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Abstract: Associated to quantum affine general linear Lie superalgebras are two fami-
lies of short exact sequences of representations whose first and third terms are irreducible:
the Baxter TQ relations involving infinite-dimensional representations; the extended T-
systems of Kirillov—Reshetikhin modules. We make use of these representations over
the full quantum affine superalgebra to define Baxter operators as transfer matrices for
the quantum integrable model and to deduce Bethe Ansatz Equations, under genericity
conditions.
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Introduction

Fix g := gl(M|N) a general linear Lie superalgebra and ¢ a non-zero complex number
that is not a root of unity. Let U, () be the associated quantum affine superalgebra [48].
This is a Hopf superalgebra neither commutative nor co-commutative, and it can be seen
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as a g-deformation of the universal enveloping algebra of the affine Lie superalgebra of
central charge zero g := g ® C[z, 17 '].

In this paper we study a tensor category of (finite- and infinite-dimensional) repre-
sentations of Uy (g). Its Grothendieck ring turns out to be commutative as is common
in Lie Theory. We produce various identities of isomorphism classes of representations,
and interpret them as functional relations of transfer matrices in the quantum integrable
system attached to Uy (g), the XXZ spin chain.

1. Baxter operators. In an exactly solvable model a common problem is to find the
spectrum of a family 7 (z) of commuting endomorphisms of a vector space V depending
on a complex spectral parameter z, called transfer matrices. The Bethe Ansatz method,
initiated by H. Bethe, gives explicit eigenvectors and eigenfunctions of 7'(z) in terms of
solutions to a system of algebraic equations, the Bethe Ansatz equations (BAE). Typical
examples are the Heisenberg spin chain and the ice model.

In [2], for the 6-vertex model R. Baxter related 7 (z) to another family of commuting
endomorphisms Q(z) on V by the relation:

2 -2
TQrelation:  T(z) = a(z) 0(zq”) +d(2) 0(zq )'

0(2) 0(2)
Here a(z), d(z) are scalar functions and ¢ is the parameter of the model. Q(z) is a
polynomial in z, called the Baxter operator. The cancellation of poles at the right-hand
side becomes Bethe Ansatz equations for the roots of Q(z). A similar operator equation
holds for the 8-vertex model [2], where the Bethe Ansatz method fails.

Within the framework of Quantum Inverse Scattering Method, the transfer matrix
T(z) is defined in terms of representations of a quantum group U. Let R(z) € U®? be
the universal R-matrix with spectral parameter z and let V, W be two representations of
U. Then tw (2) := trw (R(2) wgv) forms a commuting family of endomorphisms on V,
thanks to the quasi-triangularity of (U, R(z)). As examples, the transfer matrix for the
6-vertex model (resp. XXX spin chain) comes from tensor products of two-dimensional
irreducible representations of the affine quantum group U, (sl3) (resp. Yangian Y (sl3)),
while the face-type model of Andrews—Baxter—Forrester, which is equivalent to the 8-
vertex model by a vertex-IRF correspondence, requires Felder’s elliptic quantum group
E:; ;(slp) [20,21].

The representation meaning of the Q(z) was understood in the pioneer work of
Bazhanov-Lukyanov—Zamolodchikov [3] for U, (s12), and extended to an arbitrary non-
twisted affine quantum group U, (a) of a finite-dimensional simple Lie algebra a in
the recent work of Frenkel-Hernandez [24]. One observes that the first tensor factor of
R(z) lies in a Borel subalgebra U, (b) of U, (@), so the above transfer-matrix construction
makes sense for U, (b)-modules. Notably the Baxter operators Q(z) are transfer matrices
of LZ 4> the positive prefundamental modules over U, (b), for i a Dynkin node of a and

a € C*.The Lza are irreducible objects of a category Oyj of U, (b)-modules introduced
by Hernandez—Jimbo [34].

Making use of the prefundamental modules, Frenkel-Hernandez [24] solved a con-
jecture of Frenkel-Reshetikhin [27] on the spectra of the quantum integrable system,
which connects eigenvalues of transfer matrices ry (z), for W finite-dimensional U, (a)-
modules, with polynomials arising as eigenvalues of the Baxter operators.

The two-term TQ relations, as a tool to derive Bethe Ansatz Equations for the roots of
Baxter polynomials, are consequences of identities in the Grothendieck ring Ko(Ogy) of
category Opj [18,19,24,25,35]. Such identities are also examples of cluster mutations
of Fomin—Zelevinsky [35].
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In the elliptic case, the triangular structure of R(z) is less clear as there is not yet a
formulation of Borel subalgebras. Still the eigenvalues of T (z) admit TQ relations by a
Bethe Ansatzin [21]. In a joint work with G. Felder [22], we were able to construct elliptic
Baxter operator Q(z) for E; ,(slp) as a transfer matrix of certain infinite-dimensional
representations over the full elliptic quantum group.

Then a natural question is whether the Baxter operators can always be realized from
representations of the full quantum group (of type Yangian, affine, or elliptic). Inspired by
[22], in the present paper we provide a partial answer for the quantum affine superalgebra
U, (), based on the asymptotic representations, which we introduced in a previous work
[53].

Let us mention the appearance of quantum affine superalgebras and Yangians in
other supersymmetric integrable models like the deformed Hubbard model and anti de
Sitter/conformal field theory correspondences; see [7,8] and references therein.

Compared to the intense works on affine quantum groups (see the reviews [13,40]),
the representation theory of Uy (g) is still less understood as the super case poses one
essential difficulty, the smallness of Weyl group symmetry.

2. Asymptotic representations. Before stating the main results of this paper, let us recall
from [53] the asymptotic modules over U, (g).

Letlp :={1, 2, ..., M+ N — 1} be the set of Dynkin nodes of the Lie superalgebra g.
There are U, (§)-valued power series qbii (z)inz*! fori € Iy whose coefficients mutually
commute; they can be viewed as g-analogs of A®*" € §with A being a diagonal matrix
in g and n a positive integer. Algebra U, (g) admits a triangular decomposition whose
Cartan part is generated by the ¢ii (z). The highest weight representation theory built
from this decomposition is suitable for the classification of finite-dimensional irreducible
representations [49] in terms of rational functions.

Fix a Dynkin node i € Iy and a spectral parameter a € C*. To each positive integer
k is attached a Kirillov—Reshetikhin module. It is a finite-dimensional irreducible U, (g)-
module generated by a highest weight vector @ such that

k —k
i T 244
—— ()]

$rRo=0 if j#i, $F@Qo="2
1 —za

Here g; = g fori < M and g; = g~ fori > M. In [53], we made an “analytic contin-
uation” by taking q{‘ to be a fixed ¢ € C* as k — oo to obtain a U, (§)-module %(2
This is what we call an asymptotic module. It is a modification of the limit construction
of prefundamental modules over Borel subalgebras in [3,34].

We defined in [53] a category Oy of representations of U, (g) by imposing the standard
weight condition as for Kac—Moody algebras [37] and dropping integrability condition
[32,41]. It contains the 7/6(2 and all the finite-dimensional U, (g)-modules. Category
Oy is monoidal and abelian.!

3. Main results. We prove the following property of Grothendieck ring Ko(Oy):

(i) If # is an asymptotic module, then there exist three modules D, ', S” in category
Og such that [D][#] = [S'] +[S"] and §’, §” are tensor products of asymptotic
modules; see Theorem 5.3.

1 In the main text we also study category O of representations of a Borel subalgebra of Uy (§), which admits
prefundamental modules as in [34]; see Definition 1.4. Here Oy is the full subcategory of O consisting of
Ug ()-modules.
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Consider the XXZ spin chain of U, (g). For i € Iy, we define the Baxter operator

Qi (u) to be the transfer matrix of Wu(ll) evaluated at 1 (Definition 9.6), as in the elliptic
case [22]. To justify the definition, we prove the following facts.

(i) If V is a finite-dimensional U, (g)-module, then ry (z72) is a sum of monomials

of the d (z)% where i € Iy, a,c € C*, and the d(z) are scalar functions, the
number of terms being dim V; see Corollary 9.7.

(iii) Each Q;(z) satisfies a two-term TQ relation; see Eq. (9.38).

Note that (ii) reduces the transfer matrix of an arbitrary finite-dimensional U, (g) to the
finite set {Q;(u) | i € Ip} up to scalar functions. It forms generalized Baxter TQ relations
in the sense of Frenkel-Hernandez [24].

4. Proofs. This requires the g-character map of Frenkel-Reshetikhin [27], which is an
injective ring homomorphism from the Grothendieck ring Ko(Og) to a commutative
ring of Ip-tuples of rational functions with parity (Proposition 1.8).
The g-character of an asymptotic module is fairly easy thanks to its limit construction
in [53]. We obtain a separation of variable identity (SOV, Lemma 9.5),
LA R e

ca,a?

17,7 1€ Ko(Op).

This identity puts the parameters ¢, a € C* in V/L(la) at an equal role. It categorifies

c—zc! 1 — za? ca—zcla al'—-za

1—z2 Xl—zaz_ 1 — za? % 1—z2

In [53] we established generalized TQ relations in category Og4, which together with
SOV proves (ii). Similarly (iii) follows from (i) and SOV.
Along the proof of (i) we obtain results of independent interest:

e g-character formulas of four families of finite-dimensional irreducible U, (g)-
modules, including all the Kirillov—Reshetikhin modules (Theorem 2.4);

e a criteria for a tensor product of Kirillov—Reshetikhin modules to admit an irre-
ducible head (i.e. of highest weight, Theorem 6.1);

e short exact sequences of tensor products of Kirillov—Reshetikhin modules (Theo-
rem 3.3).

The third point includes the T-system [31,42,44] as a special case.

5. Perspectives. We expect that our main results (i)—(iii) have analogy in elliptic quantum
groups E p(a), based on twistor theory relating affine quantum groups to elliptic quan-
tum groups [29,36,39]. For a = sly this has been verified in [22,54]. For a of general
type, a category of E; p(a)-modules was studied in [30] with well-behaved g-character
theory, although its tensor product structure is unclear.

It is possible to adapt the arguments to the case of Yangians (not necessarily of type
A) in view of [29]. One could avoid degenerate Yangian [4,5,28], whose prefundamental
representations lead to Baxter operators but do not carry natural action of the ordinary
Yangian. [22, Appendix] discussed the gl, case. The Yangian of centrally extended
psl(2]2) [7] is of special interest in AAS/CFT. We do not know of any representation
category O with well-behaved highest weight theory, yet there are limit constructions
of infinite-dimensional representations [1].

For twisted quantum affine algebras U, there are conjectural TQ relations in category
Opyy [25]. One may ask for such relations in terms of U-modules. This is interesting from



Length-Two Representations 819

another point of view: the correspondence between twisted quantum affine algebras and
non-twisted quantum affine superalgebras [17,55]. (This is different from Langlands
duality in that the Cartan matrices for these algebras are identical.) A typical example

is the equivalence [17] of categories Ojy of integrable representations over U, (A(zi))

and U, (osmn)). Let us mention an earlier work of Z. Tsuboi [45] on Bethe Ansatz
Equations for orthosymplectic Lie superalgebras, the representation theory meaning of
which is to be understood. One should need the Drinfeld second realization of quantum
affine superalgebras [47].

The paper is structured as follows. In Sect. 1 we review the quantum affine superal-
gebra U, (g) and its Borel subalgebra Y, (g), and study the basic properties of category
O of Y, (g)-modules. Section 5 presents the main result (i). In Sect. 9, for the U, (g)

XXZ spin chain, we construct Baxter operators from the Vﬂc(la) and derive Bethe Ansatz
Equations from (i).

The two basics ingredients are: the g-character formulas in terms of Young tableaux,
proved in Sect. 2; cyclicity of tensor products of Kirillov—Reshetikhin modules studied
in Sect. 6. The g-characters already lead to TQ relations of positive prefundamental
modules over Y, (g) in Sects. 3 and 4. The proof of (i) is completed in Sect. 7 upon
realizing D as a suitable asymptotic limit.

The extended T-systems of Kirillov—Reshetikhin modules are proved in Sect. 8. Al-
though they are not needed in the proof of the main theorem, we include them here as
applications of g-characters and cyclicity.

1. Basics on Quantum Affine Superalgebras

Fix M, N € Z-.Inthis section we collect basic facts on the quantum affine superalgebra
associated with the general linear Lie superalgebra g := gl(M|N) and its representations.
The main references are [51-53], some of whose results are modified to be coherent with
the non-graded quantum affine algebras.

Setk ;= M+ N, I :={1,2,...,«} and Iy := I\{k}. Let Z, denote the ring
727 = {0, 1}. The weight lattice P is the abelian group freely generated by the ¢; for
i € I.Let || be the morphism of additive groups P — Z; such that

leil =leal = =lem| =0, lems1| = lemsal = = lemsn| = 1.

P is equipped with a symmetric bilinear form (,) : P x P — Z,
(€. €;) =8;;(=D% where (-1)° := 1, (=) := —1.

Define «; := €; —¢€;41 fori € Iy, and the root lattice Q to be the subgroup of P generated
by the a;. Set ¢; := ¢V and gij = q@-%) fori, j e Ipandl € I.

If W is a vector superspace and w € W is a Z,-homogeneous vector, then by abuse of
language let |w| € Z, denote the parity of w. (It is not to be confused with the absolute
value |n| of an integer n.)

Let V be the vector superspace with basis (v;);ey and parity |v;| := |€;|. Define the
elementary matrices E;; € End(V) by E;jvx = 6;,v; for i, j, k € I. They form a basis
of the vector superspace End(V) and |E;;| = |€;| + |€/].
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1.1. Quantum superalgebras. Recall the Perk—Schultz matrix [43]
R(z,w) =Y (2qi — wg; VEi ® Eii + (2 —w) Y _ Eii ® Ej;
iel i#j
+2Y (¢i—q; DEji ® Eij+w Y (q; —q; VEij ® Eji.

i<j i<j
It is well-known that R(z, w) satisfies the quantum Yang—Baxter equation:
Ri2(z1, 22) R13(21, 23) R23 (22, 23) = R3(22, 23) R13(21. 23) R1a 21, 22) € End(V)®.

The convention for the tensor subscripts is as usual. Let n > 2 and Ay, Az, ..., A, be
unital superalgebras. Let 1 <i < j <n.Ifx € A; and y € A}, then

(x ® y)ij = (@) 14) @ % ® (811 14) ® ¥ ® (S 1 14) € D Ar.
Now we can define the quantum affine superalgebra associated to g.
Definition 1.1 [51, Section 3.1]. U, (g) is the superalgebra with presentation:

(R1) RTT-generators sl(]"), l(]") of parity |€;| + |€;| fori, j € I and n € Zxo;

(R2) RTT-relations in U, (3) ® (End(V)®?)[[z, z~", w, w™']]

Ro3(z, w)T12(2) T13(w) = T13(w)T12(2) R23(z, w),
Ry3(z, w)S12(2)S13(w) = S13(w)S12(2) R23(z, w),
Ro3(z, w)T12(2)S13(w) = S13(w)T12(2) Ro3(z, w);

(R3) tl.(](.)) (0) =0 and slgg)tlgk) =1fori,j,kelandi < j.

T(z) € Uq@ ®End(V)[[z~ ] and S(z) € U, (9 ® End(V)[[z]] are power series

T(Z) = Z tij (Z) ® Ei./', tij (Z) Z t(”) —n’

ij YLEZ>0
S@) =) 5@ ®Eij. sij@) =Y 57"
ij nEZzO

The Borel subalgebra Y, (g), also called g-Yangian,? is the subalgebra of U, (g) generated
by the s(") and (s (0))_1 The finite-type quantum supergroup U, (g) is the subalgebra of
U, (9) generated by the s( ) and t(o).

U, (9) has a Hopf superalgebra structure with counit & : U, (g) —> C defined by
a(si(j'.l)) = s(ti(f)) = 8ij8n0, and coproduct A : U, (g) — Uq@®2:

(n)) - Z Zeuks (n ", A(ti(;l)) = Z qukfl(m) (" ),

m=0 kel m=0 kel

2 This is because the algebra Y, (g) admits an RTT = TTR type presentation, as does the ordinary Yangian
Y (g). Here g is a parameter of R.
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Here ¢€;j; := (—1)IEitllEkj| The antipode S : U, (§) —> U, (g) is determined by

S®I(SE) =S~ ERI(TR)=T@E "

S(z)~"and T (z)~" are well-defined owing to Definition 1.1 (R3). Notice that Y,(g) and
U, (g) are sub-Hopf-superalgebras of U, (g).
5 7

We shall need U1 (9), whose RTT generators are denoted by 5’ IR
Recall the followmg are isomorphisms of Hopf superalgebras (a € C*):

@, : U@ — U, @), (") > a”sf]’”, f]’” > a_”ti(;'), (1.1)

W U, (9) — Uy (@°°P, l(]") > € j(?) t(]") > £jis ;?) (1.2)
h:Upi@ — Ug@°P, S@ e S@7 TO=TE  (13)

Here ¢;; := (—1)leil*leillejl and AP of a Hopf superalgebra A takes the same under-

lying superalgebra but the twisted coproduct AP := cg4 4 A, withcga : x Q@ y
(—)I¥ly ® x the graded permutation, and antipode S™!. There are superalgebra mor-
phisms for p(z) € C[[z]]*, p1(2) € Cllz~'1]* with p(0) pi(00) = 1:

o (0) 0) 1,1y 0)
.. 8ij  — zat; L —T a4 s
evy  Uy(@ — Uy(9), sij(2) — BT 1ij(2) = Iy
(1.4)

.11 - Ug@ — Uy @), sij(2) = p(2)sij(2), 1:;(2) = p1(2)t;(2). (1.5)

Dy, h,evy, Prp,py restrict to Y, (g) or Y,(g'), denoted by @y, h,evy, ¢,. Let ev,
U, @ — U,-1(g) be the corresponding morphisms when replacing g by g~!. This
gives rise to (notice that h(Uq_u (9) =Uy(9):

ev, :U,(@ —> Uy(g), ev, =hoevioh ' (1.6)

a

U, (@) is Q-graded: x € U, (g) is of weight . € Q ifsl.(?)x = q(}‘f")xsi(?) foralli € I.
For example si(j’.’) and t,.(j'?) are of weight ¢; — €; [51, (3.14)]. Let U, (@), be the weight

space of weight A. The Q-grading restricts to Y, (g) and U, (g).
We recall the Drinfeld second realization of U, (g) from [51, Section 3.1.4]. Write

$@) = (X €@ ® B + DO KF @ ® En)(E 1,0 ® Eji+ 1)

i<j i<j
T(2) = () ;) ® Eij + 1)(ZK @@ EnN(Y. [;; & ®Eji+1),
i<j i<j

as invertible power series in z+! over U, (9) ® End(V); the subscripts i, j, [ € I. Notice
that K (z) = s (z). Fori € Iy, j € I let us define 7;, 0;:

=gV for 1 <i < M, Ty i=¢"TY for 1 <1< N, A7)

0; = q* M N0 for 1 < j <M, Oy i=q* ™) forl<I<N. (18)
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The Drinfeld loop generators are defined by generating series: let i € I,

er. (zri) — e, (zT)
@)=Y b= S M e g, @)z, 2 L
neZ qgi — 4;

- _ Jivni@m) = f @) _
x7(@) = x,d = SE i e U,@llz. 2711,

nez 4 —4qi
¢ () =) 7,7 = KK ) e Uy @I
n>0

From Gauss decomposition we have K;“(z), ¢l.+ (2) € Yy(@llz]l forl € I and i € .

Remark 1.2. In [51, Section 3.1.4] a different Gauss decomposition of S(z), T (z) was

considered (f always ahead of e). If X_ii (2), fli (z) with i € Iy, [ € I denote the
Drinfeld generating series of U,-1(g) in loc. cit., then

W& @) = K@) WX (2) = (g — g)xFer ).

Let us rewrite [51, Theorem 3.5] in terms of the xijE (2), ¢,¢ (), K li (z). First, the coeffi-
cients of these series generate the whole algebra U, (g). Second, for i, j € Ip, [,I' € I

and 1, " € {£} we have: (recall g;; = q @)

K (K] (w) = K w)K]'z), K} (O)K] (00) =1,
Zq_l — wq
Z—w

+1
Z—wq;;
¢ (2)x7 (W) = ——"—x7 ()] 2),
g —w

[x/(2), x; (w)] = 8;;

£3i+1, M+N
KX,HN(Z)x;—L(w) = ( ) xl.i(w)K;’,HN(z),

;7 (z) — ¢51(w)5(£)’

qi — 4, w
(g — w)x; @x; (W) = (2 — wq;; x; (Wx; @) if G, J) # (M, M),
[ (@), [ (22), 27 W)]glg1 +{z1 < 2} =0 if G # M, |j—il =1,

X (x5 (w) = —xi (w)xg (2), xf(z)xji(w) = xji(w)xii(z) if i —jl>1,
together with the degree 4 oscillator relation when M, N > 1:
[y (0), X33 @D]gs X (] X3 (22)] + {21 < 22} = 0.

Here [x, y], := xy — a(—=D)FPlyx for x,y € U,(@ and a € C. These relations
are coherent with the Drinfeld second realization of quantum affine algebras (e.g. [32,
Section 3.2]) and superalgebras [48, Theorem 8.5.1]. For i € Ip\{M}, the subalgebra of

U, (g) generated by (xfn, ¢,~j;,)nez is a quotient algebra of U, (;[;).
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Let Q* := @y Z>oe; C P and Q™ := —Q™*. By [51, Proposition 3.6]:
AKF (@) € KF@Q® K@+ Y Uy@ o ® Ug@allz*'1], (1.9)
0#£acQ*
AGT@) exf@ @1+ Y Uy@a—a ® Uy@allz 271, (110)
0#aeQ*
Alx; (2) € 1@ x (2)+ Z Uy@ -0 ® Uy @a—o;llz. 27111 (111
0#£aeQ*

The coproduct shares the same triangular property as [27, Lemma 1].

1.2. Category O. We first recall the notion of weights from [53, Section 6]. Define

P o= (C) xZy, P:=(ClzI) x Z.

The multiplicative group structure on C*, C[[z]])* and the additive group structure on
the ring Z, make B, ‘]3 into multiplicative abelian groups. ‘B is naturally a subgroup of
P, and C[[z]]* —> C*, f(z) — f(0) induces a projection @ : f —> B. There is
an injective homomorphism of abelian groups (see also [19, Section 3.1])

qg:P— P, A g =g )iers IAD. (1.12)

Elements of ‘:I} will usually be denoted by f, g, .. ., or £(z2), g(2), ... when their depen-
dence on z is needed. For instance, if f = ((f, (z)),el s) € ‘,B then for a € C*
we have f(za) = ((fj(za))ic1;s) € ‘B We view h(z) € C[[z]]* as the element
(h(2),...,h(z);0) e ‘B which makes C[[z]]* a subgroup of‘,B

Let V be a Y, (g)-module. For p = ((p;)ier; s) € B, define

={ve Vslsl.(?)vzpiv fori e I}.

If V,, # 0, then p is called a weight of V, and V,, the weight space of weight p. Let
wt(V) denote the set of weights of V. We have sl.(;.') vV, C qu,«— for p € wt(V).
Similarly, for f = ((fi(2))ier; s) € B define

ejp

={v eV, |3d € Z-gsuchthat (K (z) — fi(z))%v =0fori € I}.

If V¢ # O, then f is an £-weight of V, and V¢ the ¢-weight space of ¢-weight f. Let
wte (V) be the set of £-weights of V.

One should be aware that in [53, Section 6] the definition of £-weight spaces involves
different Drinfeld generators. Nevertheless making use of Remark 1.2 and the involution
h, we can translate all the results concerning Y ,—1(g)- and U, (g)-modules in [53], so
as to obtain parallel results on Y, (g)- and U, (g)-modules.

Example 1.3. Tof = h(z)p € ‘/}3 with h(z) € 1 +zC[[z]] and p = ((pi)ier;s) € Pis
associated a representation of Y, (g) on the one-dimensional vector superspace C; := C1
of parity s = [1|, defined by s;;(z)1 = &;;h(z) p;1. Let C¢ denote this Y, (g)-module.
We have {f} = wt;(C¢) and {p} = wt(Cy).

Definition 1.4. [53, Definition 6.3] A Y, (g)-module V is in category O if:
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(1) V has a weight space decomposition V = @ pep Vp;
(ii) dim V), < oo forall p € 3;
(iii) there exist iy, u2, ..., g € P such that wt(V) C U?:] (qQ_,uj).

Let V be a Y, (g)-module in category O. A non-zero w € V is called a highest (-
weight vector if it belongs to V¢ for certain f = ((fi (2))ier; s) € ‘ﬁ and it is annihilated
by the s;;(z) fori < j.Necessarily K (z)w = f;(z)w. Call V ahighest £-weight module
if it is generated as a Y, (g)-module by a highest £-weight vector w, in which case w is
unique up to scalar multiple and its £-weight is called the highest £-weight of V. Lowest
£-weight vector/module is defined similarly by replacing the conditioni < j withi > j.

In Example 1.3 the vector 1 € Cy is both of highest and of lowest £-weight.

Attention! If w is a lowest £-weight vector of £-weight f = ((f;(2))ier; 5), then we
have s;; (z)w = fi(z)w fori € I; see also [53, Section 6]. This is not necessarily true if
“lowest” is replaced by “highest”.

Let R be the subset of ‘/ﬁ consisting of the f = ((fj(2))ier; s) such that fi@)_ s the

Ji+1(2)
Taylor expansion at z = 0 of a rational function for i € Ij.

Lemma 1.5 [53, Lemma 6.8 & Proposition 6.10]. Let £ = ((fi (2))ier; s) € R.

(1) In category O there exists a unique irreducible highest £-weight module L(f) of
highest £-weight f up to isomorphism. The L(g) for g € R form the set of irreducible
objects (two-by-two non-isomorphic) of category O.

(2) dim L(f) = 1 if and only if 55 € C* fori € Iy, i.e.f € CII11* .

(3) dim L(f) < oo if and only if for i ]e Io\{M} there exist P;(z) € 1+ zC[z] and
¢i € C* such that ﬁfifil) =¢ P;,ffg;i)).

(4) L(f) can be extended to a U, (§)-module if and only if f;iﬁg) is a product of the

1—zac 2
1—za

c with a,c € C* fori € I.

Based on (4), let Ry be the subset of R consisting of f = ((f;(2))ics; s) such that
for i € I, the rational function f;(z) is a product of the cl_lz+"_ with a, ¢ € C*. For

f € Ry, the Y, (g)-module L(f) is extended uniquely to a U, (gg-module by
K (@ = fi(x)w = K; ()o fori e l.

Here w is a highest £-weight vector, and in the second identity one views f; (z) € Cliz~
by taking the its Taylor expansion of at z = co. We continue to let L(f) denote the
irreducible U, (§)-module thus obtained for f € Ry.

Example 1.6. For i € Iy and a € C* define the prefundamental ¢-weight V; , € R, the
Sfundamental weight w; € P, and [a]; € R by:

I<M i>M
Wig | (@), h(2),1,...,50) | (,...., k@, ..., k() ;0)
—— e S— — — —
i x—i_ i K—1 _
lal; @, ....a,1,...,1;0) (I,....,5L,a 1, ...,a"1;0)
1 K—1 1 K—1
@i €l ter+---+¢€ €] T €42 T T €
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where h(z) =1 — zatlfl. Fori, j € Ipletus writei ~ jif |i — j| = 1. Define

(e, j)
bl

ajj:=a gi=gq; ifi #M, qAM=q_l.

Let us introduce the following elements of R for ¢ € C* and m € Z-:

taq _ \IJ', _
nf =—" H v, n = —21 l—[ gl
i,a ta /aq] i,a . . J-aqij
’ jelo:j~i Laq; jely:j~i
. ) v,
i) ._ .\pl»0072 (l) . MW L,aq; " A ) L,aq;
W, = [C],—, ma'_ - Yza =4  —
i,a i,aq; i,aq;
n® =" H ® o) m!) =, l_[ w 12
’ qis aq, aqu aqz/ ij
J€lp:j~i jelyj~i :
1 gt “lg~!
—Zatiq — Zatiq CIqu.l
Aigi=(010,...,1,¢q ; 1 L di . Lo e
—— —— 1 — Za-[iq— 91_ 1 — zal’,q_ 9 6],

i—1 Kk—i—1

The irreducible Y, (g)-modules LjE = L(\Ifil) are called positive/negative prefunda-
mental modules. If w is a highest Z Welght vector of L:a, then

Pi(o =0 forj#i, ¢ (Dw=(1-z0)0.

So W; 4 is a super analog of [34, (3.16)]. Define the irreducible Y, (g)-modules:
N =Lm), M) =Lmi), WD =Lw@).

Call W\, a Kirillov—Reshetikhin module (KR module). By Lemma 1.5, the M, W are

qu-modules with W finite-dimensional. (In Sects. 7 and 8 N,Ef,)a will denote the

@ ) for m € Z-¢, so here we do not use Nc(lz

irreducible module L(m
Remark 1.7. Later in Sects. 6 and 7 we work with U, (§)-modules in category O. Such a
module V is called a highest ¢-weight U, (§)-module in [52, Section 1.2] if there exists
a non-zero Zo-homogeneous vector w such that V = U, (§)w and

(n)

Si/ C()—l

(n) (n)

w=0, s a)e(Ca)Bt()

w fori < j.

Indeed V is of highest £-weight as a U, (§)-module if and only it is of highest £-weight
as a Y, (g)-module. (The “if” part comes from weight grading, while the “only if”
part from the Drinfeld relations in Remark 1.2.) It also follows that V' is an irreducible
U, ()-module if and only if it is an irreducible Y, (g)-module, as in [34, Proposition 3.5].
Therefore when we say V is of highest £-weight or irreducible, we make no reference
to ¥, (g) or Uy (9).

As in [35, Section 3.2], let & be the set of formal sums Zfe@ cef with integer

(C@lcfl

coefficients cf € Z such that Breq is an object of category O. Itis a ring: addition

is the usual one of formal sums; multiplication is induced by that of ‘B (One views &
as a completion of the group ring Z[*3].)
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For V an object of category O, its weight space decomposition can be refined to an
£-weight decomposition because of condition (ii) in Definition 1.4. Following [27] we
define its g-character and classical character

Xg(V)= > dim(Vpf, x(V)= Y  dim(V,)peé&. (1.13)
fewty (V) pewt(V)

In Example 1.3 we have x,(C¢) = f and x (C¢) = = (f).

We shall need the completed Grothendieck group Ko(O). Its definition is the same
as that in [35, Section 3.2]: elements are formal sums Zfek ce[ L (f)] with integer coeffi-
cients ¢p € Z such that @gcr L ()@ isin category ; addition is the usual one of formal
sums. Forf € R and V in category O, the multiplicity of the irreducible module L (f) in V
is well-defined due to Definition 1.4, as in the case of Kac—Moody algebras [37, Section
9.6];itisdenotedby m),v € Z>¢.Necessarily [V] : ZfeR mp),vILE)] € Ko(O).
In the case V = L(f) the right-hand side is simply [L(f)] because mp (g, 1ty = Jgt for
geR.

Make Ko(O) into a ring by [V][W] := [V ® W]. Equation (1.13) extends uniquely
to morphisms of additive groups x, : Ko(O) — & and x : Ko(O) —> &, called
q-character map and character map respectively. As in [27, Theorem 3], we have

Proposition 1.8 [53, Corollary 6.9]. The q-character map x, is an injective morphism
of rings. Consequently the ring Ko(QO) is commutative.

The tensor product L (f) ® L(g) contains an irreducible sub-quotient L (fg) forf, g
R. Let us define the normalized q-character X4 (L(f)) := £! Xq (L(D)).

For V, W in category O, write V =~ W if there is a one-dimensional module D in
category O such that V = W ® D as Y, (g)-modules. By Lemma 1.5 (2) and Propo-
sition 1.8 we have L(f) >~ L(g) if and only if g’lf e C[[z1 ‘33 in which case the
normalized g-characters of L(f) and L(g) are identical and we write f = g.

As an example, for the generalized simple root A; , € Ry we have

\If. ) \IJ il
Apg= 20 Sy (1.14)

v, . Wi
l,aqi2 jelg:j~i J,a4ij

1.3. Category O'. Asin[52, Section 1], let gl(N|M) =: g’ be another Lie superalgebra,
which is not to be confused with the derived algebra of g. Define the Hopf superalgebras
U, (g ), Y4(g), Uy (g') in the same way as for U, (@), Y, (g), Uy (g) in Sect. 1.1, except
that M, N are interchanged. We start from the same welghtjroot lattices P, Q and ‘I3, ‘B
but with different parity map |?|" : P —> Z,:

el = leal' =+ =len' =0, lens1l’ = lensal = = len+ml = 1,

bilinear form (¢;, €)' = &;;(—1)!!", and embedding ¢* := ((g*);er; |A]') of P in
B. One defines category O of Y, (g’)-modules as in Sect. 1.2. Let us summarize the
modifications of notations related to g’ to be used later on:

g, Uq(g) Y, (g) Uqﬁ g, Uq(g) Y (g’) Uy(g)) | algebras
X; (z) Ki(z) ¢ () x’i(z) K’i(z) ¢/i(z) currents '
O, L), Llia, Nlia, W,ff’)a , L'(D), L:ia, Nl/i, W/(l) categories
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In case M = N one can simply remove all the primes in the table.
Fori,j e I,seti ==k +1—iandej; := (—D)leil+leil'lej" Then

. ” r(n) 1 () /(n) ;(n)
F:Uy(g) — Uq@“’p, Sij Ej,»sﬁ«, L sj,-tﬁ. (1.16)

defines a Hopf superalgebra isomorphism. Let F : Uy (3’) — U, (@°°P and A’ :
Uy (a’) — Uy (El\’)“’p be analogs of Eqgs. (1.16) and (1.3). They induce

G:Uy(@) — Uy@P, Gi=hoFoh! (1.17)

a Hopf superalgebra isomorphism which restricts to G : Y, (g") — Y, (g).

Lemma 1.9. The pullback by G is an anti-equivalence of monoidal categories G*
O — O.Iff = (f1(2), 22), ..., f(2);5) €R, then as Yq(g/)-modules

G (LE) = L' (fe(@), fim1(@), .., f1(2)59).

In particular, g*(Lfa) ~ L;ZN_I. agh-M for1 <i<M+N.

Proof. Let V be a Y, (g)-module in category O. If p € B, then V), = (G*V),, where
p' = ((pier; 5), and so Vyrai p = (Q*V)q/naK,,- > fori € Iy and n € Z. This implies
that G*V is in category OO'. The first statement is now clear.

Let V = L(f) and let w € V be a highest £-weight vector. In 4*V we have

E(z)h*a) = i) ', 5ij(2)h*w =0 fori, j, I €l withi < j.

From the Gauss decomposition of h=1(S(2)) we get sy (2)h*w = f?(z)h*a). Similar
identities hold when replacing 2*w by F ' h*w. This implies:

K, @F ho =5;@F ho=F (51(2)h*o)
_F (E(z)h*w) = £ Fi'o,
K @)G 0 = KF QW) F h*o = (W')* (?§+<z)-1;_r*h*w)
= QWY F o = )G o,

leading to the second statement; here the E; (@), F? (z) denote the RTT generators and

Drinfeld generators of U, - (a’) arising from [51]; see Remark 1.2. The last statement

is a comparison of highest £-weights based on 7),, y_; = ng" M. 0o

G* can be viewed as a categorification of the duality function of Grothendieck rings
in [35, Theorem 5.17]. We shall make extensive use of it: to change the signature of the
LT :to pass from Dynkin nodesi < M toi > M.

i,a’
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2. Tableau-Sum Formulas of ¢-Characters
We compute x,(L(m)) form € Ry coming from Young diagrams.

Definition 2.1 [9, Section 4.2]. P is the set of A = ), A;¢; € P such that:

o wehaveAd; > 22> - > Ay >20and Ayp1 > Apye2 > -+ = A 2 05
o ifdyy; >0forsomel < j < N,theniy > j.

To L € P we attach a subset Y. j‘ of Z2>O consisting of (k,[) such that: [ < Xy for
1 <k<M;ifk > Mthenl < N and k < M + Ap;. Let B, (1) be the set of functions
T : Y} — I such that:

Tk, 1) <TK )itk <k', 1 <!'and (k, 1), (K,l') € Y};
Tk, 1) < T(k+1,0)if (k,0), (k+1,1) € Y* and T(k, 1) < M;
T(k, 1) < T(k, 1+ 1)if (k. 1), (k,[+1) € Y>and T(k,]) > M.

Let Y* = —Y} C Z2 and define B_() as the set of functions Y* — [ satisfying
the above three conditions with Y} replaced by Y*.

We view Y2, Y* as Young diagrams at the southeast and northwest positions respec-

tively, so that (k, ) € Y. j); correspond to the box at row =k and column /. For example,
take g = gl(2]2) and A = 4€1 +2¢e2 +2€3 + €4 € P:

Y)“: N Y&:

+

Definition 2.2. Leti € Iy, j € I and a € C*. Define the ¢-weights in Ry:

-1 -1
1 — zab; q;

= (1, 1,4,1—’

L e,
, —zaf;'q; ——
=

Py
Define the[ ][, [ ] inductively by [1], =[1],;. [], :=[x]," and
=[] Aiangm- =[] A anq--
Call @ the spectral parameter of the boxes [ /| , , .
One checks that Arg = [i], [i+ 1], using 6101 = 6ig; g7}

Example 2.3. If g := gl(2|3), then 71 = ¢! and (compare with [27, Section 5.4.1])

AlLp AL ALp Azl
A *A2,aq_3 A ) x A

Pk lag—2 E Pk 3,aq 4,ag~! Pk
:
a a a a a
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To p = ((pi)ier; s) € ‘P is associated a unique irreducible U, (g)-module V,(p),
which is generated by a vector v of parity s subject to the following relations:

sl.(?)v = piv, sﬁ.(,)()v =0 fori, j, kel withj<k.

For A € P,set V(1) :=V, (g%). (It was denoted by V(1) in [9, Section 3.3].)
For A € P, the U, (g)-module V, (1) is finite-dimensional [9, Section 3.3]; its dual
space Vq* (A) :== Homc(V, (1), C) is equipped with a U, (g)-module structure:

(x@,v) == (=DM (p, S(x)v) for x € Uy(g). ¢ € VS (M), v e V0.

Theorem 2.4. Leta € C* and . € P. Let ti A a), ti* (X; a) be the pullbacks of the
U, (g)-modules V, (1), Vq* A) by evflIE respectively. Then we have

Z l_[ m 2(j—i)+1” (2.18)

TeB_(}) (i, j)ey*

)

) TeBZm . Jl)_lym 2i-pt? (2.19)
)

)=

X (Vi i@

xa (V05 @)

(V (: a)

Z l_[ m 2(j—i+M—N)+1" (220)

TeBs() (i,j)ey}

Z l_[ m“ﬂ(’ —pHt (221)

TeBs() (i,j)ey}

xq (Vi s @

In particular, ti (X; a) and ti* (X; a) have multiplicity free q-characters.

Remark 2.5. Applying @ : ‘T} — ‘B to Eq. (2.20) recovers the character formula of
V4 () in [9, Theorem 5.1].

We shall prove Eqs. (2.18)—(2.19); the idea is similar to [26, Lemma 4.7]. The proof
of Egs. (2.20)~(2.21) is parallel and will be omitted.
Fori € I, let UZ'(g) (resp. U7 (g)) be the subalgebra of U, (g) generated by the

Sﬁ)’ ,(Z) (resp. for n = 0) with j, k > i. Define

Ciz) = K;0)“ ) e v (@llz]]. (2.22)

jzi
The coefficients of C;(z) are central elements of U= 7 g see [53, Proposition 6.1].

Lemma 2.6. Leti, [ € I. The spectra of C;(z) on £-weight spaces of £-weights l .:

—1 _l—zatiq -2

are (q %)5’4 and (q oot )dist respecnvely, where t| = 01 and t; = t¥_|q

3
fori > 1. Moreover =4 (zlatqza;(ll)zzaq)
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Proof. The -case is from Definition 2.2. In particular the A;; for j # i — 1 do not
—1

contribute to the spectra of C;(z). The * -case is now clear from = o, A1.arig—1

A2 yryg—1  Al—1,a7_ q-1- TO compare * with / one may assume /[ = « by Defini-

tion 2.2; the spectrum of C;(z) associated to the ¢-weight isg~! ]:ZZ'L , leading
to the last identity. O

Let S be Vq"(k; a) or V;’*(A; a). If © € Pand v € S are such that sl.(?)v = g\eidy
foralli € I, then |v| = |u|. To compute the g-character of S, it is enough to determine
the action of the C;(z) since it in turn implies the parity.

Let S| be an irreducible sub-UqZ’ (g)-module of S and 0 # vy € S1, u € P with

(0) (1.€r)

f}g)vl =0, s;v1=¢q vy for j,k,lel, j>k.

Call p the lowest weight of S;. By Schur Lemma and Gauss decomposition,

q(u,ej) _ Za@,q—(ﬂ,e_/) (€j.€5)
Ci(x)v = ]_[ J v forv e S. (2.23)

L 1 1 — zaf;
J=t

The strategy is to find all such triples (7, S1, ).
Following Table (1.15) and Definition 2.1, define for g’ the similar objects

P'CP, Y} CZP BL). V(). V()
with (M, N) replaced by (N, M). The transpose of Young diagrams induces a bijection
P — P, .+ A¥ such that (k,[) € Y} if and only if (/, k) € Yﬁu.
Lemma 2.7. Let A € P.
(1) As Uy (8))-modules F* (Vy () = Vy* 3 and F* (Vi G)) = V;65).

Q) IfT € B_-(\), then T'(k,1) := M + N +1 — T(—I, —k) defines an element T' €
B;()Ji). Moreover T + T' is a bijection B_(A) — Bﬁr(kﬁ).

Proof. (2) is a lengthy but straightforward check by Definition 2.2. For (1), it suffices
to establish the second isomorphism since F respects Hopf superalgebra structures. Let
1 be the lowest weight of V(1) and define

ric=8lj €Zao | (o) €YY, cji=tli € Zag | G, )) € Vi)
r{ :=max(r; — N, 0), c;- := max(c; — M, 0).
Then from [9, (4.1)—(4.2)] we have
M N

M N
’ /
A= E ri€; + E Ci€M+j, K= Fye1—i€i + E CN+l1—j€EM+j-

i=1 Jj=1 i=1 j=1

If v is a lowest weight vector of V, (1), then Vq* (1) contains a highest weight vector v*
of weight —p, and F*(v*) € F* (Vq* (k)) is a highest weight vector of weight
ClEl + 262+ + CNEN + T EN+I +THEN 2 + -+ + T €MN,

which is exactly A%, leading to the desired isomorphism. 0O
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Fori e I let qui (g) = F‘l(qu"“_i (9)); it is the subalgebra of U, (g) generated

by the s}(,?), t}(,?) with j, k < i. To decompose V(1) (resp. V; (1)) with respect to lowest

weights along the ascending chain of subalgebras of U, (g)
U@ cUF g c--- cU @ c U (9) = Uylg)
is to decompose Vq’ (A%) with respect to highest (resp. lowest) weights along
U (@) c U @) c - c U @) C U (8) = Uy(a),

Remark 2.8. By [9], Vq/ (A%) is an irreducible submodule of a tensor power of Vq/ (e1),
and all such tensor powers are semi-simple U, (g')-modules. So the decomposition for
Vq’ 09 is equivalent to that for the character formula in Remark 2.5, and then to the
branching rule of g’-modules in [10, Section 5]. We reformulate the latter in terms of
B (A"), equivalently B_ (1) by Lemma 2.7, as follows.

(1) V4(A) admits a basis (vr : T € B_(})) such that vy is contained in an irreducible

sub-qui (g)-module of lowest weight u%i fori e I.
2) Vq* (1) admits a basis (wr : T € B_(A)) such that wr is contained in an irreducible

sub-U;i(g)-module of lowest weight —v%i fori e l.
,u%i and v%i are defined as follows. Set YTzi = {(k,l) e Y* | T(k,1) > i} and
rei=tl €Z| (=k,—1) € Y7}, ci=tk e Z| (—k, —I) € Y7').

>i
. T =CléEM+N + C2€M+N—1 +  + CM+N+1-i€i .
Ifi > M, then 'u>Tl- N N FNHISh e < M then

Vp = Cl1€ +C2€i41 + -+ CM+N+1—i€M+N-
>i / / /
K7 = Cl€EM+N Tt C2€M4N—1+ -+ CNEM41 T €M 1€Y1+ Ty €,
>i / / /
Vp =T1€ + €41+ Hry+1—i€M F Cre€pm+1 H Co€M2 - F CNEMEN,
where r; := max(ry — N, 0) and ¢; := max(c; — M +i — 1,0).

Example 2.9. To illustrate Lemma 2.7 (2) and Remark 2.8, let g = gl(2|3) and A =
4e1 + 2¢ + €3 € P. We represent elements in 5_ (1) and Bﬁr()»t) by Young tableaux of
shapes A, A" respectively. Let T € B_()) be such that

4]5]
4

B_(4e; +2¢p+€3) > T = 2
‘1‘3 4

=T e 64(361 + 26 + €3 +€4).

w|o[—]
1

[n]wro]—

The Young diagrams YTZi with descending order on 5 > i > 1 become:

IS S N :

Correspondingly, the pairs (,u,%i, v%i) fromi =5toi =1 are:

(€5, €5), (€a+e€s, €e4+¢€s5), (e3+€4+¢€s, €3+€4+65),
(63 +264 +265, 362 + €3 +€4), (62 + €3 +264 +365, 461 +2€2 +€3).
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Proof of Equations. (2.18)—(2.19). Let us define g;(z), g/ (z) € C[[z]]* fori € I:

1 — zag?1=h i} _ 1 — zatig?k=1+D
gi(2) = 1_[ I g0 gi (2) = 1_[ \ T a2 )
(k,DeYz (k,DeYz

By Lemma 2.6, it suffices to prove that: fori € I,
Ci(vr = gi(Dvr in V(A a), Ci@uwr =g"@wr inV, (};a).

This is divided into two cases: i > M ori < M.
Assume i > M. Then T(—k,—[) > iifandonlyif ]l <! < M+ N —i+ 1 and
1 <k < ¢. It follows from Eq. (1.8) that

( B M+N—i+1 ¢ 1— Zaqz(k_[) B M+N—i+1 1 — zaqz(l_l)
8i(z) = E qu “zag2e-n — L e 20D
>i >i (€.€5)
B M+N <q(MT €j) Z(l@jqi(l’bf 7€j)) €j-€j
j=i 1— ZaHj
M+N—i+1 _ M+N—i+1
i Zath2(l—k) P qu _ zatiqy*cf
> >i ( s )
B M+N (q_("T J€) Zagjq(uf ,e,-)> €j€j
=i 1 — zab;
Here in the last equation we used tig¥ = ti2_1q2”2 =0;g% % = 6;4_1.

Assume i < M. Then T(—k,—[) > iifandonlyif (1 </ <N, 1 <k <¢)or
(I1<k<M+1—i, N+1<1[<N +rp). This gives

Cl 1— Zaqz(k_l) M+1—i rk 1— Zaqz(k_l_N)
8i(2) = 1_[ 77 2G—i+D) | < l_[ H 2—I—N+1D)
k=1

I=1 k=1 —aq —aq

M+N (;,LT €5) ZCl9 q (;,LT €)) (ijfj)
H 1 — zab; ’

Jj=i

Notice that T(—k,—[) > i ifandonlyif (1 <k < M+1—i, 1 <1 < rg) or
(1<I<N,M—i+2<k<M—i+1+c).This gives

M+1—i i 2(1—k+1) N G - 2(—k—M+i)
_1 1 —zatiq _1 1 —zatiq
* _ 1— 1 i
8 (@)= ( [T I« 205 ) [1114 1 — zat;q20—F—M+i—1)
!

k=1 I=1 —zatiq —1k=1
M+1—i g~ — zat;g>(1—k+m0 1 — zag;g20=1-M+)
— ]!:[1 1— Zd[iqZ(l—k) | qc; _ ZatiqZ(l—l—MH'—cf)

>i >i )
M+N q—(Vf J€) Zagjq(uf e\ s
1 — zab; ’

||:|2

—~ =~

j=i
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The last identity comes from tiqz(l_l_M”) = 04 and t,-qz(l_’f) = 9,-+k,_1.

Inboth cases, g; (z) and g;" (z) become Eq. (2.23) withu = ;L? and —v%l respectively,
and this completes the proof of Egs. (2.18)—(2.19). 0O

Let @~ be the submonoid of R generated by the Al_; withi € Ip and a € C*.

Corollary 2.10. Let i € Iy, a € C* and m € C*. We have
WO = VEmwiagM V) 2V (moy; agN M it < M, (2.24)

W, = V0D agM™N =2y 2 VG0 agi MV s ML (2.25)

Here fori > M, the Young diagram of )\f,? € P is a rectangle with m rows and k — i
columns. An £-weight of W,(nl,)a different from w,s,)a must belong to w,gf?aAi_ c} a Q.

mw;

Proof. Assume i < M. The Young diagram Y_ ™" is a rectangle with i rows and m

columns. Let H € B_(mw;) be such that H(—k, —I) =i+ 1 —k for 1 <k <i. Then
vy € Vq+(mw,~; at;q~") in Remark 2.8 is a highest £-weight vector of £-weight

m i m
_ — — ()
mi = [T T1kL o0 = [TYiag2 = 2l
=1

=1 k=1

i — 2 _2(M—N+1—i)
Here we used [];_, rl-q2<"+1—k—’> =Y 42 and 6, = 17 =g for1 <

i < M, based on Example 1.6. This proves the first isomorphism of (2.24); the second
one is a consequence of Eqgs. (2.18) and (2.20). If T € B_(mw;) and T # H, then

T(—k,-l) >i+1—kand T(—1,—1) > i. The ¢£-weight property of W,E,i?a follows
from Definition 2.2 and Eq. (2.18):

—1 ~ ~
1 B — _ 4-1 A—
mrmpg € ti@dn Q - Ai’an :

Assume i > M. Let v be the highest £-weight of Vq_*(kfril); b). By Eq. (1.6),

1—2zb
K;;(z)v =v for p <i, K;(z)v = — <

mv forp>i.

v is of £-weight w,il] ;)Tj o proving the first isomorphism of (2.25).Since = for
l € I, the second isomorphism of (2.25) is deduced from Eqgs. (2.19) and (2.21). let
H € B,(.\) be such that H(k,l) =i+ for 1 <1 < M + N — i. The monomial m/,

associated to H in Eq. (2.21) is the highest £-weight. If T € B+()\fn) and T # H, then
T(k,l) <i+land T(1,1) <i.By Definition 2.2 and Eq. (2.21):

_ / - =1 ~_ _ ~_
m/Tm/H] € @r71r71 Q" = Ai,a]gf1 Q.
proving the ¢-weight property of W,(,f ,)u. O
The ¢-weight property is similar to [31, Lemma 4.4]; W,Ef ,)a in[31]is erj)aqm_z here.

Let w,ﬁ%l_) =[lL Y A;laq%,z and W,f%l_) = L(w,S%l_)). Similarly we have

W,i%l_) = Vq_*()\m; an_2) ~ Vq+* (o aq2m_2_N). (2.26)
where X, € P is such thatits Young diagram is a rectangle with m rows and N columns.
If o n e wig(W% ) andn # 1, thenn € Ay g @
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3. Length-Two Representations

A'Y,(g)-module V in category O is of length-two if it admits a Jordan—Holder series of
length two, namely, it fits in a short exact sequence 0 — § — V — §’ — 0 in category
O such that both §” and S’ are irreducible. We shall simply write such a sequence as
S—V-=S.

In this section we describe length-two modules by tensor products.

Fori € Iy,a € C*,m € Z~q and s € Z>, let us define d(’ %) ¢ Ry to be

m

=0 @) l—[ (M) 1—[
w aqzwrlwm_'_A ag?! A pel ifi #M, o ag! w w0 =
I1=1 jelyj~M

Let D) := L(d%)) be the irreducible U, (g)-module.

Remark 3.1. Let us rewrite df,’;’,i,) in terms of the W using Eq. (1.14):

v,

[\ —1
a0 = i 1—[ /a4ij
m.a ia . S ZP P
? Je€lp:j~i  J-44;;

In the non-graded case N = 0, we can identify n7 with ¥ in [35, (6. 13)] and m@

i,a

in [19, (6.2)], d,(,; ;) with \l'( $2m=1) in [25, Section 4.3]. Notice that d( m.a satisfies the
condition of “minimal affinization by parts” in [14, Theorem 2].

Theorem 3.2. Let i € Iy and a € C*. The Y,(g)-module N:a ® LZa has a Jordan—
Holder series of length two and in the Grothendieck ring Ko(O):

+ + + +
L oLt =1z, o1 [T 1] aq ) IPIL ) [T i) 327
Jjelo:j~i Jj€lo:j~i

Here D = L(n Vi, a\I/ 1A2Al u H,~z f aq ) is one-dimensional.
When i = M, the two monomials at the right-hand side of Eq. (3.27) has a common

factor [LX/I aq,z]. This is a special feature of quantum affine superalgebras.

Theorem 3.3. Let i € Ip)\{M}, a € C* and m,s € Z~q. There are short exact se-
quences of U, (§)-modules whose first and third terms are irreducible:

D(l S) — W(l) 2m+1 ® (l) 2m—1 7 W(l) 2m+1 ®

2m—1>

m+s,aq; m+s+1,aq; m— 1 ,aq;
(i,0) (l) @) @, s) @) Gi,s—1)
—> .
Dm+s aq:Zs ® Wm aq2m+l Wm+S aq2m+l ® D Wm+S+1 aq2m+l ® D m,a

The assumptioni # M is necessary because dim W,%,) = 2MN form > N.Equation
(3.27) corresponds to [35, (6.14)] and [19, Proposition 6.8], and can be thought of as a
two-term Baxter TQ relation for Y, (g). The exact sequences of Theorem 3.3 are extended
T-systems [31,42], the initial case s = 0 being the T-system in [44]; see Theorem 8.3.

The proof of Theorem 3.2, given in Sect. 4, is similar to [35, (6.14)], based on g-
characters. Theorem 3.3 is more involved and requires cyclicity of tensor products of
KR modules; its proof is postponed to Sect. 8.

We make crucial use of the idea that D,(,i’jl) admits an injective resolution by tensor
products of KR modules of the same Dynkin node fori # M.
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Lemma3d.Letm € Z-g, a € C* and i € I)\{M}. If m\)n € wig(W) and
n # 1, then eithern = A, ;q’A;;q --~A,7a]q3_2, for some 1 <1 < m, orn belongs to
—1 !
i.aq; A

Q where j € Iy and j ~ i.

Proof. We only consider the case i < M; the other case is similar. Let us be in the
situation of the proof of Corollary 2.10. By Eq. (2.18), n = mrmgl for a unique
T € B_(mw;)withT(—=1,—-1) >iand T(—k,—1) > i+1—k. IfT(—1,—1) > i+1,
then using 741 = q’lti we obtain

—1 ~ o~
A oeliv2] [i],9 = Arg, AL .29
meH € Ti r,-Q Al ani.q.],anQ .

fT(—2,—1) > i — 1, then together with 7 (—1, —1) > i we have

—1 —1 ~
A elint] il il li=1], 29 Prag®
meH € ‘[; T ‘E,‘qz ! 1 T,-q2Q - Al an, 1 aqu :

Suppose T(—1,—1) =i+ 1and T(—2, —1) =i — 1. There exists 1 <[/ < m such that
the only difference between 7', H is at (—1, —j) with 1 < j <[, and

l
—1
-1 _ ; ;
mrmpg = 1_[ r,-quzjfiquzf 1_[ At ,aq3=2i°
Jj=1

j=1
This completes the proof of the lemma. O

Corollary 3.5. Let m, s € Z~q, a € C* and i € Ip\{M}.

(1) For 1 <1 <'s, we have dfjl sa)A A 1 e Alfalqz_z, € th(Df,ijSa)) and its associ-

ated - welght space is one- dlmensmnal
) If dyS)n € wig(DWE)) is not of the form of (1) and m # 1, then m € {A;iqz,m,

A |7 €10, j~i1Q".

Proof. For non-graded quantum affine algebras this corollary is [25, Lemma 4.8], the
proof utilized a delicate elimination theorem of ¢-weights [33, Theorem 5.1]. Here our
proofis a weaker version of ehmmatlon based on the restriction to the diagram subalgebra
U; of U, (g) generated by (xl P ¢’1 nez- By Remark 1.2, the algebra U; is a quotient of
Uy (5[2)
_w® w® e @) (@) ;
Set T : W g QW s g2 and § := L(wm,aqiz””l wm+s,aq,.2’”*‘)' Then S'is a

sub-quotient of T Let A : (2m + s)w;. By Corollary 2.10,

(A) dim qu_kai =min(m+1,k+1)for0 <k <m+s.

1. Let vp € S be a highest £-weight vector and S' := Ujvg € S. Viewed as a
Uy (5[2) module, S’ is of highest £-weight [27, Section 2]

= (Yainm-H Yainm—l . 3)(Y 2111 ]Yl .aq; 2m=3 Yaqil—lv).
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S’ is spanned by the x; , x; ---x; vo. If w € S is annihilated by the x* , then

w =0 € Sforall j € Ih\{i} (because [xln, Xl =0andw € Cuvg. The

n,n’
/ n
Uy (s [2) module S? is irreducible and has a factorization [15, Theorem 4.8]:

Si~ i (YaqizmﬂYainmq Y- %) ® L Y, 2 lYqum 3 aq[})v

where L’(n) denotes the irreducible Uy (5 2)-module of highest £-weight n (for n
a product of the Y3). For k € Z.o, let V; C S’ be the subspace spanned by the
x. x; ---x. wvogwithn; € Zforl <1 < k. Then V}, = S,\ ke; - Based on the g-

i 7ing 1 N
character of S’ with respect to the spectra of @7 (z)in [27, Sectlon 4.1, for—1 <l <s
we have:

(B) dimS ke =min(m k+1)forl <k <m+s;
©) m; ]_[,__I(Y_z,+l qZ’ 1) is not an £-weight of the Uy, (5 [)-module S'.

2. By (A)—-(B), {n € wtpy(T)\wty(S) |ow(m) =1 — (m+ D} = {my} for0 <1 <
s, the multiplicity of m; in x4 (T) — x4(S) is one, and L(ng) is a sub-quotient of 7.
Comparing the spectra of ¢+ (z) by (C) and Lemma 3.4, we obtain: ng = d,(,i"z,) and
n = d,(f;’,f,)Af] A*1 B A q2 ,,- Part (2) follows by viewing D,(,, « as a sub-quotient

of T. If (D,(;, ;) w—mie; 7 O for 1 <[ < s, then necessarily n; € wty (D(’ Y)) and its
£-weight space 1s one-dimensional, proving (1).

3.Letwg € D,(,’, Z) be a highest £-weight vector. Then xl owo = Oand d)l oWo = g; wo.
Since the triple (xl,o, X 00 ¢z,o) generates a quotient algebra of Uy, (sl2), we have

Dy ity 3 (xig)'wo # 0 for 1L </ <5. D

The case i = M is distinguished since Uy, is not related to U, (5’6).
Corollary 3.6. Letm, s € Z~o and a € C*.
(1) d,(,f/’aé)A I e th(D,(qua’s)) and the £-weight space is one-dimensional.
@) (@)~ ‘me(M V) ({A;j,qzm+] |jelo. j~ M}@) UL, Al
44
Proof Assume M, N > 1 without loss of generality. Let n € (d\%;*")~! tg(D,(nA/Ias))

withn ¢ (A g A;;_WM}Q— andn # 1.

Firstly, set A := sy +mwy—1. Then A € P and its Young diagram Yi‘ is formed of
(k,1) whereeither (1 <k <M, 1 <l <s+m)or(k=M, 1 <l <s).Consider the
evaluation module § := Vg (& agN=2=1). Let H € B, () be such that H(k,[) = k.
The monomial m gy attached to H in Eq. (2.20) is the highest £-weight of S. From the
proof of Corollary 2.10 we see that

myg = (YM’aql—Zs R YM,aq_3YM,aq_l)(YMfl,anYMfl,aqé‘ R YMfl,anm).

In particular, the spectral parameters at the boxes (M, s) and (M — 1, s + m) of H are
atyqg~ " and aty_19*" respectively. Let 7 € By(A)and T # H. If T(M — 1, s +m) >
M, then by Definition 2.2 and Eq. (2.20),

meH ETM 1q2’"-arM 1q2mQ M laqz””'Q :

KETM —1,s+m) < M, then T (k,l) = k for k < M and by Eq. (2.20):
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(i) the £-weight space Sy, is also the one-dimensional weight space Sy (5173
(ii) mzmy,' Apm.q is a product of the A;}j with j > M;
(i) if meEIAM,a is a product of the A&{b, then meEIAM,a =1.

Here we used Definition 2.1 and T(M,1) > M, T(M,s) > M.

Secondly, viewing D(M *) as a sub- -quotient of S ® W(M+ gives n = nyn, with

—2m

M+1 M+1) _
myn; € wty(S) and nzw(l aq_)z’" € wty (WYZ aq—2m) Smce n ¢ AM+1 ag-2n- ,Q , by

Corollary 2.10, n = 1 and mgn € wty(S). Since n ¢ AM 1ag?n! o, (i1)—(iii) hold
by replacing meH with n, and dlm(Dm,’,; )d(M,:)n =1.

Thirdly, for t € Z-g, let u; € P be such that its Young diagram Y# is formed
of (—k,—I) where either (1 <[ < N, 1 <k <m+t)or(I =N, 1 <k <1).
Consider the evaluation module S; := Vq+* (ue; ag®~'=N). Let H, € B_(u,) be such

that H;(—k, —1) = M + N + 1 — [. The monomial m’;it in Eq. (2.19) is the highest
£-weight of S; and by Corollary 2.10 and Eq. (2.26):

x  _— _(M+1) (M—)
mH; = wm aq—2m w_l‘ ,aq -

The spectral parameters at the boxes (—¢, —N) and (—t —m, 1 — N) of H; are at;[lq and

arﬁjlilq’m respectively. Let T € B_(us)and T # H,. f T(—t —m,1 —N) < M +2,
then by Definition 2.2 and Eq. (2.19),

x  x—1 ¥ — ~
meH, € .[ _me —2111Q M+l aqum,lg .

ft7T(—t—m,1 —N) = M+2,thenT(—k,—l) =M+N+1—Iforl <l < N.
Equation (2.19) implies that m’}m*,jl A4 1s a product of the Afé with j < M.
Lastly, viewing Dm a $) (after tensoring with a one-dimensional module) as a sub-

quotient of S} ® Wl(ff)aqz, 1 ® W’%lqzl,i and choosing ¢ € Z-o so large that n ¢
4!

M.ag Q , we obtain mH[n € wtg(S;), and so nAjys 4 is a product of the A;ll7 with
Jj=< M From (ii)—(iii) it follows thatnAy , = 1.
It remains to show that d(M S)AMla € Wt((D(M Y. Indeed, as a U, (g)-module,

D,(nMa"Y) has a highest weight vector of highest weight g"®@M-1+S@M+MTu+1  and so

qMPM—1HSOMAND Y41 =AM ¢ wt(D(M Y)) This means that there exists n € (d(M Y)) !

wte (DY) with o (m) = g™, which forces n = AMl,a' a

As an illustration, for g = gl(3|4) and (m, s,t) = (2, 3, 1) we have

11]1]1]1 5[6]7
H=|22[2/2|2|€ B;Bws +2w»), H; = 516|7|€ B_(Bw; + o).
3[3]3 4]5]6]7

4. Proof of TQ Relations: Theorem 3.2

The crucial part in the proof is the irreducibility of arbitrary tensor products of positive
prefundamental modules. In the case of quantum affine algebras this was proved in [24,
Theorem 4.11] and [19, Lemma 5.1]. Our approach is similar to [19], based on the
duality functor G* in Lemma 1.9.
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Lemmad4.1. Leta € C* and i € Iy. We have

Xq(Lig) = Wia x x (L} ).

Proof. We can adapt the proof of [24, Theorem 4.1]. Essentially we just need a weaker
version of [24, Lemma 4.5]: any £-weight of W,ﬁ,’,)a different from w,ﬁ,’,)a belongs to
o) A= O~ which is Corollary 2.10. O

n,aqi

For negative prefundamental modules we recall the main results of [53].

Lemma 4.2 [53, Lemma 6.7 & Corollary 7.4]. Leta,c € C* and i € I.

(i) The Zq(W’:’)aqi,l) for m € 7o are polynomials in Z[A;}lj](jyb)eloxaqz, and as
m — oo they converge to a formal power series in Z[[A;,l’]]u,b)eloxaqz, which is
exactly the normalized q-character ¥, (L; )

(ii) There exists a U, (g)-module V/C(la) in category O such that

g ED = oy x Fg(Li,)-

c,a
It is irreducible if ¢ ¢ +q”.

In particular, any €-weight of L; , different from V; o belongs to Wi 4 Al_; o-.

By [53, Section 4], the U, (g)-module V/L(la) is a “generic asymptotic limit” of the KR
modules W;l )aq*‘; see also the proof of Lemma 9.4.

Corollary 4.3. Any tensor product of positive (resp. negative) prefundamental modules
in category O is irreducible.

Proof. Inview of Lemmas 4.1-4.2, the proof of [19, Lemma 5.1] works here by replacing
the duality of [19, Lemma 3.5] with the functor G* in Lemma 1.9. 0O

Proof of Theorem 3.2. In the non-graded case this was sketched in [35, Section 6.1.3].
Here our proof is in the spirit of [25, Lemma 4.8], by replacing the elimination theorem
of £-weights therein with Corollaries 3.5-3.6.

Let T := N;"a ® L; «- We need to prove that T has exactly two irreducible sub-
quotient S’ := L(n/,V; ;) and S := L(n] ,W; 4 A; ;) of multiplicity one, which implies
Theorem 3.2 since S’ and S” are irreducible tensor products of positive prefundamental
modules with D. Clearly S’ is an irreducible sub-quotient of 7', and x,(S") + x4 (S") =
nzallli,a(l + A;;)X(LZI) ]_[J.Ni X (L;’l) by Corollary 4.3.

That S” is a sub-quotient of T, i.e. x,(7) is bounded below by x,(S") + x4(S"),
is proved in the same way as in the first half of the comment after [35, (6.13)]. For
the reverse inequality, it suffices to show that Xq(N,Ta) is bounded above by nza(l +

-1
A ) Hj~i X(L}—,l)'
Assume n:an € wtg(N;" ) andn # 1. Form € Z- let S;, := L(n;'a(dg,l[,i))_l) and

view N} as a sub-quotient of D,(,i’},) ® S,,. Write
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n=n,n,, n,d})ewt(DSD)), nyni @5 e we(Sp).

m="m> mma mla m,a

+ G Dy—1 _
By Remark 3.1, we haven;  (dyq)~ ij \P] o

that n), € g, x(Sp) = H]w x(L 1),andson € o q?Q .
Choose t € Z-( large enough so that n € Q, qQ where @t_ is the submonoid
of O generated by the A 4 with —t < [ < t. Then for m > t, we must have

—om—1.Itfollows from Corollary 4.3

n, €{l,A; } by Corollarles 3.5-3.6. This implies that n), is uniquely determined by
n and dlm(N + on < dim(S;, Inl, - As a consequence, the coefﬁ01ent of any f € ‘B in
n’ L+ AL a) ij X(L 1) - q(N:a) is non-negative. O

5. Main Result: Asymptotic TQ Relations

We replace the L, N in Eq. (3.27) by U, (§)-modules using the functor G*.
Corollary 5.1. Let i € Iy and a € C*. In the Grothendieck ring Ko(O):

[N IL )= VT g etone;, o1 TT ], 0 628)

]elo j~i jelp:j~i %ij

where D = L(n \I/ A \I/ -2 ]_[jwi \I/j aq—l) is one-dimensional.
.aq;;

Proof. Applying G*~! to Eq. (3.27) in Ko(O') gives (5.28) by Lemma 1.9. Take g-
characters in Eq. (5.28). By Lemma 4.2, n; W, 1A ., appears at the left-hand side, but

innone of the x, (L b) atthe right-hand s1de ThlS forces Xq (D)lI/_1 =2 IT; -1 =

Jr~i / aqi;1
n W 1A ., and proves the second statement. 0O
Equation (5.28) becomes [35, Example 7.8] when N = 0.

Proposition 5.2. Let i € Iy and a, ¢ € C*. There exists a U, (g)-module M(u in cate-
gory O whose q-character is

Xg WD) =nl) x 7, (N).

If? ¢ g7, then J\/L(l,z is irreducible.

The proof of this proposition will be given in Sect. 7. Assuming this proposition, we
are able to prove the main result of the paper.

Theorem 5.3. Let i € Iy and a, c,d € C*. In the Grothendieck ring Ko(O):

WG =) ) TT 7,

Je€lo:j~i
+[D; ][W(;’ll I B . (5.29)
4q; q; tj (],/ »a ,j

jEI() Jj~i



840 H. Zhang

where D;” = L(ngl)aw[(;)aAl (1)71 = ]_[/Nl 71(171 qfl)_l) is a one-dimensional
11 ij a ij

U, (@)-module. If ¢ ¢ q7, then in Ko((’))

[M(l)][W(l)dz] [W(l) dz] 1_[ [Wc(jl) » 'iz]

dqi.a =
jelpj~i Y “ij Cij
+ A o) TT 0 2] (530
ety j~i ij 4ij -%ij Cij
with D; = L(mE’wai’Ldz ( (l)—l o I—[]Nl (1_)1 -1 -1 _2) 1Y one-dimensional.

Cij Jj q; Jj adg;j Jj Ci J

The advantage of Eq. (5.30) over (5.29) is that for fixed j € I the spectral parameter
ain 7%({1) is also fixed. This is crucial in deriving BAE in Sect. 9.
Proof. D, is one-dimensional by the formulas in Example 1.6:

-1

V. 2 v, v,
(z)w(z) Al = Vi g J-44ij; Vi aqa-2 iaq;” J-44;;
N a®Wy 080 = ] ] ]
Yiag? i W) agij Vi Vi ag? i Viag;
v 2
_ \Iji,ad*2 l_[ Sagijcij (1) l_[ w
VY] dqz 4q; z] qu aql]

. -2 . -1
Laq; = j~i J-a4;; /elo j~i

Dividing the g-characters of both sides of (5.29) by ngliwfj) , we obtain the normalized

g-characters of (5.28) by Lemma 4.2 and Proposition 5.2. This proves (5.29). For (5.30),
let us assume first d ¢ +¢”. ' _

Asin Table (1.15), let J\/'C/(’a), 7//(’) be the corresponding U, (g')-modules in category
O'. Since c ,+£d ¢ g%, by Lemma 4.2, Proposition 5.2 and Lemma 1.9, g*(MC(’a) o~
NQ(Z/;N and Q*(V/(’)) ~ /(y;ﬁqu, w as irreducible U, (g’)-modules in category
O'. Applying G*~1 t0 (5.29) in Ko(O") gives (5.30). The £-weight of D; is fixed similarly
as in the proof of Corollary 5.1. This implies

Xq(Mc(fz)z)_ (l)(1+A @) 1_[ Xq(L ag e —2)s

jelpj~i i il

from which follows (5.30) for arbitrary c € C*. O

One can give an alternative proof to Eq. (5.30), by slightly modifying that of The-
orem 3.2; see a closer situation in [54, Theorem 6.1]. This approach is independent of
Theorem 3.3 and results in Sects. 6, 7 and 8.

6. Cyclicity of Tensor Products

We provide a criteria for a tensor product of Kirillov—Reshetikhin modules to be of
highest £-weight, which is needed to prove Theorem 3.3 and Proposition 5.2.
For i, j € Z~¢ let us define the g-segment

SGi. j) = {q "/ |0 < r < min(, j)} C C*.

Itis ¢/~'=(i, j)~'in [52, Section 5] and is symmetric in i, j.
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Theorem 6.1. Let s € Z~o. For 1 <1 <slet1 <i < M and (m;, a;) € Z=o x C*.
The Uy, (g)-module W,ﬁf}?al ® W,ﬁ,l;)az Q- W,gf‘f,)as is of highest L-weight if

&g U G*PTS (i, i) forl < j <k <s. 6.31)
a
p=1

The idea is similar to [51,52], which in turn was inspired by [12], by restricting to
diagram subalgebras. Let A, B be Hopf superalgebras andlet: : A — B be amorphism
of superalgebras. If W is a B-module and W' is a sub-A-module of the A-module (*(W),
then let ¢*(W’) denote the A-module structure on W'.

For 1 < p < 3, define the quantum affine superalgebra U, with RTT generators

sl(f)p, :(/n)p and the superalgebra morphism ¢, : U, — Uq@ as follows: Uy :=

Uy (@l(1[D), Uz := U, 1(gl(1]1)) and Us := U, (g(M — 1|N)), so that in s
weunderstandelther(l <ij,p<2or(l<i,j<M+N, p=3);

0 U — Uy (@), s s gm0,

ij;1 i’j ij;1 i'j
Uy — U@, sy = b, 1 e h@);
. ( ) (n) (n) (n)
32U — U(I@’ 1] 3 Sivl D tij;3 = i JH

Here h is the involution in Eq. (1.3)and 1’ =1, 2’ = M + N.

Lemma 6.2 [51, Lemma 3.7]. The tensor product of a lowest £-weight U, (g)-module
with a highest L-weight module is generated, as a U, (g)-module, by a tensor product of
a lowest £-weight vector with a highest £-weight vector.

Let 1 < p < 2. We recall the notion of Weyl module over U, from [52]. Let
f(z) € C(z) be a product of the Cll_ZZZz with a,c € C* and let P(z) € 1 + zC[z] be

such that ?EZ; € C[z]. The Weyl module W, (f; P) is the Up,-module generated by a

highest £-weight vector w of even parity such that

s11;p(@Dw = f@Qw =ty p(Dw, $22:p(DW = w = 122, (D)W,

and fEZ; $21; p(2)w, as a formal power series in z with coefficients in W, (f; P), is a

polynomial in z of degree < deg P. Given another pair (g, Q), if the polynomials fgzg

and Q(z) are co-prime, then W, (f; P) ® W) (g; Q) is a quotient of W,,(fg; P Q) and
is of highest £-weight; see [52, Proposition 14].

Example 6.3. In the situation of Theorem 6.1, fix v; € W,ff; « ahighest £-weight vector.

Let W), be the sub-U ,-module of ¢ (®l IW,E{I ) generated by ®l vi- Then ¢ (Wp) 1s
a quotlent of the Weyl module W, for 1 < p <2 where

s m M—N—ij—my s

o q " —zag ) M—N—ij—2m

Wy =W, (]‘[ T [0 -zaq )]
I=1 I=1

N—M+ij—my s

1—[ q —zaiq . l—[ N—M+i

W2 = WZ ( 1— Zd[qN M+i;—2m; ° (1 — zayq l)) .
=1

—mj
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(3(Ws3) is the tensor product ®f IW,E,E”QI D of KR modules over Us. The proof is the

same as [52, Lemmas 18 & 20], based on Corollary 2.10.

For p € Z-o, let g, := gl(1|p) and let U, (g,) be the quantum affine superalgebra

with RTT generators sz(]n|)p’ l(jnl)p for1 <i,j < p+ 1 Similarly U, ~1(gp) with RTT
<) =(n)

generators ;. Z;;, and the involution %, : U,-1(g (@y) — U,(g)p) are defined. For
1 < p < N, the following extends uniquely to a superalgebra morphism

0y Ug@p) —> U@, s, > st 1) e 1l (6.32)

where ' =landi’=M+N—p—1+ifor2 <i<p+1.

Definition 6.4. Let s € Z~q and (my, a;) € Z~o x C* for 1 <1 < 5. The Weyl module
WP ([T)=) @my.a) is the U, (g,)-module generated by a highest ¢-weight vector w of
even parity such that for2 < j < p +1,

S omy —p—my
q " —zaq
S 2w =w e 2w,
1)p(2) U T — 11p(2)

M zgyg P

hpGS11p@)Hw =w 1_[ g

s =yt p (2w,
Z -2 piiitp
I=1 L= zajgP—=m

sjjlp@w = 1jj1p@Qw = hp (5 jjip@Dw = hp(Ejj1p@)w = w,
and the following vector-valued polynomials in z are of degree < s:

N N

[0 =zag™?) < sjp@w. ] —zag”™>™) x hyGjip@)w.
=1 =1

Let L?([])_; @m,.q¢;) denote its irreducible quotient of W” ([)_; @m;.a))-

Example 6.5. Let 1 < p < N. In Example 6.3, let W7 be the sub-U, (g,)-module of
B* (®l 2W,£fl «) generated by ®1 , V1. Then 97 (W” ) is a quotient of the Weyl module

% (Hl 2 Doy g™ N*il+p> over Uy (@p).

Example 6.6. Supposem| < N andtake p = m.In Wn(fll,)a, there is a non-zero vector v}
whose £-weight corresponds to the tableau Tl1 € B_(mw;,) such that: Tl1 (i1, —j) =
lfor1<j<m1andT (-1, —j)—N+M—j+lf0rl<i<i1andl<j<m1
Let X be the sub-U, (g, )-module of ¥, (W,(,l'I «;) generated by vl By comparing the

character formulas in Remark 2.5 we see that the Uy (g, )-module ¥, ,(X) is irreducible
and in terms of evaluation modules:

m
Oy (X) = V] (mier + Z(il — Dejsr; arg™ =Ny
=1

M—N+i1=2y M=N—ir)

~ V+((m1 +i1 — 1)er; aiq

=L"(w,,

=V, ((mi+iy — Dersaig

my+ip— 1a1qM N+i|+m|—2).



Length-Two Representations 843

Let v]2 be alowest £-weight vector of the U, (Gm,)-module e 1 (X). Then U12 corresponds
to the tableau T2 € B_(m ;) such that T3 (—i, —j) = N+ M — j+1for1 <i <i
and < j < my; it is a lowest £-weight vector of the U, (g)-module W,,(fll,)al. Notice
that sl»(;')X =0if2 < j < M+ N — m;. Combining with Example 6.5, we observe

that X ® W™! is stable by 9, (Uy (gn,)) and the identity map is an isomorphism of
Uy (@m,)-modules 95 (X @ W) =95 (X) @ 9, (W),

Lemma 6.7. Let p,s € Zsq and let (m;,a;) € Z-g x C* for 1 <1 < s. Assume
my > p.The U, (ﬁp)-module LP (@ ,q,) @ WP (]_[‘;:2 Wy ,a) IS Of highest £-weight if
ar # aig® M2 for2 <l <sand1 <t < p.

Proof. By induction on p: for p = 1 we are led to consider the tensor product

m_ zq —1—m L
m (q 1 —zalqu_1 -z 2"“> ®
—1—my s
q I'—zaq 11—
(H a0 >)

=2

of Weyl modules over Uy = U,(g1), which is of highest £-weight if a; # ajg M
for 2 < [ < 5. Assume therefore p > 1. In Eq. (6.32) let us take (p, M, N) to be
(p — 1,1, p). This defines a superalgebra morphism

Op1: Ug@p—1) —> Uy (@p), l(Jl)p 1= S(j "p £ e l-(/n-)/

where I’ = land i’ =i+ 1forl < i < p.Letv;, w be highest £-weight vectors of the
U, (gp)-modules L (@, ,q,) and WP (I'T)—, @m, q) respectively. Set
X1 =0, 1(Ug@p-1))v1, Y1 :=0,_1(Us(@p—1))w.

Using evaluation modules over U, (g,) we have by Corollary 2.10 and Definition 6.4:
LY (@py.a) =V, (mier; arg™") 2V, (mier; aig? ™).

It follows thats(") X1 = 0ifi # 2. Thisimplies that X; ®Y is stable by #,,_1 (U, (\p 1))
and the 1dent1ty map is an isomorphism of U, (g,—1)-modules:

Vo (X1 @YD) =0, (X)) @9, (Y1).

As in Example 6.6, the U, (ﬁp,])—module 191;7](X 1) is irreducible and isomorphic
to LP~Yw Dy, alq—l). By Definition 6.4, 191‘7_1(Y1) is a quotient of the Weyl module
VVP’I(]_[,=2 @yn;,a,4-1)- The induction hypothesis applied to p — 1 shows that Lr!
(@) a1g-1) @ )/Vp’l(]—[f=2 D yy.arq—1) and SO ﬁ;_l(Xl) ® ﬁ;_l(Yl) are of highest
¢-weight. Let v} be the lowest £-weight vector of the U, (§p—1)-module ﬁ;fl(Xl);

it corresponds to the tableau 7' € B_(m€;) such that T(—1,—j) = p+2 — j for
l<j<p—landT(—1,—j)=1for p < j <mp. We have

v @w € B, 1(Ug@p-1))1 ®w) = X1 ® V1. ()
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NN hp(E(") yand "

Notice that s; i ijlp i h p(;g'?p) extend uniquely to a superalgebra
morphism ¢ : Uy —> U, (@p). Let X5 := «(Uz)v] and Y := ((Uz)w. The identification
L (@ a) =V, (mier; ajgP=2my gives Xp = Cv| + Cv{ where v{ is a lowest
€-weight vector of L (@, a,). This implies /,(5(;,)X2 = 0if i ¢ {1, 2}, meaning
that X, ® Y, is stable by ((Uy) and the graded permutation map is an isomorphism

of Uz-modules (*(X7 ® Y2) = 1*(Y2) ® (*(X3). By Definition 6.4 the tensor product
1*(Y2) ® t*(X») of Uy-modules is a quotient of

S ogmm p—m; S
q zaiq . »
Wh (ll_! T zagrm 1_[(1 —zaiq )) ®

[=2
W q—m1+p—l _ ZCllq_ml+1
1 — Zalqp—Zml

;l—zalqz"’>,

which is of highest £-weight since a;q? =™ # a1q>~P for 2 < [ < 5. The U-module
1*(X2®Y>) is of highest £-weight and v @ w € «(Uz) (v} ® w), which together with ()
implies v{ ® w € Uy (g,)(vi @ w). The U, (g,)-module L? (w,, 4,) being generated
by the lowest ¢-weight vector v}, we conclude by Lemma 6.2. O

For gl(1]3) we related the highest/lowest £-weight vectors of L3 (s5.4) by:

92:(134 :(12)g ™!
v = 2O, v = 229 =[1[1]2]3]4]

Proof of Theorem 6.1. Let us assume first that m; < N forall 1 <[ < s. We use
a double induction on (M, s) with Lemma 6.7 being the initial case M = 1. Under
Condition (6.31), the induction hypothesis on M applied to the tensor product of KR
modules over Us in Example 6.3 shows that (3(W3) is of highest £-weight and vl1 ®
(®]_,v) € 13(U3)(®;_,;vp). It suffices to prove that the Uy (@m,)-module D, (X) ®
19,:“ (W™1) in Example 6.6 is of highest £-weight, from which follows vl2 ® (®f=2vl) €
By (Ug @m )13(U3)(®)_, v1). The Uy (§)-module W,ffll?al being generated by the lowest
£-weight vector v12, we can use the second induction on s and Lemma 6.2 to conclude.

By Examples 6.5 and 6.6, 9,5, (X) ® ¢, (W™!) is, up to tensor product by one-
dimensional modules, a quotient of the U, Gjml )-module

s
my . | )
L (wm1+i1—l,alqM*N*'ll’r"ll*Z) QW <l_[ w_ml,alqMNl[+ml) s
=1

which by Lemma 6.7 is of highest £-weightiffor2 </ <sand 1 <t <m:

M—N+ij+m|—2 #alqM—N—il+m1 % q21—2—2ml
9

aiq
namely, a; # a;g?~>™~!1=l This is included in Condition (6.31).
Suppose m; > N for some 1 <[ < s.Letm := max(m; : 1 <[ < s5) and

let Uy := U, (g[(m m)) be the quantum affine superalgebra with RTT generators

() ()

140 lijoa for 1 <i, j < M + N + m. There is a unique superalgebra morphism

u:Uy(§) —> Us, S,S?) — sl.(;?z‘,

(n) (n)
tij = tij;4'
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Under Condition (6.31), the tensor product ®f=1 W,ig’;la), of KR modules over Uy is of

highest £-weight. For 1 <[ < s, let X; := L4(Uq@)vl where v; € Wi(,f’(l)l is a highest

£-weight vector. Then a weight argument and Corollary 2.10 show that
L4(Uq@)(®lszlvl) = ®?:1Xl,

and as U, (g)-modules (3(®)_, X)) = ®)_, wi  This implies that the U, (g)-

mp,a;q—

module ®;_, w _n 1s of highest £-weight, proving the theorem. 0O

mp,arq

For gl(3]6) we related the highest/lowest £-weight vectors of Wﬁ: by:

—

1/1]1 13:(23456789)g | LILILITE 5. 16780) ’ 6/7]8
v =|21212]2|———> v =|6]|7[8|9|—> v =|6|7|8|9/|
313/3]3 617,819 6178
For A € P and a € C* define the Uqfl@—module V;_l (X; a) to be the pullback of

the U,,-1(g)-module V-1 (%) by evy, as in Theorem 2.4. By Eq. (1.6),

h* (Vq*(/\; a)) = V* (a).

Corollary 6.8. The tensor product in Theorem 6.1 is of highest £-weight if

. Mk
L¢P Sy forl<j<k<s. (6.33)
ak
p=1
Proof. The tensor product T in Theorem 6.1 is of highest £-weight if and only if so is
the U, -1 (g)-module #*(T'). By Corollary 2.10 we have

W(T) = @), V.5 iy arg N~ M2,

Applying Theorem 6.1 to U, (@), by viewing W,E,i?a first as V;(mzzr,-; agM~—N=1y and
then as Vq",1 (mw;; ag¥ ~M*), we have that h*(T) is of highest £-weight if

— mig
S - i ¢ U 24 Sk, i)T! forl<j<k<s
zm/ q k> J = J — .

ajq =1

This is Condition (6.33) since S(ix, ij) = S(ij,ix). O
Let V be a finite-dimensional U, (g)-module. Its twisted dual is the dual space
Homc(V, C) =: V¥ endowed with the U, (g)-module structure [52, Section 6]:
(xp, v) = (=DM g SW(x)) forx e U;@), g e VY, veV.

By Eq.(1.2), (V@ W)Y = V¥ ® WY if W is another finite-dimensional U, (g)-module.
V is irreducible if and only if both V and V" are of highest £-weight.
We recall the notion of fundamental representations from [52]. Let 1 < r < M and
1 <s < N. Define (compare [52, Lemmas 5 & 6] with Corollary 2.10)
Vie= W s Vg = WM ye = w ™M (6.34)

ra - l,aq s, Lagst? l,aq
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Lemma 6.9. Let1 <i <M < j < M+ N and (m, a) € Z~y x C*. We have:

Wola)Y =W

m,a~lq

W)Y = w

m’afqum ’

M- M-
4-2m > (er/l,a ))V = W( ) 4-2m*

m,a~lq

Proof. The twisted dual of a fundamental module is known [52, Lemma 27]:

+\V oyt - Voo
(Vi,a) - ‘/l"a—lq2(M—N+i+l)v (VM+N—j,a) —_ VM+N—j;a71q’2(M+N+1*]-)'

Viewing W\, as th
2. g Wia as the

q .
unique irreducible sub-quotient of ®;" | Wl(l) ,_» of highest £-weight w,s,’ ,)a, and taking
=1} ag;

By Eq. (6.34), (W)Y = W, ,and (W))" ~ w)

m,a~lq

twisted duals, we obtain the desired formulas. O

Corollary 6.10. Ler 1 <i < M, a € C* and m € Z~o. The Uy (§)-module W,Ef;l) ®

W,ff:ll) is irreducible.

Proof. The tensor product and its twisted dual, which is >~ W,S;qum ® W:j;l_)lqz,,, by
Lemma 6.9, satisfy Condition (6.33) and are of highest £-weight. O

The following special result on Dynkin node M is needed in Sect. 7.

Lemma 6.11. [52] For m € Z-, the U,(g)-module Viags ® @L,Vy_, ag-1) ®

(@1 Vi

1 aszfqu) is of highest £-weight. Moreover for 1 < k,I < m we have

- + ~ + -
VN—l,anI’I ® VM_l’anM—Zkfl = VM_l’anM—Zk—l ® VN_LanI—l'

Proof. The first statement is induced from [52, Theorem 15] by the involution /4 as in
[52, Remarks 3 & 4], and the second is a particular case of [52, Example 5]. O

7. Asymptotic Representations

In this section we construct the U, (§)-module /\/'L(',; of Proposition 5.2 for i € Iy and
a, ¢ € C* from finite-dimensional representations.

For m € Z-y, let N,(,li?a = L(n(i) ) be the irreducible Uq@—module; it is finite-

q)ﬂ’a
dimensional by Lemma 1.5 (3). Fix v € N,(,f ,)u to be a highest £-weight vector.

The main step is to construct an inductive system (N,(,f,)a)mez>0 compatible with
(normalized) g-characters, as in [34, Section 4.2] and [35, Theorem 7.6]. We shall need
the cyclicity results in Sect. 6 to adapt the arguments of [34,35].

m
,a

Lemma 7.1. Ifn((;) m € th(N,(,f?a), thenn; m € wte(N; ) and
dim(Nﬁ,f}a)n% =AMV D e

Proof. The first paragraph of the proof of [35, Theorem 7.6] can be copied here, based
on Lemma 4.1 and the fact that m is a product of the A;L with j € Ipand b € ag”. For

the latter fact, we realize N,gf?a as a tensor product of KR modules with one-dimensional
modules and apply Corollary 2.10. O
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Lemma 7.2. Let ¢ € C* be such that ¢* ¢ g”. Ifn; m € wty(N; ), then ng)am €
wig(L(¢))) and dim(N; )y < dim L(nﬁ’},)ng; .

Proof. From Example 1.6 we obtain

- —n® -1
n._=n 12 .
i,a c,a 11 j,aqi_,'C%,-
I

Viewing N; , as a sub-quotient of L(né{L) ® (®j~iL 2 ) ® D with D being a one-

J,49ij ;i

dimensional Y, (g)-module, we have m = m'[] i m’ with
) m/ @) -1 j - .
n/im’ € wtg(L(ng))), \y,/,aq,-jcl?jm € Wt’j(Lj,aq,»,-cl?j) for j ~ i.

By Corollary 5.1 and Lemmas 4.1-4.2 we have:

(1) m,m’ € @_qQ_ and m is a monomial in the Ai_,lb with i’ € Iy and b € aq”;
(2) m/ is a monomial in the Al._,lb, with i’ € Ip and b’ € {ac?, ac™?}q” for j ~ i.

Since {ac?, ac‘z}qZ and an do not intersect, m/ = l andm’ = m. 0O

For m1,my € Z-q with m; < my, let Z;'L"mz be the irreducible U, (g)-module of
highest ¢-weight nf;) (n(i) )yl = Hj~i w') 1e2m, > DY Lemma 1.5 (3) it is
aq

my g \Mgmi q my—my 1-
1 )

finite-dimensional. Fix v™1-"2 € Z?"!"""* to be a highest £-weight vector.

Lemma 7.3. The U, (g)-module N,gf,a ® Z;f’;’mz ® Z?E’m is of highest (-weight for
0<m; <my <ms.

Proof. We shall assume 1 <i < M. Thecase M +1 < i < M + N can be deduced
from 1 <i < M using G*. (See typical arguments in the proof of Lemma 8.2.)
Suppose 1 < i < M. By Corollary 6.10, Z;"}"™* =~ ®j~,-W(j) ;- The

my—mj,aq

tensor product Wl(l; p ® (®j~i Wr(n]1 )aqu) satisfies Condition (6.33) and is of highest

£-weight. Its irreducible quotient is =~ N,sf 1) a- Next,

—2/111—2) ® (®j’\’lW(j) —2m2—2)

msz—my,aq

W @@ W )@@ WY

Lag mi,aq my—my,aq

mi,mz
i,a ®

also satisfies Condition (6.33), and is of highest £-weight, implying that N,gf l)ﬂ ®Z

my,m
Z23

ia s of highest £-weight.
‘Suppose i = M. Consider the tensor product of fundamental modules:

T = Vg v ® @21V v ) ® (@2 Vi -wiamaict)-
By Lemma 6.11, T is of highest £-weight and
TEVY v @@LV wia) © L Vi y-neau-2-1)®
(@12 141 Vo 1.ag-ne1) ® @2, 41 Vg 1 ag-veam—2i1)
(®;n:3mz+1 V}\?_l’aq—Nﬂl—l) & (®ng2+1 V;]_Laq—NﬂM—M—l)'
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Let 77, T>, T; denote the above tensor products of the first, second, and third row at the
right-hand side. They are of highest £-weight. By Eq. (6.34),

_ ~ (M—) — ~ (M+1) — ~ (M-1)
VN,aq*N*3 - Wl,aqfl’ VN—l,aq*NJrl - ‘/Vl,aq2 ’ M—l,aq*N*ZM*3 - l,ag=2"

By Example 1.6, the irreducible quotients of 7y, T», T3 are ~ N,ﬁ’f’},, Zy " and Z,
proving the cyclicity statement. O

m

Let 0 < my < my. The tensor product N,gf?,a ®Z; 1""™2 being of highest £-weight, its

a
irreducible quotient is 'isomorphic to N,Ef;,a. There exists a unique morphism of U, (g)-
modules Fp, m, : N,$,’f,a QZ"" — N,gfz),a which sends v ® v™1™2 to v™2. As
in [34, Section 4.2], define

VO] s N@ Tz mi,my
Fnym, le,a Nmz,m W Py (W Qv ).

Then ({N,g?a}, {Fin,,m, }) constitutes an inductive system of vector superspaces: Fy;; m,

Foymy = Fuymy for 0 < my < my < mg3. The proof is the same as that of [53,
Proposition 4.1 (2)], based on Lemma 7.3.

Lemma 7.4. Let 0 < m; < my. We have sz,mlx;,, = x}'ﬂsz,ml for j € Iy and
n € Z. The linear map Fy, m, is injective.

Proof. This is [34, Theorem 3.15]. For a proof independent of £-weights, we refer to the
first two paragraphs of the proof of [53, Proposition 4.3]; the coproduct A(e;") therein
should be replaced by the A(x}r,n) in Eq. (1.10). O

Lemma 7.5. Let us write (h1(2), h2(2), ..., he (2); 0) := 0l @Y%) =1 e Ry for

q"2,a\"q" a
my > my > 0. Then for j € Iy we have

K+ @) Foymy = 1j(2) X Fym K7 (2) € Home (N ., NS [Tz,

mi,a’ mp,a
Here for &= we take Taylor expansions of hj(z) at z = 0, z = 00 respectively.
Proof. The same as [34, Proposition 4.2] in view of Eq. (1.9). O

All the h(z) € C[[z]] are of the form A(z)g™™? + B(z) + C(z)q™? where A(z), B(z),
C(z) € C[[z]] are independent of m;. Let j € Iy. If j ~ i, then

1—za 14+2m»
i Py #%2)
1+2m ma,mi¥ j .

l—zaq,-j

¢ (D) Fmymy = qj7 ™

Otherwise, Fj;,,», commutes with ¢jE (z) for |j —i| # 1.
From Lemmas 7.1 and 7.4-7.5, we conclude that: the normalized g-characters )’Zq
0 I
. . ~ i — . .
converge to a formal power series mh_I)noo Xg(Nm,a) € Z[[Aj,b]](j,b)eloxaqz’ which is

(N,(,,i?a) for m € Z-¢ are polynomials in Z[A }b](j’b)eloxaqz, and as m — oo they

bounded above by the normalized g-character X, (N, i)
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Lemma 7.6. For j € Iy and my — 1 > m > 0 we have
x,/’iOFstm = FmZ,mx;0 if |j—i] #1,
x;osz,m = mz,m+l(qm2Aj,m +61_mij,m) if |[j—i| =1

Here Ajy, Cjm : N,g)a — NYSL o are linear maps of parity |a .

Proof. This corresponds to [34, Lemma 4.4 & Proposition 4.5]. Here we give a straight-
forward proof without induction arguments.

By Lemma 7.3, the U, (g)-module Z;"; ml & Zm+] ™2 is of highest £-weight with
irreducible quotient Z m2 ;let 9, m be the quotient map sending v+ ® v *1.m2 o

V™2 We claim that for veND v e z" o+l

and j € Ij:

(1) ymz,m(v & gmz,m(v/ & vm+1,m2)) = sz,m+1<gzm+1,m(v & U/);
(i) x5 ov™" = [(m2 — m)8)j—i|,1]g X Gy (xj 0" @ v H12),

Here [n], := qq ;__1” forn € 7. Assume the claim for the moment. For v € N,\! ?a, based
onA(xJO) 1®x ]0+x10®¢ Wecomputex o Fma.m (V)
= xj_,ofmz,m(v ® V™M) = ﬁmz,mA(xj_)O)(v ® v"™"M?)

= Fam (X700 ® 7 g0""2) + (=D)IGLZ,, (0 @ X gu™ )

(ma—m)8j—i, -

_ qi;nz m)8|; |1szym(xj’0v)+
(_1)|UH0¢j|[(m2 - m)s\j—il,l]qymz,m(v & gmz,m(xj_’ovm’m+1 ® vm+l,m2))
(my—m)d|j—j|. _

— f],-j 2 li=l 1Fm2,m(xj,0U)+

(—l)lvHajl[(mz — m)(s\j—il,l]q Fm21m+19m+1,m(v ® xj—‘ovm,m+l)’
which proves the lemma. The third and fourth identities used (ii) and (i).
Note that ., m(lN(l) ® Gmy.m) a0d Fy i1 (Fmsim @1 S ), as Uy (§)-linear

maps from the highest £-weight module N, )a ®Zm om+1 <§§)Zm+1 2 to N,g{z) 4, are identical
because they both send the highest £-weight vector v ® v’"*"“rl ® v"™+hm to ym2,
Applying them to v ® v/ ® v"*1-"2 gives (i).

From the proof of Lemma 7.3 it follows that Z is =~ irreducible quotient of a
tensor product of KR modules associated to j' € Io w1th Jj' ~ i.Let u be the weight
of v""2 If |j — i| # 1, then by Lemma 3.4, ug =% ¢ wt(Z]";"*) andx V2 = (),

ma

Suppose j ~ i. Then (Z]; mz) ;= Cxj v and ¢;; = g™l The equation
x; 0Ymam = mz,mxj o applied to v’” el @ ymtlm gives
— m,my __ my—m—1_— _ m m+l m+1,my m,m+1 — m+l,my
X oV mzm(q X oV ® v +v ®xj’0v ).

m,m+1 ® Z;n;-l,mz

Consider the following vector in Z; ; of weight g =% :

— . m,m+l ® m+1,my m,m+1 ®

. s _ s — m+l,my
w = ql] .y xj’OU v v xj’OU .
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- m,m + — + _ + -
We have ¥, m(w) € (ij’ov 2 and Xjow = 0. So xjyogngm(w) = 0. Now X70X0
V"™ "2 £ 0 forces G, m(w) = 0. We express xl/.fov’”’m2

my—m—1_— m+l1 +1, m+1 — om+l,
= Imy,m (q,'j xj’ovm = R e T Xj’OUm ") + g%le,m(w)

ij -y
dij —d9qij

m,m+1 ® Um+1,m2)’

qm—mg qmz—m—Q
—m—1 ij 45 —
— (qmz m + J J ) % gmz,m (xj Ovm,m+l ® vm+l,m2)

= [ma —mlg; X Ginym (x; v
which proves (ii) because [n]l]ij =|[n],forneZ. 0O

Proof of Proposition 5.2. Forr € Zsg and [ € I let Klj—;r be the coefficient of z*" in
Kli(z) € Uy (@I[[z*1]. The superalgebra U, (g) is generated by:

S = {K;—;r, X0 x;n |r €Zs0, n€Z, jel,lell

By Lemmas 7.4-7.6, there are HomC(N,gf?a,N(i)

m+1.q)-valued Laurent polynomials
Py.u(u) form € Z~o and s € S such that

$Fmym = Funymat Piim(@™) € Home (N, N ) formy > m + 1.

These polynomials have non-zero coefficients only at u, 1, u~!. Since ¢ is not a root

of unity, the generic asymptotic construction of [53, Section 2] can be applied to the

inductive system ({N,(,f?a}, {Fim,.m 1. Let Noo be its inductive limit. Fix ¢ € C*. There
exists a unique representation of U, (g) on Ny, on which s € S acts as

lim P, (c) € End(Nyo)
m—00

Here the P;.,,(c) : N,gf?a — N,EfJ)rl o form € Z o form a morphism of the inductive

system, so their inductive limit 1iM,y— 0o Py.n (c) makes sense. As in the proof of [53,
Lemma 6.7], the resulting U, (§)-module ./\/C(lé)Z is in category O with g-character

XgWED) =0} x Tim_ 7, (N,

Let us prove lim x, (N,ff,)a) = Xq(N; ). We have seen above Lemma 7.6 that the left-
m—00 ’

hand side is bounded above by the right-hand side. View L(ng)a) as a sub-quotient of

./\/c(’,z If 2 ¢ g7, then by Lemma 7.2, Xq (N; ) is bounded above by Xq (L(ng.le)) and

so by (n%)’1 Xq( ,:(fa)), which is the left-hand side. This implies the reverse inequality

and the irreducibility of /\fc(l; forc? ¢ ¢%. O

One can have asymptotic modules /\/lgl)a over U, (g) as limits of M, ;’m) o (asin[34, Sec-
tion 7.2], which is slightly different from the limit construction of ./\fc('(i) Then Eq. (5.30)
holds with M replaced by M forall ¢, d € C*.

Proposition 7.7. The U, (g)-module V/L(l”a)l ® 7/((2[211)2 QR - ® %ﬁifa)s, with iy € Iy and
c;,a; € C*, is irreducible ifa[cf2 ¢ aqufor alll <1,k <s.
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Proof. Let L := ®]_,L 4 and S = L([],- 1w§’/)a,) viewed as irreducible Y, (g)-
modules by Corollary 4. 3 S is a sub-quotient of the tensor product 7 in the proposmon
Let @, @ be the highest £-weights of L, S respectively. Then x,(T) = @'X,(L) by
Lemma 4.2. It suffices to prove that dim Ly, < dim Snw/ for all nw € wty(L). Viewing
L as a sub-quotient of § ® D where D ~ ®;_,L -2 we can adapt the proof of

Lemma 7.2 to the present situation. 0O

It follows that the tensor products of the 7 at the right-hand side of Egs. (5.29)—(5.30)
are irreducible Uy (§)-modules for 2, d* ¢ g”.

8. Proof of Extended T-Systems: Theorem 3.3

The idea is to provide lower and upper bounds for dim(D,Si ‘Z)) We recall from the
proof of Corollary 3.5 that the U, (g)-module W © g QW (') »m_1 has at least two

m+s,aq;

(@) (@) (i,s)
irreducible sub-quotients: L(werer Lag?™! wm—l.aq.z’"*‘) and D, .

Lemma 8.1. For i € Io\{M}, the U, (g)-module W() ag?™*! ® D,(,l, Z) has at least two

sub-quotients: Ly Ve ) and L@" 0 W ).
m

m+s+l ,aq; +s,aq; m ,aq;

Proof. Set T := W | @D and § := L@%5 Ve

m+s,aq; m+s+1,aq;

ple 1.6, S is an irreducible sub-quotient of 7. By Corollary 3.5,

2m+]) By Exam-

_ 0 i
_ml_[A . a0 'wn(;’)aq.Zm“ € wte(T).

m+v ag;

Viewing § as anirreducible sub-quotient of W( 9 ol ®D(’ s7Dand using Lemma 3.4

+s+1,aq;
and Corollary 3.5, we have m’ ¢ wty(S). Let u := (3m + 2s)w; — ma; so that
w(m) = g" and w(m’) = g* % . Then dim T, u—; =t +1for0 <r <s.
Let vo € S be a highest £-weight vector and let U; be the subalgebra in the proof of
Corollary 3.5. Then U; vy is an irreducible Uy, (s[;)-module of highest £-weight
:(Y 1Y .. Zaql 2) (Y, omaY.  omer Y. 3.25)

i,aq; i,aq; zaq i,aq;

and factorizes as L' (Y 4! Y, ag? laqz %) ® L’(Yl ag?" Y, g2 --~Yl.’aq1 —25); if
s = 1 then the first tensor factor is trivial. For 1 <t < s, the Weight space Sju-r; 18
xl_nrvo € U;vg withn; € Zfor 1 <1 < t and is therefore of

dimension min(s, 7+ 1). Since m; [ ];_, (Yaq_l_zz Yaqg_zz)_l is not an £-weight of L’ (m;),

spanned by the x;_

i Xy

we must have m’ ¢ wty(S), as in the proof of Corollary 3.5.
It follows that x4 (T) — x4(S) is m’ plus terms of the form m” € R with @ (m”) ¢

w(m’)qQ+, forcing L(m’) to be an irreducible sub-quotient of 7. O

Lemma 8.2. Let i € Ip\{M}. The U,(g)-modules W() e ® W | and

+s,aq
@ (l)
Wmﬂ g ® D a are of highest (-weight, while Wm vs+Lag?m! QW o laqlzm 1
pt0 5 ® W( & oms1 ANA w) sl & D(l ™Y are irreducible.

m+s,aq; .aq; m+s+1,aq;
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Proof. Assume i < M. Notice that T,f,i,}f) =wit ewil & W:’Zq,l satisfies

m,aq®m m,aq®m s,
Condition (6.33) and is of highest ¢-weight. By Reqmark 3.1, tille irreducible quotient
of T,,(llj;) is ~~ D,(,ll:‘z,). To prove that the five tensor products in the lemma are of highest
£-weight, we can replace D by T and show that the resulting tensor products of KR
modules satisfy Condition (6.33). For example the last tensor product corresponds to

W<l) 2m+1 ® W(i+1)2m ® W(iil)Zm ® W(l)

m+s+1,aq ' m,aq m,aq=" s—l,qq‘l'
Next, S,Siif,) = W:l;,lqzm ® W,,(;;H ® Wr(nl;l,)l also satisfies Condition (6.33) and

is of highest £-weight, the irreducible quotient of which is >~ (T,f,{’ax ))V. To establish the
irreducibility of the last three tensor products in the lemma, we take twisted duals as in
Lemma 6.9, replace DV by S, and check Condition (6.33) for the resulting tensor products
of KR modules. Take the fourth as an example: W™ " @wi*h ow®
m+s,a=1g* m+s,a= ' q=* m,a—'q
is of highest £-weight.
This proves the lemma in the case i < M.
Assume i > M. By Lemma 1.9, g*(W,ﬁ,’?a) ~ W

. m’aq . .
Applying G*~! to the U, (g')-modules T,;L(,TN*”), S,’,%"LN*”S) we obtain that D,(,’,jfl)
and (D,(qiiz))v are ~~ the irreducible quotients of the highest £-weight modules

/(M+,{,\7,7\;),2+2m as Uy (a)-modules.

4

W(i+l) Q W(i—l)* ® W(i) ‘/V(i)_]qs_23 ® VV(i—l)>)<4 Q W(i+l)

m,uq‘zm m,aq‘z’" s,aq’ s,a m,u_lq m,u"q
respectively. Here W,(,%)* = Wn(%_) and W,Ef L* = W,;] L for j > M. By replacing
D, DY with these tensor products, we obtain eight tensor products of KR modules
w M)

m,b> ""m,b i
G* gives tensor products of KR modules W,;(’jb) with j < M over U,(g’), which are
shown to satisfy Condition (6.31). Consider the last tensor product in the lemma as an

example. Let us prove that the U, (§)-modules

with j > M and need to show that they are of highest £-weight. Applying

@ @i+1) (=D @)
I = ‘/Vm+s+l,aq*2’"*1 ® Wm,aqum ® Wm,aqu"’ ® WS—LG‘I’
@ (@) (i—1)* @i+1)
= Wm+s+l,a*1q3*2~‘ ® stl,a*]qS*ZS ® VVm,a*Iq4 ® Wm,a*1q4

are of highest £-weight. Applying G* to Ty, T» give (¢ = gV "M% j = M+ N —i):

. i+l i1 .
Tl/ — W/(./) e ® Wr/rl(;lat) ® Wr:’f‘Jac ) ® W/(/)

s—l,acq mes+1,ac+H
=W i W, @ W B W
The U, (E;\’)—modules T|, T, satisfy Condition (6.31). O
Fori € Iy and m € Z- let d,(,,i) = dim(W,g,i?a); it is independent of a € C* because
(W, ) = Wil by Eq. (L.1),
Theorem 8.3 [44]. (d3))? = d) d® | +d~Val™ for1 <i < M.

Proof. For u € P, up to normalization 7y, (1) in [44, (2.15)] can be identified with
Xq (Vg (w3 a)) in Eq. (2.20). The dimension identity is a consequence of [44, (3.2)],
which in turn comes from Jacobi identity of determinants. 0O
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Proof of Theorem 3.3. By Lemma 8.2, the surjective morphisms of U, (g)-modules in
Theorem 3.3 exist (because the third terms are irreducible quotients of the second terms)

and their kernels admit irreducible sub-quotients D,(,i’j,) and D@? 5 ® w ol
m+s,aq; m,aq;

respectively. This gives:

(1) dim(Dy2) < dy'dyhs —di) L ds)

m+s+1“m—1>

o s sl D i
@ dim(DFY )dy’ < dyls dim(D) = ) dim (D),

We prove the equality in (1)—(2) by induction on s. Suppose s = 0; (2) is trivial. If
i < M, then by Example 1.6 and Corollary 6.10,

DI ~ Wi, g wi=h

myaqlm m’anm'

This together with Theorem 8.3 shows that equality holds in (1). Making use of G*, we
can remove the assumption i < M, as in the proof of Lemma 8.2.
Suppose s > 0. In (2) the induction hypothesis applied to 0, s — 1 indicates that

(o) = dip) ) DAY < dip), dim (D)
—di@Pdy | —dyld)) )

m+s+1\%m “m+s—1

namely, dim(D,(,i:‘Z)) > d,(,f)d,(,fls —d9 4 (i)_ 1~ This implies that in (1), and henceforth

+s5+1
in the above inequality and in (2), Smcain be’:n replacedby =. 0O

Remark 8.4. Let 1 <i < M. Apply G*~! to the second exact sequence in category O’

of Theorem 3.3 involving D,/,%"LN*’.’]) and take normalized g-characters:

B NDDT W D=2 Wb [ 2wl

m+1,aq~ m,aq—
jely:j~i
-1~ (@) ~ )
+A; , X Xq(Wm’aq—z) H Xg W1 0)-
jeloj~i

Setting m — oo recovers the normalized g-characters of Eq. (5.28). The second exact
sequence of Theorem 3.3 is likely to be true fori = M.

Theorem 3.3 together with its proof could be adapted to quantum affine algebras, in
view of the cyclicity results of [12] and T-system [31,42]. The second and third terms of
the first exact sequence appeared in the proof of [23, Theorem 4.1] as V', V by setting
(a,m,s) = (q; 3, mo+1, my—my—2). Inthe context of graded representations of current
algebras [16, Theorem 2] by taking (¢, A) = (m+s, mw;) sothat v = 2m+s)w; —mo;,
the exact sequence therein is an injective resolution of the Demazure module D (¢, v) by
fusion products of KR modules. It is natural to expect that Dr(é;) admits a classical limit
(g = 1) as D(¢, v); this is true when m = s = 1, as a particular case of [11, Theorem

1].
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9. Transfer Matrices and Baxter Operators

Let us fix an integer £ € Z-( (length of spin chain) and complex numbers b; € C* \g”
for 1 < j < £ (inhomogeneity parameters). We shall construct an action of Ky(O) on
the vector superspace V®¢ as in [22, Section 5]. This is the XXZ spin chain with twisted
periodic boundary condition, with V& referred to as the quantum space and objects of
category O auxiliary spaces.

Following Definition 1.4, let £ be the subset of £ consisting of the Zfem cef € &.
Note that £ is a sub-ring and x (W) € &£ for W in category O.

We identify i = ijir---ig € I% an I-string of length ¢, with the basis vector
i, ® v, ® -+ ®v;, of VO Let E;; € End(V®") be the elementary matrix k + & xi
fori, j e 1% andlete; == ¢, +€;, +- - +¢€, €P.

To a Y, (g)-module W in category O is by definition attached an matrix S Y(z), a
power series in z with values in End(W) ® End(V). We decompose

SV @be) -+ S5 (b) S (zb) = Y S (2) ® Ejij € End(W) ® End(V)®*[[2]].
ijert

Then Sg}/ (z) = j:si%e (zbe) -+ - Siy ) (zbz)si‘ivjI (zb1) and it sends one weight space W,

for p € P to another of weight pg“~“.. Its trace over W), is well-defined: either O if

€; # €j; or the usual non-graded trace of Si‘y(z)|wp € End(W)) if ¢; = ¢;.

Definition 9.1. Let W be in category O. Its associated transfer matrix is

w@:= Y | D pxTw, @) | Ey.

i,jelt \pewt(W)

viewed as a power series in z with values in End(V®%) ®7 .

In [6,46] (for U, (@) and [24] (for an arbitrary non-twisted quantum affine algebra),
transfer matrices are partial traces of universal R-matrices R(z). Since the existence of
R(z) for U, (9) is not clear to the author (except the simplest case gl(1]1) in [50]), we use
a different transfer matrix based on RTT. One should imagine S" (z) as the specialization
of R(z) at W ® V.

As in [24], the transfer matrix ty (z) is a twisted trace of SW (z) due to the presence
of p € wt(W). In [6,46] p is related to an auxiliary field.

Example 9.2. Consider the one-dimensional module C¢ in Example 1.3:
14
tor(@i =i x px [[heb)p; foriel’.
=1

Proposition 9.3. For X, Y in category O and a € C*, we have:

toxx (z) = tx(za), 1x(ty(z) =ixgy(2), ix(@iy(w) = ty(w)ix(z).
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Proof. We mainly prove the second equation; the first one is almost clear from Defini-
tion 9.1 and Eq. (1.1), and the third one in the same way as [24, Theorem 5.3] based on
the commutativity of Ko(O). For i, jel ¢

1
Si)i@y(z) QEij = S,-}ffY(Zbr) QL j, ®Epj @+ Q Ejyj,
r=~_

1
=Y T] ((—1)|Eirkr|‘5krfr's3fk, (zbr) ® s ;. (zbr)) ® Ei\jy ® Eiyj, ® - ® Ejyj,
keltr=¢

=) E@® 18 En(1®S);(2) ® Ex)).
kel

After taking trace over X, ® Y/, only the terms with ¢; = ¢, = ¢; survive and so all
the tensor components are of even parity, implying the second equation. 0O

Let ¢ : 8 —> C* be a morphism of multiplicative groups (typical examples are
((pier: ) = (=D and ((p)ier; 8) = (—=1)* x[];<; pi). If W is afinite-dimensional
Y, (g)-module in category O, then the twisted transfer matrix is:

twze)= Y | D o) xTrw, (8} (@) | Eij € End(VE)[[z]l.  (9.35)
ijelt \pewt(Ww) -

If W is infinite-dimensional and the second summation above converges (for a generic
choice of ¢), then ty (z; @) is still well-defined.

Lemma9.4. Leti € Iy, a,c € C*X. The power series fc(fg(z)Sjk(z) € Y, (9)llz]] for
J.k € I act on the module %Oa) as polynomials in z of degree < 1, where

=M i>M
(@) M_N—i—1 | (—zac 2qgM*N=T=T)(1_zaq-M-N-T)
ca | 1—2a9 1—zagM+N -1

Proof. Let us recall the generic limit construction of %(2 in [53]. For m > 0 set
Vi = W;:)aq‘] ® Cq,... 1:m]w;))» SO that its highest £-weights is of even parity. Let

T .= {si(]'.’), tl.(]'.”} be the set of RTT generators for U, (@). By [53, Lemma 5.1], their exists
an inductive system of vector superspaces ({V,,}, { Fyn,,m;}) with Laurent polynomials
Q:m(u) € Home(Viy, Vips1)[u, u1fort € 7T and m > 0 such that

tFmg,m = I'my,m+1 Qt;m(q;nz) € Hom(C(Vm7 sz) for my > m+ 1. (A)

Its inductive limit admits a U, (g)-module structure where r € 7 acts as the inductive
limit lim Qy.,,(c). This is exactly the module 7/6(2
m—0oQ

Suppose i > M. By comparing the highest £-weights of the modules in Eq. (2.25)
based on (2.19), (2.21) and Lemma 2.6, we have:
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wd Vq_*(kg); aqM+N—1—i) ~ ¢’Zm(z) (VJ*(KZ); aqi—M—N+2m—1))’

m,aq
m M+N—i 2A=2j+M+N—i—1y2

(1 —zaq
hm(2) = l_[ 1_[ 22+ M+N—i—3 A2+ M+N—i+1
=1 =l (I —zag=—=J =) — zag i+

2m+i—M—N—1)(1 —za —i+M+N—1)

_ (I —zaq q
- (1— Zaq2m_i+M+N_1)(1 _ Zaqi—M—N—l) :

It follows that Ay, (2) ' (1 — zag®™2*=M=N=1)5., () Fu,.m is a polynomial in z of
degree < 1 for all my > m. By Equation (A) above, this is equal to

(1 _ Zaq2mz+i7M7N71)

iy (2)

sz,m+l

> Qsﬁ);m(quz)-

n>0

Since /1y, )"\ — Zaq2m2+i—M—N_l) = fq@mz a(z), from the injectivity of Fy,;, m+1

and the polynomial dependence on ¢2, we obtain that fc(fg @D ,=02" Q.m,, (c)isa
> s

polynomial in z of degree < 1. By taking the inductive limit m — o0, the same holds

for the action of fc(f,z (2)sji(z) on %Ua)

The case i < M is much simpler, since V,, = Vq"(mwi; aqM_N_i_l). We omit the
details. 0O

Based on the lemma, let us define the Y, (g)-module WE')G =%, (V/CSQ). (Indeed

fc,a(z)
it can be equipped with a U, (g)-module structure.)
Lemma 9.5. Fori € Iy and a, c € C* we have:
WO W= oW Je RO, 030

Let X be a finite-dimensional U, (§)-module in category O. In a fractional ring of Ko(O)
dim X
we have [X] = ) [D;]lm; where for eachl, Dy is a one-dimensional Uq@—module in
=1
, (W,
category O, and my is a product of the [W b

i)
a

withi € Iy, a,b,c € C*.

Proof. For the first statement, by Example 1.6 and Lemma 9.4 we have:

oo, =0l 0l . R0 =10 @0 @.

a1’ a c

Together with Lemma 4.2, this implies that the g-characters of the two tensor products
in Eq: (9.36) coincide. For the second statement, we argue as [24, Theorem 4.8] based
"’Z)a Xq(%(,la)) _ Xq(WE,L)

; see also [53, Theorem 6.11]. O

on = = — = -
0% T xg D T xgWE)’

Equation (9.36) is a separation of variables identity; see also [22, Theorem 3.11].
The same identity holds when replacing W by %#. Since 0 (z) is a polynomial in z of

degree < ¢, the following definition makes sense.

Definition 9.6. For i € Iy the Baxter operatoris Q;(z) := Ly ® (1).
z,1
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Let p = w(w!}). Then wt(W)) c p¢Q and 0;(2) := (p")"10i(z) isa
power series in the g%/ with j € Iy whose coefficients are in End(V®9)[z, z71]. Let
@?(2) be its leading term. Since (ng,)l )pgi) is the one-dimensional simple socle of ng’)l ,

by Definition 9.1, i is an eigenvector of E?(l) with non-zero eigenvalue. (Here we used

the overall assumption b; ¢ g”.) The formal power series E?(z) and Q;(z) in the g~%/
can therefore be inverted for z € C generic.

Corollary 9.7 (Generalized Baxter TQ relations). For b, ¢ € C*, we have:

wo G iy %ﬁ?(z_z) TINCTED ok
o G Qi) @) L A T Qizo) '

If X is a finite-dimensional U, (§)-module in category O, then tx(z7%) is a sum of
monomials in the g’gf; tp(z"Y) withi € Iy, b,c € C* and with D one-dimensional

U, (§)-modules in category O, the number of terms being dim X.

Proof. In Eq. (9.36) let us set (a, c) = (z7', bz2):

(W LW = (W 1w,
Taking transfer matrices and evaluating them at 1 gives the special case ¢ = 1 of
Eq. (9.37), which in turn implies the general case ¢ € C*. The second statement is a

translation of that of Lemma 9.5. O

Example 9.8. Let g = gl(2[2) and X = W{'] = V/*(e1: ¢~1). By Eq. (2.18):

Xq(X) = 1 +1 "'1 +1'
If s € Zy,g(z) € C[[z]]* and ¢ € C*, for simplicity let sg(z) = (g(z)*; s) € ‘fs‘,

[, ()] = [L(g(2)*; )] € Ko(O) and (s, ¢) := (c*s5) € P. Set wey = [l
By Definition 2.2, Example 1.6 and Lemma 9.4:

2
q— q—z2q =
,1,1,1; 2, =11, ———,1,1;
(1 O) 2} <’1—zq3’ ’ ’0>’
—zq - 1—2zqg -
L1, ——=—,1;1), |4} =111, i1,
( —zq ) 4} ( q-z )

(1 (2)

Wea _ c—zac~ L O> Wea (c—zaqcl ¢ —zage™! ) 1'6)
wili 1 —za wizc)l l—zag = 1—zaq ~ )’
wg), _ l1—zac™? 1—zac™? 1—zac? ol O) . (])
wﬁ)l l—za ° 1—-za ' 1-—za L 51; '

WD ,® w?® p® 3)

i - -1, —l—zq w
2], = q(nq ?2? - Bli=T" ?2? q(3>q’ [4], =T ?3?
Wig

1—z
Wig W42 W2 Yig 7
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It follows that in the fractional ring of Ko(O):

M @ @) 3)
[W(l)] [W 41, ][quqz] - [W 2][W ) q]

= +[L.g7]
ey ey T e

1 L-zq Wi
z2q [W ]

Let q% be a square root of g. By Example 9.2 and Eq. (9.37):

01(zq?) Ql(zq D 0 | 0:() Q3(zq?) —
1 1 + 1, q

01ea D) 01 z)Qz(zq ) " 026470 0y )

03(2q?) 2 —byg

03(zg™2) 1oy &~ big™!

Example 9.9. Let g = gl(2]0) and X = W, = V*(e1: ¢). Then

tx(z7) =

+(1, 1) x

B n w®
q—12q — q—27 = Wq,q q—< (1_1’1
L, +[2], = ——.1;0)+(1, 0) = + ’
[1].+[2]. <1_Zq1 > ( - ) WD T T=2g D
.q Lg
L Qi) | - QiGg D) 6122—”
tX(Z 2) — (qu> _b
01(zq™?) Qi(zg™2) 1oy & —bia

Example 9.10. Let g = gl(1]1) and X = W{!) = V(€15 ¢~"). We have

1 —zq - o <1-z
1) =[1], +[2], = ( 10) < Zq;1>— fff(lﬂ Zq>,

q—z Wi, qg—2z

1oy
01(zq7) f Mg x 01(zq?) y2°—bigq
’ _1 20 _ b
Q1(z¢~?) Q1(zg72) 11 ¥4~ b
One can view Examples 9.9-9.10 as degenerate cases of Example 9.8.
We are ready to deduce three-term functional relations of the Baxter operators Q; (z).

Fix a = 1. Let ¢c,d € C* be such that ¢> ¢ ¢Z. In Eq. (5.30) let us evaluate transfer
matrices at z~2 making use of Proposition 9.3:

_ -2
M(:)(Z )tWU) =t o > J] by ._Z(Z )
! Jeloj~i Cij %j i

-2 -2 -2
+1p, (2 t., ) Z t., () Z .
o @ ] o @D

g7 d?

1x(z %) =

jelp:j~i  Cij 9ij i Cij

Dividing both sides by the term at the second row without #p, (z~2%) and making use of
Eq. (9.37), we obtain the Baxter TQ relation:

1
i\L 1 1 Q(‘],j)
Q(Az) =yl()Q(zq) l—[ AL i

) L +1p,(z7), (9.38)
Qi(qu' ) Ql(qu )jel()!j’”i Q](qujz)

X9 (z)
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where X1 (2) (depending on ¢ € C*\g%) and y; (z) are given by

| £y &) e Fia @0
X9 () = : % L
jell(:[jw' t//(i; -1 —1-2 @™ =1 fd dZ(Zi br)
) Cij dij 4dij Cij
]
¢ f(A—l d2 zbl) fjl -1 -1 72(5 2bl)
ITGIE § || [ —— IRTRTT
(@) — @) -
=\ a2 G0 et foi o1 2 @720

Note that y; (z), D; are independent of ¢, d by Lemma 9.4 and Theorem 5.3.

Let us assume that the twisted transfer matrices in Eq. (9.35) are well-defined for
all the M C(li and V/C(’a), upon a generic choice of ¢ : 8 — C*; this corresponds to
the convergence assumption in [24, Remark 5.12 (ii)]. Then Eq. (9.38) is an operator
equation in End(V®9)[[z72]].

Based on the asymptotic construction of %(2, one can show that there exists n € Z
such that 7" Q;(z) is a polynomial in z with values in End(VW).

As in [25, Section 5], we expect that the tMm (z72) are polynomials in 72 (up to

multiplication by an integer power of 7). Suppose that w is a zero of Q;(z) that is neither

a zero of Q;(zq; H, 0, j (qu 2) nor a pole of X, u )(z) Then we have the Bethe Ansatz
Equation: (see [44, (2.6a)] and [5,38])

Q'(in) 1_[ Q]( ql/)

— = —tp, (w™2). (9.39)
QiWa; ) jely:jmi Qj(wq” )

yi(w)

Example 9.11. Following Example 9.8, we determine the highest £-weight (still denoted
by D;) of the one-dimensional U, (g)-module D; and the y;(z) in Eq. (9.39) for g =
gl(2|2). First by Definition 2.2 and Example 1.6:

—1 -1 -1
wglt)lz S ’17151;6 b w(2) = C_Zaqc ’C_Zaqc 71’1»6 b
’ a 1 —zaq 1 —zaq

1 — B _ —1 1— 2 _
(0(3) — 1’1’17—2[1.0 , Ala= q zaq 7 zaq ’1’170 ,
c,a ’ 1—2za q —zaq

—z - _ 1 —zaq? q—zaq™' —
A2,Ll = (1’ q <« k] q « ’ 1; 1) ’ A3,a = (19 17 Zaq ’ q Zaq ;O> .
1—2zaq 1—zaq q — zaq 1—za

The relations between A and w are as follows: A; , = (l) 0 ) _, and

‘1 Jaq? ‘1 Laq

2
= q- (1 3) _1—zaq” o)
Azg = 1— 1—zaq wq—l aq—lwq,aq’ A3a = q — zaq wq,quq‘Q,aq‘z
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It it follows that D; = 1, D, = 11;}‘1

, D3 = {:Zq"z and so (D;(z) = tp,(z72))

)
2 —bg z°q — biq
Di(z) =1, Da(z)=(1,q"" ><||— D3(z) = (0,q) ><||—
1 2q — b I 22— big?

-2

() =1 (Z)_l—[ﬂ (Z)_lﬁ[ﬂ
Y1 ) 2 o Z2 — b[q_l ) y3 L Zz — b[qz .

The Bethe Ansatz Equations become in this case:

01(wiq) Ox(wig™?) _ O1(wag %) Q3(wng®) - . _,
—1 1 =-1 1 1 ——(l,q )Xq s
Q1(wig™) Qs (wiq?) Q1(w2g?) Q3(wag™2)
1 % 14 2
Q3(w3g™") Qa(wsq l) —_(0.q) x l—[ w3q bz_qz’
Q3(w3q) O, (w3g~2) = W3 —big

where w; is a zero of Q;(z) for 1 <i < 3.

The generalized Baxter relations in Lemma 9.5 and Bethe Ansatz Equations (9.39) for
the Baxter operators Q;(z) are based on asymptotic U, (@)-modules: V/C(la), NC“Q,, Mc(ft)l,
whereas in recent parallel works [18,19,25,35] representations of Borel subalgebras
(Y, (g) in our situation) play a key role.

In [5,38], for the Yangian of gl(M|N) the Baxter operators Q;(z) are labeled by
the subsets J of /. In addition to TQ relations, there are algebraic relations among the
Q) (z) called QQ relations. Our Q;(z) with i € I seem to be algebraically independent
by Proposition 7.7; see also [24, Theorem 4.11].

Remark 9.12. Following [6,24] define Q; (z) := I, (z) fori € Iy. We have

(9.40)

) ¢ (z) -2 .
fL([cJ,->(z‘2)Q’(Z ¢ )=H 120 0(z0)

Qi) L o

(~ (’)) Xq(L+
based on the g-character formula % 7 (l)) = [c ,-W

Remark A.7] for a similar comparlson in the Yangian case.

and Eq. (9.37). See [22,
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