
Digital Object Identifier (DOI) 10.1007/s00220-017-3002-y
Commun. Math. Phys. 356, 1057–1081 (2017) Communications in

Mathematical
Physics

Quantum Algorithm for Linear Differential Equations
with Exponentially Improved Dependence on Precision

Dominic W. Berry1, Andrew M. Childs2,3, Aaron Ostrander3,4, Guoming Wang3

1 Department of Physics and Astronomy, Macquarie University, Sydney, Australia
2 Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland,
College Park, MD, USA

3 Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD,
USA. E-mail: the.aaron.ostrander@gmail.com

4 Department of Physics, University of Maryland, College Park, MD, USA

Received: 2 March 2017 / Accepted: 17 August 2017
Published online: 7 October 2017 – © Springer-Verlag GmbH Germany 2017

Abstract: We present a quantum algorithm for systems of (possibly inhomogeneous)
linear ordinary differential equations with constant coefficients. The algorithm produces
a quantum state that is proportional to the solution at a desired final time. The complexity
of the algorithm is polynomial in the logarithm of the inverse error, an exponential
improvement over previous quantum algorithms for this problem. Our result builds upon
recent advances in quantum linear systems algorithms by encoding the simulation into
a sparse, well-conditioned linear system that approximates evolution according to the
propagator using a Taylor series. Unlike with finite difference methods, our approach
does not require additional hypotheses to ensure numerical stability.

1. Introduction

One of the original motivations for developing a quantum computer was to efficiently
simulate Hamiltonian dynamics, i.e., differential equations of the form d �x

dt = A�x where
A is anti-Hermitian. Given a suitable description of A, a copy of the initial quantum
state |x(0)〉, and an evolution time T , the goal is to produce a quantum state that is
ε-close to the final state |x(T )〉. The first algorithms for this problem had complexity
polynomial in 1/ε [2,4,10,13]. Subsequent work gave an algorithm with complexity
poly(log(1/ε))—an exponential improvement—which is optimal in a black-box model
[5]. More recent work has streamlined these algorithms and improved their dependence
on other parameters [6–8,14–16].

While Hamiltonian simulation has been a focus of quantum algorithms research, the
more general problem of simulating linear differential equations of the form d �x

dt = A�x+ �b
for arbitrary (sparse) A is less well studied. Reference [3] solves this problem using a
quantum linear systems algorithm (QLSA) to implement linearmultistepmethods,which
represent the differential equationswith a systemof linear equations by discretizing time.
The complexity of this approach is poly(1/ε). Considering the recent improvements to
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the complexity of Hamiltonian simulation, it is natural to ask whether linear differential
equations can be solved more efficiently as a function of ε.

Hamiltonian simulation is a central component of the QLSA, and the techniques
underlying poly(log(1/ε)) Hamiltonian simulation have been adapted to give a QLSA
with complexity poly(log(1/ε)) [11]. However, even if this improved QLSA is used to
implement the algorithm of Ref. [3], the overall complexity is still poly(1/ε), since the
multistep method itself is a significant source of error.

In a similar vein, the QLSA of Ref. [12] has poly(1/ε) complexity even when using
a Hamiltonian simulation algorithm with poly(log(1/ε)) complexity, simply because
phase estimation has complexity poly(1/ε). Reference [11] provides a QLSA with
poly(log(1/ε)) complexity by avoiding phase estimation and instead directly invert-
ing the linear system using a linear combination of unitaries (LCU). Thus, one might
consider realizing the solution of d �x

dt = A�x + �b as a linear combination of unitaries. Un-
fortunately, in the general case where A is not anti-Hermitian, the best implementation
of this approach that we are aware of has an exponentially small success probability.

In this paper, we circumvent these limitations and present a quantum algorithm for
linear differential equations with complexity poly(log(1/ε)), an exponential improve-
ment over Ref. [3]. As in Ref. [3], our approach applies the QLSA. However, instead of
using a linear multistep method, we encode a truncation of the Taylor series of exp(At),
the propagator for the differential equation, into a linear system. Since it effectively
implements a linear combination of operations, our approach is conceptually similar to
quantum simulation via linear combinations of unitaries, but we achieve significantly
better performance by constructing this linear combination stepwise through a system
of linear equations. This alternative to direct application of LCU methods might be
advantageous for other quantum algorithms.

In addition to scaling well with the simulation error, our algorithm has favorable
performance as a function of other parameters. The complexity is nearly linear in the
evolution time, which is a quadratic improvement over Ref. [3] and is nearly optimal [4].
The complexity is also nearly linear in the sparsity of A and in a parameter characterizing
the decay of the solution vector. The latter dependence is necessary since producing a
normalized version of a subnormalized solution vector is equivalent to postselection,
which is computationally intractable [1], as discussed further in Sect. 8. Along similar
lines,we assume that the eigenvalues of A havenon-positive real part since it is intractable
to simulate exponentially growing solutions. (This improves upon Ref. [3], where the
eigenvalues λ of A must satisfy | arg(−λ)| ≤ α for some constant α depending on
the stability of the multistep method.) For a precise statement of the main result, see
Theorem 9.

This paper is organized as follows. Section 2 describes how we encode the solution
of a system of differential equations into a system of linear equations. The following
three sections analyze properties of this system: Sect. 3 bounds its condition number,
Sect. 4 analyzes how well it approximates the differential equation, and Sect. 5 shows
that a measurement of its solution vector provides a solution of the differential equation
with appreciable probability. In Sect. 6 we explain how to prepare the state that is input
to the QLSA using black boxes for the initial condition and inhomogeneous term of the
differential equation. We formally state and prove our main result in Sect. 7. Finally, we
conclude in Sect. 8 with a discussion of the result and some open problems.



Quantum Algorithm for Linear Differential Equations 1059

2. Constructing the Linear System

As in Ref. [3] we consider a differential equation of the form

d �x
dt

= A�x + �b (1)

where A and �b are time-independent. This has the exact solution

�x(t) = exp(At)�x(0) + (exp(At) − I )A−1�b. (2)

Define

Tk(z) :=
k∑

j=0

z j

j ! ≈ exp(z) (3)

and

Sk(z) :=
k∑

j=1

z j−1

j ! ≈ (exp(z) − 1)z−1 (4)

where the approximations hold for large k. Then for short evolution time h (namely
h ≤ 1/‖A‖, where ‖·‖ denotes the spectral norm) and large k, we can approximate the
solution by

�x(h) ≈ Tk(Ah)�x(0) + Sk(Ah)h �b. (5)

This approximate solution can be used in turn as an initial condition for another step of
evolution, and we can repeat this procedure as desired for a total number of steps m.

We encode this procedure in a linear system using the following family of matrices.

Definition 1. Let A be an N × N matrix, and let m, k, p ∈ Z
+. Define

Cm,k,p(A) :=
d∑

j=0

| j〉〈 j | ⊗ I −
m−1∑

i=0

k∑

j=1

|i(k + 1) + j〉〈i(k + 1) + j − 1| ⊗ A/j

−
m−1∑

i=0

k∑

j=0

|(i + 1)(k + 1)〉〈i(k + 1) + j | ⊗ I −
d∑

j=d−p+1

| j〉〈 j − 1| ⊗ I,

(6)

where d := m(k + 1) + p, and I is the N × N identity matrix.

Now consider the linear system

Cm,k,p(Ah)|x〉 = |0〉|xin〉 + h
m−1∑

i=0

|i(k + 1) + 1〉|b〉, (7)

where |xin〉, |b〉 ∈ C
N and h ∈ R

+. The first register labels a natural block structure
for Cm,k,p. For example, the system C2,3,2(Ah)|x〉 = |0〉|xin〉 + h

∑1
i=0 |4i + 1〉|b〉 is as

follows:
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C2,3,2(Ah)|x〉 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I
−Ah I

−Ah/2 I
−Ah/3 I

−I −I −I −I I
−Ah I

−Ah/2 I
−Ah/3 I

−I −I −I −I I
−I I

−I I

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

|x〉 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|xin〉
h|b〉
0
0
0

h|b〉
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

After performing m steps of the evolution approximated with a Taylor series of order
k, the solution is kept constant for p steps. This ensures a significant probability of
obtaining the solution at the final time, similarly as in Ref. [3]. Note that Cm,k,p(Ah)

is nonsingular, since it is a lower-triangular matrix with nonzero diagonal entries. If
N = 1, then Cm,k,p(Ah) is a (d + 1) × (d + 1) matrix.

The solution of Eq. (7) is

|x〉 = Cm,k,p(Ah)−1

[
|0〉|xin〉 + h

m−1∑

i=0

|i(k + 1) + 1〉|b〉
]
, (9)

which can be written as

|x〉 =
m−1∑

i=0

k∑

j=0

|i(k + 1) + j〉∣∣xi, j
〉
+

p∑

j=0

|m(k + 1) + j〉∣∣xm, j
〉

(10)

for some
∣∣xi, j

〉 ∈ C
N . By the definition of Cm,k,p(Ah), these

∣∣xi, j
〉
s satisfy

∣∣x0,0
〉 = |xin〉, (11)

∣∣xi,0
〉 =

k∑

j=0

∣∣xi−1, j
〉
, 1 ≤ i ≤ m, (12)

∣∣xi,1
〉 = Ah

∣∣xi,0
〉
+ h|b〉, 0 ≤ i < m, (13)

∣∣xi, j
〉 = (Ah/j)

∣∣xi, j−1
〉
, 0 ≤ i < m, 2 ≤ j ≤ k, (14)

∣∣xm, j
〉 = ∣∣xm, j−1

〉
, 1 ≤ j ≤ p. (15)
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From these equations, we obtain
∣∣x0,0

〉 = |xin〉, (16)
∣∣x0, j

〉 = ((Ah) j/j !)∣∣x0,0
〉
+ ((Ah) j−1/j !)h|b〉, 1 ≤ j ≤ k,

(17)
∣∣x1,0

〉 = Tk(Ah)
∣∣x0,0

〉
+ Sk(Ah)h|b〉

≈ exp(Ah)|xin〉 + (exp(Ah) − I )A−1|b〉, (18)
∣∣x1, j

〉 = ((Ah) j/j !)∣∣x1,0
〉
+ ((Ah) j−1/j !)h|b〉, 1 ≤ j ≤ k,

(19)
∣∣x2,0

〉 = Tk(Ah)
∣∣x1,0

〉
+ Sk(Ah)h|b〉

≈ exp(2Ah)|xin〉 + (exp(2Ah) − I )A−1|b〉, (20)

...
∣∣xm−1,0

〉 = Tk(Ah)
∣∣xm−2,0

〉
+ Sk(Ah)h|b〉

≈ exp(Ah(m − 1))|xin〉 + (exp(Ah(m − 1)) − I )A−1|b〉, (21)
∣∣xm−1, j

〉 = ((Ah) j/j !)∣∣xm−1,0
〉
+ ((Ah) j−1/j !)h|b〉, 1 ≤ j ≤ k,

(22)
∣∣xm,0

〉 = Tk(Ah)
∣∣xm−1,0

〉
+ Sk(Ah)h|b〉

≈ exp(Ahm)|xin〉 + (exp(Ahm) − I )A−1|b〉, (23)
∣∣xm, j

〉 = ∣∣xm,0
〉

≈ exp(Ahm)|xin〉 + (exp(Ahm) − I )A−1|b〉, 1 ≤ j ≤ p.
(24)

In these approximations, we assume k is sufficiently large that we can neglect the trunca-
tion errors ‖Tk(Ah) − exp(Ah)‖ and

∥∥Sk(Ah)h − (exp(Ah) − I )A−1
∥∥ (we make this

more precise in Sect. 4). Note that |x〉 [defined by Eq. (10)] includes a piece that can be
interpreted as the history state of the evolution

d �x
dt

= A�x + �b (25)

with the initial condition �x(0) = �xin. More precisely,
∣∣xi,0

〉
is a good approximation of

the system’s state at time ih, for any i ∈ {0, 1, . . . ,m}. Furthermore,
∣∣xm,0

〉 = ∣∣xm,1
〉 =

· · · = ∣∣xm,p
〉
is a good approximation of

�x(t) = exp(At)�xin + (exp(At) − I )A−1�b (26)

for t = mh.
If we measured the first register of the state |x〉/‖|x〉‖ in the standard basis, we

would obtain the state
∣∣xi, j

〉
/
∥∥∣∣xi, j

〉∥∥ for random i, j . By choosing a large p, we can
ensure there is a high probability of obtaining

∣∣xm,0
〉
/
∥∥∣∣xm,0

〉∥∥,
∣∣xm,1

〉
/
∥∥∣∣xm,1

〉∥∥, . . . , or∣∣xm,p
〉
/
∥∥∣∣xm,p

〉∥∥ (as we show in Sect. 5). Then this probability can be raised to �(1) by
using amplitude amplification (or by classical repetition). This is how we prepare a state
close to �x(t)/‖�x(t)‖ for t = mh.
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Note that the state we generate is not of the same form as the history state in Ref. [3],
which only encodes �x(t) at intermediate times. The solution of our linear system not
only encodes �x(t) at intermediate times (via |xi,0〉) but also encodes ((Ah) j/j !)�x(t) +
((Ah) j−1/j !)h �b at intermediate times (via |xi, j 〉).

To analyze the performance of this approach to solving differential equations, we
establish three properties of this system of linear equations. First, since the complexity of
the best known QLSAs grows linearly with condition number (and sublinear complexity
is impossible unless BQP = PSPACE [12]), we analyze the condition number of
Cm,k,p (Sect. 3). Second, we show that the solution of the linear system includes a piece
that is close to the solution of the associated differential equation (Sect. 4). Third, we
show that this piece can be obtained from a measurement that succeeds with appreciable
probability (Sect. 5).

3. Condition Number

In this section, we upper bound the condition number of the matrix Cm,k,p(A) under
mild assumptions about A.We first prove a technical lemma that upper bounds the norms
of the columns of the inverse of this matrix when A is 1 × 1. We then prove lemmas
bounding ||Cm,k,p(A)|| and ||Cm,k,p(A)−1|| under the hypothesis A is diagonalizable.
These lemmas imply a bound for the condition number of Cm,k,p(A).

Lemma 2. Let λ ∈ C such that |λ| ≤ 1 and Re(λ) ≤ 0. Let m, k, p ∈ Z
+ such that

k ≥ 5 and (k + 1)! ≥ 2m, and let d = m(k + 1) + p. Then for any n, l ∈ {0, 1, . . . , d},
∥∥∥Cm,k,p(λ)−1|l〉

∥∥∥ ≤ √1.04eI0(2)(m + p) (27)

with I0(2) < 2.28 a modified Bessel function of the first kind, and

∣∣∣〈n|Cm,k,p(λ)−1|l〉
∣∣∣ ≤

√
1.04e. (28)

Proof. Recall the definitions of Tk(z) and Sk(z) in Eqs. (3) and (4), respectively. We
also define

Tb,k(z) :=
k∑

j=b

b!z j−b

j ! (29)

for b ≤ k.
Fix any l ∈ {0, 1, . . . , d}. Suppose the solution of the linear system

Cm,k,p(λ)|x〉 = |l〉 (30)

is

|x〉 =
m−1∑

i=0

k∑

j=0

xi, j |i(k + 1) + j〉 +
p∑

j=0

xm, j |m(k + 1) + j〉 (31)
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for some xi, j ∈ C. By the definition of Cm,k,p(λ), the xi, j s should satisfy

xi,0 −
k∑

j=0

xi−1, j = δi(k+1),l , 1 ≤ i ≤ m, (32)

xi, j − (λ/j)xi, j−1 = δi(k+1)+ j,l , 0 ≤ i < m, 1 ≤ j ≤ k, (33)

xm, j − xm, j−1 = δm(k+1)+ j,l , 1 ≤ j ≤ p, (34)

where δi, j = 1 if i = j , and 0 otherwise.
We consider the cases 0 ≤ l < m(k + 1) and m(k + 1) ≤ l ≤ d separately.

• Case 1: 0 ≤ l < m(k + 1). Suppose l = a(k + 1) + b for some 0 ≤ a < m and
0 ≤ b ≤ k. In this case, Eq. (34) implies

xi, j = 0, 0 ≤ i < a, 0 ≤ j ≤ k, (35)

xa, j = 0, 0 ≤ j < b, (36)

xa, j = b!λ j−b/j !, b ≤ j ≤ k, (37)

xa+1,0 = Tb,k(λ), (38)

xa+1, j = (λ j/j !)xa+1,0, 1 ≤ j ≤ k, (39)

xa+2,0 = Tk(λ)xa+1,0 = Tk(λ)Tb,k(λ), (40)

...

xm,0 = Tk(λ)xm−1,0 = (Tk(λ))m−a−1Tb,k(λ), (41)

xm, j = xm,0 = (Tk(λ))m−a−1Tb,k(λ), 1 ≤ j ≤ p. (42)

Since |λ| ≤ 1, for any b ≤ j ≤ k, we have

∣∣xa, j
∣∣ = b!|λ| j−b/j ! ≤ b!/j ! ≤ 1. (43)

Furthermore, since |λ| ≤ 1 and Re(λ) ≤ 0, by Lemmas 10 and 11 in Appendix A,
we have

|Tk(λ)| ≤ 1 +
1

(k + 1)! ≤ 1 +
1

2m
, (44)

∣∣Tb,k(λ)
∣∣ ≤ √

1.04. (45)

Consequently, we have

∣∣xi,0
∣∣ =

∣∣∣Tk(λ)i−a−1Tb,k(λ)

∣∣∣ ≤ (1 + 1/2m)m
√
1.04 ≤ √

1.04e, a + 1 ≤ i ≤ m,

(46)
and

∣∣xi, j
∣∣ =

∣∣∣(λ j/j !)xi,0
∣∣∣ ≤ ∣∣xi,0

∣∣ ≤ √
1.04e, a + 1 ≤ i ≤ m, 1 ≤ j ≤ k. (47)

It follows that ∣∣xm, j
∣∣ = ∣∣xm,0

∣∣ ≤ √
1.04e, 0 ≤ j ≤ p. (48)
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Using these facts, we obtain

‖|x〉‖2 =
m−1∑

i=0

k∑

j=0

∣∣xi, j
∣∣2 +

p∑

j=0

∣∣xm, j
∣∣2

=
k∑

j=b

∣∣∣b!λ j−b/j !
∣∣∣
2
+

m−1∑

i=a+1

k∑

j=0

∣∣∣(λ j/j !)xi,0
∣∣∣
2
+ (p + 1)

∣∣xm,0
∣∣2

≤
k∑

j=b

(b!/j !)2 +
m−1∑

i=a+1

k∑

j=0

(1/j !)2∣∣xi,0
∣∣2 + (p + 1)

∣∣xm,0
∣∣2

≤
k∑

j=b

(b!/j !)2 + 1.04e
m−1∑

i=a+1

k∑

j=0

(1/j !)2 + 1.04e(p + 1)

≤ I0(2) + 1.04eI0(2)(m − a − 1) + 1.04e(p + 1)

≤ 1.04eI0(2)(m + p), (49)

where in the fifth step we use the facts

k∑

j=0

(1/j !)2 ≤
∞∑

j=0

(1/j !)2 = I0(2), (50)

k∑

j=b

(b!/j !)2 ≤
k−b∑

s=0

1/(b + 1)2s ≤ 1

1 − (b + 1)−2

= 1 +
1

b(b + 2)
≤ 4

3
< I0(2), 1 ≤ b ≤ k. (51)

• Case 2: m(k + 1) ≤ l ≤ d. Suppose l = m(k + 1) + b for some 0 ≤ b ≤ p. In this
case, Eq. (34) implies

xi, j = 0, 0 ≤ i < m, 0 ≤ j ≤ k, (52)

xm, j = 0, 0 ≤ j < b, (53)

xm, j = 1, b ≤ j ≤ p. (54)

It follows that

‖|x〉‖2 =
m−1∑

i=0

k∑

j=0

∣∣xi, j
∣∣2 +

p∑

j=0

∣∣xm, j
∣∣2

= p − b + 1

≤ p + 1. (55)

In both of the above cases, we have ‖|x〉‖ ≤ √
1.04eI0(2)(m + p) and |〈n|x〉| ≤√

1.04e for any n ∈ {0, 1, . . . , d}, as claimed. �
Now we are ready to upper bound the norm of the inverse of the matrix.
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Lemma 3. Let A = V DV−1 beadiagonalizablematrix,where D = diag(λ0, λ1, . . . , λN−1)

satisfies |λi | ≤ 1 and Re(λi ) ≤ 0 for i ∈ {0, 1, . . . , N − 1}. Let m, k, p ∈ Z
+ such that

k ≥ 5 and (k + 1)! ≥ 2m. Then
∥∥∥Cm,k,p(A)−1

∥∥∥ ≤ 3κV
√
k(m + p), (56)

where κV = ‖V ‖ · ∥∥V−1
∥∥ is the condition number of V .

Proof. For convenience, we will drop the subscripts m, k, p, and use C(·) to denote
Cm,k,p(·). We diagonalize C(A) as

C(A) = Ṽ C(D)Ṽ−1, (57)

where Ṽ := ∑d
j=0| j〉〈 j | ⊗ V has condition number κṼ = κV . Then we may upper

bound
∥∥C(A)−1

∥∥ in terms of
∥∥C(D)−1

∥∥ as
∥∥∥C(A)−1

∥∥∥ =
∥∥∥Ṽ C(D)−1Ṽ−1

∥∥∥

≤
∥∥∥Ṽ
∥∥∥ ·
∥∥∥C(D)−1

∥∥∥ ·
∥∥∥Ṽ−1

∥∥∥

=
∥∥∥C(D)−1

∥∥∥ · κṼ . (58)

We have ∥∥∥C(D)−1
∥∥∥ = max|ψ〉

∥∥C(D)−1|ψ〉∥∥
‖|ψ〉‖ (59)

where we maximize over all states |ψ〉 ∈ C
(d+1)N The state |ψ〉 can be written as

|ψ〉 =∑d
l=0|l〉|ψl〉 for some |ψl〉 ∈ C

N . Then we have

∥∥∥C(D)−1|ψ〉
∥∥∥
2 =

∥∥∥∥∥

d∑

l=0

C(D)−1|l〉|ψl〉
∥∥∥∥∥

2

≤ (d + 1)
d∑

l=0

∥∥∥C(D)−1|l〉|ψl〉
∥∥∥
2
. (60)

Now let |ψl〉 =∑N−1
j=0 ψ j,l | j〉 for some ψ j,l ∈ C. With D =∑N−1

j=0 λ j | j〉〈 j |, we have
C(D) =∑N−1

j=0 C(λ j ) ⊗ | j〉〈 j |. Hence, by Lemma 2, we obtain

∥∥∥C(D)−1|l〉|ψl〉
∥∥∥
2 =

∥∥∥∥∥∥

N−1∑

j=0

ψ j,lC(λ j )
−1|l〉| j〉

∥∥∥∥∥∥

2

=
N−1∑

j=0

∣∣ψ j,l
∣∣2
∥∥∥C(λ j )

−1|l〉
∥∥∥
2

≤ 1.04eI0(2)(m + p)
N−1∑

j=0

∣∣ψ j,l
∣∣2

= 1.04eI0(2)(m + p)‖|ψl〉‖2. (61)
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Using this expression in Eq. (60) gives

∥∥∥C(D)−1|ψ〉
∥∥∥
2 ≤ 1.04eI0(2)(d + 1)(m + p)

d∑

l=0

‖|ψl〉‖2

= 1.04eI0(2)(m(k + 1) + p + 1)(m + p)‖|ψ〉‖2

≤ 6

5
× 1.04eI0(2)k(m + p)2‖|ψ〉‖2. (62)

Using this result in Eq. (59) yields
∥∥∥C(D)−1

∥∥∥ ≤ 3
√
k(m + p). (63)

Combining this expression with Eq. (58) then gives Eq. (56), as claimed. �
It remains to upper bound the norm of the matrix.

Lemma 4. Let A be an N × N matrix such that ‖A‖ ≤ 1. Let m, k, p ∈ Z
+, and k ≥ 5.

Then ∥∥Cm,k,p(A)
∥∥ ≤ 2

√
k. (64)

Proof. Observe that C := Cm,k,p(A) can be written as the sum of three matrices:

C = C1 + C2 + C3 (65)

where

C1 :=
d∑

j=0

| j〉〈 j | ⊗ I, (66)

C2 := −
m−1∑

i=0

k∑

j=0

|(i + 1)(k + 1)〉〈i(k + 1) + j | ⊗ I, (67)

C3 := −
m−1∑

i=0

k∑

j=1

|i(k + 1) + j〉〈i(k + 1) + j − 1| ⊗ A/j −
d∑

j=d−p+1

| j〉〈 j − 1| ⊗ I,

(68)

where d = m(k + 1) + p. One can easily check that ‖C1‖ = 1, ‖C2‖ = √
k + 1, and

‖C3‖ = max{‖A‖, 1} = 1 (this is trivial for C1, and follows directly from a calculation
of C2C

†
2 and C3C

†
3 for the other cases). Consequently,

‖C‖ ≤ ‖C1‖ + ‖C2‖ + ‖C3‖
≤ √

k + 1 + 2

≤ 2
√
k (69)

as claimed. �
Combining Lemmas 3 and 4, we obtain the following upper bound on the condition

number of Cm,k,p(A):
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Theorem 5. Let A = V DV−1 be a diagonalizable matrix such that ‖A‖ ≤ 1, D =
diag(λ0, λ1, . . . , λN−1) and Re(λi ) ≤ 0, for i ∈ {0, 1, . . . , N − 1}. Let m, k, p ∈ Z

+

such that k ≥ 5 and (k + 1)! ≥ 2m. Let C := Cm,k,p(A), and let κC = ‖C‖ · ∥∥C−1
∥∥ be

the condition number of C. Then

κC ≤ 6κV k(m + p), (70)

where κV = ‖V ‖ · ∥∥V−1
∥∥ is the condition number of V .

4. Solution Error

In this section, we prove that the solution of the linear system defined by Eq. (7) encodes
a good approximation of the solution of the differential equation defined by Eq. (25)
with the initial condition �x(0) = �xin.
Theorem 6. Let A = V DV−1 beadiagonalizablematrix,where D = diag(λ)0, λ1, . . . ,

λN−1 satisfies Re(λi ) ≤ 0 for i ∈ {0, 1, . . . , N − 1}. Let h ∈ R
+ such that ‖Ah‖ ≤ 1.

Let |xin〉, |b〉 ∈ C
N , and let |x(t)〉 be defined by Eq. (26). Let m, k, p ∈ Z

+ such that
k ≥ 5 and (k + 1)! ≥ 2m. Let

∣∣xi, j
〉
be defined by Eqs. (9) and (10). Then for any

j ∈ {0, 1, . . . ,m},
∥∥|x( jh)〉 − ∣∣x j,0

〉∥∥ ≤ 2.8κV j (‖|xin〉‖ + mh‖|b〉‖)/(k + 1)!, (71)

where κV = ‖V ‖ · ∥∥V−1
∥∥ is the condition number of V .

Proof. Note that |x( jh)〉 (the solution of the differential equation) satisfies the recurrence
relation

|x(( j + 1)h)〉 = exp(Ah)|x( jh)〉 + (exp(Ah) − I )A−1|b〉, (72)

while
∣∣x j,0

〉
(in the solution of the associated linear system) satisfies the recurrence

relation ∣∣x j+1,0
〉 = Tk(Ah)

∣∣x j,0
〉
+ Sk(Ah)h|b〉. (73)

Recall that Tk(λ) = ∑k
j=0

λ j

j ! and Sk(λ) = ∑k
j=1

λ j−1

j ! . In addition, we have |x(0)〉 =∣∣x0,0
〉 = |xin〉.

Define |y(t)〉 := V−1|x(t)〉 and ∣∣yi, j
〉 = V−1

∣∣xi, j
〉
. We will give an upper bound on

δ j := ∥∥|y( jh)〉 − ∣∣y j,0
〉∥∥ and convert it into anupper boundon ε j := ∥∥|x( jh)〉 − ∣∣x j,0

〉∥∥.
Since A = V DV−1, we have exp(Ah) = V exp(Dh)V−1, Tk(Ah) = VTk(Dh)V−1,
and Sk(Ah) = V Sk(Dh)V−1. Then Eq. (72) implies

|y(( j + 1)h)〉 = exp(Dh)|y( jh)〉 + (exp(Dh) − I )D−1|c〉, (74)

where |c〉 = V−1|b〉. Meanwhile, Eq. (73) implies
∣∣y j+1,0

〉 = Tk(Dh)
∣∣y j,0

〉
+ Sk(Dh)h|c〉. (75)

In addition, we have |y(0)〉 = ∣∣y0,0
〉 = |yin〉 := V−1|xin〉.

Now since Re(λi ) ≤ 0 for any i ∈ {0, 1, . . . , N − 1}, we have ‖exp(Dh)‖ ≤ 1.
Moreover, since ‖Ah‖ ≤ 1, we have |λi h| ≤ 1 for any i ∈ {0, 1, . . . , N − 1}. Then
since Re(λi h) ≤ 0 for any i ∈ {0, 1, . . . , N − 1}, by Lemma 10 in Appendix A, we get

‖exp(Dh) − Tk(Dh)‖ ≤ 1/(k + 1)! , (76)
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and by Lemma 12 in Appendix A, we get
∥∥∥Sk(Dh) − (exp(Dh) − I )D−1h−1

∥∥∥ ≤ 1/(k + 1)! . (77)

The error δ j = ∥∥|y( jh)〉 − ∣∣y j,0
〉∥∥ can be bounded as follows. Note that δ0 = 0, and

using the triangle inequality, we have

δ j+1 =
∥∥∥exp(Dh)|y( jh)〉 + (exp(Dh) − I )D−1|c〉 − Tk(Dh)

∣∣y j,0
〉− Sk(Dh)h|c〉

∥∥∥

≤ ∥∥exp(Dh)|y( jh)〉 − Tk(Dh)
∣∣y j,0

〉∥∥ +
∥∥∥(exp(Dh) − I )D−1|c〉 − Sk(Dh)h|c〉

∥∥∥

≤ ∥∥exp(Dh)|y( jh)〉 − exp(Dh)
∣∣y j,0

〉∥∥ +
∥∥exp(Dh)|y j,0〉 − Tk(Dh)|y j,0〉

∥∥

+
∥∥∥(exp(Dh) − I )D−1|c〉 − Sk(Dh)h|c〉

∥∥∥

≤ ‖exp(Dh)‖∥∥|y( jh)〉 − |y j,0〉
∥∥ + ‖exp(Dh) − Tk(Dh)‖∥∥|y j,0〉

∥∥

+
∥∥∥(exp(Dh) − I )D−1 − Sk(Dh)h

∥∥∥‖|c〉‖

≤ δ j +
1

(k + 1)!
[∥∥∣∣y j,0

〉∥∥ + h‖|c〉‖]. (78)

This implies

δ j ≤ j

(k + 1)!
[
max
0≤i≤ j

∥∥∣∣yi,0
〉∥∥ + h‖|c〉‖

]
. (79)

Next, we give an upper bound on max0≤i≤m
∥∥∣∣yi,0

〉∥∥. Fix any i ∈ {0, 1, . . . ,m}. Then
we have ∣∣yi,0

〉 = 〈i(k + 1)|Cm,k,p(D)−1|z〉, (80)

where the bra 〈i(k + 1)| acts on the first register, and

|z〉 = |0〉|yin〉 + h
m−1∑

j=0

| j (k + 1) + 1〉|c〉. (81)

Therefore, by the triangle inequality,

∥∥∣∣yi,0
〉∥∥ ≤

∥∥∥〈i(k + 1)|Cm,k,p(D)−1|0〉|yin〉
∥∥∥

+ h
m−1∑

j=0

∥∥∥〈i(k + 1)|Cm,k,p(D)−1| j (k + 1) + 1〉|c〉
∥∥∥. (82)

To bound both terms,we consider the general expression
∥∥〈i(k + 1)|Cm,k,p(D)−1|s〉|β〉∥∥

for integer s. Let |β〉 = ∑N−1
l=0 βl |l〉 for some βl ∈ C. Then since Cm,k,p(D) =∑N−1

l=0 Cm,k,p(λl) ⊗ |l〉〈l|, we get

〈i(k + 1)|Cm,k,p(D)−1|s〉|β〉 =
N−1∑

l=0

βl〈i(k + 1)|Cm,k,p(λl)
−1|s〉|l〉. (83)
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Then, by Lemma 2, we have

∥∥∥〈i(k + 1)|Cm,k,p(D)−1|s〉|β〉
∥∥∥
2 =

N−1∑

l=0

|βl |2
∣∣∣〈i(k + 1)|Cm,k,p(λl)

−1|s〉
∣∣∣
2

≤ 1.04e
N−1∑

l=0

|βl |2

= 1.04e‖|β〉‖2. (84)

Hence we obtain
∥∥∥〈i(k + 1)|Cm,k,p(D)−1|0〉|yin〉

∥∥∥ ≤ √
1.04e‖|yin〉‖, (85)

∥∥∥〈i(k + 1)|Cm,k,p(D)−1| j (k + 1) + 1〉|c〉
∥∥∥ ≤ √

1.04e‖|c〉‖. (86)

Using these two facts and the triangle inequality, Eq. (82) implies
∥∥∣∣yi,0

〉∥∥ ≤ √
1.04e(‖|yin〉‖ + mh‖|c〉‖). (87)

Since this holds for any i ∈ {0, 1, . . . ,m}, we get
max
0≤i≤m

∥∥∣∣yi,0
〉∥∥ ≤ √

1.04e(‖|yin〉‖ + mh‖|c〉‖). (88)

Now using Eqs. (79) and (88), we get

δ j ≤ (
√
1.04e + 1) j(‖|yin〉‖ + mh‖|c〉‖)/(k + 1)!

= (
√
1.04e + 1) j

(∥∥∥V−1|xin〉
∥∥∥ + mh

∥∥∥V−1|b〉
∥∥∥
)
/(k + 1)!

≤ (
√
1.04e + 1) j

∥∥∥V−1
∥∥∥(‖|xin〉‖ + mh‖|b〉‖/(k + 1)!). (89)

Finally, recall that |x(t)〉 = V |y(t)〉 and ∣∣xi, j
〉 = V

∣∣yi, j
〉
. Thus we have

ε j = ∥∥|x( jh)〉 − ∣∣x j,0
〉∥∥

= ∥∥V (|y( jh)〉 − ∣∣y j,0
〉
)
∥∥

≤ ‖V ‖∥∥|y( jh)〉 − ∣∣y j,0
〉∥∥

= ‖V ‖δ j
≤ (

√
1.04e + 1) j‖V ‖

∥∥∥V−1
∥∥∥(‖|xin〉‖ + mh‖|b〉‖)/(k + 1)!

≤ 2.8κV j(‖|xin〉‖ + mh‖|b〉‖)/(k + 1)! (90)

for any j ∈ {0, 1, . . . ,m}, as claimed. �
Theorem 6 implies that by choosing (k + 1)! ≥ 3κVm(‖|xin〉‖ + mh‖|b〉‖)/ε, we

can ensure
∥∥∣∣x j,0

〉− |x( jh)〉∥∥ ≤ ε for any j ∈ {0, 1, . . . ,m}, so that
∣∣x j,0

〉
is close to

|x( jh)〉 for any j . Furthermore, by Lemma 13 in Appendix B, if
∥∥∣∣x j,0

〉− |x( jh)〉∥∥ ≤ ε

and ‖|x( jh)〉‖ ≥ α, then
∥∥∣∣x j,0

〉
/
∥∥∣∣x j,0

〉∥∥− |x( jh)〉/‖|x( jh)〉‖∥∥ ≤ 2ε/α. So, provided
that ‖|x( jh)〉‖ is large enough, the normalized state

∣∣x j,0
〉
/
∥∥∣∣x j,0

〉∥∥ is also close to the
normalized state |x( jh)〉/‖|x( jh)〉‖.
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5. Success Probability

In the previous section, we have shown that
∣∣xm,0

〉
/
∥∥∣∣xm,0

〉∥∥ = ∣∣xm,1
〉
/
∥∥∣∣xm,1

〉∥∥ = · · · =∣∣xm,p
〉
/
∥∥∣∣xm,p

〉∥∥ is a good approximation of |x(mh)〉/‖|x(mh)〉‖, provided the truncation
order k is sufficiently large. In this section, we show that such a state can be obtainedwith
non-negligible probability by measuring the first register of |x〉/‖|x〉‖ in the standard
basis, provided the padding parameter p is sufficiently large.

Theorem 7. Let A = V DV−1 beadiagonalizablematrix,where D = diag(λ)0, λ1, . . . ,

λN−1 satisfies Re(λi ) ≤ 0 for i ∈ {0, 1, . . . , N − 1}. Let h ∈ R
+ such that ‖Ah‖ ≤ 1.

Let |xin〉, |b〉 ∈ C
N , and let |x(t)〉 be defined by Eq. (26). Let m, k, p ∈ Z

+ such that
(k + 1)! ≥ 70κVm(‖|xin〉‖ + mh‖|b〉‖)/‖|x(mh)〉‖, where κV = ‖V ‖ · ∥∥V−1

∥∥ is the
condition number of V . Let g = maxt∈[0,mh]‖|x(t)〉‖/‖|x(mh)〉‖. Let |x〉 be defined by
Eq. (9) and let

∣∣xi, j
〉
be defined by Eq. (10). Then for any j ∈ {0, 1, . . . , p},

∥∥∣∣xm, j
〉∥∥

‖|x〉‖ ≥ 1√
p + 77mg2

. (91)

Proof. Recall that
∣∣xm, j

〉 = ∣∣xm,0
〉
for all j ∈ {1, 2, . . . , p}. Thus it is sufficient to prove

Eq. (91) for j = 0.
Define

∣∣xgood
〉 :=

p∑

j=0

|m(k + 1) + j〉∣∣xm, j
〉 =
⎛

⎝
p∑

j=0

|m(k + 1) + j〉
⎞

⎠∣∣xm,0
〉

(92)

and

|xbad〉 :=
m−1∑

i=0

k∑

j=0

|i(k + 1) + j〉∣∣xi, j
〉
. (93)

Then |x〉 = ∣∣xgood
〉
+ |xbad〉 and

〈
xgood|xbad

〉 = 0, so

‖|x〉‖2 = ∥∥∣∣xgood
〉∥∥2 + ‖|xbad〉‖2

= (p + 1)
∥∥∣∣xm,0

〉∥∥2 + ‖|xbad〉‖2. (94)

Next we give a lower bound on
∥∥∣∣xm,0

〉∥∥ and an upper bound on ‖|xbad〉‖. Let q =
‖|x(mh)〉‖. Then by the definition of g, we have ‖|x(ih)〉‖ ≤ gq for i ∈ {0, 1, . . . ,m −
1}. Meanwhile, by Theorem 6 and the choice of k, we have

∥∥∣∣xi,0
〉− |x(ih)〉∥∥ ≤ 0.04q, 0 ≤ i ≤ m. (95)

As a result, we get
∥∥∣∣xi,0

〉∥∥ ≤ (g + 0.04)q ≤ 1.04gq, 0 ≤ i ≤ m − 1, (96)

and
0.96q ≤ ∥∥∣∣xm,0

〉∥∥ ≤ 1.04q. (97)
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Nowfor any i ∈ {0, 1, . . . ,m−1}, since ∣∣xi, j
〉 = (Ah/j)

∣∣xi, j−1
〉
, for j ∈ {2, 3, . . . , k},

we get
∣∣xi, j

〉 = (Ah) j−1

j !
∣∣xi,1

〉
, 2 ≤ j ≤ k. (98)

Then, since ‖Ah‖ ≤ 1, we get

∥∥∣∣xi, j
〉∥∥ ≤

∥∥∣∣xi,1
〉∥∥

j ! , 2 ≤ j ≤ k. (99)

Next, using the fact
∣∣xi+1,0

〉 = ∣∣xi,0
〉
+
∑k

j=1

∣∣xi, j
〉
and the triangle inequality, we get

2.08gq ≥ ∥∥∣∣xi+1,0
〉∥∥ +

∥∥∣∣xi,0
〉∥∥

≥ ∥∥∣∣xi+1,0
〉− ∣∣xi,0

〉∥∥

≥ ∥∥∣∣xi,1
〉∥∥−

k∑

j=2

∥∥∣∣xi, j
〉∥∥

≥
⎛

⎝1 −
k∑

j=2

1

j !

⎞

⎠∥∥∣∣xi,1
〉∥∥

≥ (3 − e)
∥∥∣∣xi,1

〉∥∥, (100)

which implies
∥∥∣∣xi,1

〉∥∥ ≤ 2.08gq

3 − e
, 0 ≤ i ≤ m − 1. (101)

Then it follows from Eq. (99) that

∥∥∣∣xi, j
〉∥∥ ≤ 2.08gq

j !(3 − e)
, 0 ≤ i ≤ m − 1, 1 ≤ j ≤ k. (102)

Now using Eqs. (96), (101), and (102), we obtain

‖|xbad〉‖2 =
m−1∑

i=0

∥∥∣∣xi,0
〉∥∥2 +

m−1∑

i=0

k∑

j=1

∥∥∣∣xi, j
〉∥∥2

≤ 1.042mg2q2 + m
k∑

j=1

(2.08gq)2

( j !)2(3 − e)2

≤ 70.9mg2q2, (103)

where the last step follows from

k∑

j=1

1

( j !)2 ≤ I0(2) − 1 < 1.28 (104)
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as in Eq. (50). Thus, combining Eqs. (94), (97), and (103) we get
∥∥∣∣xm,0

〉∥∥2

‖|x〉‖2 ≥ (0.96q)2

p(0.96q)2 + 70.9mg2q2

≥ 1

p + 77mg2
, (105)

as claimed. �
Theorem 7 implies that by choosing p = m, we can make the probability at least

1/78g2 for obtaining the state
∣∣xm, j

〉
/
∥∥∣∣xm, j

〉∥∥ when measuring the first register of
|x〉/‖|x〉‖ in the standard basis. This probability can be increased to �(1) by amplitude
amplification, which uses O(g) repetitions of the above procedure.

6. State Preparation

To apply the QLSA to a linear system of the form M |x〉 = |y〉, we must also be able
to prepare the state |y〉. To quantify the complexity of this subroutine, Ref. [3] assumes
that �xin and �b are sparse vectors whose entries are given by oracles. Instead of assuming
sparsity, here we simply assume that we have controlled oracles that produce states
proportional to �xin and �b, respectively.

The following lemma shows how to use these oracles to produce the state appearing
on the right-hand side of our linear system.Wewrite |ϕ̄〉 to denote the normalized version
of |ϕ〉, i.e., |ϕ̄〉 := |ϕ〉/‖|ϕ〉‖, for any |ϕ〉.
Lemma 8. Let Ox be a unitary that maps |1〉|ϕ〉 to |1〉|ϕ〉 for any |ϕ〉 and maps |0〉|0〉
to |0〉|x̄in〉, where x̄in = �xin/‖�xin‖. Let Ob be a unitary that maps |0〉|ϕ〉 to |0〉|ϕ〉 for
any |ϕ〉 and maps |1〉|0〉 to |1〉∣∣b̄〉, where b̄ = �b/‖�b‖ . Suppose we know ‖�xin‖ and ‖�b‖.
Then the state proportional to

|0〉|xin〉 + h
m−1∑

i=0

|i(k + 1) + 1〉|b〉 (106)

can be produced with a constant number of calls to Ox and Ob, and poly(log(mk))
elementary gates.

Proof. Consider the initial state |0〉|0〉, where the first register is the (d +1)-dimensional
register corresponding to the block-level indexing of Cm,k,p, and the second register is
the N -dimensional register that stores �b and �xin. We perform the unitary

U =
⎛

⎝ ‖�xin‖√
‖�xin‖2 + mh2‖�b‖2

|0〉 +
√
mh‖�b‖√

‖�xin‖2 + mh2‖�b‖2
|1〉
⎞

⎠〈0|

+

⎛

⎝ ‖�xin‖√
‖�xin‖2 + mh2‖�b‖2

|1〉 −
√
mh‖�b‖√

‖�xin‖2 + mh2‖�b‖2
|0〉
⎞

⎠〈1|

+
d∑

j=2

| j〉〈 j | (107)
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on the first register to get the state

|ψ〉 = 1√
‖�xin‖2 + mh2‖�b‖2

(
‖�xin‖|0〉 + √

mh
∥∥∥�b
∥∥∥|1〉

)
|0〉. (108)

Next, we apply the unitaries Ox and Ob (in arbitrary order), and obtain the state

∣∣ψ ′〉 = 1√
‖�xin‖2 + mh2‖�b‖2

(
‖�xin‖|0〉|x̄in〉 + √

mh‖�b‖|1〉∣∣b̄〉
)

= 1√
‖�xin‖2 + mh2‖�b‖2

(|0〉|xin〉 + √
mh|1〉|b〉). (109)

Finally, we apply a unitary thatmaps |0〉 to |0〉 andmaps |1〉 to 1√
m

∑m−1
j=0 | j (k+1)+1〉

on the first register to get the state we need. This can be done by standard techniques
using poly(log(mk)) elementary gates. �

7. Main Result

In this section, we formally state and prove our main result on the quantum algorithm
for linear ordinary differential equations.

Theorem 9. Suppose A = V DV−1 is an N × N diagonalizable matrix, where D =
diag(λ0, λ1, . . . , λN−1) satisfies Re(λ j ) ≤ 0 for any j ∈ {0, 1, . . . , N −1}. In addition,
suppose A has at most s nonzero entries in any row and column, and we have an oracle
OA that computes these entries. Suppose �xin and �b are N-dimensional vectors with
known norms and that we have two controlled oracles, Ox and Ob, that prepare the
states proportional to �xin and �b, respectively. Let �x evolve according to the differential
equation

d �x
dt

= A�x + �b (110)

with the initial condition �x(0) = �xin. Let T > 0 and

g := max
t∈[0,T ]‖�x(t)‖/‖�x(T )‖. (111)

Then there exists a quantum algorithm that produces a state ε-close to �x(T )/‖�x(T )‖ in
�2 norm, succeeding with probability �(1), with a flag indicating success, using

O(κV sgT ‖A‖ · poly(log(κV sgβT ‖A‖/ε))) (112)

queries to OA, Ox , and Ob, where κV = ‖V ‖ · ∥∥V−1
∥∥ is the condition number of V

and β = (‖|xin〉‖ + T ‖|b〉‖)/‖|x(T )〉‖. The gate complexity of this algorithm is larger
than its query complexity by a factor of poly(log(κV sgβT ‖A‖N/ε)).

Proof. Recall that we use |ϕ̄〉 to denote the normalized version of |ϕ〉.
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Statement of the Algorithm. Let h = T/�T ‖A‖�, m = p = T/h = �T ‖A‖�, δ =
ε/(25

√
mg), ε ≤ 1/2, and

k =
⌊

2 log(�)

log(log(�))

⌋
(113)

with

� = 2.8κVm(‖|xin〉‖ + mh‖|b〉‖)/(δ‖|x(T )〉‖)
= 70gκVm

3/2(‖|xin〉‖ + T ‖|b〉‖)/(ε‖|x(T )〉‖). (114)

This choice of k ensures that (k + 1)! ≥ �. Moreover, since � ≥ 70, k ≥ 5. Hence this
is an appropriate choice of k for the conditions of Theorem 7. We build the linear system

Cm,k,p(Ah)|x〉 = |z〉 := |0〉|xin〉 + h
m−1∑

i=0

|i(k + 1) + 1〉|b〉. (115)

Weuse theQLSAfromRef. [11] to solve this linear systemandobtain a state
∣∣x̄ ′〉 such that∥∥|x̄〉 − ∣∣x̄ ′〉∥∥ ≤ δ. In particular, Thm.5ofRef. [11] states thatO(dκ(A) poly(log(dκ(A)/ε)))

queries to oracles for a d-sparse matrix A and for preparing a state proportional to �b are
needed to produce a state proportional to A−1�b up to error ε.

After solving the linear system, we measure the first register of
∣∣x̄ ′〉 in the standard

basis, and conditioned on the outcome being in

S := {m(k + 1),m(k + 1) + 1, . . . ,m(k + 1) + p}, (116)

we output the state of the second register. We will show that the probability of this event
happening is �

(
1/g2

)
. Using amplitude amplification [9], we can raise this probability

to �(1) with O(g) repetitions of the above procedure.

Proof of Correctness. Let d = m(k + 1) + p. Let
∣∣xi, j

〉
be defined by Eq. (10), and let

|xl〉 = ∣∣xi, j
〉
for l = i(k + 1) + j . Then we have

|x〉 =
d∑

l=0

|l〉|xl〉. (117)

Note that |xl〉 = ∣∣xm,0
〉
for any l ∈ S. Then by Theorem 6 and our choice of parameters,

we have for any l ∈ S,
‖|xl〉 − |x(T )〉‖ ≤ δ‖|x(T )〉‖. (118)

Now let αl be such that

|x̄〉 =
d∑

l=0

αl |l〉|x̄l〉. (119)

Then for any l ∈ S, we have (by Theorem 7 and our choice of parameters)

αl = ‖|xl〉‖
‖|x〉‖ ≥ 1√

78mg
. (120)

By Eq. (118) and Lemma 13 in Appendix B, we have

‖|x̄l〉 − |x̄(T )〉‖ ≤ 2δ. (121)
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Now suppose the QLSA outputs the state

∣∣x̄ ′〉 =
∑

l

α′
l |l〉
∣∣x̄ ′

l

〉
(122)

which satisfies ∥∥|x̄〉 − ∣∣x̄ ′〉∥∥ ≤ δ. (123)

Then for any l ∈ S, by Lemma 14 in Appendix B, we have

∥∥|x̄l〉 − ∣∣x̄ ′
l

〉∥∥ ≤ 2δ

αl − δ
. (124)

Then it follows from Eqs. (121) and (124) that for any l ∈ S,

∥∥∣∣x̄ ′
l

〉− |x̄(T )〉∥∥ ≤ ‖|x̄l〉 − |x̄(T )〉‖ +
∥∥|x̄l〉 − ∣∣x̄ ′

l

〉∥∥

≤ 2δ

(
1 +

1

αl − δ

)
≤ ε. (125)

Furthermore, by Lemma 15 in Appendix B, we have

α′
l ≥ αl − δ ≥ 1

11
√
mg

. (126)

Therefore, if we measure the first register of
∣∣x̄ ′〉 in the standard basis, the probability of

getting some outcome l ∈ S is

∑

l∈S

∣∣α′
l

∣∣2 ≥ p

121mg2
= 1

121g2
, (127)

and when this happens the state of the second register becomes
∣∣x̄ ′

l

〉
for some l ∈ S,

which is ε-close to the desired |x̄(T )〉 in �2 norm. The success probability can be raised
to �(1) by using O(g) rounds of amplitude amplification.

Analysis of the Complexity. The matrix Cm,k,p(A) is a (d + 1)N × (d + 1)N matrix
with O(ks) nonzero entries in any row or column. By Theorem 5 and our choice of
parameters, the condition number ofCm,k,p(A) is O(κV km). Consequently, by Theorem
5 of Ref. [11], the QLSA produces the state

∣∣x ′〉 with

O
(
κV k

2ms · poly(log(κV kms/δ))
)

= O(κV sT ‖A‖ · poly(log(κV sgβT ‖A‖/ε)))
(128)

queries to the oracles OA, Ox , and Ob, where β = (‖|xin〉‖ + T ‖|b〉‖)/‖|x(T )〉‖, and
its gate complexity is larger by a factor of poly(log(κV kmsN/δ)) = poly(log())κV sgβ
T ‖A‖N/ε. Since amplitude amplification requires only O(g) repetitions of this proce-
dure, the query complexity of our algorithm isO(κV sgT ‖A‖· poly(log(κV sgβT ‖A‖/ε)))
and its gate complexity is larger by a factor of poly(log(κV sgβT ‖A‖N/ε)), as
claimed. �
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8. Discussion

In this paper, we have presented an algorithm for solving (possibly inhomogeneous)
linear ordinary differential equations with constant coefficients, with exponentially im-
proved performance over the algorithm of Ref. [3].

The complexity of our algorithm depends on the parameter g defined in Eq. (111),
which characterizes the extent to which the final solution vector decays relative to the
solution vector at earlier times. The success probability obtained from a single solution
of the linear system (as analyzed in Sect. 5) decays with g, so we boost the success
probability using amplitude amplification. Dramatically improved dependence on g is
unlikely since a simulation of evolution in which the state decays can be used to im-
plement postselection, following a procedure like that of Proposition 5 of Ref. [1]. In
particular, the ability to postselect on an exponentially small amplitude would imply
BQP = PP, which is considered implausible. Note that the algorithm of Ref. [3] has
essentially the same limitation (although there it was stated in terms of an assumed upper
bound on g).

Aside from its exponentially improved dependence on ε, our approach has other ad-
vantages over Ref. [3]. First, since linear multistep methods may be unstable, Ref. [3]
requires careful selection of a stable method. In contrast, the propagator exp(At) exactly
evolves the state forward in time, so we need not concern ourselves with numerical sta-
bility. Furthermore, our algorithm has nearly linear scaling with respect to the evolution
time T , which is a quadratic improvement over Ref. [3]. Since Hamiltonian simulation
is a special case of our algorithm with g = 1, the no-fast-forwarding theorem [4] im-
plies that the dependence of our algorithm on T is optimal up to logarithmic factors.
We also obtain polynomial improvements over Ref. [3] for the dependence of the com-
plexity on the sparsity s, norm ‖A‖, and condition number κV of the transformation that
diagonalizes A.

AlthoughTheorem9assumes that A is diagonalizable, our algorithmcan also produce
approximate solutions for non-diagonalizable A. This is because diagonalizablematrices
are dense within the set of all complex matrices: for any non-diagonalizable matrix A
and any δ > 0, there is a diagonalizable matrix B such that ‖A − B‖ < δ. Using such a
B in place of A, we can simulate Eq. (1) approximately. This approach can yield a matrix
B whose diagonalizing transformation has a condition number polynomial in 1/δ, so
the complexity would no longer be poly(log(1/ε)).

Our work raises some natural open problems. For simplicity, we have assumed that
thematrix A and the inhomogeneity �b are independent of t .More generally, can one solve
differential equationswith time-dependent coefficientswith complexity poly(log(1/ε))?
This is possible in the case of quantum simulation, i.e., when A(t) is anti-Hermitian and
�b = 0 [5]. However, some aspects of our analysis appear to fail in the time-dependent
case.

Finally, while our algorithm has optimal dependence on ε and nearly optimal de-
pendence on T , the joint dependence on these parameters might be improved. Recent
work gave an algorithm for Hamiltonian simulation with complexity O(t + log(1/ε)

log log(1/ε) ),
providing an optimal tradeoff. Can similar complexity be attained for more general
differential equations?

Acknowledgements. This research was supported by the Canadian Institute for Advanced Research, the Na-
tional Science Foundation (grant number 1526380), and IARPA (contract number D15PC00242). In addition,
DWB is funded by an Australian Research Council Discovery Project (DP160102426).
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A. Lemmas About Taylor Series

In this appendix, we establish some basic lemmas about the approximation of functions
by truncated Taylor series.

Lemma 10. Let k ∈ Z
+, z ∈ C, |z| ≤ 1, and Re(z) ≤ 0. Define Tk(z) := ∑k

j=0
z j
j ! .

Then |Tk(z) − exp(z)| ≤ 1/(k + 1)! and |Tk(z)| ≤ 1 + 1/(k + 1)!.
Proof. Given ϕ such that z = eiϕ |z|, define a function f (x) := exp

(
eiϕx

)
for x ∈ R.

Then the integral form of the remainder for Taylor’s theorem gives

f (x) = Tk(e
iϕx) +

1

k!
∫ x

0
(x − t)k f (k+1)(t)dt, (129)

so

f (x) − Tk(e
iϕx) = ei(k+1)ϕ

k!
∫ x

0
(x − t)k exp

(
eiϕ t
)
dt. (130)

Because Re(z) ≤ 0, | exp(eiϕ t)| ≤ 1. Taking x = |z|, we therefore have

|Tk(z) − exp(z)| = 1

k!
∣∣∣∣
∫ |z|

0
(|z| − t)k exp

(
eiϕ t
)
dt

∣∣∣∣

≤ 1

k!
∫ |z|

0
(|z| − t)kdt = |z|k+1

(k + 1)! ≤ 1

(k + 1)! . (131)

Using this bound,

|Tk(z)| ≤ |exp(z)| + |exp(z) − Tk(z)| ≤ 1 +
1

(k + 1)! (132)

and the lemma follows. �
Lemma 11. Let b ∈ Z

∗, k ∈ Z
+, k ≥ 5, and b ≤ k. Let z ∈ C, |z| ≤ 1, and Re(z) ≤ 0.

Define Tb,k(z) :=∑k
j=b

b!z j−b

j ! . Then
∣∣Tb,k(z)

∣∣ ≤ √
1.04.

Proof. Again we can take z = eiϕ |z| and f (x) := exp
(
eiϕx

)
for x ∈ R. If b = 0, then

Tb,k(z) = Tk(z), so from Lemma 10 we have
∣∣Tb,k(z)

∣∣ ≤ 1 + 1/(k + 1)! <
√
1.04. If

b = k, then
∣∣Tb,k(z)

∣∣ = 1. If b = k − 1, then

Tb,k(z) = 1 +
z

k
. (133)

Then we obtain
∣∣Tb,k(z)

∣∣ =
√

1 +
2Re(z)

k
+

|z|2
k2

≤
√
1 +

1

k2
, (134)

since Re(z) ≤ 0 and |z| ≤ 1. Then, for k ≥ 5, we obtain
∣∣Tb,k(z)

∣∣ ≤ √
1.04.

Otherwise, 1 ≤ b < k − 1, and using the integral form of the remainder gives

∞∑

j=b

z j

j ! = eibϕ

(b − 1)!
∫ |z|

0
(|z| − t)b−1 exp

(
eiϕ t
)
dt. (135)
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Then limiting the sum to k gives

k∑

j=b

z j

j ! = eibϕ

(b − 1)!
∫ |z|

0
(|z|− t)b−1 exp

(
eiϕ t
)
dt− ei(k+1)ϕ

k!
∫ |z|

0
(|z|− t)k exp

(
eiϕ t
)
dt.

(136)
Therefore, we obtain a formula for Tb,k(z) as

Tb,k(z) = b

|z|b
∫ |z|

0
(|z|− t)b−1 exp

(
eiϕ t
)
dt− b!ei(k−b+1)ϕ

k!|z|b
∫ |z|

0
(|z|− t)k exp

(
eiϕ t
)
dt.

(137)
Again | exp(eiϕ t)| ≤ 1, so taking the absolute value gives us

∣∣Tb,k(z)
∣∣ ≤ b

|z|b
∫ |z|

0
(|z| − t)b−1dt +

b!
k!|z|b

∫ |z|

0
(|z| − t)kdt

= 1 +
b!|z|k−b+1

(k + 1)!
≤ 1 +

b!
(k + 1)!

≤ 1 +
1

(k − 1)k(k + 1)

≤ 1 +
1

120
, (138)

where in the last line we have used k ≥ 5. Hence for 0 ≤ b ≤ k, we obtain
∣∣Tb,k(z)

∣∣ ≤√
1.04 as required. �

Lemma 12. Let k ∈ Z
+. Let z ∈ C, |z| ≤ 1. Define Sk(z) := ∑k

j=1
z j−1

j ! . Then∣∣Sk(z) − (exp(z) − 1)z−1
∣∣ ≤ 1/(k + 1)!.

Proof. Again we can take z = eiϕ |z| and f (x) := exp
(
eiϕx

)
for x ∈ R. Then using

Eq. (130),

ei(k+1)ϕ

k!
∫ x

0
(x − t)k exp

(
eiϕ t
)
dt = f (x) − Tk(e

iϕx)

= ( f (x) − 1) − (Tk(e
iϕx) − 1)

= exp
(
eiϕx

)
− 1 − eiϕxSk(e

iϕx). (139)

Dividing by eiϕx gives

exp
(
eiϕx

)− 1

eiϕx
− Sk(e

iϕx) = eikϕ

k!x
∫ x

0
(x − t)k exp

(
eiϕ t
)
dt. (140)

Taking the absolute value then gives

∣∣∣Sk(z) − (exp(z) − 1)z−1
∣∣∣ ≤ 1

k!|z|
∫ |z|

0
(|z| − t)kdt = |z|k

(k + 1)! ≤ 1

(k + 1)! (141)

as claimed. �
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B. Lemmas About Quantum States

In this appendix, we prove some technical lemmas about approximation of quantum
states.

Lemma 13. Let |ψ〉 and |ϕ〉 be two vectors such that ‖|ψ〉‖ ≥ α > 0 and ‖|ψ〉 − |ϕ〉‖ ≤
β. Then

∥∥∥∥
|ψ〉

‖|ψ〉‖ − |ϕ〉
‖|ϕ〉‖

∥∥∥∥ ≤ 2β

α
. (142)

Proof. Using the triangle inequality, we get

∥∥∥∥
|ψ〉

‖|ψ〉‖ − |ϕ〉
‖|ϕ〉‖

∥∥∥∥ =
∥∥∥∥

|ψ〉
‖|ψ〉‖ − |ϕ〉

‖|ψ〉‖ +
|ϕ〉

‖|ψ〉‖ − |ϕ〉
‖|ϕ〉‖

∥∥∥∥

≤
∥∥∥∥

|ψ〉
‖|ψ〉‖ − |ϕ〉

‖|ψ〉‖
∥∥∥∥ +
∥∥∥∥

|ϕ〉
‖|ψ〉‖ − |ϕ〉

‖|ϕ〉‖
∥∥∥∥

≤ ‖|ψ〉 − |ϕ〉‖
‖|ψ〉‖ + ‖|ϕ〉‖

∣∣∣∣
1

‖|ψ〉‖ − 1

‖|ϕ〉‖
∣∣∣∣

= ‖|ψ〉 − |ϕ〉‖
‖|ψ〉‖ +

|‖|ψ〉‖ − ‖|ϕ〉‖|
‖|ψ〉‖

≤ 2‖|ψ〉 − |ϕ〉‖
‖|ψ〉‖

= 2β

α
(143)

as claimed. �

Lemma 14. Let |ψ〉 = α|0〉|ψ0〉+
√
1 − α2|1〉|ψ1〉and |ϕ〉 = β|0〉|ϕ0〉+

√
1 − β2|1〉|ϕ1〉,

where |ψ0〉, |ψ1〉, |ϕ0〉, |ϕ1〉 are unit vectors, and α, β ∈ [0, 1]. Suppose ‖|ψ〉 − |ϕ〉‖ ≤
δ < α. Then ‖|ϕ0〉 − |ψ0〉‖ ≤ 2δ

α−δ
.

Proof. First note that ‖|ψ〉 − |ϕ〉‖ ≤ δ implies

‖〈0|ψ〉 − 〈0|ϕ〉‖ ≤ δ. (144)

In addition, by the triangle inequality, we have

‖〈0|ϕ〉‖ ≥ ‖〈0|ψ〉‖ − ‖〈0|ψ〉 − 〈0|ϕ〉‖ ≥ α − δ. (145)

Then Eqs. (144) and (145) imply

‖〈0|ψ〉 − 〈0|ϕ〉‖
‖〈0|ϕ〉‖ ≤ δ

α − δ
. (146)
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Then by the triangle inequality, we get

‖|ϕ0〉 − |ψ0〉‖ =
∥∥∥∥

〈0|ϕ〉
‖〈0|ϕ〉‖ − 〈0|ψ〉

‖〈0|ψ〉‖
∥∥∥∥

=
∥∥∥∥

〈0|ϕ〉
‖〈0|ϕ〉‖ − 〈0|ψ〉

‖〈0|ϕ〉‖ +
〈0|ψ〉

‖〈0|ϕ〉‖ − 〈0|ψ〉
‖〈0|ψ〉‖

∥∥∥∥

=
∥∥∥∥
〈0|ϕ〉 − 〈0|ψ〉

‖〈0|ϕ〉‖ + 〈0|ψ〉‖〈0|ψ〉‖ − ‖〈0|ϕ〉‖
‖〈0|ϕ〉‖‖〈0|ψ〉‖

∥∥∥∥

≤ ‖〈0|ϕ〉 − 〈0|ψ〉‖
‖〈0|ϕ〉‖ +

∣∣∣∣
‖〈0|ψ〉‖ − ‖〈0|ϕ〉‖

‖〈0|ϕ〉‖
∣∣∣∣

≤ ‖〈0|ϕ〉 − 〈0|ψ〉‖
‖〈0|ϕ〉‖ +

‖〈0|ψ〉 − 〈0|ϕ〉‖
‖〈0|ϕ〉‖

≤ δ

α − δ
+

δ

α − δ

= 2δ

α − δ
(147)

as claimed. �
Lemma 15. Let |ψ〉 = α|0〉|ψ0〉+

√
1 − α2|1〉|ψ1〉and |ϕ〉 = β|0〉|ϕ0〉+

√
1 − β2|1〉|ϕ1〉,

where |ψ0〉, |ψ1〉, |ϕ0〉, |ϕ1〉 are unit vectors, and α, β ∈ [0, 1]. Suppose ‖|ψ〉 − |ϕ〉‖ ≤
δ < α. Then β ≥ α − δ.

Proof. Note that ‖|ψ〉 − |ϕ〉‖ ≤ δ implies ‖〈0|ψ〉 − 〈0|ϕ〉)‖ ≤ δ. Then by the triangle
inequality, we get

β = ‖〈0|ϕ〉‖
= ‖〈0|ψ〉 − 〈0|ψ〉 + 〈0|ϕ〉‖
≥ ‖〈0|ψ〉‖ − ‖〈0|ψ〉 − 〈0|ϕ〉‖
≥ α − δ (148)

as claimed. �
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