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Abstract: The purpose of this article is to investigate relations between W-superalgebras
and integrable super-Hamiltonian systems. To this end, we introduce the generalized
Drinfel’d—Sokolov (D-S) reduction associated to a Lie superalgebra g and its even
nilpotent element f, and we find a new definition of the classical affine W-superalgebra
W(g, f, k) via the D-S reduction. This new construction allows us to find free gener-
ators of W(g, f, k), as a differential superalgebra, and two independent Lie brackets
on W(g, f,k)/9W(g, f, k). Moreover, we describe super-Hamiltonian systems with
the Poisson vertex algebras theory. A W-superalgebra with certain properties can be
understood as an underlying differential superalgebra of a series of integrable super-
Hamiltonian systems.

1. Introduction

Classical affine W-algebras have been studied in the theory of integrable systems since the
1980s, when Drinfel’d—Sokolov [12] discovered relations between a finite dimensional
simple Lie algebra g and a sequence of integrable systems.

The main idea of Drinfel’d and Sokolov in [12] is considering Lax operators associ-
ated to a Lie algebra g. Precisely, such Lax operators have the form of

L=i+q(x)+A (1.1)
0x

where (i) g is a differentiable function whose value is in a borel subalgebran, @ h C g
(i) A = f + zs € g[z] for the principal nilpotent element f € n_ and s € ker(adn,).
Here, ny ® f @ n_ is a triangular decomposition of g. On the phase space F consisting
of functions ¢ in Lax operators, Drinfel’d-Sokolov defined gauge transformations. As
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a consequence, the W-algebra Y/ (g) associated to g was introduced as a set of gauge
invariant functions.

Furthermore, a Lax operator (1.1) gives rise to a bi-Poisson structure on }(g), which
has an important role to find related integrable systems [12]. A bi-Poisson structure
({, }x,{, }g) consists of a couple of linearly independent local Poisson brackets which
involve delta distributions, that is,

{u(x), v(M}x = Z Wa(y) 838(x —y) for u,v, W, e W(g), X =K, H
neZyU0}

satisfy skew symmetries, Jacobi identities and Leibniz rules. After all, a systematic algo-
rithm of getting a sequence of Hamiltonian integrable systems on Y/ (g) was discovered.
In this algorithm, they used the Lenard—Magri scheme and the bi-Poisson structure, i.e.,
there are k; € W(g) for i € Zx¢ such that

do(x,
¢C(;; n_ f{ki(x)’¢(Y)}de = /{ki+1(x),¢(y)}1<dy, for ¢ € W(g),

are all distinct integrable systems.

In an algebraic point of view, classical affine W-algebras are Poisson vertex algebras.
A Poisson vertex algebra (PVA) is a differential algebra endowed with a Poisson A-
bracket structure, denoted by {  }. Here, a A-bracket can be understood as an algebraic
interpretation of a local Poisson bracket. On the other hand, Poisson vertex algebras are
closely related to vertex algebras since the quasi-classical limit of a certain family of
vertex algebras is a Poisson vertex algebra. As one can expect, there is a vertex algebra
called a quantum affine W-algebra that is a quantization of a classical affine W-algebra.

The quantum affine W-(super)algebra associated to g and f € g is introduced via
the quantum affine BRST complexes (or the quantum Drinfel’d—Sokolov reduction),
provided that g is a finite dimensional simple Lie superalgebra with a non-degenerate
even supersymmetric bilinear form and f is an even nilpotent element with an sl,-triple
(e, h, f)[5,13,19,20]. In [24,25], the author proved that the quasi-classical limit of the
quantum affine W-(super)algebra associated to g and f is

W(g, f,k) = (P/T)*%™, (1.2)

where P = S(C[d] ® g) is the affine PVA, and the Lie subalgebra n of g and the
differential algebra ideal Z of P are determined by f. Here the ad,n-action is induced
from the A-bracket on the affine PVA P and k € C is the constant involved in the A-
bracket of P. These results imply that classical affine W-(super)algebras have properties
analogous to those of finite W-(super)algebras [14]. Note that the W-algebra W(g)
introduced by Drinfel’d and Sokolov in [12] is just W(g, f, k), when f = fpinc is a
principal nilpotent element and k = 1 (see also [7]).

Since W(g) is a special case of W-algebras associated to g, there have been many
attempts to understand algebraic structures of YW (g, f, k) and to find integrable systems
associated to W(g, f, k) for any nilpotent element f (see [1,4] for instance). Regarding
these topics, there are plenty of considerable articles, provided that g is a Lie algebra.
In [11,28], using the definition (1.2), De Sole, Kac and Valeri succeeded in explaining
generators of W(g, f, k) and the A-bracket relations between them. Moreover, integrable
systems on W (g, f, k) are discovered in [3,6,8,9]. However, in the case when g is a Lie
superalgebra, there still remain many open problems.
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For algebraic structures of W-algebras associated to Lie superalgebras (W-superalge-
bras), we refer [22,23,27,29], where structures of finite W-superalgebras are considered,
and [20,26], where the algebraic structures of affine W-superalgebas associated to min-
imal nilpotent elements are given. On the other hand, integrable systems have not been
yet explored in precise connections with W-superalgebras (1.2) via PVA structures, to
the best of the author’s knowledge. There are some articles that investigated integrable
systems on noncommutative algebras (see [10,16,17,21] and the references therein).
In particular, in [16,17,21], the authors described relations between integrable systems
and Lie superalgebras, for instance spo(2|1) and sl(n|n). However, it is not clear if these
integrable systems can be explained by PVA structures of W-superalgebras (1.2).

In this context, a natural question is whether a W-superalgebra can be related to a
sequence of integrable systems. In this paper, as the first step toward answering this
question, we construct W-superalgebras using Lax operators, mainly inspired by the
important papers [1,4,7,12]. The key idea is to consider Lax operators in algebraic
languages:

L=kd+q—A®1 € Cox (glzl ®P/I);

with even parities, where P /T is the differential algebra in (1.2) (see Definition 3.1). In
other words, we assume that the entire phase space

Fa.r ={qIL=kd+qg — A ® 1 is even Lax operator} C (g[z] ® P/I);

is even. By considering even gauge transformations, we prove that the construction
of W-superalgebras via Lax operators is equivalent to (1.2) (see Theorem 3.11). This
new construction is particularly useful to find free generators of W-superalgebras as
differential algebras (see Proposition 3.14).

Recall that if g is a Lie algebra and f € g is a nilpotent element, then the W-algebra
W(g, f, k) is endowed with a pair of Poisson A-brackets, and these brackets play crucial
roles in describing integrable Hamiltonian systems associated to W(g, f, k). There-
fore, in order to find integrable systems associated to W-superalgebras in an analogous
approach, we need to understand the following:

e the definition of super-Hamiltonian evolution equations using Poisson A-brackets
of Poisson vertex algebras;

e how to describe two linearly independent Lie (super)brackets on W(g, f, k)/0WW
(g, f, k) with Lax operators and variational derivatives;

e Lenard-Magri scheme associated to super-Hamiltonian integrable systems.

To describe two linearly independent Lie (super)brackets on W(g, f, k)/dW (g, f, k),
we consider the special operator called the sign rwisted' universal Lax operator,

Lfmiv =kd +qgniv -A®1e€Coxglz]l®P/L.

(see Proposition 3.18 for the precise definition). Employing this operator, we describe
the Lie brackets on W(g, f, k)/dW(g, f, k) which are needed to use the Lenard—Magri
scheme. Indeed, under the assumption that A is semisimple in g((z‘l)), we show
that there are super-Hamiltonian integrable systems associated to classical affine W-
superalgebras (see Theorem 5.14).> As a simplest example, we show one of super-
Hamiltonian integrable systems associated to W(spo(2|1), f, k) is equivalent to the
super KdV equation, which appears in [21], up to constant factors.

1 The main reason we consider sign twisted operators is explained in Remark 4.16.

2 This is a quite strong assumption (see Remark 5.5). An important open question in this field is to find
integrable systems associated to arbitrary W-superalgebras.
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2. Classical Affine W-Algebras

In this section, we review some known facts about classical affine W-algebras. For the
notions about Poisson vertex algebras, we refer to [2, 18]. Properties about W-algebras
and Lax operators denoted in this section can be found in [7,12].

2.1. Poisson vertex algebras.

A vector superspace is a vector space V with the Z/2Z-graded decomposition V =
Vo @ Vi. Fori = 0, 1, we denote the parity by p(a) = i for a homogeneous element
a € V5. The superalgebra End(V) = End(V )y @ End(V); is a vector superspace such
that

if F € End(V); then F(VJT) C Vg
The supersymmetric algebra A is a superalgebra with the supersymmetry
ab = (—l)p(a)P(b)ba,
for homogeneous elements a and b.

Definition 2.1. A Lie conformal algebra (LCA) R is a C[d]-module with a C-linear
A-bracket

[»]: R® R — R[A]

satisfying the following properties:

e (sesquilinearity) [a; db] = (A + 9)[a,b], [dayb] = —A[ayb],

o (skewsymmetry) [ayb] = —(—1)P@PO)[p_; 4q],

e (Jacobi identity) [ar[b,c]] = [[arblituc]l + (—=DPDPO D, [a;c]].
Here, we assume 9 is an even operator on R.

Remark 2.2. Let R be a LCA.

(1) The sesquilinearity implies 9 is a derivation for the A-bracket on R, i.e., d[a;b] =
[0a;b] + [a;.0b].

(2) Forany a,b € R, we denote by [a;b] = 3, - ”(,':fbk” for agnb € R. Here,
amb € R is called the nth product of @ and b.

Definition 2.3. (1) A differential (super)algebra D is an associative (super)algebra
with an even operator 0 : D — D called derivation such that

0(AB) =0(A)B+ Ad(B) forA,B e D. (2.1)

In other words, the derivation d defined on a generating set of D can be extended
using the Leibniz rule (2.1).
(2) The (super)algebra of differential polynomials

Caitrl wi |1 € I3 U I7]

generated by even elements in {w;}iez; and odd elements {w; },ey; is the algebra
isomorphic to the tensor products of a symmetric algebra and a exterior algebra

S(Vo) ® A\ (V)

where Vy := Spanc (0" w; |i € I3, n € Z>o) and V| := Spanc(d" w; |i €
[I, ne Zz()).
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Remark 2.4. For the simplicity of notations, we denote by S(V) the supersymmetric
algebra generated by the vector superspace V = V5 © V7. In other words,
S(V) = S(Vp) ® /\(Vp).
Using the notion of a LCA and a differential algebra, we can introduce Poisson vertex

algebras.

Definition 2.5. A quintuple (P, 1, {, }, 9, -) is a Poisson vertex algebra (PVA) if

(1) (P,{.}, 9) is aLie conformal algebra,

2) (P,1,-,0) is a supersymmetric differential algebra with the derivation d and the
unity 1,

(3) the Leibniz rule holds:

(A, BC} = (—1)p(A)p(B)B{AAC} + (_1)p(C)(P(A)+P(B))C{A)LB}_

Example 2.6. Let g be a finite simple Lie superalgebra with the even supersymmetric
bilinear form (| ). The affine LCA of g is R = C[d] ® g with the A-bracket defined by

[a,b] = [a, b] + Ak(a|b), fora,b e gandk € C,

and sesquilinearity. The affine PVA of g is the (super)symmetric algebra S(R) generated
by R endowed with the A-bracket induced from the bracket of R and the Leibniz rule.

Proposition 2.7. Let P be a PVA and 9P be the subspace { dp | p € P} of P. Then the
quotient space P /9P = {p + 0P|p € P} endowed with the bracket

[a+0P,b+0P] :={a)b}l)—o+ 0P fora,beP
is a well-defined Lie superalgebra.

Proof. By the sesquilinearity of A-brackets, we can see [da, b] and [a, dD] are in IP.
Hence it is a well-defined bilinear map P/0P x P/0P — P/9dP. Skew-symmetry and
Jacobi identity of [, ] follow from those properties of {, }. O

Definition 2.8. Let P be a PVA and H : P — P be a diagonalizable operator. Denote
by A, the eigenvalue of homogenous element a € P with respect to the operator H. If

AIZO, Aaa:Aa‘*'l» Aab:Aa-'-Abv Aa(n}bzAa"_Ab_n_ls

for any homogenous elements a, b € P then H is called a Hamiltonian operator and
A, is called the conformal weight of a.

Remark 2.9. Let L be an element of a PVA P If (i) L o) = 9, (ii) L (1) is adiagonalizable,
and

(i) {LyL} = (0 +20)L +cA>, forceC

then L is called an energy momentum field of P. By sesquilinearities and Leibniz rules,
Ly is a Hamiltonian operator. By convention, we denote by

L, = L(n+l) forn > —1.

The operator Lo = L1y is called the Hamiltonian operator induced from the energy
momentum field L.

Hamiltonian operators are useful to describe relations between PVAs (VAs) and
Poisson algebras (associative algebras).
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2.2. Classical affine W-algebras.
There are some ingredients to construct a classical affine W-algebra. From now on, we
fix notations to indicate them.

Setup 2.10. Let g be a finite simple Lie superalgebra and (e, h, f) be an even sly-triple
in g. Suppose (|) is the even supersymmetric bilinear form on g such that (e|f) =
%(h|h) =landg = @flz_ 4 9(0) is the ad% eigenspace decomposition. We consider
two Lie subalgebras n and m:

n=@;.080) =Djz1290) DO m=;a90).

Recall that the grading by adh is called a Dynkin grading, which is an example of a
good grading. Hence we have the following properties:

(1) adf : D=1/, 9() = D;>_y /5 8(0) is injective,
(2)adf @<y, 80) = D1 80) is surjective.

By (1) and (2), we have the bijection adf : @i:l/z g@i) —> @i:—l/z g(i).
Using notations in Setup 2.10, we define classical affine W-algebras.

Definition 2.11. Let 7 be the differential algebra ideal of the affine PVA P = S(C[9]®g)
generated by m + (f|m) for m € m. The classical affine W-(super)algebra W(g, f, k)
associated to g, f and k € C s

Wi, f, k) = (P/T)""",

where adjn-action on P/Z is induced from the A-bracket on P in Example 2.6. The
W-algebra W(g, f, k) is a PVA with the A-bracket induced from that of P.

Proposition 2.12 [7]. Suppose there is an even element s € g(d), where d is the largest
integer such that g(d) # {0}. (See Remark 2.14.) The W-(super)algebra W(g, f, k) in
Definition 2.11 is endowed with another Poisson \-bracket which is induced from the
bracket on the affine PVA'P := S(C[d] ® g) defined by

{aib}2 = (slla, b]). 2.2)

Proof. Consider the one parameter family of Poisson A-brackets on S(C[0] ® g) defined
by

{aybY = [a, bl + k\(a|b) +t(s|[a, b]), teC. (2.3)
Observe that [s,n] = 0 and {ny A} = {n,A}°, where {; } is the Poisson A-bracket
on the affine PVA in Example 2.6. Hence {n; A} = {n; A}. Thus, for the ideal Z in
Definition 2.11, we have

Wig, f, k) :={A e P/T|{nA) €I} ~ W(g, f. k), A A,

as differential algebras. One can also check that W (g, f, k) is a PVA endowed with the
A-bracket induced from (2.3) and extended via Leibniz rules. For A, B € W(g, f, k),
we have

{AyB) := (A BY™ — (AL B)Y e W(g, f, k)

which defines another A-bracket on W(g, f, k). The well-definedness of the bracket { 5 }»
can be shown by the master formula, or Proposition 4.4. This bracket can be understood
as the bracket induced from (2.2). O
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Remark 2.13. In order to distinguish two A-brackets on W(g, f, k), we denote by {, }
or {, } the bracket in Definition 2.11 and by { , }» the bracket in Proposition 2.12.

Remark 2.14. A nonzero even element s € g(d) exists for a subalgebra of gl(m|n).
In [15], Hoyt showed that Dynkin grading on g can be extended to g. For example, in
sl(m|n) case, it can be shown as follows. A Dynkin grading of gl(m|n) corresponds to a
pair (A|w) of partitions of m and n. If A = (p1, p2, ..., prp) and u = (q1,q2, ..., Gr,)
are decreasing sequences then the largest numbers d; and dy such that g5(dg) # {0} and
97(dq) # {0} satisfy

dy = max{2(p1 — 1), 2(q1 = D}, di=(p1 =D +(q1 —D.

Hence, ford = max{dj, dj} = dj, there exists anonzero even element s € g(d). Similar
argument works in spo(m|n) cases.

Proposition 2.15 [7]. Let {u;}ic; and {ui.},’d be dual bases of g with respect to the
bilinear form (-|-) and let {v,-},-e[l/2 and {v* },-,511/2 be the dual bases of g1/2 with respect
to the bilinear form w(-|-) on g1,2 defined by

w(a,b) = (flla, b]).
Then

1, 1., ah
L =Zﬁu' wi+ Y 58(v')vi+7 (2.4)

iel il

is an energy momentum field of the affine PVA of g with the A-bracket
{a)b} = [a, b] + kX(alb), for a,b € g.

The conformal weight A, of a € g(j,) is 1 — j,. Moreover, the element L € W(g, f, k)
which is the quotient of L in (2.4) is an energy momentum field of W(g, f, k).

About algebraic structures of classical affine W-algebras, the following proposition
can be found in [26]. Also we note that, in [5], there is the analogous result for quantum
affine W-algebras.

Proposition 2.16 [7,26]. Let L be the energy momentum field of W(g, f, k) in (2.4).
For the Hamiltonian operator Ly, let A, be the conformal weight of the homogenous
elementa € W(g, f, k).

(1) As differential algebras W(g, f, k) ~ S(C[0] ® gr), where gy = ker(ad f) C g.
(2) Let By be a basis of gy. There is @ = {¢g | g € By} C W(g, f) such that

P =g+ Vg,

where Ay, = Ag and g is an element of the algebra of differential polynomials
generated by @i>1_Ag g(i). Note that g € g(1 — Ag). Moreover,

W(g, f. k) = Caigldglg € Byl
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Example 2.17. Let g = slp. Then n = m = Ce and the ideal Z of S(C[9] ® g) is
generated by e + 1. As differential algebras,

W, f.k) = Carlorl,
where ¢ = f — %x2 — kox forx = % We can check that

k3
{prrdst=—k(A+20)¢f — 7\3.

Example 2.18. Let g = spo(2|1) C gl(2|1). Then the even part gg is generated by an
slp-triple (ecy, h, fev) and the odd part g is generated by e,q and f,4. As matrix forms,

1 0 O 010 000

h=]10 —1 0], ey=1000], fao=|1020],
0 0 O 000 000
001 0 00

eoda=10 00}, fau=] O 0 1
010 -1 00

Consider the even supersymmetric invariant bilinear form (|) such that (h|h) =
2(eev| fev) = 2 and (eyq| foa) = —2. There are two elements

1 1 1 1 1
bod = fod — Eeodh —kdeod, Pev = fev + Efodeod - Zh2 +k160d860d - kiaha
which satisfy

ad) ey (Poa) = adyeoqd (Poq) = adyeey(Gey) = adj.epq(ey) =0+ 1.
Hence

W(g, fev, k) = Citilpod, dev]

as a differential algebra. By direct computations, we can check that the A-bracket of
W(g, fev, k) is defined as follows:

(Pod 5 Pod) = —2ber — 2k*12,
3
{¢ev A ¢od} = _k(a + E)L)d)ody

k3
{Pev 1. Pev) = —k(0 +2X) ey — 313.

2.3. Generalized Drinfeld—Sokolov reductions.
In Sect. 2.3, we recall the construction of classical W-algebras associated to Lie alge-
bras via Drinfeld—Sokolov reductions in PVA theories. For the purpose, we assume
g is a finite dimensional simple Lie algebra (without odd part), in this subsec-
tion.

For a symmetric differential algebra V), the vector space g ® V is the Lie algebra
endowed with the bracket

@@ F,b®Gl=1[a,b]® FG fora,beg, F,Ge.
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The bilinear form (|) : gxg — Congcanbeextendedtothemap (|) : gV xgRV —
V by

(a®F|b®G) = (alb)FG.

The derivation d : ¥V — V on V can be extended to an endomorphism on g ® V such
that

0@a®F)=a®JF.

Consider Ca as the trivial one dimensional Lie algebra. Then Cd x g®) is the semidirect
product of Lie algebras Cd and g ® V endowed with the bracket

[c1d+a®F, 20 +b®@G]=c1(b®3G) —c2(@a®@IF) +[a® F,b® G]. (2.5)

Recall the notation m = ;. g(i) in Setup 2.10. If we denote by vii={we
g| (w|v) = 0 forany v € V } for a subset V C g then

mt = Di._19() = @1271/2 g(i). (2.6)
Let us consider the subspace
p=@@Di.190) =Dy ps@d) (2.7)

of g. Then we have
HDg=meyp, (>()px m* by the bilinear form ().
Definition 2.19. Let p be defined as (2.7) and let V(p) := S(C[3] ® p).
(1) Let Fg, r be the set of elements
g=) q®P em"®@V(p) (2.8)
iely

for a basis {¢g; |i € I } of m' and a subset { P! |i € Iy} C V(p). The set Fy, 5 is
called the phase space associated to g and f.
(2) For a given g and k € C, the operator L of the form

L=kl+gq—f®1cCaxg V(). (2.9)

is called a Lax operator
(3) The gauge transformation of g € Fg y with A € n ® V(p) is gt e Fg,r where

ANhkd+g— fR)=kd+qg* — F® 1.

On the other hand, for ¢’ € Fy , if there is A € n ® V(p) such that ¢’ = g” then
we say they are gauge equivalent and write g ~ q’. Note that it is not hard to check
that the equivalence relation is well-defined in Fy, 7.

Elements in the differential algebra V(p) can be identified with functions Fy r —
V(p) as follows:

pa®F) = (pla)F, PQ@®F)=Pa®F)Q0a®F), 0Pa®F)=0(Pa®r)),

(2.10)
forpep, P,OQeV(p)anda ® F € Fy r. Anelement P € V(p) is said to be a gauge
invariant function if P(q) = P(q") whenever g ~ ¢’ forq,q’ € Fg. .
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Proposition 2.20 [7]. The set W of gauge invariant functions in V(p) is a differen-
tial subalgebra of V(p). Moreover, YV is isomorphic to the classical affine W-algebra
W (g, f, k) associated to g and f as differential algebras.

Remark 2.21. In [12], a pair of local Poisson structures in W is described by a Lax
operator. The Poisson structures are equivalent to the PVA structures on the classical
affine W-algebra W(g, f, k) which are induced from those in the affine PVA S(C[0]®g).
(See Definition 2.11 and Proposition 2.12.)

The construction of W-algebras in Proposition 2.20 allows to compute generators of
the algebras (see Theorem 2.23).
Lemma 2.22 [7]. Let V be a subspace of mt such that m* = [n, f1é@ V. Take a basis
{vilier, of m such that {viliesci, is a basis of V and {vi}ie1,\s is a basis of [n, f]. If
{11"},-61p is the dual basis of p then {vi}ics is a basis ofgf = ker(adf).
Theorem 2.23 [7].
(1) Let {Cli}iel,, and {q"},-g‘J be bases ofmL and p such that (q; |qj) = ;. Denote by

6]univ=Z,-61p 6]i®qi and L =ko+quuiv — f ® 1. (2.11)
Then there is unique X € n @ V(p) such that qu);iv e V ® V(p) satisfies
AL =kd+qr, — fO1. (2.12)

(2) As in Lemma 2.22, let {qi}igjc]p be a basis of V. If
Qo = Diey 4i @ Wi
for q,fniv in (1) then w; are gauge invariant functions in V(p). Moreover, by
Lemma 2.22, we have w; = v' + (degree > 2 part).
(3) The set of gauge invariant functions in V(p) is the algebra of differential polynomials
Caglwi li e J].
Remark 2.24. We have the differential algebra isomorphism V(p) >~ S(C[0] ® 9)/Z =:
Vz(p), A — A, where 7 is the ideal defined in Definition 2.11. Due to the isomorphism,

(1) we can consider a Lax operator L an element in Cd x m* ® Vz(p),
(2) since the W-algebra W(g, f, k) is a subalgebra of V7 (p), we prefer to regard
Wi(g, f, k) as a set of functions from Fy r to Vz(p).

Theorem 2.25 [7]. The W-algebra W(g, f, k) is the set of gauge invariant functions in
Vz(p). Hence we can find free generators by Theorem 2.23.

The following is the simplest example of classical affine W-algebras.
Example 2.26. Let g = sl,. Then guyiy = ¢ ® f +h ® x forx = % and
L=k0+quiv— f®L

If we take X = e ® x then ¢ = ¢ ® (f — x? — kdx). Hence Cqige[ f — x> — kdx] is
the set of gauge invariant functions. Indeed, we can check that ¢ := f — x? — kdx is
a gauge invariant function as follows:
LetY =e®rforr € Vz(p). Theng! = h @ (x —r)+e® (f —kdr —2rx +r>) and
br(q") = (f —kdr —2rx +r%) — (x —r)* —kd(x —r) = f —x* — kdx

which s independent on 7. Also, we can check that the algebra of differential polynomials
Cuaitl@ r] is isomorphic to the W-algebra W(g, f, k) in Example 2.17.
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2.4. Integrable Hamiltonian systems associated to W-algebras.

Integrable Hamiltonian systems can be investigated by Poisson vertex algebras theories
[3]. In this subsection, we briefly review basic notions related to integrable Hamiltonian
systems.

Definition 2.27. Let P be an (even) algebra of differential polynomials with a PVA
structure.

(1) An evolution equation is called a Hamiltonian system on P if there is & € P such
that

d
d—bt‘ = {(hyu}lr=o, foru e P.
(2) Consider the quotient map [ : P — P/dP. The image [ f of f € P is called a

local functional.
(3) A Hamiltonian system is called an integrable system if there are infinitely many
linearly independent integrals of motion | h;, i € Zx(. Here, an integral of motion

[ hi is a local functional such that [ % =
In the rest of this subsection, consider the Laurent series g((z‘1 )) with the Lie bracket
[az", b7"] = [a, D)™™ fora,b € g.
Recall W(g, f, k) is endowed with a bi-Poisson A-bracket which is induced from that
on S(C[9] ® g):
{apb}1 = la, D] + kr(alb), {anblr = (sla, b]). (2.13)

Remark 2.28. (Lenard—Magri Scheme) Let P be a PVA with the bi-Poisson A-bracket
({1 }1, {2 }2). Suppose there is a sequence of linearly independent local functionals
[hi€eP/IP,i=0,1,2,...such that

@) {ho5 Plalr=0 =0, (i) {hixr p }ila=0 = {hi+12 pl2lr=o fori = Oand p € P.
Then ‘fi—’; = {hju}g|r=0 fori =0, 1,2, ... are Hamiltonian integrable systems.
Theorem 2.29 [7]. Suppose A = f + sz € g((z_l)) is semisimple for s € ker(adn).

There is a sequence of integrable systems on YW (g, f, k) which satisfies the assumptions
of Lenard—-Magri scheme. More specifically, consider

LA) =k +Guniv—AR1=L—2z5901€Coxg((z™")) ®Vz(p)

andtake h(z) € (ker(adA)Ng[[z~ 1)@ V1 (p) such that eSO L(A) = kd+h(2)+A®1
for some S(2) € gllz ' NN® V1 (p). Then h; = (X AQ1|h(z)) is an element in W(g, f, k)
and the Hamiltonian equation
du
dr

is an integrable system on W(g, f, k). Here, the bilinear form on g((z~')) @ Vz(p) is
defined by (az" @ F|bz™ ® G) = (alb) FGbym.0 fora,b € gand F, G € V1 (p).

={hiru}Hlr=0

Remark 2.30. [7] It is a natural question to ask that if we can find a semisimple element
A = f +zs for a given nilpotent element f. In the case when g = sl,,, if f corresponds
to one of the following partitions X of n then we can find such a semisimple element A.

() A=, r,...,r,1,1,.... 1), @ ri=rr—-1,r,r—1,...,r,r—1,1,1,...,1).
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3. Classical Affine W-Superalgebras and Generalized Drinfel’d—Sokolov
Reductions

In this section, we shall show a set of generators of a classical affine W-superalgebra as
a superalgebra of differential polynomials can be obtained by an analogous method to
the generalized Drinfeld—Sokolov reduction.

Let g be a simple Lie superalgebra with a nondegenerate invariant even supersym-
metric bilinear form (|) and let V be a supersymmetric differential superalgebra. The
vector superspace g ® V is endowed with the Lie bracket and the bilinear form defined
by

[a®F, b® G] = (—1)POPH) g b1 ® FG,
(a®F|b®G) = (—1)PPPE) (qp)FG

for the homogeneous elements a, b € gand F, G € V.
Due to the invariance of the bilinear form on g, we get the invariance of the bilinear
form (|)ong® V

(a®@F|[b®G,cQH])=([a®F,b®G]|lc® H]),

fora,b,cegand F,G,H € V.
Let us consider an even derivation 0 : VV — V on V. Then it can be extended to the
mapon gQ® Vbyd(a® F) =a ® dF. The Lie superalgebra

Cox(g®V)

is the semidirect product of the trivial Lie algebra Co and the Lie superalgebra g ® V.

Suppose the Lie superalgebra g has an slp-triple (e, &, f) with the even supersymmet-
ric bilinear form (| ) such that (e| f) = %(h|h) = 1. Asin Sect. 2.3, letm = @izl a(i),
mt =@,__,9()andp = D,_, g(i), where g(i) is the ad% eigenspace with the eigen-
value i. Recall that g = m @ p and p ~ m™ as vector superspaces via the bilinear form
(1) on g. For the superspace m* = m(% @ mii, there is a basis {g; |i € [ := [ U I7}
of m™ such that

(i) {qi |i € Iy} is abasis of m3, (ii) {¢; |i € I;}isabasisof m=.  (3.1)

Definition 3.1. Let V(p) := S(C[d] ® p) be the differential superalgebra generated by
the vector superspace p. A Lax operator L is an even element in Cd x g ® V(p) such
that

L=kd+Y e ai®P +Y,c; ¢j® P/ = f®1€Cix (30 V()
where g =37 i ® P+ Y, 4 ® P/ € (m* @ V(p));.

Remark 3.2. Let T be the differential superalgebra ideal of V(g) generated by {m +
(f|lm)|m € m}. Denote V7 (p) := V(g)/Z. Then we can check the following facts:

(1) V(p) =~ Vz(p) as differential superalgebras by the canonical isomorphism ¢ :
V(p) — Vz(p). If there is no danger of confusion then we denote ((P) € Vz(p) by
P.

(2) We can regard Lax operators as elements in Cd x (mL RVr (p))(—) via the isomorphism
tin (1).
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Recall that the W-superalgebra W(g, f, k) is a subset of V7 (p). In order to see the
relation between W-superalgebras and Lax operators, we use (2) in Remark 3.2.
A Lax operator L acts on g ® V7 (p) by

La®F):=[L,a® FJ.
Consider the phase space

Far = (m=®@Vz(p);.

Then for any g € Fy , there is the corresponding Lax operator L = kd +¢q — f ® 1.

Note that, for a Lax operator L and an element X € (n ® VI(p))(—), there is ¢ € Fa.f
such that
AL =Yk +qg—fRD)=kd+qX — f 1. (3.2)

Hence ¢®dX L is again a Lax operator.

Definition 3.3.(1) Let g € Fy y and X € (n ® Vz(p));. Then ¢* € Fy s defined as in
(3.2) is said to be the gauge transformation of g € Fy r by X.

(2) For two elements ¢, g" € Fyg, r, if there is an element Y € (n ® Vz(p))(—) such that

g¥ = ¢’ then we say ¢ and ¢’ are gauge equivalent and write g ~ ¢'.
(3) The universal Lax operator associated to g and f is

L=kd+quiv—1® f=kd+ Y o ai®q9 — L (33)
where {g;}ic; and {g'};c; are bases of m and p, such that (¢;|q7/) = &;;.

Remark 3.4. Since the bilinear form (| ) defined on the Lie superalgebra g is even, the
universal Lax operator in (3.3) is even. Hence it is a Lax operator.

Now we identify an element in Vz(p) with a linear map 9 X (g ® Vz(p))g — Vz(p)
defined by (3.4) and (3.5):

p@) =0, c(@ =c, pla®F)=F(alp)=(alp)F, (3.4)
forceC,pepCVz(p)anda® F € (g ® Vz(p))j. For P, Q € Vz(p), we have
POa®F)=Pa®F)Q(a®F), 0P(a® F)=0(P(a® F)). (3.5)

Remark 3.5. If g is even then p(a ® F) = (pla)F = (a|p)F. Hence (3.4) and (3.5)
define the same functions as those in (2.10). If g is not even and a ® F is an even element
in g ® V7 (p) then

p@a® F) = (a|p)F = (=1)PP (pla)F.

Here, the last equality holds since (pla) # O implies p(p) = p(a). The reason we
consider the definition p(a ® F) := (a|p)F instead of p(a ® F) := (pla)F can be
explained by the proof of Lemma 3.8 and Proposition 3.9.

Definition 3.6. A function P € Vz(p) is said to be gauge invariant if P(q) = P(q’)
for any gauge equivalent elements ¢ and ¢’ in Fy_ .

Proposition 3.7. The subset of V() consisting of gauge invariant functions is a differ-
ential superalgebra .
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Proof. Tt is clear that if P, Q € V7 (p) are gauge invariant then P Q and 9P are also
gauge invariant. O

‘We note that
P(L)=P for P € Vz(p) (3.6)

since an element p € p C Vz(p) has properties (f|p) = 0 and p(d) = O so that
P(L) = p(Guniv) = Yicpur; 4'@ilp) = p.
Also, a Lax operator L = kd+ Q — f ® L with Q = ) ;; ¢i ® Q' € Fy s satisfies
P(Q) = P(L) = P(D)| i—gi forany P € Vz(p). 3.7)

Here, the subscript ¢' = Q' means that we substitute ¢’ by Q'.
Now, the following lemma is useful to see detailed computations in the proof of
Proposition 3.9.

Lemma3.8. Let X =n®r € m® Vz(p))g and p € Vr(p). Then we have
p(X, L]) = —kdr(n|p) — rln, p] € Vz(p).
Proof. We have

[X, L] = —n®kdr+[n®r, quniv—f ®1] = —n®@kdr =Y _,;;lqi, n1®rq' —[n, f1Qr

' (3.8)
since p(g;) = p(p") and p(n) = p(r). Hence
(X, L]) = —kdr(nlp) = rq' (lgi,n]| p) +r (In, f11 p) 3.9)
= —kor(n|p) —rln, p]l € Vz(p). .
O

Proposition 3.9. If W € V7 (p) is a gauge invariant function then W € W(g, f, k).
Proof. Let X =n®r € (m® Vz(p))jand € € C. For W € Vz(p), we denote
W(L+elX, L]+ %GZ[X, [X, LI1+---) =150 S (3.10)

for some P,W e Vz(p).
If W is a gauge invariant function, we have

WX (L) =w (3.11)
for any € € C. Since (3.11) implies P,W = 0 for any ¢t > 1, it is enough to show that
P = 0implies W € W(g, f, k).

In order to show that P]W = 0,letusdenote by [A, B]lz € Vz(p)[1],for A, B € V(g),
the image of [A, B] € V(g)[A]. In other words,

[A,Blr = [A; B] + Z[A]. (3.12)
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Note that [, ]7 induces the well-defined A-bracket on W(g, f, k) since
[y P(m+ (flm))]z =0+Z[A] for P € V(g) = S(C[d]®g)andm e m (3.13)

so that [n,Z] = Z[A].

By the definition of WW(g, f, k), an element W € V7 (p) is in W(g, f, k) if and only
if [n, W]z = 0, where W is an element in V(p) such that (W) = W for the map ¢ in
Remark 3.2. Thus, it is enough to show that

PV =- tho(afr)Pl‘j’ if and only if [0, W]z = Do - IAS (3.14)
Now, observe the following facts.

(i) If we substitute W with p € p C Vz(p) in (3.10) then, by Lemma 3.8, we have
PIW :N—kar(nlp) — r[n,~p] € V7(p). On the other hand, take W € V(p) such
that «(W) = p. Since [n, W]z = [n, p] + kA(n|p) € V7 (p)[1], we have (3.14).
(i) If W = 9™ p then PIW = —3"(kdr(n|p)—r[n, p]). Inthis case, the sesquilinearity
[1n,0™ p] = (A + 3)"[n) p] implies (3.14).
(iii)) Suppose W = BC for homogeneous elements B, C € V7 (p). Since

W (X £) = B(e™X 2 . C(eMX 1),
we have P1W = BPIC + PIBC. Denote PIB = tho(atr)Pg and Plc =
> 1=0(3'r)PS. Then
PV = Yieo [(_1)p(r)p(B)(afr)B Plcz +@'r)PE C]. (3.15)
On the other hand, by the Leibniz rule, we have

[, W1z = [, BClz = (—1)PPB) B[n; Cl1 + [, BIzC

(3.16)
=~ S [COPPO B G 1P )

for B,C € V(p) such that L(E) = B and L(G) = C.Itis not hard to see (3.15) and
(3.16) imply (3.14).

By (i), (ii), (iii) and the induction, we prove the proposition. O
Proposition 3.10. If W € W(g, f, k) then W is a gauge invariant function in V(p).

Proof. Let W be an element in W(g, f, k). Note that

(i) in the proof of Proposition 3.9, we showed that W € W(g, f, k) if and only if
W(X, £]) =0 forany X € (n ® Vz(p))s,
(ii) for P € V7 (p) and a Lax operator L = kd + Y ;.; ¢i ® Q' — f ® 1, we have

P(IX.L]) = P(IX, LD i—gi-

Hence W([X, L]) = 0 for any X € (n ® Vz(p)); and any Lax operator L. Moreover,
since ad"~! X (L) is a Lax operator for n > 1, we have W(ad" X (L)) = 0. Thus,

W (X (L)) = W(L),

which means that W is gauge invariant. O
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Theorem 3.11. The set of gauge invariant functions in V7 (p) is the classical affine
W-superalgebra associated to g and f.

Proof. 1t directly follows from Propositions 3.9 and 3.10. O
Now the following propositions are useful to find generators of W-superalgebras.
Proposition 3.12. Let us fix an ad h-invariant complementary subspace Vy C gof| f, nl
inmt:
1 _
mb =V, @ [fnl.

Consider a Lax operator L = kd + Q — f ® 1 for Q € Fg y. Then there exists unique
Q" e Vi ®@ (VI (p))g and unique X € (n ® Vz(p))g such that

XL = kd+ Q" — FR1. (3.17)

Proof. We can write 0 = Ziz_% Q; where Q; € g(i) ® V7 (p). Similarly, let

X =31 Xiand Q" = 37, QF" for X;, QF" € g(i) ® Vr(p). Then the ad LS
decomposition of (3.17) implies the following equalities:

O 1p+[X1,—f®1] =0,
Qo+ [X1, —f Q11+ [X12, Q—12] = OF"",
Q12+ X372, —f @ 11+[X1, Q121 +[X1/2, 9 + Qo] = O, (3.18)

Then we can determine X /> uniquely by the first equation in (3.18) and it is even. Also,
X1 and Q" can be uniquely determined by X, and the second equation in (3.18).
Since [X1/2, Q—1/2] + Qo is even, both X| and Q§" are even. The Inductively, even
elements X, and Q{*" are determined uniquely by X ;,1, Q;.an for j <iand (3.18).O0

Lemma 3.13. Let us take the universal Lax operator L = kd + quniy — 1 ® f in Propo-
sition 3.12 and let { q; |i € J } be a basis of Vy. If we denote gt = 3 ic 7 qi @ w'
then we have the following properties.

(1) For any g € Fg, ¢, we have

4" =i 9 © W) (3.19)
(2) Let P € Vz(p) and q € Fy ¢. Then we have P(q) = P(q“") if and only if
P(quniv) = P(CIZZZ,)

Proof. (1) For any g € Fy, r and the basis {qi}iGI of p such that (g; |q-/) = §;j, the Lax
operator

L=kd+q—fR1=kd+Y ;4 ® (@) — D1

Also, for X = n ® r € n ® Vz(p) such that ¢®X (L) = k9 + gix — f ® 1, if we let
X, = n® (r(q)) then e*¥a(L) = kd + ¢*¢ — 1 ® f is obtained from ¢*4X (L) by
substituting ¢ in ¢S by ¢’ (¢). In other words, g% Vi ® Vz(p) and

univ

g* =g =Y 1c7qi ® W' (Q)).
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(2) It is enough to show that P(quniv) = P(q.a;,) implies P(g) = P(g®") for any

can

q € fg,f. Suppose P (quniv) = P(g,,;,)- Then, by (1), we have
P(q“™) = P(Xiey 4 ® w')lgi—gi = Pagi)lgi—gi = P(quniv)lgi—gi = P(q)
where |,i_ i denotes we substitute q' by Q. O

Proposition 3.14. For g = > .c 7 q4i ® w! e Vi ® Vz(p) in Lemma 3.13, we have

univ
W(g, f.k) = Caglw' |i € T1C Vr(p) (3.20)
as differential superalgebras.

Proof. Note that we have

can

) w' = wi(CIuniv) since guniv = Ziel qi ® qi’ (ii) w' = qi(quniv)‘

Consider the subset {g’ |i € J} of the basis {¢'};e; of p and take an element ® &
W(g, f, k). Then

® = D (quniv) = P € Cairrl ¢ (¢S |i € T 1= Caige[ w; |i € T ]

and ® € Cgi[ w' |i € J ]. Hence, by Lemma3.13, wehave W(g, f, k) C Caigr[ w; |i €

JI .
Conversely, for ¢, ¢’ € Fq, s such that g ~ ¢’, we have ¢“*" = ¢’*". Since w'(¢) =

q' (@™ = q' (¢’ = w' (¢"*™"), we get Caige[ w' |i € T1 C W(g, f. k). O

By Proposition 3.14, we can find generators of W(spo(2|1), f, k) as follows (cf.
Example 2.18).

Example 3.15. Let g = spo(2|1) and let
h=ei1—en, e=en, [f=en, euu=eg+eqn, foa=ej—ey

where ¢;; is the matrix in gl(2|1) which has 1 in the ij-entry and O in other entries.
Then h, e, f are even elements and e,q, fyq are odd elements. Lie brackets between
generators are

(1, eod] = eoa, [, foal = — fod, [€ods foal = [foas €oa]l = —h, leoa, f1 = — fod,
[fod, el = —eoa, leod, €oal = 2e, [foa, foal = —2f1.

The even supersymmetric bilinear form we consider satisfies
(hlh) = 2(el f) =2, (eod| foa) = —2.

Take the Lax operator

1 1 1
£=k8+§f0d®€0d+§h®h_Eeod®f0d+e®f_f®1

and Vy = Ce®Ce,y. We can check thatm’ = Vi®[n, f1.Suppose X = e,q®roa+e@r
for roq € Vz(p)7 and r € V7 (p)g satisfies

XL = L0 € Chx Vi @ VI(p). (3.21)
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The terms with adh-eigenvalue —1 in (3.21) are
1
zfad ® eoad — [eod, f1Q®@roa =0.
Hence r,g = —%eod. The terms with adh-eigenvalue 0 in (3.21) are
1 1 1 )
Eh Qh+h® (_Eeod”od —r)+ E[eodv Joal ® Yod = 0.

Since epqroq = rgd =0, we have r = %h. Hence X = —%eod ® epq + %e ® h and, by
direct computations,

1 k 1
AL — K+ ey ® (—Efod + Eae(,d + Zheod)

(3.22)
+ ®(f+1f 1h2+k 9 kah) fel
e = fod€od — = —€pd0€od — = - .
) od€od 4 4 od9€od )
If we denote @og = — % foa + 59€0d+ theoq and pey = f+1 foaeoa — h* +Eeoadeos —

Lah then W(g, f. k) = Caiteldod. Pev]-
Example 3.16. Let g = sl(2]|1) and take e = e12 and f = e31. Consider the Lax operator
L=kd+0—-f®1 =kd+eQ@ f +e,1®e7; — €7y D €57 +%h ®h— %r RT—fR®I1,
where h = [e, f] =e11 —exp and T = ej; + ex + 2eq7 € kerad f. Fix
Vi =Ce2 ®Ce;j ®Cey, ®Cr
sothat[n, f1® Vy = mL. Let us take
X=ei®@Xj+e1,® X1y +e® X1
such that e £ € 9 x V¢ ® Vz(p). In order to vanish degree %-part of e2X £ which is
—ej; ® e tey ®ep tery ® X —eq @ Xy,

set X;7 = —ej, and Xj, = —e,7. Moreover, we want degree O-part of X [ lies in
d X Ct ® Vz(p). In other words,

Eo+[X1/2,E—1/2]+[X1,L—1]+%[Xl/z, [(X1/2, f1]
=k3+%h®h—%t@r—%(h+r)®eliX11—%(h—r)@thiz
—h® X — %[612, le;i. fFII® X1 X7, — %[611, letn, I ® X1pX 7
=kd+h® (%h —X)+1® (—%r + %‘311312) € d x Ct®Vz(p).

Here, £; and X; denote the degree /-parts of £ and X, respectively. Hence, we fix
X1 = %h In other words, we have

1
X=en® h—e®@ej—ej®ey,.
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Now, we compute degree 1/2-part and 1-part of ¢*4X £ as follows. For degree 1/2-part,
we have

Lip=ej®ej —epp e,
1 1
[X1/2. Lol = ey ® (kdeyj + Sey7(h — D) +e1j ® (kdeqy + Seijy(h+ 1)),
1 1

[X1. Loipp]l =€, ® Se1ih+ e ® Seph,
1 1 1 1
5 X2 Xy, L_ipll+ 5 X2 X, La]l= —gen ®@her — perp ® hepy,

1 1 1

E[Xl, [X1/2, L]l = —4¢i ® hejj — Al ® hei,.
By adding all the formulas, we get 1/2-degree part of ¢dX £:

1 1
e;i ® (ej; +koej, + Eeiz(h + 7)) +ej, ® (—e, +kdeyy + Eeli(h —17)).

Similarly, degree 1-part of 24X £ is obtained by adding the following fomulas:

Li=e® f,
[X1/2, L12] = € ® (—eyje 1 + €ri€iy),

(X1, Lol=e® ( Kon lhz)
’ =e - A - 3 )
1, Lo 2 2
1
5([X1/2, [X1/2, Loll + [X1/2, [ X1, L-1,2]D)
1

=e® 5(_k8elieiz —koepye i+ Teie1n),
1 1
5 (X0 X, Lol + (X0, (X1, Lol = e @ th,

1
6([X1/2’ [X1/2, [ X172, L1201 + [ X172, [ X172, [ X1, L1111
+ [ X2, [X1, [X12, L4010 + [ X1, [X 2, [X12, £-111D = 0.

Hence the degree 1 part of ¢2X £ is

1, k k 1
e® (f —ejie1 +ei€in — Zh — zah - zaelieh - 53812611 + ztelieh)'
If we denote
1 1
b = Tt A,
1
17 =eq +kdej, + Eeiz(h + 1),
1
@1y = —ey] ke + Eeli(h - 1),
1, &k k k 1
be = [ —eqjeq+exyeny — Zh - Eah - Eaelieb - Eaeizeﬁ toTenen

(3.23)
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then
WA, f. k) = Cditl¢r, @11, ¢12- Pel-
Here, we note that
pe = —kL — 247,
for the energy momentum field L, which is defined in Proposition 2.15.

Now, we introduce another equivalent way to get a generating set of a W-superalgebra,
which will be used in the later sections to describe bi-Poisson structures via Lax opera-
tors. We consider the sign twisting linear map

o:g®Vr(p) > g®Vr(p), a®F > (@®F), (3.24)

where (a @ F)° = (—=1)P@r(Flg @ F.

Remark 3.17. One can check that the map (3.24) induces a Lie algebra automorphism
on (g ® Vz(p))g. Moreover, if we consider the Lie algebra (V7 (p) ® g)g with the bracket

[F®a,G®b]=(—1)P@WPO)FG @ [a, b] then there is a natural isomorphism

¢ (@R VM) —> Vz(p) ® 9)5

defined by ¢ ((@¢ ® F)?) = F ® a. In other words, applying the map o to (g ® Vz(p));
is equivalent to consider the space (Vz(p) ® 9);-

Proposition 3.18. For a Lax operator L = kd +)_;.;¢i ® Q' — f ® 1, we denote

L =kd+),;o;(=1)Dq;® 0" — f®1 € (gz] ® V£ (D)5

where p(i) denotes the parity p(q;).

(1) Two elements q,q' € Fy s are gauge equivalent if and only if q°, q'” are gauge
equivalent.

(2) Recall that we denote the universal Lax operator by L = k9 + quuiy — f ® 1 and
the operator gives rise to generators of W(g, f, k) (see Proposition 3.14). By (1),
we can find generators of W(g, f, k) using sign twisted universal Lax operator

LY =kd+qf,;, — fQL
Proof. The proof follows from the fact that
0@ (10y — [/ ifand only if ¢U® (L) =L’
For (2), we note that

g =Y 7 qi ®w' if and only if (¢7,;)™ = Y ;7 P()gi @ w'.

Since Cyigf[w'|i € J1 = Caigrlp()w'|i € J1, we proved (2). O
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4. Lax Operators and Lie Brackets on W(g, f, k)/oW(g, [, k)

4.1. Derivatives on a differential superalgebra.
Fix the superalgebra of differential polynomials

P =Cuqirelu; li e I'].
The index set I = I U I7 consists of two subindex sets I5 and I§ such that u; is even if
i € lyandisoddifi € I.

Definition 4.1. Take ji, j2, ..., jx € Ifandny, na, ..., ng € Z=¢suchthat (ji,, ng,) #
(Jky» Nk,) for distinct numbers k1, ko € {1, ..., k}. Consider an element

g1 =ulu? - u € Canluili € I,

where uﬁ"

) = 0"uj and a monomial
¢ =gop1 € P, for ¢y € Caigrlu;li € Ig].
(1) The (left) derivative of ¢ with respect to uﬁ.’jf) fort =1,...,kis

" (”l) = (=11 L0, ) () (k1) (1)

up Ji—1 e Jk=1 " Jk
Ifu (n) + u("’) is an odd element then » ) =0.If j € I, we let —5 o (n) = % -P1.
J Uuj
(2) The right derivative of ¢ with respect to u ) for t = 1,...,kis
p Jt
_ k—t (11) (12) (1) (nee1) (ng—1) (ng)
IR <"t) = (D" o uy Fu e T g g
Ifu(”) £ u(m) is an odd element then 8R (n) =0.1If j € I, we let BR?Z) = %

(3) The (left) variational derivative and right variational derivative of ¢ w1th respect to
u; are

s ) oRd
ﬁ = Zn€Z>o( 3):«6 (n) ) 5:52 = ZneZZo( )" RR(n) 4.1

(4) The variational derivative of ¢ with respectto {u; |i € I }1is

56 _ o 36
T = i i ® 5,

The derivatives defined in (1), (2), (3), (4) have linearities so that they are well-defined
on the set of differential algebra P = Cgige[u;|i € I].

Remark 4.2. We have
3‘1’ = (—1)P@p@-ui) 5R¢

SRuU; *

Hence, for the map o in (3.24),

5o \° 5o \% s
(%) = ier (“i ® %) =i i ® 3,’53),
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Remark 4.3. If u; € P is an odd element then —— » (n) forany n € Zx¢ is an odd derivation,

ie.

ol
- (,,)( G) = <d 0 >-G+(—1)P(F)F~<WG>.

Proposition 4.4. For homogeneous elements f, g € P, we have

{hgb=Y ije Cl8 3’*(%,) Ch+ ) i g ) (=1 — 0" 2L (m) (4.2)
ou

i
m,nelxq J dru

where C{’Ig = (= )PDP@2OP))  Note that

{ay+9b} o := ZzeZ>0 n,a(n)b(A +0)'c for a,b,c€P.

Proof. The formula (4.2) follows from sesquilinearities and Leibniz rules of A-brackets.
The only part we have to be careful is the constant factor Ci]j ‘jg in (4.2). One can see that

fe _ EO+(MNPU+E@) |, of 8
Ci,j = (=1)POPUNPGI+pg _Cw_.c.’i

for cf = ( 1)<P<f>+P<f>>P<i> and C§; = (=1)P@PUIPO. Note that switching the

position of —— » (m) and ” (n) gives rise to the (— 1)(p(z)+p(f))(p(j)+p(g)) in Cfg and switch-

ing the position of and (m) (resp. u; and —%e~ (,l, ) gives rise to the constant factor Cf
g

(resp. Cj’i). |

Proposition 4.5. (1) For any variable uf") in P, we have

d )
|:a“@ ’ 8i| = 43)
(2) Let ¢ € P. Then Sima¢ =0foranyi € I.

Proof. (1) For any j € I and m € Zx(, we can check that |:a 3(”), ai| (ug_m)) =
lll-

af%(ui.m)). Suppose we get the same element in P when we apply F (resp. G) to
u;
the LHS and RHS of Eq. (4.3). If i € I5 then

il ad
[8 oF :|(FG) (a (,I)BF)G+(—1)p(F)3Fau€n)G
9 9
- 1y p_—
+ T FOG + (DM F 550G

i

el ol
(ad s F) G — (~DMPIF i

9 9
— TFBG—(—I)"(F)FZ)TG
ou." du"

i i

=[8<,,>, ](F) G+ (=DPEF . [W)» ](G)

i

= (n —i F -G+ (=P (2,1) (G) = 5 (FG).
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For i € Iy, the same argument works. By induction, we proved (1).
(2) By (1), we have

n_39 _ n+l _0 n__0 _
Ziezzo(_a) Bu(n) d=— Ziezzo(_a) au(n) + Ziezzl (_8) au(n—l) =0.
i i i

4.2. Lie brackets on W(g, f, k)/aW(g, f, k).
Now we are ready to find Lie superalgebra structures on a quotient space of W-algebra via
Lax operators. In this section, we assume g is a finite dimensional simple Lie superalgebra
with even supersymmetric bilinear invariant form (| ).

Let us denote by g((z!)) := glz]1® z'g[[z~']] the Lie superalgebra endowed with
the bracket [az™, bz"] = [a, b]zZ"™™ where [a, b] is the Lie bracket on g. The vector
superspace a((z™") ® Vz(p) is a Lie superalgebra endowed with the bracket such that

[az" ® F,bz" ® G] = (—=1)POPE gz p:" @ FG

fora,b € g, n,m € Z and F,G € Vz(p). We extend the Lie bracket to that on
Coxg(z ) @ Vrm by considering C9 as the trivial Lie algebra.
Consider the universal Lax operator associated to g and A:

L(A) =kd+quniv — A ® 1€ Cdx g((z™h) @ Vr(p), (4.4)

where quniy is that in (3.3) and A = f + zs for a nonzero even element s in g(d). Here,
d is the largest eigenvalue such that g(d) # 0. The operator acts on a(z™H) @ Vr(p)
by the adjoint action. Note that we assume the even part of g(d) # 0 (see Remark 2.14).

Remark 4.6. For the operator L associated to gand f in(3.3), wehave L(A) = L—zs®1.
Denote by

Lij(A) =L and Lp(A) = —s® 1. 4.5)

The term L7(A) do the crucial role to define bi-Poisson structures on W(g, f, k).
However, this part is not important when we find generators of W(g, f, k).

Also, using the map (3.24), we denote the sign twisted universal Lax operator by
LOA) =kd+q0, —A®1eCdxgz™) @ V). (4.6)
Now, via L7 (A), we aim to define Lie brackets on W(yg, f, k)/dW(g, f, k) for the
subspace aW(g, f, k) :={0W | W e W(g, f.k)} C W(g, f, k). (In Remark 4.16, we
explain why we consider £ (A) instead of L(A).)

The following notion is analogous to the notion in (2) of Definition 2.27.

Definition 4.7. Let V be a differential superalgebra with the derivation d and denote
dV :={dV |V € V}. For the map

[V =YV, Vi V+dV= [V,

we call [V the local functional of V € V.
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Let the bilinear form (-|-) : g((z™") ® Vz(p) x g((z™") ® Vz(p) — Vz(p) be
defined by
@™ ® FIbz" ® G) = (—=)POP) (a]b)8,1 0 FG.

Define two bilinear brackets {, }; : Vz(p) x Vz(p) — Vz(p), fori = 1,2, by

o= (2 [ 0]) - (2 [ 5]
st = (8 [ [ ]) = (3 [ ]

where ¢ = (g')ies is the basis of p in (3.3) and z '(az" ® F) = az" ' @ F €
a((z™") ® V(p). By Proposition 4.5 (2), we can consider the induced bilinear brackets
on Vz(p)/dVz(p)

[, 1i:Vz®)/0Vz(p) x Vz(p)/9Vr(p) — Vr(p)/dVz(p), i=1,2 (4.8)
such that [[ ¢, [¥]; == [{¢, ¥}i.

Lemma48. Letq',r € Fy r = mt® Vz(p))g. For € € C, we have

[o(q +er)— [¢(q) _ / (r,, 5¢(q") )
e=0

€ dq
Proof. Ifr € (mL)() ® (Vz(p)) then the proof is similar to the non-super algebras cases
in [1]. Suppose r = ¢; @ r' for ¢; € (mJ-)i. Then

( 6¢(q)) <611®V

Also, we can see the LHS of (4.9) is the same as ri%. In detail, for ¢ =

9" (q'1) ™ (g") ... 3" (¢™), if we denote the first k — 1 terms in ¢ by ¢ =
o™ (q”) 2" (q‘z) . 0"k=1(g"-1) and the last t —k terms in ¢ by Yy = 9"**1(g'*+1) 9"k+2
(g*2) ... 3" (g'") for k=0,1,...,1 then

¢ =i 0" q" - i
for any k. Now, for such ¢, letr = g; ® r' and ¢’ = 2 jer 4 ® Q/. Then we have

4.7)

4.9)

a%?) =rl(gi @ 1lg' @ NS =18 (4.10)

U] = S o6k ") - Yelq)
= Y (=PRI gk (r) - gy (") Yr (g
= 34 9™ (F (gi1g™)) (— DPUIPOO gy () ()
= Y20 8"r 5oty 4.11)

The last equality holds since (¢;|g’) = §;;. Since [ d(F)G = [ —F3(G), the lemma
is proved by (4.10) and (4.11). O

Proposition 4.9. The brackets [ , 1; fori = 1,2 satisfy skew-symmetry.
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Proof. For¢g =a® Fand Yy =b ® G in g ® V7 (p), we have

J@® F|[b® G, d])
=[@®F|-b®IG) = - [(-1)PPP(h®3G|a ® F)
= f(_l)P(tb)p(I/f)(b RGla®IF) = — f(_l)p(qb)p(t//)(b ®Glla® F,d)).

Hence, by invariance and skew-symmetry of the bilinear form on g ® V7 (p), we have

o [yl = /{«p,vf}i _ —(—1>P<¢)P“”>[{w,¢}i

_ _(_l)p(mp(w)[/ w,qu]i’ P12,

i
Lemma 4.10. For ¢ € V7(p), we have:
' [vhi =Y e [ (19" q7] = (q'lg"kd) 5059
a' [vh =Y [Ad" ¢ Ns)505 9.
where {q/|j € I} is a basis of .
Proof. By expanding the LHS of [{g', ¥'};, we obtain
a' J ol =3, e [ @ @1] 107 ® v ko +p()ay @/ — f @ 11)
=2 jer [(q'lg))(— ka)&],l/f‘*‘zj,j/e[ fq] (qul[q‘,qf])&]—jw
- Z([ql’qj]'f)ﬁw’
jel
4.12)

where {g;|j € I} is the basis of m™ such that (qj|qj/) =§;,j and p(j') is the parity of
q-"’. In Vz(p), we have

Yjeild' a/ v = per JUd' @/ Nlapad sob = e U /NP 5o v
Hence the first equality is proved. The second equality also can be proved similarly. O
Proposition 4.11. We have the following equations:

o [ vl =Y [ 5259 (1a' a/1 = (@'1a)kd) 325,
o [Vl =Y e [ 5259 a’ aN9) 2

Proof. Observe that

(4.13)

(L9/a0F) =Y 226 ®llag F)
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foranya ® F € g ® V7(p). Since %qi =¢' ® 1, we have

o [vr=rSie 28 (a7 01| 2. cpym)])
= szeI f,ff (&1 H:(sq'(p E[,](A):I) :szeI ;;;p {q vl (4.14)
for t = 1, 2. Now, by the proof of Lemma 4.10, we can see (4.13). O

By previous propositions, we know how to compute the brackets [, ];, (i = 1,2),
defined on V7 (p)/9V7(p). The next thing we want to show is that the brackets can be
understood as brackets on W(g, f, k)/dW(g, f, k):

L. i s W(g, [,/ (g, f. k) x W(g. f.k)/IW(g. f. k) — W(a, f.k)/dW(g, f. k).

We provide proofs in two different ways. One (Proposition 4.13) is by the definition
We-algebras in Sect. 3 and the other one (Proposition 4.14) is purely algebraic. Note that
the first proof is inspired from [1] and the second one is inspired form [7].

Lemma 4.12. Let V be a superalgebra of differential polynomials with both even gen-
erators and odd generators. If G, G' € V satisfy

[FG=[FG or FG=FG inV/dV
forall F € Vyorall F € Vi then G = G'.

Proof. Let us denote V = V5 ® Vi, where Vy = Cairlu;li = 1,2, ..., kol and V| =
Caie[vili = 1,2, ..., k1] for even variables u; and odd variables v;.

It is enough to show that if [ u"’G = 0 (resp. [ v’ G = 0) for any even (resp. odd)
variable uﬁn) (resp. vl.(n)) then G = 0.

Let us first show that if [ ul(")G = 0 for any even variable ul(") then G = 0. If
G € C* then u;G ¢ 90V. Suppose G is not a constant. Take an integer m € Zxo such
that no monomial in G has terms with u(”) forn > m. Then u(mH)G ¢ 0V. That is
because if 0G| = u('"+1)G then G should have the term ”1 ) G, for a nonconstant

element G;. Hence 0G| = u(1m+1)G has the term with “1 *2) This is a contradiction to
our assumption and G should be 0.

Suppose [ vl.(")G = 0 for any odd variable vl.(n) then G = 0. We have G ¢ C*
since otherwise v1G ¢ dV. Similarly to the previous case, for a nonconstant element

G, let us take an integer m € Zx¢ such that no monomial in G has terms with vi") for
n > m. Then vg””z) G isnotin ). Here we note that v%mﬁ) G canbe in 9V, for example
a(vi’”)vY"*”) = v%mﬂ)v%m*l). Hence G =0. O

Proposition 4.13. The brackets (4.7) induce brackets on W(g, f, k)/oW (g, f, k).
Proof. Tt is enough to show that for ¢, ¥ € W(g, f, k), we have {¢, ¥}| and {¢, ¥}>

are also in W(g, f, k).
Let X € (n® Vz(p))j and two elements ¢, ¢’ € Fgy r be gauge equivalent by X, i.e.

kd+q7 — f@1= " ho+¢° — FR1).
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Note that, since [s, n] = 0, we have
kd+qg° —A®@1="hd+¢° —AR1). (4.15)
If r@ ;= ¢—2dX7 0 ¢ Fgy,r for some r’ € Fy r, we have
o(q) =¢(q)and ¢(q’' +er’) = p(g +er) fore e C.

Hence, by Lemma 4.8, the equation ¢(q +r) — ¢(q) = ¢(q’ +r') — ¢ (q’) implies

16

— f ¢ (g+er)—¢(q)
€

e=0

%?):f&ﬂuqm

8¢(‘1/)) = o(q'+er) =0 (q')
€ e=0

8q
=f<r" %E]q)):f(m adX? 8 )

By Lemma 4.12 and (4.16), we have %j) = ¢0dX? &%—(q”). It is obvious that ¥ has the
same property. Hence we have

@, vhi@) = (BL [ 5L ko +97 — 10 A])

— (eadX" nggl) H:eadXU Slgt(;]),eadx"(ka +q° —1® A)]) = {$, ¥}1(q).
“4.17)

On the other hand, since ¢*X° (s ® 1) = s ® 1, we can prove that {¢, ¥}2(q") =
{¢, ¥}2(q) by the same arguement. O

The classical W-superalgebra W(g, f, k) is a PVA endowed with the A-brackets
induced from those on the affine PVA S(C[d] ® g) such that

{axb}1 = la, b] + kr(alb), {ayb}2 = (s|la,b]) fora,b € g.

Hence there are Lie brackets [ , ];, i=1,2,on W(g, f,k)/dIW(g, f, k) induced by the
A-brackets on W(g, f, k). More precisely,

[f Wi, [ Wall = [{W1,Wa}ilx=o. (4.18)

Proposition 4.14. Brackets [ , 1, in (4.18) and [ , ; in (4.8) for i = 1,2, defined on
W(g. f.k)/d3WV(g, f. k) are same.

Proof. By Proposition 4.4, for ¢, v € W(g, f, k), we have

v =% ijer Y 7S040 (Ia' 971+ (@'1g)k0+ 9) (=2 — )" 754

m,nelxq
(4.19)
for the sign consideration C l¢ ]w If we apply A = 0 to (4.19) then

Givhilzo =X ijer Y 328050" (10" 471+ (q'lg)kd) (=) 555

m,ne€lxq
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and

([, [¥]] = [{ga¥}ilazo
=Y ijer Sl (055 (g a1+ (g g ko) (=0)" 5.1

m,ne€lxq

=3 ijel f((_a)maRamu)[q a’1((= 3)naqf<">)

m,nelxq

+2 ijer [0 55 ) @ gDk (=) (=) 5. 55)

m,n€l=q

=Y ijer [ q 71 - 'laDko) 5

m,nelxq

(4.20)
Hence [ ¢, [¥]1, = [[¢,[¥]i. By same arguments, we have [[ ¢, [¢], =
[f ¢’ IW]Z O

Theorem 4.15. Brackets [, 11 and|, 1o are Lie brackets onf W(g, f. k) :=W(g, [, k)/
oW(g, f, k).

Proof. We know that if {, } is a PVA bracket on P then {; }|,—~0 is a Lie algebra bracket
on P/0P. Hence the theorem directly follows from Proposition 4.14. O

Remark 4.16. If we consider L£(A) instead of £ (A), we have

¢ [ wiea =] (5] [3%. e ])

=Y ijer (=DPORD) [ G (gl g1~ (q'lq kD) %

m,n€lxq

4.21)

for bases {g;}ic; and {g’};e; of p and m™ such that (g;|¢/) = &;;. In this article, we
want to discuss integrable systems associated to a W-superalgebra whose PVA structure
induces [, ]; more than [, ]z ;. Hence we prefer to use £7 (A) than L(A) (see also the
Remark 5.15.)

5. super-Hamiltonian Equations and Poisson Vertex Algebras

Let us introduce super-Hamiltonian equations via Poisson vertex algebras. Recall
that infinite dimensional Hamiltonian equation on the even differential algebra P =
Cuigr[ u; | i € I]1is an evolution equation of the form

du

-, = H@ )— (5.1

where

(1) the Poisson operator H(9) = (H;;(9)); jes is an |I| x || matrix operator such that
() Hij(@) = Yn_o Hij:nd" for Hij.p € CL8"u; |i € I,n € Z=g ],

(ii) if the A-bracket on P is defined by {u;su;j}y = Y. o Hij.n2" then the

differential algebra P with the induced A-bracket {, }p is a Poisson vertex

algebra,
(2) the Hamiltonian /4 is an element in P.
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Moreover, the Eq. (5.1) can be written with the A-bracket {, } g as follows:

du,-
dt
For details, we refer to the paper [3].

Analogously, we define super-Hamiltonian systems and integrable systems when P
is a differential superalgebra.

={hwuilah= i€l

Definition 5.1. Let P = Cgir[ u; | i € I ]be the superalgebra of differential polynomials
and let P and P; be the even and odd subspaces of P.

(1) A super-Hamiltonian evolution equation on the differential superalgebra on P is an
evolution equation of the form

d
d—(f={hx¢}lx=o, $eP (5.2)

for some h € Pg.
(2) An integral of motion of (5.2) is the local functional f fe f ‘P such that

(3) If (5.2) has infinitely many linearly independent integrals of motion then it is called
an integrable system.

From now on, we let P = Cgig[©; |i € I] be the differential superalgebra and u;
be homogeneous variables of P, thatis I = I5 U I7 and u; fori € I (resp. I) are even
(resp. odd.)

Remark 5.2. For f € P, we let

ar _ wdui\ of
vy (3 dt) (5.3)

(n)’
neZsg.icl du;

inspired from chain rules. Then
dui d
[% ={hu;}lp=0 foranyi e I]iff[d—]; ={h; f}lreo forany f EP].
5.4

For the following proposition, recall if P is a PVA with a A-bracket { ;, } then the super-
space P/9P is a Lie superalgebra endowed with the bracket [ [ f, [ g] :== [{f1g}|r=o0-

Proposition 5.3. (Generalized Lenard—Magri scheme) Suppose P is endowed with two
compatible A-brackets { Yy and { . }k. If there are linearly independent even elements
[ hi,i € Zso, in [P such that

U B, [wil = [ hmet, [uilg form € Zsgandi € I, (5.5)

then ‘2—‘? = {hm 1P} H =0 for m € Z>q are integrable systems and fhm/, m' € Zx are
integrals of motion.
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Proof. 1If we assume m > n then

[fhm’ /hn]H = [fhm: fhn+1]K and [fhmv fhn]K = [fhmfl’fhn]H'
Inductively, we can prove that if m — n is odd then [ [ ki, [ hylg = [[ hi, [ hilk =0
(vesp.[[ hm, [ halg = [ b1, [ hilg = 0)forsomel withm > [ > n(resp.m > [ > n).

If m — n is even then [ [ Ay, [ by = [[ hi, [hily = O (tesp. [[ hm, [hnlk =
[ h, [hi]x = 0) for some [ withm > >n. O

Remark 5.4. The Lenard—Magri scheme in Proposition 5.3 does not give any clue of
finding odd integrals of motion.

Consider the adjoint map adA : g((z~")) — g((z™")) such that ad(A)(A) = [A, A]
for A € g((z~1)). In the rest of this section, we assume that A is semisimple so that

a((z™1) = ker(adA) @ im(adA). (5.6)

Remark 5.5. The assumption that A is a semisimple element is quite a big constraint.
Such A does not always exist for any nilpotent element f. However, when g is sl(m|n)
and the nilpotent element f corresponds to the pair of partitions A and u of m and n
which has the form of one of followings:

(WA=, 1™y, w= ", 1m),

(2))\2((1",1'—])])’*’_1,lpl), ’u:((r’r_l)th—l,]m)’ (5.7

we can find an even element s such that A is semisimple. Here, n,, ny, m,, my, p, -1, p1,
qr.r—1, q1 are all nonnegative integers. Note that this remark directly follows from g = sl,,
case (see [7] and Remark 2.30).

Take the gradation on g((z‘l)) defined by
deg(z) = —d — 1 and deg(g) = j/2if g € g and [1/2, g] = (j/2)g
and denote by g((z_l))k the subspace of g((z‘l)) consisting of elements with degree k.

Proposition 5.6. Let L(A) = kd + g — A ® 1 be a Lax operator. For a subspace
V C g((z™h), denote V; = g((z™")); N V. There exist unique even element S(q) €
D, im(adA); ® Vz(p) and unique even element h(q) € P, _, ker(adA); & V(p)
such that

L3(A) = e™BS@" L7 (A) =kd +h(g)° — AR 1. (5.8)

Proof. We can decompose (5.8) via the gradation on a((z™1)). Then degree —% part of
(5.8) is

9%+ ST —A® 1 =hT ),

where qfl/z, Si’/z and hil/z are degree —1/2, 1/2 and —1/2 part of ¢, S(g)° and
h(g)?. By (5.6), S‘l’/2 and qflﬂ are uniquely determined. Also, since ‘Ifl/z and A are
even, both Si’/z and g%, /o are even. Inductively, S7 and h{_, are uniquely determined

for n > 1. More precisely, if S5, and i, _, are known for m < n then degree n — 1 part
of (5.8) is

O +[ST, —A®1]=h]

n—1»

where Q7 _, is then degree n — 1 part determined by Sy, ’s for m < n. Now, by (5.6), S
and g;_, are uniquely determined. O
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Remark 5.7. By Proposition 5.6 and its proof, we can see that for an operator L(A) =
kd+q — A ® 1, there is unique i(g) € B, _; ker(adA); ® Vz(p) such that L3(A) ==

AS@7 L9 (A) = kd+h(q)° — A® 1 for some S(q) € D,- 8((z~1)): ® V7 (p) (Which
is not necessarily unique).

For L(A) = k0 + quniv — A ® 1, consider
Hy = (h(quiv)’12"A ® 1) € V7(p), n € Zx. (5.9
and fix
= ((h(qui)” =A@ 1z 'A®@ D =(-A® 1z 'A®@DeC. (510
Remark 5.8. Note that (h(quniv)? 12" A ® 1) # 0 only if 2 (quniv) € g5 ® Vz(p)5- Hence
Hy = (h(quniv)|2"A ®@ 1) € Vz(p).
Lemma 5.9. For H, € V7 (p), n € Z>_1, we have H, € W(g, f, k).

Proof. 1t is enough to show that & (quniv)® € @,. _; ker(adA); ® W(g, f. k).
Recall that there exists X° € (n® Vz(p))g such that e2X% Lo (A) = k) +Ziej(‘]i ®
w')® — A ® 1 where w' generate W(g, f, k). It is obvious that

h(Yierqi @w') € @, ker(adA), ® W(g, f, k).
More precisely, there is S € €D, g((z‘l))t ® Vz(p) such that
eMETHXD Lo (A) = 2957 (X7 L7 (A) =k + 1 (D ;e 7 qi ® W) —A® L.
Since S+ X € @y 8((z~))x ® Vz(p), by Remark 5.7, we conclude that
h(quniv) = h(Yjc79i @ w') € @,._ ker(adA), @ W(g, f. k).
Thus H, € Vz(p) = (h(quniv)|Z"A ® 1) € W(g, f, k). O
Lemma 5.10. Let S be the same as in (5.8) and r € (m+ ® V(1)) Then we have

I

where q = (q')ic1 for a basis q' of p.

dq

Bi) = [ e’ *A @ 1)), nelsy, (5.11)

Proof. If n = —1, we have
(A ® 1) € glzlz ® VI(p)

so that (r7 |e7%45" (2" A ® 1)) = 0. Since “’ 221 — (), the both sides of (5.11) are 0.
To show the proposition when n > 0, recall that
511,1 )

J =l

forr e (Mt ® V)gandg =D ;g ® Qi. Let us define Lo(¢) and S(¢) by

n

L3(€) =5 @+ (" +er”) —AQ D) =0 +h(g+er)’ —A® 1.
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Then

(#L5@] A1), = BlsD=tb@]

By the process finding S(¢€) in Proposition 5.6, we have
S(e) = So+€St+€>Sy +--- € imadA) (™) @ Vr(p)lel,
for So, S1, ... € g((z™1) ® Vz(p). Also, we have
LLG ()| _y = eSO _y+ L (2957 L)) _, (5.12)

where L7(0) = 3 +¢° — A ® 1 and *¥55 L7(0) = L§(0) = 3 +h°(q) — A ® 1. In
order to investigate the last term in (5.12), we need the following facts:

(i) £ (eSO LU0))| g = Tez., a1 Lo ad™ S (adS7 (ad" == SE (L7 (0)))),
(i) & Snh ad™ S (ad ST (ad" 1= Sg (L7 (0))))

=Y [(n rad " lsg (87), Ladmsg (L"(O))],
i) Lpen., Yomet) | grad™" ' S§ (ST, hrad” 55 (L7 (0)) |

=D leZs0 [ﬁad’Sg(S;’), Lg(O)] )

(5.13)
By (5.12) and (5.13), we have

(O LEO)],_ = Lrez., [ mmad SS9, L§O)].

Observe that
de 0 e=0

[ qo(qo o
l% U+ 1). ([ s55D. 150)]
= (7[5O " A @ 1))
1
dlsU SO'
+ze§£0(l+1)! (ad's5(5)
+ Xienny i (—0@d'SFST| " A @ 1)],
= (r‘T |e*ads(0)0(ZnA ® 1)) + Z[ezzo ﬁ ( a(adlSO (SO))| nA ® 1)|

/(r

%) = [ (fL§@©]"A® 1) _, (5.14)

and

"A® 1)

e=0

2no1)
e=0

°(q) —A®1,7"A ® 1])

e=0

(5 15)
The last term in (5.15) is in 0V 7 (p). Hence, for S(0)° = §°, we have

f(rﬂ %) = [ (| A ®).

dq
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Proposition 5.11. Recall that g = m & p and suppose {q'i € I} is a basis of p and
{¢'|i € I'} is a basis ofm For Q = Zldq ® Q0 +Zl€1,q ® Qi € g V(p), we
denote Qly =) ic;q' ® Qi € p ® V(p). Then we have

S H),

= AR )|
8q P

Proof. 1t directly follows from Lemma 5.10. O

Proposition 5.12. Let ¢ € W(g, f, k) and an @ F € (m ® Vz(p)5. Then we have
J (58] ttawm @ )7 7,00) = [ (5] ' lam ® FY* 25 @ 11) = 0.
Proof. Letus denote S = am @ F € (m ® V7(p)); and denote
L7 (€) := ™57 £7(A).

Then L%(€) =0 +q°(e) — A ® 1 for ¢ (¢) = + €[S, L7(A)] + o(€?). Since ¢

; . ) - qgniv
is gauge invariant, we have
0= [ 94| =] (3|lan® Py, L7W0)])

for any F which has the same parity as a,. Hence f (g—f‘ [(am ® F)°, q’l](A)]) =0
Also, the second equality follows from [ay,, s] =0. O

Proposition 5.13. Let S be the same as in (5.8) and let ¢ € W(g, f, k). Then we have

f(% [{SH" [ll(A)D f(% [‘“dsa(z”Aébl) e ](A)])
f(@ [8Hn s®1]) (%‘[efads (Z"A®1),s®l]).

dq

(5.16)

Proof. Tt follows from Propositions 5.11 and 5.12. O

Theorem 5.14. Let us consider W(g, f, k) and H; be defined as in (5.9). The equation

du

o ={H; u}1l)=0, ueW(g, f,k)andi € Z (5.17)

has linearly independent integrals of motion [ Hj for j € Zso. Hence (5.17) is an
integrable system.

Proof. In order to use Lenard scheme, we aim to show that
[[ Hi, [uli = [[ His1, [uly, i€ Z>y. (5.18)
Recall that the brackets [ [ H;, [u]; and [/ H;_1, [ u], are defined by

o= (5[ ] =7 (5 [35cmcm]).
P i A A

(5.19)
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Denote ‘SH(Z) =iz ‘SSZ z7!. Then

[‘Sg’—q("’) £a(A)] =Liez ([SHI [ll(A)] ['SH’” 5® 1]) (5.20)
By (5.19) and (5.20), (5.18) is equivalent to
(] 2 e w))
=/ (g—; [e—adsa AR, Ef‘l](A)]) +f (g_g
=/ (ﬁ—Z [e795" A ® 1), L’"(A)]) -
(5.21)

forany ¢ € W(yg, f, k) andi € Z. Here, we used Proposition 5.13 for the first equality.
Hence we proved (5.19) by the following fact:

[Z—le—ads(r (Zi+lA ® 1)’ 5 ® 1])

[e—adS“ @A), L"(A)] — o2dS? [ziA ® 1,45 0 (A)] =0.

In particular, since H_; is constant, we have [ [ H_i, [u]l; = [ Ho, [ul, = 0.

Now, the only thing to prove is that {[ H;} jeZso 1s linearly independent. Since,
for given H,u € W(g, f,k) such that {Hyu}i|p=0 # O, the total degree of
{H)u}1]5=0 is greater than the total degree of {H,u},|»—o in the algebra of polyno-
mials C[(¢")™]i € I, n € Z=0], where {g'li € I} is a basis of p. Hence, if we can
show { HyyW(g, f, k)}|»=0 # O then the linearly independence of { f Hj}jez., follows.
Indeed, this can be proved as below. Suppose g(4.\, in Proposition 3.14 has the summand
f ® ¢.. Then Hy = ¢, so that {Hp, W(g, f,k)}r=0 #0. O

Remark 5.15. Recall that the formula (5.8) ¢25@? L7(A) is same as (e5@ L(A))°.
Also, since A is even, we have

((quni) 127" A ®@ 1) = (h(quniv)Iz"A ® 1).
Hence we can use L(A) instead of L(A)? to compute H,,.

Example 5.16. As in Example 3.15, the Lie superalgebra g = spo(2|1) is generated by
e, eod, h, foqand f.For A = f +ze and K := — f + ze, we can see that g((z‘l)) I
the C((z~"))-module generated by e,q, foa, h = 2x, A, K. The subspace im(adA) is
generated by e,q, foa, , K and ker(adA) is generated by A. Note that the Lie brackets
between generators are

[)C,A]ZK, [f()daA]Z_Ze()da
[e()d’A]Z_deﬂ [KvA]ZZZh=4Zx7 [.X',K]:A

Consider the operator,
L(A) =kd+eod @ Ppod+eQ ey — A® 1

for the generators ¢oq = —% fod + gaeod + %heod and ¢y = f + % fod€od — }‘hz +
i—ieodaeud—%ah of the algebrain Example 3.15. We wantto find 2 € @»—1 ker(adA);®
V1 (p) such that

Lo(A) =LA =0+h—A®1. (5.22)
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for some S € @, oim(adA); ® Vz(p).

Let us denote U = Y, _qU; for U, € Vz(p) @ g((z" D), and h = Y, hy
forh, = V() ® (g((z_l)); N ker(adA)). Since z' A has degree —1 — 2i, we have
h = Ztez>_| hogy1.

By comparing degree % part of (5.22), we have 1,2 = §; = 0 and
eod ® Pod — [S32, A ® 1] =0.
Hence S3,2 = —27 ' fou ® oq. By comparing degree 1 part of (5.22), we have
eR Py —[S2, AR 1] =hy
Hence S, = %zflx ® ¢ey and h| = %Z*IA ® ¢ey SO that
Hy = (hi|A @ 1) = ¢ev.
By degree % and 2 parts of (5.22), we have

—[S52, A®1]1+[S32.kd] =0 and Ss;2 =~z 'eoq ® kddoa:
—[83, A @ 1]+ [$2, k0] + [S3/2, €od ® ¢oal — [S3/2, [S3/2, A®1]] =0

and S3 = —%z‘zK ® kdgpey. By degree 3 part of (5.22), we have
— [S4, A @ 1T+ [S3, k3] + [S5/2, €od @ Pod] + [S2, € @ Pev]
- %[52, [S2, A®1]] — %[53/2, [S5/2, A ®1]] — %[55/2, [S3/2, A ® 1]]
+ %[53/2, [S3/2, k0]] = h3 (5.23)

Since the LHS of (5.23) is
-2 1., k
—[S4, ARQ1]+z2 A ® gd’ev + §3¢od¢0d
L k>, 1, k
+7 K ® ga Pev + Z¢gv + Eaﬁbodqbad

and K is in the image of adA, we can conclude /3 = 77 2A ® (%qbezu + §8¢>0d¢ud) SO
that

1
H = 3zA®1) = Zd)fv +kdPoaPod-

Note that /3 is the first integral of motion which gives rise to a nonlinear Hamiltonian
equation. Now we get

d¢ K3 3k

d:U = {Hl k¢ev}H|A:0 = _Za3¢ev - ?aqsevqﬁev + 3k2¢0d32¢0d»
d¢od 3k 3k
d_; = {Hl kd’od}HlA:O = k383¢0d - 78¢0d¢ev - Z‘Poda(pev,

which is same as super-KdV equation in [21] up to constant factors.
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Example 5.17. Let g = sl(2|1) and f = ep;. With the notations in Example 3.16, we
consider the operator

LA)=kd+T1 Q¢ +¢,1QP1+e[, @D +e®@pe — AR 1.

Recall that ¢ = —kL — 2¢,2 for the energy momentum field L. It is not hard to check
that

1 1 1
{¢r A¢r} = _Ek)h {¢r A¢1T} = _E(f’ﬁ, {¢r Mf’iz} = 54’12» {¢1 1 )L¢1 T} = {¢T2 A¢T2} =0.
Also,
{17,012} = kL — kdpr — 2krpe — k22, {15,817} = kL +kdpe + 2krgpr — k*2%,

for the energy momentum field L in Proposition 2.15. Recall that ¢, = —kL — 2¢% and
A-brackets between ¢, and elements in WW(g, f, k) can be computed using

{Lage} = (@ +N)pr, {Lrdyi} =0+ %)»)0511 {Ligip} =0+ ;A)¢12,
and
(L)L} = (3 +21)L — %kﬁ.
Now, let us consider S € @, oim(adA); ® Vz(p) and h € P, _; ker(adA); ® Vz(p)

such that
Lo(A) =ki+h—A®1=e9L(A). (5.24)

By equating degree < 1/2-parts of the both sides of (5.24), we get
S1p=581=0, and S3» = —271621 ® 911 +Z71611 ® P1,-
By equating degree 1-parts of the both sides of (5.24):
1 1
(S5, A@ 11+h =e®¢, =2 AR+ 57 KD,

for K = ze — f, we get

1 1
Sp=37"x® ¢ b= A@e, Ho=(IAB D) =
Hence
d
Zr = {perdr}lr=0 = k(A +0)P |, = k0o,
doii 3
— = {¢ek¢1]}|k:0 = —k(8 + —)\,)(Pli + 2¢II¢T = _k8¢li + 2¢II¢T’
dt 2 o
dér, 3
- = {$eadidllizo = —k@+ 5297, = 2126 | = —kdPp, = 201201,
! A=0
dg. ) K 5 5
= {¢er@e}lr=0 = k“(0 +21)L — —A° = kP0L = —kd(¢e +2¢2),
dt 2 —o

(5.25)
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is the simplest integrable system associated to s1(2|1).
The degree 2-part of (5.24) is
[S5/2, A® 1] = [S32, k0 + T ® ¢]
=7 ey ® (kddy1 — o) + 2 efy ® (—kdPis — Prbi)-

Hence S5/2 = 27 'e1 ® (—kdg 7 + ¢ i) + 27 'ejy ® (—kddiy — drbiy).
The degree 2-part of (5.24) is

(5.26)

[S3, A@ 1]+ h>

1
=[5,kd+17® ¢ +[S3/2, €171 @ P17 + e, @ D151 — 5[53/2, [S3/2, A ® 1]].
(5.27)

Hence S3 = 272K ® —§d¢. and hy = 27'1 ® 3¢,1¢1,-
The degree 3-part of (5.24) is
[Sa, A®1]+h3
1
= [83,k0+T @ P ]+ [S5/2, €17 @ P17 + €7, ® Pyp] + 5[53/2, [S3/2, k0 + T @ ¢ 1]
1 1 1
- 5[52, [S$2. A®1]] - 5[53/2, [S5,2, A®1]] — 5[55/2, [S3/2, A ® 1]].
(5.28)
2
Hence Sy = 22h @ (%070 + 30412011 + 50612011 — 501206,7) and

. 1, 1 k k
hy=2""AQ | =g + 5¢0:P12011 + 500120171 — 5912001
8 2 2 2
so that

1
H = (h3lzAQ®1) = _Z¢62 + Gr P07 +kIPi,P17 — k1,097

Hence the second integrable system associated to slp, getting by the Hamiltonian
4H 1, is

do:

o= 6k (3¢, 1h72 + P170675),
d;f’_tﬁ = 1807 — 8o — 12kpdpr — 3kdps + 4k>02pr).
+0617(6ke = 24kg; +16K°0¢0) +20°0°¢ 6 +8K°0 0y ()
dj% = 1, (—8¢2 + 8pepr — 1260, 0¢p; + 3kdp, — 4k20%y),
+ 0y, (10kp, — 24kg2 — 16K20) — 12k20% g0, — 8607y,
e 12k Hy + K20 + 2k 120017 — 24Ky 1091
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