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Abstract: We study highest weight representations of the Borel subalgebra of the quan-
tum toroidal gl1 algebra with finite-dimensional weight spaces. In particular, we develop
the q-character theory for such modules. We introduce and study the subcategory of
‘finite type’ modules. By definition, a module over the Borel subalgebra is finite type if
the Cartan like currentψ+(z) has a finite number of eigenvalues, even though themodule
itself can be infinite dimensional. We use our results to diagonalize the transfer matrix
TV,W (u; p) analogous to those of the six vertex model. In our setting TV,W (u; p) acts
in a tensor product W of Fock spaces and V is a highest weight module over the Borel
subalgebra of quantum toroidal gl1 with finite-dimensional weight spaces. Namely we
show that for a special choice of finite type modules V the corresponding transfer matri-
ces, Q(u; p) and T(u; p), are polynomials in u and satisfy a two-term T Q relation. We
use this relation to prove the Bethe Ansatz equation for the zeroes of the eigenvalues of
Q(u; p). Then we show that the eigenvalues of TV,W (u; p) are given by an appropriate
substitution of eigenvalues of Q(u; p) into the q-character of V .

1. Introduction

The six vertex model is a well known representative example of quantum integrable
systems. Its integrability is attributed to a large symmetry under the quantum loop algebra
Uq˜sl2. This setting easily generalizes to an arbitrary simple Lie algebra g; with each
choice of Uq g̃ and its representation, an analog of the six vertex model is defined.
Algebra Uq g̃ is a quantization of the algebra of loops g[x±1] with values in g. We may
then naïvely ask the following question: what if we replace the loop algebra in one
variable g[x±1] with that of two variables g[x±1, y±1]?

Quantum version of loop algebras in two variables are the quantum toroidal algebras,
introduced by Ginzburg, Kapranov and Vasserot [GKV]. The last decade has seen novel
developments in connection with geometric representation theory and gauge theory, and
there is now revived interest in this subject, see e.g. [FHHSY,AFS,MO,NPS].
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In this article we are concerned with the quantum toroidal algebra of type gl1. We
denote it by E. Algebra E has a universal R matrix, which allows us to consider a family
of commuting transfer matrices TV,W (u; p) analogous to those of the six vertex model
T6v(u; p). Here u is a ‘spectral parameter’, p is a ‘twist parameter’, V denotes the
‘auxiliary space’, and W denotes the ‘quantum space’ on which the transfer matrices
act.

In the original six vertex model, transfer matrices are operators derived from an
auxiliary space V = C

2, which acts on the quantum space W = (C2)⊗N . All C2 are
considered as two dimensional representations of Uq(˜sl2). In the case of the quantum
toroidal algebra, the quantum space W is an N fold tensor product of Fock spaces
F(v)⊗N . The Fock module F(v) is an infinite dimensional space that has a basis labeled
by all partitions. The auxiliary space V is any highest weight representation of the Borel
subalgebra of quantum toroidal gl1 with finite-dimensional weight spaces.

Besides the intrinsic interest on its own, this problem has a close connection to
a topic in conformal field theory (CFT). In a seminal series of papers [BLZ1,BLZ2,
BLZ3] Bazhanov, Lukyanov and Zamolodchikov introduced and studied a commutative
subalgebra inside the enveloping algebra of the Virasoro algebra. This subalgebra gives
commuting operators called integrals of motion (IM), which act on Virasoro Verma
modules. Dorey and Tateo [DT] and Bazhanov et al. [BLZ4] discovered a remarkable
connectionbetween the spectra of theQ operators,which are certain generating functions
of IM, and spectral determinants of a certain family of one-dimensional Schrödinger
operators. Subsequently aq analog of IMwas considered byKojima, Shiraishi,Watanabe
and one of the present authors [FKSW]. They introduced a family of operators In ,
n = 1, 2, · · · , in terms of contour integrals involving currents of the deformed Virasoro
algebra, and showed their commutativity by direct computation. As it turns out, their
first Hamiltonian I1 is obtained from the transfer matrix TF,W (u; p), where F = F(1),
for the algebra E by taking the first term in the expansion as u → 0. Thus it is natural to
expect that the six vertex type model associated with E gives the same integrable system
defined by the q-deformed IM of [FKSW]. In the limit to CFT, Litvinov [L] put forward
a conjectural Bethe Ansatz equation which describes the spectrum of this system.

In our previouswork [FJMM2], we showed that the eigenvalues of I1 are indeed given
in terms of the sum of the Bethe roots. In this paper we use a method different from the
one in [FJMM2], and obtain the spectrum of the transfer matrix TF,W (u; p), and more
generally TV,W (u; p), in full. Namely we adopt Baxter’s method of T Q relation [Ba],
which we recall here.

In the case of the six vertex model, the transfer matrix T6v(u; p) with a suitable
normalization is a polynomial in the spectral parameter u. Baxter showed that there is
another matrix Q6v(u; p), which depends polynomially in u, commutes with T6v(u; p),
and satisfies the relation

T6v(u; p)Q6v(u; p) = a(u)Q6v(q
−2u; p) + p d(u)Q6v(q

2u; p) ,

wherea(u) andd(u) are known scalar polynomials. This relation canbeviewedas the one
obeyed by eigenvalues of T6v(u; p) and Q6v(u; p). Denote the eigenvalues by the same
letters. Then the T Q relation implies the Bethe equation 0 = a(ζi )Q6v(q−2ζi ; p) +
p d(ζi )Q6v(q2ζi ; p) for the roots {ζi } of Q6v(u; p). Once Q6v(u; p) is known, the
corresponding eigenvalue T6v(u; p) is given in turn as

T6v(u; p) = a(u)
Q6v(q−2u; p)
Q6v(u; p) (1 + a6v(u; p)) , a6v(u; p)= p

d(u)

a(u)

Q6v(q2u; p)
Q6v(q−2u; p) .
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Unlike the case of Uq˜sl2, the T Q relation in the toroidal case is written in terms of
Q(u; p) and a new, auxiliary matrix T(u; p) different from TF,W (u; p). The relation
takes the form

T(u; p)Q(u; p) = a(u)

3
∏

s=1

Q(q−1
s u; p) + p d(u)

3
∏

s=1

Q(qsu; p) , (1.1)

where qs (s = 1, 2, 3) are the parameters of the algebra E satisfying q1q2q3 = 1. The
original transfer matrix TF,W (u; p) is then given by an infinite series

TF,W (u; p) = Q(q−1
2 u; p)

Q(u; p)
∑

λ

∏

�∈λ

a(q−�u; p) , a(u; p)= p
d(u)

a(u)

3
∏

s=1

Q(qsu; p)
Q(q−1

s u; p) .
(1.2)

Here λ runs over all partitions,� = (i, j) runs over the nodes of λ and q� = qi−1
3 q j−1

1 .
See Theorem 5.8 below. Construction of Q(u; p) and T(u; p), and formula (1.2) for the
transfer matrix eigenvalues, are the main results of this paper.

Our approach is based on representation theory. Bazhanov et al. [BLZ3] showed that
the matrix Q6v(u; p) is a transfer matrix of an appropriate representation of the Borel
subalgebra of Uq˜sl2. Frenkel and Hernandez [FH] generalized this construction to an
arbitrary quantum loop algebra Uq g̃ of non-twisted type, and obtained an expression of
the transfer matrix in terms of appropriate analogs of Q6v(u; p). In the present article,
we construct the operator Q(u; p) in the setting of the quantum toroidal algebra E. We
are able to add the next step: we also construct an operator T(u; p) which satisfies the
two-term T Q relation (1.1), and therefore prove the Bethe equation for the zeroes of the
eigenvalues of Q(u; p), see Theorem 5.8.

Our construction is based on the study of infinite dimensional modules of the Borel
subalgebra on which the Cartan like generator ψ+(z) has a finite number k of distinct
eigenvalues. We say that such a module is k-finite. Operators Q(u; p) and T(u; p)
are transfer matrices constructed from 1-finite and 2-finite modules, respectively. The
two-term T Q relation (4.24) is a short exact sequence in the Grothendieck ring of
representations of the Borel subalgebra.

We provide a grading similar to the one constructed in [FH], see Propositions 4.6 and
4.14, and use it for proving that Q(u; p) and T(u; p) are polynomials, see Propositions
5.3, 5.4. Our construction of the grading and the proof of polynomiality are different
from those in [FH].

In order to express the eigenvalues of arbitrary transfer matrices TV,W (u; p), we
develop the theory of q-characters for representations of the Borel subalgebra using the
approach similar to the one in [FR,FM]. We prove some properties of the q-characters,
see Section 4.5, and use it to study finite typemodules.We give a classification of 1-finite
modules, see Proposition 4.17. We also give conjectures including the one on the cluster
algebra structure of the Grothendieck ring of the category of modules of finite type
in the spirit of [HL], see Sect. 4.6. Then the matrix TV,W (u; p) (or the corresponding
eigenvalues) is described by an appropriate substitution of Q(u; p) (or eigenvalues of
Q(u; p)) into the q-character of V , see Proposition 5.5 and Corollary 5.7.

Such a description in the case of quantum affine algebras was long anticipated and
finally proved in [FH]. The case of quantum affine algebras is treated in [FJMM3]
where many results are proved in parallel to the current paper. In particular, one also has
modules of finite type, the corresponding transfer matrices are polynomial, and the two
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term relation similar to (1.1) holds. It follows that in the case of quantum affine algebras
the eigenvalues of the Q operator satisfy the appropriate Bethe ansatz equations as well.

The text is organized as follows. In Sect. 2, we collect basic definitions and facts
concerning the quantum toroidal gl1 algebra E and its Borel subalgebras. In Sect. 3 we
discuss modules over E and its Borel subalgebra B⊥, and the theory of q-characters.
Section 4 is devoted to the study of finite type modules over B⊥. In the last Sect. 5 we
introduce the transfer matrices, establish the Bethe ansatz equation and write the spectra
of transfer matrices. Several technical points are collected in the Appendix.

2. Quantum Toroidal gl1

In this section we summarize basic definitions and facts concerning the quantum toroidal
algebra of type gl1.

2.1. Algebra E. Throughout the text we fix complex numbers q, q1, q2, q3 satisfying
q2 = q2 and q1q2q3 = 1. We assume further that, for integers l,m, n ∈ Z, ql1q

m
2 q

n
3 = 1

holds only if l = m = n.
The quantum toroidal algebra of type gl1, whichwe denote byE, is a bi-gradedC alge-

bra generated by en, fn (n ∈ Z), hr (r ∈ Z\{0}) and invertible elementsC, C⊥, D, D⊥,
with bi-degrees

deg en = (1, n), deg fn = (−1, n), deg hr = (0, r) ,

deg x = (0, 0) (x = C, C⊥, D, D⊥).

For a homogeneous element x ∈ E with deg x = (ν1, ν2), we say that x has principal
degree ν1 and homogeneous degree ν2, and write pdeg x = ν1, hdeg x = ν2.

Elements C,C⊥ are central in E. Elements D, D⊥ count the degrees of an element
x ∈ E: DxD−1 = q−hdeg x x , D⊥x(D⊥)−1 = qpdeg x x . The rest of the defining relations
are given as follows. Using the symbols

g(z, w) = (z − q1w)(z − q2w)(z − q3w),

κr = (1− qr1)(1− qr2)(1− qr3) ,

we have

[hr , hs] = δr+s,0
1

r

Cr − C−r

κr
,

[hr , en] = −1

r
en+r C

(−r−|r |)/2 , [hr , fn] = 1

r
fn+r C

(−r+|r |)/2 ,

[e(z), f (w)] = 1

κ1
(δ

(Cw

z

)

ψ+(w) − δ
(Cz

w

)

ψ−(z)),

g(z, w)e(z)e(w) + g(w, z)e(w)e(z) = 0,

g(w, z) f (z) f (w) + g(z, w) f (w) f (z) = 0,

[en, [en−1, en+1]] = 0 , [ fn, [ fn−1, fn+1]] = 0 ,
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for all n ∈ Z and r, s ∈ Z\{0}. Here we use generating series e(z) = ∑

n∈Z enz−n ,
f (z) = ∑

n∈Z fnz−n , and ψ±(z) = ∑

±n≥0 ψ±
n z−n are given by

ψ±(z) = (C⊥)∓1 exp
(

∞
∑

r=1

κr h±r z∓r
)

.

The relations between the hr ’s and e(z), f (z) can also be written as the bilinear relations

g(C (1±1)/2z, w)ψ±(z)e(w) + g(w,C (1±1)/2z)e(w)ψ±(z) = 0 ,

g(w,C (−1±1)/2z)ψ±(z) f (w) + g(C (−1±1)/2z, w) f (w)ψ±(z) = 0.

It is easy to see that the elements e0, f0, h±1 together with C,C⊥, D, D⊥ generate
E.

Let E = ⊕ν1,ν2∈ZEν1,ν2 be the decomposition of algebra E into bigraded subspaces.
For p ∈ Z, we set

E�p =
⊕

ν1≥p
ν2∈Z

Eν1,ν2 , E�p =
⊕

ν1≤p
ν2∈Z

Eν1,ν2 .

2.2. Elliptic Hall algebra. Algebra E is a quantum version of the Lie algebra of currents
gl1[x±1, y±1] with a two dimensional central extension. It was originally introduced in
[BS] and was called elliptic Hall algebra, see also [M,FT,FHSSY]. We give here an
account of the definition in [BS] following [Ng2].

Let us prepare some terminology. We say that an element ν = (ν1, ν2) ∈ Z
2\{(0, 0)}

is coprime if ν1, ν2 are coprime integers. We equip Z
2 with the lexicographic ordering

>: (ν1, ν2) > (ν′1, ν′2) if ν1 > ν′1, or ν1 = ν′1 and ν2 > ν′2. For a triangle T with vertices
ν, ν′, ν′′ ∈ Z

2, we write middle(T ) = ν′ if ν > ν′ > ν′′. We say that T is a quasi-empty
triangle if there are no lattice points in its interior and on at least one of its edges.

The elliptic Hall algebraA is generated by elements pν (ν ∈ Z
2\{(0, 0)}) and central

elements cν (ν ∈ Z
2) satisfying c0 = 1, cν+ν′ = cνcν′ . The defining relations read as

follows.

[prν,psν] = r

κr
δr+s,0 (crν − c−rν) if ν is coprime and r, s ∈ Z\{0},

[pν,pν′ ] = cM
κ1

hν+ν′ if −ν′, 0, ν form a quasi-empty triangle T oriented clockwise.

Here M = middle(T ), and the symbol hν is defined by setting

∑

n≥0
hnνz

−n = exp
(

−
∑

r≥1
κrprν

z−r

r

)

for all coprime ν.
The generators p(ν1,ν2) correspond to the elements xν1 yν2 of the Lie algebra. The

following PBW type basis is known. For a non-zero vector ν = (r cos θ, r sin θ) on the
plane, we define its argument by arg ν = θ , where r > 0 and−π < θ ≤ π . We say that
a monomial cνpν(1) · · · pν(N ) ∈ A (ν ∈ Z

2, ν(i) = (ν
(i)
1 , ν

(i)
2 ) ∈ Z

2\{(0, 0)}) is normal-
ordered if π ≥ arg ν(1) ≥ arg ν(2) ≥ · · · ≥ arg ν(N ) > −π , and if arg ν(i) = arg ν(i+1)

then ν
(i)
1 ≥ ν

(i+1)
1 .
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Theorem 2.1. [BS] The set of all normal-ordered monomials is a basis of A.

The following result tells how the algebras E andA are related. Let E′ = 〈en, fn(n ∈
Z), hr (r ∈ Z\{0}),C,C⊥〉 be the subalgebra of E obtained by ‘dropping’ D, D⊥.

Theorem 2.2. [S] There is an isomorphism of algebras E′ ∼→ A such that

en �→ p(1,n) , fn �→ p(−1,n) , C±r h±r �→ −1

r
p(0,±r) ,

C �→ c(0,1) , C⊥ �→ c(−1,0) ,

where n ∈ Z, r > 0.

Hereafter we identify E′ with A by the isomorphism stated in Theorem 2.2.
The presentation of A clarifies some properties which are not obvious in that of E′.

Among other things, the natural action of SL(2,Z) on Z
2 lifts to an action of the uni-

versal cover ˜SL(2,Z) onA by automorphisms, see [BS,Ng2]. We shall use a particular
automorphism θ of E of order four [BS,M]

θ : e0 �→ h−1, h−1 �→ f0, f0 �→ h1, h1 �→ e0, (2.1)

C⊥ �→ C , C �→ (C⊥)−1 , D⊥ �→ D , D �→ (D⊥)−1 ,

which corresponds to rotating the lattice clockwise by 90 degrees. Its square is an invo-
lutive automorphism

θ2 : en �→ f−n, fn �→ e−n, hr �→ h−r , x �→ x−1 (x = C,C⊥, D, D⊥). (2.2)

Quite generally, we write x⊥ = θ−1(x) for an element x ∈ E. In this notation

e⊥0 = h1, f ⊥0 = h−1, h⊥1 = f0, h⊥−1 = e0 ,

e⊥−1 = e1C
−1, e⊥1 = f1C

⊥, f ⊥1 = f−1C, f ⊥−1 = e−1(C
⊥)−1.

We refer to

en , fn , hr , C , C⊥ , D , D⊥ (2.3)

as horizontal generators, and

e⊥n , f ⊥n , h⊥r , C , C⊥ , D , D⊥ (2.4)

as vertical generators, see Fig. 1.

2.3. Hopf algebra structures. Algebra E is endowed with a topological Hopf algebra
structure (E,
, ε, S) defined in terms of the horizontal generators. By “topological” we
mean here that the formulas for the coproduct and antipode contain infinite sums, but
the degrees of the terms in the sums increase with respect to an appropriate Z-grading.
In the case of horizontal generators, we use homogeneous grading.
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...
...

...hdeg

pdeg

B
⊥

B

B⊥B

f⊥
2 h⊥

2 e⊥
2

· · · f−2 f−1, f⊥
1 f0,h⊥

1 f1,e⊥
1 f2 · · ·

· · · h−2 h−1, f
⊥
0 • h1, e

⊥
0 h2 · · ·

· · · e−2 e−1 , f
⊥
−1 e0 , h

⊥
−1 e1 , e

⊥
−1 e2 · · ·

f⊥
−2 h⊥

−2 e⊥
−2

...
...

...

Fig. 1. Horizontal/vertical generators and Borel subalgebras B (lower half), B (upper half), B⊥ (right half),

B
⊥
(left half). The elements C,C⊥, D, D⊥ placed at the center • are common to all these subalgebras.

For x = C,C⊥, D, D⊥, we set 
 x = x ⊗ x , ε(x) = 1, S(x) = x−1. For the
remaining generators we define


en =
∑

j≥0
en− j ⊗ ψ+

j C
n + 1⊗ en , (2.5)


 fn = fn ⊗ 1 +
∑

j≥0
ψ−
− jC

n ⊗ fn+ j , (2.6)


hr = hr ⊗ 1 + C−r ⊗ hr , (2.7)


h−r = h−r ⊗ Cr + 1⊗ h−r , (2.8)

ε(en) = ε( fn) = ε(h±r ) = 0 , (2.9)

S(en) = −
∑

j≥0
C−n+ j en− j ˜ψ

+
j , (2.10)

S( fn) = −
∑

j≥0
˜ψ−
− jC

−n− j fn+ j , (2.11)

S(h±r ) = −h±rC±r . (2.12)

Here we set ψ±(z)−1 = ∑

j≥0 ˜ψ±
± j z

∓ j .
Replacing the horizontal generators with the corresponding vertical generators, we

obtain another Hopf algebra structure (E,
⊥, ε⊥, S⊥). Both structures will play a role
in the sequel.
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2.4. Borel subalgebras. The lattice Z2 is partitioned as Z2 = {(0, 0)} ∪ Z ∪ Z , where
Z = {ν = (ν1, ν2) ∈ Z

2 | ν1 > 0 or ν1 = 0, ν2 > 0}, Z = −Z . The corresponding
elements pν generate subalgebras of E,

B = 〈pν (ν ∈ Z), C,C⊥, D, D⊥〉 ,
B = 〈pν (ν ∈ Z), C,C⊥, D, D⊥〉 ,

whichwe call the Borel and the opposite Borel subalgebras, respectively, see Fig. 1. Both
(B,
, ε, S), (B,
, ε, S) are Hopf subalgebras of (E,
, ε, S). Using the presentation
of the elliptic Hall algebra, we see that algebraB is generated by en (n ∈ Z), hr (r > 0),
C,C⊥, D, D⊥, and B by fn (n ∈ Z), h−r (r > 0), C,C⊥, D, D⊥.

Quite generally, a bialgebra pairing on a bialgebra A is a symmetric non-degenerate
bilinear form ( , ) : A × A → C with the properties

(a, b1b2) = (
(a), b1 ⊗ b2), (a, 1) = ε(a)

for any a, b1, b2 ∈ A. With each such pair (A, ( , )), there is an associated bialgebra
DA called the Drinfeld double of A. As a vector space DA = A ⊗ Aop, where Aop is
a copy of A endowed with the opposite coalgebra structure. Moreover A+ = A⊗ 1 and
A− = 1⊗ Aop are sub bialgebras of DA, and the commutation relation

∑

(a(2), b(1)) a
−
(1)b

+
(2) =

∑

(b(2), a(1)) b
+
(1)a

−
(2)

is imposed for a, b ∈ A. Here a+ = a ⊗ 1, a− = 1 ⊗ a, and we use the Sweedler
notation 
(a) = ∑

a(1) ⊗ a(2) for the coproduct.
In the present case, we take A to be the bialgebra (B,
, ε). It has a bialgebra pairing

such that the non-trivial pairings of the generators are given by

(em, en) = 1

κ1
δm,n , (hr , hs) = 1

rκr
δr,s ,

(C, D) = (C⊥, D⊥) = q−1.

This pairing respects bidegrees in the sense that (a, b) = 0 unless deg a = deg b.
We identify Aop with B via the involution θ2 : B → B given in (2.2). The Drinfeld
double of B is then identified with B ⊗ B. Its quotient by the relation x ⊗ 1 = 1 ⊗ x
(x = C,C⊥, D, D⊥) is isomorphic to the algebra E [BS].

We can equallywell use the ‘vertical’ version of Borel and opposite Borel subalgebras

B⊥ = θ−1(B) , B
⊥ = θ(B).

Algebra E is also a quotient of the Drinfeld double of (B⊥,
⊥, ε⊥).

3. Modules

This section contains preliminary material on representations of E and B⊥. We shall
consider only modules on which C acts by 1. From here until the end of the paper, we
drop D from the algebra and use the same letters E, B⊥, etc., to denote the respective
quotient byC−1.This quotient is the quantum toroidal analogof the universal enveloping
algebra of a current Lie algebra.
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3.1. Category OE. Let V be an E module. For a ∈ C
× and n ∈ Z, we set

V(a) = {v ∈ V | ψ+
0 v = av} , Vn = {v ∈ V | D⊥v = qnv} ,

and V(a,n) = V(a) ∩ Vn . If V(a,n) �= 0 then we call (a, n) a weight of V . We denote by
wt(V ) the set of weights of V . For a vector v ∈ Vn we write pdeg v = n.

We consider a full subcategory OE of the category of all E modules. We say that V
is an object of OE if the following conditions are satisfied.

(i) There exists a finite subset A ⊂ C
× such that V = ⊕

(a,n)∈A×Z
V(a,n),

(ii) dim V(a,n) < ∞ for all a, n,
(iii) Vn = 0 if n � 0.

Thanks to (iii), the coproduct
⊥ iswell-defined on the tensor product ofV,W ∈ ObOE.
We write this tensor product module as V ⊗
⊥ W . Category OE is a monoidal category
with respect to ⊗
⊥ .

Let rE be the set of all rational functions �(z) ∈ C(z) which are regular at z = 0,∞
and satisfy �(0)�(∞) = 1. Let �±(z) = ∑

j≥0 �±
± j z

∓ j be the expansion of �(z) at

z±1 = ∞.
We say that an E module V is a highest 
-weight module with highest 
-weight

� ∈ rE if it is generated by a non-zero vector v0 such that

pνv0 = 0 (ν1 > 0), ψ±(z)v0 = �±(z)v0 , D⊥v0 = v0.

The unique simple module with highest 
-weight � belongs to OE. We denote it by
L(�). Modulo a shift of grading by D⊥, any simple object of categoryOE is of the form
L(�) for some � ∈ rE, see [M].

We are interested in the Grothendieck ring Rep0 E of category OE. However, many
natural representations of E do not possess finite composition series. In order to address
this issue we pass to an appropriate completion of Rep0 E. Namely, for n ∈ Z, let Fn

denote the additive subgroup of Rep0 E spanned by [V ], V ∈ OE, such that Vm = 0 for
m > n. This gives a filtration Rep0 E = ∪n∈ZFn , · · · ⊃ F1 ⊃ F0 ⊃ F−1 ⊃ · · · , which
satisfies FmFn ⊂ Fm+n , Fm + Fn ⊂ Fmin(m,n). We set

RepE = lim←−
n→−∞

(Rep0 E)/Fn . (3.1)

3.2. Examples of highest 
-weight modules. To write the examples of highest 
-weight
modules we need the notation for partitions and plane partitions.

A partition is a sequence of non-negative integers λ = (λ1, λ2, · · · ) such that λi ≥
λi+1 for all i ≥ 1, and λi = 0 for i large enough. We write ∅ = (0, 0, 0, . . . ). The set
of all partitions is denoted by P. We identify a partition λ ∈ P with the set of points
(i, j) ∈ Z

2 such that 1 ≤ j ≤ λi , i ≥ 1. For λ ∈ P, we set |λ| = ∑

j≥1 λ j and

(λ) = max{ j ≥ 1 | λ j > 0} (λ �= ∅), 
(∅) = 0.

For λ ∈ P, i ∈ Z>0, we create a new sequence of non-negative integers λ + 1i by the
rule (λ + 1i ) j = λ j + δi, j . We also use the cut partitions:

(λ)≤i−1 = (λ1, · · · , λi−1, 0, 0, · · · ), (λ)≥i+1 = (λi+1, · · · , λ
(λ), 0, 0, · · · ).
A plane partition is a sequence of partitions λ = (λ(1), λ(2), · · · ), λ(k) ∈ P, such that

λ(k) ⊃ λ(k+1) for all k and λ(k) = ∅ for k � 0. We denote the set of all plane partitions
by P and for λ ∈ P we set |λ| = ∑

i |λ(i)|.
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We identify λ ∈ P with the set of points (i, j, k) ∈ Z
3 such that 1 ≤ j ≤ λ

(k)
i ,

i, k ≥ 1.
For a plane partition λ = (

λ(1), · · · , λ(N )
)

we set

(λ)k,i =
(

λ(1), · · · , λ(k−1), (λ(k))≤i−1,∅,∅, · · · ) ,

(λ)k,i = (

(λ(k))≥i+1, λ(k+1), · · · , λ(N ),∅,∅, · · · ) ,

and

λ + 1(k)
i = (

λ(1), · · · , λ(k) + 1i , · · · , λ(N ),∅,∅, · · · ).

For a node � = (i, j, k) ∈ Z
3 we write q� = qi3q

j
1q

k
2 . We also use

A
(

a
) =

3
∏

s=1

1− q−1
s a

1− qsa
. (3.2)

The most basic example of a highest 
-weight module is the Macmahon module
M(u, K ) [FJMM1]. The Macmahon module M(u, K ) has a basis {|λ〉} labeled by the
set of all plane partitions with the action of E given by the following explicit formulas.
Namely, we have

〈λ|ψ±(z)|λ〉 = K 1/2 1− K−1u/z

1− u/z

∏

�∈λ

A
(

q−�u/z
)−1

. (3.3)

If λ + 1(k)
i is a plane partition, then we have

〈λ + 1(k)
i | f (z)|λ〉 = K 1/2

1− q−1
1

1− q−k
2 u/z

1− u/z

1− q−i+1
3 q−k+1

2 u/z

1− q−i+1
3 q−k

2 u/z

∏

�∈(λ)k,i

A
(

q−�u/z
)−1

× δ
(

q−i
3 q

−λ
(k)
i −1

1 q−k
2 u/z

)

, (3.4)

〈λ|e(z)|λ + 1(k)
i 〉 = −1

1− q1

1− K−1u/z

1− q−k
2 u/z

1− q−i
3 q−k

2 u/z

1− q−i
3 q−k+1

2 u/z

∏

�∈(λ)k,i

A
(

q−�u/z
)−1

× δ
(

q−i
3 q

−λ
(k)
i −1

1 q−k
2 u/z

)

. (3.5)

All other matrix coefficients are zero.
For generic K ∈ C

× (i.e. K �= qm3 q
n
1 for m, n ∈ Z) the Macmahon module is

irreducible,

M(u, K ) = L
(

�M(u,K )

)

, �M(u,K )(z) = K 1/2 1− K−1u/z

1− u/z
.

Clearly, the Macmahon modules M(u, K ), u, K ∈ C
∗, topologically generate the ring

RepE. More precisely, every module in RepE can be written is an alternating sum of
tensor products of Macmahon modules, so that for each n ∈ Z≤0 all but finitely many
tensor products in the sum belong to the n-the filtered component Fn of RepE.
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Another important example of a highest 
-weight module is the Fock module

F(u) = L
(

�F(u)

)

, �F(u)(z) = q
1− q−1

2 u/z

1− u/z
. (3.6)

The Fock module F(u) is the smallest highest 
-weight Emodule. It has a basis labeled
by partitions. The action of E is obtained from formulas (3.3),(3.4), (3.5) for the action
in the Macmahon module by specializing K = q2 and forgetting all plane partitions
λ = (λ(1), λ(2), · · · ) with λ(2) �= ∅.

The Fock module can be described also in terms of the vertical generators. The
generators h⊥r act as a Heisenberg algebra on F(u),

[h⊥r , h⊥s ] =
qr − q−r

rκr
δr+s,0 (r, s ∈ Z\{0}). (3.7)

For r > 0, h⊥r ’s act as creation operators and h⊥−r ’s as annihilation operators. Module
F(u) is irreducible over this Heisenberg algebra. The generators e⊥(z), f ⊥(z) act by
vertex operators,

e⊥(z) = 1− q−1
2

κ1
u exp

(

−
∞
∑

r=1

qrκr
1− qr2

h⊥r z−r
)

exp

(

−
∞
∑

r=1

qr2κr
1− qr2

h⊥−r zr
)

, (3.8)

f ⊥(z) = 1− q2
κ1

u−1 exp

( ∞
∑

r=1

κr

1− qr2
h⊥r z−r

)

exp

( ∞
∑

r=1

qrκr
1− qr2

h⊥−r zr
)

. (3.9)

3.3. Dual modules. Along with OE, we consider also a category O∨
E. It is defined sim-

ilarly as OE, replacing condition (iii) with

(iii) ∨ Vn = 0 if n � 0.

We define a lowest 
-weight module with lowest 
-weigth � ∈ rE to be a cyclic E
module V = Ev0 such that

pνv0 = 0 (ν1 < 0), ψ±(z)v0 = �±(z)v0 , D⊥v0 = v0.

The unique simple module with lowest 
-weight � ∈ rE belongs to O∨
E and is denoted

by L∨(�).
If V ∈ ObOE and W ∈ ObO∨

E, then the tensor product V ⊗
⊥ W is a well defined
E module. (Note however that the tensor product in the opposite order W ⊗
⊥ V is ill
defined.) For an element x ∈ E, the antipode S⊥(x) is well-defined on W ∈ ObO∨

E.
This allows us to define an E module structure on the graded dual space W ∗ = ⊕nW ∗

n
by setting (xw∗)(w) = w∗(S⊥(x)w

)

, where w∗ ∈ W ∗, w ∈ W, x ∈ E. The result

is an object in OE, which we denote by W ∗S⊥ . Similarly, (S⊥)−1(x) is well-defined
on V ∈ ObOE so that V ∗(S⊥)−1

is defined. With the assignments ObO∨
E → ObOE,

W �→ W ∗S⊥ and ObOE → ObO∨
E, V �→ V ∗(S⊥)−1

, we obtain contravariant functors
which are inverse to each other.
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Lemma 3.1. For � ∈ rE, we have

L∨(�)∗S⊥ = L(�−1), L(�)∗(S⊥)−1 = L∨(�−1). (3.10)

Proof. It is enough to prove the first equality. LetW = L∨(�). SinceW ∗S⊥ is simple,we
can writeW ∗S⊥ = L(�) with some � ∈ rE. Let w0 be the lowest 
-weight vector ofW
and w∗

0 the highest 
-weight vector of W ∗S⊥ . There exists an E linear map W ∗S⊥ ⊗
⊥
W → C onto the trivial module C, sending w∗

0 ⊗ w0 to 1. On the other hand, by
Lemma A.9 we have 
⊥ψ±(z)(w∗

0 ⊗w0) = (ψ±(z)w∗
0)⊗ (ψ±(z)w0). It follows that

1 = �(z)�(z). ��

Remark. The Fock module Fu considered in our previous papers [FFJMM1,FJMM1]
is the dual Fock module

F∨(u) = L∨
(

q−1 1− q2u/z

1− u/z

)

= (

F(q2u)
)∗(S⊥)−1

.

��

3.4. Category OB⊥ . Consider now modules over the Borel subalgebra B⊥. Category
OB⊥ is defined by the same conditions (i)–(iii) as for category OE, with B⊥ modules
in place of E modules. We denote by RepB⊥ the same completion of the Grothendieck
ring of OB⊥ as for RepE, see (3.1).

In order to define highest 
-weight modules, we introduce the following subalgebras
of B⊥.

B⊥
+ = 〈pν (ν1 > 0, ν2 > 0)〉 , B⊥− = 〈pν (ν1 < 0, ν2 ≥ 0)〉 (3.11)

B⊥
0 = 〈hr (r > 0), C,C⊥, D, D⊥〉 , (3.12)

We have B⊥
0 B

⊥
+ = B⊥ ∩B, B⊥− = B⊥ ∩B, and the triangular decomposition holds:

B⊥ � B⊥− ⊗B⊥
0 ⊗B⊥

+ .

Let rB⊥ denote the set of all rational functions �(z) ∈ C(z) which are regular and
non-zero at z = ∞. Let�+(z) = ∑

m≥0 �+
mz

−m ∈ C[[z−1]] be its expansion at z = ∞.
A cyclic B⊥ module V = B⊥v0 is a highest 
-weight module of highest 
-weight

� ∈ rB⊥ if

B⊥
+ v0 = Cv0 , ψ+(z)v0 = �+(z)v0 , D⊥v0 = v0.

Similarly V = B⊥v0 is a lowest 
-weight module with lowest 
-weight � ∈ rB⊥ if

B⊥−v0 = Cv0, ψ+(z)v0 = �+(z)v0 , D⊥v0 = v0.

The unique simplemodulewith highest (resp. lowest) 
-weight� is denoted by L(�)

(resp. L∨(�)). The duality relation (3.10) holds true for them as well.
We have the following result analogous to the one for E modules [M]:

Lemma 3.2. Let V be a simpleB⊥ module. Then V ∈ ObOB⊥ if and only if V = L(�)

for some � ∈ rB⊥ . ��
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Consider highest 
-weight B⊥ modules

M+(u) = L
(

1− u/z
)

, M−(u) = L
( 1

1− u/z

)

.

Clearly, modules M+(u) and M−(u), u ∈ C
×, topologically generate the ring RepB⊥.

We call M+(u) (resp. M−(u)) the positive (resp. negative) fundamental module.

We have the restriction functor Res : OE → OB⊥ which sends an E module to its
restriction to B⊥.

Lemma 3.3. Functor Res : OE → OB⊥ sends simple objects to simple objects. Hence
the notation L(�) has an unambiguous meaning for � ∈ rE.

Proof. The following proof is adapted from the one given in Proposition 3.5 of [HJ].
Let V = ⊕n∈ZVn be an object in OE. Fix n, and consider the set of operators

em : Vn → Vn+1 (m > 0). Since HomC(Vn, Vn+1) is finite dimensional, we have a linear
relation

∑b
j=a c j e j |Vn = 0 where c j ∈ C (0 < a ≤ j ≤ b) and cacb �= 0. Taking

commutators with h±1 we obtain
∑b

j=a c j e j+r |Vn = 0 for all r ∈ Z. It follows that
operators ek |Vn (k ∈ Z) belong to the linear span of {em |Vn }m>0. By the same argument,
operators fk |Vn (k ∈ Z) belong to the linear span of { fm |Vn }m≥0.

It is clear now that any singular vector of V with respect to B⊥ is also singular with
respect to E. It is also clear that if V is cyclic with respect to E then it is cyclic with
respect to B⊥. The assertion of the lemma follows from these. ��

Since rB⊥ �= rE, there are B⊥ modules which are not obtained by restricting E
modules. For example, positive and negative fundamental modules are not restrictions
of E modules.

We use the linear maps

su : L(�(z/u)) → L(�(z)) , τa : L(a�(z)) → L(�(z)) , (3.13)

where � ∈ rB⊥ , u, a ∈ C
×, given as follows.

Both maps send highest 
-weight vectors to highest 
-weight vectors. In addition, su
satisfies

su ◦ x = uhdeg x x ◦ su (for homogeneous x ∈ B⊥),

and the map τa satisfies

τa ◦ e⊥n = e⊥n ◦ τa (n ∈ Z),

τa ◦ h⊥r = arh⊥r ◦ τa (r > 0),

τa ◦ C⊥ = a−1C⊥ ◦ τa .

Wehave τa◦en = en◦τa (n > 0), τa◦ fn = a fn◦τa (n ≥ 0) and τa◦ψ+(z) = aψ+(z)◦τa .
Lemma 3.4. For any � ∈ rB⊥ , the conditions above define maps su and τa. Moreover,
su and τa are linear isomorphisms. ��
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3.5. The q-characters. Let Z[C×] be the group ring of the multiplicative groupC×. We
use the letter xa to denote the element a ∈ C

×, so that xab = xaxb. For an object V of
OB⊥ , we define its character by

χ(V ) =
∑

(a,n)∈wt(V )

dim V(a,n) xat
n .

The character χ(V ) belongs to the ring X0 = Z[{xa}a∈C× , t][[t−1]], and the map χ :
RepB⊥ → X0 gives a ring homomorphism.

The q-character is a refined notion of the character. It is defined to be the generating
function of the generalized eigenvalues of the commuting family of operators ψ+(z). In
order to give the formal definition we prepare some notation.

For � ∈ rB⊥ we set V(�,n) = V� ∩ V(a,n), where a = �+
0 and

V� =
{

v ∈ V | ∃N such that (ψ+
j −�+

j )
Nv = 0 for all j ≥ 1

}

.

If V(�,n) �= 0, we say that (�, n) is an 
-weight of V . The set of 
-weights of V is denoted
by 
wt(V ). We say that a subspaceW ⊂ V is 
-weighted ifW = ⊕(�,n)∈
wt(V )(V(�,n)∩
W ).

We introduce indeterminates Xa labeled by a ∈ C
×, and set, cf. (3.2),

Aa =
3

∏

s=1

Xq−1
s a

Xqsa
. (3.14)

Note that {Aa}a∈C× are algebraically independent.
For an element � ∈ rB⊥ , we define m(�) ∈ X as follows.

m(�) = xa

∏l
i=1 Xai

∏m
j=1 Xbj

if �(z) = a

∏l
i=1(1− ai/z)

∏m
j=1(1− b j/z)

.

Clearlym is a group isomorphism from the multiplicative group rB⊥ onto the group of
monomials in {xa, X±1

a }a∈C× .
We define the q-character of an object V of OB⊥ by setting

χq(V ) =
∑

(�,n)∈
wt(V )

dim V(�,n) ·m(�) tn .

It turns out that χq(V ) belongs to the ring

X = Z[{X±1
a , xa}a∈C× , t][[t−1]]

consisting of formal series in t−1, whose coefficients are polynomials in X±1
a , xa (a ∈

C
×) and t . To see this it is enough to prove it in the case V = L(�) (� ∈ rB⊥ ). This

will be done in Lemma 4.16.
Under the ring homomorphism : X → X0 given by Xa = 1, xa = xa , t̄ = t , the

q character specializes to the (ordinary) character, χq(V ) = χ(V ).

Proposition 3.5. The q character map χq : RepB⊥ → X is an injective ring homo-
morphism. In particular, RepB⊥ is a commutative ring.



Finite Type Modules for Quantum Toroidal gl1 299

Proof. Themultiplicative propertyχq(V⊗
⊥W ) = χq(V )χq(W ) follows fromLemma
A.9.

To show the injectivity, let [V0] − [V ′
0] ∈ RepB⊥ be an element in the kernel of χq

where V0, V ′
0 ∈ ObOB⊥ . Choose a term m(�)tn in χq(V0) = χq(V ′

0) which has the
highest power of t , and let v0 ∈ V0 and v′0 ∈ V ′

0 be eigenvectors of ψ+(z) corresponding
to the eigenvalue �(z). Then the submodule of V0 generated by v0 has a quotient
isomorphic to L = L(�). The same is true for v′0 and V ′

0. Hence we can write [V0] =
[L] + [V ], [V ′

0] = [L] + [V ′] with some V, V ′ ∈ ObOB⊥ . Repeating this procedure,
we obtain a sequence of objects Wk, Vk, V ′

k ∈ ObOB⊥ (k ≥ 0) such that [Vk−1] =
[Wk] + [Vk], [V ′

k−1] = [Wk] + [V ′
k], and that the highest power of t in χq(Vk) = χq(V ′

k)

is less than that of χq(Vk−1). It follows that [V0], [V ′
0] are both equal to [⊕kWk]. ��

3.6. Examples of characters and q-characters. We give a few characters and q-
characters.

The character and the q-character of the one-dimensional module L(a), a ∈ C
×, are

given by the formulas χ
(

L(a)
) = χq

(

L(a)
) = xa .

Denote the Macmahon plane partition function by χ0:

χ0 =
∞
∏

j=1

1

(1− t− j ) j
.

The character and the q-character of the Macmahon module are given by

χ
(

M(u, K )
) = xK 1/2 × χ0 ,

χq
(

M(u, K )
) = xK 1/2

XK−1u

Xu

∑

λ∈P
t−|λ|

∏

�∈λ

A−1
q−�u

. (3.15)

These formulas follow from formula (3.3) for the eigenvalues ofψ±(z) in themodule
M(u, K ).

Similarly, the character and the q-character of the Fock module are given by

χ
(

F(u)
) = xq × 1

∏∞
j=1(1− t− j )

, (3.16)

χq
(

F(u)
) = xq

Xq−1
2 u

Xu

∑

λ∈P
t−|λ|

∏

�∈λ

A−1
q−�u

. (3.17)

To compute the character and the q-character of the negative fundamental module,
we first prove the following.

Proposition 3.6. The negative fundamental module M−(u) is a limit of the Macmahon
module modified by a one-dimensional module,

M−(u) = lim
K→∞

(

L(K−1/2) ⊗
⊥ M(u, K )
)

.
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Proof. Extending theB⊥ action on L(K−1/2), we define the action of the generators ofE
on it by setting e(z) = f (z) = 0 andψ±(z) = K−1/2. Then all relations ofE are satisfied
with the exception of ψ+

0 ψ−
0 = 1. We use this action on L(K−1/2) and the coproduct


⊥ to define the action of all generators of E on M = L(K−1/2) ⊗
⊥ M(u, K ).
The underlying vector space of M has a basis labeled by plane partitions. From the

formulas (3.3), (3.4), (3.5), we see that the matrix coefficients of f (z) acting in M are
independent of K , while those of e(z) and ψ+(z) are polynomials in K−1. Hence all
generators have well defined limits as K →∞ and give a structure of a B⊥ module on
M .

We note that the limit of ψ−
0 is zero, in particular it is not invertible, so we do not get

the structure of an E-module on M .
Operator ψ+(z) have simple joint spectrum, and the non-zero matrix coefficients of

er , fn (r > 0, n ≥ 0) remain non-zero in the limit. It follows that M is an irreducible
B⊥ module with highest 
-weight (1− u/z)−1, and hence coincides with M−(u). ��
Corollary 3.7. The character and the q-character of the negative fundamental module
are given by

χ
(

M−(u)
) = χ0 ,

χq
(

M−(u)
) = 1

Xu

∑

λ∈P
t−|λ|

∏

�∈λ

A−1
q−�u

. (3.18)

Proof. By Proposition 3.6, χq
(

M−(u)
)

is obtained by taking the K → ∞ limit of
product of xK−1/2 and (3.15). ��

Proposition 3.8. The character of the positive fundamental module is given by

χ
(

M+(u)
) = χ0.

Proof. We have M+(u) = (L∨((1− u/z)−1))∗S⊥ by (3.10), and it is clear that

χ
(

(L∨((1− u/z)−1))∗S⊥
) = χ

(

L∨((1− u/z)−1)
)

∣

∣

∣

t→t−1
= χ

(

L((1− u/z)−1))
)

.

Hence χ
(

M+(u)
) = χ

(

M−(u)
)

. ��
The q-character of positive fundamentalmodule is very different from the q-character

of negative fundamental module. We compute it later in Proposition 4.7 (see also Corol-
lary 4.11).

4. Finite Type Modules

For a positive integer k, we say that a B⊥ module V is k-finite if ψ+(z) has k distinct
eigenvalues on V . Tensor product of a k1-finite module and a k2-finite module is at
most k1k2-finite. We say V is of finite type if it is k-finite for some k. Certainly finite
dimensional modules are of finite type. But there exist also infinite dimensional modules
of finite type.

Denote by O
f in
B⊥ the full subcategory of OB⊥ consisting of all finite type modules.

This category is the subject of this section.
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4.1. Moduleswith polynomial highest 
-weight. Consider highest 
-weightB⊥modules
whose highest 
-weights are polynomials in z−1:

M = L(�), �(z) ∈ rB⊥ ∩ C[z−1]. (4.1)

Abusing slightly the language, we say that M has a polynomial highest 
-weight. Such
modules have special properties which play a key role in the subsequent construction.

Recall that the positive fundamental module M+(u) has a polynomial highest 
-
weight.

The first property is polynomiality of currents acting on M . Introduce the notation
for half currents

e>(z) =
∞
∑

n=1

enz
−n, f≥(z) =

∞
∑

n=0

fnz
−n ∈ B⊥[[z−1]].

Proposition 4.1. Let M be as in (4.1). Then for each vector w ∈ M we have

e>(z)w, f≥(z)w ∈ M ⊗ C[z−1] , ψ+(z)w ∈ �(z) · M ⊗ C[z−1]. (4.2)

The second property is the existence of a tensor product with respect to 
.

Proposition 4.2. Let V ∈ ObOE be an E module, and let M be as in (4.1). Then the
coproduct 
 gives a structure of B⊥ module on the tensor product V ⊗ M. Denoting
this module by V ⊗
 M we have V ⊗
 M � V ⊗
⊥ M.

The third property is concerned with the structure of submodules of V ⊗
 M .

Proposition 4.3. Let V ∈ ObOE be an E module, and let M be as in (4.1). Assume that
V is irreducible with highest 
-weight vector v0. Then any proper submodule of V ⊗
 M
has the form V (0) ⊗ M, where V (0) is an 
-weighted linear subspace of V which does
not contain v0.

Proofs of these Propositions are technical, so we defer them toAppendix. Proposition
4.1 appears as Lemma A.11, Proposition 4.2 as Lemma A.12 and Corollary A.14, and
Proposition 4.3 as Lemma A.17, respectively.

4.2. Grading on M. Frenkel and Hernandez showed that positive fundamental modules
for quantum affine algebras as vector spaces admit a grading with favorable properties
(see [FH], Theorem 6.1). This was a key step in their proof of polynomiality of Q
operators. We show here that an analogous grading exists in the case of various modules
of quantum toroidal gl1 algebra. In this section, our goal is Proposition 4.6 below which
constructs the grading for modules with polynomial highest 
-weights.

In this subsection, we set

M = L
(

�
)

, �(z) =
N

∏

j=1

(1− u j/z) , (4.3)

V = F(u1) ⊗
⊥ · · · ⊗
⊥ F(uN ). (4.4)

We denote by wM the highest 
-weight vector of M , and by |∅〉V the tensor product
of |∅〉 ∈ F(ui ). By Proposition 4.2, the tensor product V ⊗
 M with respect to 
 is a
well-defined B⊥ module. We begin with some lemmas.
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Lemma 4.4. Let V�−1 denote the subspace of V in (4.4) consisting of vectors of prin-
cipal degree ≤ −1. Then the subspace S = V�−1⊗M is aB⊥ submodule of V ⊗
 M.

Proof. Since B⊥− and B⊥
0 do not increase the principal degree, it is enough to show that

B⊥
+ S ⊂ S. The algebra B⊥

+ is generated by en (n ≥ 1), e⊥−r (r ≥ 2) and [e0, e2]. We
show 
(x)S ⊂ S where x is one of these elements.

First consider the case of en (n ≥ 1). We have for v ⊗ w ∈ S


(e>(z))(v ⊗ w) = (e(z)v ⊗ ψ+(z)w)> + v ⊗ e>(z)w ,

where
(∑

n∈Z anz−n
)

>
= ∑

n>0 anz
−n . The second term in the right hand side belongs

to S. The first term also does if pdeg v < −1. Suppose pdeg v = −1. We may assume
that v = |∅〉⊗ · · ·⊗ |�〉⊗ · · ·⊗ |∅〉, where |�〉 ∈ F(ui ) is a vector of degree−1. Using
(A.1) in Appendix, we find

e(z)v ∈ C|∅〉V × δ(ui/z)
N

∏

j=i+1

q − q−1u j/z

1− u j/z
.

On the other hand, Proposition 4.1 tells thatψ+(z)w is divisible by�(z). Hence the first
term vanishes.

Next consider 
(e⊥−r )(v ⊗ w) (r ≥ 2). This vector is a sum of terms of the form
(A.22) applied to v ⊗ w. We are concerned only with terms whose first component is
proportional to |∅〉V . Then the first component produces a delta function δ(ui/z j ′1), while
the second component contains ψ+(z j ′1). (Note that from the bilinear relation between

ψ+(z) and e(z) we have (ad e0)k
(

ψ+(z)
) ∈ B⊥[z−1]ψ+(z)B⊥[z−1] for any k ≥ 1.)

Hence all such terms vanish.
The case of [e0, e2] is quite similar. ��

Lemma 4.5. There exists a linear operator � ∈ End M with the following properties.

� preserves the principal grading, (4.5)

� ◦ x = q−ν2
2 x ◦ � (x ∈ B⊥

+ ∩ Eν1,ν2) , (4.6)

� ◦ ψ
+
(z) = ψ

+
(q2z) ◦ � where ψ

+
(z) = �(z)−1ψ+(z). (4.7)

Moreover � is diagonalizable. Its eigenvalues have the form qm2 (m ∈ Z≥0), and the
eigenspace of q02 is spanned by wM.

Proof. We retain the notation of Lemma 4.4. In the quotient
(

V ⊗
 M
)

/S, the image
of |∅〉V ⊗ wM generates a submodule with irreducible quotient L(˜�), where ˜�(z) =
qN�(q2z). By (3.13), we have an isomorphism as a vector space

�1 = s−1
q2 ◦ τqN : L(˜�) −→ L(�) = M.

By comparing the characters, we find that there is an isomorphism of B⊥ modules

�2 :
(

V ⊗
 M
)

/S
∼−→ L(˜�).

Let further �3 denote the composition of the natural maps

M −→ C|∅〉V ⊗ M ↪→ V ⊗
 M −→ (

V ⊗
 M
)

/S.



Finite Type Modules for Quantum Toroidal gl1 303

We set � = const.�1 ◦ �2 ◦ �3, choosing const. ∈ C
× so that �wM = wM . By

construction � preserves the principal grading, and we have

� ◦ er = q−r2 er ◦ � (r > 0) ,

� ◦ e⊥−r = q−1
2 e⊥−r ◦� (r > 0) ,

� ◦ [e0, e2] = q−2
2 [e0, e2] ◦ �,

� ◦ ψ+(z) = ψ+(q2z) ◦ � × �(z)

�(q2z)
.

We have proved (4.5), (4.6), (4.7).
In order to prove that � is diagonalizable, we use that the dual right module M∗ is

generated from the lowest 
-weight vector w∗
M by B⊥

+ . We have w∗
M� = w∗

M . Formula
(4.6) means that any non-zero vector of the form w∗

Mx1 · · · xk , where xi ∈ B⊥
+ are

homogeneous elements, is an eigenvector of � with eigenvalue q
∑k

i=1 hdeg xi
2 . Since they

span M∗, we conclude that � is diagonalizable on M , and that all eigenvalues have the
form qm2 , m ∈ Z≥0. In particular, the eigenspace for m = 0 is spanned by wM . ��
Proposition 4.6. Let M be as in (4.3). Then it admits a grading M = ⊕m≥0M[m] as
vector space, with the following properties: for all m ≥ 0 we have

xM[m] ⊂ M[m − hdeg x] (∀x ∈ B⊥
+ ) , (4.8)

ψ
+
nM[m] ⊂ M[m − n] (∀n ≥ 0) , (4.9)

yM[m] ⊂
−N pdeg y

∑

j=0

M[m − hdeg y + j] (∀y ∈ B⊥−) , (4.10)

M[m] = ⊕n≤0M[m] ∩ Mn , M[0] = CwM . (4.11)

Here x, y are assumed to be homogeneous elements, and we set �(z)−1ψ+(z) =
∑

n≥0 ψ
+
n z

−n.

Proof. Let M[m] denote the eigenspace of � relative to the eigenvalue qm2 . Then
M = ⊕∞

m=0M[m]. The properties (4.8), (4.9) and (4.11) are immediate consequences
of Lemma 4.5. Note that (4.9) implies

ψ+
n M[m] ⊂

N
∑

j=0

M[m − n + j]. (4.12)

Let us prove (4.10). For each y ∈ B⊥−, statement (4.10) is reduced to the following
statement:

For all m ≥ 0 and all homogeneous elements x ∈ B⊥
+ we have (4.13)

[x, y]M[m] ⊂
−N pdeg y

∑

j=0

M[m − hdeg(xy) + j].

To see that (4.13) implies (4.10), take v ∈ M[m] ∩ Mn and write yv = ∑

l≥0 wl ,
wl ∈ M[l]. Without loss of generality we may assume that pdeg y < 0. Since M is
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irreducible, for any l0 such that wl0 �= 0 we can take an x ∈ B⊥
+ satisfying xv = 0 and

xwl0 = wM . On the other hand, (4.13) implies

∑

l≥0
xwl = xyv = [x, y]v ∈

−N pdeg y
∑

j=0

M[m − hdeg(xy) + j].

Since xwl0 ∈ M[l0−hdeg x], we must havem−hdeg y ≤ l0 ≤ m−hdeg y−N pdeg y.
This implies (4.10).

Note that if (4.10) holds for y1, y2 then it holds for y1y2. Hence it suffices to consider
the case where y is a generator of B⊥−.

Consider the case y = fn (n ≥ 0). If x = er (r ≥ 1), then [er , fn] = κ−1
1 ψ+

r+n , hence
(4.9) applies. Next we take x = e⊥−r (r ≥ 2) or x = [e0, e2]. If we set H = ∑

j≥0 Cψ+
j ,

then from the bilinear relation between e’s and ψ+’s we obtain B⊥
+ H = HB⊥

+ and
ad e0

(

B⊥
+ H

) ⊂ B⊥
+ H . With the aid of these relations we find that [e⊥−r , fn] ∈ B⊥

+ H
and [[e0, e2], fn] ∈ B⊥

+ H . Then (4.8) and (4.9) apply, and therefore (4.13) holds for
y = fn . In particular, if (4.13) is true for y then it is true also for [ f0, y]. Hence (4.13)
holds for all y in the subalgebra N⊥− = 〈p−ν1,ν2 (ν1, ν2 ≥ 1)〉.

It remains to show (4.13) for y = ψ⊥
k (k ≥ 1), or equivalently for y = h⊥k (k ≥ 1)

which are simpler to work with. Let us consider the case x = e⊥−r (r ≥ 2) by induciton
on r . The commutator [x, h⊥k ] is proporional to e⊥−r+k . If r ≥ k then (4.8) and (4.9)
apply, and if r < k then the induction hypothesis applies. To verify the cases x = en
(n ≥ 2) and [e0, e2], it is sufficient to note the following. Suppose that the second line
of (4.13) holds for x ∈ B⊥

+ and y = h⊥k , then the same holds for [h1, x]. This is because
[[h1, x], h⊥k ] ∈ C[h1, [x, h⊥k ]] + C[x, e⊥k ] and e⊥k ∈ N⊥−.

Proof of (4.10) is now complete. ��
Remark. Let 〈hn〉M denote the eigenvalue of hn on the highest 
-weight vector of M ,
and set h̄n,M = hn − 〈hn〉M . Then (4.9) is equivalent to

h̄n,MM[m] ⊂ M[m − n] (∀n ≥ 1).

��

4.3. 1-finite modules. We use Proposition 4.6 to study the structure of the module M .
We start with positive fundamental modules.

Proposition 4.7. Module M+(u) is 1-finite. We have

χq(M
+(u)) = Xu × χ(M+(u)) = Xu × χ0. (4.14)

Proof. For each n ≤ 0, we take a basis of M+(u)n by choosing a basis from each com-
ponent M[m] ∩M+(u)n , m ≥ 0. In this basis, ψ

+
(z) = ψ+(z)/(1− u/z) is represented

by a triangular matrix with 1 on the diagonal by Proposition 4.6. Therefore ψ+(z) has
only one eigenvalue 1− u/z, and χq

(

M+(u)
)

has the stated form. ��
An analogues result for quantum affine algebras is known, see [HJ,FH].
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Remark. It is instructive to think of the result (4.14) as a formal limit of the q-character
of the Macmahon module. Namely, rescaling u to Ku in (3.15) and demanding the rule
lim
K→0

XKu = lim
K→0

AKu = 1, we have formally

χq
(

M+(u)
) = lim

K→0
x−1
K 1/2χq

(

M(Ku, K )
)

.

Corollary 4.8. Let M = L(�), � = ∏N
j=1(1− u j/z). Then M is 1-finite. ��

The positive fundamental modules have the following description.

Proposition 4.9. Module M+(u) is the unique cyclic B⊥ module generated by v0 satis-
fying

B⊥
+ v0 = Cv0 , ψ+(z)v0 = (1− u/z)v0, p−n,lv0 = 0 (1 ≤ n ≤ l). (4.15)

Proof. Suppose 1 ≤ n ≤ l, and let v = p−n,lv0. By (4.10)we have v ∈ ∑n
j=0 M[−l+ j].

Since M[m] = 0 for m < 0, M[0] = Cv0 and n ≥ 1, we obtain v = 0. Therefore the
relations (4.15) are satisfied in M+(u).

Let ˜M+(u) denote the cyclicB⊥ module defined by the relations (4.15). Then there is
a surjectivemorphism ˜M+(u) → M+(u). Since ˜M+(u) is spanned byorderedmonomials
of p−n,l with 0 ≤ l < n applied to v0 (see Theorem 2.1), we have

χ
(

˜M+(u)
) � χ0.

The right hand side equals χ
(

M+(u)
)

by Proposition 3.8. Hence the two modules coin-
cide. ��

Finally, we show that arbitrary tensor products of fundamental modules are irre-
ducible.

Proposition 4.10. For any u1, · · · , uN ∈ C
×, the tensor product M+(u1)⊗
⊥ · · ·⊗
⊥

M+(uN ) is irreducible. Hence it is isomorphic to L
(∏N

j=1(1− u j/z)
)

.

Proof. SetM = M+(u1)⊗
⊥ · · ·⊗
⊥M+(uN ). ByCorollary 4.8,M is 1-finite. The dual
module M∨ = (M)∗(S⊥)−1

is isomorphic to M−∨(uN ) ⊗
⊥ · · · ⊗
⊥ M−∨(u1). By an
analog of Corollary 3.7 for lowest 
-weight modules, we have χq

(

M∨) = m(�)−1
(

1 +

· · · ), where�(z) = ∏N
j=1(1−u j/z) and · · · stands for a sum of non-trivial monomials

in the Aa’s.
Suppose that M∨ has a non-trivial submodule M∨

1 . From the structure of χq(M∨)

mentioned above, we see that either M∨
1 or M∨/M∨

1 has a singular vector of 
-weight
�(z)−1 different from�(z)−1. Let M1 ⊂ M denote the orthogonal complement of M∨

1 .
From Lemma 3.1, we conclude that either M/M1 or M1 has the 
-weight �(z). Hence
M has two different 
-weights �(z) and �(z). This is a contradiction. Therefore M∨ is
irreducible, and hence M is irreducible. ��
Corollary 4.11. Let M = L(�), � = ∏N

j=1(1− u j/z). Then the q-character of M is
given by

χq(M) = χN
0

N
∏

j=1

Xu j .

��
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4.4. 2-finite modules. Now we proceed to discussing 2-finite modules. Introduce the
module

N+(u) = L
(

�N+(u)

)

, �N+(u)(z) =
∏3

i=1(1− q−1
i u/z)

1− u/z
.

Our goal in this subsection is to prove Theorem 4.13 below.
We make use of a construction similar to the one used in the proof of Lemma 4.4.

Let F(u) be the Fock module (3.6) with the highest weight vector |∅〉. Let F(u)�−2 be
the subspace of F(u) of principal degree ≤ −2. Set further M(u) = M+(q−1

3 u) ⊗
⊥
M+(q−1

1 u). By Proposition 4.10, M(u) is a 1-finite module L(�) with highest 
-weight
�(z) = (1− q−1

3 u/z)(1− q−1
1 u/z). We consider the module V = F(u)⊗
 M(u) and

its linear subspace S = F(u)�−2 ⊗ M(u). In the following, |�〉 stands for the vector
|λ〉 ∈ F(u) for the partition λ = (1).

Lemma 4.12. Notation being as above, S is a B⊥ submodule of V .

Proof. Obviously S is invariant under the action of B⊥−B⊥
0 . We show that B⊥

+ S ⊂ S.
Let v ∈ F(u)�−2 and w ∈ M(u). Then we have

e>(z)(v ⊗ w) = (e(z)v ⊗ ψ+(z)w)> + v ⊗ e>(z)w. (4.16)

The second term in the right hand side belongs to S. The first term also does unless
pdeg v = −2. If this is the case, then e(z)v ∈ (Cδ(q−1

1 u/z) +Cδ(q−1
3 u/z))|�〉. On the

other hand, by Lemma A.11 and the definition of M(u), ψ+(q−1
3 u) = ψ+(q−1

1 u) = 0
hold on M(u). Therefore the first term vanishes and (4.16) belongs to S.

By the same argument as in the proof of Lemma 4.4, we see also that e⊥−r (v⊗w) ∈ S
for r > 0 and [e0, e2](v ⊗ w) ∈ S. ��
Theorem 4.13. Module N+(u) is 2-finite. Its q-character is given by

χq(N
+(u)) = χ2

0

⎛

⎝

∏3
i=1 Xq−1

i u

Xu
+ t−1

∏3
i=1 Xqi u

Xu

⎞

⎠ =
∏3

i=1 Xq−1
i u

Xu

(

1 + t−1A−1
u

)

χ2
0 .

(4.17)

Proof. Set N = V/S. As a linear space we have N = N0 ⊕ N1, where N0 = C|∅〉 ⊗
M(u), N1 = C|�〉 ⊗ M(u) (we omit writing mod S). Let Pi : N → Ni (i = 0, 1) be
the projection.

We have

ψ+(z)
(|∅〉 ⊗ w

) = a0(z)|∅〉 ⊗ ψ+(z)w , ψ+(z)
(|�〉 ⊗ w

) = a1(z)|�〉 ⊗ ψ+(z)w ,

where

a0(z) = q
1− q−1

2 u/z

1− u/z
, a1(z) = a0(z)

3
∏

i=1

1− qiu/z

1− q−1
i u/z

. (4.18)

Hence N0, N1 are generalized eigenspaces of ψ+(z) with eigenvalues
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�0(z) = q

∏3
i=1(1− q−1

i u/z)

1− u/z
, �1(z) = q

∏3
i=1(1− qiu/z)

1− u/z
, (4.19)

respectively.
It is easy to see that for all x = en (n ≥ 1), e⊥−r (r ≥ 2) and [e0, e2] we have

x
(|∅〉 ⊗ w

) = |∅〉 ⊗ xw , (4.20)

P1x
(|�〉 ⊗ w

) = |�〉 ⊗ xw. (4.21)

Similarly we compute

f�(z)
(|�〉 ⊗ w

) = (

ψ−(z)|�〉 ⊗ f (z)w
)

� = |�〉 ⊗ (

a−1 (z) f (z)w
)

� ,

P0 f�(z)
(|∅〉 ⊗ w

) = (

ψ−(z)|∅〉 ⊗ f (z)w
)

� = |∅〉 ⊗ (

a−0 (z) f (z)w
)

� ,

where a−i (z) denotes the expansion of the rational function ai (z) at z = 0. Let 〈hr 〉M be
the eigenvalue of hr on the highest weight vector w0 of M(u). Set h̄r,M = hr − 〈hr 〉M
and

U0 = exp
(

∞
∑

r=1

(1− qr2)h̄r,Mu−r
)

, U1 = U0 exp
(−

∞
∑

r=1

κr h̄r,Mu−r
)

.

Since h̄r,M ’s are nilpotent, operatorsUi have a well defined action on M(u), and we can
write a−i (z) f (z) = q−1Ui f (z)U

−1
i . Namely, for y = fn with n ≥ 0 we obtain

y
(|�〉 ⊗ w

) = q−1|�〉 ⊗U1yU
−1
1 w , (4.22)

P0y
(|∅〉 ⊗ w

) = q−1|∅〉 ⊗U0yU
−1
0 w. (4.23)

With a similar computation we have the same equations for y = ψ
+,⊥
r (r > 0).

Now we show that N is irreducible. Let W ⊂ N be a non-zero B⊥ submodule. We
have the decomposition into 
-weight spaces W = W0 ⊕ W1, Wi = W ∩ Ni . Using
(4.20), (4.21), and the irreducibility of M(u) which follows from Proposition 4.10, we
obtain either |∅〉 ⊗ w0 ∈ W0 or |�〉 ⊗ w0 ∈ W1. It is easy to see that one implies the
other, and hence both are satisfied. Since UiB

⊥−U−1
i w0 = M(u), (4.22),(4.23) imply

that Wi = Ni , i = 0, 1. Hence W = N .
Comparing the highest 
-weight, we conclude that N = τq−1

(

N+(u)
)

. The assertion
about the q-character is clear from (4.19) and the proof above. ��
Remark. Formula (4.17) is equivalent to an identity in the Grothendieck ring RepB⊥,

[N+(u)][M+(u)] =
3

∏

i=1

[M+(q−1
i u)] +

(
3

∏

i=1

[M+(qiu)]
)

{−1}. (4.24)

Here [V ] means the class of V in RepB⊥, and V {d} stands for the module where D⊥
acts as qd D⊥. The short exact sequence corresponding to (4.24) reads

0 −→ (⊗3
i=1M

+(qiu)
){−1} −→ N+(u) ⊗ M+(u) −→ ⊗3

i=1M
+(q−1

i u) −→ 0

where ⊗ = ⊗
⊥ . ��
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We show that the module N+(u) also possesses the grading similar to the one estab-
lished in Proposition 4.6 for modules with polynomial highest 
-weight.

Proposition 4.14. Let N+(u) = N0 ⊕ N1 be the decomposition into 
-weight spaces,
where N0 corresponds to the highest 
-weight. Then there exist gradings N0 =
⊕∞

m=0N0[m], N1 = ⊕∞
m=1N1[m] as vector space, with the following properties:

xN0[m] ⊂ N0[m − hdeg x] (x ∈ B⊥
+ ) , (4.25)

xN1[m] ⊂ N1[m − hdeg x] +
m

∑

j=0

N0[ j] (x ∈ B⊥
+ ) , (4.26)

ψ
+
r,i Ni [m] ⊂ Ni [m − r ] (r > 0, i = 0, 1) , (4.27)

yN0[m] ⊂
m−hdeg y−2 pdeg y

∑

j=0

N0[ j] +
m−2 pdeg y−1

∑

j=1

N1[ j] (y ∈ B⊥−) , (4.28)

yN1[m] ⊂
m−hdeg y−2 pdeg y

∑

j=1

N1[ j] (y ∈ B⊥−). (4.29)

Here x, y are assumed to be homogeneous, and

�i (z)
−1ψ+(z) =

∑

r≥0
ψ

+
r,i z

−r ,

where �i (z) are given by (4.19).

Proof. As in the proof of Theorem 4.13, We use the realization of N+(u) as a quotient
of F(u) ⊗
 M(u), M(u) = M+(q−1

3 u) ⊗
⊥ M+(q−1
1 u). We have N0 = |∅〉 ⊗ M(u)

and N1 = |�〉 ⊗ M(u). Using the grading M(u) = ⊕∞
m=0M[m] in Proposition 4.6, we

define

N0[m] = |∅〉 ⊗ M[m] , N1[m] = |�〉 ⊗ M[m − 1].
Then (4.27) holds by definition. From (4.8), (4.20) and (4.21) we obtain Pi xNi [m] ⊂
Ni [m − hdeg x] for i = 0, 1 and x = en, e⊥−r , [e0, e2]. Take w ∈ M[m − 1]. Using
e(z)|�〉 = αδ(u/z)|∅〉 (α ∈ C

×) we compute

P0 
(e>(z))
(|�〉 ⊗ w

) = α
u/z

1− u/z
|∅〉 ⊗ ψ+(u)w.

Using (4.12), we get P0enN1[m] ⊂ ∑m
j=0 N0[ j]. We have also

P0 

(

(ad e0)
r−1e1

)(|�〉 ⊗ w
) ∈

r−1
∑

j=1

∑

p≥1
C|∅〉 ⊗ (ad e0)

j−1 adψ+
p(ad e0)

r−1− j e1 · w

+ C|∅〉 ⊗
∑

p≥1
(ad e0)

r−1ψ+
p · w ,

which implies P0e⊥−r N1[m] ⊂ ∑m−1
j=0 N0[ j]. Arguing similarly for [e0, e2], we find that

(4.25), (4.26) are satisfied for x ∈ B⊥
+ . The general case x ∈ B⊥

+ follows from this by
applying ad h1 and using (4.27).
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It remains to show (4.28) and (4.29). From (4.10), (4.22) and (4.23), we obtain

Pi yNi [m] ⊂
m−hdeg y−2 pdeg y

∑

j=0

Ni [ j] (i = 0, 1, y = fn, ψ
+,⊥
r ).

Also, by a computation similar to the one for P0enN1[m] given above, we can treat the
case P1 fn N0[m]. Let us consider P1ψ+,⊥

r N0[m]. For w ∈ M[m] we are to compute

P1[
 f (z1), · · · [
 f (zr−1),
 f (zr )] · · · ]
(|∅〉 ⊗ w

)

and take the coefficient of z11z
0
2 · · · z0r−1z

−1
r . Writing ad X = L(X)− R(X), where L(X)

(resp. R(X)) signifies the left (resp. right) multiplication, we obtain sums of terms

(

r
∏

k= j+1

a−0 (zk) −
r

∏

k= j+1

a−1 (zk)
)|�〉 ⊗ A1 · · · A j−1 ad f (z j+1) · · · ad f (zr−1) f (zr ) · w

(1 ≤ j ≤ r − 1),

and |�〉 ⊗ A1 · · · Ar−11 ·w for j = r . Here a−i (z) are the expansions of ai (z) in (4.18)
at z = 0, and Ak = a−1 (zk)L( f (zk))− a−0 (zk)R( f (zk)). From these we can check that

P1ψ
+,⊥
r N0[m] ⊂ ∑m+2r−1

j=1 N1[ j]. ��

4.5. More on q-characters. We discuss the combinatorics of q-characters.
The following lemma, which explains the role of Aa , is a direct analog of Lemma

3.1 in [Y].

Lemma 4.15. Let V ∈ ObOE and let �,� be 
-weights of V . Assume that
(

f (z)V(�,n)

) ∩ V(�,m) �= 0. Then m = n − 1, and there exists an a ∈ C
× such that

m(�) = m(�)A−1
a . Moreover, there exist bases {vk} and {wl} of the 
-weight spaces

V(�,n) and V(�,m), respectively, such that

f (z)vk =
∑

l

Pk,l
(

∂a
)

δ(a/z)wl + · · · .

Here Pk,l(∂a) is a polynomial in ∂a = ∂/∂a of degree at most k + l − 2, and · · · stands
for a sum of terms which belong to 
-weight spaces other than V(�,m).

A similar lemma holds for the action of e(z) with the replacement of A−1
a by Aa and of

equation m = n − 1 by m = n + 1.
In the following, for �(z) = p(z)/q(z) ∈ rB⊥ with p(z), q(z) ∈ C[z−1], we set

d(�) = degz−1 p − degz−1 q.

Lemma 4.16. Let � ∈ rB⊥ and V = L(�). Then the q-character of V has the form

χq(V ) = m(�)(1 +
∑

i

mi ) χ
max(d(�),0)
0 , (4.30)

where each monomial mi is a product of t−1A−1
a ’s.
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Proof. If d(�) ≤ 0, then V is a subquotient of a tensor product of several Macma-
hon modules M(u, K ) and negative fundamental modules M−(u). The q-characters of
M(u, K ) and M−(u) have the required form, see (3.15) and (3.18). Hence the lemma
is true in this case.

If d(�) > 0, then V is a subquotient of a tensor product of several Macmahon
modules with a module which has a polynomial highest 
-weight. Then the lemma
follows from Proposition 4.3. ��
We have the classification of 1-finite modules.

Proposition 4.17. Let � ∈ rB⊥ and V = L(�). Then V is 1-finite if and only if V has
polynomial highest 
-weight.

Proof. It suffices to prove the ‘only if’ part.
Suppose d(�) ≤ 0. From (4.30), V is 1-finite if and only if it is one-dimensional.

It is easy to see that one-dimensional modules are exactly L(a), a ∈ C
×. Hence the

assertion is true in this case.
Let d(�) > 0. We can write �(z) = �1(z)�2(z) where �1(z) ∈ rE, �2(z) ∈

rB⊥ ∩ C[z−1]. Set W = L(�1) and M = L(�2). In view of Proposition 4.3, V is a
quotient of the module W ⊗
 M by a submodule of the form W (0) ⊗
 M , where W (0)

does not contain the highest 
-weight vector of W . We may assume that the poles of
�1(z) do not overlap with the zeroes of �2(z). Then by Lemma 4.15 we must have that
W (0) ∩W−1 = 0. Therefore, if V is 1-finite, then �1(z) = 1. ��

4.6. Conjectures on finite type modules. Introduce the module

N+
i, j,k(u) = L

(

�N+
i, j,k(u)

)

, �N+
i, j,k(u)(z) =

(1− q−i
3 u/z)(1− q− j

1 u/z)(1− q−k
2 u/z)

1− u/z
.

We have N+(u) = N+
1,1,1.

Lemma 4.18. For any i, j, k ∈ Z>0, the module N+
i, j,k(u) is of finite type.

Proof. Let F(u) = L
(

(1 − q−k
2 u/z)/(1 − u/z)

)

. By [FFJMM2], this module has a
basis of plane partitions with at most k layers: λ = (λ(1), . . . , λ(k),∅,∅, · · · ). Let M =
M+(uqi3)⊗
⊥ M+(uq j

1 ). We consider the tensor product V = F(u)⊗
 M . Let S ⊂ V
be the subspace spanned by vectors of the form |λ〉⊗ v, where v ∈ M and λ is such that
either λ

(1)
1 > j or λ

(1)
i+1 > 0. Then, arguing as in Lemma 4.12, we see that S ⊂ V is a

submodule. Clearly V/S has finite type. ��
Conjecture 4.19. The completed Grothendieck ring of O f in

B⊥ is topologically generated
by [N+

i, j,k(u)] with i, j, k ∈ Z>0, u ∈ C
×, and [M+(u)], u ∈ C

×.

Next, we discuss the grading. Recall that we constructed the grading formodules with
polynomial highest 
-weights, see Proposition 4.6, and for N+(u), see Proposition 4.14.
This grading has the following property. The annihilation operators and the modified
current ψ

+
(z) respect the grading given by their homogeneous degrees. The action of

creation operators is not graded, but it changes the grading in a controllable way. We
expect that such a grading exists for all finite type modules.

An interesting question is to compute the formal character of a finite type module
with respect to this grading.
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Conjecture 4.20. For positive fundamental module M = M+(u) we have

∑

n,m

(dim Mn[m])tnrm =
∞
∏

j=1

j−1
∏

i=0

1

1− t− j r i
.

Finally, we suggest a cluster algebra structure on the category O
f in
B⊥ in the spirit of

[HL]. For generalities on cluster algebras, we refer to [FZ].
Recall that a quiver � is an oriented graph. It is given by a set of vertices �0, a set of

arrows�1 andmaps s,t:�1 → �0, called source and target, respectively.Wewill assume
that � has no loops and no 2-cycles. That is for any α ∈ �1 we have s(α) �= t (α), and
for any α1, α2 ∈ �0, we have t (α1) = s(α2) implies s(α1) �= t (α2).

Given a domain R, a cluster is a pair (�, c), where � is a quiver and c is a map
c : �0 → R. The image of c is called the set of cluster variables.

Let R = RepO f in
B⊥ be the Grothendieck ring of the category of finite type modules. A

mutation of the cluster (�, c) in the direction γ ∈ �0 is a new cluster with the following
properties. The new quiver has the same set of vertices �0. The set of new arrows is
obtained from �1 by the following three steps:

(i) for each subquiver γ1 → γ → γ2 add a new arrow γ1 → γ2;
(ii) reverse all arrows with source or target γ ;
(iii) remove all 2-cycles.

The new map cγ : �0 → R is given by cγ (γ1) = c(γ1) if γ1 �= γ and

cγ (γ )c(γ ) =
∏

α∈�1, s(α)=γ

c(t (α)) +

⎛

⎝

∏

α∈�1, t (α)=γ

c(t (α))

⎞

⎠ {d} (4.31)

for some d ∈ Z≥0. If such d and the new cluster variable cγ (γ ) ∈ R exist, they are
unique, and we say that the cluster (�, c) can be mutated in the direction γ ∈ �0.

We define the quiver as follows: �0 = Z
3 and (i1, j1, k1) → (i2, j2, k2) if and only

if (i2, j2, k2) ∈ {(i1 + 1, j1, k1), (i1, j1 + 1, k1), (i1, j1, k1 + 1)}. For � = (i, j, k) ∈ Z
3

we set q� = qi3q
j
1q

k
2 as before.

Then for a ∈ C
×, we define the seed — or the initial cluster — (�, c0) by sending

vertices of our graph to the positive fundamental modules:

c0 : Z
3 → RepO f in

B⊥ , � �→ [M+(aq�)]. (4.32)

Lemma 4.21. The cluster (�, c0) can be mutated in any direction � ∈ �0. The new
cluster variable is the class of the 2-finite module [N+(aq�)].
Proof. The mutation equation (4.31) in the case of the lemma coincides with (4.24). ��
We also note that by Proposition 4.10 a product of any modules in the initial cluster is
irreducible. We have the following conjecture motivated by [HL].

AB⊥moduleV is calledprime if it cannot bewritten as tensor product of twomodules
both of which are not one-dimensional. A B⊥ module V is called real if V ⊗
⊥ V is
irreducible. A B⊥ module V is called normalized if V0 �= 0 and Vn = 0 for n ∈ Z>0.
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Conjecture 4.22. (i) The cluster (�, c0) can be repeatedly mutated in any sequence of
directions. Each mutation corresponds to a short exact sequence in category O f in

B⊥ .
(ii) Every cluster variable obtained through a sequence of mutations is an irreducible

prime real module.
(iii) Every irreducible prime real normalized module appears as a cluster variable.
(iv) Any tensor productmodule corresponding to a cluster variable in the same cluster

is irreducible. In particular, both terms in the left hand side of mutation equation (4.31)
correspond to irreducible modules.

5. Bethe Ansatz

5.1. Universal R matrix. As was mentioned in Sect. 2.4, algebra E is a quotient of the
quantum double of its Borel subalgebraB⊥, and hence is equipped with the universal R
matrix. For a technical reason (see Remark after Proposition 5.1 below), we use the R
matrix R associated with the opposite coproduct 
⊥,op = σ ◦ 
⊥, where σ(a ⊗ b) =
b ⊗ a. Its main properties are as follows.

R 
⊥,op(x) = 
⊥(x) R (x ∈ E) , (5.1)
(


⊥,op ⊗ id
)

R = R1,3 R2,3 ,
(

id ⊗ 
⊥,op)R = R1,3 R1,2 , (5.2)

R1,2R1,3R2,3 = R2,3R1,3R1,2 , (5.3)

where, as usual, the suffixes i, j of Ri, j stand for the tensor components, e.g., R1,2 =
R⊗ 1.

Element R has the form (see [BS,Ng])

R = qt∞R+R0R−.

The factors R± can be written as

R+ = 1 +
∑

ν1>0
ν2>0

N+
ν1,ν2
∑

i=1

x (i)
ν1,ν2

⊗ y(i)
−ν1,−ν2

∈ B⊥
+ ̂⊗B

⊥
− , (5.4)

R− = 1 +
∑

ν1>0
ν2≥0

N−
ν1,ν2
∑

i=1

x (i)′
−ν1,ν2

⊗ y(i)′
ν1,−ν2

∈ B⊥−̂⊗B
⊥
+ , (5.5)

where the suffixes ν1, ν2 indicate bidegrees. The middle factor R0 is given by

R0 = exp
(

−
∞
∑

r=1

rκr hr ⊗ h−r
)

. (5.6)

Finally qt∞ is defined formally by

qt∞ = qc
⊥⊗d⊥+d⊥⊗c⊥ , (5.7)

where C⊥ = qc
⊥
, D⊥ = qd

⊥
. In what follows we consider tensor product modules

V ⊗
⊥ W with V ∈ ObOB⊥ and W ∈ ObOE. Formula (5.7) gives a well defined
operator on such modules.
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5.2. Normalized R matrix and polynomiality. In this section, we take u to be an inde-
terminate.

We define su : E → E[u±1] by setting su(x) = uhdeg x x for any homogeneous
element x ∈ E. We set also

R(u) = (

su ⊗ id
)(

R
) ∈ B⊥

̂⊗B
⊥[[u]].

In formula (5.5) for R+, the first tensor component of each term acts as annihilation
operator on modules from OB⊥ . Likewise, in formula (5.5) for R−, the second tensor
component of each term acts as annihilation operator on modules from OE. Therefore,
if V ∈ ObOB⊥ and W ∈ ObOE, then each coefficient of the formal series R(u) is a
well defined operator on V ⊗
⊥ W .

Suppose further that V is a tensor product of highest 
-weightB⊥ modules, andW is
a tensor product of highest 
-weight Emodules. Denote by v0 ∈ V the tensor product of
highest 
-weight vectors, and byw0 ∈ W the tensor product of highest 
-weight vectors.
We write the eigenvalues of hr on these vectors as 〈hr 〉V , 〈hr 〉W , respectively. Suppose
that C⊥ acts on V as a scalar C⊥

V and on W as a scalar C⊥
W . From the remark above, we

see that R(u)
(

v0 ⊗ w0
) = fV,W (u)

(

v0 ⊗ w0
)

, where

fV,W (u) = (C⊥
V )pdegw0(C⊥

W )pdeg v0 exp
(−

∑

r>0

urrκr 〈hr 〉V 〈h−r 〉W
)

. (5.8)

We have

fV1⊗V2,W (u) = fV1,W (u) fV2,W (u) , fV,W1⊗W2(u) = fV,W1(u) fV,W2(u).

For example,

fM+(a),F(b)(u) = exp
(
∑

r>0

1− qr2
rκr

(ua

b

)r)

,

fF(a),F(b)(u) = exp
(

−
∑

r>0

(1− qr2)(1− q−r2 )

rκr

(ua

b

)r)

.

We define the normalized R matrix RV,W (u) ∈ End
(

V ⊗W
)[[u]] by

RV,W (u)
(

v ⊗ w
) = fV,W (u)−1R(u)

(

v ⊗ w
)

(v ∈ V, w ∈ W ).

In the next two Propositions we study the polynomial nature of the RV,W (u) and its
growth order at u →∞. This will be used in the next subsection to discuss the polyno-
miality of the transfer matrix.

For vectors w1 ∈ W ∗ and w2 ∈ W , introduce the notation Lw1,w2(u) for the matrix
coefficients in the second component,

v1Lw1,w2(u)v2 = v1 ⊗ w1RV,W (u)v2 ⊗ w2 (v1 ∈ V ∗, v2 ∈ V ).

We regard V ∗,W ∗ as rightB⊥ modules. The intertwining property (5.1) of the R matrix
implies that

Lw1,h⊥r w2
(u) = (C⊥

V )−r Lw1h⊥r ,w2
(u) + [h⊥r , Lw1,w2(u)](C⊥

W )−r , (5.9)

Lw1e⊥n ,w2
(u) = u[Lw1,w2(u), e⊥n ](C⊥

W )n + Lw1,e⊥n w2
(u)(C⊥

V )n (5.10)

+
∑

j≥1
Lw1,e⊥n− jw2

(u)ψ
+,⊥
j (C⊥

V )n − (C⊥
W )nu

∑

j≥1
e⊥n− j Lw1ψ

+,⊥
j ,w2

(u) ,
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for all r > 0 and n ∈ Z. Here we write [A, B]p = AB − pBA.
We shall say that a linear operator on V is polynomial if it acts as a polynomial in u

on each subspace Vn , with degree possibly depending on n.

Proposition 5.1. Notation being as above, consider the special case V = M+(1), W =
F(v), C⊥

V = 1, C⊥
W = q−1. Let V = ⊕∞

m=0M[m] be the grading in Proposition 4.6,
and denote by u∂ the operator u∂

∣

∣

M[m]= um × idM[m]. Then Lw1,w2(u) is polynomial
for any w1 ∈ F(v)∗, w2 ∈ F(v). Moreover we have

u∂ Lw1,w2(u)u−∂M[m] ⊂ us ·
m+s
∑

j=0

M[ j] ⊗ C[u−1] (s = − pdegw2). (5.11)

Proof. Consider first the case w1 = 〈∅| and w2 = |∅〉. We have rκr 〈h−r 〉W = (1 −
qr2)v

−r . From (5.6), (5.8) and (5.7) we obtain

L〈∅|,|∅〉(u) = q−d⊥ exp
(

−
∑

r>0

(u

v

)r
(1− qr2)h̄r,V

)

,

where h̄r,V = hr − 〈hr 〉V . Thanks to (4.9), on each degree subspace, the operator
∑

r>0(u/v)r (1−qr2)h̄r,V is a finite sum and is nilpotent. Hence L〈∅|,|∅〉(u) is polynomial.
Since

u∂ h̄r,V u
−∂M[m] ⊂ u−r M[m − r ] , (5.12)

operator u∂ L〈∅|,|∅〉(u)u−∂ is independent of u, and (5.11) holds true for this element.
SinceW = F(v) is generated from |∅〉by {h⊥r }r>0, formula (5.9) allowsus to compute

L〈∅|,w2(u) for all w2 ∈ W inductively. Formula (5.10) with n ≤ 0 then allows us to
compute Lw1,w2(u) for all w1 ∈ W ∗ and w2 ∈ W , because W ∗ = F(v)∗ is generated
from 〈∅| by {e⊥n }n≤0 (note that en (n ≥ 2) and [e0, e2] are generated by e⊥−r (r > 0)
and ad e⊥0 = ad h1). In general, Lw1,w2(u) is expressed as

∑

ai (u)xi L〈∅|,|∅〉(u)yi with
some xi , yi ∈ B⊥ and ai (u) ∈ C[u]. Hence Lw1,w2(u) is polynomial. Using

u∂h⊥r u−∂M[m] ⊂ ur ·
m+r
∑

j=m

M[ j]u−m−r+ j (r > 0) ,

u∂e⊥n u−∂M[m] ⊂ δn,0M[m] + M[m − 1]u−1 (n ≤ 0) ,

we can show (5.11) by induction. When n = 0, we have to be careful with the first term
in the right hand side of (5.10). In this case we write it as u[Lw1,w2(u), h̄1,V ] and use
(5.12). ��
Remark. While matrix elements of RM+(1),F(v)(u) are polynomials, its inverse
RM+(1),F(v)(u)−1 has infinitely many poles. In fact, its diagonal matrix entry on the

vector v0 ⊗ |λ〉 is given by
∏

�∈λ

(

1− q�u/v
)−1. ��

Next we consider the 2-finite module N+(1). Recall the grading N+(1) =
⊕∞

m=0N [m], N [m] = N0[m]⊕ N1[m], given in Proposition 4.14. Let u∂ be the operator
u∂

∣

∣

N [m]= um · idN [m].
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Proposition 5.2. The operator (1−q2u/v)Lw1,w2(u) is polynomial for anyw1 ∈ F(v)∗
and w2 ∈ F(v). Moreover we have the expansions as u →∞

u∂ Lw1,w2(u)u−∂ · N1[m] ⊂ u2s
m+2s
∑

j=1

N1[ j][[u−1]] , (5.13)

u∂ Lw1,w2(u)u−∂ · N0[m] ⊂ u2s
m+2s
∑

j=0

N0[ j][[u−1]] + u2s−1
m+2s−2
∑

j=1

N1[ j][[u−1]]

(5.14)

where s = − pdegw2.

Proof. The proof is similar to that of Proposition 5.1.
Denote by 〈hr 〉i the eigenvalue of hr on Ni , and set h̄r,i = hr −〈hr 〉i . Then we have

L〈∅|,|∅〉(u) = q−d⊥ exp
(

−
∑

r>0

(u

v

)r
(1− qr2)h̄r,0

)

,

= 1− u/v

1− q2u/v
q−d⊥ exp

(

−
∑

r>0

(u

v

)r
(1− qr2)h̄r,1

)

.

It follows from (4.27) that (1 − q2u/v)L〈∅|,|∅〉(u) is polynomial, and that uru∂ h̄r,i u−∂

is independent of u on Ni . Hence (5.13), (5.14) are true in this case.
The case of general w1, w2 can be verified by using (5.9), (5.10) and the relations

which follow from Proposition 4.14,

u∂h⊥r u−∂N0[m] ⊂ u2r
m+2r
∑

j=0

N0[ j] ⊗ C[u−1] + u2r−1
m+2r−1
∑

j=1

N1[ j] ⊗ C[u−1] ,

u∂h⊥r u−∂N1[m] ⊂ u2r
m+2r
∑

j=1

N1[ j] ⊗ C[u−1] ,

u∂e⊥−nu
−∂N0[m] ⊂ u−1N0[m − 1] , (n > 0)

u∂e⊥−nu
−∂N1[m] ⊂ u−1N1[m − 1] +

m
∑

j=0

N0[ j] ⊗ C[u−1] (n > 0) ,

u∂ h̄r,i u
−∂Ni [m] ⊂ ur Ni [m − r ].

��

5.3. Bethe ansatz. For an object V ∈ OB⊥ , the twisted transfer matrix associated with
the ‘auxiliary space’ V is a formal series defined by

TV (u; p) = TrV,1

(

p−d⊥ ⊗ id · R(u)
)

∈ B
⊥[[u, p]][p−1].

Here TrV,1 means that the trace is taken on the first tensor component. Clearly we have

TV1⊕V2(u; p) = TV1(u; p) + TV2(u; p) ,

TV1⊗V2(u; p) = TV2(u; p)TV1(u; p) ,
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hence the assignment V �→ TV gives a homomorphism of rings from RepB⊥ to

B
⊥[[u, p]][p−1].
Element TV (u; p) gives rise to a formal series of operators which act on any given

‘quantum space’ W ∈ OE. It is convenient to use the normalized R matrix and define

TV,W (u; p) = TrV,1
(

(p−d⊥ ⊗ id)RV,W (u)
) ∈ End(W )[[u, p]] ,

so that TV (u; p)∣∣W= fV,W (u)TV,W (u; p). Note that TV,W (u; p) acts on each subspace
of W of fixed principal degree.

From now on, we choose

W = F(v1) ⊗
⊥ · · · ⊗
⊥ F(vN ).

Note that C⊥ acts as q−N on W . We set

a(u) =
N

∏

i=1

q−1
(

1− q2u

vi

)

, d(u) =
N

∏

i=1

(

1− u

vi

)

,

and introduce the notation

QW (u; p) = TM+(1),W (u; p) , TW (u; p) = a(u)TN+(1),W (u; p).
In what follows W is fixed, we drop it from notation and simply write Q(u; p) and
T(u; p).
Proposition 5.3. On the subspace W−k of principal degree−k, Q(u; p) is a polynomial
in u of degree at most k.

Proof. Let Qn(u) = TrM+(1)−n RM+(1),W (u)denote the trace over the subspaceM+(1)−n

of fixed principal degree −n. We have Q(u; p) = ∑∞
n=0 p

nQn(u). Since

RM+(1),W (u) = RM+(1),F(vN )(u) · · · RM+(1),F(v1)(u),

each matrix element of RM+(1),W (u) is a polynomial in u by Proposition 5.1. Moreover
(5.11) implies that for each vector w ∈ W−k the degree of Qn(u)w does not exceed k.
Therefore Q(u; p)w is also a polynomial in u of degree at most k. ��
Proposition 5.4. On each subspace of W of fixed principal degree, T(u; p) is a polyno-
mial in u.

Proof. This follows from Proposition 5.2. ��
Since the map V �→ TV is a ring homomorphism, relations in RepB⊥ implies those

for the transfer matrices. It allows us to express any transfer matrix TV,W (u; p) via the
operator Q(u; p). The recipe is as follows.
Proposition 5.5. Let � ∈ rB⊥ and V = L(�). Then its q-character χq(V ) has the

form (4.30). In χq(V ), drop χ̄
max(d(�,0)
0 and replace each Xa by fM+(1),W (a)Q(a; p),

each xa in m(�) by a−d⊥ , and each t−1 by pqN . Then the resulting series coincides
with fV,W (u)TV,W (u; p).
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Proof. In general, if V = L(�) with �(z) = a
∏

i (1− ai/z)/
∏

j (1− b j/z), then by
Lemma 4.16 its q-character takes the form

χq(V ) = xa

∏

i Xai
∏

j Xb j

(
∑

S

∏

a∈S
(t Aa)

−1
)

χ
max(d(�),0)
0 .

Since χq is injective, we have an identity in RepB⊥

[V ] ≡ [L(a)]
∏

i [M+(ai )]
∏

j [M+(b j )]
∑

S

(
∏

a∈S

3
∏

s=1

[M+(qsa)]
[M+(q−1

s a)]
)

{−�S} , (5.15)

valid modulo Fm ⊂ Rep0 B
⊥ for any givenm < 0. This identity means the one obtained

by clearing all denominators. Upon taking trace over both sides, we note that the degree
shift {−d} produces a power (pqN )d . Note also that C⊥

V = a−1 brings about a−d⊥

through qt∞ . We obtain the assertion. ��
Lemma 5.6. By the above rule, the term t−1A−1

a is replaced by

a(u; p) = p
d(u)

a(u)

3
∏

s=1

Q(qsu; p)
Q(q−1

s u; p) .

Proof. We compute the scalar factor. Substituting κr 〈hr 〉M+(1) = −1/r into (5.8) we
find

pqN
3

∏

s=1

fM+(1),W (qsu)

fM+(1),W (q−1
s u)

= pqN exp
(

−
∑

r>0

κr 〈h−r 〉Wur
)

= pqN 〈(ψ−
0 )−1ψ−(u)〉−1

W

= p
d(u)

a(u)
.

��
For example, if V = F(1) is a Fock space, then from (3.16) and Lemma 5.6 we

obtain

TF(1),W (u; p) =Q(q−1
2 u; p)

Q(u; p)
∑

λ∈P

∏

�∈λ

a(q−�u; p).

We remark that a formula for the operator TF(1),W (u; p) in the language of Shuffle
algebras was obtained in [FT2].

In particular, Proposition 5.5 allows to compute the spectrum of T (V ) from that of
Q(u; p).
Corollary 5.7. Let w be an eigenvector of Q(u; p). Then the eigenvalue of TV,W (u; p)
is given by the recipe of Proposition 5.5, replacing Q(u; p) by its eigenvalue Qw(u; p)
on w. ��
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Finally, we show that zeroes of eigenvalues of Qw(u; p) satisfy the Bethe ansatz
equation.

Let w ∈ W−k be an eigenvector of Q(u; p) of principal degree −k. By Proposition
5.3, Qw(u; p) is a polynomial of degree at most k, so it has the form

Qw(u; p)
Qw(0; p) =

k
∏

i=1

(1− u/ζi (p;w)) ,

where some of ζi (p;w)’s may be∞. We conjecture that all roots are in fact finite.

Theorem 5.8. The zeroes ζi (p;w), i = 1, · · · , k, of the eigenvalue of Qw(u; p) satisfy
the Bethe ansatz equations

a(ζi (p;w))

3
∏

s=1

Qw(q−1
s ζi (p;w); p) + pd(ζi (p;w))

3
∏

s=1

Qw(qsζi (p;w); p) = 0.

Proof. By Proposition 5.4, T(u; p) is a polynomial. Equation (4.24) in RepB⊥ implies
that

T(u; p)Q(u; p) = a(u)

3
∏

s=1

Q(q−1
s u; p) + pd(u)

3
∏

s=1

Q(qsu; p).

We apply this relation to w and substitute u = ζi (p;w). The theorem follows. ��
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Appendix A

We collect here technical lemmas used in the main text. Recall that we drop D and set
C = 1 throughout.

A.1. Coproduct 
⊥ on horizontal generators. The following is an analog of a standard
calculation in quantum affine algebras.

Lemma A.9. The following equalities hold.


⊥en ≡
∑

0≤p<n

en−p ⊗ ψ+
p + 1⊗ en mod E�2 ⊗ E�−1 (n > 0), (A.1)

≡
∑

n≤p≤0
en−p ⊗ ψ−

p + 1⊗ en mod E�2 ⊗ E�−1 (n ≤ 0), (A.2)


⊥ fn ≡
∑

0≤p≤n
ψ+

p ⊗ fn−p + fn ⊗ 1 mod E�1 ⊗ E�−2 (n ≥ 0), (A.3)
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≡
∑

n<p≤0
ψ−

p ⊗ fn−p + fn ⊗ 1 mod E�1 ⊗ E�−2 (n < 0), (A.4)


⊥ψ+
n ≡

∑

0≤p≤n
ψ+

p ⊗ ψ+
n−p mod E�1 ⊗ E�−1 (n > 0), (A.5)


⊥ψ−
n ≡

∑

n≤p≤0
ψ−
n−p ⊗ ψ−

p mod E�1 ⊗ E�−1 (n < 0). (A.6)

Proof. Since the calculation is well known for quantum affine algebras, we will be brief.
We use e1 = e⊥−1, e0 = h⊥−1, [en, h1] = en+1, [h−1, en] = en−1, and the relations


⊥e⊥n =
∑

j≥0
e⊥n− j ⊗ ψ

+,⊥
j (C⊥)n + 1⊗ e⊥n (n ∈ Z) ,


⊥h1 ≡ h1 ⊗ 1 + e1 ⊗ κ1 f0 + 1⊗ h1 mod E�2 ⊗ E�−2 ,


⊥h−1 ≡ h−1 ⊗ 1 + κ1e0 ⊗ f−1 + 1⊗ h−1 mod E�2 ⊗ E�−2.

Noting further that κ1[en, f0] = ψ+
n (n > 0) and κ1[ f−1, e−n+1] = ψ−−n (n > 0), we

obtain (A.1) and (A.2) by induction.
The automorphism θ2 in (2.2) is an anti-automorphism of coalgebras with respect to


⊥. Applying θ2 ⊗ θ2 to both sides of (A.1), (A.2), we obtain (A.3), (A.4).
From (A.1) and (A.3) we compute

[
⊥en,
⊥ f0] ≡
∑

0≤p<n

[en−p, f0] ⊗ ψ+
p + ψ+

0 ⊗ [en, f0] mod E�1 ⊗ E�−1 ,

which leads to (A.5). Finally we get (A.6) by applying θ2 ⊗ θ2 to (A.5). ��

A.2. Polynomiality of currents. In this subsection we prove Proposition 4.1.
Recall the subalgebrasB⊥± given in (3.11). In the following computation we use also

auxiliary subalgebras

N⊥ = 〈e⊥n (n ∈ Z), C⊥〉 ,
N⊥− = 〈p(ν1,ν2) (ν1 < 0, ν2 > 0)〉 , N⊥

� = N⊥−B⊥
0 .

Algebra B⊥− is generated by fn (n ≥ 0) and ψ
+,⊥
r (r > 0). Algebra B⊥

+ is generated by
elements en (n > 0), e⊥−r (r > 0) and [e0, e2]. LikewiseN⊥− is generated by fn (n > 0),
e⊥r (r > 0) and [ f0, f2].

We make extensive use of formulas expressing ψ
+,⊥
r , e⊥n in terms of the horizontal

ones,

ψ+,⊥
r = κ1

(−C⊥)r−1 · ad f−1(ad f0)
r−2 f1 (r ≥ 2) , (A.7)

e⊥r = (−1)r−1(C⊥)r · (ad f0)
r−1 f1 (r ≥ 1) , (A.8)

e⊥−r = (ad e0)
r−1e1 (r ≥ 1). (A.9)
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In addition we have ψ
+,⊥
1 = κ1 f0. We should note that the generators e0, f−1 do not

belong to B⊥, only the commutators with them do. Namely we have

ad e0(N
⊥) ⊂ N⊥ , ad f0(N

⊥
�) ⊂ N⊥

� , ad f−1(N
⊥
�) ⊂ B⊥. (A.10)

We begin with a technical lemma.

Lemma A.10. Let r be a positive integer.
(i) For any 
 ≥ 1, there exists an N ∈ Z>0 such that for all m ≥ N and xm =

em, fm, ψ+
m we have

[xm, e⊥r ] ∈
∑

j≥


N⊥
� · f j +

∑

j≥


N⊥
� · ψ+

j . (A.11)

(ii) For any a ∈ C
× and 
 ≥ 1 we have

[ψ+(a), e⊥r ] ∈
∑

j≥


N⊥
� · ψ+(a) ·N⊥

� · f j +N⊥
� · ψ+(a) · (N⊥

� ∩ E�−r+1
)

. (A.12)

Proof. In algebra E, we have the quadratic relations

[ψ+
m, fn] = ξ̄ (ψ+

m−1 fn+1 + fn+2ψ
+
m−2) − ξ(ψ+

m−2 fn+2 + fn+1ψ
+
m−1) + [ψ+

m−3, fn+3] ,
(A.13)

[ fm, fn] = ξ̄ ( fm−1 fn+1 + fn+2 fm−2) − ξ( fm−2 fn+2 + fn+1 fm−1) + [ fm−3, fn+3] ,
(A.14)

which hold for all m, n ∈ Z. Here we set ξ = ∑3
i=1 qi , ξ̄ = ∑3

i=1 q
−1
i . We can apply

the same equations repeatedly to terms of the form ψ+
m− j fn+ j , fm− j fn+ j in the right

hand side. For any given 
 ≥ n + 1, we obtain as a result

[ψ+
m, fn] ∈


+2
∑

j=


Cψ+
m+n− j f j +


+2
∑

j=n+1

C f jψ
+
m+n− j (A.15)

and a similar equation wherein all ψ+
k ’s are replaced by fk’s. From these, along with

the relation [em, fn] = κ−1
1 ψ+

m+n , it is clear that (A.11) holds for r = 1, e⊥1 = C⊥ f1,
provided m is sufficiently large.

By induction, suppose statement (i) is true up to r , and consider e⊥r+1 = −C⊥[ f0, e⊥r ].
We write

[xm, [ f0, e⊥r ]] = [[xm, f0], e⊥r ] + [ f0, [xm, e⊥r ]]. (A.16)

We apply relations of the type (A.15) to the first term in the right hand side of (A.16),
and use the induction hypothesis. Given an 
, we can choose an 
′ so that

[[xm, f0], e⊥r ] ∈
∑

j≥
′
N⊥

� · f j +
∑

j≥
′
N⊥

� · ψ+
j +

∑

j≥
′
N⊥

� · [ f j , e⊥r ] +
∑

j≥
′
N⊥

� · [ψ+
j , e

⊥
r ]

⊂
∑

j≥


N⊥
� · f j +

∑

j≥


N⊥
� · ψ+

j
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holds form large enough.We proceed similarly with the second term of (A.16), using the
induction hypothesis, relation of type (A.15), and (A.10). With a suitable 
′′ we obtain

[ f0, [xm, e⊥r ]] ∈
∑

j≥
′′
N⊥

� · f j +
∑

j≥
′′
N⊥

� · ψ+
j +

∑

j≥
′′
N⊥

� · [ f0, f j ] +
∑

j≥
′′
N⊥

� · [ f0, ψ+
j ]

⊂
∑

j≥


N⊥
� · f j +

∑

j≥


N⊥
� · ψ+

j

for m large enough. This proves (i).
To show (ii) for r = 1 it is enough to use

[ψ+(a), fn] ∈
∑

j≥


Cψ+(a) f j +
∑

j≥n+1
C f jψ

+(a). (A.17)

The induction step is also very similar to the argument given above. The only thing to
note is that [ f0,N⊥

� ∩ E�−r+1] ⊂ N⊥
� ∩ E�−r . ��

The following is the content of Proposition 4.1.

Lemma A.11. Let M = L(�), � ∈ rB⊥ ∩ C[z−1]. For any v ∈ M we have

env = fnv = ψ+
n v = 0 for sufficiently large n, (A.18)

if a ∈ C
× is a zero of �(z), then ψ+(a)v = 0. (A.19)

Proof. We prove the assertion by induction on − pdeg v.
When v = v0 is the highest 
-weight vector, (A.18) and (A.19) are evident except

for fnv. Let us show fnv0 = 0 for n > degz−1 �(z). To see this, note that em fnv0 =
κ−1
1 ψ+

m+nv0 = 0 (m ≥ 1), and that e⊥−m fnv0 = 0 (m ≥ 2), [e0, e2] fnv = 0 for degree
reasons. Hence fnv0 = 0 by the irreducibility of M .

Assume that (A.18), (A.19) hold true for v′ ∈ M with pdeg v′ > −l, and take v ∈ M
with pdeg v = −l. There are two cases to consider, v = frv′ (r ≥ 0), or v = ψ

+,⊥
r v′

(r ≥ 2), for some v′. In the following let xn stand for one of en, fn, ψ+
n .

If v = frv′, then xnv = [xn, fr ]v′ + fr xnv′. For large n this vanishes by (A.15), its
analog for [ fm, fn], and the induction hypothesis. We have also

ψ+(a) frv
′ ∈ frψ

+(a)v′ +
∑

j≥


Cψ+(a) f jv
′ +

∑

j≥r+1
C f jψ

+(a)v′

for any 
. The right hand side vanishes if 
 is chosen large enough.
Consider the case v = ψ

+,⊥
r v′. Since (C⊥)r−1ψ

+,⊥
r = −κ1[ f−1, e⊥r−1], we have

(C⊥)r−1[xn, ψ+,⊥
r ] ∈ C[[xn, f−1], e⊥r−1] + C[ f−1, [xn, e⊥r−1]].

Take any 
 ≥ 1. If xn = en then [xn, f−1] ∈ Cψ+
n−1. If xn = fn or ψ+

n then [xn, f−1] ∈
∑

j>n/2 Cxn− j−1 f j +
∑

j≤n/2 C f j xn− j−1. In either case, using Lemma A.10 (i) we see
that if n is large enough then

[[xn, f−1], e⊥r−1]v′ ∈
∑

j≥


N⊥
� · f jv′ +

∑

j≥


N⊥
� · ψ+

j v
′. (A.20)
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Since [ f−1,N
⊥
�] ⊂ B⊥, we have also

[ f−1, [xn, e⊥r−1]]v′ ∈
∑

j≥


B⊥ f jv
′ +

∑

j≥


B⊥ψ+
j v

′ +
∑

j≥


N⊥
�[ f−1, f j ]v′

+
∑

j≥


N⊥
�[ f−1, ψ

+
j ]v′. (A.21)

We can choose 
 large enough so that each term in the right hand side of (A.20), (A.21)
vanishes. Hence xnψ

+,⊥
r v′ = 0 for sufficiently large n.

It remains to show (A.19). By using quadratic relations and (A.17), and arguing as
above, we find

[ψ+(a), ψ+,⊥
r ]v′ ∈

∑

j≥


B⊥ψ+(a)B⊥ · f jv′ +B⊥ψ+(a)
(

B⊥ ∩ E�−r+1
)

v′

for any 
. Hence if 
 is large enough, then the right hand side vanishes by the induction
hypothesis. ��

A.3. Coproduct 
 and 1-finite modules. We restate and prove Proposition 4.2 as the
following lemma.

Lemma A.12. (i) AlgebraB⊥ is a left coideal of Ewith respect to
:
(B⊥) ⊂ Ê⊗B⊥,
where ̂⊗ means the completed tensor product with respect to the homogeneous degree.

(ii) Let V be an E module, and let M = L(�) with � ∈ rB⊥ ∩C[z−1]. Then 
(B⊥)

has a well-defined action on V ⊗ M.

Proof. The images of horizontal generators by 
 are given by


en =
∑

j≥0
en− j ⊗ ψ+

j + 1⊗ en (n > 0)


 fn = fn ⊗ 1 +
∑

j≥0
ψ−
− j ⊗ fn+ j (n ≥ 0).

Thanks to Proposition 4.1, these series terminate on each vector of V ⊗ M . We study
the images of the vertical generators e⊥r , ψ

+,⊥
r .

If r > 0, then
e⊥−r = (ad
e0)r−1
e1 by (A.9). It is the coefficient of z01 · · · z0r−1z
−1
r

in the multiple commutator (ad A1 + ad B1) · · · (ad Ar−1 + ad Br−1)(Ar + Br ), where
A j = e(z j ) ⊗ ψ+(z j ) and Bj = 1 ⊗ e(z j ). We write ad X = L(X) − R(X) where
L(X) (resp. R(X)) means multiplication by X from the left (resp. from the right).
Expanding the product, and taking coefficients of terms of the type Bj , we obtain a
linear combination of terms of the following form:

e(z j ′1) · · · e(z j ′k ) ⊗ X0Y
±
1 X1Y

±
2 · · · Y±

k−1Xk−1 ×
{

Y±
k Xk(e1) ( jk < r)

ψ+(zr ) ( jk = r).
(A.22)

Here 0 ≤ k ≤ r , 1 ≤ j1 < · · · < jk ≤ r , j ′1, . . . , j ′k is a permutation of j1, . . . , jk ,
Xs = (ad e0) js+1− js−1 ( j0 = 0, jk+1 = r ), Y +

s = L(ψ+(z js )), Y
−
s = R(ψ+(z js )). Since

(ad e0)(N⊥) ⊂ N⊥, coefficients of (A.22) in the remaining zi ’s belong to Ê⊗B⊥.
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There is nothing to show about e⊥0 = h1 and ψ
+,⊥
1 = κ1 f0.

We show next that 
e⊥r with r > 0 belongs to Ê⊗N⊥
�. If r = 1 it is clear from

e⊥1 = C⊥ f1. If r ≥ 2, then 
e⊥r is proportional (with C⊥ as coefficients) to

[ f0 ⊗ 1 + ψ−
0 ⊗ f0 +

∑

j≥1
ψ−
− j ⊗ f j ,
e⊥r−1].

Since ad f0(N⊥
�) ⊂ N⊥

�, we see by induction that all terms belong to E⊗N⊥
�.

Finally 
ψ
+,⊥
r (r ≥ 2) is proportional to

[ f−1 ⊗ 1 + ψ−
0 ⊗ f−1 +

∑

j≥0
ψ−
− j−1 ⊗ f j ,
e⊥r−1].

Since ad f−1(N
⊥
�) ⊂ B⊥, all terms belong to E⊗B⊥. ��

A.4. Coproduct 
 and 
⊥. The following is an analog of Proposition 3.8 of [EKP],
which relates the Drinfeld coproduct with the standard coproduct for quantum affine
algebras.

Lemma A.13. In the completed tensor product Ê⊗E, we have the identity


op(x) = (qt∞R+R0)
−1 ·
⊥(x) · qt∞R+R0 = R− · 
⊥,op(x) · R−1−

for any x ∈ E.

Proof. The second equality is a consequence of the intertwining property (5.1) of R.
Since both sides are algebra homomorphisms, it suffices to check the identity on the
generators x = e0, f0, h±1.

Let us consider the case x = e0 = h⊥−1. Recall that the factor R− has the form (5.5).
Since pdeg h⊥−1 = 1, we find

R−
⊥,op(h⊥−1)R
−1− = R−

(

h⊥−1 ⊗ 1 + C⊥ ⊗ h⊥−1

)

R−1− (A.23)

∈ e0 ⊗ 1 + E�0 ⊗ E.

Similarly, using (5.5) we compute

R−1
0 R−1

+ q−t∞
⊥(h⊥−1)q
t∞R+R0 ∈ R−1

0

(

(C⊥)−1 ⊗ h⊥−1 + E�1 ⊗ E
)

R0 (A.24)

=
∑

j≥0
ψ+

j ⊗ e− j + E�1 ⊗ E.

In the last line we use the identity

R−1
0 · (C⊥)−1 ⊗ e(z) · R0 = ψ+(z)⊗ e(z) ,

which follows from (5.6). Comparing these equations we find that (A.23), (A.24) are
both equal to
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∑

j≥0
ψ+

j ⊗ e− j + e0 ⊗ 1 = 
op(e0).

The other cases are proved in a similar manner, using

R−1
0 · f (z)⊗ C⊥ · R0 = f (z) ⊗ ψ−(z).

��
Corollary A.14. Let V be an object of OE, and let M = L(�) with � ∈ rB⊥ ∩C[z−1].
Then we have an isomorphism of B⊥ modules

V ⊗
 M � V ⊗
⊥ M.

Proof. We show that the element σ(R−), where σ(a ⊗ b) = b ⊗ a, has a well defined
action on V ⊗ M . To see this, let M = ⊕m≥0M[m] be the grading of vector space
mentioned in Remark at the end of Subsection 4.3. Take vectors v ∈ V and w ∈ M[m].
Then σ(R)v ⊗ w is a sum of terms of the form y′ν1,−ν2

v ⊗ x ′−ν1,ν2
w (see (5.5)). For

them to be non-zero we must have ν1 + pdeg v ≤ 0 and m − ν2 + Nν1 ≥ 0, where
N = degz−1 �. Hence the sum is finite.

Setting F = σ(R−) we have F
(x) = 
⊥(x)F (x ∈ B⊥) by Lemma A.13.
Therefore F : V ⊗
 M → V ⊗
⊥ M gives the desired isomorphism. ��

A.5. Submodules of V ⊗
 M. In this subsection we prove Proposition 4.3. In the fol-
lowing, we assume that

V = L(�V ) , �V ∈ rE , (A.25)

M = L(�M ) , �M ∈ rB⊥ ∩ C[z−1]. (A.26)

Note that M is 1-finite (see Corollary 4.11).

Lemma A.15. Let v ∈ V� be a non-zero vector of 
-weight �. Then emv, fmv are sums
of 
-weight vectors with 
-weight different from �.

Proof. This follows from Lemma 4.15 and its analog for e(z). ��
Lemma A.16. Let W ⊂ V ⊗
 M be a submodule. Then we have

(1⊗ x)W ⊂ W (∀x ∈ B⊥
+ ) , (A.27)

(

f p ⊗ 1
)

W ⊂ W ,
(
∑

j≥0
ψ−
− j ⊗ f p+ j

)

W ⊂ W (∀p ≥ 0). (A.28)

Proof. Without loss of generality we may assume W �= 0. To see (A.27) for x = em
(m > 0), let w ∈ W be a non-zero 
-weight vector. We have

W " 
e>(z) · w = (

e(z) ⊗ ψ+(z)
)

>
· w +

(

1⊗ e>(z)
) · w.

ByLemmaA.15, thefirst term is a sumof termsof 
-weight different from that ofw,while
the second term has the same 
-weight because M is 1-finite. Hence

(

e(z)⊗ψ+(z)
)

>
·w,

(

1⊗ e>(z)
) · w both belong to W . Similarly, for r ≥ 2 we have

W " 

(

(

ad e0
)r−1

e1
)

w = 1⊗ (

ad e0
)r−1

e1 · w + · · · ,
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where · · · is a sum of terms which involve at least one ei in the first component. In view
of Lemma A.15, we conclude that (1⊗ e⊥−r )w belongs toW . Furthermore it is clear that
if (1⊗ x)W ⊂ W then (1⊗ [h1, x])W ⊂ W . This proves (A.27).

Proof of (A.28) is similar where we use 
 f≥(z) = f≥(z)⊗ 1 +
(

ψ−(z)⊗ f (z)
)

≥. ��
Lemma A.17. We retain the assumptions (A.25), (A.26). Let m0 be the highest 
-weight
vector of M. Then any submodule W of V ⊗
 M must have the form W = V (0) ⊗ M
where

V (0) = {v ∈ V | v ⊗ m0 ∈ W }.

The highest 
-weight vector v0 ∈ V belongs to V (0) if and only if V = V (0).

Proof. First we show that

V (0) ⊗ Mn ⊂ W (∀n ≤ 0) (A.29)

by induction on n. By definition (A.29) is true for n = 0. Assuming it for n > −N , we
take m ∈ M−N .

Consider first the case m = f pm′. We set p0 = max{p | f pm′ �= 0}. There exists
an x ∈ B⊥ such that x f p0m

′ = m0. By (A.28), we have
∑p0−p

j=0 ψ−
− jv ⊗ f p+ jm′ ∈ W

for v ∈ V (0). Applying 1 ⊗ x to both sides and using (A.27), we find inductively for
p = p0, p0− 1, · · · that ψ−

− jv ∈ V (0) (0 ≤ j ≤ p0) and v⊗ f pm′ ∈ W (0 ≤ p ≤ p0).

Next we consider the case m = ψ⊥
r m′, pdegw′ = −N + r . Setting w′ = v ⊗ m′

where v ∈ V (0) and we have

W " 
[ f−1, e
⊥
r−1]w′ = [ f−1 ⊗ 1,
e⊥r−1]w′ + [ψ−

0 ⊗ f−1,
e⊥r−1]w′

+
∑

j≥1
[ψ−

− j ⊗ f−1+ j ,
e⊥r−1]w′.

From the previous paragraph we see that the first and the third terms belong to W . The
second term has the form [ψ−

0 ⊗ f−1, (ψ
−
0 )r−1⊗e⊥r−1]w′ + · · · , where · · · denote terms

containing at least one fi in the first component. Arguing similarly as in Lemma A.16
we obtain that (1⊗ [ f−1, e⊥r−1])w′ ∈ W . This shows V (0) ⊗ ψ⊥

r m′ ∈ W .

Let us show that V (0) ⊗ M = W . Let w ∈ W be an 
-weight vector, and let
w = ∑N

r=1 vr ⊗ mr (vr ∈ V , mr ∈ M) be an expression where {vr } and {mr } are
linearly independent sets. We show that vr ∈ V (0) for all r by induction on N .

Assuming pdegm1 ≤ pdegmr (r ≥ 2), we choose an x ∈ B⊥
+ such that xm1 = m0.

By (A.27), we have
∑N

r=1 vr ⊗ xmr ∈ W . For degree reasons we have xmr = arm0

for some ar ∈ C, hence
∑N

r=1 arvr ∈ V (0) where we set a1 = 1. If N = 1, then we are
done. Suppose N ≥ 2. By (A.29) we have

∑N
r=1 arvr ⊗ m1 ∈ W , so that

∑N
r=2 vr ⊗

(mr − arm1) ∈ W . Since {vr }Nr=2 and {mr − arm1}Nr=2 are linearly independent, the
induction hypothesis applies and we obtain vr ∈ V (0) for 2 ≤ r ≤ N . This in turn
implies v1 ∈ V (0).

Finally, (A.28) implies f≥(z)V (0) ⊂ V (0). From the proof of Lemma 3.3, we obtain
that f (z)V (0) ⊂ V (0). Therefore v0 ∈ V (0) if and only if V (0) = V .

The proof is now complete. ��
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