(i,s)
m,a )∨ are � the irreducible quotients of the highest �-weight modules

W (i+1)
m,aq−2m ⊗ W (i−1)∗

m,aq−2m ⊗ W (i)
s,aq , W (i)

s,a−1q3−2s ⊗ W (i−1)∗
m,a−1q4 ⊗ W (i+1)

m,a−1q4

respectively. Here W (M)∗
m,a := W (M−)

m,a and W ( j)∗
m,a = W ( j)

m,a for j > M . By replacing
D, D∨ with these tensor products, we obtain eight tensor products of KR modules
W ( j)

m,b, W (M−)
m,b with j > M and need to show that they are of highest �-weight. Applying

G∗ gives tensor products of KR modules W ′( j)
m,b with j ≤ M over Uq(̂g′), which are

shown to satisfy Condition (6.31). Consider the last tensor product in the lemma as an
example. Let us prove that the Uq (̂g)-modules

T1 := W (i)
m+s+1,aq−2m−1 ⊗ W (i+1)

m,aq−2m ⊗ W (i−1)∗
m,aq−2m ⊗ W (i)

s−1,aq ,

T2 := W (i)
m+s+1,a−1q3−2s ⊗ W (i)

s−1,a−1q5−2s ⊗ W (i−1)∗
m,a−1q4 ⊗ W (i+1)

m,a−1q4

are of highest �-weight. Applying G∗ to T1, T2 give (c = q N−M−2, j = M + N − i):

T ′
1 = W ′( j)

s−1,acq2s−1 ⊗ W ′( j+1)
m,ac ⊗ W ′( j−1)

m,ac ⊗ W ′( j)
m+s+1,ac2s+1 ,

T ′
2 = W ′( j−1)

m,a−1cq2m+4 ⊗ W ′( j+1)
m,a−1cq2m+4 ⊗ W ′( j)

s−1,a−1cq3 ⊗ W ′( j)
m+s+1,a−1cq2m+5 .

The Uq(̂g′)-modules T ′
1, T ′

2 satisfy Condition (6.31). ��
For i ∈ I0 and m ∈ Z>0 let d(i)

m := dim(W (i)
m,a); it is independent of a ∈ C

× because
�∗

a(W (i)
m,1)

∼= W (i)
m,a by Eq. (1.1).

Theorem 8.3 [44]. (d(i)
m )2 = d(i)

m+1d(i)
m−1 + d(i−1)

m d(i+1)
m for 1 ≤ i < M.

Proof. For μ ∈ P , up to normalization T∅⊂μ(u) in [44, (2.15)] can be identified with
χq(V −

q (μ; a)) in Eq. (2.20). The dimension identity is a consequence of [44, (3.2)],
which in turn comes from Jacobi identity of determinants. ��
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Proof of Theorem 3.3. By Lemma 8.2, the surjective morphisms of Uq (̂g)-modules in
Theorem 3.3 exist (because the third terms are irreducible quotients of the second terms)
and their kernels admit irreducible sub-quotients D(i,s)

m,a and D(i,0)
m+s,aq−2s

i
⊗ W (i)

m,aq2m+1
i

respectively. This gives:

(1) dim(D(i,s)
m,a ) ≤ d(i)

m d(i)
m+s − d(i)

m+s+1d(i)
m−1;

(2) dim(D(i,0)
m+s,aq−2s

i
)d(i)

m ≤ d(i)
m+s dim(D(i,s)

m,a ) − d(i)
m+s+1 dim(D(i,s−1)

m,a ).

We prove the equality in (1)–(2) by induction on s. Suppose s = 0; (2) is trivial. If
i < M , then by Example 1.6 and Corollary 6.10,

D(i,0)
m,a � W (i+1)

m,aq2m ⊗ W (i−1)
m,aq2m .

This together with Theorem 8.3 shows that equality holds in (1). Making use of G∗, we
can remove the assumption i < M , as in the proof of Lemma 8.2.

Suppose s > 0. In (2) the induction hypothesis applied to 0, s − 1 indicates that

((d(i)
m+s)

2 − d(i)
m+s+1d(i)

m+s−1)d
(i)
m ≤ d(i)

m+s dim(D(i,s)
m,a )

− d(i)
m+s+1(d

(i)
m d(i)

m+s−1 − d(i)
m+sd(i)

m−1);

namely, dim(D(i,s)
m,a ) ≥ d(i)

m d(i)
m+s − d(i)

m+s+1d(i)
m−1. This implies that in (1), and henceforth

in the above inequality and in (2), ≤ can be replaced by =. ��

Remark 8.4. Let 1 ≤ i < M . Apply G∗−1 to the second exact sequence in category O′
of Theorem 3.3 involving D′(M+N−i,1)

m,a and take normalized q-characters:

χ̃q(N (i)
m,a)χ̃q(W (i)

m+1,aq−1) = χ̃q(W (i)
m+2,aq)

∏

j∈I0: j∼i

χ̃q(W ( j)
m,aq−2)

+A−1
i,a × χ̃q(W (i)

m,aq−3)
∏

j∈I0: j∼i

χ̃q(W ( j)
m+1,a).

Setting m → ∞ recovers the normalized q-characters of Eq. (5.28). The second exact
sequence of Theorem 3.3 is likely to be true for i = M .

Theorem 3.3 together with its proof could be adapted to quantum affine algebras, in
view of the cyclicity results of [12] and T-system [31,42]. The second and third terms of
the first exact sequence appeared in the proof of [23, Theorem 4.1] as V ′, V by setting
(a, m, s) = (q−3

i , m2+1, m1−m2−2). In the context of graded representations of current
algebras [16, Theorem 2] by taking (�, λ) = (m +s, mωi ) so that ν = (2m +s)ωi −mαi ,
the exact sequence therein is an injective resolution of the Demazure module D(�, ν) by
fusion products of KR modules. It is natural to expect that D(i,s)

m,1 admits a classical limit
(q = 1) as D(�, ν); this is true when m = s = 1, as a particular case of [11, Theorem
1].
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9. Transfer Matrices and Baxter Operators

Let us fix an integer � ∈ Z>0 (length of spin chain) and complex numbers b j ∈ C
×\qZ

for 1 ≤ j ≤ � (inhomogeneity parameters). We shall construct an action of K0(O) on
the vector superspaceV⊗� as in [22, Section 5]. This is the XXZ spin chain with twisted
periodic boundary condition, with V⊗� referred to as the quantum space and objects of
category O auxiliary spaces.

Following Definition 1.4, let E be the subset of E� consisting of the
∑

f∈P cf f ∈ E�.
Note that E is a sub-ring and χ(W ) ∈ E for W in category O.

We identify i = i1i2 · · · i� ∈ I �, an I -string of length �, with the basis vector
vi1 ⊗ vi2 ⊗ · · · ⊗ vi� of V

⊗�. Let Ei j ∈ End(V⊗�) be the elementary matrix k 
→ δ jk i

for i, j ∈ I �, and let εi := εi1 + εi2 + · · · + εi� ∈ P.
To a Yq(g)-module W in category O is by definition attached an matrix SW (z), a

power series in z with values in End(W ) ⊗ End(V). We decompose

SW
1,�+1(zb�) · · · SW

13(zb2)SW
12(zb1) =

∑

i, j∈I �

SW
i j (z) ⊗ Ei j ∈ End(W ) ⊗ End(V)⊗�[[z]].

Then SW
i j (z) = ±sW

i� j�
(zb�) · · · si2 j2(zb2)sW

i1 j1
(zb1) and it sends one weight space Wp

for p ∈ P to another of weight pqεi −ε j . Its trace over Wp is well-defined: either 0 if
εi �= ε j ; or the usual non-graded trace of SW

i j (z)|Wp ∈ End(Wp) if εi = ε j .

Definition 9.1. Let W be in category O. Its associated transfer matrix is

tW (z) :=
∑

i, j∈I �

⎛

⎝

∑

p∈wt(W )

p × TrWp (SW
i j (z))

⎞

⎠ Ei j ,

viewed as a power series in z with values in End(V⊗�) ⊗Z E .

In [6,46] (for Uq (̂g)) and [24] (for an arbitrary non-twisted quantum affine algebra),
transfer matrices are partial traces of universal R-matrices R(z). Since the existence of
R(z) forUq (̂g) is not clear to the author (except the simplest case gl(1|1) in [50]), we use
a different transfermatrix based onRTT.One should imagine SW (z) as the specialization
ofR(z) at W ⊗ V.

As in [24], the transfer matrix tW (z) is a twisted trace of SW (z) due to the presence
of p ∈ wt(W ). In [6,46] p is related to an auxiliary field.

Example 9.2. Consider the one-dimensional module Cf in Example 1.3:

tCf (z)i = i × p ×
�
∏

l=1

h(zbl)pil for i ∈ I �.

Proposition 9.3. For X, Y in category O and a ∈ C
×, we have:

t�∗
a X (z) = tX (za), tX (z)tY (z) = tX⊗Y (z), tX (z)tY (w) = tY (w)tX (z).
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Proof. We mainly prove the second equation; the first one is almost clear from Defini-
tion 9.1 and Eq. (1.1), and the third one in the same way as [24, Theorem 5.3] based on
the commutativity of K0(O). For i, j ∈ I �:

SX⊗Y
i j (z) ⊗ Ei j =

1
∏

r=�

s X⊗Y
ir jr

(zbr ) ⊗ Ei1 j1 ⊗ Ei2 j2 ⊗ · · · ⊗ Ei� j�

=
∑

k∈I �

1
∏

r=�

(

(−1)|Eir kr ||Ekr jr |s X
ir kr

(zbr ) ⊗ sY
kr ir (zbr )

)

⊗ Ei1 j1 ⊗ Ei2 j2 ⊗ · · · ⊗ Ei� j�

=
∑

k∈I �

(SX
ik(z) ⊗ 1 ⊗ Eik)(1 ⊗ SY

k j (z) ⊗ Ek j ).

After taking trace over X p ⊗ Yp′ , only the terms with εi = εk = ε j survive and so all
the tensor components are of even parity, implying the second equation. ��

Let ϕ : P −→ C
× be a morphism of multiplicative groups (typical examples are

((pi )i∈I ; s) 
→ (−1)s and ((pi )i∈I ; s) 
→ (−1)s×∏i∈I pi ). IfW is a finite-dimensional
Yq(g)-module in category O, then the twisted transfer matrix is:

tW (z;ϕ) :=
∑

i, j∈I �

⎛

⎝

∑

p∈wt(W )

ϕ(p) × TrWp (SW
i j (z))

⎞

⎠ Ei j ∈ End(V⊗�)[[z]]. (9.35)

If W is infinite-dimensional and the second summation above converges (for a generic
choice of ϕ), then tW (z;ϕ) is still well-defined.

Lemma 9.4. Let i ∈ I0, a, c ∈ C
×. The power series f (i)

c,a(z)s jk(z) ∈ Yq(g)[[z]] for

j, k ∈ I act on the module W (i)
c,a as polynomials in z of degree ≤ 1, where

i ≤ M i > M

f (i)
c,a 1 − zaq M−N−i−1 (1−zac−2q M+N−i−1)(1−zaqi−M−N−1)

1−zaq M+N−i−1

Proof. Let us recall the generic limit construction of W (i)
c,a in [53]. For m > 0 set

Vm := W (i)
m,aq−1

i
⊗ C(1,...,1;m|�i |), so that its highest �-weights is of even parity. Let

T := {s(n)
i j , t (n)

i j } be the set of RTT generators forUq (̂g). By [53, Lemma 5.1], their exists
an inductive system of vector superspaces ({Vm}, {Fm2,m1}) with Laurent polynomials
Qt;m(u) ∈ HomC(Vm, Vm+1)[u, u−1] for t ∈ T and m > 0 such that

t Fm2,m = Fm2,m+1Qt;m(qm2
i ) ∈ HomC(Vm, Vm2) for m2 > m + 1. (�)

Its inductive limit admits a Uq (̂g)-module structure where t ∈ T acts as the inductive

limit lim
m→∞ Qt;m(c). This is exactly the module W (i)

c,a .

Suppose i > M . By comparing the highest �-weights of the modules in Eq. (2.25)
based on (2.19), (2.21) and Lemma 2.6, we have:
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W (i)
m,aq

∼= V −∗
q (λ(i)

m ; aq M+N−1−i ) ∼= φ∗
hm(z)

(

V +∗
q (λ(i)

m ; aqi−M−N+2m−1)
)

,

hm(z) =
m
∏

l=1

M+N−i
∏

j=1

(1 − zaq2l−2 j+M+N−i−1)2

(1 − zaq2l−2 j+M+N−i−3)(1 − zaq2l−2 j+M+N−i+1)

= (1 − zaq2m+i−M−N−1)(1 − zaq−i+M+N−1)

(1 − zaq2m−i+M+N−1)(1 − zaqi−M−N−1)
.

It follows that hm2(z)
−1(1 − zaq2m2+i−M−N−1)s jk(z)Fm2,m is a polynomial in z of

degree ≤ 1 for all m2 > m. By Equation (�) above, this is equal to

Fm2,m+1
(1 − zaq2m2+i−M−N−1)

hm2(z)

∑

n≥0

zn Q
s(n)

jk ;m(q−m2).

Since hm2(z)
−1(1 − zaq2m2+i−M−N−1) = f (i)

q−m2 ,a
(z), from the injectivity of Fm2,m+1

and the polynomial dependence on qm2 , we obtain that f (i)
c,a(z)

∑

n≥0 zn Q
s(n)

jk ;m(c) is a

polynomial in z of degree ≤ 1. By taking the inductive limit m → ∞, the same holds
for the action of f (i)

c,a(z)s jk(z) on W (i)
c,a .

The case i ≤ M is much simpler, since Vm ∼= V +
q (m�i ; aq M−N−i−1). We omit the

details. ��
Based on the lemma, let us define the Yq(g)-module W

(i)
c,a := φ∗

f (i)
c,a(z)

(W (i)
c,a ). (Indeed

it can be equipped with a Uq (̂g)-module structure.)

Lemma 9.5. For i ∈ I0 and a, c ∈ C
× we have:

[W(i)
c,1 ⊗ W

(i)
1,a2

] = [W(i)
ca,a2

⊗ W
(i)
a−1,1

] ∈ K0(O). (9.36)

Let X be a finite-dimensional Uq (̂g)-module in categoryO. In a fractional ring of K0(O)

we have [X ] =
dim X
∑

l=1
[Dl ]ml where for each l, Dl is a one-dimensional Uq (̂g)-module in

category O, and ml is a product of the
[W(i)

b,a ]
[W(i)

c,a ] with i ∈ I0, a, b, c ∈ C
×.

Proof. For the first statement, by Example 1.6 and Lemma 9.4 we have:

ω
(i)
c,1ω

(i)
1,a2

= ω
(i)
ca,a2

ω
(i)
a−1,1

, f (i)
c,1(z) f (i)

1,a2
(z) = f (i)

ca,a2
(z) f (i)

a−1,1
(z).

Together with Lemma 4.2, this implies that the q-characters of the two tensor products
in Eq. (9.36) coincide. For the second statement, we argue as [24, Theorem 4.8] based

on
ω

(i)
b,a

ω
(i)
c,a

= χq (W (i)
b,a )

χq (W (i)
c,a )

≡ χq (W
(i)
b,a)

χq (W
(i)
c,a)

; see also [53, Theorem 6.11]. ��

Equation (9.36) is a separation of variables identity; see also [22, Theorem 3.11].
The same identity holds when replacing W byW . Since t

W
(i)
c,a

(z) is a polynomial in z of

degree ≤ �, the following definition makes sense.

Definition 9.6. For i ∈ I0 the Baxter operator is Qi (z) := t
W

(i)
z,1

(1).
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Let p(i)
c = �(ω

(i)
c,a). Then wt(W(i)

c,a) ⊂ p(i)
c qQ−

and Qi (z) := (p(i)
c )−1Qi (z) is a

power series in the q−α j with j ∈ I0 whose coefficients are in End(V⊗�)[z, z−1]. Let
Q

0
i (z) be its leading term. Since (W

(i)
1,1)p(i)

1
is the one-dimensional simple socle ofW

(i)
1,1,

by Definition 9.1, i is an eigenvector of Q
0
i (1) with non-zero eigenvalue. (Here we used

the overall assumption bl /∈ qZ.) The formal power series Q
0
i (z) and Qi (z) in the q−α j

can therefore be inverted for z ∈ C generic.

Corollary 9.7 (Generalized Baxter TQ relations). For b, c ∈ C
×, we have:

t
W

(i)
b,1

(z−2)

t
W

(i)
c,1

(z−2)
= Qi (zb)

Qi (zc)
,

t
W (i)

b,1
(z−2)

t
W (i)

c,1
(z−2)

=
�
∏

l=1

f (i)
c,1(z

−2b−2
l )

f (i)
b,1(z

−2b−2
l )

× Qi (zb)

Qi (zc)
. (9.37)

If X is a finite-dimensional Uq (̂g)-module in category O, then tX (z−2) is a sum of

monomials in the Qi (zb)
Qi (zc) tD(z−2) with i ∈ I0, b, c ∈ C

× and with D one-dimensional
Uq (̂g)-modules in category O, the number of terms being dim X.

Proof. In Eq. (9.36) let us set (a, c) = (z−1, bz):

[W(i)
b,z−2 ][W(i)

z,1] = [W(i)
zb,1][W(i)

1,z−2 ].

Taking transfer matrices and evaluating them at 1 gives the special case c = 1 of
Eq. (9.37), which in turn implies the general case c ∈ C

×. The second statement is a
translation of that of Lemma 9.5. ��
Example 9.8. Let g = gl(2|2) and X = W (1)

1,1 = V +
q (ε1; q−1). By Eq. (2.18):

χq(X) = 1 1 + 2 1 + 3 1 + 4 1.

If s ∈ Z2, g(z) ∈ C[[z]]× and c ∈ C
×, for simplicity let sg(z) := (g(z)4; s) ∈ ̂P,

[s, g(z)] := [L(g(z)4; s)] ∈ K0(O) and 〈s, c〉 := (c4; s) ∈ P. Set w(i)
c,a := f (i)

c,a(z)ω(i)
c,a .

By Definition 2.2, Example 1.6 and Lemma 9.4:

1 1 =
(

q − z

1 − zq
, 1, 1, 1; 0

)

, 2 1 =
(

1,
q − zq2

1 − zq3 , 1, 1; 0
)

,

3 1 =
(

1, 1,
1 − zq3

q − zq2 , 1; 1
)

, 4 1 =
(

1, 1, 1,
1 − zq

q − z
; 1
)

,

w
(1)
c,a

w
(1)
1,a

=
(

c − zac−1

1 − za
, 1, 1, 1; 0

)

,
w

(2)
c,a

w
(2)
1,a

=
(

c − zaqc−1

1 − zaq
,

c − zaqc−1

1 − zaq
, 1, 1; 0

)

,

w
(3)
c,a

w
(3)
1,a

=
(

1 − zac−2

1 − za
,
1 − zac−2

1 − za
,
1 − zac−2

1 − za
, c−1; 0

)

, 1 1 = w
(1)
q,q

w
(1)
1,q

,

2 1 =
w

(1)
q−1,q

w
(1)
1,q

w
(2)
q,q2

w
(2)
1,q2

, 3 1 = 1q−1
w

(2)
q,q2

w
(2)
1,q2

w
(3)
q−1,q

w
(3)
1,q

, 4 1 = 1
1 − zq

1 − zq−1

w
(3)
q,q

w
(3)
1,q

.
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It follows that in the fractional ring of K0(O):

[X ] = [W(1)
q,q ]

[W(1)
1,q ]

+
[W(1)

q−1,q
]

[W(1)
1,q ]

[W(2)
q,q2 ]

[W(2)
1,q2 ]

+ [1, q−1]
[W(2)

q,q2 ]
[W(2)

1,q2 ]
[W(3)

q−1,q
]

[W(3)
1,q ]

+ [1, 1 − zq

1 − zq−1 ] [W
(3)
q,q ]

[W(3)
1,q ]

.

Let q
1
2 be a square root of q. By Example 9.2 and Eq. (9.37):

tX (z−2) = Q1(zq
1
2 )

Q1(zq− 1
2 )

+
Q1(zq− 3

2 )

Q1(zq− 1
2 )

Q2(z)

Q2(zq−1)
+ 〈1, q−1〉 × Q2(z)

Q2(zq−1)

Q3(zq− 3
2 )

Q3(zq− 1
2 )

q−�

+ 〈1, 1〉 × Q3(zq
1
2 )

Q3(zq− 1
2 )

�
∏

l=1

z2 − blq

z2 − blq−1 .

Example 9.9. Let g = gl(2|0) and X = W (1)
1,1 = V +

q (ε1; q). Then

1 q2 + 2 q2 =
(

q − zq−2

1 − zq−1 , 1; 0
)

+

(

1,
q − z

1 − zq
; 0
)

= w
(1)
q,q

w
(1)
1,q

+
q − z

1 − zq

w
(1)
q−1,q

w
(1)
1,q

,

tX (z−2) = Q1(zq
1
2 )

Q1(zq− 1
2 )

+ 〈0, q〉 × Q1(zq− 3
2 )

Q1(zq− 1
2 )

�
∏

l=1

qz2 − bl

z2 − blq
.

Example 9.10. Let g = gl(1|1) and X = W (1)
1,1 = V +

q (ε1; q−1). We have

χq(X) = 1 1 + 2 1 =
(

q − z

1 − zq
, 1; 0

)

+

(

1,
1 − zq

q − z
; 1
)

= w
(1)
q,q

w
(1)
1,q

(

1 + 1
1 − zq

q − z

)

,

tX (z−2) = Q1(zq
1
2 )

Q1(zq− 1
2 )

+ 〈1, q−1〉 × Q1(zq
1
2 )

Q1(zq− 1
2 )

�
∏

l=1

z2 − blq

z2q − bl
.

One can view Examples 9.9–9.10 as degenerate cases of Example 9.8.
We are ready to deduce three-term functional relations of the Baxter operators Qi (z).

Fix a = 1. Let c, d ∈ C
× be such that c2 /∈ qZ. In Eq. (5.30) let us evaluate transfer

matrices at z−2 making use of Proposition 9.3:

t
M(i)

c,1
(z−2)t

W (i)
d,d2

(z−2) = t
W (i)

dqi ,d
2
(z−2)

∏

j∈I0: j∼i

t
W ( j)

c−1
i j ,q−1

i j c−2
i j

(z−2)

+ tDi (z
−2)t

W (i)

dq̂−1
i ,d2

(z−2)
∏

j∈I0: j∼i

t
W ( j)

c−1
i j q−1

i j ,q−1
i j c−2

i j

(z−2).

Dividing both sides by the term at the second row without tDi (z
−2) and making use of

Eq. (9.37), we obtain the Baxter TQ relation:

X (i)
c (z)

Qi (z)

Qi (zq̂−1
i )

= yi (z)
Qi (zqi )

Qi (zq̂−1
i )

∏

j∈I0: j∼i

Q j (zq
1
2

i j )

Q j (zq
− 1

2
i j )

+ tDi (z
−2), (9.38)
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where X (i)
c (z) (depending on c ∈ C

×\qZ) and yi (z) are given by

X (i)
c (z) =

t
M(i)

c,1
(z−2)

∏

j∈I0: j∼i
t
W ( j)

c−1
i j q−1

i j ,aq−1
i j c−2

i j

(z−2)
×

�
∏

l=1

f (i)
dq̂−1

i ,d2(z
−2bl)

f (i)
d,d2(z−2bl)

,

yi (z) =
�
∏

l=1

⎛

⎜

⎝

f (i)
dq̂−1

i ,d2(z
−2bl)

f (i)
dqi ,d2(z−2bl)

×
∏

j∈I0: j∼i

f ( j)

c−1
i j q−1

i j ,q−1
i j c−2

i j
(z−2bl)

f ( j)

c−1
i j ,q−1

i j c−2
i j

(z−2bl)

⎞

⎟

⎠ .

Note that yi (z), Di are independent of c, d by Lemma 9.4 and Theorem 5.3.
Let us assume that the twisted transfer matrices in Eq. (9.35) are well-defined for

all the M (i)
c,1 and W (i)

c,a , upon a generic choice of ϕ : ̂P −→ C
×; this corresponds to

the convergence assumption in [24, Remark 5.12 (ii)]. Then Eq. (9.38) is an operator
equation in End(V⊗�)[[z−2]].

Based on the asymptotic construction of W (i)
c,a , one can show that there exists n ∈ Z

such that zn Qi (z) is a polynomial in z with values in End(V⊗�).
As in [25, Section 5], we expect that the t

M(i)
c,1

(z−2) are polynomials in z−2 (up to

multiplication by an integer power of z). Suppose thatw is a zero of Qi (z) that is neither

a zero of Qi (zq̂−1
i ), Q j (zq

− 1
2

i j ) nor a pole of X (i)
c (z). Then we have the Bethe Ansatz

Equation: (see [44, (2.6a)] and [5,38])

yi (w)
Qi (wqi )

Qi (wq̂−1
i )

∏

j∈I0: j∼i

Q j (wq
1
2

i j )

Q j (wq
− 1

2
i j )

= −tDi (w
−2). (9.39)

Example 9.11. Following Example 9.8, we determine the highest �-weight (still denoted
by Di ) of the one-dimensional Uq (̂g)-module Di and the yi (z) in Eq. (9.39) for g =
gl(2|2). First by Definition 2.2 and Example 1.6:

ω(1)
c,a =

(

c − zac−1

1 − za
, 1, 1, 1; 0

)

, ω(2)
c,a =

(

c − zaqc−1

1 − zaq
,

c − zaqc−1

1 − zaq
, 1, 1; 0

)

,

ω(3)
c,a =

(

1, 1, 1,
1 − za

c − zac−1 ; 0
)

, A1,a =
(

q − zaq−1

1 − za
,
1 − zaq2

q − zaq
, 1, 1; 0

)

,

A2,a =
(

1,
q − za

1 − zaq
,

q − za

1 − zaq
, 1; 1

)

, A3,a =
(

1, 1,
1 − zaq2

q − zaq
,

q − zaq−1

1 − za
; 0
)

.

The relations between A and ω are as follows: A1,a = ω
(1)
q2,aq2ω

(2)
q−1,aq−1 and

A2,a = 1
q − za

1 − zaq
ω

(1)
q−1,aq−1ω

(3)
q,aq , A3,a = 1 − zaq2

q − zaq
ω(2)

q,aqω
(3)
q−2,aq−2 .
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It it follows that D1 = 1, D2 = 11−zq
q−z , D3 = q−zq

1−zq2 and so (Di (z) := tDi (z
−2))

D1(z) = 1, D2(z) = 〈1, q−1〉 ×
�
∏

l=1

z2 − blq

z2q − bl
, D3(z) = 〈0, q〉 ×

�
∏

l=1

z2q − blq

z2 − blq2 ,

y1(z) = 1, y2(z) =
�
∏

l=1

z2 − blq

z2 − blq−1 , y3(z) =
�
∏

l=1

z2 − blq−2

z2 − blq2 .

The Bethe Ansatz Equations become in this case:

Q1(w1q)

Q1(w1q−1)

Q2(w1q− 1
2 )

Q2(w1q
1
2 )

= −1,
Q1(w2q− 1

2 )

Q1(w2q
1
2 )

Q3(w2q
1
2 )

Q3(w2q− 1
2 )

= −〈1, q−1〉 × q−�,

Q3(w3q−1)

Q3(w3q)

Q2(w3q
1
2 )

Q2(w3q− 1
2 )

= −〈0, q〉 ×
�
∏

l=1

w2
3q − blq

w2
3 − blq−2

,

where wi is a zero of Qi (z) for 1 ≤ i ≤ 3.

The generalizedBaxter relations in Lemma9.5 andBetheAnsatz Equations (9.39) for
the Baxter operators Qi (z) are based on asymptotic Uq (̂g)-modules: W (i)

c,a ,N (i)
c,a, M (i)

c,a ,
whereas in recent parallel works [18,19,25,35] representations of Borel subalgebras
(Yq(g) in our situation) play a key role.

In [5,38], for the Yangian of gl(M |N ) the Baxter operators QJ (z) are labeled by
the subsets J of I . In addition to TQ relations, there are algebraic relations among the
QJ (z) called QQ relations. Our Qi (z) with i ∈ I0 seem to be algebraically independent
by Proposition 7.7; see also [24, Theorem 4.11].

Remark 9.12. Following [6,24] define Qi (z) := tL+
i,1

(z) for i ∈ I0. We have

tL([c]i )(z−2)
Qi (z−2c−2)

Qi (z−2)
=

�
∏

l=1

f (i)
1,1(z

−2b−2
l )

f (i)
c,1(z

−2b−2
l )

× Qi (zc)

Qi (z)
(9.40)

based on the q-character formula
χq (W (i)

c,1 )

χq (W (i)
1,1 )

= [c]i
χq (L+

i,c−2 )

χq (L+
i,1)

and Eq. (9.37). See [22,

Remark A.7] for a similar comparison in the Yangian case.
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