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Abstract: In this paper, we study random walks gn = fn−1 . . . f0 on the group Homeo
(S1) of the homeomorphisms of the circle, where the homeomorphisms fk are chosen
randomly, independently, with respect to a same probability measure ν. We prove that
under the only condition that there is no probability measure invariant by ν-almost every
homeomorphism, the random walk almost surely contracts small intervals. It general-
izes what has been known on this subject until now, since various conditions on ν were
imposed in order to get the phenomenon of contractions. Moreover, we obtain the sur-
prising fact that the rate of contraction is exponential, even in the lack of assumptions of
smoothness on the fk’s.We deduce various dynamical consequences on the randomwalk
(gn): finiteness of ergodic stationary measures, distribution of the trajectories, asymp-
totic law of the evaluations, etc. The proof of the main result is based on a modification
of the Ávila-Viana’s invariance principle, working for continuous cocycles on a space
fibred in circles.

1. Introduction

The objective of the paper is to study properties of (left) random walks on Homeo(S1),
that is to say long compositions fn ◦ · · · ◦ f0 of homeomorphisms of the circle chosen
randomly independently with respect to a same probability measure ν. The study of
independent randomcomposition of transformations of a space X is the theory of random
dynamical systems (RDS). They appear naturally for example in the theory of iterated
forward systems (IFS), when one wants to study the action of a finitely generated group
or semigroupG: choosing ν uniform on a set of generators, the theory of RDS allows one
to study the properties of “typical” elements of G. The RDS also correspond to a natural
family of skew-products on X : the ones of the form (ω, x) �→ (Tω, fω(x)), where T is
a shift operator on a symbol space and fω only depends on the first coordinate of ω.

A standard starting point in order to study a random (or deterministic) dynamical
system is the question of the dependence to the initial condition. In the context of RDS
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of homeomorphisms of the circle, the conclusion put in evidence by various results, is
that in general the following alternative holds:

• either the iterated homeomorphisms preserve a common probability measure on the
circle (which implies some “determinism” in the RDS)

• or the RDS has the local contraction property: given any point of the circle, typical
compositions of the homeomorphisms contract some neighbourhood of the point.

In the linear case (i.e., when the homeomorphisms are projective actions of elements
of SL2(R)), that dichotomy is a well known result of Furstenberg [9] (and moreover,
when the RDS has the local contraction property, these contractions are actually global
and exponential). In the general case, there are variations of the precise assumptions and
conclusions, but we can mainly distinguish two kinds of results:

–Smooth case: In the case where the probability measure ν is supported on Diff(S1),
one can use the general theory of hyperbolic dynamical systems on manifolds. If the
quantity

∫
log+ ‖ f ′‖∞dν( f ) is finite, we can defineLyapunov exponents. In this context,

various results of hyperbolic dynamics [2–4] imply that if there is an invariant probability
measure, then one can find a negative Lyapunov exponent in the system (one can see
this as a non linear analogue of the Furstenberg’s result stated above). Next, by Pesin
theory (or even simpler arguments), one can deduce that the random dynamical system
locally contracts, and even that the contractions are exponentially fast.

–Continuous case: In the general case of the iteration of continuous homeomor-
phisms, the theory of hyperbolic dynamical systems, smooth by nature, does not apply
any more. Though, coupling arguments of basic theory of the homeomorphisms of the
circle with probabilistic arguments, it is still possible to obtain analogue results with no
regularity assumption. The most canonical result (though the older one) of this kind is
probably the following theorem of Antonov:

Theorem. (Antonov [1]) Let f1, . . . , fm be homeomorphisms of the circle preserving
the orientation, such that the semigroup G+ generated by f1, . . . , fm and the semigroup
G− generated by f −1

1 , . . . , f −1
m both act minimally on S1 (i.e., the orbit of every point

is dense in the circle), and let ν be a non degenerated probability measure on {1, . . . , p}
(i.e., ν({i}) > 0 for i = 1, . . . , p). Then:

• Either for any initial conditions x, y in S1, for νN-almost every sequence (in)n≥0,
the distance between the trajectories fin ◦ · · · ◦ fi0(x) and fin ◦ · · · ◦ fi0(y) goes to
0. (synchronization)

• Either there exists a probability measure invariant by all the homeomorphisms fi ,
and because of the minimality of G+ it actually implies that f1, . . . , f p are simul-
taneously conjugated to rotations. (invariance)

• Or there exists θ in Homeo+(S1) of finite order p ≥ 2 commuting with all the
fi ’s.(factorization)

Remark 1.1. When we are in the third case of Antonov Theorem, then one can factorize
the system by identifying the points of the same orbit of θ , in order to obtain a new topo-
logical circle, and homeomorphisms f̃1, . . . , f̃m of this circle induced by f1, . . . , fm .

We deduce that if f1, . . . , fm does not have a common invariant probability measure,
then the random compositions of these homeorphisms satisfy the property of synchro-
nization (first point of the alternative) up to some factorization (as described below).

As a consequence of Antonov’s Theorem, it remains true that in the absence of a
common invariant probability measure we have the local contraction property. However,
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assuming no regularity for the iterated homeomorphisms has a price: additional structural
assumptions are required and no speed of convergence is assured: the finiteness of the
number of generators is only an assumption for convenience, and the proof of Antonov
remains valid without this assumption. The minimality assumptions, though, are much
deeper: the dynamics of a semigroup of Homeo(S1) preserving some common interval is
very different from the dynamics described in Antonov’s Theorem. And if one considers
a semigroup preserving two disjoint intervals, then one can check that, in general, none
of the alternatives of Antonov’s Theorem are satisfied.

Variants of this theorem exist: let us cite for example [15] where the authors proved
(independently of Antonov) that synchronization occurs (first case of the previous theo-
rem) under the additional assumption thatG+ contains a “north–south” homeomorphism,
and [6] where the assumption of minimality is replaced by an assumption of symmetry
(G+ = G−).

Theobjective of thepaper is to treat the studyof a general randomwalkonHomeo(S1).
Adapting techniques coming from the hyperbolic theory in the continuous context, we
show that the distinction between the regular and continuous cases described above is
actually basically useless: there is no need to ask additional assumptions on a random
walk on Homeo(S1) to obtain the local contractions, and in fact, even the exponential
speed of contractions remains! Next we use this property of contraction to study deeply
the behaviour of the random walk.

We also deduce various results on the behaviour of random walks on Homeo(S1).
And themajority of these results actually holds for any randomwalk on a compact metric
space satisfying the local contraction property.

The key of the proof of the main result is to adapt the ideas of Ávila and Viana in
[2] and Crauel in [4] (who themselves used those of [18]) to establish that an invariance
principle remains in the C0-case: but instead of using the Lyapunov exponents, we will
use another analogue quantity, which measures the exponential contractions as well, but
which does not require derivability to be defined. That approach allows us to obtain a
criterion of the existence of exponential contractions for RDS of the circle, and more
generally for any cocycle on a space fibred in circles, so that one can hope that this
principle can also be useful in the study of non i.i.d. compositions of homeomorphisms
of the circle.

2. Statements of the Results

2.1. The main theorem. Before stating our results, we need to formalize the notions of
random walks and random dynamical systems:

Definition 2.1. Let (G, ◦) a topological semigroup.

• The random walk generated by a probability measure ν onG is the random sequence
ω �→ ( f nω )n∈N of elements of G on the probability space (�,P) = (GN, νN),
defined by: for ω = ( fn)n∈N in � and n in N,

f nω = fn−1 ◦ · · · ◦ f0.

• We denote by G+(ν) the smallest closed sub-semigroup of G containing the topo-
logical support of ν. If G+(ν) = G, the random walk and the probability measure ν

are said to be non degenerated on G. It is equivalent to the fact that every open set
of G has positive probability to be reached by the random walk.
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• If G acts on a space X and if the probability measure ν is non degenerated on G,
we say that (G, ν) is a random dynamical system (RDS) on X . The skew-product
associated to the RDS is the transformation T̂ on � × X defined by

T̂ (ω, x) = (Tω, f0(x)),

where T is the shift operator on � and f0 is the first coordinate of ω.

For a given randomwalk, we will always denote by (�,P) the associated probability
space.

Obviously, any randomwalkonHomeo(S1) is nondegeneratedon some sub-semigroup,
namely G+(ν). An interesting fact is that in the majority of the results that we will state,
we obtain properties on the random walk depending only on assumptions on G+(ν) and
not on ν itself.

Here is the main theorem of the paper:

Theorem A. Letω �→ ( f nω )n∈N be a non degenerated random walk on a sub-semigroup
G ofHomeo(S1). Let us assume that G does not preserve any probability measure on S1

(i.e. there does not exist a probability measure invariant by every element of G). Then,
for any x in S1, for P-almost every ω in �, there exists a neighbourhood I of x such
that

∀n ∈ N, diam
(
f nω (I )

) ≤ qn,

where q < 1 depends on the random walk only.

We can obtain the same result for random walks on a semigroup of continuous
injective transformations of a compact interval I , since seeing I as a part of S1, such
an injective map can be extended to a homeomorphism of the circle. Thus, in some
sense, the surjectivity of the iterated transformations is not important. The injectivity,
though, is primordial: one cannot hope to obtain a contraction phenomenon by iterating
transformations of the circle homotopic to z �→ z2.

In the case where the semigroup G associated to a random walk on Homeo(S1)
preserves a probability measure μ, then the topological support K of μ is a compact
minimal invariant by the group G̃ generated by G, and hence we have the standard
trichotomy: K is either S1, a Cantor set or a finite set (see for exemple [20, Theorem
2.1.1]). It is then standard that G̃ is conjugated to a group of isometries if K = S1, and
semiconjugated to a group of isometries if K is a Cantor set. This fact allows to obtain
an interesting classification of the random walks on Homeo(S1):

Corollary 2.2. Letω �→ ( f nω )n∈N beanondegenerated randomwalkona sub-semigroup
G of Homeo(S1). Then one (and only one) of the following possibilities occurs:

(i) G does not preserve a probability measure, and the random walk has the local
contraction property in the sense given by Theorem A.

(ii) The randomwalk is semiconjugated to a randomwalk on the compact group O2(R)

(group of the isometries of the circle) acting minimally on S1.
(iii) There is a finite set invariant by G.

On this form, the statement is very close to Furstenberg’s one [9] in the linear case.
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2.2. General study of random walks acting on Homeo(S1). In this section, we use
Theorem A as a main tool to understand the behaviour of a general random walk ω �→
( f nω )n∈N on Homeo(S1).

2.2.1. Distribution of the trajectories n �→ f nω (x) We interest in the typical distribution
of the sequence ( f nω (x))n∈N for a given initial condition x . This problem is naturally
related to the study of the stationary probability measures of ν, that is the probability
measures μ on S1 such that P ⊗ μ is invariant by the skew-product T̂ . Such a proba-
bility measure always exists(we refer to [8] or [14] for details). If the random walk is
non degenerated on a subgroup of Homeo(S1), it has been proved that in general, the
stationary probability measure is unique (see [6]). In the case of a general random walk
on Homeo(S1), which is non degenerated on a semigroup only, it does not hold any
more, but we prove that the number of ergodic stationary probability measures (i.e. ex-
tremal stationary probability measures) is necessarily finite, and that these probability
measures give the typical distributions of the trajectories of the random walk:

Theorem B. Let ω �→ ( f nω )n∈N be a non degenerated random walk on a sub-semigroup
G of Homeo(S1) with no finite orbit on S1. Then:

• There is only a finite number of ergodic stationary probability measuresμ1, . . . , μd .
Their topological supports F1, . . . , Fd are pairwise disjoints and are exactly the
minimal invariant compacts of G.

• For every x in S1, forP-almost everyω in�, there exists a unique integer i = i(ω, x)
in {1, . . . , d} such that Fi is exactly the set of accumulation points of the sequence
( f nω (x))n∈N, and then we have

1

N

N−1∑

n=0

δ f nω (x) −−−−→
n→+∞ μi

in the weak-∗ topology of C(S1,R)∗.

Note that in this theorem,we relaxed the condition “no invariant probabilitymeasure”
to “no finite orbit”.

As a direct consequence of this theorem, we obtain that the stationary probability
measure is unique when the action is minimal:

Corollary 2.3. A non degenerated random walk on a sub-semigroup G of Homeo(S1)
acting minimally on S1 is uniquely ergodic, i.e. it admits a unique stationary probability
measure.

At our knowledge, this fact was never proved in full generality: until now some
additional assumption (smoothness, backward minimality, symmetry...) was required to
obtain the unique ergodicity. And actually, we obtain a slightly stronger corollary: the
action of any random walk of Homeo(S1) restricted to a minimal invariant compact F
is uniquely ergodic: if there is no finite orbits, that is a consequence of Theorem B, and
if there is a finite orbit, then F is necessarily finite and the unique ergodicity follows
easily).
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2.2.2. Law of probability of ω �→ f nω (x) We focus now in the law of the random
variables Xx

n : ω �→ f nω (x) for any given initial condition x and a large integer n, and
asking whether the law of Xx

n converges to some limit distribution when n becomes
large.

The sequence (Xx
n )n∈N is a Markov chain. A natural obstruction to the convergence

of the laws of a Markov chain are the “periodic configurations”, where there exists
subspace of phase states whose the return times are multiple of a fixed integer larger
than 2. (For example in our context, if it exists two disjoints closed sets F1 and F2 such
that the generators of the semigroup send F1 into F2 and F2 into F1, then clearly the
distribution of Xx

n strongly depends on the parity of n.). That leads us to the following
definition of aperiodicicity:

Definition 2.4. A randomwalkω �→ ( f nω )n≥0 onHomeo(S1) generated by a probability
ν is said to be aperiodic if there does not exist a finite number p ≥ 2 of pairwise
disjoints closed subsets F1, . . . , Fp of S1 such that for ν-almost every homeomorphism
g, g(Fi ) ⊂ Fi+1 for i = 1, . . . , p − 1 and g(Fp) ⊂ F1.

Remark 2.5. If the action ofG is minimal, the randomwalk is necessarily aperiodic since
otherwise, S1 would be a non trivial finite union of pairwise disjoints closed subsets.

The next theorem states that for randomwalks with no invariant probability measure,
the only obstruction to the convergence in law of Xx

n is the one described above:

Theorem C. Letω �→ ( f nω )n∈N be a non degenerated random walk on a sub-semigroup
G ofHomeo(S1) with no invariant probability measure on S1, and such that the random
walk is aperiodic. Then, for every x in S1, denoting byμx

n the law of the random variable
Xx
n : ω �→ f nω (x), we have the convergence in law

μx
n −−−−→

n→+∞ μx ,

where μx is a stationary probability measure of the random walk. Moreover, the con-
vergence is uniform in x in the sense that for any continuous test function ϕ : S1 → R,

sup
x∈S1

∣
∣
∣
∣

∫

S1
ϕdμx

n −
∫

S1
ϕdμx

∣
∣
∣
∣ −−−−→

n→+∞ 0

In particular, as a consequence of this theorem, Remark 2.5 and Corollary 2.3:

Corollary 2.6. Let ( f nω )n∈N be a non degenerated random walk on a sub-semigroup G
of Homeo(S1), acting minimally on S1 and with no invariant probabiity measure on S1.
Then, with the same notations as Theorem C, we have for every x in S1:

μx
n −−−−→

n→+∞ μ,

where μ is the unique stationary probability measure of the random walk.
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2.2.3. Behaviour of typical homeomorphisms x �→ f nω (x) Finally, for ω typical we
focus in the behaviour of the homeomorphisms f nω when n become large.

Theorem D. Let ω �→ ( f nω )n≥0 be a non degenerated random walk on a sub-semigroup
G ofHomeo(S1), such that G does not preserve a common invariant probability measure
on S1. Then, there exists a finite number p of measurable functions σ1, . . . , σp : � → S1

such that: for P-almost every ω in �, for every closed interval I included in S1 −
{σ1(ω), . . . , σp(ω)}, diam( f nω (I )) −−−−→

n→+∞ 0 exponentially fast.

It is a global version of Theorem A, proving that for n large, the typical homeomor-
phisms f nω are close to be “staircase maps”, with a constant finite number of stairs.

It is also interesting to compare this result with Antonov Theorem stated in the intro-
duction. The hypotheses of Antonov Theorem are stronger than the ones of Theorem D,
since it assume forward and backward minimality and that the homeomorphisms pre-
serve the orientation. In counterpart, the conclusion of Antonov Theorem is in some
sense stronger: it does not give the exponential speed of the contractions, but gives a
more precise structure: it say that the applications σ1, . . . , σp given by Theorem D are
on the form.

{σ1, σ2 . . . , σp} = {σ1, θ ◦ σ1 . . . , θ p−1 ◦ σ1},
where θ is a homeomorphism of order p commuting with all the elements of G. But
as we said in the introduction, such a rigid conclusion cannot hold in general in a non
minimal context.

2.3. Property of synchronization. In this section, wewant to characterize in which situa-
tion the action of a randomwalk on the circle has the property of synchronization, which
means that for any couple of initial conditions x and y, for almost every realization of
the random walk, the distance between the corresponding trajectories of x and y tends
to 0. This property of synchronization has been studied in [9] in the linear case, and for
example in [10,11,13,15] in non linear cases.

Definition 2.7. If (X, d) is a metric space, we say that a random walk ω �→ ( f nω )n∈N
acting on X is synchronizing if for every x, y in X , for almost every ω,

d( f nω (x), f nω (y)) −−−−→
n→+∞ 0.

We say that it is exponentially synchronizing if the previous convergence is exponentially
fast.

In the context of randomwalks acting on the circle, we prove that the synchronization
is equivalent to the proximality of the action. We recall that the action of a semigroup
G to a metric space (X, d) is proximal if for every x, y in X , there exists a sequence
(gn)n∈N in G such that

d(gn(x), gn(y)) −−−−→
n→+∞ 0.

Theorem E. Let ω �→ ( f nω )n∈N be a non degenerated random walk on a sub-semigroup
G ofHomeo(S1)without a common fixed point. Then the following properties are equiv-
alent:
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(i) The random walk is exponentially synchronizing.
(ii) The random walk is synchronizing.
(iii) The action of G on S1 is proximal.

It allows for example to retrieve the main result of [15] in a non minimal context and
with an exponential speed of convergence:

Corollary 2.8. ω �→ ( f nω )n∈N a non degenerated random walk on a sub-semigroup G
of Homeo(S1) such that:

• G contains a map g0 with exactly 2 fixed points a and b, one attractive, one repulsive.
• None of the sets {a}, {b}, {a, b} is invariant by the semigroup G.

Then the random walk is exponentially synchronizing.

That corollary follows rather easily from Theorem E: for any x, y in S1, one can find
h in G such that h(x) and h(y) are distinct from the repulsive fixed point of g0, so that
dist(gn0 ◦ h(x), gn0 ◦ h(y)) −−−−→

n→+∞ 0, which prove the proximality and we can apply

Theorem E. The details are left to the interested reader.
Another application deals with the robustness of the property of synchronization

(that is to say, the persistence of the property to small perturbations): with Theorem E,
we can prove that the property of synchronization is robust among the semigroups
of homeomorphisms without a common fixed point. We restrict ourselves to the case
of finitely generated semigroups to avoid manipulation intricate topologies on sets of
semigroups/random walks.

Corollary 2.9. Consider a nondegenerated randomwalkω �→ ( f nω )ona sub-semigroup
G of Homeo(S1)d generated by d homeomorphisms of the circle f1, . . . , fd without
common fixed points, and assume that ω �→ ( f nω ) is synchronizing. Then there exists a
neighbourhood V of ( f1, . . . , fd) inHomeo(S1)d such that for any d-tuple ( f̃1, . . . , f̃d)
in V , any non degenerated random walk ω �→ ( f nω ) on the semigroup G̃ generated by
{ f̃1, . . . , f̃d} is (exponentially) synchronizing.

It is natural to ask whether the property of synchronization is generic, but it easy to
see that it is not the case: if I is an open interval, the property

∀k ∈ {1, . . . , d}, fk(I ) ⊂ I

is robust, and the existence of two disjoints such intervals is an obstruction to the syn-
chronization. However, in the case of a non degenerated random walk on subgroups of
Homeo+(S1), Antonov’s Theorem holds (see [6]), and hence in this case, the property of
synchronization is generic, because the other alternatives (existence of a common invari-
ant probability measure or existence of a non trivial homeomorphism in the centralizer
of the group) are degenerated properties. Combining this remark with Corollary 2.9, we
obtain the following conclusion:

Corollary 2.10. Let d be an integer larger than 1. Then there exists an open dense subset
U of Homeo+(S1)d such that for every ( f1, . . . , fd) in U , any non degenerated random
walk on the group generated by { f1, . . . , fd} is exponentially synchronizing.
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2.4. Random dynamical systems on [0, 1]. We conclude by the study of the iterations
of continuous injective transformations of an interval. For example, we can apply our
results to obtain:

Corollary 2.11. Let ω �→ ( f nω )n∈N be a non degenerated random walk on a semigroup
G of injective continuous functions from [0, 1] into itself, and let us assume that

⋂

g∈G
g([0, 1]) = ∅.

Then there exists q < 1 such that for P-almost every ω:

∀n ∈ N, diam
(
f nω ([0, 1])) ≤ Cqn

for some constant C = C(ω).

The assumption
⋂

g∈G g([0, 1]) = ∅ is weak (and is actually equivalent to the con-
clusion if G does not fix any point of I ): for example, if you iterate randomly two
continuous injective functions f1, f2 : I → I such that f1 has only one fixed point c,
and f2(c) �= c, then the corollary applies, that is to say that random compositions of f1
and f2 almost surely contract the whole interval [0, 1] exponentially fast.

Remark 2.12. It is actually possible to prove Corollary 2.11 by a straight elementary
proof, using the ideas of [16].

The previous corollary does not apply if we iterate homeomorphisms of the interval.
The techniques of the paper do not seem to be sufficient to treat such a random walk in a
general exhaustive way. However, we can still adapt our techniques to get some partial
information. Here is a variation of our main theorem in this context:

Corollary 2.13. Let ω �→ ( f nω )n≥0 be a non degenerated random walk on a sub-
semigroup G of Homeo([0, 1]), such that:

• there does not exists a non trivial subinterval of (0, 1) invariant by G.
• there exists at least one probability measure μ on (0, 1) which is stationary for the

random walk.

Then, for every x in R there exists a neighbourhood I of x such that

∀n ∈ N, diam( f nω (I )) ≤ qn,

where q < 1 does not depend on x.

Remark 2.14. From the proof of this corollary one can notice that if the second assump-
tion is satisfied but not the first one, then the conclusion of the statement still holds if
we restrict x to belong to the invariant interval I = (inf(supp(μ)), sup(supp(μ)))

This theorem gives the phenomenon of local contractions under the existence of a
stationary probability measure. With some additional work, one can hope to deduce
various dynamical properties from it as we do in this paper in the case of the circle.
As an example, let us state the following corollary, answering by the affirmative to a
question of B. Deroin in [5]: “If f, g are increasing diffeomorphisms of [0, 1], and if
the Lebesgue measure is stationary (for ν = δ f +δg

2 ), is it necessarily the only stationary
probability measure without atoms?”



1092 D. Malicet

Corollary 2.15. If a random walk on Homeo+([0, 1]) admits a stationary probability
measure on (0, 1) with total support, then it is the only one. In particular, any ran-
dom walk on Homeo+([0, 1]) acting minimally on (0, 1) admits at most one stationary
probability measure on (0, 1).

The existence of a stationary probabilitymeasure for a randomwalk onHomeo([0, 1])
(other that convex combinations of δ0 and δ1) can be ensured if the extremities 0 and
1 “repulse” the dynamics of the random walk. One can check for example that a sta-
tionary probability measure exists if the random walk is generated by a probability ν on
Di f f 1+ ([0, 1]) whose finite support, such that

∫
log | f ′(c)|dν( f ) > 0 for c = 1, 2.

However, without such an additional assumption, in general such a measure does not
exists. For example, when the random walk is symmetric in the sense that the associated
probability measure ν is invariant under the transformation g �→ g−1, it is proved
in [7] that there is no stationary probability measure. Thus, Corollary 2.13 does not
apply in this case. But it is interesting to notice that [7] develops techniques to obtain a
good understanding of the random walk in this particular case where ours methods do
not apply. In consequence one could hope that by adapting these techniques and those
of this paper it would be possible to manage the study of a general random walk on
Homeo([0, 1]).

2.5. Scheme of the paper. The paper is organized as follows:

• in Sect. 3 we present the core argument of our results: an invariance principle for a
general skew-product T̂ on a space�×S1 stating that either there is a phenomenon of
contractions in the dynamics of T̂ on the fibres, either “there is something invariant”.
Applying the principle to the specific case where T̂ is associated to a random walk,
we obtain Theorem A, and one can hope that it can also be used in non independent
contexts.

• In Sect. 4, we state various ergodic properties of the random dynamical systems on
compact metric spaces satisfying the property of local contractions. (This section
can be read indepedently of the others)

• In Sect. 5, we deduce the proofs of the other theorems stated in the introduction by
combining the results of Sects. 3 and 4.

3. An Invariance Principle

The objective of this part is to prove an invariance principle in the spirit of the works of
Ledrappier [18], Crauel [4] and Ávila-Viana [2] for one-dimensional cocycles without
regularity (except the continuity).

Let (�,F ,P) be a probability space and T : � → � be aP-invariant transformation.
We look at the skew products on � × S1 extending T , that is the measurable transfor-
mations T̂ of the form (ω, x) �→ (Tω, fω(x)), where fω ∈ Homeo(S1). For ω in �, we
will use the notation

f nω = fT n−1ω ◦ · · · ◦ fω,

so that the iterates of T̂ are given by T̂ n(ω, x) = (T nω, f nω (x)).
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3.1. Lyapunov exponent and exponent of contraction. Let us recall the definition of the
Lyapunov exponents of T̂ when fω is smooth:

Definition 3.1. If fω ∈ Diff(S1), then the Lyapunov exponent of T̂ at a point (ω, x) ∈
� × S1 is defined as

λ(ω, x) = lim
n→+∞

log |( f nω )′(x)|
n

,

if the limit exists. If μ̂ is a T̂ -invariant probabilitymeasure such that (ω, x) �→ log | f ′
ω(x)|

is μ̂-integrable, then the Lyapunov exponent is well defined μ̂-almost everywhere, con-
stant if μ̂ is ergodic, and the Lyapunov exponent of μ̂ is defined as

λ(μ̂) =
∫

�×S1
λ(ω, x)dμ̂(ω, x).

The Lyapunov exponent λ(ω, x)measures the exponential rate of contraction of ( f nω )

at the neighbourhood of x . In order to have analogue informations without assuming
that fω /∈ Diff1(S1), we define the following exponent of contraction:

Definition 3.2. The exponent of contraction of T̂ at the point (ω, x) is the non positive
quantity

λcon(ω, x) = lim
y→x

lim
n→+∞

log(dist( f nω (x), f nω (y))

n
.

If μ̂ is a T̂ -invariant probability measure, the exponent of contraction of μ̂ is defined as

λcon(μ̂) =
∫

�×S1
λcon(ω, x)dμ̂(ω, x).

Note that λcon is T̂ is T̂ -invariant, so that λcon is constant μ̂-almost everywhere if μ̂

is ergodic.
The exponent of contraction has the advantage over Lyapunov exponents that it does

not need any assumption of differentiability. As a counterpart, the information provided
by this exponent is slightly less precise than the one provided by theLyapunov exponents,
because it only measures the contraction of the cocycle, not the expansion, and actually
themaximal contractiononly, so that one cannot hopemiming anOseledeč/Pesin’s theory
with this naive definition in dimension larger than one. In dimension one, though, this
exponent of contraction is a perfect tool to generalize the notion of Lyapunov exponent.
We have indeed in this case a simple relation between Lyapunov exponent and exponent
of contraction:

Proposition 3.3. Let (�,F ,P)beaprobability spaceand let T̂ : (ω, x) �→ (Tω, fω(x))
be a measurable transformation of � × S1 with fω ∈ Diff1(S1), such that the func-
tion (ω, x) �→ log | f ′

ω(x)| is bounded. Then, for every T̂ -invariant ergodic probability
measure μ̂, we have

λcon(μ̂) = inf(λ(μ̂), 0),

where λ(μ̂) is the Lyapunov exponent associated to μ̂:

λ(μ̂) =
∫

�×S1
log | f ′

ω(x)|dμ̂(ω, x).
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Proof. The inequality λcon(μ̂) ≤ 0 is trivial. And as noticed in [4] Proposition 2.6,
one can adapt the techniques of Pesin on stable manifolds, to obtain the inequality
λcon(μ̂) ≤ λ(μ̂) (see also [17] for a proof in the particular case of independent composi-
tions of diffeomorphisms). So from now on, we focus on proving the converse inequality
λcon(μ̂) ≥ inf(λ(μ̂), 0).

We assume that λcon(μ̂) < 0. Let (ω, x) be a point of � × S1 such that

λ(μ̂) = λ(ω, x) = lim
n→+∞

log |( f nω )′(x)|
n

and

λcon(μ̂) = λcon(ω, x) = lim
y→x

lim
n→+∞

log(dist( f nω (x), f nω (y))

n
,

and let ε > 0. If y is close enough to x , then we have

∀n ∈ N, dist( f nω (x), f nω (y)) ≤ ε.

Then, denoting by αω(·) the modulus of continuity of log | f ′
ω|, we have for any z1, z2 in

[x, y],

log
∣
∣
∣
(
f nω

)′
(z1)

∣
∣
∣ − log

∣
∣
∣
(
f nω

)′
(z2)

∣
∣
∣ =

n−1∑

k=0

log
∣
∣
∣ f ′

T kω

(
f kω(z1)

)∣
∣
∣ − log

∣
∣
∣ f ′

T kω

(
f kω(z2)

)∣
∣
∣

≤
n−1∑

k=0

αT kω(ε).

In particular, by the mean value equality,

log |( f nω )′(x)|
n

≤ 1

n
log

(
dist( f nω (x), f nω (y))

dist(x, y)

)

+
1

n

n−1∑

k=0

αT kω(ε).

If ω is a Birkhoff point of α·(ε), we deduce by letting n tend to +∞ and y to x that

λ(μ̂) ≤ λcon(μ̂) +
∫

�

αω′(ε)dP(ω′)

Since αω′(ε) tends to 0 as ε → 0 and is uniformly bounded, by dominated convergence
we obtain that λ(μ̂) ≤ λcon(μ̂). ��

3.2. The invariance principle statement. Let us state the main theorem of the section.

Theorem F. (Invariance principle).
Let (�,F ,P) be a standard Borel space, with P a probability measure, and let

T̂ : (ω, x) �→ (Tω, fω(x)) be a measurable transformation of � × S1 with fω ∈
Homeo(S1). Then, for every T̂ -invariant probability measure μ̂ of the form dμ̂(ω, x) =
dμω(x)dP(ω), we have the following alternative:

• either λcon(μ̂) < 0 (contraction),
• or for P-almost every ω,μTω = ( fω)∗μω (invariance).
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Remark 3.4. In the case that fω is smooth, by Proposition 3.3 we obtain the known fact
that the Lyapunov exponent of μ̂ is negative unless maybe if we have the ”deterministic
relation” μTω = ( fω)∗μω. In particular the Lyapunov exponent of a stationary proba-
bility measure of a random walk on Diff1(S1) is negative unless the stationary measure
is actually invariant)

When the transformation T of � is invertible, the relation μTω = ( fω)∗μω is only a
reformulation of “μ̂ is T̂ -invariant”, so that the invariance principle as we stated it only
gives information in non-invertible contexts (it is possible though to get an invariance
principle in an invertible context, applying the theorem to a modified system, see [18]).

The following Sects. 3.3, 3.4 and 3.5 are dedicated to the proof of Theorem F. We
will keep the notations of the statement in these subsections.

3.3. Fibred Jacobian and fibred entropy. Following the ideas of [2,4,18], we define the
fibred entropy of μ̂ as follows:

Definition 3.5. The fibred Jacobian J = J (μ̂) : � × S1 → R of μ̂ is defined by the
expression

J (ω, x) = d( f −1
ω )∗μTω

dμω

(x),

where the derivative is taken in the Radon–Nikodym sense. The fibred entropy h(μ̂) of
μ̂ is defined as

h(μ̂) =
⎧
⎨

⎩
−

∫

�×S1
log J dμ̂ if log J ∈ L1(� × S1, μ̂),

+∞ otherwise.

By definition, the mapping x �→ J (ω, x) is the derivative of Radon–Nikodym of
the measure ( f −1

ω )∗μTω against μω, that is the μω-integrable function such that we can
write

d( f −1
ω )∗μTω(x) = J (ω, x) dμω(x) + dμ̃ω(x) (1)

where μ̃ω is singular with respect to μω.
Let us state a classical general fact of geometric measure theory which allows to see

a Radon–Nikodym derivative as, in some sense, a standard derivative:

Proposition 3.6. Let μ be a probability measure on S1, and ν be any measure on S1.
Then:

(i) For μ-almost every x in S1,

dν

dμ
(x) = lim

I�x, diam(I )→0

ν(I )

μ(I )

(here and in the sequel, I represents an interval of S1).
(ii) Denoting q∗(x) = supI�x

ν(I )
μ(I ) ,

∫

S1
log+ q∗(x)dμ(x) ≤ 2ν(S1).
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This proposition is standard if ν is the Lebesguemeasure, as a consequence of Vitali’s
covering Lemma, and as noticed in [18], the proof adapts for any measure ν if we use
Besicovitch’s covering Lemma instead of Vitali’s.

The key of the proof of Theorem F is to see the entropy h(μ̂) in two different ways.

• Firstly, one can see h(μ̂) as a quantity measuring in average how much ( f −1
ω )∗μTω

differs from μω, and obtain the following fact justifying that h(μ̂) deserves its
appellation of entropy:

Proposition 3.7. We have the inequality

h(μ̂) ≥ 0,

with equality if and only if for P-almost every ω,μTω = ( fω)∗μω.

• Secondly, one can use Proposition 3.6 to see the Jacobian term J (ω, x) as a kind of
derivative for some geometry: for μ̂-a.e. (ω, x) in � × S1,

J (ω, x) = lim
y→x

μTω([ fω(x), fω(y)])
μω([x, y]) .

It is then possible to think of −h(μ̂) as a kind of Lyapunov exponent, and obtain:

Proposition 3.8. We have the inequality

λcon(μ̂) ≤ −h(μ̂)

Remark 3.9. With a slighter effort, we could actually prove the more precise inequality
λcon(μ̂) ≤ − h(μ̂)

d(μ̂)
, for a good definition of the fibred dimension d(μ̂), which would

thus belongs to the big family of inequalities relating Lyapunov exponent, entropy and
dimension (see for example [12,19,21]).

It is clear that Theorem F is a direct consequence of Propositions 3.7 and 3.8. Let us
begin by proving Proposition 3.7 (the easy part):

Proof. As a consequence of (1),
∫

�×S1
J dμ̂ =

∫

�

∫

S1
J (ω, x) dμω(x)dP(ω) ≤

∫

�

∫

S1
dμTω(x)dP(ω) = 1,

hence, by Jensen inequality,

−h(μ̂) =
∫

�×S1
log J dμ̂ ≤ log

∫

�×S1
J dμ̂ ≤ 0, (2)

so that h(μ̂) is non negative.
Moreover, if h(μ̂) = 0, then the Jensen inequality (2) is in fact an equality, so that

J = 1 μ̂-almost everywhere. Thus, replacing it in (1), we deduce that for P-almost
every ω, ( f −1

ω )∗μTω = μω, hence μTω = ( fω)∗μω. ��
We focus now on the proof of Proposition 3.8. In the following subsection, we dis-

mantle the problem and leave the core arguments for a separated treatment in the section
afterwards.
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3.4. Preliminaries: reduction of the problem. The objective of this subsection is to
check that it is enough to prove Proposition 3.8 in the case where we have some useful
additional properties on μ̂, namely:

• μ̂ is ergodic.
• None of the probability measures μω has atoms on S1.

The reduction of the problem to the ergodic case is done by ergodic disintegration:
let us write

μ̂ =
∫

μ̂α dα

with μ̂α ergodic and dα some probability measure on the set of ergodic probability
measures. Then, writing dμ̂α = dμα,ωdPα and setting

Jα(ω, x) = d( f −1
ω )∗μTω,α

dμω,α

(x)

the Jacobian associated to μ̂α , we have that Jα = J μ̂α-almost everywhere, and as a
consequence,

h(μ̂) = −
∫∫

�×S1
log J dμ̂αdα = −

∫∫

�×S1
log Jα dμ̂αdα =

∫
h(μ̂α) dα.

Moreover, we also have

λcon(μ̂) =
∫∫

�×S1
λcon(ω, x) dμ̂α(ω, x) dα =

∫
λcon(μ̂α) dα,

hence the inequality to prove is
∫

λcon(μ̂α) dα ≤ − ∫
h(μ̂α) dα, which follows from

the inequalities in the ergodic case λcon(μ̂α) ≤ −h(μ̂α).
Thus from now on, we assume that μ̂ is ergodic. The case where μω has atoms is

treated by the following general lemma:

Lemma 3.10. If μ̂ is ergodic, and if the set {ω ∈ �|μω has atoms} has P-positive
probability, then there exists a family (E(ω))ω∈� of finite subsets of S1, all of them
with same cardinal d, such that for P-almost every ω in �, fω(E(ω)) = E(Tω) and

μω = 1

d

∑

x∈E(ω)

δx .

Remark 3.11. The proof does not use the structure of S1 so that the statement remains
actually valid for any skew-shift T̂ .

Proof. If ϕ is any function from S1 intoR andμ a probability measure on S1, we denote
⎧
⎪⎨

⎪⎩

‖ϕ‖l1 =
∑

x∈S1
|ϕ(x)|

‖μ‖l∞ = sup
x∈S1

μ({x}) ,

so that, if ‖ϕ‖l1 < +∞:
∫

S1
ϕdμ ≤ ‖ϕ‖l1‖μ‖l∞ ,
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with equality if and only if ϕ is supported on the set
{
x ∈ S1|μ({x}) = ‖μ‖l∞

}
.

Now, in the context of the statement, let us set

E(ω) =
{
x ∈ S1|μω({x})| = ‖μω‖l∞

}
,

which is clearly finite and non empty if ‖μω‖l∞ > 0 (which occurs on a set of positive
probability by assumption). We are going to prove that these sets E(ω) satisfy the
conclusion of the statement. Let ϕ : (ω, x) �→ ϕω(x) be the function defined by:

ϕω(x) =

⎧
⎪⎨

⎪⎩

1E(ω)(x)

Card(E(ω))
if ‖μω‖l∞ > 0

0 if ‖μω‖l∞ = 0

Notice that ‖ϕω‖l1 = 1 if ‖μω‖l∞ > 0 and 0 if not. On one hand, we have the equality
∫

�×S1
ϕdμ̂ =

∫

�

(∫

S1
ϕωdμω

)

dP(ω) =
∫

�

‖μω‖l∞dP(ω), (3)

(using the easy computation
∫
S1 ϕωdμω = ‖μω‖l∞ ), and on the other hand, we have the

chain of inequalities:
∫

�×S1
ϕ ◦ T̂ dμ̂ =

∫

�

(∫

S1
(ϕTω ◦ fω)dμω

)

dP(ω)

≤
∫

�

‖ϕTω ◦ fω‖l1‖μω‖l∞dP(ω)

≤
∫

�

‖ϕTω‖l1‖μω‖l∞dP(ω)

≤
∫

�

‖μω‖l∞dP(ω)

(4)

(using the general equality ‖ψ ◦ f ‖l1 = ‖ψ‖l1 , valid for f ∈ Homeo(S1), and the fact
that ‖ϕω‖l1 ≤ 1).
Combining (3), (4) and he invariance equality

∫
ϕdμ̂ = ∫

ϕ ◦ T̂ dμ̂, we deduce that the
chain of inequalities (4) is in fact a chain of equalities. In particular, for P-almost every
ω in �,

∫
S1(ϕTω ◦ fω)dμω = ‖ϕTω ◦ fω‖l1‖μω‖l∞ , hence ϕTω ◦ fω is supported on

the set E(ω). In consequence, for P-almost every ω ∈ �:

f −1
ω (E(Tω)) ⊂ E(ω).

Thus, for P-almost every ω in �,Card(E(Tω)) ≥ Card(E(ω)), and hence by er-
godicity d = Card(E(ω)) does not depend on ω (up to a negligible set), and d < +∞
by assumption. In particular, fω : E(ω) → E(Tω) is a bijection and forP-almost every
ω ∈ �:

E(Tω) = fω(E(ω)).

Finally, that last equality means that the set E = ⋃
ω∈�{ω} × E(ω) is T̂ -invariant

up to a μ̂-negligible set hence using the ergodicity of μ̂ and the fact that E is not μ̂-
negligible by assumption we deduce that in fact μ̂(E) = 1, i.e. for P-almost every ω
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in �,μω(E(ω)) = 1. That means that μω is supported on the finite set E(ω), and by
definition all the points of E(ω) have the same μω-mass, so

μω = 1

Card(E(ω))

∑

x∈E(ω)

δx = 1

d

∑

x∈E(ω)

δx ,

which completes the proof. ��
As a consequence, if the probability measures μω have atoms for a set of ω of P-

positive probability, then Lemma 3.10 implies in particular that for P-almost every ω in
�,μTω = ( fω)∗μω, hence h(μ̂) = 0, so that the inequality λcon(μ̂) ≤ −h(μ̂) is trivial.

3.5. Proof of Proposition 3.8. From now on, we assume that μ̂ is ergodic and that the
fibred probability measures μω have no atoms.

The main idea of the proof is to use the Birkhoff theorem to log J to see that the

entropy h(μ̂) represents the exponential rate of decrease of d( f nω )−1∗ μTnω

dμω
, and hence of

μTnω( f nω (I ))
μω(I ) for I a “typical” small interval. However, it is more convenient to work with

a slightly modified version of J :

Definition 3.12. For ε > 0, we define the approximated Jacobian Jε = Jε(μ̂) as

Jε(ω, x) = sup

{
μTω( fω(I ))

μω(I )

∣
∣
∣ I � x, μω(I ) ≤ ε

}

.

and the corresponding approximated entropy hε as

hε(μ̂) =
{

− ∫
�×S1 log Jεdμ̂ if log Jε ∈ L1(� × S1, μ̂)

+∞ otherwise.

Notice that Jε is well defined thanks to the fact that μω has no atoms.
In the next lemma, we justify that the definitions of Jε(μ̂) and hε(μ̂) are legitimate,

in the sense that these quantities are indeed approximations of J (μ̂) and h(μ̂).

Lemma 3.13. We have

lim
ε→0

Jε(μ̂) = J (μ̂)

μ̂-almost everywhere, and
lim
ε→0

hε(μ̂) = h(μ̂). (5)

Proof. The first point is a direct consequence of Proposition 3.6 applied to μ = μω

and ν = ( f −1
ω )∗μTω. To prove the second point, we write log Jε = uε − vε with

uε = sup(log Jε, 0), vε = sup(− log Jε, 0), and we also write log J = u + v in the
same way. We have that uε → u and vε → v μ̂-almost everywhere by the first point.
Moreover, using the second part of Proposition 3.6, we deduce that supε>0 uε ∈ L1(μ̂),
hence by dominated convergence,

lim
ε→0

∫

�×S1
uε dμ̂ =

∫

�×S1
u dμ̂.
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On the other hand, vε is non negative and increasing as ε decreases to 0, hence by
Beppo–Levi’s Theorem,

lim
ε→0

∫

�×S1
vε dμ̂ =

∫

�×S1
v dμ̂.

The claim follows. ��
The following lemma is the key part of the proof of Proposition 3.8 (and hence of

Theorem F). It establishes some phenomenon of exponential local contractions under
the presence of entropy:

Lemma 3.14. Let us assume that h(μ̂) is positive. Then, for μ̂-almost every (ω, x) ∈
�×S1, for every h̃ in (0, h(μ̂)), there exists δ > 0 such that for any interval I containing
x such that μω(I ) < δ,

∀n ∈ N, μT nω( f nω (I )) ≤ e−nh̃μω(I ).

Proof. Let h̃ in (0, h) be given. By (5) one can choose ε > 0 so that hε(μ̂) > h̃. Let us
take a Birkhoff point (ω, x) of log Jε, that is such that

lim
n→+∞

1

n

n−1∑

k=0

log Jε ◦ T̂ k(ω, x) = −hε(μ̂).

Note: Birkhoff’s Theorem is still valid evenwhen log Jε �∈ L1(μ̂), because one can apply
Birkhoff Theorem to the function sup(log Jε,−M) (integrable by Proposition 3.6) for
M arbitrarily large.

In particular there exists a constant C0 = C0(ω, x) such that

∀n ∈ N,

n−1∏

k=0

Jε ◦ T̂ k(ω, x) ≤ C0e
−nh̃ .

Let I be an interval containing x small enough so that

μω(I ) ≤ δ := ε

1 + C0
,

and let us set xn = f nω (x), In = f nω (I ). We claim that

∀n ∈ N, μT nω(In) ≤ e−nh̃μω(I ). (6)

The proof of the claim is done by induction:

• For n = 0, the inequality is trivial.
• If the inequality is satisfied for k = 0, . . . , n − 1, then, for k = 0, . . . , n − 1 the

interval Ik contains the point xk and satisfies μT kω(Ik) ≤ ε, hence, by definition of
Jε,

μT k+1ω(Ik+1)

μT kω(Ik)
= μT k+1ω( fT kω(Ik))

μT kω(Ik)
≤ Jε(T

kω, xk) = Jε ◦ T̂ k(ω, x),

and we deduce

μT nω(In) = μω(I )
n−1∏

k=0

μT k+1ω(Ik+1)

μT kω(Ik)
≤ μω(I )

n−1∏

k=0

Jε ◦ T̂ k(ω, x) ≤ C0e
−nh̃μω(I ).
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Thus, (6) is true, which completes the proof. ��
The phenomenon of local exponential contractions given by Lemma 3.14 are mea-

sured in a “μ̂-sense”. It remains to justify that these contractions remain in the standard
sense: that is the object of the next lemma, where we prove that μω can be replaced by
other arbitrary measures.

Lemma 3.15. Letω �→ νω be any measurable function from� into the set of probability
measures on S1. Then, for μ̂-almost every (ω, x) in � × S1, we have:

lim
y→x

lim
n→+∞

log(νT nω[ f nω (x), f nω (y)])
n

≤ −h(μ̂).

Proof. The case where νω = μω is a direct consequence of Lemma 3.14, that is

lim
y→x

lim
n→+∞

log(μT nω[ f nω (x), f nω (y)])
n

≤ −h(μ̂). (7)

For the general case, let us set

Q∗(w, x) = sup
I�x

νω(I )

μω(I )
.

By Proposition 3.6, log+ Q∗ ∈ L1(μ̂), hence the Birkhoff’s sums 1
n

∑n−1
k=0 log

+ Q∗ ◦
T̂ k converge μ̂-almost everywhere, hence in particular log+ Q∗◦T̂ k

n tends to 0 μ̂-almost
everywhere, which implies:

lim
y→x

lim
n→+∞

1

n
log

(
νT nω[ f nω (x), f nω (y)]
μT nω[ f nω (x), f nω (y)]

)

≤ lim
y→x

lim
n→+∞

1

n
log+ Q∗(T̂ k(ω, x)) = 0.

(8)
The statement is then a direct consequence of (7) and (8). ��

Using Lemma 3.15 with νω the Lebesgue measure, we obtain that λcon(μ̂) ≤ −h(μ̂).
That completes the proof of Proposition 3.8, and hence of Theorem F.

3.6. Exponent of contraction in RDS. We go back to the context of random walks on
Homeo(S1). In this particular case, Theorem F becomes:

Corollary 3.16. Let (G, ν) a random dynamical system on S1, and let μ be a stationary
probability of the system. Then

• either λcon(P × μ) < 0 (contraction),
• or f∗μ = μ for ν-almost every homeomorphism f (and so for any f in G) (invari-

ance).

Thus,we obtain information at typical points x ∈ S1 for the stationary probability
measures of the systems. But it is actually possible to deduce information at every point
x of the circle. To do this, we are going to use the following general fact of random
dynamical systems:
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Proposition 3.17. Let (G, ν) be a RDS on a compact metric space (X, d), (�,P) =
(GN, νN) the associated probabilty space, and let x0 be a point of X. Then, for P-
almost every ω, the set �ω,x0 of weak-∗ cluster values of the sequence of probability

measures
(

1
N

∑N−1
n=0 δ f nω (x0)

)

N∈N is constituted of stationary probability measures of

the RDS.

This proposition is the analogue of the standard Krylov-Bogolyubov Theorem for
RDS. The proof can be found in [5] (French), or it can be seen as a consequence of
Lemma 2.5 of [9]. We are going to use it to extract punctual informations on λcon from
the informations on stationary measures:

Proposition 3.18. Let ω �→ ( f nω )n∈N a random walk on Homeo(S1) and let x0 in S1.
Then for P-almost every ω we have

λcon(ω, x0) ≤ inf
μ∈�ω,x0

λcon(P ⊗ μ),

where �ω,x0 is defined as in Proposition 3.17.

The proof of Proposition 3.18 begins by noticing two elementary facts on the function
(ω, x) �→ λcon(ω, x).

Lemma 3.19. The function λcon is T̂ -invariant (λcon ◦ T̂ = λcon), and for any ω in �,
the function x �→ λcon(ω, x) is upper semicontinuous.

Proof. The invariance property λcon ◦ T̂ = λcon comes from the fact that an interval I
containing f0(x) is contracted by the sequence ( f nTω) if and only if f −1

0 (I ) is an interval
containing x contracted by ( f nω ).

The upper semicontinuity of λcon comes from the fact that if λcon(ω, x) < c, then
there exists an interval I containing x such that diam( f nω (I )) = O(e−nc) and hence
λcon(ω, ·) < c on I . ��

Then, Proposition 3.18 is actually a direct consequence of a much more general fact
of random dynamical systems:

Lemma 3.20. Let (G, ν) be a RDS on a compact space X and let (�,P) and T̂ be
defined as in Definition 2.1. Let ϕ : � × X �→ R be a measurable positive function such
that:

• for every ω ∈ �, x �→ ϕ(ω, x) is lower semicontinuous,
• ϕ ◦ T̂ ≤ ϕ on � × X.

Finally, let x0 be a point of X and for ω in � = GN, let �ω,x0 be defined as in
Proposition 3.17. Then, for P-almost every ω in �,

ϕ(ω, x0) ≥ sup
μ∈�ω,x0

∫

�×X
ϕd(P ⊗ μ).

Proof. Let Fn the σ -algebra generated by the n first canonical projections pk : ω =
( f j ) j≥0 �→ fk , and set

ϕ̄(x) = E[ϕ(·, x)],
�n = E[ϕ(·, x0)|Fn]
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Levy’s zero-one law says that �n −−−−→
n→+∞ ϕ(·, x0) almost surely. On the other hand,

from the inequality

ϕ(ω, x0) ≥ ϕ ◦ T̂ n(ω, x0) = ϕ(T nω, f nω (x0)),

we deduce by taking the conditional expectation with respect to Fn that for P-almost
every ω,

�n(ω) ≥ ϕ̄( f nω (x0)).

Hence, using the Cesaro theorem, for P-almost every ω,

ϕ(ω, x0) = lim
N→+∞

1

N

N−1∑

n=0

�n(ω) ≥ lim
N→+∞

1

N

N−1∑

n=0

ϕ̄( f nω (x0)) (9)

Now, we know that ϕ̄ is lower semicontinuous thanks to the lower semicontinuity of
ϕ(ω, ·) and Fatou’s lemma: indeed, for any x in X ,

lim
y→x

ϕ̄(y) = lim
y→x

E[ϕ(·, y)] ≥ E[ lim
y→x

ϕ(·, y)] ≥ ϕ̄(x). (10)

As a consequence, we can write:

ϕ̄ = inf{ψ : X → R continuous |ψ ≤ ϕ̄},

and for every such continuous function ψ ≤ ϕ̄, we have by (9) and definition of �ω,x0 :

ϕ(ω, x0) ≥ lim
N→+∞

1

N

N−1∑

n=0

ψ( f nω (x0)) = sup
μ∈�ω,x0

∫

X
ψdμ

Since ψ is arbitrary, we deduce that

ϕ(ω, x0) ≥ sup
μ∈�ω,x0

∫

X
ϕ̄ dμ = sup

μ∈�ω,x0

∫

�×X
ϕ dPdμ.

��
Let us conclude by deducing the following corollary, which is only a reformulation

of Theorem A in terms of exponent of contraction:

Corollary 3.21. Let ω �→ ( f nω )n∈N a random walk generated by a probability measure
ν onHomeo(S1), and let us assume that there is no probability measure on S1 invariant
by ν-almost every homeomorphism. Then there exists λ0 < 0 such that for any x in S1,
for P-almost every ω in �,

λcon(ω, x) ≤ λ0
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Proof. By Corollary 3.16, λcon(P ⊗ μ) < 0 for any stationary probability measure μ,
hence Proposition 3.18 applied to −λcon immediately implies that for any x in S1, ω �→
λcon(ω, x) is negative P-almost everywhere. To obtain a uniform negative bound, let
us notice that this negativity implies the negativity of λcon(x) = ∫

�
λcon(ω, x)dP(ω).

Thus, x �→ λcon(x) is pointwise negative, and is also upper-semicontinuous by Fatou’s
lemma as in the computation (10), hence is uniformly bounded from above by some
negative number λ0. Then, using Proposition 3.18 one more time, we obtain that for any
x in S1 and P-almost every ω:

λcon(ω, x) ≤ inf
μ∈�ω,x

λcon(P ⊗ μ) = inf
μ∈�ω,x

∫

S1
λcondμ ≤ λ0.

That achieves the proof of the corollary, and hence of Theorem A. ��

4. Locally Contracting Random Dynamical Systems

In this section, we are going to study the properties of a general random walk on a
compact metric space. This section can be read independently of the remainder of the
paper, except that we are going to use Lemma 3.20 proved in the previous section, and
that wewill use the notations given inDefinition 2.1. Thus, throughout thewhole section:

• (G, ν) is a random dynamical system on a compact metric space (X, d), that is to say
that G a semigroup of continuous transformations of X and ν a probability measure
on G.

• (�,P) = (GN, νN) is the associated probability space, ω �→ ( f nω ) the associated
random walk, defined by

f nω = fn−1 ◦ · · · ◦ f0

(with the implicit notation ω = ( fn)n∈N), and T̂ : (ω, x) �→ (Tω, f0(x)) the
associated skew-shift on � × X .

We are going to study the properties of such RDS satisfying the property of local con-
tractions:

Assumption A. For every x in X , for P-almost every ω in �, there exists a neighbour-
hood B of x such that

diam( f nω (B)) −−−−→
n→+∞ 0.

Remark 4.1. ByTheoremA,AssumptionA is satisfiedwhenG is a subgroup of Homeo+
(S1) without invariant probability measure. It is also satisfied if X is a manifold, G a
semigroup of diffeomorphisms of X and such that all the Lyapunov exponents of the
random walk are negative.

4.1. Preliminaries on random sets. In this part, we state some general results on the
RDS, concerning the structure of the sets invariant by T̂ . We do not use Assumption A
in this part.



Random Walks on Homeo(S1) 1105

Proposition 4.2. Let E = ∪ω∈�{ω} × U (ω) a subset of � × X backward-invariant by
T̂ (i.e. T̂−1(E) ⊂ E) such that U (ω) is open in X for every ω in �. Let us assume that

(P ⊗ μ)(E) > 0

for every stationary ergodic probability measure μ. Then actually,

(P ⊗ μ)(E) = 1

for every probability measure μ on X (not necessarily stationary).

Proof. Firstly, the set of the stationary probability measures is the convex hull of the
set of the ergodic ones, so that the inequality (P ⊗ μ)(E) > 0 remains valid for any μ

stationary. Then, by applying Lemma 3.20 to ϕ = 1E , for any x0 in X and for almost
every ω in �, we have with the notations of the lemma:

1E (ω, x0) ≥ sup
μ∈�ω,x0

(P × μ)(E) > 0,

hence (ω, x0) ∈ E . The result follows. ��
The second proposition shows that the fibres of a T̂ -invariant set cannot have many

connected components (that will be the main ingredient for the proof of Theorem D).

Proposition 4.3. Let E = ∪ω∈�{ω} × E(ω) a subset of � × X totally invariant by T̂
(T̂−1(E) = E). Then, for every stationary ergodic probability measure μ, for P-almost
every ω in �, E(ω) has only a constant finite number d of connected components of
μ-measure positive, and all of them have same measure 1

d .

Proof. In order to prove this proposition, we extend (canonically) the skew-shift T̂
on GZ × X , in an invertible context, allowing to look at the ”past” of the RDS. This
procedure is standard, we resume in the following lemma the properties of the extension
we use (we refer to [17] for the details).

Lemma 4.4. Let �̃ = GZ and P̃ = νZ. The transformation T̂ : (ω, x) �→ (Tω, f0(x))
admits an invariant ergodic probability measure μ̂ on �̃ × X of the form dμ̂ =
dμω(x)dP(ω), with:

• the function ω �→ μω depending only on the negative coordinates of ω,
• ∫

�̃
μωdP̃(ω) = μ,

• for P̃-almost every ω in �̃, μTω = ( f0)∗μω.

This process will allow us to prove the following general lemma:

Lemma 4.5. Let (E(ω, x))(ω,x)∈�×X be a family of Borelian subsets of X such that

∀(ω, x) ∈ � × X, E(T̂ (ω, x)) = f0(E(ω, x)).

Then the function (ω, x) �→ μ(E(ω, x)) is constant (P ⊗ μ)-almost everywhere.
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Proof. Let us extend canonically (ω, x) �→ E(ω, x) to �̃×X (by setting E(( fk)k∈Z, x)
:= E(( fk)k∈N, x)). For every (ω, x) ∈ �̃ × X, E(ω, x) = ( f0)−1(E(T̂ (ω, x))), hence

μω(E(ω, x)) = ( f0)∗μω(E(T̂ (ω, x))) = μTω(E(T̂ (ω, x))).

The function (ω, x) �→ μω(E(ω, x)) is hence T̂ -invariant on �̃×X . By ergodicity of μ̂,
there exists a constant c such that for μ̂-almost every (ω, x) in �̃×X, μω(E(ω, x)) = c.
Sinceμω only depends on the negative coordinates ofω and E(ω, x) only depends on the
non negative coordinates ofω, we deduce by integration of this equality over the negative
coordinates of ω that for (P ⊗ μ)-almost every (ω, x) in � × X, μ(E(ω, x)) = c. ��

Proposition 4.3 follows by choosing E(ω, x) to be the connected component of
x in E(ω) (with the convention E(ω, x) = ∅ if x /∈ E(ω)), satisfying the relation
E(T̂ (ω, x)) = f0(E(ω, x)). For any ergodic probability measure μ of the RDS, by
Lemma 4.5, for P-almost every ω, the function x �→ μ(E(ω, x)) is equal to some
positive constant cμ-almost everywhere,whichmeans that all the connected components
of U (ω) which are not μ-negligible have the same μ-measure c. In particular there is
only a finite number of them, namely 1

c . ��

4.2. Stationary trajectories. We prove in this part that the property of local contractions
implies that the number of ergodic stationary probability measures is finite, and the
trajectory of every point almost surely distributes with respect of one of them.

Definition 4.6. We say that a ball B is contractible if there exists a set �′ ⊂ � of
P-positive probability such that, for ω in �′, diam( f nω (B)) −−−−→

n→+∞ 0.

Assumption A implies that every point contains a contractible neighbourhood.

Lemma 4.7. If B ⊂ X is a contractible ball, then there exists at most one ergodic
stationary probability measure μ such that μ(B) > 0.

Proof. Let μ1 and μ2 be two ergodic stationary measures such that μ1(B) �= 0 and
μ2(B) �= 0. By Birkhoff’s theorem one can find x and y in B such that for P-almost
every ω in �, for every continuous ϕ : X → R,

1

N

N−1∑

n=0

ϕ( f nω (x)) −−−−→
N→+∞

∫

X
ϕdμ1

1

N

N−1∑

n=0

ϕ( f nω (y)) −−−−→
N→+∞

∫

X
ϕdμ2.

(11)

Since B is contractible, one can choose such an ω for which diam( f nω (B)) tends to 0 as
n tends to +∞. Then, for every continuous mapping ϕ : X → R, ϕ( f nω (x))−ϕ( f nω (y))
tends to 0 as n tends to +∞, hence we conclude from (11) that

∫

X
ϕdμ1 =

∫

X
ϕdμ2,

so that μ1 = μ2. ��
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Proposition 4.8. If the RDS (G, ν) satisfies Assumption A, then it has a finite number
d of ergodic stationary probability measures {μ1, . . . , μd}. Their respective topologi-
cal supports F1, . . . , Fd are pairwise disjoints, and are exactly the minimal invariant
compacts of G.

Proof. Each point of x is the centre of a contractible ball, hence by compactness, we can
cover X by a finite number of contractible balls B1, . . . , Bd . By Lemma 4.7, for each i ,
there is at most one ergodic probability measure μ such that μ(Bi ) �= 0. Hence, there
are at most d stationary ergodic probability measures.

Let {μ1, . . . , μd} be the set of the ergodic probabilitymeasures and let Fi = supp(μi )

be the topological support of μi . If x ∈ Fi ∩ Fj , then if B a contractible ball centred
at x , we have μi (B) �= 0 and μ j (B) �= 0, hence by Lemma 4.7, μi = μ j . The sets
F1, . . . , Fd are hence pairwise disjoint.

If F is a minimal closed invariant subset of X , then there exists a stationary ergodic
probability measure μi supported in F . And since Fi = supp(μi ) is invariant by G, we
have F = Fi by minimality of F .

Conversely, let i be in {1, . . . , d}. The closed set Fi = supp(μi ) is invariant by G,
hence it contains a minimal invariant closed subset F . By the previous point, F = Fj
for some j , but since the F1, . . . , Fd are pairwise disjoint, necessarily i = j and hence
Fi = F is a minimal invariant subset. ��
Proposition 4.9. Let us assume that the RDS (G, ν) satisfies Assumption A and let
μ1, . . . , μd and F1, . . . , Fd be as in Proposition 4.8. Then for every x in X, for P-
almost every ω in �, there exists a (unique) integer i = i(ω, x) in {1, . . . , d} such
that:

• The set of cluster values of the sequence ( f nω (x))n≥0 is exactly Fi .
• The sequence of probability measures 1

N

∑N−1
n=0 δ f nω (x) weakly-∗ converges to μi in

C(X,R)∗.

Proof. Let us consider E0 to be the set of the points (ω, x) such that there exists a
neighbourhood of x contracted by ( f nω )n , and let

Ei =
{

(ω, x) ∈ E0
∣
∣
∣
∣
∣
1

N

N−1∑

n=0

δ f nω (x)
C(X,R)∗−−−−−→
n→+∞ μi

}

=
⋃

ω∈�

{ω} ×Ui (ω)

and

Ẽi = {
(ω, x) ∈ E0

∣
∣Acc

{
f nω (x), n ∈ N

} = Fi
} =

⋃

ω∈�

{ω} × Ũi (ω).

Then:

• Ei and Ẽi are totally invariant by T̂ .
• If ω belongs to ω and B is a ball such that diam( f nω (B)) tends to 0 when n tends

to +∞, then either B ∩ Ui (ω) = ∅ (resp B ∩ Ũi (ω) = ∅) or B ⊂ Ui (ω) (resp
B ⊂ Ũi (ω)). In consequence, Ui (ω) and Ũi (ω) are open.

• By Birkhoff Theorem, for (P ⊗ μi )-almost every (ω, x) in � × X ,

1

N

N−1∑

n=0

δ f nω (x)
C(X,R)∗−−−−−→
n→+∞ μi .
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In particular,Acc
{
f nω (x), n ∈ N

} ⊃ Fi , and if x belongs to Fi ,Acc
{
f nω (x), n ∈ N

}

⊂ Fi by invariance of Fi . Thus, (P ⊗ μi )(Ei ) = (P ⊗ μi )(Ẽi ) = 1.

In consequence, one can apply Proposition 4.2 to the sets E = ∪iEi and Ẽ = ∪i Ẽi and
get:

∀x ∈ X, (P × δx )(E) = (P × δx )(Ẽ) = 1.

The claimed result follows. ��

4.3. Dynamics of the transfer operator. We study in this part the sequence of the iterates
of the transfer operator P of a RDS applied to a continuous test function ϕ. We prove
that under the property of local contractions, this sequence (Pnϕ)n∈N always converges
uniformly in the Cesaro sense to a harmonic function, and that it actually converges
uniformly in the standard sense if the RDS is aperiodic (in the sense of Definition 2.4).

The transfer operator P of the system is defined on measurable bounded functions
ϕ : X → R, by

Pϕ =
∫

G
ϕ ◦ f dν( f ).

The iterates of P are given by

Pnϕ =
∫

�

ϕ ◦ f nω dP(ω),

so that the dynamics of P represents the evolution of the law of the random variables
ω �→ f nω (x).

Lemma 4.10. If the RDS (G, ν) satisfies Assumption A, then for every continuous ϕ :
X → R, the family (Pnϕ)n∈N is equicontinuous on X.

Proof. Let ε > 0, and let δ > 0 be such that

∀x, y ∈ X2, d(x, y) ≤ δ ⇒ |ϕ(x) − ϕ(y)| ≤ ε.

Let x be in X . Thanks to Assumption A, we can find a ball B centred at x and a subset
�′ ⊂ � of probability more than 1 − ε such that:

∀n ∈ N,∀ω ∈ �′, diam( f nω (B)) ≤ δ.

We deduce that for every integer n and every y in B:

|Pnϕ(x) − Pnϕ(y)| ≤
∫

�

|ϕ( f nω (x)) − ϕ( f nω (y))|dP(ω)

≤ εP(�′) + 2‖ϕ‖∞P(� − �′)
≤ (1 + 2‖ϕ‖∞)ε.

Thus, (Pnϕ)n∈N is equicontinuous at x . Since x is arbitrary and X is compact, (Pnϕ)n∈N
is equicontinuous on X . ��
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Proposition 4.11. We assume that the RDS (G, ν) satisfies Assumption A, and we keep
the notations of Proposition 4.8, i.e. μ1, . . . , μd and F1, . . . , Fd are respectively the
ergodic stationary probability measures of the RDS and their topological supports.
Then:

• The vector space E0 = {ϕ ∈ C(X,R) | Pϕ = ϕ} of the harmonic continuous
functions of the RDS has finite dimension d, and one can find a basis (u1, . . . , ud)
of E0 such that ui is valued in [0, 1], ui = δi, j on Fj and

∑
i ui = 1 on X.

• For every continuous ϕ : X → R, we have

1

N

N−1∑

n=0

Pnϕ
‖·‖∞−−−−→

N→+∞ ψ

where ψ is the element of E0 given by

ψ(x) =
d∑

i=1

(∫

X
ϕdμi

)

ui (x).

Proof. Let ϕ : X → R be a continuous function, and let x be in X . With i(ω, x) defined
as in Proposition 4.9, we have for P-almost every ω in �:

1

N

N−1∑

n=0

ϕ( f nω (x)) −−−−→
n→+∞

∫

X
ϕdμi(ω,x).

Integrating in ω, we deduce by dominated convergence that

1

N

N−1∑

n=0

Pnϕ(x) −−−−→
n→+∞

d∑

i=1

ui (x)
∫

X
ϕdμi , (12)

where ui (x) = P(ω ∈ � | i(ω, x) = i). Since the sequence
(

1
N

∑N−1
n=0 Pnϕ

)

n∈N is

equicontinuous by Lemma 4.10, the convergence (12) is in fact uniform in x .
The only non trivial property to prove on the functions ui is their continuity. For a

given i , we choose ϕ continuous such that ϕ = δi, j on K j , so that (12) becomes

ui = lim
N→+∞

1

N

N−1∑

n=0

Pnϕ

where the limit is uniform. The continuity of ui follows. ��
We will strengthen the result in the case of aperiodic systems. Let us recall the

definition of aperiodicity given in Sect. 2 in the case of the circle:

Definition 4.12. The RDS (G, ν) on X (resp. the random walk ω �→ ( f nω )n∈N) is said
to be aperiodic if there does not exist a finite number p ≥ 2 of pairwise disjoints closed
subsets F1, . . . , Fp of X such that for ν-almost every homeomorphism g, g(Fi ) ⊂ Fi+1
for i = 1, . . . , p − 1 and g(Fp) ⊂ F1.

Remark 4.13. As already noticed in the particular case of the circle in Sect. 2, if a random
walk ω �→ ( f nω )n∈N acts minimally on X and if X is connected, then it is automatically
aperiodic.
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We can state our result, which studies the convergence of the sequence (Pn)n∈N:

Proposition 4.14. Weassume that theRDS (G, ν) satisfiesAssumptionA, andweassume
also that it is aperiodic. Then, keeping the notations of Proposition 4.11, we have actually

Pnϕ
‖·‖∞−−−−→

n→+∞ ψ =
d∑

i=1

(∫

X
ϕdμi

)

ui

The aperiodicity of the system is used to obtain the following fact, whose proof is
postpone:

Lemma 4.15. If ω �→ ( f nω )n≥0 acts minimally on X and is aperiodic, then for any
positive integer p, ω �→ ( f pnω )n≥0 also acts minimally on X.

Proof of Proposition 4.14. Let ϕ : X → R be a continuous mapping. Thanks to
Lemma 4.10, the only thing we need to prove is that (Pnϕ)n∈N has only one cluster
value in C(X,R), namely

∑
i

(∫
ϕdμi

)
ui . Thus, let ψ = limk→+∞ Pnkϕ be a cluster

value of (Pnϕ)n .
Firstly, up to extracting the candidate limit

∑
i

(∫
ϕdμi

)
ui to ϕ, we can assume that∫

S1 ϕdμi = 0 for i = 1, . . . d, so that we want to prove that ψ = 0.
Secondly, we can reduce the problem to the case where ϕ = ψ : indeed, up to

extracting a subsequence, we can assume that mk = nk+1 − nk tends to +∞ when k
tends to +∞. Using that P is contracting for ‖ · ‖∞, we have

‖Pmkψ − ψ‖∞ ≤ ‖Pmk (ψ − Pnkϕ)‖∞ + ‖Pnk+1ϕ − ψ‖∞ −−−−→
k→+∞ 0 (13)

Thus, from now on we assume that:

•
∫

S1
ϕdμi = 0 for i = 1, . . . d,

• Pnkϕ
‖·‖∞−−−−→

k→+∞ ϕ,

and we want to prove that ϕ = 0. We begin by treating the restriction of the problem to
a minimal subset Fi = supp(μi ). We will use the following remark:

Lemma 4.16. For any continuous ϕ : X → R and any positive integer k, we have
‖Pkϕ‖L2(μi )

≤ ‖ϕ‖L2(μi )
, with equality if and only if forP-almost everyω,ω′, ϕ◦ f kω =

ϕ ◦ f k
ω′ on Fi .

Proof. The inequality is just a consequence of the Jensen inequality Pk(ϕ)2 ≤ Pk(ϕ2)

and of the Pk-invariance of μ, and in the equality case of the Jensen inequality,we have
that for almost every ω,ω′, ϕ ◦ f kω = ϕ ◦ f k

ω′ μi -almost everywhere, hence on Fi by
continuity. ��

By the lemma, the sequence (‖Pnϕ‖L2(μi )
) is non increasing. For any integer p,

writing that

‖Pnkϕ‖L2(μi )
≤ ‖Pnk+pϕ‖L2(μi )

≤ ‖Pnk+pϕ‖L2(μi )
,

and passing to the limit, we obtain that ‖P pϕ‖L2(μi )
= ‖ϕ‖L2(μi )

, and hence by the
lemma, for P-almost every ω, ϕ ◦ f pω = P pϕ on Fi .
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As a consequence, we obtain that for P-almost every ω in �

ϕ ◦ f nkω = Pnkϕ
‖·‖∞−−−−→

k→+∞ ϕ on Fi

In particular, if B is a contractible ball of Fi , then ϕ is constant on B. By compactness, ϕ
only takes a finite number of values on Fi . We deduce that fixing an integer p = nk with
k large enough, we have ϕ ◦ f pω = ϕ on Fi for P-almost every ω. Hence ϕ is constant
on Fi by Lemma 4.15, and this constant is necessarily

∫
ϕdμi = 0.

We now go back to the whole space: we know that ϕ is identically zero on each
Fi . And for any x in X , for almost every ω, all the cluster values of ( f nω (x)) belong
to a minimal set Fi (Proposition 4.9), hence ϕ( f nω (x)) → 0, hence by integration over
ω, Pnϕ(x) → 0, and in particular,

ϕ(x) = lim
k

Pnkϕ(x) = 0.

Thus ϕ is identically zero on X . ��
Proof of Lemma 4.15. If F is a closed subset of X , let us set

�(F) =
⋃

f ∈supp(ν)

f (F).

We want to prove that if F is a non empty closed subset such that �p(F) ⊂ F then
F = X . Set

F = {F ⊂ X closed , F �= ∅,�p(F) ⊂ F},
and let F be an element of F which is minimal with respect to the inclusion. Then:

• for any integer k,�k(F) ∈ F (obvious);
• �p(F) = F by minimality of F , since �p(F) ∈ F and �p(F) ⊂ F ;
• for any integer k,�k(F) is minimal with respect to the inclusion in F : indeed, if

G ∈ F and G ⊂ �k(F)with k < p, then�p−k(G) ∈ F and�p−k(G) ⊂ F , hence
�p−k(G) = F by minimality, and hence �k(F) = �p(G) ⊂ G.

Weconclude that the sequence (�k(F))k is periodic (of period less than p),with elements
that are pairwise disjoint or equal (byminimality). Let p′ the period of the sequence. Then
the finite sequence F,�(F) . . . ,�p′−1(F) is a sequence of pairwise disjoint closed sets
such that any f in supp(ν) sends each set into the following, and the last one into the first.
Because of the assumption of aperiodicity, p′ is necessarily equal to 1. As a consequence,
�(F) ⊂ F , which means that F is invariant by any f in supp(ν), and hence F = X by
minimality of the random walk. ��

4.4. Global contractions. The following theorem shows that from the local phenomenon
of contractions given by Assumption A, we can obtain a phenomenon of global contrac-
tions, in the sense that almost surely, the number of domains of attraction is finite: this
result is close to a result of Y.Le Jan [17].
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Proposition 4.17. Weassume that the RDS satisfies AssumptionA, andwe assumemore-
over that X is locally connected. Then there exists a positive integer p, such that, for
P-almost every ω in �, there exists p connected open sets U1(ω), . . . ,Up(ω), pairwise
disjoints, such that:

• the union U (ω) = U1(ω) ∪ · · · ∪Up(ω) is dense in X,
• for every i in {1, . . . , p}, for every x, y in Ui (ω),

d( f nω (x), f nω (y)) → 0.

Proof. Let us consider the set

E = {(ω, x) ∈ � × S1|( f nω ) contracts a neighbourhood of x} =
⋃

ω∈�

{ω} ×U (ω).

ByProposition4.8, there is afinite number of stationaryprobabilitymeasuresμ1, . . . , μd .
For each i in {1, . . . , d}, let Ui (ω) be the union of the connected components of U (ω)

which have a positiveμi -measure. ForP-almost everyω, the setUi (ω) is an open subset
with μi -measure 1, and has by Proposition 4.3 a finite constant number pi of connected
components. We write Ũ (ω) = U1(ω)∪· · ·∪Ud(ω). As a consequence of Corollary 4.2
applied to Ẽ = ⋃

ω∈�{ω} × Ũ (ω), we know that P ⊗ μ(Ẽ) = 1 for every probability
measure μ, and hence that Ũ (ω) is dense for P-almost every ω. Thus, for P-almost
everyω, Ũ (ω) is a dense open subset of X with a finite number p = ∑

i pi of connected
components (and hence in fact, U (ω) = Ũ (ω)). The result follows. ��

We conclude with a criterion ensuring the synchronization of the RDS.

Proposition 4.18. If the RDS satisfies Assumption A, then the following assertions are
equivalent:

1. the random walk ω �→ ( f nω ) is synchronizing, i.e. for every x, y in X, for P-almost
every ω in �, d( f nω (x), f nω (y)) −−−−→

n→+∞ 0

2. the random walk ω �→ ( f nω , f nω ) admits a unique stationary probability measure on
X × X;

3. The action of G on X is proximal, i.e. for every x, y in X, there exists a sequence
(gn)n of elements of G such that d(gn(x), gn(y)) −−−−→

n→+∞ 0.

Proof. Let us notice that the random walk ω �→ ( f nω , f nω ) on X × X also satisfies the
property of local contractions, so that the previous propositions of the section apply to it.
We will denote by G̃ the semigroup associated to ω �→ ( f nω , f nω ), and by D the diagonal
of X × X .

1 ⇒ 3 is trivial.

3 ⇒ 2: By Proposition 4.8, if there are two distinct ergodic stationary probability
measures, then their respective topological supports F1 and F2 are twodisjoint closed non
empty subsets of X×X invariant by G̃. Let (x, y) be any point of F1. By assumption, one
can find a sequence of elements gn in G such that the distance between gn(x) and gn(y)
tends to 0. Since (gn(x), gn(y)) ∈ F1, taking a cluster value of the sequence we deduce
that F1 intersects D at some point (z1, z1). In the same way, F2 intersects D at some
point (z2, z2). Choosing then a sequence (hn) in G such that d(hn(z1), hn(z2)) → 0,
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any cluster value of (hn(z1), hn(z1)) is also a cluster value of (hn(z2), hn(z2)) and hence
belongs to F1 ∩ F2, which is absurd.

2 ⇒ 1: By Proposition 4.8, there is a unique minimal non empty closed subset F
invariant by G̃. Since D is G̃-invariant, F ⊂ D. By Proposition 4.9, for every (x, y) in
X × X , for P-almost every ω in �, the set of cluster values of (( f nω (x), f nω (y))n∈N is
exactly F . In particular, it is included in D, hence d( f nω (x), f nω (y)) −−−−→

n→+∞ 0. ��

5. Proof of the Main Results

We are going to combine Theorem A proved in Sect. 3 and the results of Sect. 4 to
deduce Theorems B, C, D, E and their corollaries.

5.1. Behaviour of random walks on Homeo(S1).

Proof of Theorem B. If we are in the first case of Corollary 2.2, then the result is a direct
consequence of Proposition 4.8 and 4.9. If not, then we are in the second case since
G has no finite orbit. That means that G is semiconjugated to a minimal semigroup
of isometries, and it is classical in this case that the stationary probability measure is
unique: assuming up to the semiconjugation that G is a semigroup of isometries acting
minimally, if μ1 and μ2 are two ergodic stationary probabilities, one can find Birkhoff’s
points of μ1 and μ2 arbitrarily close, and then the trajectories of these points remain
close, so thatμ1 andμ2 are themselves arbitrarily close, hence equal. Thus the stationary
probability measure μ is unique, and the convergence of 1

N

∑N−1
n=0 δ f nω (x) toward μ is

for example a consequence of Proposition 3.17. ��
Proof of Theorem C. With the notations of the statement, the distribution μx

n is
given by

∫
ϕdμx

n = Pnϕ(x) where P is the transfer operator of the random walk,
so that Proposition 4.14 implies that (μx

n)n converges in law, uniformly in x , to the
stationary probability measure μx = ∑d

i=1 ui (x)μi (keeping the notations of Proposi-
tion 4.14). ��
Proof of Theorem D. As a consequence of Proposition 4.17, for P-almost ω in �, the
set U (ω) of the points having a neighbourhood contracted by ( f nω )n is dense and has
a finite constant number d of connected components, so that S1 − U (ω) is finite of
cardinal d. To obtain the exponential contractions, it is enough to copy the proof of
Proposition 4.17 replacingU (ω) by the setU ′(ω) of the points having a neighbourhood
contracted exponentially fast by ( f nω )n . ��

5.2. Synchronization.

Proof of Theorem E. The only non trivial implication is (iii) ⇒ (i). Let us assume that
the action of G is proximal, that is, for any points x, y there exists a sequence gn of
elements of G such that dist(gn(x), gn(y)) → 0.

Firstly, let us justify that we are in the first case of Corollary 2.2:
If G is semi-conjugated to G̃, then G̃ satisfies the same property of synchronization

as G, so that G̃ is not a group of isometries, and so we are not in second case.
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If G leaves invariant a finite set having at least two points, then the action of G on
this finite set cannot be proximal, which contradicts the assumptions. And G cannot fix
a singleton by assumption. Hence we are not in third case.

Sowe are in thefirst case, that is, the randomwalk satisfies the property of contractions
given by TheoremA. For any x, y in the circle, one can find a sequence gn inG such that
(gn(x))n and (gn(y))n tend to a samepoint c. ByTheoremA, one canfind a neighborhood
of c having positive probability to be contracted, hence we deduce that there is a set of
ω with positive probability such that dist( f nω (x), f nω (y)) tends to 0 exponentially fast as
n tends to +∞.

Let E be the set of (ω, x, y) in � × S1 × S1 such that dist( f nω (x), f nω (y)) tends to 0
exponentially fast as n tends to +∞. We obtained that for any x, y in S1,P⊗δ(x,y)(E) >

0, hence by Proposition 4.2, we have actually P ⊗ δ(x,y)(E) = 1, which means that the
random walk is exponentially synchronizing. ��
Remark 5.1. In the previous proof we could use Proposition 4.18 to deduce the property
of synchronization. However, it does not give the exponential speed.

Proof of Corollary 2.9. Let K be the compact minimal invariant by G (necessarily
unique because of the synchronization property).

Lemma 5.2. There exists g in G having a robust fixed point and such that g|K �= I dK .
(We say that g has a robust fixed point if every small C0-perturbation of g has a fixed
point)

Proof. Let x be any point of K . By Theorems A and B, one can find ω ∈ � and a
neighbourhood I0 of x such that diam( f nω (I0)) → 0 as n → +∞ and ( f nω (x))n∈N is
dense in K . Thus we can find some integer n such that f nω (I0) ⊂ I0 −{x}. Then g = f nω
satisfy g(I0) ⊂ I0 (which implies that g has a robust fixed point) and g(x) �= x . ��

Let g be as in the lemma, and I be an open interval intersecting K such that g has no
fixed point on the closure of I . Let x and y be in S1. For almost every ω, the trajectories
( f nω (x)) and ( f nω (y)) are by assumption asymptotically identical, and are dense in K .We
deduce that we can find h in G such that h(x), h(y) ∈ I . By compactness, one can find
h1, . . . , h p in G such that for any x, y in S1, hi (x), hi (y) ∈ I for some i in {1, . . . , p}.

Now, let f̃1, . . . , f̃d be smallC0-perturbations of the generators f1, . . . , fd , G̃ be the
semigroup generated by these new generators, and g̃, h̃1, . . . , h̃ p ∈ G̃ be corresponding
perturbations of g, h1, . . . , h p. If the perturbations are small enough, the properties

• ∀x ∈ I, g̃(x) �= x ,
• g̃ has a fixed point,
• ∀x, y ∈ S1∃i ∈ {1, . . . , p}|h̃i (x), h̃i (y) ∈ I ,

are still satisfied. The two first properties imply that (g̃n) converges to a constant on I ,
and hence using the third one we deduce that for any x, y in S1, there exists i such that
dist(g̃n ◦ h̃i (x), g̃n ◦ h̃i (y)) → 0 as n → +∞. Thus, we can use Theorem E to conclude
that every random walk which is non degenerated on G̃ is synchronizing. ��

5.3. Random dynamical systems on [0, 1].
Proof of Corollary 2.11. Indentifying I = [0, 1] with an arc of S1, we can prolong
arbitrarily any injective map of I to a homeomorphism of S1. Thus, the result is a
consequence of Theorem E, once we have proved that
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• There is no point of I fixed by every element of G;
• There exists a sequence (gn) is G such that

diam(gn(I )) −−−−→
n→+∞ 0.

The first point is straightforward, since a point fixed byG belongs to
⋂

g∈G g(I ) = ∅.
Let us prove the second point. Let us denote, for g inG, [a(g), b(g)] = g([0, 1]), a =

supg∈G a(g) and b = infg∈G b(g). If a ≤ b, then [a, b] ⊂ ⋂
g∈G[a(g), b(g)] ⊂⋂

g∈G g(I ), which is a contradiction. Thus a > b, so that one can find g and h in

G such that a(g) > b(h), which implies that g(I ) ∩ h(I ) = ∅. Since g2 = g ◦ g is
increasing and has no fixed point on h(I ), we deduce that the sequence (g2n)n converges
on h(I ) to a constant. In consequence, the sequence gn = g2n ◦ h satisfies the second
point. That concludes the proof. ��
Proof of Corollary 2.13. Identifying the points 0 and 1 gives a circle so that we can
apply results of Sect. 3 on the random walk.

Let x0 be any point of (0, 1). For ω in �, let

μN ,ω = 1

N

N−1∑

n=0

δ f nω (x0)

We want to prove that for almost every ω in �, the sequence (μN ,ω)N∈N has some
weak adherence value which is not invariant by G, in order to use Proposition 3.18 and
Corollary 3.16. In this view, let us note that the probability measures invariant by G are
necessarily convex combinations of δ0 and δ1.

Let μ a stationary probability measure of G on (0, 1), that we can suppose ergodic.
Since supp(μ) is invariant by G, we deduce that the interval [inf(supp(μ)), supp(μ)]
is also invariant by G, hence is equal to [0, 1] by assumption, so that 0 and 1 belong
to supp(μ). In particular one can find a Birkhoff point a of μ in (0, x0) and an other
Birkhoff point b in (x0, 1).

Let I a compact interval of (0, 1) such that μ(I ) ≥ 3
4 . Then for almost every ω in �,

the sets Aω = {n ∈ N| f nω (a) �∈ I } and Bω = {n ∈ N| f nω (b) �∈ I } have density smaller
than 1

4 . But obviously, since a < x0 < b the set Cω = {n ∈ N| f nω (x0) �∈ I } is contained
in Aω ∪ Bω, hence this last set has density smaller than 1

2 .
In consequence, for almost every ω in �, an adherance value μ′ of (μN ,ω)N∈N

satisfies μ′(I ) ≥ 1
2 , hence μ′ is not a convex combination of δ0 and δ1, hence is not

invariant by G and

λcon(ω, x0) ≤ λcon(P × μ′) < 0

by Proposition 3.18 and Corollary 3.16. ��
Proof of Corollary 2.15. By Corollary 2.13, every point x has a contractible neigh-
bourhood I (in the meaning given in Definition 4.6), and then there exists exactly one
stationary ergodic probability measure μx such that μx (I ) > 0: at most one because of
Lemma 4.7, and at least one because μ(I ) is positive.

Then, x �→ μx is constant on contractible intervals, hence is locally constant, hence
constant. This constant is the only ergodic stationary probability measure supported on
(0, 1), and necassarily is μ. ��
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