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Abstract: Thepurpose of this article is to investigate relations betweenW-superalgebras
and integrable super-Hamiltonian systems. To this end, we introduce the generalized
Drinfel’d–Sokolov (D–S) reduction associated to a Lie superalgebra g and its even
nilpotent element f , and we find a new definition of the classical affine W-superalgebra
W(g, f, k) via the D–S reduction. This new construction allows us to find free gener-
ators of W(g, f, k), as a differential superalgebra, and two independent Lie brackets
on W(g, f, k)/∂W(g, f, k). Moreover, we describe super-Hamiltonian systems with
the Poisson vertex algebras theory. A W-superalgebra with certain properties can be
understood as an underlying differential superalgebra of a series of integrable super-
Hamiltonian systems.

1. Introduction

Classical affineW-algebras havebeen studied in the theoryof integrable systems since the
1980s, when Drinfel’d–Sokolov [12] discovered relations between a finite dimensional
simple Lie algebra g and a sequence of integrable systems.

The main idea of Drinfel’d and Sokolov in [12] is considering Lax operators associ-
ated to a Lie algebra g. Precisely, such Lax operators have the form of

L = ∂

∂x
+ q(x) + � (1.1)

where (i) q is a differentiable function whose value is in a borel subalgebra n+ ⊕ h ⊂ g
(ii) � = f + zs ∈ g[z] for the principal nilpotent element f ∈ n− and s ∈ ker(adn+).
Here, n+ ⊕ h⊕ n− is a triangular decomposition of g. On the phase space Fg consisting
of functions q in Lax operators, Drinfel’d–Sokolov defined gauge transformations. As
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a consequence, the W-algebra W(g) associated to g was introduced as a set of gauge
invariant functions.

Furthermore, a Lax operator (1.1) gives rise to a bi-Poisson structure onW(g), which
has an important role to find related integrable systems [12]. A bi-Poisson structure
({, }K , {, }H ) consists of a couple of linearly independent local Poisson brackets which
involve delta distributions, that is,

{u(x), v(y)}X =
∑

n∈Z+∪{0}
Wn(y) ∂ny δ(x − y) for u, v,Wn ∈ W(g), X = K , H

satisfy skew symmetries, Jacobi identities and Leibniz rules. After all, a systematic algo-
rithm of getting a sequence of Hamiltonian integrable systems onW(g)was discovered.
In this algorithm, they used the Lenard–Magri scheme and the bi-Poisson structure, i.e.,
there are ki ∈ W(g) for i ∈ Z≥0 such that

dφ(x, t)

dt
=

∫
{ki (x), φ(y)}Hdy =

∫
{ki+1(x), φ(y)}K dy, for φ ∈ W(g),

are all distinct integrable systems.
In an algebraic point of view, classical affineW-algebras are Poisson vertex algebras.

A Poisson vertex algebra (PVA) is a differential algebra endowed with a Poisson λ-
bracket structure, denoted by { λ }. Here, a λ-bracket can be understood as an algebraic
interpretation of a local Poisson bracket. On the other hand, Poisson vertex algebras are
closely related to vertex algebras since the quasi-classical limit of a certain family of
vertex algebras is a Poisson vertex algebra. As one can expect, there is a vertex algebra
called a quantum affine W-algebra that is a quantization of a classical affine W-algebra.

The quantum affine W-(super)algebra associated to g and f ∈ g is introduced via
the quantum affine BRST complexes (or the quantum Drinfel’d–Sokolov reduction),
provided that g is a finite dimensional simple Lie superalgebra with a non-degenerate
even supersymmetric bilinear form and f is an even nilpotent element with an sl2-triple
(e, h, f ) [5,13,19,20]. In [24,25], the author proved that the quasi-classical limit of the
quantum affine W-(super)algebra associated to g and f is

W(g, f, k) = (P/I)adλn, (1.2)

where P = S(C[∂] ⊗ g) is the affine PVA, and the Lie subalgebra n of g and the
differential algebra ideal I of P are determined by f . Here the adλn-action is induced
from the λ-bracket on the affine PVA P and k ∈ C is the constant involved in the λ-
bracket ofP . These results imply that classical affineW-(super)algebras have properties
analogous to those of finite W-(super)algebras [14]. Note that the W-algebra W(g)
introduced by Drinfel’d and Sokolov in [12] is just W(g, f, k), when f = fprinc is a
principal nilpotent element and k = 1 (see also [7]).

Since W(g) is a special case of W-algebras associated to g, there have been many
attempts to understand algebraic structures ofW(g, f, k) and to find integrable systems
associated toW(g, f, k) for any nilpotent element f (see [1,4] for instance). Regarding
these topics, there are plenty of considerable articles, provided that g is a Lie algebra.
In [11,28], using the definition (1.2), De Sole, Kac and Valeri succeeded in explaining
generators ofW(g, f, k) and the λ-bracket relations between them.Moreover, integrable
systems onW(g, f, k) are discovered in [3,6,8,9]. However, in the case when g is a Lie
superalgebra, there still remain many open problems.
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For algebraic structures ofW-algebras associated to Lie superalgebras (W-superalge-
bras), we refer [22,23,27,29], where structures of finiteW-superalgebras are considered,
and [20,26], where the algebraic structures of affine W-superalgebas associated to min-
imal nilpotent elements are given. On the other hand, integrable systems have not been
yet explored in precise connections with W-superalgebras (1.2) via PVA structures, to
the best of the author’s knowledge. There are some articles that investigated integrable
systems on noncommutative algebras (see [10,16,17,21] and the references therein).
In particular, in [16,17,21], the authors described relations between integrable systems
and Lie superalgebras, for instance spo(2|1) and sl(n|n). However, it is not clear if these
integrable systems can be explained by PVA structures of W-superalgebras (1.2).

In this context, a natural question is whether a W-superalgebra can be related to a
sequence of integrable systems. In this paper, as the first step toward answering this
question, we construct W-superalgebras using Lax operators, mainly inspired by the
important papers [1,4,7,12]. The key idea is to consider Lax operators in algebraic
languages:

L = k∂ + q − � ⊗ 1 ∈ C∂ � (g[z] ⊗ P/I)0̄

with even parities, where P/I is the differential algebra in (1.2) (see Definition 3.1). In
other words, we assume that the entire phase space

Fg, f = {q | L = k∂ + q − � ⊗ 1 is even Lax operator} ⊂ (g[z] ⊗ P/I)0̄

is even. By considering even gauge transformations, we prove that the construction
of W-superalgebras via Lax operators is equivalent to (1.2) (see Theorem 3.11). This
new construction is particularly useful to find free generators of W-superalgebras as
differential algebras (see Proposition 3.14).

Recall that if g is a Lie algebra and f ∈ g is a nilpotent element, then the W-algebra
W(g, f, k) is endowed with a pair of Poisson λ-brackets, and these brackets play crucial
roles in describing integrable Hamiltonian systems associated to W(g, f, k). There-
fore, in order to find integrable systems associated to W-superalgebras in an analogous
approach, we need to understand the following:

• the definition of super-Hamiltonian evolution equations using Poisson λ-brackets
of Poisson vertex algebras;

• how to describe two linearly independent Lie (super)brackets on W(g, f, k)/∂W
(g, f, k) with Lax operators and variational derivatives;

• Lenard–Magri scheme associated to super-Hamiltonian integrable systems.

To describe two linearly independent Lie (super)brackets on W(g, f, k)/∂W(g, f, k),
we consider the special operator called the sign twisted1 universal Lax operator,

Lσ
univ = k∂ + qσ

univ − � ⊗ 1 ∈ C∂ � g[z] ⊗ P/I.

(see Proposition 3.18 for the precise definition). Employing this operator, we describe
the Lie brackets onW(g, f, k)/∂W(g, f, k) which are needed to use the Lenard–Magri
scheme. Indeed, under the assumption that � is semisimple in g((z−1)), we show
that there are super-Hamiltonian integrable systems associated to classical affine W-
superalgebras (see Theorem 5.14).2 As a simplest example, we show one of super-
Hamiltonian integrable systems associated to W(spo(2|1), f, k) is equivalent to the
super KdV equation, which appears in [21], up to constant factors.

1 The main reason we consider sign twisted operators is explained in Remark 4.16.
2 This is a quite strong assumption (see Remark 5.5). An important open question in this field is to find

integrable systems associated to arbitrary W-superalgebras.
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2. Classical Affine W-Algebras

In this section, we review some known facts about classical affine W-algebras. For the
notions about Poisson vertex algebras, we refer to [2,18]. Properties about W-algebras
and Lax operators denoted in this section can be found in [7,12].

2.1. Poisson vertex algebras.
A vector superspace is a vector space V with the Z/2Z-graded decomposition V =
V0̄ ⊕ V1̄. For i = 0, 1, we denote the parity by p(a) = i for a homogeneous element
a ∈ Vī . The superalgebra End(V ) = End(V )0̄ ⊕ End(V )1̄ is a vector superspace such
that

if F ∈ End(V )ī then F(Vj̄ ) ⊂ Vī+ j̄ .

The supersymmetric algebra A is a superalgebra with the supersymmetry

ab = (−1)p(a)p(b)ba,

for homogeneous elements a and b.

Definition 2.1. A Lie conformal algebra (LCA) R is a C[∂]-module with a C-linear
λ-bracket

[ λ ] : R ⊗ R → R[λ]
satisfying the following properties:

• (sesquilinearity) [aλ∂b] = (λ + ∂)[aλb], [∂aλb] = −λ[aλb],
• (skewsymmetry) [aλb] = −(−1)p(a)p(b)[b−λ−∂a],
• (Jacobi identity) [aλ[bμc]] = [[aλb]λ+μc] + (−1)p(a)p(b)[bμ[aλc]].
Here, we assume ∂ is an even operator on R.

Remark 2.2. Let R be a LCA.

(1) The sesquilinearity implies ∂ is a derivation for the λ-bracket on R, i.e., ∂[aλb] =
[∂aλb] + [aλ∂b].

(2) For any a, b ∈ R, we denote by [aλb] = ∑
n≥0

a(n)b
n! λn for a(n)b ∈ R. Here,

a(n)b ∈ R is called the nth product of a and b.

Definition 2.3. (1) A differential (super)algebra D is an associative (super)algebra
with an even operator ∂ : D → D called derivation such that

∂(AB) = ∂(A)B + A∂(B) for A, B ∈ D. (2.1)

In other words, the derivation ∂ defined on a generating set of D can be extended
using the Leibniz rule (2.1).

(2) The (super)algebra of differential polynomials

Cdiff[ wi | i ∈ I0̄ ∪ I1̄ ]
generated by even elements in {wi }i∈I0̄ and odd elements {wi }ı∈I1̄ is the algebra
isomorphic to the tensor products of a symmetric algebra and a exterior algebra

S(V0) ⊗
∧

(V1)

where V0 := SpanC(∂n wi | i ∈ I0̄, n ∈ Z≥0) and V1 := SpanC(∂n wi | i ∈
I1̄, n ∈ Z≥0).
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Remark 2.4. For the simplicity of notations, we denote by S(V ) the supersymmetric
algebra generated by the vector superspace V = V0̄ ⊕ V1̄. In other words,

S(V ) := S(V0̄) ⊗
∧

(V1̄).

Using the notion of a LCA and a differential algebra, we can introduce Poisson vertex
algebras.

Definition 2.5. A quintuple (P, 1, { λ }, ∂, ·) is a Poisson vertex algebra (PVA) if

(1) (P, { λ }, ∂) is a Lie conformal algebra,
(2) (P, 1, ·, ∂) is a supersymmetric differential algebra with the derivation ∂ and the

unity 1,
(3) the Leibniz rule holds:

{AλBC} = (−1)p(A)p(B)B{AλC} + (−1)p(C)(p(A)+p(B))C{AλB}.
Example 2.6. Let g be a finite simple Lie superalgebra with the even supersymmetric
bilinear form ( | ). The affine LCA of g is R = C[∂] ⊗ g with the λ-bracket defined by

[aλb] = [a, b] + λk(a|b), for a, b ∈ g and k ∈ C,

and sesquilinearity. The affine PVA of g is the (super)symmetric algebra S(R) generated
by R endowed with the λ-bracket induced from the bracket of R and the Leibniz rule.

Proposition 2.7. Let P be a PVA and ∂P be the subspace { ∂p | p ∈ P} of P. Then the
quotient space P/∂P = {p + ∂P|p ∈ P} endowed with the bracket

[a + ∂P, b + ∂P] := {aλb}|λ=0 + ∂P for a, b ∈ P
is a well-defined Lie superalgebra.

Proof. By the sesquilinearity of λ-brackets, we can see [∂a, b] and [a, ∂b] are in ∂P .
Hence it is a well-defined bilinear map P/∂P ×P/∂P → P/∂P . Skew-symmetry and
Jacobi identity of [ , ] follow from those properties of { λ }. 	

Definition 2.8. Let P be a PVA and H : P → P be a diagonalizable operator. Denote
by �a the eigenvalue of homogenous element a ∈ P with respect to the operator H . If

�1 = 0, �∂a = �a + 1, �ab = �a + �b, �a(n)b = �a + �b − n − 1,

for any homogenous elements a, b ∈ P then H is called a Hamiltonian operator and
�a is called the conformal weight of a.

Remark 2.9. Let L be an element of a PVAP . If (i) L(0) = ∂ , (ii) L(1) is a diagonalizable,
and

(iii) {LλL} = (∂ + 2λ)L + cλ3, for c ∈ C

then L is called an energy momentum field of P . By sesquilinearities and Leibniz rules,
L(1) is a Hamiltonian operator. By convention, we denote by

Ln = L(n+1) for n ≥ −1.

The operator L0 = L(1) is called the Hamiltonian operator induced from the energy
momentum field L .

Hamiltonian operators are useful to describe relations between PVAs (VAs) and
Poisson algebras (associative algebras).
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2.2. Classical affine W-algebras.
There are some ingredients to construct a classical affine W-algebra. From now on, we
fix notations to indicate them.

Setup 2.10. Let g be a finite simple Lie superalgebra and (e, h, f ) be an even sl2-triple
in g. Suppose ( | ) is the even supersymmetric bilinear form on g such that (e| f ) =
1
2 (h|h) = 1 and g = ⊕d

i=−d g(i) is the adh
2 eigenspace decomposition. We consider

two Lie subalgebras n and m:

n = ⊕
i>0 g(i) = ⊕

i≥1/2 g(i) ⊃ m = ⊕
i≥1 g(i).

Recall that the grading by adh is called a Dynkin grading, which is an example of a
good grading. Hence we have the following properties:

(1) ad f : ⊕
i≥1/2 g(i) → ⊕

i≥−1/2 g(i) is injective,
(2) ad f : ⊕

i≤1/2 g(i) → ⊕
i≤−1/2 g(i) is surjective.

By (1) and (2), we have the bijection ad f : ⊕
i=1/2 g(i) → ⊕

i=−1/2 g(i).

Using notations in Setup 2.10, we define classical affine W-algebras.

Definition 2.11. LetI be the differential algebra ideal of the affinePVAP = S(C[∂]⊗g)
generated by m + ( f |m) for m ∈ m. The classical affine W-(super)algebra W(g, f, k)
associated to g, f and k ∈ C is

W(g, f, k) = (P/I)adλn,

where adλn-action on P/I is induced from the λ-bracket on P in Example 2.6. The
W-algebra W(g, f, k) is a PVA with the λ-bracket induced from that of P.

Proposition 2.12 [7]. Suppose there is an even element s ∈ g(d), where d is the largest
integer such that g(d) = {0}. (See Remark 2.14.) The W-(super)algebra W(g, f, k) in
Definition 2.11 is endowed with another Poisson λ-bracket which is induced from the
bracket on the affine PVA P := S(C[∂] ⊗ g) defined by

{aλb}2 = (s|[a, b]). (2.2)

Proof. Consider the one parameter family of Poisson λ-brackets on S(C[∂]⊗g) defined
by

{aλb}t = [a, b] + kλ(a|b) + t (s|[a, b]), t ∈ C. (2.3)

Observe that [s, n] = 0 and {nλA} = {nλA}0, where { λ } is the Poisson λ-bracket
on the affine PVA in Example 2.6. Hence {nλA}t = {nλA}. Thus, for the ideal I in
Definition 2.11, we have

W t (g, f, k) := { Ā ∈ P/I | {nλA}t ∈ I} � W(g, f, k), A �→ A,

as differential algebras. One can also check thatW t (g, f, k) is a PVA endowed with the
λ-bracket induced from (2.3) and extended via Leibniz rules. For A, B ∈ W(g, f, k),
we have

{AλB}2 := {AλB}t+1 − {AλB}t ∈ W(g, f, k)

which defines another λ-bracket onW(g, f, k). Thewell-definedness of the bracket { λ}2
can be shown by the master formula, or Proposition 4.4. This bracket can be understood
as the bracket induced from (2.2). 	
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Remark 2.13. In order to distinguish two λ-brackets on W(g, f, k), we denote by { λ }1
or { λ } the bracket in Definition 2.11 and by { λ }2 the bracket in Proposition 2.12.

Remark 2.14. A nonzero even element s ∈ g(d) exists for a subalgebra of gl(m|n).
In [15], Hoyt showed that Dynkin grading on g0̄ can be extended to g. For example, in
sl(m|n) case, it can be shown as follows. A Dynkin grading of gl(m|n) corresponds to a
pair (λ|μ) of partitions of m and n. If λ = (p1, p2, . . . , pr0) and μ = (q1, q2, . . . , qr1)
are decreasing sequences then the largest numbers d0̄ and d1̄ such that g0̄(d0̄) = {0} and
g1̄(d1̄) = {0} satisfy

d0̄ = max{2(p1 − 1), 2(q1 − 1)}, d1̄ = (p1 − 1) + (q1 − 1).

Hence, for d = max{d0̄, d1̄} = d0̄, there exists a nonzero even element s ∈ g(d). Similar
argument works in spo(m|n) cases.

Proposition 2.15 [7]. Let {ui }i∈I and {ui }i∈I be dual bases of g with respect to the
bilinear form (·|·) and let {vi }i∈I1/2 and {vi }i∈I1/2 be the dual bases of g1/2 with respect
to the bilinear form ω(·|·) on g1/2 defined by

ω(a, b) = ( f |[a, b]).
Then

L =
∑

i∈I

1

2k
ui ui +

∑

i∈I1/2

1

2
∂(vi ) vi +

∂h

2
(2.4)

is an energy momentum field of the affine PVA of g with the λ-bracket

{aλb} = [a, b] + kλ(a|b), for a, b ∈ g.

The conformal weight �a of a ∈ g( ja) is 1− ja . Moreover, the element L ∈ W(g, f, k)
which is the quotient of L in (2.4) is an energy momentum field of W(g, f, k).

About algebraic structures of classical affine W-algebras, the following proposition
can be found in [26]. Also we note that, in [5], there is the analogous result for quantum
affine W-algebras.

Proposition 2.16 [7,26]. Let L be the energy momentum field of W(g, f, k) in (2.4).
For the Hamiltonian operator L0, let �a be the conformal weight of the homogenous
element a ∈ W(g, f, k).

(1) As differential algebras W(g, f, k) � S(C[∂] ⊗ g f ), where g f = ker(ad f ) ⊂ g.
(2) Let B f be a basis of g f . There is 
 f = { φg | g ∈ B f } ⊂ W(g, f ) such that

φg = g + ψg,

where �ψg = �g and ψg is an element of the algebra of differential polynomials
generated by

⊕
i>1−�g

g(i). Note that g ∈ g(1 − �g). Moreover,

W(g, f, k) = Cdiff[φg|g ∈ B f ].
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Example 2.17. Let g = sl2. Then n = m = Ce and the ideal I of S(C[∂] ⊗ g) is
generated by e + 1. As differential algebras,

W(g, f, k) = Cdiff[φ f ],
where φ f = f − 1

2 x
2 − k∂x for x = h

2 . We can check that

{φ f λ φ f } = −k(λ + 2∂)φ f − k3

2
λ3.

Example 2.18. Let g = spo(2|1) ⊂ gl(2|1). Then the even part g0̄ is generated by an
sl2-triple (eev, h, fev) and the odd part g1̄ is generated by eod and fod . As matrix forms,

h =
⎛

⎝
1 0 0
0 −1 0
0 0 0

⎞

⎠ , eev =
⎛

⎝
0 1 0
0 0 0
0 0 0

⎞

⎠ , fev =
⎛

⎝
0 0 0
1 0 0
0 0 0

⎞

⎠ ,

eod =
⎛

⎝
0 0 1
0 0 0
0 1 0

⎞

⎠ , fod =
⎛

⎝
0 0 0
0 0 1

−1 0 0

⎞

⎠ .

Consider the even supersymmetric invariant bilinear form ( | ) such that (h|h) =
2(eev| fev) = 2 and (eod | fod) = −2. There are two elements

φod := fod − 1

2
eodh − k∂eod , φev := fev +

1

2
fodeod − 1

4
h2 + k

1

4
eod∂eod − k

1

2
∂h,

which satisfy

adλeev(φod) = adλeod(φod) = adλeev(φev) = adλeod(φev) = 0 + I.

Hence

W(g, fev, k) = Cdiff[φod , φev]
as a differential algebra. By direct computations, we can check that the λ-bracket of
W(g, fev, k) is defined as follows:

{φod λ φod} = −2φev − 2k2λ2,

{φev λ φod} = −k(∂ +
3

2
λ)φod ,

{φev λ φev} = −k(∂ + 2λ)φev − k3

2
λ3.

2.3. Generalized Drinfeld–Sokolov reductions.
In Sect. 2.3, we recall the construction of classical W-algebras associated to Lie alge-
bras via Drinfeld–Sokolov reductions in PVA theories. For the purpose, we assume
g is a finite dimensional simple Lie algebra (without odd part), in this subsec-
tion.

For a symmetric differential algebra V , the vector space g ⊗ V is the Lie algebra
endowed with the bracket

[a ⊗ F, b ⊗ G] = [a, b] ⊗ FG for a, b ∈ g, F,G ∈ V.
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The bilinear form ( | ) : g×g → C on g can be extended to themap ( | ) : g⊗V×g⊗V →
V by

( a ⊗ F | b ⊗ G ) = (a|b)FG.

The derivation ∂ : V → V on V can be extended to an endomorphism on g ⊗ V such
that

∂(a ⊗ F) = a ⊗ ∂F.

ConsiderC∂ as the trivial one dimensional Lie algebra. ThenC∂�g⊗V is the semidirect
product of Lie algebras C∂ and g ⊗ V endowed with the bracket

[ c1∂ + a ⊗ F, c2∂ + b ⊗ G ] = c1(b ⊗ ∂G) − c2(a ⊗ ∂F) + [a ⊗ F, b ⊗ G]. (2.5)

Recall the notation m = ⊕
i≥1 g(i) in Setup 2.10. If we denote by V⊥ := { w ∈

g | (w|v) = 0 for any v ∈ V } for a subset V ⊂ g then

m⊥ = ⊕
i>−1 g(i) = ⊕

i≥−1/2 g(i). (2.6)

Let us consider the subspace

p = ⊕
i<1 g(i) = ⊕

i≤1/2 g(i) (2.7)

of g. Then we have

(i) g = m ⊕ p, (ii) p � m⊥ by the bilinear form ( | ).
Definition 2.19. Let p be defined as (2.7) and let V(p) := S(C[∂] ⊗ p).

(1) Let Fg, f be the set of elements

q =
∑

i∈Ip
qi ⊗ Pi ∈ m⊥ ⊗ V(p) (2.8)

for a basis { qi | i ∈ Ip } of m⊥ and a subset { Pi | i ∈ Ip } ⊂ V(p). The set Fg, f is
called the phase space associated to g and f .

(2) For a given q and k ∈ C, the operator L of the form

L = k∂ + q − f ⊗ 1 ∈ C∂ � g ⊗ V(p). (2.9)

is called a Lax operator
(3) The gauge transformation of q ∈ Fg, f with A ∈ n ⊗ V(p) is q A ∈ Fg, f where

eadA(k∂ + q − f ⊗ 1) = k∂ + q A − f ⊗ 1.

On the other hand, for q ′ ∈ Fg, f , if there is A ∈ n ⊗ V(p) such that q ′ = q A then
we say they are gauge equivalent and write q ∼ q ′. Note that it is not hard to check
that the equivalence relation is well-defined in Fg, f .

Elements in the differential algebra V(p) can be identified with functions Fg, f →
V(p) as follows:

p(a⊗F) = (p|a)F, PQ(a⊗F) = P(a⊗F)Q(a⊗F), ∂P(a⊗F) = ∂(P(a⊗F)),

(2.10)
for p ∈ p, P, Q ∈ V(p) and a ⊗ F ∈ Fg, f . An element P ∈ V(p) is said to be a gauge
invariant function if P(q) = P(q ′) whenever q ∼ q ′ for q, q ′ ∈ Fg, f .
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Proposition 2.20 [7]. The set W of gauge invariant functions in V(p) is a differen-
tial subalgebra of V(p). Moreover, W is isomorphic to the classical affine W-algebra
W(g, f, k) associated to g and f as differential algebras.

Remark 2.21. In [12], a pair of local Poisson structures in W is described by a Lax
operator. The Poisson structures are equivalent to the PVA structures on the classical
affineW-algebraW(g, f, k)which are induced from those in the affine PVA S(C[∂]⊗g).
(See Definition 2.11 and Proposition 2.12.)

The construction of W-algebras in Proposition 2.20 allows to compute generators of
the algebras (see Theorem 2.23).

Lemma 2.22 [7]. Let V be a subspace of m⊥ such that m⊥ = [n, f ] ⊕ V . Take a basis
{vi }i∈Ip of m⊥ such that {vi }i∈J⊂Ip is a basis of V and {vi }i∈Ip\J is a basis of [n, f ]. If
{vi }i∈Ip is the dual basis of p then {vi }i∈J is a basis of g f := ker(ad f ).

Theorem 2.23 [7].
(1) Let {qi }i∈Ip and {qi }i∈Ip be bases of m⊥ and p such that (qi |q j ) = δi j . Denote by

quniv = ∑
i∈Ip qi ⊗ qi and L = k∂ + quniv − f ⊗ 1. (2.11)

Then there is unique X ∈ n ⊗ V(p) such that qX
univ ∈ V ⊗ V(p) satisfies

eadXL = k∂ + qX
univ − f ⊗ 1. (2.12)

(2) As in Lemma 2.22, let {qi }i∈J⊂Ip be a basis of V . If

q X
univ = ∑

i∈J qi ⊗ wi

for qX
univ in (1) then wi are gauge invariant functions in V(p). Moreover, by

Lemma 2.22, we have wi = vi + (degree ≥ 2 part).
(3) The set of gauge invariant functions inV(p) is the algebra of differential polynomials

Cdiff[ wi | i ∈ J ].
Remark 2.24. We have the differential algebra isomorphism V(p) � S(C[∂] ⊗ g)/I =:
VI(p), A �→ Ā, where I is the ideal defined in Definition 2.11. Due to the isomorphism,
(1) we can consider a Lax operator L an element in C∂ � m⊥ ⊗ VI(p),
(2) since the W-algebra W(g, f, k) is a subalgebra of VI(p), we prefer to regard

W(g, f, k) as a set of functions from Fg, f to VI(p).

Theorem 2.25 [7]. The W-algebraW(g, f, k) is the set of gauge invariant functions in
VI(p). Hence we can find free generators by Theorem 2.23.

The following is the simplest example of classical affine W-algebras.

Example 2.26. Let g = sl2. Then quniv = e ⊗ f + h ⊗ x for x = h
2 and

L = k∂ + quniv − f ⊗ 1.

If we take X = e ⊗ x then qX
univ = e ⊗ ( f − x2 − k∂x). Hence Cdiff[ f − x2 − k∂x] is

the set of gauge invariant functions. Indeed, we can check that φ f := f − x2 − k∂x is
a gauge invariant function as follows:

Let Y = e⊗ r for r ∈ VI(p). Then qY = h⊗ (x − r)+ e⊗ ( f − k∂r −2r x + r2) and

φ f (q
Y ) = ( f − k∂r − 2r x + r2) − (x − r)2 − k∂(x − r) = f − x2 − k∂x

which is independent on r.Also,we can check that the algebra of differential polynomials
Cdiff[φ f ] is isomorphic to the W-algebra W(g, f, k) in Example 2.17.
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2.4. Integrable Hamiltonian systems associated to W-algebras.
Integrable Hamiltonian systems can be investigated by Poisson vertex algebras theories
[3]. In this subsection, we briefly review basic notions related to integrable Hamiltonian
systems.

Definition 2.27. Let P be an (even) algebra of differential polynomials with a PVA
structure.

(1) An evolution equation is called a Hamiltonian system on P if there is h ∈ P such
that

du

dt
= {hλu}|λ=0, for u ∈ P.

(2) Consider the quotient map
∫ : P → P/∂P . The image

∫
f of f ∈ P is called a

local functional.
(3) A Hamiltonian system is called an integrable system if there are infinitely many

linearly independent integrals of motion
∫
hi , i ∈ Z≥0. Here, an integral of motion∫

hi is a local functional such that
∫ dhi

dt = 0.

In the rest of this subsection, consider the Laurent series g((z−1))with the Lie bracket

[azn, bzm] = [a, b]zn+m for a, b ∈ g.

Recall W(g, f, k) is endowed with a bi-Poisson λ-bracket which is induced from that
on S(C[∂] ⊗ g):

{aλb}1 = [a, b] + kλ(a|b), {aλb}2 = (s|[a, b]). (2.13)

Remark 2.28. (Lenard–Magri Scheme) Let P be a PVA with the bi-Poisson λ-bracket
({ λ }1, { λ }2). Suppose there is a sequence of linearly independent local functionals∫
hi ∈ P/∂P , i = 0, 1, 2, . . . such that

(i) {h0 λP}2|λ=0 = 0, (ii) {hi λ p }1|λ=0 = {hi+1 λ p}2|λ=0 for i ≥ 0 and p ∈ P .

Then du
dt = {hi λ u}K |λ=0 for i = 0, 1, 2, . . . are Hamiltonian integrable systems.

Theorem 2.29 [7]. Suppose � := f + sz ∈ g((z−1)) is semisimple for s ∈ ker(ad n).
There is a sequence of integrable systems onW(g, f, k) which satisfies the assumptions
of Lenard–Magri scheme. More specifically, consider

L(�) := k∂ + quniv − � ⊗ 1 = L − zs ⊗ 1 ∈ C∂ � g((z−1)) ⊗ VI(p)

and take h(z) ∈ (
ker(ad�)∩g[[z−1]])⊗VI(p) such that eadS(z)L(�) = k∂+h(z)+�⊗1

for some S(z) ∈ g[[z−1]]⊗VI(p). Then hi = (zi�⊗1|h(z)) is an element inW(g, f, k)
and the Hamiltonian equation

du

dt
= {hi λ u}H |λ=0

is an integrable system on W(g, f, k). Here, the bilinear form on g((z−1)) ⊗ VI(p) is
defined by (azn ⊗ F |bzm ⊗ G) = (a|b)FGδn+m,0 for a, b ∈ g and F,G ∈ VI(p).

Remark 2.30. [7] It is a natural question to ask that if we can find a semisimple element
� = f + zs for a given nilpotent element f . In the case when g = sln , if f corresponds
to one of the following partitions λ of n then we can find such a semisimple element �.

(1) λ=(r, r, . . . , r, 1, 1, . . . , 1), (2) λ=(r, r−1, r, r − 1, . . . , r, r − 1, 1, 1, . . . , 1).
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3. Classical Affine W-Superalgebras and Generalized Drinfel’d–Sokolov
Reductions

In this section, we shall show a set of generators of a classical affine W-superalgebra as
a superalgebra of differential polynomials can be obtained by an analogous method to
the generalized Drinfeld–Sokolov reduction.

Let g be a simple Lie superalgebra with a nondegenerate invariant even supersym-
metric bilinear form ( | ) and let V be a supersymmetric differential superalgebra. The
vector superspace g ⊗ V is endowed with the Lie bracket and the bilinear form defined
by

[ a ⊗ F, b ⊗ G] = (−1)p(b)p(F)[a, b] ⊗ FG,

( a ⊗ F | b ⊗ G ) = (−1)p(b)p(F)(a|b)FG
for the homogeneous elements a, b ∈ g and F,G ∈ V.

Due to the invariance of the bilinear form on g, we get the invariance of the bilinear
form ( | ) on g ⊗ V

( a ⊗ F | [b ⊗ G, c ⊗ H ] ) = ( [a ⊗ F, b ⊗ G] | c ⊗ H ] ),

for a, b, c ∈ g and F,G, H ∈ V .
Let us consider an even derivation ∂ : V → V on V . Then it can be extended to the

map on g ⊗ V by ∂(a ⊗ F) = a ⊗ ∂F . The Lie superalgebra

C∂ � (g ⊗ V)

is the semidirect product of the trivial Lie algebra C∂ and the Lie superalgebra g ⊗ V .
Suppose the Lie superalgebra g has an sl2-triple (e, h, f )with the even supersymmet-

ric bilinear form ( | ) such that (e| f ) = 1
2 (h|h) = 1. As in Sect. 2.3, letm = ⊕

i≥1 g(i),

m⊥ = ⊕
i>−1 g(i) and p = ⊕

i<1 g(i), where g(i) is the ad
h
2 eigenspace with the eigen-

value i . Recall that g = m ⊕ p and p � m⊥ as vector superspaces via the bilinear form
( | ) on g. For the superspace m⊥ = m⊥̄

0
⊕ m⊥̄

1
, there is a basis { qi | i ∈ I := I0̄ ∪ I1̄ }

of m⊥ such that

(i) { qi | i ∈ I0̄ } is a basis of m⊥̄
0
, (ii) { qi | i ∈ I1̄ } is a basis of m⊥̄

1
. (3.1)

Definition 3.1. Let V(p) := S(C[∂] ⊗ p) be the differential superalgebra generated by
the vector superspace p. A Lax operator L is an even element in C∂ � g ⊗ V(p) such
that

L = k∂ +
∑

i∈I0̄ qi ⊗ Pi +
∑

i∈I1̄ q j ⊗ P j − f ⊗ 1 ∈ C∂ �
(
g ⊗ V(p)

)
0̄,

where q = ∑
i∈I0̄ qi ⊗ Pi +

∑
i∈I1̄ q j ⊗ P j ∈ (

m⊥ ⊗ V(p)
)
0̄.

Remark 3.2. Let I be the differential superalgebra ideal of V(g) generated by {m +
( f |m)|m ∈ m}. Denote VI(p) := V(g)/I. Then we can check the following facts:

(1) V(p) � VI(p) as differential superalgebras by the canonical isomorphism ι :
V(p) → VI(p). If there is no danger of confusion then we denote ι(P) ∈ VI(p) by
P .

(2) We can regard Lax operators as elements inC∂�
(
m⊥⊗VI(p)

)
0̄ via the isomorphism

ι in (1).
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Recall that the W-superalgebra W(g, f, k) is a subset of VI(p). In order to see the
relation between W-superalgebras and Lax operators, we use (2) in Remark 3.2.

A Lax operator L acts on g ⊗ VI(p) by

L(a ⊗ F) := [L , a ⊗ F].
Consider the phase space

Fg, f := (
m⊥ ⊗ VI(p)

)
0̄.

Then for any q ∈ Fg, f , there is the corresponding Lax operator L = k∂ + q − f ⊗ 1.
Note that, for a Lax operator L and an element X ∈ (

n ⊗ VI(p)
)
0̄, there is q

X ∈ Fg, f
such that

eadX L = eadX (k∂ + q − f ⊗ 1) = k∂ + qX − f ⊗ 1. (3.2)

Hence eadX L is again a Lax operator.

Definition 3.3. (1) Let q ∈ Fg, f and X ∈ (
n⊗ VI(p)

)
0̄. Then q

X ∈ Fg, f defined as in
(3.2) is said to be the gauge transformation of q ∈ Fg, f by X .

(2) For two elements q, q ′ ∈ Fg, f , if there is an element Y ∈ (
n ⊗ VI(p)

)
0̄ such that

qY = q ′ then we say q and q ′ are gauge equivalent and write q ∼ q ′.
(3) The universal Lax operator associated to g and f is

L = k∂ + quniv − 1 ⊗ f = k∂ +
∑

i∈I=I0̄∪I1̄
qi ⊗ qi − f ⊗ 1, (3.3)

where {qi }i∈I and {qi }i∈I are bases of m⊥ and p, such that (qi |q j ) = δi j .

Remark 3.4. Since the bilinear form ( | ) defined on the Lie superalgebra g is even, the
universal Lax operator in (3.3) is even. Hence it is a Lax operator.

Now we identify an element in VI(p) with a linear map ∂ � (g⊗ VI(p))0̄ → VI(p)
defined by (3.4) and (3.5):

p(∂) = 0, c(q) = c, p(a ⊗ F) = F(a|p) = (a|p)F, (3.4)

for c ∈ C, p ∈ p ⊂ VI(p) and a ⊗ F ∈ (g ⊗ VI(p))0̄. For P, Q ∈ VI(p), we have

PQ(a ⊗ F) = P(a ⊗ F)Q(a ⊗ F), ∂P(a ⊗ F) = ∂(P(a ⊗ F)). (3.5)

Remark 3.5. If g is even then p(a ⊗ F) = (p|a)F = (a|p)F . Hence (3.4) and (3.5)
define the same functions as those in (2.10). If g is not even and a⊗F is an even element
in g ⊗ VI(p) then

p(a ⊗ F) = (a|p)F = (−1)p(p)(p|a)F.

Here, the last equality holds since (p|a) = 0 implies p(p) = p(a). The reason we
consider the definition p(a ⊗ F) := (a|p)F instead of p(a ⊗ F) := (p|a)F can be
explained by the proof of Lemma 3.8 and Proposition 3.9.

Definition 3.6. A function P ∈ VI(p) is said to be gauge invariant if P(q) = P(q ′)
for any gauge equivalent elements q and q ′ in Fg, f .

Proposition 3.7. The subset of VI(p) consisting of gauge invariant functions is a differ-
ential superalgebra .
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Proof. It is clear that if P, Q ∈ VI(p) are gauge invariant then PQ and ∂P are also
gauge invariant. 	


We note that
P(L) = P for P ∈ VI(p) (3.6)

since an element p ∈ p ⊂ VI(p) has properties ( f |p) = 0 and p(∂) = 0 so that

p(L) = p(quniv) = ∑
i∈I0̄∪I1̄

qi (qi |p) = p.

Also, a Lax operator L = k∂ + Q − f ⊗ 1 with Q = ∑
i∈I qi ⊗ Qi ∈ Fg, f satisfies

P(Q) = P(L) = P(L)|qi=Qi for any P ∈ VI(p). (3.7)

Here, the subscript qi = Qi means that we substitute qi by Qi .

Now, the following lemma is useful to see detailed computations in the proof of
Proposition 3.9.

Lemma 3.8. Let X = n ⊗ r ∈ (n ⊗ VI(p))0̄ and p ∈ VI(p). Then we have

p([X,L]) = −k∂r(n|p) − r [n, p] ∈ VI(p).

Proof. We have

[X,L] = −n⊗k∂r +[n⊗r, quniv− f ⊗1] = −n⊗k∂r−∑
i∈I [qi , n]⊗rqi −[n, f ]⊗r

(3.8)
since p(qi ) = p(pi ) and p(n) = p(r). Hence

p([X,L]) = −k∂r(n|p) − r qi ( [qi , n] | p ) + r ( [n, f ] | p )

= −k∂r(n|p) − r [n, p] ∈ VI(p).
(3.9)

	

Proposition 3.9. If W ∈ VI(p) is a gauge invariant function then W ∈ W(g, f, k).

Proof. Let X = n ⊗ r ∈ (n ⊗ VI(p))0̄ and ε ∈ C. For W ∈ VI(p), we denote

W (L + ε[X,L] + 1
2ε

2[X, [X,L]] + · · · ) = ∑
t≥0 εt PW

t . (3.10)

for some PW
t ∈ VI(p).

If W is a gauge invariant function, we have

W (eadεX (L)) = W (3.11)

for any ε ∈ C. Since (3.11) implies PW
t = 0 for any t ≥ 1, it is enough to show that

PW
1 = 0 implies W ∈ W(g, f, k).

In order to show that PW
1 = 0, let us denote by [AλB]I ∈ VI(p)[λ], for A, B ∈ V(g),

the image of [AλB] ∈ V(g)[λ]. In other words,
[AλB]I = [AλB] + I[λ]. (3.12)
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Note that [ λ ]I induces the well-defined λ-bracket on W(g, f, k) since

[nλP(m + ( f |m))]I = 0 + I[λ] for P ∈ V(g) = S(C[∂] ⊗ g) and m ∈ m (3.13)

so that [nλI] = I[λ].
By the definition ofW(g, f, k), an element W ∈ VI(p) is inW(g, f, k) if and only

if [nλW̃ ]I = 0, where W̃ is an element in V(p) such that ι(W̃ ) = W for the map ι in
Remark 3.2. Thus, it is enough to show that

PW
1 = −∑

t≥0(∂
t r)PW

1t if and only if [nλW̃ ]I = ∑
t≥0 λt · PW

1t . (3.14)

Now, observe the following facts.

(i) If we substitute W with p ∈ p ⊂ VI(p) in (3.10) then, by Lemma 3.8, we have
PW
1 = −k∂r(n|p) − r [n, p] ∈ VI(p). On the other hand, take W̃ ∈ V(p) such

that ι(W̃ ) = p. Since [nλW̃ ]I = [n, p] + kλ(n|p) ∈ VI(p)[λ], we have (3.14).
(ii) IfW = ∂m p then PW

1 = −∂m(k∂r(n|p)−r [n, p]). In this case, the sesquilinearity
[nλ∂

m p] = (λ + ∂)m[nλ p] implies (3.14).
(iii) Suppose W = BC for homogeneous elements B,C ∈ VI(p). Since

W (eadεXL) = B(eadεXL) · C(eadεXL),

we have PW
1 = BPC

1 + PB
1 C. Denote PB

1 = ∑
t≥0(∂

t r)PB
1t and PC

1 =∑
t≥0(∂

t r)PC
1t . Then

PW
1 = ∑

t≥0

[
(−1)p(r)p(B)(∂ t r)B PC

1t + (∂ t r)PB
1t C

]
. (3.15)

On the other hand, by the Leibniz rule, we have

[nλW̃ ]I = [nλ B̃C̃]I = (−1)p(r)p(B)B[nλC̃]I + [nλ B̃]IC
= −∑

t≥0

[
(−1)p(r)p(B)B λt PC

1t + λt P B
1t C

]
,

(3.16)

for B̃, C̃ ∈ V(p) such that ι(B̃) = B and ι(C̃) = C . It is not hard to see (3.15) and
(3.16) imply (3.14).

By (i), (ii), (iii) and the induction, we prove the proposition. 	

Proposition 3.10. If W ∈ W(g, f, k) then W is a gauge invariant function in VI(p).

Proof. Let W be an element inW(g, f, k). Note that

(i) in the proof of Proposition 3.9, we showed that W ∈ W(g, f, k) if and only if
W ([X,L]) = 0 for any X ∈ (n ⊗ VI(p))0̄,

(ii) for P ∈ VI(p) and a Lax operator L = k∂ +
∑

i∈I qi ⊗ Qi − f ⊗ 1, we have

P([X, L]) = P([X,L])|qi=Qi .

Hence W ([X, L]) = 0 for any X ∈ (n ⊗ VI(p))0̄ and any Lax operator L . Moreover,
since adn−1X (L) is a Lax operator for n ≥ 1, we have W (adn X (L)) = 0. Thus,

W (eadX (L)) = W (L),

which means that W is gauge invariant. 	




214 U. R. Suh

Theorem 3.11. The set of gauge invariant functions in VI(p) is the classical affine
W-superalgebra associated to g and f .

Proof. It directly follows from Propositions 3.9 and 3.10. 	

Now the following propositions are useful to find generators of W-superalgebras.

Proposition 3.12. Let us fix an ad h-invariant complementary subspace V f ⊂ g of [ f, n]
in m⊥:

m⊥ = V f ⊕ [ f, n].
Consider a Lax operator L = k∂ + Q − f ⊗ 1 for Q ∈ Fg, f . Then there exists unique
Qcan ∈ V f ⊗ (VI(p))0̄ and unique X ∈ (n ⊗ VI(p))0̄ such that

eadX L = k∂ + Qcan − f ⊗ 1. (3.17)

Proof. We can write Q = ∑
i≥− 1

2
Qi where Qi ∈ g(i) ⊗ VI(p). Similarly, let

X = ∑
i≥ 1

2
Xi and Qcan = ∑

i≥0 Q
can
i for Xi , Qcan

i ∈ g(i) ⊗ VI(p). Then the ad h
2 -

decomposition of (3.17) implies the following equalities:

Q−1/2 + [X1/2,− f ⊗ 1] = 0,

Q0 + [X1,− f ⊗ 1] + [X1/2, Q−1/2] = Qcan
0 ,

Q1/2 + [X3/2,− f ⊗ 1] + [X1, Q−1/2] + [X1/2, ∂ + Q0] = Qcan
1/2,

...

(3.18)

Then we can determine X1/2 uniquely by the first equation in (3.18) and it is even. Also,
X1 and Qcan

0 can be uniquely determined by X1/2 and the second equation in (3.18).
Since [X1/2, Q−1/2] + Q0 is even, both X1 and Qcan

0 are even. The Inductively, even
elements Xi+1 and Qcan

i are determined uniquely by X j+1, Qcan
j for j < i and (3.18). 	


Lemma 3.13. Let us take the universal Lax operator L = k∂ + quniv − 1⊗ f in Propo-
sition 3.12 and let { qi | i ∈ J } be a basis of V f . If we denote qcanuniv = ∑

i∈J qi ⊗ wi

then we have the following properties.

(1) For any q ∈ Fg, f , we have

qcan = ∑
i∈J qi ⊗ (wi (q)). (3.19)

(2) Let P ∈ VI(p) and q ∈ Fg, f . Then we have P(q) = P(qcan) if and only if
P(quniv) = P(qcanuniv).

Proof. (1) For any q ∈ Fg, f and the basis {qi }i∈I of p such that (qi |q j ) = δi j , the Lax
operator

L = k∂ + q − f ⊗ 1 = k∂ +
∑

i∈I qi ⊗ (qi (q)) − f ⊗ 1.

Also, for X = n ⊗ r ∈ n ⊗ VI(p) such that eadX (L) = k∂ + qcanuniv − f ⊗ 1, if we let
Xq := n ⊗ (r(q)) then eadXq (L) = k∂ + qXq − 1 ⊗ f is obtained from eadX (L) by
substituting qi in qcanunivby q

i (q). In other words, qXq ∈ V f ⊗ VI(p) and

qXq = qcan = ∑
i∈J qi ⊗ (wi (q)).
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(2) It is enough to show that P(quniv) = P(qcanuniv) implies P(q) = P(qcan) for any
q ∈ Fg, f . Suppose P(quniv) = P(qcanuniv). Then, by (1), we have

P(qcan) = P
( ∑

i∈J qi ⊗ wi
)|qi=Qi = P(qcanuniv)|qi=Qi = P(quniv)|qi=Qi = P(q)

where |qi=Qi denotes we substitute qi by Qi . 	

Proposition 3.14. For qcanuniv = ∑

i∈J qi ⊗ wi ∈ V f ⊗ VI(p) in Lemma 3.13, we have

W(g, f, k) = Cdiff[ wi | i ∈ J ] ⊂ VI(p) (3.20)

as differential superalgebras.

Proof. Note that we have

(i) wi = wi (quniv) since quniv = ∑
i∈I qi ⊗ qi , (ii) wi = qi (qcanuniv).

Consider the subset { qi | i ∈ J } of the basis {qi }i∈I of p and take an element 
 ∈
W(g, f, k). Then


 = 
(quniv) = 
(qcanuniv) ∈ Cdiff[ qi (qcanuniv) | i ∈ J ] = Cdiff[ wi | i ∈ J ]
and
 ∈ Cdiff[ wi | i ∈ J ].Hence, byLemma3.13,wehaveW(g, f, k) ⊂ Cdiff[ wi | i ∈
J ].

Conversely, for q, q ′ ∈ Fg, f such that q ∼ q ′, we have qcan = q ′can. Since wi (q) =
qi (qcan) = qi (q ′can) = wi (q ′can), we get Cdiff[ wi | i ∈ J ] ⊂ W(g, f, k). 	


By Proposition 3.14, we can find generators of W(spo(2|1), f, k) as follows (cf.
Example 2.18).

Example 3.15. Let g = spo(2|1) and let

h = e11 − e22, e = e12, f = e21, eod = e11̄ + e1̄2, fod = e21̄ − e1̄1

where ei j is the matrix in gl(2|1) which has 1 in the i j-entry and 0 in other entries.
Then h, e, f are even elements and eod , fod are odd elements. Lie brackets between
generators are

[h, eod ] = eod , [h, fod ] = − fod , [eod , fod ] = [ fod , eod ] = −h, [eod , f ] = − fod ,

[ fod , e] = −eod , [eod , eod ] = 2e, [ fod , fod ] = −2 f.

The even supersymmetric bilinear form we consider satisfies

(h|h) = 2(e| f ) = 2, (eod | fod) = −2.

Take the Lax operator

L = k∂ +
1

2
fod ⊗ eod +

1

2
h ⊗ h − 1

2
eod ⊗ fod + e ⊗ f − f ⊗ 1

andV f = Ce⊕Ceod .We can check thatm⊥ = V f ⊕[n, f ].Suppose X = eod⊗rod+e⊗r
for rod ∈ VI(p)1̄ and r ∈ VI(p)0̄ satisfies

eadXL = Lcan ∈ C∂ � V f ⊗ VI(p). (3.21)
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The terms with adh-eigenvalue −1 in (3.21) are

1

2
fod ⊗ eod − [eod , f ] ⊗ rod = 0.

Hence rod = − 1
2eod . The terms with adh-eigenvalue 0 in (3.21) are

1

2
h ⊗ h + h ⊗ (−1

2
eodrod − r) +

1

2
[eod , fod ] ⊗ r2od = 0.

Since eodrod = r2od = 0, we have r = 1
2h. Hence X = − 1

2eod ⊗ eod + 1
2e ⊗ h and, by

direct computations,

eadXL = k∂ + eod ⊗ (−1

2
fod +

k

2
∂eod +

1

4
heod)

+ e ⊗ ( f +
1

2
fodeod − 1

4
h2 +

k

4
eod∂eod − k

2
∂h) − f ⊗ 1.

(3.22)

If we denote φod = − 1
2 fod + k

2∂eod +
1
4heod and φev = f + 1

2 fodeod − 1
4h

2 + k
4eod∂eod −

k
2∂h then W(g, f, k) = Cdiff[φod , φev].
Example 3.16. Let g = sl(2|1) and take e = e12 and f = e21. Consider the Lax operator

L = k∂+Q− f ⊗1 = k∂+e⊗ f + e11̄⊗e1̄1 − e1̄2 ⊗ e21̄ +
1

2
h ⊗ h − 1

2
τ ⊗ τ − f ⊗ 1,

where h = [e, f ] = e11 − e22 and τ = e11 + e22 + 2e1̄1̄ ∈ ker ad f . Fix

V f = Ce12 ⊕ Ce11̄ ⊕ Ce1̄2 ⊕ Cτ

so that [n, f ] ⊕ V f = m⊥. Let us take

X = e11̄ ⊗ X11̄ + e1̄2 ⊗ X 1̄2 + e ⊗ X12

such that eadXL ∈ ∂ � V f ⊗VI(p). In order to vanish degree 1
2 -part of e

adXL, which is
−e1̄1 ⊗ e11̄ + e21̄ ⊗ e1̄2 + e21̄ ⊗ X11̄ − e1̄1 ⊗ X 1̄2,

set X11̄ = −e1̄2 and X 1̄2 = −e11̄. Moreover, we want degree 0-part of eadXL lies in
∂ � Cτ ⊗ VI(p). In other words,

L0 + [X1/2,L−1/2] + [X1, L−1] + 1

2
[X1/2, [X1/2, f ]]

= k∂ +
1

2
h ⊗ h − 1

2
τ ⊗ τ − 1

2
(h + τ) ⊗ e11̄X11̄ − 1

2
(h − τ) ⊗ e1̄2X 1̄2

− h ⊗ X12 − 1

2
[e1̄2, [e11̄, f ]] ⊗ X11̄X 1̄2 − 1

2
[e11̄, [e1̄2, f ]] ⊗ X 1̄2X11̄

= k∂ + h ⊗ (
1

2
h − X12) + τ ⊗ (−1

2
τ +

1

2
e11̄e1̄2) ∈ ∂ � Cτ ⊗ VI(p).

Here, Ll and Xl denote the degree l-parts of L and X , respectively. Hence, we fix
X12 = 1

2h. In other words, we have

X = e12 ⊗ 1

2
h − e1̄2 ⊗ e11̄ − e11̄ ⊗ e1̄2.
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Now, we compute degree 1/2-part and 1-part of eadXL as follows. For degree 1/2-part,
we have

L1/2 = e11̄ ⊗ e1̄1 − e1̄2 ⊗ e21̄,

[X1/2,L0] = e1̄2 ⊗ (k∂e11̄ +
1

2
e11̄(h − τ)) + e11̄ ⊗ (k∂e1̄2 +

1

2
e1̄2(h + τ)),

[X1,L−1/2] = e1̄2 ⊗ 1

2
e11̄h + e11̄ ⊗ 1

2
e1̄2h,

1

2
[X1/2, [X1/2,L−1/2]] + 1

2
[X1/2, [X1,L−1]] = −1

4
e1̄2 ⊗ he11̄ − 1

4
e11̄ ⊗ he1̄2,

1

2
[X1, [X1/2,L−1]] = −1

4
e1̄2 ⊗ he11̄ − 1

4
, e11̄ ⊗ he1̄2.

By adding all the formulas, we get 1/2-degree part of eadXL:

e11̄ ⊗ (e1̄1 + k∂e1̄2 +
1

2
e1̄2(h + τ)) + e1̄2 ⊗ (−e21̄ + k∂e11̄ +

1

2
e11̄(h − τ)).

Similarly, degree 1-part of eadXL is obtained by adding the following fomulas:

L1 = e ⊗ f,

[X1/2,L1/2] = e ⊗ (−e11̄e11̄ + e21̄e1̄2),

[X1,L0] = e ⊗ (−k

2
∂h − 1

2
h2),

1

2
([X1/2, [X1/2,L0]] + [X1/2, [X1,L−1/2]])

= e ⊗ 1

2
(−k∂e11̄e1̄2 − k∂e1̄2e11̄ + τe11̄e1̄2),

1

2
([X1, [X1/2,L−1/2]] + [X1, [X1,L−1]]) = e ⊗ 1

4
h2,

1

6
([X1/2, [X1/2, [X1/2,L−1/2]]] + [X1/2, [X1/2, [X1,L−1]]]
+ [X1/2, [X1, [X1/2,L−1]]] + [X1, [X1/2, [X1/2,L−1]]]) = 0.

Hence the degree 1 part of eadXL is

e ⊗ ( f − e1̄1e11̄ + e21̄e1̄2 − 1

4
h2 − k

2
∂h − k

2
∂e11̄e1̄2 − k

2
∂e1̄2e11̄ +

1

2
τe11̄e1̄2).

If we denote

φt = −1

2
τ +

1

2
e11̄e1̄2,

φ11̄ = e1̄1 + k∂e1̄2 +
1

2
e1̄2(h + τ),

φ1̄2 = −e21̄ + k∂e11̄ +
1

2
e11̄(h − τ),

φe = f − e1̄1e11̄ + e21̄e1̄2 − 1

4
h2 − k

2
∂h − k

2
∂e11̄e1̄2 − k

2
∂e1̄2e11̄ +

1

2
τe11̄e1̄2

(3.23)
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then

W(g, f, k) = Cdiff[φt , φ11̄, φ1̄2, φe].
Here, we note that

φe = −kL − 2φ2
τ ,

for the energy momentum field L , which is defined in Proposition 2.15.

Now,we introduce another equivalentway to get a generating set of aW-superalgebra,
which will be used in the later sections to describe bi-Poisson structures via Lax opera-
tors. We consider the sign twisting linear map

σ : g ⊗ VI(p) → g ⊗ VI(p), a ⊗ F �→ (a ⊗ F)σ , (3.24)

where (a ⊗ F)σ := (−1)p(a)p(F)a ⊗ F.

Remark 3.17. One can check that the map (3.24) induces a Lie algebra automorphism
on (g⊗VI(p))0̄. Moreover, if we consider the Lie algebra (VI(p)⊗g)0̄ with the bracket
[F ⊗ a,G ⊗ b] = (−1)p(a)p(b)FG ⊗ [a, b] then there is a natural isomorphism

φ : (g ⊗ VI(p))0̄ → (VI(p) ⊗ g)0̄

defined by φ((a ⊗ F)σ ) = F ⊗ a. In other words, applying the map σ to (g⊗ VI(p))0̄
is equivalent to consider the space (VI(p) ⊗ g)0̄.

Proposition 3.18. For a Lax operator L = k∂ +
∑

i∈I qi ⊗ Qi − f ⊗ 1, we denote

Lσ = k∂ +
∑

i∈I (−1)p(i)qi ⊗ Qi − f ⊗ 1 ∈ (g[z] ⊗ VI(p))0̄,

where p(i) denotes the parity p(qi ).

(1) Two elements q, q ′ ∈ Fg, f are gauge equivalent if and only if qσ , q ′σ are gauge
equivalent.

(2) Recall that we denote the universal Lax operator by L = k∂ + quniv − f ⊗ 1 and
the operator gives rise to generators of W(g, f, k) (see Proposition 3.14). By (1),
we can find generators of W(g, f, k) using sign twisted universal Lax operator

Lσ = k∂ + qσ
univ − f ⊗ 1.

Proof. The proof follows from the fact that

ead(n⊗r)σ (Lσ ) = L ′σ if and only if ead(n⊗r)(L) = L ′.

For (2), we note that

qcanuniv = ∑
i∈J qi ⊗ wi if and only if (qσ

univ)
can = ∑

i∈J p(i)qi ⊗ wi .

Since Cdiff[wi |i ∈ J ] = Cdiff[p(i)wi |i ∈ J ], we proved (2). 	
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4. Lax Operators and Lie Brackets on W(g, f, k)/∂W(g, f, k)

4.1. Derivatives on a differential superalgebra.
Fix the superalgebra of differential polynomials

P = Cdiff[ ui | i ∈ I ].
The index set I = I0̄ ∪ I1̄ consists of two subindex sets I0̄ and I1̄ such that ui is even if
i ∈ I0̄ and is odd if i ∈ I1̄.

Definition 4.1. Take j1, j2, . . . , jk ∈ I1̄ andn1, n2, . . . , nk ∈ Z≥0 such that ( jk1 , nk1) =
( jk2 , nk2) for distinct numbers k1, k2 ∈ {1, . . . , k}. Consider an element

φ1 = u(n1)
j1

u(n2)
j2

· · · u(nk )
jk

∈ Cdiff[ui |i ∈ I1̄],

where u(n)
j = ∂nu j and a monomial

φ = φ0φ1 ∈ P, for φ0 ∈ Cdiff[ui |i ∈ I0̄].
(1) The (left) derivative of φ with respect to u(nt )

jt
for t = 1, . . . , k is

∂φ

∂u(nt )
jt

= (−1)t−1 φ0 · u(i1)
j1

u(i2)
j2

· · · u(nt−1)

jt−1
u(nt+1)
jt+1

· · · u(nk−1)

jk−1
u(nk)
jk

.

If u(n)
j = u(nt )

jt
is an odd element then ∂φ

∂u(n)
j

= 0. If j ∈ I0̄, we let
∂φ

∂u(n)
j

= ∂φ0

∂u(n)
j

· φ1.

(2) The right derivative of φ with respect to u(nt )
jt

for t = 1, . . . , k is

∂Rφ

∂Ru
(nt )
jt

= (−1)k−t φ0 · u(i1)
j1

u(i2)
j2

· · · u(nt−1)

jt−1
u(nt+1)
jt+1

· · · u(nk−1)

jk−1
u(nk)
jk

.

If u(n)
j = u(nt )

jt
is an odd element then ∂Rφ

∂Ru
(n)
j

= 0. If j ∈ I0̄, we let
∂Rφ

∂Ru
(n)
j

= ∂φ

∂u(n)
j

.

(3) The (left) variational derivative and right variational derivative of φ with respect to
ui are

δφ
δui

= ∑
n∈Z≥0

(−∂)n
∂φ

∂u(n)
i

,
δRφ
δRui

= ∑
n∈Z≥0

(−∂)n
∂Rφ

∂Ru
(n)
i

. (4.1)

(4) The variational derivative of φ with respect to { ui | i ∈ I } is
δφ
δu = ∑

i∈I ui ⊗ δφ
δui

.

The derivatives defined in (1), (2), (3), (4) have linearities so that they are well-defined
on the set of differential algebra P = Cdiff[ui |i ∈ I ].
Remark 4.2. We have

δφ
δui

= (−1)p(ui )p(φ·ui ) δRφ
δRui

.

Hence, for the map σ in (3.24),
(

δφ
δu

)σ = ∑
i∈I

(
ui ⊗ δφ

δui

)σ = ∑
i∈I ui ⊗ δRφ

δRui
.
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Remark 4.3. If ui ∈ P is an odd element then ∂

∂u(n)
i

for any n ∈ Z≥0 is an odd derivation,

i.e.

∂

∂u(n)
i

(FG) =
(

∂

∂u(n)
i

F

)
· G + (−1)p(F)F ·

(
∂

∂u(n)
i

G

)
.

Proposition 4.4. For homogeneous elements f, g ∈ P , we have

{ fλg} = ∑
i, j∈I

m,n∈Z≥0

C f,g
i, j

∂Rg

∂Ru
(n)
j

(λ + ∂)n{ui λ+∂ u j }→(−λ − ∂)m
∂ f

∂u(m)
i

(4.2)

where C f,g
i, j = (−1)p( f )p(g)+p(i)p( j). Note that

{aλ+∂b}→c := ∑
i∈Z≥0

1
n!a(n)b(λ + ∂)nc for a, b, c ∈ P.

Proof. The formula (4.2) follows from sesquilinearities and Leibniz rules of λ-brackets.
The only part we have to be careful is the constant factor C f,g

i, j in (4.2). One can see that

C f,g
i, j = (−1)(p(i)+p( f ))(p( j)+p(g)) · C f

i, j · Cg
j,i

for C f
i, j = (−1)(p( f )+p(i))p( j) and Cg

j,i = (−1)(p(g)+p( j))p(i). Note that switching the

position of ∂ f

∂u(m)
i

and ∂Rg

∂Ru
(n)
j

gives rise to the (−1)(p(i)+p( f ))(p( j)+p(g)) in C f,g
i, j and switch-

ing the position of u j and
∂ f

∂u(m)
i

(resp. ui and
∂Rg

∂Ru
(n)
j

) gives rise to the constant factor C f
i, j

(resp. Cg
j,i ). 	


Proposition 4.5. (1) For any variable u(n)
i in P , we have

[
∂

∂u(n)
i

, ∂

]
= ∂

∂u(n−1)
i

. (4.3)

(2) Let φ ∈ P . Then δ
δui

∂φ = 0 for any i ∈ I .

Proof. (1) For any j ∈ I and m ∈ Z≥0, we can check that

[
∂

∂u(n)
i

, ∂

]
(u(m)

j ) =
∂

∂u(n−1)
i

(u(m)
j ). Suppose we get the same element in P when we apply F (resp. G) to

the LHS and RHS of Eq. (4.3). If i ∈ I1̄ then[
∂

∂u(n)
i

, ∂

]
(FG) =

(
∂

∂u(n)
i

∂F

)
G + (−1)p(F)∂F ∂

∂u(n)
i

G

+
∂

∂u(n)
i

F∂G + (−1)p(F)F
∂

∂u(n)
i

∂G

−
(

∂ ∂

∂u(n)
i

F

)
G − (−1)p(F)∂F ∂

∂u(n)
i

G

− ∂

∂u(n)
i

F∂G − (−1)p(F)F∂
∂

∂u(n)
i

G

=
[

∂

∂u(n)
i

, ∂

]
(F) · G + (−1)p(F)F ·

[
∂

∂u(n)
i

, ∂

]
(G)

= ∂

∂u(n−1)
i

F · G + (−1)p(F)F ∂

∂u(n−1)
i

(G) = ∂

∂u(n−1)
i

(FG).
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For i ∈ I0̄, the same argument works. By induction, we proved (1).

(2) By (1), we have

∑
i∈Z≥0

(−∂)n ∂

∂u(n)
i

∂ = −∑
i∈Z≥0

(−∂)n+1 ∂

∂u(n)
i

+
∑

i∈Z≥1
(−∂)n ∂

∂u(n−1)
i

= 0.

	


4.2. Lie brackets on W(g, f, k)/∂W(g, f, k).
Nowwe are ready to findLie superalgebra structures on a quotient space ofW-algebra via
Laxoperators. In this section,we assumeg is a finite dimensional simpleLie superalgebra
with even supersymmetric bilinear invariant form ( | ).

Let us denote by g((z−1)) := g[z]⊕ z−1g[[z−1]] the Lie superalgebra endowed with
the bracket [azm, bzn] = [a, b]zm+n where [a, b] is the Lie bracket on g. The vector
superspace g((z−1)) ⊗ VI(p) is a Lie superalgebra endowed with the bracket such that

[azm ⊗ F, bzn ⊗ G] = (−1)p(b)p(F)[azm, bzn] ⊗ FG

for a, b ∈ g, n,m ∈ Z and F,G ∈ VI(p). We extend the Lie bracket to that on
C∂ � g((z−1)) ⊗ VI(p) by considering C∂ as the trivial Lie algebra.

Consider the universal Lax operator associated to g and �:

L(�) = k∂ + quniv − � ⊗ 1 ∈ C∂ � g((z−1)) ⊗ VI(p), (4.4)

where quniv is that in (3.3) and � = f + zs for a nonzero even element s in g(d). Here,
d is the largest eigenvalue such that g(d) = 0. The operator acts on g((z−1)) ⊗ VI(p)
by the adjoint action. Note that we assume the even part of g(d) = 0 (see Remark 2.14).

Remark 4.6. For the operatorL associated tog and f in (3.3),wehaveL(�) = L−zs⊗1.
Denote by

L[1](�) := L and L[2](�) := −s ⊗ 1. (4.5)

The term L[2](�) do the crucial role to define bi-Poisson structures on W(g, f, k).
However, this part is not important when we find generators of W(g, f, k).

Also, using the map (3.24), we denote the sign twisted universal Lax operator by

Lσ (�) = k∂ + qσ
univ − � ⊗ 1 ∈ C∂ � g((z−1)) ⊗ VI(p). (4.6)

Now, via Lσ (�), we aim to define Lie brackets on W(g, f, k)/∂W(g, f, k) for the
subspace ∂W(g, f, k) := { ∂W |W ∈ W(g, f, k) } ⊂ W(g, f, k). (In Remark 4.16, we
explain why we consider Lσ (�) instead of L(�).)

The following notion is analogous to the notion in (2) of Definition 2.27.

Definition 4.7. Let V be a differential superalgebra with the derivation ∂ and denote
∂V := { ∂V | V ∈ V }. For the map

∫ : V → V/∂V, V �→ V + ∂V =: ∫
V,

we call
∫
V the local functional of V ∈ V.



222 U. R. Suh

Let the bilinear form (·|·) : g((z−1)) ⊗ VI(p) × g((z−1)) ⊗ VI(p) → VI(p) be
defined by

(azm ⊗ F |bzn ⊗ G) = (−1)p(b)p(F)(a|b)δm+n,0FG.

Define two bilinear brackets {, }i : VI(p) × VI(p) → VI(p), for i = 1, 2, by

{φ,ψ}1 =
(

δφ
δq

∣∣∣
[

δψ
δq ,Lσ (�)

])
=

(
δφ
δq

∣∣∣
[

δψ
δq ,Lσ[1](�)

])
,

{φ,ψ}2 = −
(

δφ
δq

∣∣∣z−1
[

δψ
δq ,Lσ (�)

])
= −

(
δφ
δq

∣∣∣
[

δψ
δq ,Lσ[2](�)

])
,

(4.7)

where q = (qi )i∈I is the basis of p in (3.3) and z−1(azn ⊗ F) := azn−1 ⊗ F ∈
g((z−1)) ⊗ V(p). By Proposition 4.5 (2), we can consider the induced bilinear brackets
on VI(p)/∂VI(p)

[ , ]i : VI(p)/∂VI(p) × VI(p)/∂VI(p) → VI(p)/∂VI(p), i = 1, 2 (4.8)

such that [∫ φ,
∫

ψ]i := ∫ {φ,ψ}i .
Lemma 4.8. Let q ′, r ∈ Fg, f = (m⊥ ⊗ VI(p))0̄. For ε ∈ C, we have

∫
φ(q ′ + εr) − ∫

φ(q ′)
ε

∣∣∣∣
ε=0

=
∫ (

rσ

∣∣∣∣
δφ(q ′)

δq

)
. (4.9)

Proof. If r ∈ (m⊥)0̄⊗ (VI(p))0̄ then the proof is similar to the non-super algebras cases
in [1]. Suppose r = qi ⊗ r i for qi ∈ (m⊥)1̄. Then

(
rσ

∣∣∣ δφ(q ′)
δq

)
=

(
−qi ⊗ r i

∣∣∣ δφ(q ′)
δq

)
= r i (qi ⊗ 1|qi ⊗ 1) δφ(q ′)

δqi
= r i δφ(q ′)

δqi
. (4.10)

Also, we can see the LHS of (4.9) is the same as r i δφ(q ′)
δqi

. In detail, for φ =
∂n1(qi1) ∂n2(qi2) . . . ∂nt (qit ), if we denote the first k − 1 terms in φ by φk =
∂n1(qi1) ∂n2(qi2) . . . ∂nk−1(qik−1) and the last t−k terms in φ byψk = ∂nk+1(qik+1) ∂nk+2

(qik+2) . . . ∂nt (qit ) for k = 0, 1, . . . , t then

φ = φk · ∂nk qik · ψk

for any k. Now, for such φ, let r = qi ⊗ r i and q ′ = ∑
j∈I q j ⊗ Q j . Then we have

φ(q ′+εr)−φ(q ′)
ε

∣∣∣
ε=0

= ∑t
k=0 φk(q ′) · ∂nk qik (r) · ψk(q ′)

= ∑t
k=1(−1)p(qi )p(φk )∂nk qik (r) · φk(q ′)ψk(q ′)

= ∑t
k=1 ∂nk

(
r i (qi |qik )

)
(−1)p(qi )p(φk )φk(q ′)ψk(q ′)

= ∑
n≥0 ∂nr i ∂φ

∂qi (n) . (4.11)

The last equality holds since (qi |q j ) = δi j . Since
∫

∂(F)G = ∫ −F∂(G), the lemma
is proved by (4.10) and (4.11). 	

Proposition 4.9. The brackets [ , ]i for i = 1, 2 satisfy skew-symmetry.
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Proof. For φ = a ⊗ F and ψ = b ⊗ G in g ⊗ VI(p), we have
∫
(a ⊗ F |[b ⊗ G, ∂])
= ∫

(a ⊗ F | − b ⊗ ∂G) = − ∫
(−1)p(φ)p(ψ)(b ⊗ ∂G|a ⊗ F)

= ∫
(−1)p(φ)p(ψ)(b ⊗ G|a ⊗ ∂F) = − ∫

(−1)p(φ)p(ψ)(b ⊗ G|[a ⊗ F, ∂]).
Hence, by invariance and skew-symmetry of the bilinear form on g ⊗ VI(p), we have

[∫ φ,
∫

ψ]i =
∫

{φ,ψ}i = −(−1)p(φ)p(ψ)

∫
{ψ, φ}i

= −(−1)p(φ)p(ψ)[
∫

ψ,

∫
φ]i , i = 1, 2.

	

Lemma 4.10. For ψ ∈ VI(p), we have:

[∫ qi ,
∫

ψ]1 = ∑
j∈I

∫ ([qi , q j ] − (qi |q j )k∂
)

δ
δq j ψ,

[∫ qi ,
∫

ψ]2 = ∑
j∈I

∫
([qi , q j ]|s) δ

δq j ψ,

where {q j | j ∈ I } is a basis of p.
Proof. By expanding the LHS of

∫ {qi , ψ}1, we obtain

[∫ qi ,
∫

ψ]1 = ∑
j, j ′∈I

∫ (
qi ⊗ 1

∣∣ [q j ⊗ δ
δq j ψ, k∂ + p( j ′)q j ′ ⊗ q j ′ − f ⊗ 1]

)

= ∑
j∈I

∫
(qi |q j )(−k∂) δ

δq j ψ +
∑

j, j ′∈I
∫
q j ′(q j ′ |[qi , q j ]) δ

δq j ψ

−
∑

j∈I
([qi , q j ]| f ) δ

δq j
ψ,

(4.12)
where {q j | j ∈ I } is the basis of m⊥ such that (q j |q j ′) = δ j, j ′ and p( j ′) is the parity of
q j ′ . In VI(p), we have

∑
j∈I [qi , q j ] δ

δq j ψ = ∑
j, j ′∈I

∫
([qi , q j ]|q j ′)q j ′ δ

δq j ψ − ∑
j∈I ([qi , q j ]| f ) δ

δq j ψ.

Hence the first equality is proved. The second equality also can be proved similarly. 	

Proposition 4.11. We have the following equations:

[∫ φ,
∫

ψ]1 = ∑
i, j∈I

∫
δR

δRqi
φ

([qi , q j ] − (qi |q j )k∂
)

δ
δq j ψ,

[∫ φ,
∫

ψ]2 = ∑
i, j∈I

∫
δR

δRqi
φ([qi , q j ]|s) δ

δq j ψ.
(4.13)

Proof. Observe that
(

δ
δq φ

∣∣∣ a ⊗ F
)

= ∑
i∈I

δRφ

δRqi
(qi ⊗ 1|a ⊗ F)
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for any a ⊗ F ∈ g ⊗ VI(p). Since δ
δq q

i = qi ⊗ 1, we have

[
∫

φ,

∫
ψ]t = ∫ ∑

i∈I
δRφ

δRqi

(
qi ⊗ 1

∣∣∣
[

δ
δqψ,Lσ[t](�)

])

= ∫ ∑
i∈I

δRφ

δRqi

(
δ
δq q

i
∣∣∣
[

δ
δqψ,Lσ[t](�)

])
= ∫ ∑

i∈I
δRφ

δRqi
{qi , ψ}t (4.14)

for t = 1, 2. Now, by the proof of Lemma 4.10, we can see (4.13). 	

By previous propositions, we know how to compute the brackets [, ]i , (i = 1, 2),

defined on VI(p)/∂VI(p). The next thing we want to show is that the brackets can be
understood as brackets onW(g, f, k)/∂W(g, f, k):

[ , ]i : W(g, f, k)/∂W(g, f, k) × W(g, f, k)/∂W(g, f, k) → W(g, f, k)/∂W(g, f, k).

We provide proofs in two different ways. One (Proposition 4.13) is by the definition
W-algebras in Sect. 3 and the other one (Proposition 4.14) is purely algebraic. Note that
the first proof is inspired from [1] and the second one is inspired form [7].

Lemma 4.12. Let V be a superalgebra of differential polynomials with both even gen-
erators and odd generators. If G,G ′ ∈ V satisfy

∫
FG = ∫

FG ′ or FG = FG ′ in V/∂V
for all F ∈ V0̄ or all F ∈ V1̄ then G = G ′.

Proof. Let us denote V = V0̄ ⊗ V1̄, where V0 = Cdiff[ui |i = 1, 2, . . . , k0] and V1 =
Cdiff[vi |i = 1, 2, . . . , k1] for even variables ui and odd variables vi .

It is enough to show that if
∫
u(n)
i G = 0 (resp.

∫
v

(n)
i G = 0) for any even (resp. odd)

variable u(n)
i (resp. v(n)

i ) then G = 0.

Let us first show that if
∫
u(n)
i G = 0 for any even variable u(n)

i then G = 0. If
G ∈ C

× then u1G ∈ ∂V . Suppose G is not a constant. Take an integer m ∈ Z≥0 such
that no monomial in G has terms with u(n)

1 for n ≥ m. Then u(m+1)
1 G ∈ ∂V . That is

because if ∂G1 = u(m+1)
1 G then G1 should have the term u(m+1)

1 G2 for a nonconstant

element G2. Hence ∂G1 = u(m+1)
1 G has the term with u(m+2)

1 . This is a contradiction to
our assumption and G should be 0.

Suppose
∫

v
(n)
i G = 0 for any odd variable v

(n)
i then G = 0. We have G ∈ C

×
since otherwise v1G ∈ ∂V . Similarly to the previous case, for a nonconstant element
G, let us take an integer m ∈ Z≥0 such that no monomial in G has terms with v

(n)
1 for

n ≥ m. Then v
(m+2)
1 G is not in ∂V.Here we note that v(m+1)

1 G can be in ∂V , for example

∂(v
(m)
1 v

(m−1)
1 ) = v

(m+1)
1 v

(m−1)
1 . Hence G = 0. 	


Proposition 4.13. The brackets (4.7) induce brackets onW(g, f, k)/∂W(g, f, k).

Proof. It is enough to show that for φ,ψ ∈ W(g, f, k), we have {φ,ψ}1 and {φ,ψ}2
are also inW(g, f, k).

Let X ∈ (n⊗VI(p))0̄ and two elements q, q ′ ∈ Fg, f be gauge equivalent by X , i.e.

k∂ + q ′σ − f ⊗ 1 = eadX
σ

(k∂ + qσ − f ⊗ 1).
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Note that, since [s, n] = 0, we have

k∂ + q ′σ − � ⊗ 1 = eadX
σ

(k∂ + qσ − � ⊗ 1). (4.15)

If rσ := e−adXσ
r ′σ ∈ Fg, f for some r ′ ∈ Fg, f , we have

φ(q) = φ(q ′) and φ(q ′ + εr ′) = φ(q + εr) for ε ∈ C.

Hence, by Lemma 4.8, the equation φ(q + r) − φ(q) = φ(q ′ + r ′) − φ(q ′) implies

∫ (
r ′σ

∣∣∣∣
δφ(q ′)

δq

)
= ∫ φ(q ′+εr ′)−φ(q ′)

ε

∣∣∣
ε=0

= ∫ φ(q+εr)−φ(q)
ε

∣∣∣
ε=0

= ∫ (
rσ

∣∣∣ δφ(q)
δq

)
= ∫ (

e−adXσ
r ′σ

∣∣∣ δφ(q)
δq

)
= ∫ (

r ′σ
∣∣∣eadXσ δφ(q)

δq

)
.

(4.16)

By Lemma 4.12 and (4.16), we have δφ(q ′)
δq = eadX

σ δφ(q)
δq . It is obvious that ψ has the

same property. Hence we have

{φ,ψ}1(q ′) =
(

δφ(q ′)
δq

∣∣∣
[

δψ(q ′)
δq , k∂ + q ′σ − 1 ⊗ �

])

=
(
eadX

σ δφ(q)
δq

∣∣∣
[
eadX

σ δψ(q)
δq , eadX

σ
(k∂ + qσ − 1 ⊗ �)

])
= {φ,ψ}1(q).

(4.17)

On the other hand, since eadX
σ
(s ⊗ 1) = s ⊗ 1, we can prove that {φ,ψ}2(q ′) =

{φ,ψ}2(q) by the same arguement. 	

The classical W-superalgebra W(g, f, k) is a PVA endowed with the λ-brackets

induced from those on the affine PVA S(C[∂] ⊗ g) such that

{aλb}1 = [a, b] + kλ(a|b), {aλb}2 = (s|[a, b]) for a, b ∈ g.

Hence there are Lie brackets [ , ]′i , i = 1, 2, onW(g, f, k)/∂W(g, f, k) induced by the
λ-brackets on W(g, f, k). More precisely,

[∫ W1,
∫
W2]′i = ∫ {W1 λW2}i |λ=0. (4.18)

Proposition 4.14. Brackets [ , ]′i in (4.18) and [ , ]i in (4.8) for i = 1, 2, defined on
W(g, f, k)/∂W(g, f, k) are same.

Proof. By Proposition 4.4, for φ,ψ ∈ W(g, f, k), we have

{φλψ}1 = ∑
i, j∈I

m,n∈Z≥0

Cφ,ψ
i, j

∂Rψ

∂Rq j (n) (λ + ∂)n
([qi , q j ] + (qi |q j )k(λ + ∂)

)
(−λ − ∂)m

∂φ

∂qi (m)

(4.19)
for the sign consideration Cφ,ψ

i, j . If we apply λ = 0 to (4.19) then

{φλψ}1|λ=0 = ∑
i, j∈I

m,n∈Z≥0

Cφ,ψ
i, j

∂Rψ

∂Rq j (n) ∂
n
([qi , q j ] + (qi |q j )k∂

)
(−∂)m

∂φ

∂qi (m)
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and

[∫ φ,
∫

ψ]′1 = ∫ {φλψ}1|λ=0

= ∑
i, j∈I

m,n∈Z≥0

∫
Cφ,ψ
i, j

(
(−∂)n

∂Rψ

∂Rq j (n)

)([qi , q j ] + (qi |q j )k∂
)
(−∂)m

∂φ

∂qi (m)

= ∑
i, j∈I

m,n∈Z≥0

∫ (
(−∂)m

∂Rφ

∂Rqi (m)

)[qi , q j ]((−∂)n
∂ψ

∂q j (n)

)

+
∑

i, j∈I
m,n∈Z≥0

∫ (
(−∂)m

∂Rφ

∂Rqi (m)

)
(qi |q j )k(−∂)

(
(−∂)n

∂ψ

∂q j (n)

)

= ∑
i, j∈I

m,n∈Z≥0

∫
δRφ

δRqi
([qi , q j ] − (qi |q j )k∂)

δψ

δq j .

(4.20)
Hence [∫ φ,

∫
ψ]′1 = [∫ φ,

∫
ψ]1. By same arguments, we have [∫ φ,

∫
ψ]′2 =

[∫ φ,
∫

ψ]2. 	

Theorem 4.15. Brackets [, ]1 and [, ]2 are Lie brackets on

∫ W(g, f, k) := W(g, f, k)/
∂W(g, f, k).

Proof. We know that if { λ } is a PVA bracket on P then { λ }|λ=0 is a Lie algebra bracket
on P/∂P . Hence the theorem directly follows from Proposition 4.14. 	

Remark 4.16. If we consider L(�) instead of Lσ (�), we have

[∫ φ,
∫

ψ]L,1 := ∫ (
δφ
δq

∣∣∣
[

δψ
δq ,L[1](�)

])

= ∑
i, j∈I

m,n∈Z≥0

(−1)p(i)+p( j)
∫

δRφ

δRqi
([qi , q j ] − (qi |q j )k∂)

δψ

δq j

(4.21)

for bases {qi }i∈I and {q j } j∈I of p and m⊥ such that (qi |q j ) = δi j . In this article, we
want to discuss integrable systems associated to a W-superalgebra whose PVA structure
induces [, ]1 more than [ , ]L,1. Hence we prefer to use Lσ (�) than L(�) (see also the
Remark 5.15.)

5. super-Hamiltonian Equations and Poisson Vertex Algebras

Let us introduce super-Hamiltonian equations via Poisson vertex algebras. Recall
that infinite dimensional Hamiltonian equation on the even differential algebra P =
Cdiff[ ui | i ∈ I ] is an evolution equation of the form

du

dt
= H(∂)

δh

δu
(5.1)

where

(1) the Poisson operator H(∂) = (Hi j (∂))i, j∈I is an |I | × |I | matrix operator such that
(i) Hi j (∂) = ∑N

n=0 Hi j;n∂n for Hi j;n ∈ C[ ∂nui | i ∈ I, n ∈ Z≥0 ],
(ii) if the λ-bracket on P is defined by {ui λ u j }H = ∑N

n=0 Hi j;nλn then the
differential algebra P with the induced λ-bracket { λ }H is a Poisson vertex
algebra,

(2) the Hamiltonian h is an element in P .
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Moreover, the Eq. (5.1) can be written with the λ-bracket { λ }H as follows:

dui
dt

= {hλui }H |λ=0 i ∈ I.

For details, we refer to the paper [3].
Analogously, we define super-Hamiltonian systems and integrable systems when P

is a differential superalgebra.

Definition 5.1. LetP = Cdiff[ ui | i ∈ I ] be the superalgebra of differential polynomials
and let P0̄ and P1̄ be the even and odd subspaces of P .

(1) A super-Hamiltonian evolution equation on the differential superalgebra on P is an
evolution equation of the form

dφ

dt
= { h λ φ }|λ=0, φ ∈ P (5.2)

for some h ∈ P0̄.

(2) An integral of motion of (5.2) is the local functional
∫

f ∈ ∫ P such that
∫

d f

dt
= 0.

(3) If (5.2) has infinitely many linearly independent integrals of motion then it is called
an integrable system.

From now on, we let P = Cdiff[ ui | i ∈ I ] be the differential superalgebra and ui
be homogeneous variables of P , that is I = I0̄ ∪ I1̄ and ui for i ∈ I0̄ (resp. I1̄) are even
(resp. odd.)

Remark 5.2. For f ∈ P , we let

d f

dt
=

∑

n∈Z≥0,i∈I

(
∂n

dui
dt

)
∂ f

∂u(n)
i

, (5.3)

inspired from chain rules. Then
[
dui
dt

= { h λ ui }|λ=0 for any i ∈ I

]
iff

[
d f

dt
= { h λ f }|λ=0 for any f ∈ P

]
.

(5.4)

For the following proposition, recall ifP is a PVAwith aλ-bracket { λ } then the super-
space P/∂P is a Lie superalgebra endowed with the bracket [∫ f,

∫
g] := ∫ { fλg}|λ=0.

Proposition 5.3. (Generalized Lenard–Magri scheme) Suppose P is endowed with two
compatible λ-brackets { λ }H and { λ }K . If there are linearly independent even elements∫
hi , i ∈ Z≥0, in

∫ P such that

[∫ hm,
∫
ui ]H = [∫ hm+1,

∫
ui ]K for m ∈ Z≥0 and i ∈ I, (5.5)

then dφ
dt = {hm λφ}H |λ=0 for m ∈ Z≥0 are integrable systems and

∫
hm′ , m′ ∈ Z≥0 are

integrals of motion.
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Proof. If we assume m > n then

[∫ hm,
∫
hn]H = [∫ hm,

∫
hn+1]K and [∫ hm,

∫
hn]K = [∫ hm−1,

∫
hn]H .

Inductively, we can prove that if m − n is odd then [∫ hm,
∫
hn]H = [∫ hl ,

∫
hl ]K = 0

(resp. [∫ hm,
∫
hn]K = [∫ hl ,

∫
hl ]H = 0) for some lwithm ≥ l > n (resp.m > l ≥ n).

If m − n is even then [∫ hm,
∫
hn]H = [∫ hl ,

∫
hl ]H = 0 (resp. [∫ hm,

∫
hn]K =

[∫ hl ,
∫
hl ]K = 0) for some l with m > l > n. 	


Remark 5.4. The Lenard–Magri scheme in Proposition 5.3 does not give any clue of
finding odd integrals of motion.

Consider the adjoint map ad� : g((z−1)) → g((z−1)) such that ad(�)(A) = [�, A]
for A ∈ g((z−1)). In the rest of this section, we assume that � is semisimple so that

g((z−1)) = ker(ad�) ⊕ im(ad�). (5.6)

Remark 5.5. The assumption that � is a semisimple element is quite a big constraint.
Such � does not always exist for any nilpotent element f . However, when g is sl(m|n)

and the nilpotent element f corresponds to the pair of partitions λ and μ of m and n
which has the form of one of followings:

(1) λ = (rnr , 1n1), μ = (rmr , 1m1),

(2) λ = ((r, r − 1)pr,r−1 , 1p1), μ = ((r, r − 1)qr,r−1 , 1q1),
(5.7)

wecanfindaneven element s such that� is semisimple.Here,nr , n1,mr ,m1, pr,r−1, p1,
qr,r−1, q1 are all nonnegative integers.Note that this remark directly follows fromg = sln
case (see [7] and Remark 2.30).

Take the gradation on g((z−1)) defined by

deg(z) = −d − 1 and deg(g) = j/2 if g ∈ g and [h/2, g] = ( j/2)g

and denote by g((z−1))k the subspace of g((z−1)) consisting of elements with degree k.

Proposition 5.6. Let L(�) = k∂ + q − � ⊗ 1 be a Lax operator. For a subspace
V ⊂ g((z−1)), denote Vt = g((z−1))t ∩ V . There exist unique even element S(q) ∈⊕

t>0 im(ad�)t ⊗ VI(p) and unique even element h(q) ∈ ⊕
t>−1 ker(ad�)t ⊗ VI(p)

such that
Lσ
0 (�) := eadS(q)σ Lσ (�) = k∂ + h(q)σ − � ⊗ 1. (5.8)

Proof. We can decompose (5.8) via the gradation on g((z−1)). Then degree − 1
2 part of

(5.8) is

qσ−1/2 + [Sσ
1/2,−� ⊗ 1] = hσ−1/2,

where qσ−1/2, S
σ
1/2 and hσ−1/2 are degree −1/2, 1/2 and −1/2 part of qσ , S(q)σ and

h(q)σ . By (5.6), Sσ
1/2 and qσ−1/2 are uniquely determined. Also, since qσ−1/2 and � are

even, both Sσ
1/2 and qσ−1/2 are even. Inductively, S

σ
n and hσ

n−1 are uniquely determined
for n ≥ 1. More precisely, if Sσ

m and hσ
m−1 are known for m < n then degree n − 1 part

of (5.8) is

Qσ
n−1 + [Sσ

n ,−� ⊗ 1] = hσ
n−1,

where Qσ
n−1 is then degree n − 1 part determined by Sσ

m’s for m < n. Now, by (5.6), Sσ
n

and qσ
n−1 are uniquely determined. 	
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Remark 5.7. By Proposition 5.6 and its proof, we can see that for an operator L(�) =
k∂ + q − � ⊗ 1, there is unique h(q) ∈ ⊕

t>−1 ker(ad�)t ⊗VI(p) such that Lσ
0 (�) :=

eadS(q)σ Lσ (�) = k∂ +h(q)σ −�⊗1 for some S(q) ∈ ⊕
t>0 g((z

−1))t ⊗VI(p) (which
is not necessarily unique).

For L(�) = k∂ + quniv − � ⊗ 1, consider

Hn = (h(quniv)
σ |zn� ⊗ 1) ∈ VI(p), n ∈ Z≥0. (5.9)

and fix

H−1 = ((h(quniv)
σ − � ⊗ 1|z−1� ⊗ 1) = (−� ⊗ 1|z−1� ⊗ 1) ∈ C. (5.10)

Remark 5.8. Note that (h(quniv)σ |zn� ⊗ 1) = 0 only if h(quniv) ∈ g0̄ ⊗ VI(p)0̄. Hence

Hn = (h(quniv)|zn� ⊗ 1) ∈ VI(p).

Lemma 5.9. For Hn ∈ VI(p), n ∈ Z≥−1, we have Hn ∈ W(g, f, k).

Proof. It is enough to show that h(quniv)σ ∈ ⊕
t>−1 ker(ad�)t ⊗ W(g, f, k).

Recall that there exists Xσ ∈ (n⊗VI(p))0̄ such that e
adXσ Lσ (�) = k∂+

∑
i∈J (qi ⊗

wi )σ − � ⊗ 1 where wi generate W(g, f, k). It is obvious that

h(
∑

i∈J qi ⊗ wi ) ∈ ⊕
t>−1 ker(ad�)t ⊗ W(g, f, k).

More precisely, there is S ∈ ⊕
t>0 g((z

−1))t ⊗ VI(p) such that

ead(S
σ+Xσ )Lσ (�) = eadS

σ
(eadX

σ Lσ (�)) = k∂ + h
(∑

i∈J qi ⊗ wi
)σ − � ⊗ 1.

Since S + X ∈ ⊕
k>0 g((z

−1))k ⊗ VI(p), by Remark 5.7, we conclude that

h(quniv) = h(
∑

i∈J qi ⊗ wi ) ∈ ⊕
t>−1 ker(ad�)t ⊗ W(g, f, k).

Thus Hn ∈ VI(p) = (h(quniv)|zn� ⊗ 1) ∈ W(g, f, k). 	

Lemma 5.10. Let S be the same as in (5.8) and r ∈ (m⊥ ⊗ VI(p))0̄. Then we have

∫ (
rσ

∣∣∣ δHn
δq

)
= ∫ (

rσ
∣∣e−adSσ

(zn� ⊗ 1)
)
, n ∈ Z≥−1, (5.11)

where q = (qi )i∈I for a basis qi of p.

Proof. If n = −1, we have

e−adSσ

(zn� ⊗ 1) ∈ g[z]z ⊗ VI(p)

so that
(
rσ

∣∣e−adSσ
(zn� ⊗ 1)

) = 0. Since δH−1
δq = 0, the both sides of (5.11) are 0.

To show the proposition when n ≥ 0, recall that

∫ Hn(q+εr)−Hn(q)
ε

∣∣∣
ε=0

= ∫ (
rσ

∣∣∣ δHn
δq

)

for r ∈ (m⊥ ⊗ V(p))0̄ and q = ∑
i∈I qi ⊗ Qi . Let us define L0(ε) and S(ε) by

Lσ
0 (ε) = eadS(ε)σ (∂ + (qσ + εrσ ) − � ⊗ 1) = ∂ + h(q + εr)σ − � ⊗ 1.
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Then
( d
dε
Lσ
0 (ε)

∣∣ zn� ⊗ 1
)∣∣

ε=0 = Hn(q+εr)−Hn(q)
ε

∣∣∣
ε=0

.

By the process finding S(ε) in Proposition 5.6, we have

S(ε) = S0 + εS1 + ε2S2 + · · · ∈ im(ad�)((z−1)) ⊗ VI(p)[ε],
for S0, S1, . . . ∈ g((z−1)) ⊗ VI(p). Also, we have

d
dε
Lσ
0 (ε)

∣∣
ε=0 = eadS(ε)σ rσ

∣∣
ε=0 +

d
dε

(
eadS(ε)σ Lσ (0)

)∣∣
ε=0 (5.12)

where Lσ (0) = ∂ + qσ − � ⊗ 1 and eadS
σ
0 Lσ (0) = Lσ

0 (0) = ∂ + hσ (q) − � ⊗ 1. In
order to investigate the last term in (5.12), we need the following facts:

(i) d
dε

(
eadS(ε)σ Lσ (0)

)∣∣
ε=0 = ∑

n∈Z≥1
1
n!

∑n−1
m=0 ad

mSσ
0 (adSσ

1 (adn−1−mSσ
0 (Lσ (0)))),

(i i) 1
n!

∑n−1
m=0 ad

mSσ
0 (adSσ

1 (adn−1−mSσ
0 (Lσ (0))))

= ∑n−1
m=0

[
1

(n−m)!ad
n−m−1Sσ

0 (Sσ
1 ), 1

m!ad
mSσ

0 (Lσ (0))
]
,

(i i i)
∑

n∈Z≥1

∑n−1
m=0

[
1

(n−m)!ad
n−m−1Sσ

0 (Sσ
1 ), 1

m!ad
mSσ

0 (Lσ (0))
]

= ∑
l∈Z≥0

[
1

(l+1)!ad
l Sσ

0 (Sσ
1 ), Lσ

0 (0)
]
.

(5.13)
By (5.12) and (5.13), we have

d
dε

(
eadS(ε)σ Lσ (0)

)∣∣
ε=0 = ∑

l∈Z≥0

[
1

(l+1)!ad
l Sσ

0 (Sσ
1 ), Lσ

0 (0)
]
.

Observe that ∫ (
rσ

∣∣∣ δHn
δq

)
= ∫ ( d

dε
Lσ
0 (ε)

∣∣ zn� ⊗ 1
)∣∣

ε=0 (5.14)

and
(

d

dε
Lσ
0 (ε)

∣∣∣∣ z
n� ⊗ 1

)∣∣∣∣
ε=0

= (
eadS(ε)σ rσ

∣∣ zn� ⊗ 1
)∣∣

ε=0

+
∑

l∈Z≥0

1

(l + 1)!
([

adl Sσ
0 (Sσ

1 ), Lσ
0 (0)

]∣∣∣ zn� ⊗ 1
)∣∣∣

ε=0

= (
rσ

∣∣e−adS(0)σ (zn� ⊗ 1)
)

+
∑

l∈Z≥0

1

(l + 1)!
(
adl Sσ

0 (Sσ
1 )

∣∣∣ [hσ (q) − � ⊗ 1, zn� ⊗ 1]
)∣∣∣

ε=0

+
∑

l∈Z≥0
1

(l+1)!
(−∂(adl Sσ

0 (Sσ
1 ))

∣∣ zn� ⊗ 1
)∣∣

ε=0

= (
rσ

∣∣e−adS(0)σ (zn� ⊗ 1)
)
+

∑
l∈Z≥0

1
(l+1)!

(−∂(adl Sσ
0 (Sσ

1 ))
∣∣ zn� ⊗ 1

)∣∣
ε=0 .

(5.15)
The last term in (5.15) is in ∂VI(p). Hence, for S(0)σ = Sσ , we have

∫ (
rσ

∣∣∣ δHn
δq

)
= ∫ (

rσ
∣∣e−adSσ

(zn� ⊗ 1)
)
.
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Proposition 5.11. Recall that g = m ⊕ p and suppose {qi |i ∈ I } is a basis of p and
{qi |i ∈ I ′} is a basis of m. For Q = ∑

i∈I qi ⊗ Qi +
∑

i∈I ′ qi ⊗ Qi ∈ g ⊗ V(p), we
denote Q|p = ∑

i∈I qi ⊗ Qi ∈ p ⊗ V(p). Then we have

δHn

δq
= e−adSσ

(zn� ⊗ 1)
∣∣∣
p

.

Proof. It directly follows from Lemma 5.10. 	

Proposition 5.12. Let φ ∈ W(g, f, k) and am ⊗ F ∈ (m ⊗ VI(p)0̄. Then we have

∫ (
δφ
δq

∣∣∣ [(am ⊗ F)σ ,Lσ[1](�)]
)

= ∫ (
δφ
δq

∣∣∣ z−1[(am ⊗ F)σ , zs ⊗ 1]
)

= 0.

Proof. Let us denote S = am ⊗ F ∈ (m ⊗ VI(p))0̄ and denote

Lσ (ε) := eadεS
σ Lσ (�).

Then Lσ (ε) = ∂ + qσ (ε) − � ⊗ 1 for qσ (ε) = qσ
univ + ε[Sσ ,Lσ (�)] + o(ε2). Since φ

is gauge invariant, we have

0 = ∫ dφ(q(ε))
dε

∣∣∣
ε=0

= ∫ (
δφ
δq

∣∣∣ [(am ⊗ F)σ ,Lσ (�)]
)

for any F which has the same parity as am. Hence
∫ (

δφ
δq

∣∣∣ [(am ⊗ F)σ ,Lσ[1](�)]
)

= 0.

Also, the second equality follows from [am, s] = 0. 	

Proposition 5.13. Let S be the same as in (5.8) and let φ ∈ W(g, f, k). Then we have

∫ (
δφ
δq

∣∣∣
[

δHn
δq ,Lσ[1](�)

])
= ∫ (

δφ
δq

∣∣∣
[
e−adSσ

(zn� ⊗ 1),Lσ[1](�)
])

,

∫ (
δφ
δq

∣∣∣
[

δHn
δq , s ⊗ 1

])
= ∫ (

δφ
δq

∣∣∣
[
e−adSσ

(zn� ⊗ 1), s ⊗ 1
])

.
(5.16)

Proof. It follows from Propositions 5.11 and 5.12. 	

Theorem 5.14. Let us consider W(g, f, k) and Hi be defined as in (5.9). The equation

du

dt
= {Hi λ u}1|λ=0, u ∈ W(g, f, k) and i ∈ Z (5.17)

has linearly independent integrals of motion
∫
Hj for j ∈ Z≥0. Hence (5.17) is an

integrable system.

Proof. In order to use Lenard scheme, we aim to show that

[∫ Hi ,
∫
u]1 = [∫ Hi+1,

∫
u]2, i ∈ Z≥−1. (5.18)

Recall that the brackets [∫ Hi ,
∫
u]1 and [∫ Hi−1,

∫
u]2 are defined by

[∫ Hi ,
∫
u]1 = ∫ (

δHi
δq

∣∣∣
[

δu
δq ,Lσ[1](�)

])
= − ∫ (

δu
δq

∣∣∣
[

δHi
δq ,Lσ[1](�)

])
,

[∫ Hi+1,
∫
u]2 = ∫ (

δHi+1
δq

∣∣∣
[

δu
δq , s ⊗ 1

])
= − ∫ (

δu
δq

∣∣∣
[

δHi+1
δq , s ⊗ 1

])
.

(5.19)
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Denote δH(z)
δq := ∑

i∈Z
δHi
δq z−i . Then

[
δH(z)

δq ,Lσ (�)
]

= ∑
i∈Z

([
δHi
δq ,Lσ[1](�)

]
−

[
δHi+1

δq , s ⊗ 1
])

z−i . (5.20)

By (5.19) and (5.20), (5.18) is equivalent to

∫ (
δu
δq

∣∣∣ zi
[

δH(z)
δq ,Lσ (�)

])

= ∫ (
δu
δq

∣∣∣
[
e−adSσ

(zi� ⊗ 1),Lσ[1](�)
])

+
∫ (

δu
δq

∣∣∣
[
z−1e−adSσ

(zi+1� ⊗ 1), zs ⊗ 1
])

= ∫ (
δu
δq

∣∣∣
[
e−adSσ

(zi� ⊗ 1),Lσ (�)
]) = 0

(5.21)
for any φ ∈ W(g, f, k) and i ∈ Z. Here, we used Proposition 5.13 for the first equality.
Hence we proved (5.19) by the following fact:

[
e−adSσ

(zi� ⊗ 1),Lσ (�)
]

= e−adSσ
[
zi� ⊗ 1, eadS

σ Lσ (�)
]

= 0.

In particular, since H−1 is constant, we have [∫ H−1,
∫
u]1 = [∫ H0,

∫
u]2 = 0.

Now, the only thing to prove is that {∫ Hj } j∈Z≥0 is linearly independent. Since,
for given H, u ∈ W(g, f, k) such that {Hλu}1|λ=0 = 0, the total degree of
{Hλu}1|λ=0 is greater than the total degree of {Hλu}2|λ=0 in the algebra of polyno-
mials C[(qi )(n)|i ∈ I, n ∈ Z≥0], where {qi |i ∈ I } is a basis of p. Hence, if we can
show {H0 λW(g, f, k)}|λ=0 = 0 then the linearly independence of {∫ Hj } j∈Z≥0 follows.
Indeed, this can be proved as below. Suppose qcanuniv in Proposition 3.14 has the summand
f ⊗ φe. Then H0 = φe so that {H0 λW(g, f, k)}|λ=0 = 0. 	

Remark 5.15. Recall that the formula (5.8) eadS(q)σ Lσ (�) is same as (eS(q)L(�))σ .
Also, since � is even, we have

(h(quniv)
σ |z−n� ⊗ 1) = (h(quniv)|z−n� ⊗ 1).

Hence we can use L(�) instead of L(�)σ to compute Hn .

Example 5.16. As in Example 3.15, the Lie superalgebra g = spo(2|1) is generated by
e, eod , h, fod and f . For � = f + ze and K := − f + ze, we can see that g((z−1)) is
the C((z−1))-module generated by eod , fod , h = 2x,�, K . The subspace im(ad�) is
generated by eod , fod , h, K and ker(ad�) is generated by �. Note that the Lie brackets
between generators are

[x,�] = K , [ fod ,�] = −zeod ,

[eod ,�] = − fod , [K ,�] = 2zh = 4zx, [x, K ] = �.

Consider the operator,

L(�) = k∂ + eod ⊗ φod + e ⊗ φev − � ⊗ 1

for the generators φod = − 1
2 fod + k

2∂eod + 1
4heod and φev = f + 1

2 fodeod − 1
4h

2 +
k
4eod∂eod− k

2∂h of the algebra inExample 3.15.Wewant to find h ∈ ⊕
t>−1 ker(ad�)t⊗

VI(p) such that
L0(�) := eadSL(�) = ∂ + h − � ⊗ 1. (5.22)
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for some S ∈ ⊕
t>0 im(ad�)t ⊗ VI(p).

Let us denote U = ∑
t>0Ut for Ut ∈ VI(p) ⊗ g((z−1))t and h = ∑

t>−1 ht
for ht = VI(p) ⊗ (

g((z−1))t ∩ ker(ad�)
)
. Since zi� has degree −1 − 2i , we have

h = ∑
t∈Z>−1

h2t+1.

By comparing degree 1
2 part of (5.22), we have S1/2 = S1 = 0 and

eod ⊗ φod − [S3/2,� ⊗ 1] = 0.

Hence S3/2 = −z−1 fod ⊗ φod . By comparing degree 1 part of (5.22), we have

e ⊗ φev − [S2,� ⊗ 1] = h1

Hence S2 = 1
2 z

−1x ⊗ φev and h1 = 1
2 z

−1� ⊗ φev so that

H0 = (h1|� ⊗ 1) = φev.

By degree 3
2 and 2 parts of (5.22), we have

− [S5/2,� ⊗ 1] + [S3/2, k∂] = 0 and S5/2 = −z−1eod ⊗ k∂φod;
− [S3,� ⊗ 1] + [S2, k∂] + [S3/2, eod ⊗ φod ] − [S3/2, [S3/2,� ⊗ 1]] = 0

and S3 = − 1
8 z

−2K ⊗ k∂φev. By degree 3 part of (5.22), we have

− [S4,� ⊗ 1] + [S3, k∂] + [S5/2, eod ⊗ φod ] + [S2, e ⊗ φev]
− 1

2
[S2, [S2,� ⊗ 1]] − 1

2
[S3/2, [S5/2,� ⊗ 1]] − 1

2
[S5/2, [S3/2,� ⊗ 1]]

+
1

2
[S3/2, [S3/2, k∂]] = h3 (5.23)

Since the LHS of (5.23) is

−[S4,� ⊗ 1] + z−2� ⊗
(
1

8
φ2
ev +

k

2
∂φodφod

)

+ z−2K ⊗
(
k2

8
∂2φev +

1

4
φ2
ev +

k

2
∂φodφod

)

and K is in the image of ad�, we can conclude h3 = z−2� ⊗ ( 1
8φ

2
ev +

k
2∂φodφod

)
so

that

H1 = (h3|z� ⊗ 1) = 1

4
φ2
ev + k∂φodφod .

Note that h3 is the first integral of motion which gives rise to a nonlinear Hamiltonian
equation. Now we get

⎧
⎪⎪⎨

⎪⎪⎩

dφev

dt
= {

H1 λφev
}
H |λ=0 = −k3

4
∂3φev − 3k

2
∂φevφev + 3k2φod∂

2φod ,

dφod

dt
= {

H1 λφod
}
H |λ=0 = k3∂3φod − 3k

2
∂φodφev − 3k

4
φod∂φev,

which is same as super-KdV equation in [21] up to constant factors.
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Example 5.17. Let g = sl(2|1) and f = e21. With the notations in Example 3.16, we
consider the operator

L(�) = k∂ + τ ⊗ φτ + e11̄ ⊗ φ11̄ + e1̄2 ⊗ φ1̄2 + e ⊗ φe − � ⊗ 1.

Recall that φe = −kL − 2φ2
t for the energy momentum field L . It is not hard to check

that

{φτ λφτ }=−1

2
kλ, {φτ λφ11̄}=−1

2
φ11̄, {φτ λφ1̄2}=

1

2
φ1̄2, {φ11̄ λφ11̄}={φ1̄2 λφ1̄2}=0.

Also,

{φ11̄ λφ1̄2} = kL − k∂φτ − 2kλφτ − k2λ2, {φ1̄2 λφ11̄} = kL + k∂φτ + 2kλφτ − k2λ2,

for the energy momentum field L in Proposition 2.15. Recall that φe = −kL − 2φ2
τ and

λ-brackets between φe and elements in W(g, f, k) can be computed using

{Lλφτ } = (∂ + λ)φτ , {Lλφ11̄} = (∂ +
3

2
λ)φ11̄ {Lλφ1̄2} = (∂ +

3

2
λ)φ1̄2,

and

{LλL} = (∂ + 2λ)L − 1

2
kλ3.

Now, let us consider S ∈ ⊕
t>0 im(ad�)t ⊗ VI(p) and h ∈ ⊕

t>−1 ker(ad�)t ⊗ VI(p)
such that

L0(�) = kλ + h − � ⊗ 1 = eadSL(�). (5.24)

By equating degree ≤ 1/2-parts of the both sides of (5.24), we get

S1/2 = S1 = 0, and S3/2 = −z−1e21̄ ⊗ φ11̄ + z−1e1̄1 ⊗ φ1̄2.

By equating degree 1-parts of the both sides of (5.24):

[S2,� ⊗ 1] + h1 = e ⊗ φe = 1

2
z−1� ⊗ φe +

1

2
z−1K ⊗ φe,

for K = ze − f , we get

S2 = 1

2
z−1x ⊗ φe, h1 = 1

2
z−1� ⊗ φe, H0 = (h1|� ⊗ 1) = φe.

Hence
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dφτ

dt
= {φe λφτ }|λ=0 = k(λ + ∂)φτ |λ=0 = k∂φτ ,

dφ11̄

dt
= {φe λφ11̄}|λ=0 = −k(∂ +

3

2
λ)φ11̄ + 2φ11̄φτ

∣∣∣∣
λ=0

= −k∂φ11̄ + 2φ11̄φτ ,

dφ1̄2

dt
= {φe λφ1̄2}|λ=0 = −k(∂ +

3

2
λ)φ1̄2 − 2φ1̄2φτ

∣∣∣∣
λ=0

= −k∂φ1̄2 − 2φ1̄2φτ ,

dφe

dt
= {φe λφe}|λ=0 = k2(∂ + 2λ)L − k3

2
λ3

∣∣∣∣
λ=0

= k2∂L = −k∂(φe + 2φ2
τ ),

(5.25)
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is the simplest integrable system associated to sl(2|1).
The degree 2-part of (5.24) is

[S5/2,� ⊗ 1] = [S3/2, k∂ + τ ⊗ φτ ]
= z−1e21̄ ⊗ (k∂φ11̄ − φτφ11̄) + z−1e1̄1 ⊗ (−k∂φ1̄2 − φτφ1̄2).

(5.26)

Hence S5/2 = z−1e11̄ ⊗ (−k∂φ11̄ + φτφ11̄) + z−1e1̄2 ⊗ (−k∂φ1̄2 − φτφ1̄2).

The degree 2-part of (5.24) is

[S3,� ⊗ 1] + h2

= [S2, k∂ + τ ⊗ φτ ] + [S3/2, e11̄ ⊗ φ11̄ + e1̄2 ⊗ φ1̄2] − 1

2
[S3/2, [S3/2,� ⊗ 1]].

(5.27)
Hence S3 = z−2K ⊗ − k

8∂φe and h2 = z−1τ ⊗ 1
2φ11̄φ1̄2.

The degree 3-part of (5.24) is

[S4,� ⊗ 1] + h3

= [S3, k∂ + τ ⊗ φτ ] + [S5/2, e11̄ ⊗ φ11̄ + e1̄2 ⊗ φ1̄2] +
1

2
[S3/2, [S3/2, k∂ + τ ⊗ φτ ]]

− 1

2
[S2, [S2,� ⊗ 1]] − 1

2
[S3/2, [S5/2,� ⊗ 1]] − 1

2
[S5/2, [S3/2,� ⊗ 1]].

(5.28)

Hence S4 = z2h ⊗ 1
2

(
k2
8 ∂2φe + 1

2φτφ1̄2φ11̄ +
k
2∂φ1̄2φ11̄ − k

2φ1̄2∂φ11̄

)
and

h3 = z−1� ⊗
(

−1

8
φ2
e +

1

2
φτφ1̄2φ11̄ +

k

2
∂φ1̄2φ11̄ − k

2
φ1̄2∂φ11̄

)

so that

H1 = (h3|z� ⊗ 1) = −1

4
φ2
e + φτφ1̄2φ11̄ + k∂φ1̄2φ11̄ − kφ1̄2∂φ11̄.

Hence the second integrable system associated to sl2, getting by the Hamiltonian
4H1, is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dφτ

dt
= 6k(∂φ11̄φ1̄2 + φ11̄∂φ1̄2),

dφ11̄

dt
= φ11̄(8φ

3
τ − 8φeφτ − 12kφτ ∂φτ − 3k∂φ3 + 4k2∂2φτ ),

+ ∂φ11̄(6kφe − 24kφ2
τ + 16k2∂φτ ) + 20k2∂2φ11̄φτ + 8k3∂3φ11̄

dφ1̄2

dt
= φ1̄2(−8φ3

τ + 8φeφτ − 12φτ ∂φτ + 3k∂φe − 4k2∂2φτ ),

+ ∂φ1̄2(10kφe − 24kφ2
τ − 16k2∂φτ ) − 12k2∂2φ1̄2φτ − 8k3∂3φ1̄2,

dφe

dt
= −12k∂H1 + k3∂φe + 24kφτφ1̄2∂φ11̄ − 24kφτφ11̄∂φ1̄2.

(5.29)
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