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Abstract: Heterotic string compactifications on integrable G2 structure manifolds Y
with instanton bundles (V, A), (TY, θ̃ ) yield supersymmetric three-dimensional vacua
that are of interest in physics. In this paper,we define a covariant exterior derivativeD and
show that it is equivalent to a heteroticG2 system encoding the geometry of the heterotic
string compactifications. This operator D acts on a bundle Q = T ∗Y ⊕ End(V ) ⊕
End(TY ) and satisfies a nilpotency condition Ď2 = 0, for an appropriate projection of
D. Furthermore, we determine the infinitesimal moduli space of these systems and show
that it corresponds to the finite-dimensional cohomology group Ȟ1

Ď(Q). We comment
on the similarities and differences of our result with Atiyah’s well-known analysis of
deformations of holomorphic vector bundles over complexmanifolds. Our analysis leads
to results that are of relevance to all orders in the α′ expansion.
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1. Introduction

A heterotic G2 system is a quadruple ([Y, ϕ], [V, A], [TY, θ̃ ], H) where Y is a seven
dimensional manifold with an integrable G2 structure ϕ, V is a bundle on Y with con-
nection A, TY is the tangent bundle of Y with connection θ̃ , and H is a three form on Y
determined uniquely by the G2 structure. Both connections are instanton connections,
that is, they satisfy

F ∧ ψ = 0, R̃ ∧ ψ = 0,

where ψ = ∗ϕ, F is the curvature two form of the connection A on the bundle V , and
R̃ is the curvature two form of the connection θ̃ on TY . The three form H must satisfy
a constraint

H = dB +
α′

4
(CS(A) − CS(θ̃)),

where CS(A) and CS(θ̃) are the Chern–Simons forms for the connections A and θ̃

respectively, and B is a two-form.1 This constraint, called the anomaly cancelation
condition, mixes the geometry of Y with that of the bundles. These structures have
significant mathematical and physical interest. The main goal of this paper is to describe
the tangent space to the moduli space of these systems.

Determining the structure of the moduli space of supersymmetric heterotic string
vacua has been an open problem since the work of Strominger and Hull [1,2] in 1986,
in which the geometry was first described for the case of compactifications on six di-
mensional manifolds with H -flux (Calabi–Yau compactifications without flux were first
constructed by Candelas et al. [3]). The geometry for the seven dimensional case was
later discussed in [4–9]. Over the last 30 years very good efforts have been made to
understand various aspects of the moduli of these heterotic systems. The geometric
moduli space for heterotic Calabi–Yau compactifications was determined early on [10].
More recently, the infinitesimal moduli space has been determined for heterotic Calabi–
Yau compactifications with holomorphic vector bundles [11,12], and subsequently for
the full Strominger–Hull system [13–16]. Furthermore, the geometric moduli for G2
holonomy manifolds have been determined by Joyce [17,18], and explored further in
the references [19–26]. Finally, deformations of G2 instanton bundles have been studied
[27–31].

Integrable G2 geometry has features in common with even dimensional complex
geometry. One can define a canonical differential complex �̌∗(Y ) as a sub complex of
the de Rham complex [32], and the associated cohomologies Ȟ∗(Y ) have similarities
with the Dolbeault complex of complex geometry. Heterotic vacua on seven dimensional

1 Note that even though the B field is called a “two form”, it is not a well defined tensor as it transforms
under gauge transformations of the bundles. However, B transforms in such a way that the three form H is in
fact well defined.
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non-compact manifolds with an integrableG2 structure lead to four-dimensional domain
wall solutions that are of interest in physics [33–46], and whose moduli determine the
massless sector of the four-dimensional theory. Furthermore, families of SU (3) structure
manifolds can be studied through an embedding in integrable G2 geometry. Through
such embeddings, variations of complex and hermitian structures of six dimensional
manifolds are put on equal footing. The G2 embeddings can also be used to study flows
of SU (3) structure manifolds [20,47,48].

These results from physics and mathematics prompt and pave the way for our
research on the combined infinitesimal moduli space T M of heterotic G2 systems
([Y, ϕ], [V, A], [TY, θ̃ ], H). This study is an extension of our work [49], where we
determined the combined infinitesimal moduli space T M(Y,[V,A],[TY,θ̃ ]) of heterotic G2

systems with H = 0, where Y is a G2 holonomy manifold. The canonical cohomol-
ogy for manifolds with an integrable G2 structure mentioned above can be extended to
bundle valued cohomologies for bundles (V, A) on Y , as long as the connection A is an
instanton [50,51]. As the instanton condition is the heterotic supersymmetry condition
for the gauge bundle, the corresponding canonical cohomologies feature prominently in
the moduli problems of heterotic compactifications. We find in particular, aG2 analogue
of Atiyah’s deformation space for holomorphic systems [52]. We restrict ourselves in
the current paper to scenarios where the internal geometry Y is compact, though we
are confident that the analysis can also be applied in non-compact scenarios such as the
domain wall solutions [33–46], provided suitable boundary conditions are imposed.

As a first step, we describe the infinitesimal moduli space of manifolds with an
integrableG2 structure.Wedo this in terms of one formswith values in TY . Onmanifolds
with G2 holonomy, the infinitesimal moduli space of compact manifolds Y [17,18] is
contained in Ȟ1(Y, TY ) [24,49] which is finite-dimensional [50,51]. For manifolds
with integrable G2 structure, the differential constraints on the geometric moduli are
much weaker, and the infinitesimal moduli space of Y need not be a finite dimensional
space. This is analogous to the infinite dimensional hermitian moduli space of the SU (3)
structure manifolds of the Strominger–Hull systems [53,54]. Expressing the geometric
deformations in terms of TY -valued one forms has another important consequence:
using this formalism makes it easier to describe finite deformations of the geometry. We
will use the full power of this mathematical framework in a future publication [55] to
study the finite deformation complex of integrable G2 manifolds.

We then extend our work to a description of the deformations of ([Y, ϕ], [V, A]) re-
quiring that the instanton constraint is preserved.Asmentioned above,we find a structure
that resembles Atiyah’s analysis of deformations of holomorphic bundles. Specifically,
we find that the infinitesimal moduli space T M ([Y,ϕ],[V,A]) is contained in

Ȟ1(Y,End(V )) ⊕ ker(F̌),

where we define a G2 Atiyah map F by [49]

F̌ : T MY → Ȟ2(Y,End(V )),

which a linear map given in terms of the curvature F . The space T MY denotes the
infinitesimal geometric moduli of Y which, as noted above, can be infinite dimensional
but reduces to Ȟ1(Y, TY ) in the case where Y has G2 holonomy as showed in [49].

Finally we consider the full heterotic G2 system, including the heterotic anomaly
cancelation equation. When combined with the instanton conditions on the bundles, we
show that the constraints on the heterotic G2 system ([Y, ϕ], [V, A], [TY, θ̃ ], H) can
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be rephrased in terms of a nilpotency condition Ď2 = 0 on the operator D acting on a
bundle

Q = T ∗Y ⊕ End(V ) ⊕ End(TY ).

It should be noted that, in contrast to compactifications of six dimensional complex
manifolds studied in [11–15], the operator Ď does not define Q as an extension bundle
as, we will see, it is not upper triangular. We proceed to show that the infinitesimal
heterotic moduli are elements in the cohomology group

T M = Ȟ1
Ď(Q).

Consequently, the infinitesimal moduli space of heterotic G2 systems is of finite dimen-
sion. Our analysis complements the findings of [56], where methods of elliptic operator
theory were used to show that the infinitesimal moduli space of heterotic G2 compacti-
fications is finite dimensional when the G2 geometry is compact.

The rest of this paper is organised as follows: Sect. 2 reviews G2 structures and
introduces mathematical tools we need in our analysis. Section 3 discusses infinitesimal
deformations of manifolds Y with integrable G2 structure. In Sect. 4 we discuss the
infinitesimal deformations of ([Y, ϕ], [V, A]), and in Sect. 5 we deform the full heterotic
G2 system ([Y, ϕ], [V, A], [TY, θ̃ ], H).We conclude and point out directions for further
studies in Sect. 6. Three appendices with useful formulas, curvature identities and a
summary of heterotic supergravity complement the main discussion.

2. Background Material

This section summarises the mathematical formalism that we will need to analyse the
deformations of heterotic string vacua on manifolds with G2 structure. While we intend
for this paper to be self-contained, we will only discuss the tools of need for the present
analysis. More complete treatments can be found in the references stated below.

2.1. Manifolds with a G2 structure. A manifold with a G2 structure is a seven dimen-
sional manifold Y which admits a non-degenerate positive associative 3-form ϕ [19].
Any seven dimensional manifold which is spin and orientable, that is, its first and second
Stiefel–Whitney classes are trivial, admits a G2 structure. The 3-form ϕ determines a
Riemannian metric gϕ on Y given by

6gϕ(x, y) dvolϕ = (x�ϕ) ∧ (y�ϕ) ∧ ϕ, (2.1)

where x and y are any vectors in�(TY ). The Hodge-dual of ϕ with respect to this metric
is a co-associative 4-form

ψ = ∗ϕ.

The components of the metric gϕ are

gϕ ab =
√
det gϕ

3! 4! ϕac1c2 ϕbc3c4 ϕc5c6c7 εc1...c7 = 1

4! ϕac1c2 ϕbc3c4 ψc1c2c3c4 , (2.2)

where

dxa1...a7 = √
det gϕ εa1...a7 dvolϕ.
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Note that with respect to this metric, the 3-form ϕ, and hence its Hodge dual ψ , are
normalised so that

ϕ ∧ ∗ϕ = ||ϕ||2 dvolϕ, ||ϕ||2 = ϕ�ϕ = 7.

Werefer the reader to [19,20,57–60], andour paper [49], formore details onG2 stuctures.

2.1.1. Decomposition of forms. The existence of a G2 structure ϕ on Y determines a
decomposition of differential forms on Y into irreducible representations of G2. This
decomposition changes when one deforms the G2 structure.

Let �k(Y ) be the space of k-forms on Y and �k
p(Y ) be the subspace of �k(Y ) of k-

forms which transform in the p-dimensional irreducible representation of G2. We have
the following decomposition for each k = 0, 1, 2, 3:

�0 = �0
1,

�1 = �1
7 = T ∗Y ∼= TY,

�2 = �2
7 ⊕ �2

14,

�3 = �3
1 ⊕ �3

7 ⊕ �3
27.

The decomposition for k = 4, 5, 6, 7 follows from the Hodge dual for k = 3, 2, 1, 0
respectively.

Any two form β can be decomposed as

β = α�ϕ + γ,

for some α ∈ �1 and two form γ ∈ �2
14 which satisfies γ �ϕ = 0 (or equivalently

γ ∧ ψ = 0) where, by Eqs. (A.18) and (A.21), we have

π7(β) = 1

3
(β�ϕ)�ϕ = 1

3
(β + β�ψ), (2.3)

π14(β) = 1

3
(2β − β�ψ). (2.4)

That is, we can characterise the decomposition of �2 as follows:

�2
7 = {α�ϕ : α ∈ �1} = {β ∈ �2 : (β�ϕ)�ϕ = 3β} = {β ∈ �2 : β�ψ = 2 β},

(2.5)

�2
14 = {β ∈ �2 : β�ϕ = 0} = {β ∈ �2 : β ∧ ψ = 0} = {β ∈ �2 : β�ψ = −β}.

(2.6)

The decomposition of �5 is easily obtained by taking the Hodge dual of the decompo-
sition of �2, and we can write any five-form as

β = α ∧ ψ + γ,

where α ∈ �1, and γ ∈ �5
14 satisfies ψ�γ = 0. The decomposition of �5 are then

analogous to (2.5)–(2.6), and can be found in [49]. An alternative representation of
five-forms is

β = α ∧ ψ + ϕ ∧ σ,
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where σ ∈ �2
14 and ∗γ = −σ . The components α and σ can be obtained by performing

the appropriate contractions with ψ or ϕ respectively

α = 1

3
ψ�β, σ = ϕ�β − 2

3
(ψ�β)�ϕ.

Any three form λ can be decomposed into

λ = f ϕ + α�ψ + χ, (2.7)

for some function f , some α ∈ �1, and some three form χ ∈ �3
27 which satisfies

χ�ϕ = 0, and χ�ψ = 0.

Another way to characterise and decompose a three form is in terms of a one form M
with values in the tangent bundle. Given such form M ∈ �1(TY ), there is a unique
three form

λ = 1

2
Ma ∧ ϕabc dx

bc. (2.8)

Conversely, a three form λ determines a unique one from M ∈ �1(TY )

1

4
ϕcd

a λbcd = 1

2
gab trM + Mab +

1

2
Mcd ψcd

ab

= 9

14
gab trM + hab + 3 (π7(m))ab, (2.9)

where the matrix Mab is defined as

Mab = gac (Mc)b,

and we have set

hab = M(ab) − 1

7
gab trM, m = 1

2
M[ab] dxab. (2.10)

Comparing the decompositions (2.8) and (2.7) we have

f = 3

7
trM = 1

7
ϕ�λ, (2.11)

α = −m�ϕ, π7(m) = −1

3
α�ϕ = 1

4! ϕcd
a λbcd dx

ab, (2.12)

χ = 1

2
hda ϕbcd dx

abc, hab = 1

4
ϕcd

(a χb)cd . (2.13)

In other words, regarding M as a matrix, π1(λ) corresponds to the trace of M , π7(λ)

corresponds to π7(m) where m is the antisymmetric part of M , and the elements in
�3

27 to the traceless symmetric 2-tensor hab. It is in fact easy to check that χ ∈ �3
27 as

χ�ψ = 0 due to the symmetric property of h, and ϕ�χ = 0 due to h being traceless.
The decomposition of four forms can be obtained similarly. Any four form � de-

composes into

� = f̃ ψ + α̃ ∧ ϕ + γ. (2.14)
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where f̃ is a smooth function on Y , α̃ is a one-form, and γ ∈ �4
27 which means ϕ�γ = 0

and ψ�γ = 0. We can also characterise and decompose four forms in terms of a one
form N with values in the tangent bundle

� = 1

3! N
a ∧ ψabcd dx

bcd . (2.15)

In this case

− 1

12
ψcde

a �bcde = 8

7
gab trN + Sab + 3(π7(n))ab,

where

Sab = N(ab) − 1

7
gab trN , n = 1

2
N[ab] dxab.

The decomposition of the four form � into irreducible representations of G2, is given
in terms of N by

f̃ = 4

7
trN = 1

7
ψ�� (2.16)

α̃ = n�ϕ, π7(n) = 1

3
α̃�ϕ = − 1

3 · 4! ψcde
a �bcde dx

ab (2.17)

γ = 1

3! h
e
a ψebcd dx

abcd , hab = − 1

12
ψcde

(a γb)cde. (2.18)

It is easy to check that, in fact, γ ∈ �4
27, as ϕ�γ = 0 due to the symmetric property of h,

andψ�γ = 0 due to h being traceless.Of course, this characterisation anddecomposition
of four forms can also be obtained using Hodge duality. Note also that if γ ∈ �4

27 is
given by γ = ∗χ where χ ∈ �3

27, then for

χ = 1

2
hda ϕbcd dx

abc,

we have

γ = ∗χ = − 1

3! h
e
a ψebcd dx

abcd .

Wewill use these characterisations of three and four forms in terms of one forms with
values in TY to describe deformations of theG2 structure, in particular, the deformations
of the G2 forms ϕ and ψ . It is important to keep in mind that only π7(m) and π7(n)

appear in these decompositions. In fact, we have not set π14(m) or π14(n) to zero as
these automatically drop out. Later, when extending our discussion of the moduli space
of heterotic string compactifications, the components π14(m) or π14(n) will enter in
relation to deformations of the B-field.

2.1.2. The intrinsic torsion. Decomposing into representations ofG2 the exterior deriva-
tives of ϕ and ψ we have
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dϕ = τ0ψ + 3 τ1 ∧ ϕ + ∗τ3, (2.19)

dψ = 4 τ1 ∧ ψ + ∗τ2, (2.20)

where the forms τi ∈ �i (Y ) are called the torsion classes. These forms are uniquely
determined by the G2-structure ϕ on Y [59]. We note that τ2 ∈ �2

14 and that τ3 ∈ �3
27.

A G2 structure for which

τ2 = 0,

will be called an integrable G2 structure following Fernández–Ugarte [32]. In this paper
we will derive some results for manifolds with a general G2 structure, however we will
be primarily interested in integrable G2 structures which are particularily relevant for
heterotic strings compactifications.

We can write Eqs. (2.19) and (2.20) in terms of τ2 and a three form H defined as

H = 1

6
τ0 ϕ − τ1�ψ − τ3. (2.21)

In fact, one can prove that

dϕ = 1

4
Hab

e ϕecd dx
abcd , (2.22)

dψ = 1

12
Hab

f ψ f cde dx
abcde + ∗τ2. (2.23)

The proof is straightforward using identities (A.15), (A.24), (A.19) and (A.25).
Let us end this discussion with a remark on the connections on Y . Let Y be amanifold

which has a G2 structure ϕ, and let ∇ be a metric connection on Y compatible with the
G2 structure, that is

∇gϕ = 0, ∇ϕ = 0.

We say that the connection ∇ has G2 holonomy. The conditions ∇ϕ = 0 and ∇ψ = 0
implyEqs. (2.22) and (2.23) respectively, and the three form H corresponds to the torsion
of the unique connection which is totally antisymmetric which exists only if τ2 = 0 [60].

2.1.3. The canonical cohomology. Before we go on, we need to introduce the concept
of a “Dolbeault complex” for manifolds with an integrable G2 structure. This complex
is appears naturally in the analysis of infinitesimal and finite deformations of integrable
G2 manifolds and heterotic compactifications. It was first considered in [32,50], and
discussed extensively in [49], so we will limit our discussion to the necessary definitions
and theorems. In the ensuing sections, we will use and generalise these results.

To construct a sub-complex of the de Rham complex of Y , we define the analogue
of a Dolbeault operator on a complex manifold

Definition 1. The differential operator ď is defined by the maps

ď0 : �0(Y ) → �1(Y ), ď0 f = d f, f ∈ �0(Y ),

ď1 : �1(Y ) → �2
7(Y ), ď1α = π7(dα), α ∈ �1(Y ),

ď2 : �2
7(Y ) → �3

1(Y ), ď2β = π1(dβ), β ∈ �2
7(Y ).

That is,
ď0 = d, ď1 = π7 ◦ d, ď2 = π1 ◦ d.
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Then we have the following theorem [32,50]

Theorem 1. Let Y be a manifold with a G2 structure. Then

0 → �0(Y )
ď−→ �1(Y )

ď−→ �2
7(Y )

ď−→ �3
1(Y ) → 0 (2.24)

is a differential complex, i.e. ď2 = 0 if and only if the G2 structure is integrable, that is,
τ2 = 0.

We denote the complex (2.24) by �̌∗(Y ). This complex (2.24) is, in fact, an elliptic com-
plex [50]. The corresponding cohomology ring, Ȟ∗(Y ), is referred to as the canonical
G2-cohomology of Y [32].

This complex can naturally be extended to forms with values in bundles, just as for
holomorphic bundles over a complex manifold. Let E be a bundle over the manifold
Y with a one-form connection A whose curvature is F . We are interested in instanton
connections A on E , that is, connections with curvature F which satisfies

ψ ∧ F = 0, (2.25)

or equivalently, F ∈ �2
14(Y,End(E)). We can now define the differential operator

Definition 2. The maps ďi A, i = 0, 1, 2 are given by

ď0A : �0(Y, E) → �1(Y, E), ď0A f = dA f, f ∈ �0(Y, E),

ď1A : �1(Y, E) → �2
7(Y, E), ď1Aα = π7(dAα), α ∈ �1(Y, E),

ď2A : �2(Y, E) → �3
1(Y, E), ď2Aβ = π1(dAβ), β ∈ �2

7(Y, E).

where the πi ’s denote projections onto the corresponding subspace.

It is easy to see that these operators are well-defined under gauge transformations.
Theorem 1 can then be generalised to [50]:

Theorem 2. Let Y be a seven dimensional manifold with a G2-structure. The complex

0 → �0(Y, E)
ďA−→ �1(Y, E)

ďA−→ �2
7(Y, E)

ďA−→ �3
1(Y, E) → 0 (2.26)

is a differential complex, i.e. ď2A = 0, if and only if the connection A on V is an instanton
and the manifold has an integrable G2 structure. We shall denote the complex (2.26)
�̌∗(Y, E).

Note that the complex (2.26) is elliptic, as was shown in [51].

2.2. Useful tools for deformation problems. In this section, we review and develop
tools for the study of the moduli space of (integrable) G2 structures. While the ulterior
motive to introduce this mathematical machinery is to investigate whether the moduli
space of heterotic string compactifications is given by a differential graded Lie Algebra
(DGLA), we limit ourselves in this paper to infinitesimal deformations. Amore thorough
discussion about DGLAs and finite deformations will appear elsewhere [55]. For more
discussion about the graded derivations, insertion operators and derivatives introduced
below, the reader is referred to e.g. [61–63].



736 X. de la Ossa, M. Larfors, E. E. Svanes

2.2.1. Graded derivations and insertion operators. Let Y be a manifold of arbitrary
dimension.

Definition 3. A graded derivation D of degree p on a manifold Y is a linear map

D: �k(Y ) −→ �p+k(Y ),

which satisfies the Leibnitz rule

D(α ∧ β) = D(α) ∧ β + (−1)kp α ∧ D(β). (2.27)

for all k-forms α and any form β.

Definition 4. Let M be a p-form with values in TY and let α be a k-form. The insertion
operator iM is defined by the linear map

iM : �k(Y ) −→ �p+k−1(Y ),

α �−→ iM (α) = 1

(k − 1)! Ma ∧ αab1...bk−1 dx
b1...bk−1 = Ma ∧ αa, (2.28)

where we have defined a (k − 1) form αa with values in T ∗Y from the k-form α by

αa = 1

(k − 1)! αab1...bk−1 dx
b1...bk−1 .

It is not too hard to prove that the insertion operator iM defines a graded derivation of
degree p − 1, and we leave this as an exercise for the reader.

One can extend the definition of the insertion operator to act on the space of forms
with values in �n TY , or �n T ∗Y , or indeed in �n V × �mV ∗, for any bundle V on Y .
For forms with values in any bundle E on Y , the insertion operator iM is the linear map

iM : �k(Y, E) −→ �p+k−1(Y, E), (2.29)

with iM (α) given by the same formula (2.28) for any α ∈ �k(E). Again, it is not too
hard to see that this formula defines a graded derivation of degree p − 1. For example,
for every M ∈ �p(Y, TY ) and N ∈ �q(T, TY ) we define iM (N ) ∈ �p+q−1(Y, TY )

by

iM (Na) = 1

(q − 1)! M
b ∧ (Na)bc1...cq−1 dx

c1...cq−1 . (2.30)

A further generalisation can be achieved by letting the form M which is being inserted
take values in �p(�mTY ) for m ≥ 1. For example, the insertion operator iM for the
action of M ∈ �p(�mTY ) on N ∈ �q(Y, TY ) is given by

iM (N ) = Ma1...am ∧ Na1...am ,

where q ≥ m and

Na1...am = 1

(q − m)! Na1...amb1...bq−mdx
b1...bq−m .

In this case, iM is a derivation of degree p − m.
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The insertion operators iM form a Lie algebra with a bracket [·, ·] given by

[iM , iN ] = iMiN − (−1)(p−1)(q−1) iN iM = i[M,N ], (2.31)

where M ∈ �p(Y, TY ), N ∈ �q(T, TY ) and

[M, N ] = iM (N ) − (−1)(p−1)(q−1) iN (M), (2.32)

is the Nijenhuis–Richardson bracket, which is a derivation of degree p + q − 1. The Lie
bracket is a derivation of degree p+q−2. To verify (2.31), let α be any k-form, (perhaps
with values in a bundle E on Y ). Then, by the Leibnitz rule (2.27)

iM (iN (α)) = iM (Na ∧ αa) = iM (Na) ∧ αa + (−1)(p−1)q Na ∧ iM (αa)

= iiM (N )(α) + (−1)(p−1)q Na ∧ Mb ∧ αab, (2.33)

where αab is the (k − 2)-form obtained from α

αab = 1

(k − 2)! αabc1...ck−2 dx
c1...ck−1 .

Then noting Eq. (2.32) and that

Ma ∧ Nb ∧ αab = (−1)pq+1 Na ∧ Mb ∧ αab,

we obtain (2.31).

Definition 5. The Nijenhuis–Lie derivative LM along M ∈ �p(Y, TY ) is defined by

LM = [d, iM ] = d iM + (−1)p iM d, (2.34)

where d is the exterior derivative.

Note that when p = 1, M is a section of TY and so the Nijenhuis–Lie derivative is the
Lie derivative along the vector field M . The Nijenhuis–Lie derivative is a derivation of
degree p acting on the space of forms on Y .

2.2.2. Covariant derivatives, connections and Lie derivatives. We can generalise the
definition of the Nijenhuis–Lie to act covariantly on forms with values in any bundle E .
This was also recently discussed in [64]. Suppose that α is k-form on Y which transforms
in a representation of the gauge group of E with representation matrices TI , where the
label I runs over the dimension of the gauge group. Then, an exterior covariant derivative
we can be written as

dA α = d α + A · α, A · α = AI ∧ (TI α). (2.35)

where A is a connection one form on E . Note that

d2Aα = F · α,

where F is the curvature of the connection A.

Definition 6. Let E be a vector bundle onY with connection A. The covariantNijenhuis–
Lie derivative LA

M along M ∈ �p(Y, TY ) acting on forms on Y which are in a repre-
sentation of the E is defined by

LA
M = [dA, iM ] = dA ◦ iM + (−1)p iM ◦ dA. (2.36)
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Let ∇ be a covariant derivative on Y with connection symbols �. One can define a
covariant derivative ∇ A on E ⊗ TY (to make sense of parallel transport on E) by

∇ A
a αc1...ck = ∂A a αc1...ck − k �a[c1b α|b|c2...ck ] = ∇a αc1...ck + Aa · αc1...ck , (2.37)

where

∂A a αc1...ck = ∂a αc1...ck + Aa · αc1...ck ,

Let dθ be an exterior covariant derivative on TY with connection one form θ given
by

θa
b = �ac

b dxc, (2.38)

where � are the connection symbols of a covariant derivative ∇ on Y .

Theorem 3. Let E be a bundle on a manifold Y with connection A. The covariant
Nijenhuis–Lie derivative LA

M along M ∈ �p(Y, TY ) satisfies

LA
M = [dA, iM ] = idθ M + (−1)p iM (∇ A), (2.39)

where dθ is an exterior covariant derivative on TY with connection one form

θa
b = �ac

b dxc,

and ∇ A is a covariant derivative on E ⊗ TY with connection symbols on TY given by
�.

Proof. Let α be any k-form on Y which transforms in a representation of the structure
group of E with representation matrices TI . Then

dA iM (α) = dA(Ma ∧ αa) = dθ M
a ∧ αa + (−1)p Ma ∧ (dAαa − θa

b ∧ αa)

= idθ M (α) − (−1)p iM (dAα) + (−1)p Ma ∧ (dAαa + (dAα)a − θa
b ∧ αb).

For the third term we have

dAαa = 1

(k − 1)! ∂A b αac1...ck−1 dx
bc1...ck−1

= 1

k!
(
(k + 1) ∂A[bαac1...ck−1] + (−1)k−1 ∂A a αc1...ck−1b

)
dxbc1...ck−1

= 1

k! (dAα)bac1...ck−1 dxbc1...ck−1 + ∂A aα

= −(dAα)a + ∂A aα.

Therefore
dAαa + (dAα)a − θa

b ∧ αb = ∂A aα − θa
b ∧ αb. (2.40)

This result can be written in terms of a gauge covariant derivative ∇ A on E ⊗ TY

∂A aα − θa
b ∧ αb = 1

k! (∂A aαc1...ck − k �a[c1b α|b|c2...ck ]) dxc1...ck

= 1

k! (∇ A
a αc1...ck ) dx

c1...ck .

Thus
dA iM (α) = idθ M (α) − (−1)p iM (dAα) + (−1)p Ma ∧ ∇ A

a α,

and (2.39) follows. ��
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Note the useful expression in the proof for the covariant derivative, namely

∇ A
a α ≡ 1

k! (∇ A
a αc1...ck ) dx

c1...ck = ∂A aα − θa
b ∧ αb. (2.41)

Corollary 1. Let Y be a n-dimensional manifold. Let∇ be ametric compatible covariant
derivative on Y with connection symbols �, and dθ be an exterior covariant derivative
on TY such that the connection one forms θ and the connection symbols � are related
by

θa
b = �ac

b dxc.

Suppose that Y admits a k-form λ which is covariantly constant with respect to ∇. Then

LM (λ) = [d, iM ](λ) = idθ M (λ),

Proof. This follows directly from the theorem. ��
It is important to notice that the choice for � and hence θ is determined by the fact
that ∇λ = 0. Note that the Nijenhuis–Lie derivative is defined with no reference to any
covariant derivate on Y , that is, it should only depend on the intrinsic geometry of Y .

2.3. Application to manifolds with a G2 structure. Before embarking on the analysis of
moduli spaces, we apply some of the ideas in the previous section to seven dimensional
manifolds Y with a G2 structure ϕ.

Let Ĥ ∈ �2(Y, TY ) be defined in terms of the three form H in Eq. (2.21) as

Ĥa = 1

2
Hbc

a dxbc. (2.42)

Then, the integrability equations for ϕ and ψ in Eqs. (2.22) and (2.23) can be nicely
written in term of insertion operators as

dϕ = Ĥa ∧ ϕa = i Ĥ (ϕ), (2.43)

dψ = Ĥa ∧ ψa = i Ĥ (ψ), (2.44)

where we have set τ2 = 0 as we are interested on moduli spaces of integrable G2
structures.

Let ∇ be a covariant derivative on Y compatible with the G2 structure, that is

∇ϕ = 0, ∇ψ = 0,

with connection symbols �. Then, by Corollary 1, the Nijenhuis–Lie derivatives of ϕ

and ψ along M ∈ �p(Y, TY ) are

LM (ϕ) = [d, iM ](ϕ) = idθ M (ϕ), (2.45)

LM (ψ) = [d, iM ](ψ) = idθ M (ψ), (2.46)

where the connection one-form θ of exterior covariant derivative dθ on TY is

θa
b = �ac

b dxc.
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As mentioned before, though these equations seem to depend on a choice of a covariant
derivative compatible with the G2 structure, this is not case. On a manifold with a G2
structure, there is a two parameter family of covariant derivatives compatible with a
given G2 structure on Y [49,60] with connection symbols

�ab
c = �LC

ab
c + Aab

c(α, β),

where�LC are the connection symbols of theLevi–Civita covariant derivative, Aabc(α, β)

is the contorsion and α and β are real parameters. The contorsion is given by

Aabc(α, β) = 1

2
Habc − 1

6
τ2 da ϕbc

d +
1

6
(1 + 2β) ((τ1�ψ)abc − 4 τ1 [b gϕ c]a)

+
1

4
(1 + 2α) (3 τ3 abc − 2 Sa

d ϕbcd),

where S is the traceless symmetric matrix corresponding to the torsion class τ3

τ3 = 1

2
Sa ∧ ϕabc dx

bc ∈ �3
27.

It is straightforward to show that in fact, only the first two terms of the contorsion
contribute to the right hand side of Eqs. (2.45) and (2.46). In other words, we only need
to work with a covariant derivative ∇ with

Aabc = 1

2
Habc − 1

6
τ2 da ϕbc

d ,

that is, with a connection with torsion

Tabc = Habc +
1

6
τ2 dc ϕab

d .

The torsion is totally antisymmetric when τ2 = 0 and this corresponds to the unique
covariant derivative with totally antisymmetric torsion. In this paper we are concerned
mainly with integrable G2 structures and hence we work with a connection for which
T = H .

3. Infinitesimal Deformations of Manifolds with an Integrable G2 Structure

We now turn to studying the tangent space to the moduli space of manifolds with an
integrable G2 structure. Finite deformations will be discussed in a future publication
[55]. In this section we discuss the infinitesimal deformations in terms of one forms Mt
with values in TY and find moduli equations in terms of these forms. Our main result
is that such deformations preserve the integrable G2 structure if and only if Mt satisfies
Eq. (3.11). In addition, we derive equations for the variation of the intrinsic torsion of
the manifold.

3.1. Equations for deformations that preserve an integrable G2 structure. Let Y be a
manifold with an integrable G2 structure determined by ϕ. In this subsection we find
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equations that are satisfied by those infinitesimal deformations of the integrable G2
structure which preserve the integrability.

From the discussion in Sect. 2.1.1 we can deduce that the infinitesimal deformations
of the integrable G2 structure take the form

∂tϕ = 1

2
Ma

t ∧ ϕabc dx
bc = iMt (ϕ), (3.1)

∂tψ = 1

3! N
a
t ∧ ψabcd dx

bcd = iNt (ψ). (3.2)

where Nt and Mt are one forms valued in TY . The forms Nt and Mt are not independent
as ψ and ϕ are Hodge dual to each other. To first order, Nt and Mt must be related such
that

∂tψ = ∂t ∗ ϕ.

We proved in [49] that the first order variations of the metric in terms of Mt are given by

∂t gϕ ab = 2Mt (ab), (3.3)

∂t
√
det gϕ = (trMt )

√
det gϕ, (3.4)

and that

Mt = Nt .

Note that only the symmetric part of Mt contributes to the infinitesimal deformations of
the metric. To first order, we can interpret the antisymmetric part of Mt as deformations
of the G2 structure which leave the metric fixed, however this is not true at higher orders
in the deformations as will be discussed in [55]. We give the equations for moduli of
integrable G2 structures in the following proposition.

Proposition 1. Let Y be a manifold with an integrable G2 structure ϕ and ψ = ∗ϕ.
The infinitesimal moduli Mt ∈ �1(Y, TY ) which preserve the integrability of the G2
structure satisfy the equations

iσt (ϕ) = 0, (3.5)

iσt (ψ) = 0, (3.6)

where σt ∈ �2(Y, TY ) is given by

σt = dθ Mt − [Ĥ , Mt ] − ∂t Ĥ , (3.7)

or equivalently
σ a
t = (∇b M

a
t c) dx

bc − ∂t Ĥ
a, (3.8)

where dθ is an exterior covariant derivative on TY with connection one form

θa
b = �ac

b dxc,

and � are the connection symbols of a connection ∇ on Y which is compatible with the
G2 structure and has totally antisymmetric torsion H given by Eq. (2.21).
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Proof. The proof of this proposition follows from the variations of Eqs. (2.43) and (2.44).
Consider first Eq. (2.43). We can write the variation of the left hand side as

d∂tϕ = d iMt (ϕ).

By Eq. (2.45) we find

d∂tϕ = [d, iMt ](ϕ) + iMt dϕ = idθ Mt (ϕ) + iMt (i Ĥ (ϕ)), (3.9)

where dθ is an exterior covariant derivative on TY with connection one form

θa
b = �ac

b dxc,

and � are the connection symbols of a connection ∇ on Y which is compatible with the
G2 structure and has totally antisymmetric torsion H (see Sect. 2.3). Now varying the
right hand side, we have

∂t (i Ĥ (ϕ)) = i
∂t Ĥ

(ϕ) + i Ĥ (iMt (ϕ)).

Equating this with (3.9) we obtain

idθ Mt−∂t Ĥ
(ϕ) + [iMt , i Ĥ ](ϕ) = 0.

Equation (3.5) follows this together with Eq. (2.31)

idθ Mt−∂t Ĥ−[Ĥ ,Mt ](ϕ) = 0.

where [Ĥ , Mt ] is theNijenhuis–Richardson bracket of Ĥ andMt as defined inEq. (2.32).
Similarly one can obtain Eq. (3.6) by varying starting Eq. (2.44).

To obtain (3.8) we need to write the exterior derivative dθ in terms of the covariant
derivative. Using (2.32) we have

dθ M
a
t − [Ĥ , Mt ]a = dMa

t + θb
a ∧ Mb

t − Ĥ e M a
t e + M e

t b Hec
a dxbc

=
(

∂bM
a
t c + �eb

a M e
t c − 1

2
Hbc

e M a
t e + Hbe

a M e
t c

)
dxbc

=
(

∇ LC
b M a

t c +
1

2
Hbe

a M e
t c − 1

2
Hbc

e M a
t e

)
dxbc = ∇bM

a
t c dx

bc

��
We have shown that forms Mt ∈ �1(Y, TY ) satisfying Eqs. (3.5) and (3.6) are in-

finitesimal moduli of manifolds with an integrable G2 structure. Even though this paper
is concerned with heterotic compactifications, the moduli problem described in this sec-
tion will have applications in other contexts in mathematics and in string theory. In order
to understand better the content of these equation wemake here a few remarks. Consider
first Eq. (3.6) which, as a five form equation, can be decomposed into irreducible rep-
resentations of G2. Using identities (A.26) and (A.27), one can prove that this equation
becomes [49]

π7(iσ (ψ)) = −π14(σ
a)ab ∧ ψ

= (
4 (∂tτ1 + iMt (τ1)) + (π14(dθ M

a
t ))badx

b) ∧ ψ = 0, (3.10)

π14(iσ (ψ)) = iπ7(σ )(ψ) = iďθ Mt
(ψ) = 0. (3.11)
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The second equation represents deformations of the integrable G2 structure which
preserve the integrability and it is in fact the only constraint on Mt . Observe how
π7([Ĥ , Mi ] + ∂t Ĥ) drops out from this equation automatically

i
π7([Ĥ ,Mi ]+∂t Ĥ)

(ψ) = 0.

The first Eq. (3.10) then gives the variation of τ1 for given a solution of (3.11). The other
equation for moduli, Eq. (3.5) gives the variations of all torsion classes for each solution
of Eq. (3.11). Consequently, it does not restrict Mt . We note that Eq. (3.10) is in fact
redundant as its contained in (3.5). It is important to remark too that, as Eq. (3.11) is
the only constraint on the variations of the integrable G2 structure, there is no reason to
expect that this space is finite dimensional (except of course in the case where Y has G2
holonomy).

The tangent space to the moduli space of an integrable G2 structure is found by
modding out the set of solutions to Eq. (3.11) by those which correspond to trivial
deformations, that is diffeomorphisms. These trivial infinitesimal deformations of ϕ and
ψ are given by the Lie derivatives of ϕ and ψ respectively along a vector field V . By
Eqs. (2.45) and (2.46) these are given by

LV (ϕ) = [d, iV ](ϕ) = idθV (ϕ), (3.12)

LV (ψ) = [d, iV ](ψ) = idθV (ψ). (3.13)

Therefore trivial deformations Mtriv of the G2 structure correspond to

Mtriv = dθV . (3.14)

The decompositions of LV (ϕ) and LV (ψ) into irreducible representations of G2 are
given by (see Eqs. (2.11)–(2.13))

trMtriv = ∇ LC
a vb = −d†v, (3.15)

Mtriv (ab) = ∇ LC
(a vb), (3.16)

π7(mtriv) = −1

2
π7 (dv + v�H) . (3.17)

Therefore, the tangent space to the moduli space of deformations of integrable G2
structures is given by the solutions of Eq. (3.11) modulo the trivial variations of the G2
structure given by Eq. (3.14). We will call this space T M0. As mentioned earlier, there
is no reason why the resulting space of infinitesimal deformations is finite dimensional,
unless one restricts to special cases such as Y having G2 holonomy.

Finally, we would like to note on a property of the curvature of a manifold with an
integrable G2 structure. For any trivial deformation Mtriv = dθV , Eq. (3.11) gives

iď2θV
(ψ) = 0.

Therefore,
i Ř(θ)

(ψ) = 0, (3.18)

where R(θ) is the curvature of the one form connection θ and Ř(θ) = π7(R(θ)). This
equation is not an extra constraint, but in fact (3.18) turns out always to be true when the
G2 structure is integrable. Indeed, covariant derivatives of the torsion classes are related
to the curvature two form, and can be used to show (3.18) without any discussion of the
deformation problem. We include the computation in “Appendix B”, leading to (B.3).



744 X. de la Ossa, M. Larfors, E. E. Svanes

3.2. A reformulation of the equations for deformations of G2 structures. In Sect. 5, we
will determine the moduli space of heterotic G2 systems. To this end, it is useful to solve
for σt ∈ �2(Y, TY ) in Eqs. (3.5) and (3.6). We have the following lemma

Lemma 1. Let σ ∈ �2(Y, TY ) and define

λ = iσ (ϕ) � = iσ (ψ).

Then σ satisfies � = 0 and λ = 0, if and only if

(σ̌a�ϕ)b = (σ d)ca ϕbd
c, (3.19)

where σ̌ = π7σ .

Proof. The Hodge dual of � can be easily computed (using Eq. (A.16)) and is given by

∗� = −1

2

(
(σ c)cd ϕd

ab + 2 (σa�ϕ)b
)
dxab

Therefore � = 0 is equivalent to

(σ[a�ϕ)b] = −1

2
(σ c)cd ϕab

d .

Note that contracting this equation with ϕab
e we find that

(π14(σ
a))ab = 0, (3.20)

and so

(σ̌[a�ϕ)b] = −1

2
(σ̌ c)cd ϕab

d . (3.21)

where σ̌ = π7(σ ). We now decompose the four form λ into representations of G2 as in
Sect. 2.1.1, and set each component to zero. The components of λ are obtained by the
following computation (see Eqs. (2.15)–(2.18))

1

12
ψcde

a λbcde = 1

2
ψcde

a (σ f )[bc ϕde] f = 1

4
ψcde

a
(
(σ f )bc ϕde f − (σ f )cd ϕeb f

)
.

Using the identity (A.8) in the second term

1

12
ψcde

a λbcde = 1

4

(
4 (σ f )bc ϕc

a f − 6 (σ f )cd gar δ
[c
[b ϕdr ]

f ]
)

= 1

2

( − 2 (σc)db ϕcd
a − (σ e)cd (−2 δc[b ϕd

e]a + ga[b ϕcd
e])

)

= 1

2

( − (σc)db ϕcd
a + (σ c)cd ϕd

ab − 2 ga[b (σ̌ e�ϕ)e]
)

= 1

2

( − (σc)db ϕcd
a + (σ c)cd ϕd

ab − gab (σ̌ e�ϕ)e + (σ̌a�ϕ)b
)

Hence, λ = 0 is equivalent to

0 = −(σc)db ϕcd
a + (σ c)cd ϕd

ab − gab (σ̌ e�ϕ)e + (σ̌a�ϕ)b.

Taking the trace of this equation gives

(σ̌a�ϕ)a = 0,
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and therefore
0 = −(σc)db ϕcd

a + (σ̌ c)cd ϕd
ab + (σ̌a�ϕ)b, (3.22)

where we have used Eq. (3.20) in the second term.
So far, we have proved that λ = 0 and� = 0 are equivalent to Eqs. (3.21) and (3.22).

Taking the antisymmetric part of Eq. (3.22) we have

0 = −(σc)d[b ϕcd
a] + (σ̌ c)cd ϕd

ab + (σ̌[a�ϕ)b],

and using (3.21) in the third term we find

(σ̌ c)cd ϕd
ab = 2 (σc)d[b ϕcd

a].

Using this back into Eq. (3.22) we have

0 = −(σc)db ϕcd
a + 2 (σc)d[b ϕcd

a] + (σ̌a�ϕ)b,

from which (3.19) follows. ��
The result of the lemma is that σt defined as in (3.8) satisfies

((σ̌t a)cd − 2 (σt c)da) ϕcd
b = 0.

In other words, defining a two form �t ∈ �2(Y, TY ) by

�t a = 1

4

(
(σt a)bc − 2 (σt b)ca

)
dxbc = 1

2

(
σt a − (σt b)ca dx

bc
)

,

the equation for moduli is equivalent to

�̌t = π7(�t ) = 0.

We would like to write this equation in terms of Mt and H . We have

�t a = 1

2

(
σt a − (σt b)ca dx

bc
)

= σt a − 1

4
(2 (σt b)ca + (σt a)bc) dx

bc

= dθ Mt a − [Ĥ , Mt ]a − gae (∂t Ĥ
e) − 3

4
(σt [a)bc] dxbc.

The last two terms of this equation become after using Eq. (3.8) in the last term,

− 3

4
(σt [a)bc] dxbc − gae (∂t Ĥ

e)

= −3

2

(
∇[bMt |a|c] − 1

2
ge[a ∂t Hbc]e

)
dxbc − gae (∂t Ĥ

e)

= −3

2

(
∂[bmt ac] + H[bae mt c]e

)
dxbc

+
3

4

(
∂t Habc − 2Mt (e[a) Hbc]e

)
dxbc − ∂t Ĥa + 2M(ae) Ĥ

e

= −3

2

(−H[abe mt c]e + H[bce Mt (a]e)
)
dxbc + 2M(ae) Ĥ

e + (dmt )a +
1

2
∂t Ĥa

= [Ĥ , Mt ]a + (dmt )a +
1

2
∂t Ĥa .
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Therefore

�t a = dθ Mt a + (dmt )a +
1

2
∂t Ĥa,

where mt is the two form obtained from the antisymmetric part of Mt , that is,

mt = 1

2
Mt [ab] dxab,

as in Eq. (2.10) in Sect. 2.1.1. The equation formoduli for amanifoldY with an integrable
G2 structure is

0 = �t a�ϕ =
(
dθ Mt a + (dmt )a +

1

2
∂t Ĥa

)
�ϕ. (3.23)

This equation cannot depend on π14(m) as these are not part of the moduli of the
integrableG2 structure as discussed before (see Sect. 2.1.1). To check that in fact π14(m)

drops off Eq. (3.23), we prove the following lemma.

Lemma 2. Let z be a one form with values in T ∗Y such that the matrix zab = (za)b is
antisymmetric. Then

dθ za = −(dz)a +
1

2
(∇azbc) dx

bc,

where

z = 1

2
zab dx

ab.

If moreover z ∈ �2
14, we have

(dθ za + (dz)a)�ϕ = 0

Proof. For the first identity we have

dθ za = (∂bzac − �ab
e zec) dx

bc = 1

2
(3 ∂[bzac] + ∂azbc − 2�ab

e zec) dx
bc

= −(dz)a +
1

2
(∇azbc) dx

bc.

The second identity follows from the fact that if z ∈ �2
14, then z�ϕ = 0. ��

Note in particular that when we restrict to the G2 holonomy case with vanishing flux
(H = 0), the moduli Eq. (3.23) reduces to

0 = �t a�ϕ = (dθ Mt a + (dmt )a)�ϕ. (3.24)

where now dθ denotes the Levi–Civita connection. As shown in [49], one can always
make a diffeomorphism gauge choice where

ďθ ht a = ďθ
†
ht a = 0, ⇔ ht a ∈ H1

ďθ
(TY ) ∼= H1

ďθ
(TY ), (3.25)

where ht is the symmetric traceless part ofMt , andH∗
dθ

(TY ) denote dθ -harmonic forms.

Note that ht is restricted to the 27 representation ofH1
ďθ

(TY ). The remaining represen-

tations are the singlet 1, which corresponds to trivial re-scalings of the metric, and the
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anti-symmetric 14 representation, which in string theory have a natural interpretation as
B-field deformations.

For completeness, but not relevant to thework in this paper, we note that the procedure
in this section can also be used to find infinitesimal deformations of a manifold Y with
a G2 structure which is not necessarily integrable. The result in this case is

0 = �t a�ϕ

=
(
dθ Mt a + (dmt )a +

1

2
∂t Ĥa

)
�ϕ +

1

2
(∂tτ2 ab + M e

t b τ2 ea) dx
b.

In this case, all these equations give the deformations of the torsion classes in terms
of Mt . Infinitesimal deformations of a G2 structure give another G2 structure as the
existence of a G2 structure on Y is a topological condition (in fact, any 7-dimensional
manifoldwhich is spin and orientable, that is, its first and second Stiefel–Whitney classes
are trivial, admits a G2 structure).

A couple of remarks are in order regarding the equations for moduli obtained in this
section.Whatwehave demonstrated is that Eq. (3.23) is equivalent toEqs. (3.5) and (3.6).
On a first sight, Eq. (3.23) looks useless as we do not have (at this stage) an independent
way to describe the variations of the torsion in terms of the Mt . Equation (3.23) however
will become useful in Sect. 5 when we discuss the moduli of heterotic G2 systems. In
this context, perturbative quantum corrections to the theory require the cancelation of an
anomaly which gives an independent description of H in terms of instanton connections
on both TY and a vector bundle V on Y .

4. Moduli Space of Instantons on Manifolds with G2 Structure

We now turn to studying the moduli space of integrable G2 manifolds with instantons.
There is a large literature on deformations of instantons on manifolds with special struc-
ture [27–31,45,49–51,65–74]. In order for this paper to be self-contained, we will now
review the results of [49], using the insertion operators introduced in previous sections.
We will see that, in this set up, proofs of the theorems of [49] simplify drastically.

Consider a one parameter family of pairs (Yt , Vt )with (Y0, V0) = (Y, V ), V is vector
bundle over amanifoldY which admits an integrableG2 structure. Let F be the curvature
of V and we take F to satisfy the instanton equation

F ∧ ψ = 0. (4.1)

The moduli problem that we want to discuss in this section is the simultaneous defor-
mations of the integrable G2 structure on Y together with those of the bundle V which
preserve both the integrable G2 structure on Y and the instanton equation. We begin by
considering variations of Eq. (4.1).

Theorem 4 [49]. Let Mt ∈ �1(TY ) be a deformation of the integrable G2 structure on Y
and ∂t A a deformation of the instanton connection on V . The simultaneous deformations
Mt and ∂t A which respectively preserve the integrable G2 structure and the instanton
condition on V must satisfy

(
dA∂t A − iMt (F)

)
�ϕ = 0. (4.2)
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Proof. Variations of the instanton Eq. (4.1) give

0 = ∂t (F ∧ ψ) = ∂t F ∧ ψ + F ∧ ∂tψ.

Note that in the first term, the wedge product of ∂t F with ψ picks out the part of ∂t F
which is in �2

7. Noting that

∂t F = dA∂t A,

we obtain

dA∂t A ∧ ψ + F ∧ iMt (ψ) = 0

Taking the Hodge dual we obtain equivalently

(dA∂t A)�ϕ = − ∗ (F ∧ iMt (ψ)) = − ∗ (F ∧ Ma
t ∧ ψa) = ∗(Ma

t ∧ Fa ∧ ψ)

= ∗(iMt (F) ∧ ψ).

where we have used the identity (A.23) in the second to last equality. Therefore the result
follows. ��

Note that ∂t A is not well defined (it is not an element of �1(Y,End(V ))), however
Eq. (4.2) is covariant. Under a gauge transformation �, A transforms as

A �→ �A = �(A − �−1 d�)�−1,

and hence ∂t A transforms as

∂t A �→ �(∂t A) = �
(
∂t A − dA(�−1∂t�)

)
�−1.

After a short computation, we find

dA∂t A �→ �(dA∂t A) = �
(
dA∂t A − d2A(�−1∂t�)

)
�−1,

and contracting with ϕ

(dA∂t A)�ϕ �→ �(dA∂t A)�ϕ = �
((
dA∂t A − d2A(�−1∂t�)

)
�ϕ

)
�−1

= �
(
(dA∂t A)�ϕ

)
�−1,

where we have used the fact that ď2A = 0. Hence Eq. (4.2) is covariant.2 One can define
a covariant deformation of A, αt ∈ �1(Y,End(V )), by introducing a connection one
form � on the moduli space of instanton bundles over Y .3 Because Eq. (4.2) is already
a covariant equation for the moduli, it should be the case that

αt = ∂t A − dA�t , (4.3)

2 This had already been noticed by Atiyah in connection with his work on the moduli of holomorphic
bundles on complex manifolds [52] and has been used in [16]. Here we generalise this point to the case at
hand of the moduli of instanton connections on manifolds with an integrable G2 structure.

3 Here we generalise the work of [16] where covariant variations of holomorphic connections were con-
structed.
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that is, αt and ∂t A can only differ by a term which is ďA-closed. Note that αt is in fact
covariant as long as the connection �t transforms under gauge transformations as

�t �→ � �t = �(�t − �−1∂t�)�−1.

In terms of elements αt ∈ �1(Y,End(V )), Eq. (4.2) is
(
dAαt − iMt (F)

)
�ϕ = 0. (4.4)

It will convenient (and important) to understand better the moduli problem to define
the map [49]4

F : �p(Y, TY ) −→ �p+1(Y,End(V ))

M �→ F(M) = (−1)p iM (F).

We also define the map

F̌ : �
p
r (Y, TY ) −→ �

p+1
r′ (Y,End(V )),

where �
p
r (Y,End(V )) ⊆ �p(Y,End(V )), �p+1

r′ (Y,End(V )) ⊆ �p+1(Y,End(V )), and
r and r′ are appropriate irreducible G2 representations as follows:

F̌(M) = F(M) = iM (F), for M ∈ �0(TY ),

F̌(M) = π7(F(M)) = −π7(iM (F)), for M ∈ �1(TY ),

F̌(M) = π1(F(M)) = π1(iM (F)), for M ∈ �2
7(TY ).

Note that the projections that define F̌ are completely analogous to those that define the
derivatives ďA. In terms of this map, Eq. (4.4) can be written as

ďAαt + F̌(Mt ) = 0. (4.5)

The theorem below proves that as a consequence of the Bianchi identity dAF = 0,
F̌ maps the moduli space of manifolds with an integrable G2 structure into the ďA-
cohomology discussed in Sect. 2.1.3.

Theorem 5 [49]. Let M ∈ �p(Y, TY ), where p = 0, 1, 2, and let F be the curvature
of a bundle V with one form connection A which satisfies the instanton equation. Let ∇
be a covariant derivative on Y compatible with the integrable G2 structure on Y with
torsion H, and dθ be an exterior covariant derivative such that

θa
b = �ac

b dxc,

where � are the connection symbols of ∇. Then the Bianchi identity

dAF = 0,

implies
ďA(F̌(M)) + F̌(ďθ (M)) = 0. (4.6)

4 Note that F and Mt have changed signs compared to [49].
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Forms M ∈ �p(Y, TY )which are ďθ -exact aremapped into forms in�p+1(Y,End(TY ))

which are ďA-exact. Furthermore, any form M ∈ �1(Y, TY ) which satisfies the moduli
equation

iďθ M
(ψ) = 0,

ismapped into a ďA-closed form in�2(Y,End(TY )). Therefore, F̌ maps the infinitesimal
moduli space T M0 of Y into elements of the cohomology H2

ďA
(Y,End(V )).

Proof. Consider dAiM (F). Then

dAiM (F) = [dA, iM ](F) + iMdAF.

The second term vanishes by the Bianchi identity. Using Eq. (2.39) we find

dAiM (F) − idθ M (F) = (−1)p Ma ∧ ∇ A
a F,

where

∇ A
a F = 1

2
∇ A
a (Fbc) dx

bc.

Contracting with ϕ we find
(
dAiM (F) − idθ M (F)

)
�ϕ = (

dAiM (F) − F(dθ M)
)
�ϕ = (−1)p

(
Ma ∧ ∇ A

a F
)
�ϕ

= (−1)p ∗ (
Ma ∧ ∇ A

a F ∧ ψ
)

= (−1)p ∗ (
Ma ∧ (∇ A

a (F ∧ ψ) − F ∧ ∇aψ)
) = 0.

Hence, by the definition of F we find
(
dA(F(M)) − F(dθ M)

)
�ϕ = 0. (4.7)

which implies Eq. (4.6) upon considering the appropriate projections for each value of
p.

Suppose M ∈ �p(Y, TY ) is ďθ -exact, that is

M = ďθV,

for some V ∈ �p−1(Y, TY ). We want to prove that F̌(ďθV ) is maped into a ďA-exact
form in �p+1(Y,End(TY )). This is now obvious from Eq. (4.6).

Consider now M ∈ �1(Y, TY ) which satisfies the moduli Eq. (3.6). We want to
prove that F(M) is ďA-closed. According to Eq. (4.6), this means we need to prove that

F(ďθ M) = 0

when M satisfies (3.6). This is in fact the case as can be verified by the following
computation

F(dθ M)�ϕ = ∗(F(dθ M) ∧ ψ) = ∗(idθ M (F) ∧ ψ) = ∗(dθ M
a ∧ Fa ∧ ψ)

= − ∗ (idθ M (ψ) ∧ F) = − ∗ (iďθ M
(ψ) ∧ F) = 0. (4.8)

In the second line of this computation we have used the identity (A.23) in the first
equality, and Eqs. (A.26) and (A.27) in the second. ��
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We remark that actually any M ∈ �1(Y, TY ) which satisfies the moduli equation

iσ (ψ) = 0,

where

σt = dθ Mt − [Ĥ , Mt ] − ∂t Ĥ ∈ �2(Y, TY ),

is mapped by F̌ into a ďA-closed form. Indeed, the last term in the calculation above in
Eq. (4.8) can be written as (see Eqs. (3.11) and (3.10))

0 = − ∗ (iďθ M
(ψ) ∧ F) = − ∗ (π14(iσ (ψ)) ∧ F) = − ∗ (iσ (ψ) ∧ F).

Equation (4.5) and Theorem 5 give a very nice picture of the tangent space to the
moduli space of simultaneous deformations of the integrable G2 structure on Y together
with the instanton condition on the bundle V on Y . Keeping the G2 structure fixed
(∂tψ = 0) on the base manifold Eq. (4.5) gives

ďAαt = 0, (4.9)

which is the equation for the bundle moduli. It is also clear that variations of A which
are ďA-exact one-forms correspond to gauge transformations, so the bundle moduli
correspond to elements of the cohomology group

H1
ďA

(Y,End(V )).

On the other hand, suppose that the parameter t corresponds to a deformation of
the integrable G2 structure. Then Eq. (4.5) represents the equation that the moduli Mt
must satisfy in order for the instanton condition be preserved. In fact, it means that the
variations Mt ∈ T M0 of the integrable G2 structure of Y , are such that F̌(Mt ) must be
ďA-exact, that is

Mt ∈ ker(F̌) ⊆ T M0.

Therefore, the tangent space of the moduli space of the combined deformations of the
integrable G2 structure and bundle deformations is given by

T M1 = ker(F̌) ⊕ H1
ďA

(Y,End(V )), (4.10)

where elements in H1
ďA

(Y,End(V )) correspond to bundle moduli. Note again that there

is no reason to believe that ker(F̌) is finite dimensional.
Finally, there is an important observation regarding the parts of the moduli M ∈

�1(Y, TY ) which appear in Eq. (4.10). Thinking about M as a matrix, we have seen
that π14(m) (wherem is the two form obtained from the antisymmetric part of M) drops
out of the contractions iM (ψ) and iM (ϕ) corresponding to the variations of ψ and ϕ

respectively. Hence π14(m) plays no part in the moduli problem leading to T M0. It is
easy to see that π14(m) also drops out from Eqs. (4.5) and (4.6). For Eq. (4.5),

F(M)�ϕ = − ∗ (iM (F) ∧ ψ) = − ∗ (Ma ∧ Fa ∧ ψ) = ∗(Ma ∧ ψa ∧ F)

= ∗(iM (ψ) ∧ F)

where we have used identity (A.23). This same argument shows that π14(m) drops out of
the first term of Eq. (4.6). As Eq. (4.6) must be true for any M ∈ �1(Y, TY ), it follows
that π14(m) drops out of the second term too.
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5. Infinitesimal Moduli of Heterotic G2 Systems

We now use the results of the previous sections to determine the infinitesimal moduli
space of heterotic G2 systems. We show that the moduli problem can be reformulated
in terms of a differential operator Ď acting on forms Z with values in a bundle

Q = T ∗Y ⊕ End(TY ) ⊕ End(V ). (5.1)

We construct an exterior covariant derivative D by requiring that, for a one form Z
with values in Q, the conditions Ď(Z) = 0, reproduces the equations for moduli that
we already have, that is Eqs. (3.23) and (4.5). Furthermore, we show that Ď2 = 0 is
enforced by the heterotic G2 structure, including crucially Eq. (4.6), and the anomaly
cancelation condition that we introduce below. In other words, we show that the heterotic
G2 structure corresponds to an instanton connection on Q. Conversely, we prove that
a differential which satisfies Ď2 = 0 implies the heterotic G2 system including the
(Bianchi identity of) the anomaly cancelation condition. We show that this result is
true to all orders in the α′ expansion. With this differential at hand, we show that the
infinitesimal heterotic moduli space corresponds to classes in the cohomology group

H1
Ď(Y,Q),

which is finite dimensional.

5.1. The heterotic G2 system in terms of a differential operator. In this subsection we
reformulate the heterotic G2 system

(
[Y, ϕ], [V, A], [TY, θ̃ ], H

)
,

in terms of a differential operator, or more precisely, a covariant operator Ď, which acts
on forms with values on the bundle

Q = T ∗Y ⊕ End(TY ) ⊕ End(V ), (5.2)

and which satisfies Ď2 = 0. It is important to keep in mind that we demand that H ,
which encodes the geometry of the integrable G2 structure on (Y, ϕ) (see Eq. (2.21))
satisfies a constraint, the anomaly cancelation condition

H = dB +
α′

4
(CS[A] − CS[θ̃]) . (5.3)

In what follows we will also need the Bianchi identity for the anomaly cancelation
condition which is obtained by applying the exterior derivative d to the anomaly

dH = α′

4
(tr(F ∧ F) − tr(R̃ ∧ R̃)) (5.4)

We show in “Appendix C” that heterotic G2 systems correspond to certain vacua of
heterotic supergravity, provided that the torsion class τ1 is an exact form. The results in
this paper however apply to a more general system, as we do not assume anywhere that
the torsion class τ1 is d-exact (by Eq. (2.20) it is clear that for an integrable G2 structure,
τ1 is always ď-closed).
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Consider the differential operator

D =
⎛

⎝
dθ R̃ − F
R̃ dθ̃ 0
F 0 dA

⎞

⎠ , (5.5)

which acts on forms with values in Q. The operator acts linearly on forms with values
in Q and it is easy to check that D satisfies the Leibniz rule, that is,

D( f V) = d f ∧ V + f DV,

for any section V of Q and any function f on Y . Therefore, it defines a connection,
or more appropriately, a covariant exterior derivative on Q. Its action on higher tensor
products of Q can be obtained from the Leibniz rule. It is important to keep in mind in
the definition of D that the two connections θ and θ̃ on TY are not the same (see more
details in “Appendix C” for the reasons of this difference in the supergravity theory).

The map F has been defined already in Sect. 4 by its action on forms with values
in TY . In defining D, we extend the definition of the operator F to act on forms with
values in Q as follows. Let y ∈ �p(Y, T ∗Y ), and α ∈ �p(Y,End(V ). Then

F : �p(Y, T ∗Y ) ⊕ �p(Y,End(V )) −→ �p+1(Y,End(V )) ⊕ �p+1(Y, T ∗Y )
(
y
α

)
�→

(
F(y)
F(α)

)

where

F(y) = (−1)p gab ya ∧ Fbc dx
c = (−1)p iy(F),

F(α)a = (−1)p
α′

4
tr(α ∧ Fab dx

b).

The map R̃ is defined similarly, but acts on forms valued in �p(Y, T ∗Y ) ⊕
�p(Y,End(TY ). We also define the maps F̌ and ˇ̃R as in Sect. 4 by an obvious gener-
alisation.

We now show that the projection Ď of the operator D satisfies Ď2 = 0 for heterotic
G2 systems. The Bianchi identity of the anomaly cancelation condition enters crucially
in the proof.

Theorem 6. For a heterotic G2 system ([Y, ϕ], [V, A], [TY, θ̃ ], H), the operatorD sat-
isfies Ď2 = 0.

Proof. Computing the square of Eq. (5.5) we have

D2 =

⎛

⎜⎜
⎝

d2θ + R̃2 − F2 dθR̃ + R̃dθ̃ − (dθF + FdA)

R̃dθ + dθ̃R̃ R̃2 + d2
θ̃

−R̃F
Fdθ + dAF FR̃ − F2 + d2A

⎞

⎟⎟
⎠ , (5.6)

We want to prove that Ď2 = 0.
Consider first the condition corresponding to the (31) entry of (5.6)

F̌(ďθ y) + ďAF̌(y) = 0, ∀ y ∈ �p(Y, T ∗Y ).
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This has already been proven (see Eq. (4.6) and its proof in Theorem 5). The condition
for the (21) entry

ˇ̃R(ďθ y) + ďθ̃
ˇ̃R(y) = 0, ∀ y ∈ �p(Y, T ∗Y ),

is similarly satisfied.
We already know that ď2A = 0, and ď2

θ̃
= 0 so the conditions for the entries (22) and

(33) are respectively

F̌2(α) = 0, ˇ̃R2
(κ) = 0,

for any α ∈ �1(Y,End(V ) and any κ ∈ �1(Y,End(TY ). These equations are in fact is
true. For the first one

F2(α) = −α′

4
gac

(
tr(α ∧ Fab dx

b)
) ∧ Fcd dx

d . (5.7)

By Eq. (A.28) we see inmediately that

F̌2(α) = 0.

The proof that ˇ̃R2
(κ) = 0 follows similarly. It also follows from Eq. (A.28), that the

proof of the conditions corresponding to the entries (23) and (32)

ˇ̃R(F̌(α)) = 0, F̌( ˇ̃R(κ)) = 0.

is completely analogous.
Consider now the condition corresponding to the (13) entry of (5.6). For any α ∈

�1(Y,End(V ), we have

dθF(α)a + F(dAα)a = dF(α)a − θa
b ∧ F(α)b + (−1)p+1

α′

4
tr
(
(dAα) ∧ Fab dx

b)

= (−1)p
α′

4
tr
(
dA(α ∧ Fab dx

b) − θa
b ∧ α ∧ Fbc dx

c

− (dAα) ∧ Fab dx
b
)

= α′

4
tr
(
α ∧ (dAFab dx

b − θa
b ∧ Fbc dx

c)
)

= α′

4
tr
(
α ∧ (−(dAF)a + ∂A a F − θa

b ∧ Fbc dx
c)

)

= α′

4
tr
(
α ∧ ∇ A

a F
)
,

where the last two equalities follow Eqs. (2.40), (2.41) and the Bianchi identity dAF = 0
(see also Lemma 3 in [49]). Contracting with ϕ and using the fact that F�ϕ = 0, we
obtain

(dθF(α)a + F(dAα)a)�ϕ = α′

4
tr
(
α�

(
(∇ A

a F)�ϕ
)) = α′

4
tr
(
α�

(∇ A
a (F�ϕ)

)) = 0,
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as required. Clearly the proof for the (12) entry is similar, so

ďθ
ˇ̃R(κ) + ˇ̃R(dθ̃ κ) = 0.

Finally, for the entry (11) we need to prove that, for any y ∈ �p(Y, T ∗Y ),

ď2θ y − F̌2(y) + ˇ̃R2(y) = 0, (5.8)

We have

d2θ ya = −R(θ)a
b ∧ yb,

F2(y)a = −α′

4
yc ∧ tr(Fab dx

b ∧ Fcd dx
d),

R̃2(y)a = −α′

4
yc ∧ tr(R̃ab dx

b ∧ R̃cd dx
d),

where R(θ) is the curvature of the connection θ

R(θ)a
b = dθa

b + θc
b ∧ θa

c.

Then

d2θ ya − (F2 − R̃2)(y)a = yc ∧
(

− R(θ)ac

+
α′

4

(
tr(Fab dx

b ∧ Fcd dx
d) − tr(R̃ab dx

b ∧ R̃cd dx
d)

))

By the Bianchi identity of the anomaly cancelation condition (5.4), we have that

(dH)abcd dx
bd = α′ (tr(Fab dxb ∧ Fcd dx

d − Fac F)

−tr(R̃ab dx
b ∧ R̃cd dx

d − R̃ac R̃)
)
,

which implies

d2θ ya − (F2 − R̃2)(y)a = yc ∧
(

− R(θ)ac +
1

4
(dH)abcd dx

bd

+
α′

4
(tr(Fac F) − tr(R̃ac R̃))

)

To prove Eq. (5.8) we contract this result with ϕ to find

(d2θ ya + (F2 − R̃2)(y)a)�ϕ = −yb�
((

R(θ)ab +
1

4
(dH)abcd dx

cd
)
�ϕ

)
= 0, (5.9)

by propositions in the “Appendix B”. ��
This result is certainly very interesting and leads to an equally interesting corollary.

As an exterior covariant derivative defined onQ, one can writeD in terms of a one form
connection A on Q so that

D = dA = d +A.

Then Theorem 6 is equivalent to the statement that for a heterotic G2 system

F(A) ∧ ψ = 0,

where F(A) = dA + A ∧ A ∈ �2(Y,End(Q)) is the curvature of A. In other words,
the connection one form A defines an instanton connection on Q.
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5.2. The infinitesimal deformations of heterotic G2 systems. Consider the action of D
on p-forms with values in Q

D

⎛

⎝
y
κ

α

⎞

⎠ =
⎛

⎝
dθ y + R̃(κ) − F(α)

dθ̃ κ + R̃(y)
dAα + F(y)

⎞

⎠

The idea is to construct a differential operator D is such that Ď-closed one forms with
values in Q give the equations for infinitesimal moduli of heterotic G2 systems. Let D
act on an element

Z =
⎛

⎝
yt
κt
αt

⎞

⎠ ∈ �1(Y,Q).

Then
ĎZ = 0

if and only if

ďθ yt +
ˇ̃R(κt ) − F̌(αt ) = 0, (5.10)

ďθ̃ κt +
ˇ̃R(yt ) = 0, (5.11)

ďAαt + F̌(yt ) = 0. (5.12)

In these equations yt is a general one form with values in T ∗Y . To relate these equations
with those equations for moduli we have obtained in Sects. 3.2 and 4, we set

yt a = Mt a + zt a, (5.13)

where the one form z with values in T ∗Y corresponds to a two form

zt = 1

2
zt ab dx

ab ∈ �2
14(Y ),

and where the antisymmetric part of the 7× 7 matrix associated to Mt forms a two form
mt ∈ �2

7(Y ).
Consider first Eq. (5.12). Using Eq. (5.13) we have

0 = ďAαt + F̌(yt ) = ďAαt + F̌(Mt ) + F̌(zt ).

However, the last term vanishes by Eq. (A.28), giving

ďAαt + F̌(Mt ) = 0.

By identifyingMt precisely with one forms in T ∗Y corresponding to deformations of the
G2 structure ∂tϕ as in Eq. (3.1), we obtain Eq. (4.5). This equation gives the simultaneous
deformations of (Y, V ) that preserve the integrable G2 structure on Y and the instanton
constraint on V . Note that we have no freedom in this identification. There is of course
an analogous discussion for Eq. (5.11).

Consider now Eq. (5.10). We have

dθ yt a +R̃(κ)t a −F(α)t a = dθ yt a − α′

4

(
tr(αt ∧Fab dx

b)− tr(κt ∧ R̃ab dx
b)

)
. (5.14)

This equation should be identified with the results in Sect. 3. To do so we need the
variations of anomaly cancelation condition.
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Proposition 2. Let αt ∈ �1(End(V )) and κt ∈ �1(End(TY )) correspond, respectively,
to covariant variations of the connections A and θ̃ (see Eq. (4.3)). The variation of
Eq. (5.3) can be written as

∂t H = dBt +
α′

2
(tr(F ∧ αt ) − tr(R̃ ∧ κt )), (5.15)

where Bt is a well-defined 2-form, that is, it is invariant under gauge transformations
of the bundles V and TY .5 In this definition �t is a connection on the moduli space of
instanton bundles on V and �̃t is a connection on the moduli space of instanton bundles
on TY (see discussion in Sect. 4).

Proof. Consider the variations of (5.3). We compute first the variations of the Chern–
Simons term for the gauge connection.

∂tCS[A] = tr (−d(A ∧ ∂t A) + 2 F ∂t A) ,

and therefore

∂t H = d

(
∂t B − α′

4
(tr(A ∧ ∂t A) − tr(θ̃ ∧ ∂t θ̃ ))

)

+
α′

2
(tr(F ∧ ∂t A) − tr(R̃ ∧ ∂t θ̃ )) (5.16)

To obtain the desired results we replace ∂t A and ∂t θ̃ with αt and κt at the expense of
introducing connections �t and �̃t on the moduli space of instanton bundles on V and
TY respectively as explained in Sect. 4. We have for the second term in Eq. (5.16)

α′

2
(tr(F ∧ ∂t A) = α′

2
(tr(F ∧ (αt + dA�t )) = α′

2
(tr(F ∧ αt ) +

α′

2
dtr(F �t ),

where we have used Eq. (4.3) and the Bianchi identity dAF = 0. A similar relation is
obtained for the third term of Eq. (5.16). Then Eq. (5.16) gives Eq. (5.15)

∂t H = dBt +
α′

2
(tr(F ∧ αt ) − tr(R̃ ∧ κt )),

where we have defined Bt such that

dBt = d

(
∂t B − α′

4
(tr(A ∧ ∂t A − 2F �t ) − tr(θ̃ ∧ ∂t θ̃ − 2R̃ �̃t ))

)
.

Note that, as both ∂t H and the second term in Eq. (5.15) are gauge invariant, then so is
dBt . We can now manipulate this result to obtain

dBt = d

(
∂t B − α′

4

(
tr
(
A ∧ αt − �t dA − d(A�t )

) − tr
(
θ̃ ∧ κt − �̃t dθ̃ − d(θ̃�̃t )

)))
.

��
5 This proposition is a generalisation to theG2 case of the considerations in [14] and [16] where an invariant

variation of the B field was studied in the context of heterotic compatifications on six dimensional manifolds.
The proof is of course identical.
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In our considerations below, the explicit form of Bt is not needed. However it is
important to keep in mind that is defined up to a gauge invariant closed form leading to
an extra symmetry of heterotic G2 systems. We discuss the meaning of this symmetry
below.

Returning to Eq. (5.14), using Eq. (5.15) we have that

1

4

(
dBt − ∂t H

)
abc dx

bc

= −α′

8
3
(
tr(αt [a Fbc]) − tr(κt [a R̃bc])

)
dxbc

= α′

4

(
tr(−αt a F + αt ∧ Fab dx

b) − tr(−κt a R̃ + κt ∧ R̃ab dx
b)

)
,

which implies

α′

4

(
tr(αt ∧ Fab dx

b) − tr(κt ∧ R̃ab dx
b)

) = 1

4

(
dBt − ∂t H

)
abc dx

bc

+
α′

4

(
tr(αt a F) − tr(κt a R̃)

)
.

Using this result into the right hand side of Eq. (5.14) we find

dθ yt a + R̃(κ)t a − F(α)t a = dθ yt a − 1

4

(
dBt − ∂t H

)
abc dx

bc

− α′

4

(
tr(αt a F) − tr(κt a R̃)

)
.

Contracting this with ϕ we find

0 = (dθ yt a + R̃(κ)t a − F(α)t a)�ϕ

= (dθ yt a)�ϕ − 1

4

(
dBt − ∂t H

)
abc ϕbc

ddx
d ,

which can be written equivalently as

0 =
(
dθ yt a +

1

2

( − (dBt )a + ∂t Ĥa
))

�ϕ. (5.17)

This result needs to be consistent with the analysis of the moduli of integrable G2
structures. We recall that in Sect. 3 we obtained instead

0 =
(
dθ Mt a + (dmt )a +

1

2
∂t Ĥa

)
�ϕ,

where there π14(mt ) drops out of this equation. To be able to compare these equations,
we use (5.13) in Eq. (5.17) and we now have

0 =
(
dθ (Mt + zt )a +

1

2

( − (dBt )a + ∂t Ĥa
))

�ϕ,

which by Lemma 2 gives

0 =
(
dθ Mt a +

1

2

( − (d(2 zt + Bt ))a + ∂t Ĥa
))

�ϕ.
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Therefore we find

0 = (d(2(mt + zt ) − Bt ))a�ϕ,

which implies

d(2(mt + zt ) − Bt )) = 0. (5.18)

This equation identifies the degrees of freedom corresponding to the antisymmetric part
of yt , that is mt + zt , with the invariant variations of the B field as follows

2 (zt + mt ) + μt = Bt , (5.19)

where μt is a gauge invariant d-closed two form. This ambiguity in the definition of Bt
has already been noted above. With this identification, we conclude that D is such that
Ď-closed one forms with values in Q correspond to infinitesimal moduli of the heterotic
vacua.

5.3. Symmetries and trivial deformations. Let us now discuss trivial deformations. On
the one hand, these should have an interpretation in terms of symmetries of the theory,
i.e. diffeomorphisms and gauge transformations of A, θ and B. On the other hand, since
Ď2 = 0, trivial deformations are given by

Ztriv = ĎV,

where V = (v, π, ε)T is a section of Q = T ∗Y ⊕ End(TY ) ⊕ End(V ). We show that
Ztriv can indeed be interpreted in terms of symmetries of the theory:

Ztriv =
⎛

⎝
ytriv
κtriv
αtriv

⎞

⎠ =
⎛

⎝
dθ v + R̃(π) − F(ε)

dθ̃ π + R̃(v)

dAε + F(v)

⎞

⎠ .

Let us start with the last entry of this vector, where the first term, dAε, corresponds to
gauge transformations of the gauge field. To interpret the second term, note that under
diffeomorphisms, F transforms as

LvF = v�dAF + dA(v�F) = dA(v�F) = dA(F(v)),

where we have used the definition of the map F given at the beginning of this section.
Thus, the second term corresponds to the change of the gauge field A under diffeomor-
phism. Analogously, we may interpret dθ̃ π as a gauge transformation, and R̃(v) as a
diffeomorphism, of the connection θ̃ on the tangent bundle.

We move on to show that

ytriv a = dθ va + R̃(π)a − F(ε)a

corresponds to trivial deformations of the metric and B-field. Thinking of ytriv ab as a
matrix, the symmetric part corresponds to

ytriv (ab) = dθ(b va) = ∇LC
(a vb).
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Comparing with Eqs. (3.16) and (3.3) (for more details see Proposition 3 and Theo-
rem 8 of [49]), one concludes that these are trivial deformations of the metric. For the
antisymmetric part, it is useful to define a two-form

yantisymtriv ≡ 1

2
ytriv [ab]dxab

= 1

2
(dθ va)bdx

ab − α′

4

(
tr[εF] − tr[π R̃]

)

= 1

2
(∂bva − �ab

cvc)dx
ab − α′

4

(
tr[εF] − tr[π R̃]

)

= −1

2
(dv + v�H) − α′

4

(
tr[εF] − tr[π R̃]

)
.

(5.20)

This equation should be equivalent to

yantisymtriv = 1

2
(Btriv − μtriv), (5.21)

as is required by (5.13) in combination with (5.19). To prove this we must specify what
Btriv andμtriv are. The latter is simple: sinceμt is a closed two-form,μtriv must be exact.
Physically, μtriv corresponds to a gauge transformation of B (this gauge transformation
is not to be confused with gauge transformations of the bundles).

We may determine Btriv by requiring that it corresponds to changes in the physical
fields B, A and θ̃ that atmost change H by a diffeomorphism. Concordantly, we compare
∂trivH from (5.15)

∂trivH = dBtriv +
α′

2
(tr[F ∧ αtriv] − tr[R̃ ∧ κtriv])

= dBtriv +
α′

2
(tr[F ∧ (dAε + F(v))] − tr[R̃ ∧ (dθπ + R̃(v))])

= d

(
Btriv +

α′

2

(
tr[Fε] − tr[R̃π ]

))
− α′

2

(
tr[F(v) ∧ F] − tr[R̃(v) ∧ R̃]

)

with the Lie derivative of H :
LvH = v�dH + d(v�H)

= α′

4
v�

(
tr[F ∧ F] − tr[R̃ ∧ R̃]

)
+ d(v�H)

= α′

2

(
tr[gabva Fbcdxc ∧ F] − tr[gabva R̃bcdx

c ∧ R̃]
)
+ d(v�H)

= α′

2

(
tr[F(v) ∧ F] − tr[R̃(v) ∧ R̃]

)
+ d(v�H).

We find that trivial transformations of H correspond to a diffeomorphism

∂trivH = L−vH

provided that

Btriv = −v�H − α′

2

(
tr(Fε) − tr(R̃π)

)
,

up to a closed two form. Inserting this in (5.21), we thus reproduce (5.20). If follows
that yantisymtriv corresponds to gauge transformations and diffeomorphisms of H . This
concludes the proof that Ztriv can be interpreted in terms of symmetries of the theory.
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5.4. The tangent space to the moduli space and α′ corrections. We have shown so
far that the tangent space T M to the moduli space M of heterotic G2 structures
[(Y, ϕ), (V, A), (TY, θ̃ ), H ] is given by

T M = H1
Ď(Y,Q),

where D is a covariant exterior derivative given in (5.5) which satisfies Ď2 = 0, or
equivalently, the bundle Q has an instanton connection A such that

D = dA = d +A.

To close our analysis of the infinitesimal deformations of heterotic G2 systems, we
discuss how α′ corrections might modify the results obtained above. In Theorem 6 we
have assumed that the connections A and θ̃ are instanton connections on V and TY
respectively, which we know to be true to first order in α′. We want to see what happens
when we relax these conditions. We note first that our discussion concerning the moduli
of heterotic compactifications on integrable G2 manifolds is accurate from a physical
perspective toO(α′2), provided the connection dθ̃ satisfies the instanton condition [75].
The naturalness of the structure however makes it very tempting to conjecture that the
analysis holds to higher orders in α′ as well, as is also expected in compacifications to
four dimensions [16,75,76]. A detailed analysis of higher order α′ effects is beyond the
scope of the present paper. However, in the following theorem we find a remarkable
result, which amounts to the converse of Theorem 6, in particular the Bianchi identity
of the anomaly cancelation condition is deduced from the requirement that the operator
D defined by Eq. (5.5) satisfies the condition Ď2 = 0.

Theorem 7. Let Y be a manifold with a G2 structure, V a bundle on Y with connection
A, and TY the tangent bundle of Y with connection θ̃ . Let θ be a metric connection
compatible with the G2 structure, that is ∇ϕ = 0 with connection symbols � such that
θa

b = �ac
b dxc. Consider the exterior derivative D defined by Eq. (5.5) and assume

that Ď2 = 0. Then
([Y, ϕ], [V, A], [TY, θ̃ ], H)

is a heterotic system. This statement is
true to all orders in the perturbative α′ expansion.

Proof. Consider again Eq. (5.6) and assume now that Ď2 = 0. We use the α′ expansion
to prove this theorem.

We begin with the (33) entry of Eq. (5.6), that is assume first that

ď2A(α) − F̌2(α) = [π7(F), α] − F̌2(α) = 0, (5.22)

for all α ∈ �p(Y,End(V )). BecauseF2 is of order α′ (see Eq. (5.7)), it must be the case
thatπ7(F) is at least of orderα′. Therefore, F ∈ �2

14(Y,End(V ))moduloα′ corrections.
By Eq. (A.28), this in turn means for the second term in Eq. (5.22), that F̌2(α) = 0
modulo O(α′2), and hence the first term must also be O(α′2). In other words, F is in
the 14 representation modulo α′2 corrections. Employing (A.28), again we see that the
second term of (5.22) is at least of O(α′3). Continuing this iterative procedure order by
order in α′ we find that

π7(F) = 0. (5.23)

Therefore, the two terms of Eq. 5.22 vanish separately. In particular ď2A = 0 if and only
if Y has an integrable G2 structure and A is an instanton connection on V . The proof
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for the entry (22) of (5.6) corresponding to the connection θ̃ on TY is similar, so θ̃ is an
instanton connection on TY . With this result and the proof of Theorem 6 all the other
entries in (5.6) vanish, except the entry (11).

For the (11) entry of (5.6), we now assume that

ď2θ y + ˇ̃R2(y) − F̌2(y) = 0,

for all y ∈ �p(Y, T ∗Y ). This is equivalent to

(
− R(θ)ab +

α′

4

(
tr(Fa ∧ Fb) − tr(R̃a ∧ R̃b)

))
�ϕ = 0,

As theG2 structure is integrable, we take∇ to be a connectionwith totally antisymmetric
torsion H (see Eqs. (2.43) and (2.44)). This together with the identity

R(θ)ab�ϕ = −1

4
(dH)cdab ϕcd

e dx
e

in “Appendix B”, gives

0 = (dH)cdab ϕcd
e dx

e + α′ (tr(Fa ∧ Fb) − tr(R̃a ∧ R̃b)
)
�ϕ

=
(
(dH)cdab + α′ (tr(Fac Fbd) − tr(R̃ac R̃bc)

))
ϕcd

e dx
e

=
(

(dH)cdab − 3
α′

2

(
tr(F[cd Fab]) − tr(R̃[cd R̃ab])

))
ϕcd

e dx
e

where in the last equality we have used the fact that both A and θ̃ are instantons. Then

0 =
(
dH − α′

4

(
tr(F ∧ F) − tr(R̃ ∧ R̃)

))

cdab
ϕcd

e dx
e. (5.24)

Consider the four form

� = dH − α′

4

(
tr(F ∧ F) − tr(R ∧ F)

)

and the associated three form �a with values in T ∗Y . Then Eq. (5.24) is equivalent
to �a = 0 to and hence � = 0. Note that, in this way we have also proved that the
Bianchi identity of the anomaly cancelation condition does not receive higher order α′
corrections. ��

We remark that Theorem 7 relies heavily on the α′ expansion. Mathematically, there
is no reason to assume that such an expansion exists. It is tempting to speculate that the
form of the covariant derivative D on Q is the correct operator including all quantum
corrections, also the non-pertubative ones. This would imply that the quantum corrected
geometry is encoded in an instanton connection on Q even if the connections A and θ̃

need not be instantons anymore.
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6. Conclusions and Outlook

This paper has been devoted to the analysis of the infinitesimal “massless” deforma-
tions of heterotic string compactifications on a seven dimensional compact manifold Y
of integrable G2 structure. We have seen that the heterotic supersymmetry conditions
together with the heterotic Bianchi identity can be put in terms of a differential Ď on a
bundle Q = T ∗Y ⊕ End(TY ) ⊕ End(V ). That is,

Ď : �̌p(Q) → �̌p+1(Q), Ď2 = 0, (6.1)

where �̌p(Q) is an appropriate sub-complex ofQ-valued forms. Furthermore, the space
of infinitesimal deformations of such compactifications is parametrised by

T M = Ȟ1
Ď(Q), (6.2)

where T M denotes the tangent space of the full moduli space.
Our deformation analysis naturally incorporates fluctuations of the heterotic B-field.

In fact, due to the anomaly cancelation condition, we could only translate the heterotic
G2 system into Ď-closedQ-valued one-forms if these one-forms included B-field fluc-
tuations. Put differently, to disentangle geometric and B-field deformations we must
decompose the one forms with values in TY into two sets S(TY ) and A(TY ), which
correspond to symmetric and antisymmetric matrices respectively. This decomposition
does not serve to simplify the analysis of the deformation, and in fact seems unnatural
from the perspective of Q. We should remark that for the G2 holonomy, the inclusion
of A(TY ) among the infinitesimal moduli is natural but not necessary [49].

Another interesting point regards theO(α′) corrections to the H -fluxBianchi identity,
which arise as a consequence of an anomaly cancelation condition in the world-sheet
description of the heterotic string. We observe that these O(α′) corrections are really
imposed already in our geometric analysis of the supergravity system, as a necessary
constraint to obtain a good deformation theory. This provides an alternative argument for
why the α′ corrections of heterotic supergravity take the form observed by Bergshoeff
and de Roo [77], which could be of use when deriving higher order corrections, without
need of analysing the world sheet description of the string.

The deformations of heterotic G2 systems are similar to the deformations of the six
dimensional holomorphic Calabi–Yau and Strominger–Hull system as it appears in the
papers [11–16,76,78], though there are some notable differences. In particular, in con-
trast to the Atiyah-like holomorphic extension bundle of the Strominger–Hull system,
Ď is not upper triangular with respect to the components of Q, and hence (Q, D) does
not form an extension bundle in the usual sense. This obscures some properties of the
three-dimensional low-energy effective field theory, i.e. the relation between the mass-
less spectrum and cohomology groups which exist in the holomorphic case. Extension
bundles also fit naturally into the heterotic generalised geometry developed in reference
[56] (see also [79]). We leave it as an open question whether an analogue of Schur’s
lemma can be used to bring Ď to the required form, i.e. by projecting the complex
�̌p(Q) onto further sub-representations. Deeper investigations into the properties of the
connection D and the corresponding structure group of (Q, D) may provide a better
understanding of the theory, which could clarify some of the points mentioned here.

An interesting connection between the heterotic G2 system and the six dimensional
Strominger–Hull system arises by embedding the latter into the former. This implies
that the seven dimensional structure unifies the holomorphic constraints, conformally
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balanced condition and the Yang–Mills conditions of the Strominger–Hull system. We
plan to study this unification, and the insight it may bring to the deformations of the
Strominger–Hull and other six-dimensional heterotic systems, in the future.

We have determined the infinitesimal moduli of heterotic G2 systems, and a natural
next question concerns that of higher order deformations and obstructions. On physical
grounds, it is expected that the finite deformations can be parametrised as solutions X
of a Maurer–Cartan equation

ĎX +
1

2
[X ,X ] = 0, X ∈ �̌1(Q), (6.3)

for some differential graded Lie algebra (DGLA). What exactly the Lie bracket

[ , ] : �̌p(Q) × �̌q(Q) → �̌p+q(Q), (6.4)

and the corresponding DGLA is remains to be determined.6 In this paper we have laid
the foundations for further investigations into such finite deformations, and we plan to
exploit this groundwork in a future publication [55].
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A. Identities and Lemmas

We have used a number of identities in this paper, and collect some of them in this
appendix. Many of these formulas can be found in the literature, e.g. [60], and further
relevant formulas can be found in e.g. [49] and [48].

The operator � denotes the contraction of forms, and is defined by

α�β = 1

k! p! αm1...mk βm1...mkn1...n pdx
n1 . . . dxnp , (A.1)

where α is any k-form and β is any p + k-form. It is easy to deduce the identity

α�β = (−1)p(d−p−k) ∗ (α ∧ ∗β). (A.2)

6 We expect that there exist a parametrisation where the deformation problem is governed by a DGLA, but
from a mathematical standpoint this is not guaranteed. The deformations might instead be described by an
L∞-algebra, including non-vanishing Jacobi identities and higher brackets.

http://creativecommons.org/licenses/by/4.0/
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For odd d we have

α�β = (−1)pk ∗ (α ∧ ∗β). (A.3)

Contractions between ϕ and ψ give [60]

ϕabc ϕabc = 42, (A.4)

ϕacd ϕbcd = 6 δab , (A.5)

ϕeab ϕecd = 2 δa[c δbd] + ψab
cd . (A.6)

ϕad1d2 ψbcd1d2 = 4ϕa
bc, (A.7)

ϕab f ψcde f = −6 δ[a [c ϕb]
de], (A.8)

ψabcdψabcd = 7 · 24 = 168, (A.9)

ψacdeψbcde = 24 δab , (A.10)

ψabe1e2ψcde1e2 = 8 δa[c δbd] + 2ψab
cd , (A.11)

ψa1a2a3cψb1b2b3c = 6 δ
a1[b1 δ

a2
b2

δ
a3
b3] + 9ψ [a1a2 [b1b2 δ

a3]
b3] − ϕa1a2a3 ϕb1b2b3 ,

(A.12)

ψa1a2a3a4ψb1b2b3b4 = 24 δ
a1[b1 δ

a2
b2

δ
a3
b3

δ
a4
b4] (A.13)

+ 72ψ [a1a2 [b1b2 δ
a3
b3

δ
a4]
b4] − 16ϕ[a1a2a3 ϕ[b1b2b3 δ

a4]
b4],
(A.14)√

g

2
ϕacd εcdb1b2b3b4b5 = 5 δ[b1

a ψb2b3b4b5], (A.15)
√
g

3! ψac1c2c3 εc1c2c3b1b2b3b4 = −4 δ[b1
a ϕb2b3b4]. (A.16)

Let α be a one form (possibly with values in some bundle)

ϕ�(α ∧ ϕ) = (α�ψ)�ψ = −4α, (A.17)

ψ�(α ∧ ψ) = (α�ϕ)�ϕ = 3α, (A.18)

ϕ�(α ∧ ψ) = (α�ϕ)�ψ = 2α�ϕ. (A.19)

Let α be a two form (possibly with values in some bundle)

ϕ�(α ∧ ϕ) = − (α�ψ)�ψ = 2α + α�ψ, (A.20)

ψ�(α ∧ ψ) = (α�ϕ)�ϕ = 3π7(α) = α + α�ψ, (A.21)

(α�ϕ)�ψ = 1

2
αa

d ϕbcd dx
abc. (A.22)

Let α be a two form in �2
14(Y ) (possibly with values in some bundle). We have

α ∧ ψa = −αa ∧ ψ. (A.23)
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Useful lemmas. In the main part of the paper we have used some formula’s without
proof in order to ease the flow of the text. Here we prove some of the relevant formulas,
collected in a couple of lemmas.

Lemma 3. Let λ ∈ �3
27. Then

∗λ = −1

4
λab

e ϕecd dx
abcd , (A.24)

λa[bc ψde f ]a = 0. (A.25)

Proof.

∗
(

−1

4
λab

e ϕecd dx
abcd

)
=

√
g

4! λab f ϕ f
cd εabcde1e2e3 dx

e1e2e3

= − 5

12
λabc gc[a ψbe1e2e3] dxe1e2e3

= −1

4
λabe1 ψe2e3ab dx

e1e2e3

where we have used Eq. (A.15) in the first line. Representing λ in terms of a symmetric
traceless matrix h as

λ = 1

2
hab ϕacd dx

bcd ,

we have

∗
(

−1

4
λab

e ϕecd dx
abcd

)
= −3

4
hc[a ϕbe1]c ψab

e2e3 dx
e1e2e3

= −1

4
(hce1 ϕabc + 2 hca ϕbe1c) ψab

e2e3 dx
e1e2e3

= −1

4
(4 hce1 ϕce2e3 − 12 hac ge1d δ[a [d ϕc]

e2e3]) dxe1e2e3

= −2 λ + hac ge1d (δa
[d ϕc]

e2e3 + 2 δe2
[d ϕc]

e3a) dx
e1e2e3

= −2 λ + 3 λ = λ,

where we have used identities (A.7) and (A.8). The second identity follows easily by
showing that

∗(λab f ψ f
cde dx

abcde) = 0.

��
Lemma 4. Let α ∈ �2(Y, TY ). Then

π7(iα(ψ)) = −(π14(α
a))ab dx

b ∧ ψ, (A.26)

π14(iα(ψ)) = iπ7(α)(ψ). (A.27)
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Proof.

iα(ψ) = αa ∧ ψa = π7(α
a) ∧ ψa + π14(α

a) ∧ ψa

= π7(α
a) ∧ ψa − (π14(α

a))ab dx
b ∧ ψ,

where we have used identity (A.23). Contracting the first term with ψ we find

ψ�(π7(α
a) ∧ ψa) = 0,

hence Eqs. (A.26) and (A.27) follow. ��
Lemma 5. Let α and β be two forms in �2

14. Then

γ = 1

2
αa ∧ βab dx

b ∈ �2
14(Y ), (A.28)

where

αa = gab αbc dx
c.

Proof. To prove Eq. (A.28), we prove that γ �ϕ = 0. We have

γ �ϕ = 1

2
αa
b βac ϕbc

d dx
d = −βac αba ϕb

cd dx
d

= −1

2
βac (3αb[a ϕb

cd] − αbc ϕb
da − αbd ϕb

ac) dx
d .

The last term vanishes as β�ϕ = 0. The first term also vanishes by Lemma 4 of [49].
Then

γ �ϕ = 1

2
βac αbc ϕb

da dx
d = 1

2
αc
b βca ϕab

d dx
d = −γ �ϕ,

and therefore γ �ϕ = 0. ��

B. Curvature Identities

In this appendix we prove curvature identities that hold for the connections on manifolds
with G2 structure. We focus on two connections: the G2 holonomy connection ∇ with
totally antisymmetric torsion H , defined in Sect. 2.1.2, and the connection dθ , defined
in Sect. 2.2.2. We will, in particular, show that dθ is not an instanton connection.

Let Y be a Riemannianmanifold and∇ a connection on Y with connection symbols�

and corresponding spin connetion�. The curvature R(�) of the connection∇ is defined
by

R(�)a
b = 1

2
(R(�)a

b)cd dx
cd = (∂c�da

b + �ce
b �da

e) dxcd

= −(∂c�dαβ + �cαγ �d
γ

β) ea
α ebβ.

If η is a spinor on Y we have

[∇a,∇b] η = −1

4
(R(�)cd)ab γ cd η − Tab

c ∇cη,

where T is the torsion of the connection and γ a are the γ matrices generating the Clifford
algebra of Spin(7).
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Proposition 3. Let Y be a Riemannian manifold, and let ∇ be a metric connection on
Y with connection symbols

�ab
c = �LC

ab
c + Aab

c.

Then

R(�)a
b − R(�LC )a

b = (∇LC
c Ada

b + Ace
b Ada

e) dxcd .

Proof. Consider first the curvature of the connection ∇ with connection symbols �,
which can be written as

�ab
c = �LC

ab
c + Aab

c.

Then

R(�)a
b − R(�LC )a

b = (∂c Ada
b + �LC

ce
b Ada

e + Ace
b �LC

da
e + Ace

b Ada
e) dxcd

= (∇LC
c Ada

b + Ace
b Ada

e) dxcd .

��
Suppose now that Y admits a well defined nowhere vanishing Majorana spinor η,

and therefore has a G2 structure determined by

ϕabd = −i η† γabc η.

Suppose

∇a η = 0,

where ∇ is a connection with G2 holonomy on Y . Then the curvature of the connection
∇ satisfies

(R(�)ab)cd ϕab
e = 0.

Thus, ∇ is an instanton connection on Y . In particular, this holds for the unique G2
holonomy connection with totally antisymmetric torsion Aabc = 1

2Habc. Wewill restrict
to this connection in the following.

On manifolds with a G2 structure we have defined a connection dθ in terms of a G2
compatible connection � which acts on forms with values in TY by

dθ�
a = d�a + θb

a ∧ �b,

where θa
b = �ac

b dxc. Note that this connection is not compatible with theG2 structure
and that it is not necessarily metric either. The curvature R(θ) of this connection is

R(θ)a
b = dθa

b + θc
b ∧ θa

c = (∂c�ad
b + �ec

b �ad
e) dxcd .

Proposition 4. Let Y be a manifold with a G2 structure determined by ϕ. Let ∇ be a
metric connection compatiblewith theG2 structure (that is∇ϕ = 0) andwith connection
symbols

�ab
c = �LC

ab
c +

1

2
Hab

c.

Then the curvature of the connection dθ satisfies

R(θ)a
b − R(�LC )a

b = 1

4
(2∇LC

c Had
b + Hec

b Had
e) dxcd .
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Proof. We have, from the definitions of the curvatures of the connections,

R(θ)a
b − R(�LC )a

b = 1

4
(2∂c Had

b + 2�LC
ec

b Had
e + 2Hec

b �LC
ad

e + Hec
b Had

e) dxcd

= 1

2
(2∇LC

c Had
b + Hec

b Had
e) dxcd .

��
Proposition 5. If the connection � has totally antisymmetric torsion, the curvatures of
the connection ∇ and dθ are related by the identity

(R(�)cd)ab − (R(θ)ab)cd = 1

2
(dH)abcd .

Proof. Recalling that

(R(�LC )cd)ab = (R(�LC )ab)cd ,

we find

(R(�)cd)ab − (R(θ)ab)cd = (∇LC[a Hb]cd − ∇LC[c H|a|d]b)

+
1

2

(
Haed Hbc

e − Hbed Hac
e − Hecb Had

e + Hedb Hac
e)

= 2∇LC[a Hbcd] = 2 ∂[a Hbcd]

= 1

2
(dH)abcd .

��
Proposition 6. The Bianchi identity of the anomaly cancelation condition implies

R(θ)ab �ϕ = α′

8

(
tr(Fac Fbd) − tr(R̃ac R̃bd)

)
ϕcd

e dx
e,

where R̃ is the curvature of an instanton connection on TY .

Proof. Recall that

(R(�)cd)ab ϕcde = 0.

Then, by the previous proposition

R(θ)ab �ϕ = −1

4
(dH)cdab ϕcd

e dx
e.

By the Bianchi identity

(dH)cdab ϕcd
e = α′

4
3! (tr(F[cd Fab]) − tr(R̃[cd R̃ab])

)
ϕcd

e

= −α′ (tr(Fac Fbd) − tr(R̃ac R̃bd)
)
ϕcd

e

where in the last line we have used the fact that F�ϕ = 0 and R̃�ϕ = 0. Therefore

R(θ)ab �ϕ = α′

4

(
tr(Fac Fbd) − tr(R̃ac R̃bd)

)
ϕcd

e dx
e.

��
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Note that this means that the connection θ is not an instanton. To expand on this
fact, note that the right hand side of this equation is zero if the F equals R̃. In the
string compactification literature this is known as the standard embedding of the gauge
bundle in the tangent bundle, and leads to a vanishing flux H . Thus, we have reduced
to a G2 holonomy compactification, where dθ is in fact identical with the Levi–Civita
connection. The reader is referred to [49] for more details on this case.

Curvature and covariant derivatives of torsion classes. We now collect some useful
identities between the covariant derivatives of the torsion classes and the curvature
R(θ).

Proposition 7. Let Y be a manifold with a G2 structure (not necessarily integrable),
and let ∇ be a metric connection compatible with this G2 structure, that is

∇ϕ = 0, ∇ψ = 0.

Then,

(∇aτ0) ψ + 3 (∇aτ1) ∧ ϕ + ∇a ∗ τ3 = 1

2
R(θ)a

b ∧ ϕcdb dx
cd , (B.1)

4 (∇aτ1) ∧ ψ − ∇aτ2 ∧ ϕ = − 1

3! R(θ)a
b ∧ ψcdeb dx

cde, (B.2)

where

R(θ)a
b = dθa

b + θc
b ∧ θa

c,

is the curvature of the connection dθ .

Proof. We begin by taking the covariant derivative of the integrability Eqs. (2.19)
and (2.20). We find

∇adϕ = (∇aτ0) ψ + 3 (∇aτ1) ∧ ϕ + ∇a ∗ τ3,

∇adψ = 4 (∇aτ1) ∧ ψ + ∇a ∗ τ2.

For the first equation, Lemma 8 of [49] together with a bit of algebra leads to the equation

d∂aϕ = 1

2
Ra

b(θ) ∧ ϕcdb dx
cd − 1

3! θa
b ∧ (dϕ)cdeb dx

cde.

Then Eq. (B.1) follows from this together with

∇adϕ = ∂adϕ +
1

3! θa
b ∧ (dϕ)cdeb dx

cde.

The proof of Eq. (B.2) is analogous. ��
Note in particular that from (B.1)–(B.2) we can derive the covariant derivatives of the

torsion classes soely in terms of the curvature R(θ). Note also that if the G2 structure is
integrable, Eq. (B.2) implies that there is a constraint on the curvature of the connection
θ

π14

(
R(θ)a

b ∧ ψb

)
= 0.

Then by Eq. (A.27), we find that the curvature of the connection θ must satisfy

Řa
b(θ) ∧ ψb = 0. (B.3)



The Infinitesimal Moduli Space of Heterotic G2 Systems 771

C. Heterotic Supergravity and Equations of Motion

In this appendix we briefly review heterotic supergravity, the Killing spinor equations
and comment on the corresponding equations of motion. Recall first the bosonic part of
the action [77]

SB =
∫ √−ge−2φd10x

[
R + 4(dφ)2 − 1

12
HμνρHμνρ

− α′
8 trFμνF

μν + α′
8 trR(θ̃)μν trR(θ̃)

μν
]
+O(α′2), (C.1)

where {μ, ν, . . .} denote ten dimensional indices,R is the Ricci scalar, φ is the dilaton,
and H is the Neveu-Schwarz three-form flux given by

H = dB +
α′

4
(CS[A] − CS[θ̃]), (C.2)

where B is the Kalb-Ramond two-form. Under gauge transformations {ε1, ε2} of {A, θ̃}
respectively, the B field is required to transform as

δB = −α′

4

(
tr (dAε1) − tr (dθ̃ ε2)

)
, (C.3)

in order forH to remain gauge-invariant [80].
The supersymmetry conditions read [77,81]

∇με = (∇LC
μ +

1

8
Hμνλγ

νλ) ε = 0 +O(α′2)

( /∇LC +
1

4
/H − /∂φ) ε = 0 +O(α′2)

/F ε = 0 +O(α′), (C.4)

where ψμ is the gravitino, ρ is the modified dilatino and χ is the gaugino. Here the last
condition is only required at zeroth order since the gauge field only appears at first order
in the theory. These supersymmetry conditions are accurate, provided we also choose
the connection θ̃ to satisfy an instanton condition [75,82]

/R(θ̃) ε = 0 +O(α′). (C.5)

In the above, we have defined for a p-form α

/α = 1

p!αμ1...μpγ
μ1...μp . (C.6)

G2 Reductions and equations of motion. We wish to reduce the supersymmetry trans-
formations (C.4) on spacetimes of the form

M10 = M3 × Y, (C.7)

where M3 is maximally symmetric. We suppose that Y admits a well defined nowhere
vanishing Majorana spinor η, and therefore has a G2 structure determined by

ϕabd = −i η† γabc η, ψ = ∗ϕ.
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Using this, one arrives at the supersymmetry conditions [5–7,37,39]

dϕ = 2 dφ ∧ ϕ − ∗H − f ψ, (C.8)

dψ = 2 dφ ∧ ψ, (C.9)
1
2 ∗ f = H ∧ ψ, (C.10)

0 = F ∧ ψ, (C.11)

where now the three-form H and the constant f are components of the ten-dimensional
flux H, which lie along Y and the three-dimensional, maximally symmetric world-
volume, respectively.7 We have also restricted the bundle to the internal geometry.
Generic solutions to these equations imply that Y has an integrable G2 structure where
τ1 is exact.

It can be shown that for compactifications of the form

M10 = Md × X10−d , (C.12)

where Md is maximally symmetric, provided the flux equation of motion is satisfied,
the supersymmetry equations will also imply the equations of motion [83]. Note that the
authors of [83] assume Md to be Minkowski, but the generalisation to AdS is straight
forward. In our case, the flux equation of motion on the spacetime (C.7) reduces to

d(e−2φ ∗ H) = 0, (C.13)

which can easily be checked is satisfied from (C.8)–(C.9).

Comments on θ̃ and field redefinitions. Let us make a couple of comments concerning
the connection θ̃ appearing in both the action and the definition of H Eq. (C.2), of-
ten referred to as the anomaly cancellation condition. In deriving the heterotic action,
Bergshoeff and de Roo [77] used the fact that (θ̂ , ψ+) transforms as an SO(9, 1) Yang-
Mills supermultiplet modulo α′ corrections. Here θ is the connection whose connection
symbols read

θμν
ρ = �νμ

ρ, (C.14)

where the �’s denote the connection symbols of ∇. The connection θ̂ then denotes an
appropriate fermionic correction to θ , whileψ+ is the supercovariant gravitino curvature.
Modulo O(α′2)-corrections, they could then construct a supersymmetric theory with
curvature squared corrections, simply by adding the appropriate SO(9, 1)-Yang-Mills
action to the theory. The resulting bosonic action then uses θ rather than θ̃ .

In the bulk of the paper we have replaced θ in with a more general connection θ̃ in
the appropriate places. Ambiguities surrounding the connection θ̃ have been discussed
extensively in the literature before [75,82,84–92]. In particular, it has been argued that
deforming this connection can equivalently be interpreted as a field redefinition, though
care most be taken when performing such redefinitions as they in general also lead to
corrections to the supersymmetry transformations and equations ofmotion. In particular,
we argued in [75] that in order to preserve (C.4) as the correct supersymmetry conditions,

7 The flux component f determines the cosmological constant of the three-dimensional spacetime through
the Einstein equation of motion. A zero/non-zero f gives Minkowski/AdS spacetimes respectively.
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one must choose θ̃ to satisfy the instanton condition modulo α′-corrections.8 Note that
although θ satisfies the instanton condition to zeroth order in α′, it generically fails
to do so once higher order corrections are included. Indeed, this was crucial for the
mathematical structure presented in this paper.
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