
Digital Object Identifier (DOI) 10.1007/s00220-017-2979-6
Commun. Math. Phys. 356, 261–283 (2017) Communications in

Mathematical
Physics

Two Perspectives of the 2D Unit Area Quantum Sphere
and Their Equivalence

Juhan Aru1, Yichao Huang2,3, Xin Sun4

1 Department of Mathematics, ETH Zürich, Rämistr. 101, 8092 Zurich, Switzerland.
E-mail: juhan.aru@math.ethz.ch

2 Sorbonne Universities, UPMC Univ Paris 06, Paris, France
3 Department of Mathematics, ENS Paris, CNRS, PSL Research University, 45 Rue d’Ulm, 75005 Paris,
France. E-mail: yichao.huang@ens.fr

4 Department of Mathematics, Columbia University, New York, NY 10027, USA.
E-mail: xinsun@math.columbia.edu

Received: 10 April 2016 / Accepted: 26 June 2017
Published online: 11 August 2017 – © Springer-Verlag GmbH Germany 2017

Abstract: 2D Liouville quantum gravity (LQG) is used as a toy model for 4D quantum
gravity and is the theory of world-sheet in string theory. Recently there has been growing
interest in studying LQG in the realm of probability theory: David et al. (Liouville
quantum gravity on the Riemann sphere. Commun Math Phys 342(3):869–907, 2016)
and Duplantier et al. (Liouville quantum gravity as a mating of trees. ArXiv e-prints:
arXiv:1409.7055, 2014) both provide a probabilistic perspective of the LQG on the 2D
sphere. In particular, in each of them one may find a definition of the so-called unit
area quantum sphere. We examine these two perspectives and prove their equivalence
by showing that the respective unit area quantum spheres are the same. This is done by
considering a unified limiting procedure for defining both objects.

1. Introduction

2D Liouville quantum gravity (LQG) was first introduced by Polyakov in [Pol81] as a
framework for integrating over surfaces. On the one hand, this integration over surfaces
can be used to describe the time-evolution of bosonic strings and on the other hand, it
provides a model for a random metric with a fixed topology, i.e., for quantum gravity
[Sei90]. Whereas the theory for surfaces of non-trivial moduli remains to be understood,
the basic theory and the constructions for the 2D sphere are well-known in the physics
literature [Nak04]. In the realm of rigorous probability theory, however, even the under-
standing of the simplest case, i.e., the theory of the random metric on the 2D sphere is
relatively recent.

Liouville quantum gravity on the sphere is the limiting object of natural discrete
random planar map models on the sphere. This provides one way to define the limiting
object as a random measure endowed metric space [LG13,Mie13]; however, the con-
formal structure is lacking in this framework. Indeed, as in the case of 2D Riemannian
manifolds, this metric, although highly non-smooth, should nevertheless determine a
conformal structure such that both the metric and the measure are described using a 2D
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Gaussian free field defined on this conformal structure [Pol81,Sei90]. For now (except
for the recent progress in the case of γ = √

8/3, see [MS15a,MS16a,MS16b]) one
can only define the corresponding volume form, which takes roughly the form ‘eγ hdz’
where h is a 2D Gaussian free field type of distribution and dz the volume element.
In fact, two different constructions of the volume form corresponding to the unit area
quantum sphere have recently appeared in the probability literature.

[DKRV16] rigorously constructed the Liouville quantum field theory on the sphere
by proving that the partition function of the theory is indeed well-defined. As a con-
sequence, [DKRV16] also provides an exact formulation of the Liouville measure on
the sphere conditioned to have unit volume. Later [HRV15,DRV16] generalized the
construction to the disk and to the torus and in [DKRV15], the authors constructed
the Liouville quantum gravity on the sphere in a certain critical situation—when the
so-called Seiberg bound is saturated. In [KRV15] the authors further verify that the con-
formal Ward and BPZ identities for Liouville quantum field theory can be derived in the
probabilistic framework. This is an important step in their project of unifying the path
integral approach and the conformal bootstrap approach of Liouville conformal field
theory. An important feature of this approach is the use of Gaussian multiplicative chaos
theory and its strong link to the original physics literature.

Another approach stems from [She16], where the author suggested a limiting proce-
dure involving the Gaussian free field. Following up this work, in [DMS14], the authors
provided a more concrete construction via Bessel processes and showed that it is equiva-
lent to the limiting procedure suggested in [She16]. [DMS14] also rigorously constructed
objects like quantum disks, quantum wedges and quantum cones. In [MS15b], the au-
thors provide further constructions of the quantum sphere. In particular, they show that
the unit area quantum sphere can be obtained frommating a pair of correlated continuum
trees of finite diameter, which are given by space filling SLE curves. This exemplifies
an important aspect of their approach: the interplay between Gaussian free field and
Schramm-Loewner evolution, already known to be linked to conformal field theories
[Car05].

The [DKRV16] approach considers the so-called Liouville measure directly in the
space of random measures, whereas in the [DMS14] approach one defines the quantum
sphere as equivalence classes of randommeasures.Ononehand, the [DKRV16] approach
is more explicit. On the other hand, the notion of equivalence class enables [DMS14] to
work with one or two marked points whereas the framework of [DKRV16] is restricted
to 3 or more points.

Both approaches provide evidence that they give the correct scaling limit of the
random planar maps weighted by critical statistical mechanics models with 3 uniformly
chosen marked points, (see [DKRV16, Section 5.3] and [MS15b, Section 1.2],[GS15]).
Following the notions preferred by the original authors, the candidate via the [DKRV16]
approach is called the unit volume Liouville measure with three insertion points of weight
γ . The candidate via the [DMS14] approach is called the unit area quantum sphere with
three marked points. A natural question is whether the two constructions actually agree.
Themain aimof this article is to give an affirmative answer to this question (Theorem1.1).
On the way we also revisit the two perspectives in some detail and provide a unified
framework to work with both of them.

We finally remark that there is yet a third mathematical approach to defining a unit
area quantum sphere in the case when γ = √

8/3 (the so-called pure gravity). In this
case, the unit area quantum sphere can be defined as the scaling limit of a large class of
random planar maps including uniform triangulations, uniform quadrangulations, etc.
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Indeed, it has been shown that these random planar maps converge as metric spaces
to the Brownian map in the Gromov–Hausdorff topology [LG13,Mie13]. Moreover,
[MS16c,MS15a] recently announced that there is a canonical way of putting a metric
on the unit area quantum sphere with γ = √

8/3 via the quantum Loewner evolution to
obtain the Brownian map, thus proving the equivalence between the Brownian map and
the unit area quantum sphere defined in [DMS14]. Our result relates [DKRV16] to this
body of work by showing that the unit area quantum sphere can be constructed also via
their approach.

1.1. Outline and main results. We will revisit the two constructions of the unit area
quantum sphere in detail in Sect. 2. Here we first give a brief description in order to state
our main theorem.

In [DKRV16], given an integer k ≥ 3, z1, . . . , zk ∈ C ∪ {∞} and α1, . . . , αk ∈ R

with α1, . . . , αk satisfying certain bounds, one can use the Gaussianmultiplicative chaos
theory to construct the so-called Liouville measure on the sphere with log singularity αi
at zi . Then by conditioning on the quantum area to be 1, one obtains a Liouville measure
with unit volume. We denote the law of unit volume Liouville measures obtained in this
way by μ

α1,...,αk
DKRV . The detailed construction will be provided in Sect. 2.2.

In [DMS14], the construction of the unit area quantum sphere is based on the notion
of quantum surfaces—an equivalence class of random distributions with a number of
marked points. In Sect. 2.3 we revisit the Bessel process construction of the unit area
quantum sphere with 2 marked points, whose law is denoted by μ2

DMS. The unit area
quantum sphere with k ≥ 3 marked points (denoted by μk

DMS) can be obtained by first
sampling according to μ2

DMS and then sampling k − 2 points according to the quantum
area independently of each other.

The following is the main theorem of the paper:

Theorem 1.1. For γ ∈ (0, 2),

μ3
DMS = μ

γ,γ,γ
DKRV.

More precisely, if we embed μ3
DMS such that the three marked points are fixed at

z1, z2, z3 ∈ C∪ {∞}, then it has the same distribution as μ
γ,γ,γ
DKRV with marked points of

weight γ, γ, γ at z1, z2, z3.

Remark 1.2. Whereas we state the equivalence in terms of measures, it also holds in
terms of underlying fields and thus underlying quantum surfaces. Indeed, in [BSS14],
it is shown that a Gaussian free field type field and the Liouville measure it induces
determine each other. One can check that this result also applies in the current context.

Remark 1.3. Notice that μ4
DMS �= μ

γ,γ,γ,γ
DKRV . In fact, according to the definition, the cross

ratio of the 4 marked points of μ4
DMS is a non-trivial random variable. On the side

of μ
γ,γ,γ,γ
DKRV , however, the cross ratio is simply the cross ratio of the four given points

z1, z2, z3, z4. For the same reason Theorem 1.1 is not true for any k > 3. The value
k = 3 is special because on the one hand it fixes a conformal structure on the sphere, but
on the other hand all spheres with three marked points remain conformally equivalent.

On the one hand, the area measure of random planar quadrangulations with n faces,
with each face carrying area 1/n and with four marked points chosen independently
from the area measure, should conjecturally converge to μ4

DMS in the limit n → ∞.
On the other hand, if one first embeds random planar quadrangulations with n faces,
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with each face carrying area 1/n and with three marked points, to the Riemann sphere
with three marked points z1, z2, z3 using say circle-packing embedding, and then adds
a suitable singularity at a fixed point z4 (see [DKRV16, Section 5.3]), one expects to
obtain in the n → ∞ limit the random measure μ

γ,γ,γ,γ
DKRV with four marked points at

z1, z2, z3, z4.

The idea of the proof is to approximate μ
γ,γ,γ
DKRV and μ3

DMS using essentially the same
limiting procedure. In Sect. 3wewill provide an approximation scheme forμγ,γ,γ

DKRV which
is very close to the one in [DMS14, Section 5.3]. In Sect. 4 we will show that a slight
perturbation of the scheme in Sect. 3 leads to both μ

γ,γ,γ
DKRV and μ3

DMS, thus concluding
the proof.

2. Two Perspectives of the Unit Area Quantum Sphere

In this section we first provide necessary background on the whole-plane Gaussian free
field and then describe the two perspectives in some more detail.

2.1. The whole plane Gaussian free field. As in [She07], the whole plane GFF h is
random distribution module an additive constant satisfying

Var[(h, φ)] = −
∫

φ(x) log |x − y|φ(y)dxdy, ∀φ ∈ C∞
0 (R2) s.t.

∫
φ(x)dx = 0.

In other words, it is a Gaussian process only indexed by zero mean test functions.
One can also make h into an honest random distribution (i.e. a scalar field) by

pinning it: namely, we choose some finite measure ρ(z)dz on C ∪ {∞} satisfying∫ ∫ |ρ(x) log |x − y|ρ(y)|dxdy < ∞ and set the average (h, ρ) = ∫
h(z)ρ(z)dz to

be zero, i.e. to pin the field using ρ. We sometimes call ρ(z)dz the background measure.
Then all the other averages (h, ρ′) are defined by choosing c > 0 such that cρ has the
same mass as ρ′ and setting (h, ρ′) := (h, ρ′ − cρ).

If ρ has unit mass, then the Green’s function of such a field is given by [DKRV16]:

Gρ(z, w) = log
1

|z − w| − mρ(log
1

|w − ·| ) − mρ(log
1

|z − ·| ) + θρ, (1)

wherewe setmρ( f ) :=∫
R2 f (z)ρ(z)dz and θρ =− ∫ ∫

R2×R2 ρ(z) log |z−w|ρ(w)dwdz.
We denote the whole-plane GFF pinned using ρ by hρ , its probability measure by Pρ

and the corresponding expectation operator by EPρ . For a different background measure
the scalar whole plane GFF differs by a random constant. No choice of background
measure makes the field truly conformal invariant—conformal transformations change
the pinning of the field. [DKRV16] circumvents this by tensoring the whole plane GFF
with the Lebesgue measure on R to obtain a Mobius invariant, but infinite measure. We
will see the precise meaning in the next subsection.

One of the natural choices for the backgroundmeasure is the normalized areameasure
of the sphericalmetric ĝ(x) = π−1(1+|x |2)−2 of totalmass 1.More explicitly, we define
hĝ to be the random distribution with covariance given by [DKRV16, Equation (2.12)]:

Gĝ(x, y) := log
1

|x − y| − 1

4
(log ĝ(x) + log ĝ(y)) − 1

2
.
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We refer to [MS13] for more information on whole plane Gaussian free field. For
later purpose we record [MS13, Proposition 2.10] stating that one can approximate the
whole-plane GFF using Dirichlet free fields on a sequence of growing domains:

Proposition 2.1. Suppose Dn is a sequence of growing domains with harmonically non-
trivial boundary containing 0 s.t. dist(0, ∂Dn) → ∞. In each Dn we define a Dirichlet
GFF hn with uniformly bounded boundary values. Then on any fixed bounded domain
D, the restrictions of hn to D converge in total variational distance to the restriction of
the whole plane GFF to D, seen as a distribution modulo additive constant.

2.2. David–Kupiainen–Rhodes–Vargas’ approach. In this section we provide a detailed
description of the construction of the unit volume Liouville measure in [DKRV16]. We
identify the sphere S2 with C∪ {∞} via the stereographic projection map. Before going
into details of the construction, we remark that in order to understand the Definition 2.2
of the unit volume Liouville measure, one only needs (2), (4), (7) and the definition of
the Gaussian multiplicative chaos measure, as explained between (3) and (4).

For the spherical metric ĝ, the first step in constructing the Liouville field onC∪{∞}
with marked points at z1, . . . , zk and log-singularities αi at zi is to consider the whole-
plane GFF with a shift term corresponding to the curvature of the metric and additional
singularities corresponding to the marked points:

hL(z) = hĝ(z) +
Q

2
log ĝ(z) +

k∑
i=1

αi Gĝ(z, zi ). (2)

Here Q = 2/γ + γ /2 with γ ∈ (0, 2) a fixed parameter. Now, given the so-called
cosmological constant μ̂ > 0 and the parameter γ ∈ (0, 2), we define the partition
function for the Liouville field, motivated by the physics literature. For any bounded
continuous functional F acting on H−1(C) we set:

	
(zi ,αi )i
γ,μ̂

(F) = eC(z)
∏
i

ĝ(zi )

αi

∫
R

escEPĝ [F(c + hL) exp(−μ̂eγ cμhL (C))]dc. (3)

Here, for a fixed parameter γ , μhL (·) denotes the Gaussian multiplicative chaos mea-
sure constructed from the log-correlated field hL(z). Shortly, it is the limit in prob-
ability of the measures με

hL
(·) defined by setting for any Borel A ⊂ C, με

hL
(A) =∫

A ε
γ 2

2 exp(γ hε
L(z))dz, where hε

L is, for example, the circle-average approximation of
hL . See e.g. [DKRV16]) for more details. Moreover, we set

s =
k∑

i=1

αi − 2Q, (4)

C(z) = 1

2

∑
i �= j

αiα j Gĝ(zi , z j ) +
θĝ + log 2

2

∑
i

α2
i ,


α = α

2
(Q − α

2
).

Finally, the integration over c corresponds to the tensoring of the free field with the
Lebesgue measure mentioned above.
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In [DKRV16, Theorem 3.2] it is proved that the partition function (3) is non-trivial,
finite and can be approximated by a circle-average regularization procedure if and only
if α1, . . . , αk ∈ R satisfy the following Seiberg bounds:

k∑
i=1

αi > 2Q (first Seiberg bound);

αi < Q, ∀i (second Seiberg bound).

We remark that the two Seiberg bounds yield k ≥ 3. This suits well with the need of
three marked points for fixing the conformal structure of the sphere.

Under these constraints the partition function gives rise to a probability measure on

H−1(C), called the Liouville field. Its law is denoted by Pγ,μ̂

(zi ,αi ,ĝ)
and it is described by

setting:

E
γ,μ̂

(zi ,αi ,ĝ)
[F] =

	
(zi ,αi )i
γ,μ̂

(F)

	
(zi ,αi )i
γ,μ̂

(1)
. (5)

for all bounded continuous functionals F on H−1(C).
Via this partition function and again using the theory of Gaussian multiplicative

chaos, the Liouville field also induces a corresponding Liouville measure M(·) on the
sphere by specifying for all bounded continuous functional F on R

n
+ and all Borel sets

A1, . . . , An in C:

E
γ,μ̂

(zi ,αi ,ĝ)
[F(M(A1), . . . , M(An)]

=
∫
R
escEPĝ [F(eγ cμhL (A1), . . . , eγ cμhL (An)) exp(−μ̂eγ cμhL (C))]dc∫

R
escEPĝ [exp(−μ̂eγ cμhL (C))]dc .

Using a change of variables eγ cμhL (C) = y we can rewrite this as follows:

E
γ,μ̂

(zi ,αi ,ĝ)
[F(M(A1), . . . , M(An))]

=
∫ ∞
0 E

Pĝ

[
F(y

μhL (A1)

μhL (C)
, . . . , y

μhL (An)

μhL (C)
)μhL (C)

− s
γ

]
e−μ̂y y

s
γ

−1dy

μ̂
s
γ �( s

γ
)EPĝ

[
μhL (C)

− s
γ

] .

Thus the Liouville measure on the sphere can be in fact described as follows:

1. M(C) is independent of the normalized measure M̄(·) := M(·)/M(C);
2. M(C) is distributed as Gamma distribution �( s

γ
, μ̂);

3. The normalized measure M̄(·) can be sampled by the normalized measure of μhL

re-weighted by μhL (C)
− s

γ . Namely, write μ̄hL (·) := μhL (·)/μhL (C) then

E
γ,μ̂

(zi ,αi ,ĝ)
[F(M̄(·))] =

E
Pĝ

[
F(μ̄hL (·))μhL (C)

− s
γ

]

E
Pĝ

[
μhL (C)

− s
γ

] . (6)
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Notice that from this explicit structural description of the Liouville field, we see that the
cosmological constant μ̂ only effects the total volume of the Liouville measure of the
sphere, while the normalized measure is independent of μ̂. It is natural to then take the
reweighted normalized measure μ̄hL (·) as the definition of the unit volume Liouville
measure with specific log-singularities. As stated in [DKRV16, Lemma 3.10], for (6) to
make sense, we only need (see Lemma 2.5):

Q −
∑k

i=1 αi

2
<

2

γ
∧ min

i
(Q − αi ) and αi < Q, ∀i. (7)

Nowwe are ready to give a formal definition ofμα1,·,αk
DKRV . The expression for the Liouville

field comes from the same change of variables as above:

Definition 2.2. Fix γ ∈ (0, 2). Let k ≥ 3, z1, . . . , zk be distinct points in C ∪ {∞} and
α1, . . . , αk ∈ R satisfying (7). Let hL be defined as in (2), s as in (4) and μhL (·) be the
Gaussian multiplicative chaos measure corresponding to hL .

Then the unit volume Liouville field on the sphere with marked points (z1, . . . , zk)
and log-singularities (α1, . . . , αk) is a random field distributed as

hL − γ −1 logμhL (C)

under the re-weighted measure

dP̂(αi ,zi )i := E
Pĝ

[
μhL (C)

−s
γ

]−1
μhL (C)

−s
γ dPĝ.

Correspondingly, the unit volume Liouville measure, denoted hereafter by μ
α1,·,αk
DKRV , is

the measure distributed as μ̄hL (·) under P̂(αi ,zi )i .

Notice that we did not include ĝ in the notation of P̂(αi ,zi )i . This is due to Theorem 2.3
which proves that the unit volume Liouville measure does not depend on the choice of
normalization. We will be interested in the special case of k = 3 and αi = γ for all
i = 1, 2, 3. Note that in this case (7) is satisfied for all γ ∈ (0, 2).

2.2.1. Properties of the Liouville measure: moments, covariance under Mobius trans-
forms and independence of the background measure. In this section we record two
invariance properties for the unit volume Liouville measure μ

α1,...,αk
DKRV , and a criterion for

the existence of moments of the Liouville measure.
First, we claim Definition 2.2 is independent of the background measure, justifying

our notation P̂
(αi ,zi )i in that definition. Indeed, in Definition 2.2 the only role of the

background measure is to fix the whole-plane GFF. We will show in Theorem 2.3 below
that this choice does not matter. This corresponds to the Weyl anomaly described in
[DKRV16, Lemma 3.11.2)].

Consider a probabilitymeasureρ(z)dz and let hρ be thewhole-planeGFFnormalized
such that (h, ρ) = 0. As above, denote by mρ( f ) := ∫

R2 f (z)ρ(z)dz and set

hL(ρ)(z) = hρ(z) + 2Qmρ(log
1

|z − ·| ) +
k∑

i=1

αi Gρ(z, zi ), (8)

where zi are marked points with log-singularities αi , and as in [DKRV16], Gρ is the
Green function associated with the background measure ρ as defined in (1).
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Notice that for the normalized spherical metric ĝ, the field hL(ĝ) is the same as hL
defined above. Finally, write μhL(ρ)

as the volume measure corresponding to the field
hL(ρ).

Theorem 2.3. Take any ρ1, ρ2 as above and let s =
k∑

i=1
αi − 2Q. The fields

hL(ρ1) − γ −1 logμhL(ρ1)
(C) under the measure cμhL(ρ1)

(C)
− s

γ dPρ1

and
hL(ρ2) − γ −1 logμhL(ρ2)

(C) under the measure cμhL(ρ2)
(C)

− s
γ dPρ2

are equal in law. Here the constants c are chosen to make the above measures probability
measures.

Proof. To begin with, recall that there is an identification between the whole-plane GFF
pinned using some background measure ρ and the whole-plane GFF seen as a modulo-
constant distribution: the passage from the latter to the former was described in Sect. 2.1
and to pass from former to the latter, we just test theGFF against zeromean test functions.
Using this identification, it suffices to prove the theorem using the probability measure
dP induced by the whole-plane GFF on the modulo-constant distributions. We write
(h, φ) for this modulo constant field acting on zero mean distributions φ. Now, observe
that under the measure dP, we have that almost surely hρ1 = hρ2 − (h, ρ1 − ρ2). Write
also

gρi = hL(ρi ) − hρi , i = 1, 2.

Then in particular

hL(ρ1) = hρ2 + gρ1 − (h, ρ1 − ρ2).

As for i = 1, 2 the quantity hL(ρi ) −γ −1 logμhL(ρi )
(C) remains unchanged after adding

a constant to the field, we can write:

hL(ρ1) − γ −1 logμhL(ρ1)
(C) = hρ2 + gρ1 − γ −1 logμhρ2+gρ1

(C).

In addition, we also have that

μhL (ρ1)(C)
− s

γ = μhρ2+gρ1
(C)

− s
γ exp(s(h, ρ1 − ρ2)).

By the Cameron-Martin theorem for the modulo-additive constant Gaussian free field
(see e.g. [Jan97]), reweighing dP by exp(s(h, ρ1 − ρ2)) induces for any zero mean test
function φ a drift equal to

−s
∫
R2

∫
R2

φ(z) log |z − w|(ρ1 − ρ2)(w)dzdw

on (h, φ). Now as the difference of Green’s functions Gρ1(z, zi ) − Gρ2(z, zi ) satisfies


(Gρ1(z, zi ) − Gρ2(z, zi )) = ρ1 − ρ2, for all 1 ≤ i ≤ k.

Finally, one can verify that

−s
∫
R2

φ(z) log |z − w|(ρ1 − ρ2)(w)dw = gρ2 − gρ1 + C

for some absolute constant C . Now Theorem 2.3 follows. ��
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Second, the following theoremsays that the unit volumeLiouvillemeasure transforms
covariantly under Mobius transforms:

Theorem 2.4. [DKRV16, Theorem 3.7]
Let ψ be a Mobius transform of the sphere. The law of the unit volume Liouville field

φ under P̂(αi ,zi )i is the same as that of φ ◦ ψ + Q log |ψ ′| under P̂(αi ,ψ(zi ))i . The area
measure under P̂(αi ,ψ(zi ))i has the same law as the pushforward of the area measure
under P̂(αi ,zi )i .

Finally, for themoment estimate that we use later on,we first recall a slightlymodified
formulation of Lemma 3.10 in [DKRV16]:

Lemma 2.5. Fix γ ∈ (0, 2) and let ρ = ĝ, i.e. take the spherical measure as the pinning
measure. Consider the field hL(ρ) as in (8) under the law Pρ . Then for any q ∈ R with
q < 4

γ 2 ∧ mini 2
γ
(Q − αi ) we have that EPρ [μhL(ρ)

(C)q ] < ∞.

We will need the same estimate in the case where ρ = c, where we denote by c the
uniform probability measure on the unit circle.

Corollary 2.6. The lemma above holds for ρ = c.

Proof. Notice that
∣∣∣∣mĝ(log

1

|z − ·| ) − mc(log
1

|z − ·| )
∣∣∣∣ =

∣∣∣∣14 log ĝ(z) + log(|z| ∨ 1)

∣∣∣∣ < C (9)

where C is some finite constant independent of z.
It follows from the definition of the Green’s functions (1) that Gĝ and Gc differ at

most by some finite constant. Moreover, as remarked above, the difference between hĝ
and hc is a Gaussian of finite variance. Thus from (8) we see that the difference between
hL(ĝ) and hL(c) is bounded by some Gaussian with bounded mean and variance and we
conclude. ��

In fact, the same moment bound holds for a much larger class of pinning measures
ρ. However, for the more general case we do not have such a short and simple proof.

2.3. Duplantier–Miller–Sheffield’s approach. We now briefly describe the approach to
quantum surfaces initiated in [She16,DMS14]. In particular we will show how to make
sense of the unit area quantum sphere even in the case of two marked points.

The underlying idea is to think of quantum surfaces as abstract surfaces, and of
different conformal parametrizations as of different embeddings of these surfaces. One
way to do this is to define an equivalence class of randommeasures with a transformation
rule under conformal mappings.

Definition 2.7. Let γ ∈ (0, 2) and Q = 2/γ + γ /2. Suppose we have a random dis-
tribution h on a domain D. Then a random surface with k ≥ 0 marked points is an
equivalence class of (k +2)-tuples (D, h, x1, . . . , xk) (with xi ∈ D) under the following
equivalence relation: two embeddings (Di , hi , xi1, . . . , x

i
k) for i = 1, 2 are considered

equivalent if there is a conformal map φ : D2 → D1 such that

1. h2 = h1 ◦ φ + Q log |φ′|;
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2. it induces a correspondence between marked points on D1 and marked points on
D2: x1j = φ(x2j ), j = 1, . . . , k.

In each fixed embedding, one can define the corresponding Liouville measureμh1 (resp.
μh2 ) as the Gaussian multiplicative chaos measure of parameter γ corresponding to the
field h1 (resp. h2). Here the transformation rule in the definition is chosen so that this
γ -Liouville measure is defined intrinsically for any equivalence class: μh1 = φ∗μh2 .
The marked points in this framework correspond to the so called typical points of this
Liouville measure, i.e. they have γ -singularities.

Remark 2.8. If we have too few marked points to fix the automorphisms of D, then the
sigma-algebra of h does not coincide with that of the random surface—i.e. only events
that are invariant under the remaining automorphisms are measurable w.r.t the random
surface.

Remark 2.9. Given a random surfaces with fewer marked points than are necessary to fix
an embedding, we can still find well-defined embeddings of this surface: for example,
we can just choose the missing number of points in a measurable way w.r.t. the random
surface constructed with given marked points and then use all these points to choose a
well-defined embedding.

2.3.1. Encoding surfaces using Bessel processes. In [DMS14], the authors introduce
a way to encode random surfaces using Bessel processes and give a definition of the
quantum unit sphere with two marked points.

To motivate the construction, consider the infinite cylinder Q = R × [0, 2π ] with
R × {0} and R × {2π} identified. Here two marked points are given by the ends of
the cylinder {−∞,+∞} and the remaining degrees of Mobius freedom are: 1) rotations
around the axis of the cylinder; 2) horizontal shifts.

These degrees of freedom pair well with the decomposition of the GFF onQ into ra-
dial and angular parts [DMS14, Lemma 4.2]: the radial part is invariant under rotations
and transforms under horizontal shifts while the angular part is invariant under hori-
zontal shifts and transforms under rotations. This comes directly from the orthogonal
decomposition of the Dirichlet spaceH(Q) on the cylinder, that is given by the closure
of smooth functions f on Q under the Dirichlet norm ‖∇ f ‖ [DMS14, Lemma 4.2]:

Lemma 2.10. Let H1(Q) ⊂ H(Q) be the subspace of functions which are constant on
circles of the form u × [0, 2π ] with endpoints 0 and 2π identified and u ∈ R. Also, let
H2(Q) ⊂ H(Q) be the subspace of functions on Q which are of mean zero on all such
circles. ThenH1(Q) andH2(Q) form an orthogonal decomposition of the spaceH(Q).

Remark 2.11. We call the H1(Q) and H2(Q) components the radial and angular com-
ponents respectively.

Let δ = 4 − 8/γ 2 and let νBES
δ be Bessel excursion measure of dimension δ. In order

to define μ2
DMS, we first introduce an infinite measure on quantum surfaces with two

marked points as follows:

1. Parameterize quantum surfaces by (h,Q,∞,−∞).
2. Sample an excursion e according to νBES

δ .
3. The radial H1(Q) component of the quantum sphere is given by reparametrizing

2γ −1 log e to have quadratic variation du.
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4. The angularH2(Q) component is sampled independently from the lawof theH2(Q)

component of a whole-plane GFF on Q.
Following [MS15b], we denote this measure by MBES.

Definition 2.12. The unit area quantum sphere with two marked points is MBES condi-
tioned on the surface having unit quantum area. We denote its law by μ2

DMS. Given an
integer k ≥ 3 and ifwefirst sample of instance ofμ2

DMS then conditionally independently
sample k−2 points on the surface according to the quantum area, the resulting quantum
surfacewith kmarked points is called the unit area quantum spherewith kmarked points,
whose law is denoted by μk

DMS. By forgetting one marked point in μ2
DMS, we obtain the

unit area quantum sphere with 1 marked point μ1
DMS.

Remark 2.13. Although MBES is an infinite measure, the restriction of MBES to the event
that the surface has quantum area larger than a positive number is finite. One can check
that it is also similarly possible to make sense of MBES conditioned on have quantum
area 1 to obtain a probability measure.

Notice that a priori μ2
DMS having only two marked points, comes without a canonical

embedding. Choosing an embedding amounts to fixing the rotation and the horizontal
translation in some way. The rotation can be fixed arbitrarily. For the radial part, we find
it convenient to use the so called maxima embedding, where we fix the horizontal shift
by requiring the location of the radial maxima to be at zero.

2.3.2. Limiting procedure for the 2-point sphere. In [DMS14, Proposition 5.13], a lim-
iting procedure is described to obtain μ2

DMS. It roughly goes as follows: take a Dirichlet
GFF h on the unit disk D with zero boundary conditions, and condition its Gaussian
multiplicative chaos measure μh to have mass eC ≤ μh(D) ≤ eC (1+ δ) for C > 0 large
and δ > 0 small. Denote the conditional law by hC,δ . Letw be a point inD sampled from
μ̄hC,δ

. It is then shown that the quantum surfaces (hC,δ − γ −1C,D, w,∞) converge in
law to μ2

DMS, when we first let C → ∞ and then let δ → 0.
Here, convergencemeans that in some fixed embedding of these quantum surfaces the

conditioned γ -Liouville measures converge weakly in law to the measure corresponding
to μ2

DMS in this embedding. For example, one can
• map C to the cylinder Q via the logarithmic map, sending ∞ to −∞ and w to ∞;
• use the change-of-coordinates formula of Definition 2.7 to transform the field;
• horizontally shift the resulting field so that the maxima of its radial part is achieved

at Rez = 0;
• consider the γ -Liouville measure of the resulting field and, in order to obtain a

measure on Q, extend this measure by zero outside of the shifted image of D.
Convergence of (hC,δ − γ −1C,D, w,∞) then means convergence in law of these mea-
sures on the cylinderQ under weak topology. The two marked points w and ∞ become
respectively ∞ and −∞ on Q.

By examining the corresponding proof in [DMS14], we lift the following statement:

Proposition 2.14. Let h = h0−γ log |z|−C where h0 is a zero boundary GFF onD and
C is a constant. The quantum surface (h,C, 0,∞) conditioned on e−γ δ ≤ μh(D) ≤ eγ δ

converges to μ2
DMS. More precisely, if we embed the quantum surface (h,C, 0,∞) into

(Q,+∞,−∞) and fix the horizontal shift such that the maxima of the radial part is
achieved at Rez = 0, then as C → ∞ and then δ → 0 the conditional law of the
quantum surface converges to the maxima embedding of μ2

DMS described in Sect. 2.3.1
in the sense the corresponding γ -Liouville measures converge weakly in law.
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3. A Limiting Procedure for μ
γ,γ,γ
DKRV

This section is devoted to proving an approximation scheme forμγ,γ,γ
DKRV. Let D

ε = ε−1
D

be a large disk and hε
0 be the zero boundary GFF on Dε. Let further z1, z2 ∈ D and

consider a GFF with two interior γ singularities at z1, z2, and boundary values chosen
such that in the limit they give rise to a third γ singularity at infinity, i.e. we set:

hε(z) = hε
0(z) + (2Q − γ ) log ε + γGDε (z, z1) + γGDε (z, z2). (10)

Here GDε is the Dirichlet Green function of Dε.
Let Pε be the corresponding probability measure and μhε be the associated Liouville

measure of hε. Furthermore, let Aε = (hε
0, ξε)∇ where ξε = − log(|z|∨1)− log ε. Then

Aε is the circle average of hε
0 around ∂D.

Theorem 3.1. In the above setup, suppose δ > 0, Eε
δ = {μhε (C) ∈ [e−γ δ, eγ δ]} and

H ε = {Aε + (2Q − 3γ ) log ε ≥ −| log ε|2/3}. By first letting ε → 0 then δ → 0,
μhε conditioned on Eε

δ ∩ H ε converges in law to μ
γ,γ,γ
DKRV of Definition 2.2 and with

singularities at z1, z2,∞. Here the topology of convergence is the weak topology of
measures on C ∪ {∞}.

In the case γ ≥ √
2, the proof of Lemma 3.2 below implies that one can omit

conditioning on H ε and the theorem still holds. See Remark 3.5 for details. The proof
of Proposition 4.3 in Sect. 4 also suggests that the same is true when γ <

√
2. However,

we cannot confirm this via a short argument for now.

3.1. Preliminary calculations, notations and heuristics. Using conformal invariance of
the Green’s function, we can write

hε = hε
0 + (2Q − 3γ ) log ε − γ log |z − z1| − γ log |z − z2| + rε,

where rε = γ log |1 − ε2 z̄1z| + γ log |1 − ε2 z̄2z|.
Recall that Aε is the circle average of hε

0 around ∂D and Var[Aε] = (ξε, ξε)∇ =
− log ε. By the orthogonal decomposition of the GFF (see e.g. [She07, Section 2.4]),
we can write

hε
0 = hε

c +
Aε

Var[Aε]ξε,

where hε
c is distributed as hε

0 conditioned to have circle-average zero on ∂D and is
independent of Aε.

Let hc be the whole-plane GFF normalized such that the circle average around ∂D is
zero, i.e. in other words we consider the scalar whole-plane GFF with the background
measure equal to the uniform measure on the unit circle. For consistence of notation we
denote this unit measure by c. Then using the notations of Sect. 2.2, we write

hε
L = hε

c − (2Q − 3γ ) log(|z| ∨ 1) − γ log |z − z1| − γ log |z − z2|, (11)

hL = hc − (2Q − 3γ ) log(|z| ∨ 1) − γ log |z − z1| − γ log |z − z2|. (12)

The corresponding probability laws are denoted by Pε
c,Pc. The field hc now corresponds

to the field of (8), in the case where the background measure is the unit mass distributed
uniformly on the unit circle. By Proposition 2.1, Pc is the limiting measure of Pε

c, where
the topology is given by convergence in total variation on any bounded domain.
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We can now write

hε = hε
L +

(
Aε

Var[Aε] − (2Q − 3γ )

)
ξε + rε (13)

and by the orthogonal decomposition we have dPε = d Aε ⊗ dPε
c. The key observation

is that if we now consider the probability measure

dQε ∝ exp{(2Q − 3γ )Aε}dPε,

then under Qε:

1. by Girsanov theorem, the law of Ãε := Aε +(2Q−3γ ) log ε is a centered Gaussian
with variance | log ε|;

2. hε
L has the same law as under Pε and is independent of Ãε.

Now write
hε = hε

L + Ãε + Ãεgε(z) + rε, (14)

where gε(z) = log(|z| ∨ 1)/ log ε.
Writing hε in this way is useful, as under Qε, Ãεgε(z) + rε vanish as ε goes to 0 and

therefore hε is roughly speaking an independent sum of hε
L and Ãε. Since hε

L tends to
hL in law and the law of Ãε vaguely tends to Lebesgue measure, this should remind
the reader of the whole-plane GFF tensorized with Lebesgue measure, as discussed in
Sect. 2.1 and used in [DKRV16]. Making this connection precise is the main content of
the rest of this section.

3.2. Statement of the main lemma and proof of Theorem 3.1. In the rest of this section
we omit rε, as it is a harmonic function with maxz |rε(z)| = oε(1) and plays no role in
the later argument. Given a Liouville measure μh with almost surely finite total mass,
let μ̄h(·) = μh(·)/μh(C). Recall the events Eε

δ and H ε from Theorem 3.1:

Eε
δ = {μhε (C) ∈ [e−γ δ, eγ δ]}.

In light of (14), under Qε it is instrumental to write

H ε = { Ãε ≥ −| log ε|2/3}.
Now Theorem 3.1 is a consequence of the following lemma:

Lemma 3.2. Suppose F is a nonnegative bounded continuous functional on the space
of probability measures on C ∪ {∞} with the topology of weak convergence and a =
γ −1(2Q − 3γ ). Then for all δ > 0

lim
ε→0

√
2π Var[ Ãε]EQ

ε [F(μ̄hε
L+ Ãεgε(z))μ

a
hε
L+ Ãεgε

(C)1Eε
δ
1H ε ] = 2δEPc[F(μ̄hL )μ

a
hL (C)].

(15)

We postpone the proof of Lemma 3.2 in Sect. 3.3 and proceed to the proof of Theo-
rem 3.1.
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Proof of Theorem 3.1. Let P′
c be the probability measure we obtained via re-weighting

Pc by μa
hL

(C). Then by Theorem 2.3 and Definition 2.2, the law of μ
γ,γ,γ
DKRV is given by

μ̄hL under P′
c.

To prove Theorem 3.1, we first notice that since we are conditioning on μhε having
total mass between [e−γ δ, eγ δ] and we are letting δ → 0 eventually, it suffices to show
that μ̄hε converges to μ̄hL under P′

c. In other words it suffices to show that for all F as
in Lemma 3.2 we have

lim
δ→0

lim
ε→0

E
P

ε [F(μ̄hε )|Eε
δ ∩ H ε] = E

P
′
c [F(μ̄hL )].

Recall that a = γ −1(2Q − 3γ ). We have

lim
δ→0

lim
ε→0

E
P

ε [F(μ̄hε )1Eε
δ
1H ε ]

EPε [Eε
δ ∩ H ε] = lim

δ→0
lim
ε→0

E
Q

ε [F(μ̄hε )e−(2Q−3γ )Aε1Eε
δ
1H ε ]

EQε [e−(2Q−3γ )Aε1Eε
δ
1H ε ] . (16)

Now under the event Eε
δ we have

e−(2Q−3γ )Aε ∝ e−(2Q−3γ ) Ãε = (1 + O(δ))μa
hε
L+ Ãεgε(z)

(C).

Therefore the right hand side of (16) equals

lim
δ→0

lim
ε→0

E
Q

ε [F(μ̄hε
L+ Ãεgε(z))μ

a
hε
L+ Ãεgε(z)

(C)1Eε
δ
1H ε ]

EQε [μa
hε
L+ Ãεgε(z)

(C)1Eε
δ
1H ε ] .

By Lemma 3.2, it is equal to

E
Pc[F(μ̄hL )μ

a
hL

(C)]
EPc[μa

hL
(C)] = E

P
′
c [F(μ̄hL )],

from which Theorem 3.1 follows. ��

3.3. Proof of Lemma 3.2. The proof of Lemma 3.2 relies on two simple Fubini identities
and a continuity result.

Lemma 3.3. Let X,Y, Z be random variables where E[|Z |] < ∞. For fixed δ > 0, let

E1
δ (x) = {X ∈ [−x − δ, δ − x]}, E2

δ (x) = {X ≤ −x + δ,Y ≥ −x − δ}.
Then ∫ ∞

−∞
E[Z1E1

δ (x)]dx = 2δE[Z ], (17)

∫ ∞

−∞
E[Z1E2

δ (x)]dx = E[Z((Y − X + 2δ) ∨ 0)]. (18)

Proof. (17) is the special case of (18) when X = Y . So we only prove (18). By Fubini
Theorem the left hand side of (18) equals

E

[∫ ∞

−∞
Z1{−Y−δ≤x≤−X+δ}dx

]
= E[Z((Y − X + 2δ) ∨ 0)].

��
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Lemma 3.4. Suppose aε is a sequence of deterministic numbers tending to 0 as ε → 0.
Let hε

L , hL be defined as in Sect. 3.1. Then μ̄hε
L+aε log(|z|∨1) converges in law to μ̄hL in the

space probability measure on C ∪ {∞} endowed with the weak convergence topology.
Moreover, EP

ε
c
[
μ
q
hε
L+aε log(|z|∨1)(C)

]
converges to EPc

[
μ
q
hL

(C)
]
for any q < 2

γ
(Q − γ ).

Proof. By Proposition 2.1, hε
L restricted to RD converges to hL in total variation for all

R > 0. Moreover, aε log(|z| ∨ 1) converges to 0 locally uniformly in C. Therefore on
RD, the random measure μhε

L+aε log(|z|∨1) converges in total variation distance to μhL .

We will now argue that on the one hand for all q < 2
γ
(Q − γ ) and for some constant

C > 0
lim sup

ε→0
E
P

ε
c

[
μ
q
hε
L+aε log(|z|∨1)(C)

]
< C, (19)

and on the other hand

lim
R→∞ lim sup

ε→∞
E
P

ε
c

[
μ
q
hε
L+aε log(|z|∨1)(C\RD)

]
= 0. (20)

Combined with the fact that EPc [μq
hL

(C\RD)] = oR(1), this will prove the conver-
gence of μ̄hε

L+aε log(|z|∨1) weakly in law to μ̄hL and also the convergence in q-th moment

of μhε
L+aε log(|z|∨1)(C) for all q < 2

γ
(Q − γ ).

Notice that on D, the covariance kernels of hc and hε
c differ by at most a constant.

Thus by Corollary 2.6 we see that

E
P

ε
c [μq

hε
L+aε log(|z|∨1)(D)] < ∞

for all q < 2
γ
(Q − γ ). In particular, (19) already follows for negative moments.

Now fix any 0 < q < 2
γ
(Q − γ ) and take c > 0 small enough such that q <

2
γ
(Q − γ − c). Notice that for small enough ε

μhε
L+aε log(|z|∨1)(C\D) < μhε

L+c log(|z|∨1)(C\D).

Let An denote the annulus enD\en−1
D. We claim that

E
P

ε
c [μq

hε
L+c log(|z|∨1)(An)] < b1e

−nb2

for some b1, b2 > 0. This proves both Eqs. (19) and (20).
To show this, consider the radial decomposition of hε

c = hr + ha . The radial part
hr (z), parametrized by log |z| has the law of a zero-to-zero Brownian bridge with end

points at 0 and − log ε. Thus using (11), we can bound E
P

ε
c

[
μ
q
hε
L+c log(|z|∨1)(An)

]
by

O(1) lim
δ→0

E
P

ε
c

[(∫
An

1

|z|γ (Q−γ−c)
exp(γ hr (z))

1

|z|γ Q
δγ 2/2 exp(γ hδ

a(z))dz

)q]
,

where thewriting suggests howwedecompose radial and angular parts, andO(1) absorbs
the constant order difference 2γ log |z| − γ log |z1 − z| − γ log |z2 − z|.

By using independence between the radial and the angular part, bounding hr by
sn = sup|z|∈[en−1,en ] hr (z) and |z| by en , we can further bound by

O(1)E[exp(−nqγ (Q − γ − c) + qγ sn)] lim
δ→0

E
P

ε
c

[(∫
An

1

|z|γ Q
δγ 2/2 exp(γ hδ

a(z))dz

)q]
.
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Let us treat the first expectation on the radial part. We write

sn = hr (e
n−1) + sup

|z|∈[en−1,en ]
(hr (z) − hr (e

n−1)).

The latter summand is just a Brownian piece of time duration 1, thus its exponential
moments are uniformly bounded. For the former summand, it is a centred Gaussian
whose variance is bounded from above by n. Thus from an explicit Gaussian calculation
we get that:

E[exp(−nqγ (Q − γ − c) + qγ sn)] ≤ O(1)E[exp(−nqγ (Q − γ − c) + q2γ 2n/2)]
But now −qγ (Q − γ − c) + q2γ 2/2 is exactly zero at q = 0 and at q = 2

γ
(Q − γ − c)

and in particular it is negative for any q < 2
γ
(Q − γ − c).

Finally, for the angular part one can use standard results of Gaussian multiplicative
chaos theory: as the covariance kernel of the angular part in each An writes − log |z −
w| + g(z, w) with g(z, w) uniformly bounded in n, one can use Kahane’s convexity
inequality [RV14, Theorem 2.1] to see that for q ′ < 4/γ 2, the q ′-th moment of the
angular part is bounded uniformly in n (e.g. see Lemma 5.4 in [DMS14] for an al-
most equivalent statement and proof.). Now we obtain (19) and (20) and conclude the
proof. ��
Proof of Lemma 3.2. Denote the left hand side of (15) by Lε and let

Eε
δ (x) = {γ −1 logμhε

L+xgε(z)(C) ∈ [−x − δ,−x + δ]}.
Then by conditioning on Ãε = x , we have

Lε =
∫ ∞

−| log ε| 23
E
P

ε
c [F(μ̄hε

L+xgε(z))μ
a
hε
L+xgε(z)

(C)1Eε
δ (x)] exp

{
− x2

2| log ε|
}
dx . (21)

Let

�ε =
∫

1
x∈[−| log ε| 23 ,| log ε| 23 ]E

P
ε
c [F(μ̄hε

L+xgε(z))μ
a
hε
L+xgε(z)

(C)1Eε
δ (x)] exp

{
− x2

2| log ε|
}
dx

and �ε = Lε − �ε. If a ≤ 0 (i.e. γ ≥ √
2), then

μhε
L+xgε(z)(C) ≥ μhε

L+xgε(z)(D) = μhε
L
(D)

and we have

�ε ≤ OF (1)
∫
x>| log ε| 23

E
P

ε
c [μa

hε
L
(D)] exp

{
− x2

2| log ε|
}
dx = oε(1). (22)

If a > 0 (i.e. γ <
√
2), we get

�ε ≤ OF (1)
∫
x>| log ε| 23

e−γ ax exp

{
− x2

2| log ε|
}
P

ε
c[Eε

δ (x)]dx = oε(1).

Here e−γ ax comes from the fact that if Eε
δ (x) occurs and Ãε = x , then μhε

L+xgε(z)e
γ x =

1 + oδ(1).
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It remains to deal with �ε. We first claim that the integrand converges pointwise, i.e.
that for all fixed x ∈ R we have that

1
x∈[−| log ε| 23 ,| log ε| 23 ]E

P
ε
c [F(μ̄hε

L+xgε(z))μ
a
hε
L+xgε(z)

(C)1Eε
δ (x)] exp

{
− x2

2| log ε|
}

converges to

E
Pc [F(μ̄hL )μ

a
hL (C)1Eδ(x)].

Taking aε = x/ log ε in Lemma 3.4, we have that μ̄hε
L+xgε(z) converges weakly in law to

μ̄hL and μhε
L+xgε(z)(C) converges to μhL (C) in Lq for 0 < q < 2

γ
(Q − γ ). Moreover,

the argument of Lemma 3.4 also gives joint convergence in law. Then using dominated
convergence theorem, we have

lim
ε→0

E
P

ε
c [F(μ̄hε

L+xgε(z))μ
a
hε
L+xgε(z)

(C)1Eε
δ (x)] = E

Pc[F(μ̄hL )μ
a
hL (C)1Eδ(x)]

and the claim follows.
Now let Eδ(x) = {γ −1 logμhL (C) ∈ [−x −δ,−x +δ]}. Observe that by Lemma 3.3
∫ ∞

−∞
E
Pc[F(μ̄hL )μ

a
hL (C)1Eδ(x)] dx = 2δEPc [F(μ̄hL )μ

a
hL (C)] = RHS of (15).

Therefore to finish the proof we only need to show that the dominated convergence
theorem can be applied to evaluate limε→0 �ε.

When a ≤ 0, since gε(z) = 0 on D, the integrand inside �ε is controlled by

OF (1)EP
ε
c [μa

hε
L
(D)1Êε

δ (x)]. (23)

By Lemma 3.3
∫ ∞

−∞
E
P

ε
c [μa

hε
L
(D)1Êε

δ (x)] dx = E
P

ε
c [μa

hε
L
(D)((Yε − Xε + 2δ) ∨ 0)].

where

Xε = γ −1 logμ
hε
L+| log ε| 23 gε(z)

(C) and Yε = γ −1 logμ
hε
L−| log ε| 23 gε(z)

(C),

Êε
δ (x) = {Xε ≤ −x + δ,Yε ≥ −x − δ}.

By Corollary 2.6, for c > 0 small enough, we have that EPc[μa+c
hL+c log(|z|∨1)] < ∞. Thus

by the dominated convergence theorem,

lim
ε→0

E
P

ε
c [μa

hε
L
(D)((Yε − Xε + 2δ) ∨ 0)] = 2δEPc[μa

hL (D)].

Since ∫ ∞

−∞
E
Pc[μa

hL (D)1Eδ(x)] dx = 2δEPc [μa
hL (D)],

we have

lim
ε→0

∫ ∞

−∞
E
P

ε
c [μa

hε
L
(D)1Êε

δ (x)] dx =
∫ ∞

−∞
E
Pc [ lim

ε→0
μa
hε
L
(D)1Êε

δ (x)] dx .
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Now we can apply the dominated convergence theorem to evaluate limε→0 �ε.
When a > 0, (i.e. γ <

√
2), we replace the term in (23) by

OF (1)EP
ε
c [μa

hε
L+log |ε| 23 gε(z)

(C)1Êε
δ (x)].

and the rest of the argument works line by line. ��
Remark 3.5. Notice that when a ≤ 0 (i.e. γ ≥ √

2) the estimate in (22) still holds
if we integrate against the whole R instead of [−| log ε|2/3,∞]. This means that in
Lemma 3.2 and hence also in Theorem3.1, we can replace Eε

δ ∩H ε by Eε
δ if γ ∈ [√2, 2).

This does not directly work if γ <
√
2, since a is now positive and the integral over

[−∞,−| log ε|2/3] is not as easily controlled.

4. Equivalence of 3-Point Spheres

In this section we finish the proof of Theorem 1.1. By the Mobius invariance of μ
γ,γ,γ
DKRV

in Theorem 2.4 and the relation between μ2
DMS and μ3

DMS in Definition 2.12, it suffices
to show that

Theorem 4.1. μ
γ,γ,γ
DKRV with marked points at 0, 1,∞ can be obtained by first sampling

a third point w from μ2
DMS with marked points at 0,∞ and then applying the Mobius

transformation that maps (0,∞, w) to (0,∞, 1).

We prove Theorem 4.1 by constructing two very close limiting procedures. The first
one gives μ3

DMS embedded such that the marked points are 0, 1,∞. The second one
gives μ

γ,γ,γ
DKRV with marked points 0, 1,∞.

Let Dε, hε
0,GDε be defined as in Sect. 3 and

hε(z) = hε
0(z) + (2Q − γ ) log ε + γGDε (z, 0). (24)

Notice that hε here is not the same as the one defined in Sect. 3, indeed here hε only has
a single log singularity inside Dε.

Denote Eε
δ = {μhε (C) ∈ [e−γ δ, eγ δ]}, let Pε

δ be the law of hε conditioning on Eε
δ

and dP̂ε
δ = cμhε(C)dPε

δ where c is chosen to make P̂ε
δ a probability measure. Given an

instance of hε under Pε
δ , let wε be a point sampled according to the quantum area. Let

ŵε be sampled in the same way as wε with P̂ε
δ in place of P

ε
δ . Now we claim that

Proposition 4.2. Suppose (wε, hε) is sampled from P
ε
δ as above. Apply the Mobius

transformation that maps wε to 1 and fixes 0 and ∞. Let hε transform according to
the coordinate change rule as in Definition 2.7. If we first let ε → 0 then δ → 0, then
the resulting Liouville area measure converges weakly in law to that of μ3

DMS with the
embedding chosen such that the marked points are 0, 1,∞.

Proof. Since GDε (z, 0) = − log |εz|, the field in (24) can be written as

hε = hε
0 − γ log |z| + (2Q − 2γ ) log ε.

We now set the constant C in Proposition 2.14 to be (2γ − 3Q) log ε and apply the
coordinate change z �→ εz, then Proposition 2.14 yields that (hε,C, 0,∞) converges to
μ2
DMS in the sense that in the maxima embedding, the area measures converge weakly.

Therefore we have a coupling of (hε,C, 0,∞), μ2
DMS, and points wε and w sampled

fromμhε andμ2
DMS respectively, such that undermaximal embeddingμhε a.s. converges

to μ2
DMS and limε→0 |wε − w| = 0 in probability. Now Proposition 4.2 follows. ��
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We also have an analogous statement for μ
γ,γ,γ
DKRV:

Proposition 4.3. Suppose (ŵε, hε) is sampled from P̂
ε
δ defined above. Apply the Mobius

transformation that maps ŵε to 1 and fixes 0 and ∞. Let hε transform according to the
coordinate change rule. If we first let ε → 0 then δ → 0, then the resulting Liouville
area measure converges weakly in law to that of μγ,γ,γ

DKRV with marked points at 0, 1,∞.

Let us see how Theorem 4.1 now follows.

Proof of Theorem 4.1. Since μhε (C) ∈ [e−γ δ, eγ δ] under Pε
δ , the total variational dis-

tance betweenPε
δ and P̂

ε
δ is oδ(1) and so is the total variational distance between (wε, hε)

and (ŵε, hε). Therefore the two limiting objects in Propositions 4.2 and 4.3 are the same,
which implies Theorem 4.1. ��

The rest of the section is devoted to proving Proposition 4.3.

4.1. The location of the third point sampled from μ2
DMS. We start by controlling the

location of the sampled points wε and ŵε defined above.

Lemma 4.4. Let wε be defined in Proposition 4.2. We have

lim
δ→0

lim
ε→0

log |wε|/| log ε|2/3 = 0 in law under Pε
δ.

The same statement is true for ŵε defined in Proposition 4.3.

Proof of Lemma 4.4. As the total variational distance between (wε, hε) and (ŵε, hε) is
oδ(1), it suffices to prove the result for wε.

We use the map z �→ e−z to pull (hε,C) back to Q = R × [0, 2π ]. Then Dε

is mapped to the half cylinder (log ε,+∞) × [0, 2π ] and 0,∞, wε are mapped to
+∞,−∞,− logwε respectively. The radial component of hε can be written as Xt =
Bt − (Q − γ )t where Bt evolves as a standard Brownian motion with Blog ε = 2(Q −
γ ) log ε.

Let Lε be the location where Bt − (Q − γ )t achieves the maxima. By the proof of
Proposition 4.2, Lε + log |wε| is tight, in particular

lim
δ→0

lim
ε→0

(log |wε| + Lε)/| log ε|2/3 = 0 in law. (25)

Thus we only need to show that

lim
ε→0

Lε/| log ε|2/3 = 0 in law. (26)

In fact it suffices to show this under a certain conditioning. Indeed, let Fε
C be the event

that the maxima of Bt − (Q−γ )t is bigger than−C . Then by the argument in [DMS14,
Lemma 5.5 and Proposition 5.7],

P[Fε
C |Eε

δ ] → 1 as C → ∞ uniformly in ε for fixed δ and (27)

P[Eε
δ |Fε

C ] > 0 uniformly in ε for fixed δ,C.

Therefore we only need to show that (26) holds for fixed δ,C , conditioning on Fε
C .

To prove this, let T ε = inf{t ≥ log ε : Bt − (Q − γ )t ≥ −C}. By the Markov
property of Brownian motion, conditioning on Fε

C , L
ε − T ε does not depend on ε,C, δ,
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and is a distribution associated with standard drifted Brownian motion. Thus it remains
to show that for fixed C , conditioning on Fε

C ,

lim
ε→0

T ε/| log ε|2/3 = 0 in law,

which follows from the classical Lemma 4.5 below by setting a = Q − γ and properly
translating the picture. ��
Lemma 4.5. Consider the drifted Brownian motion Bt − at where Bt is a standard
Brownian motion with Bt = 0 and a > 0. Let TA = inf{t ∈ [0,∞[: Bt − at = A} with
A > 0. Then conditional on TA < ∞,

lim
A→∞

TA − a−1A

A2/3 = 0 in law. (28)

Proof. Recall [DMS14, Lemma 3.6], conditioning on TA < ∞, Bt −at can be sampled
as follows:

1. Sample a standard Brownian motion X1 with linear drift a until it hits A and let TA
be the first time that X1 hits A.

2. Sample standard Brownian motion X2 with linear drift −a.
3. Concatenate X1[0, TA] with X2(· − TA).

It is well known (e.g. in [KS91], also used in [DS11]) that the law of TA is the in-
verse Gaussian distribution with parameters (a−1A, a−2A2). Since E[TA] = a−1A and
Var[TA] = aA, Lemma 4.5 follows from Markov inequality. ��

4.2. Rooted measure and μ
γ,γ,γ
DKRV. In this section we prove Proposition 4.3. We will

argue that the setting obtained by sampling a third point and mapping it to 1 is close to
that of Theorem 3.1 with z1 = 0, z2 = 1, and that thus we can apply the arguments of
Sect. 3 to obtain convergence to μ

γ,γ,γ
DKRV.

Recall that (ŵε, hε) under P̂δ
ε can be sampled from the following probabilitymeasure:

ceγ hε(z)1Eε
δ
dhεdz

where dhε is the law of hε as in (24) and c is a normalizing constant. We can perform
this sampling in two steps:

1. sample (ŵε, hε) from ceγ hε(z)dhεdz, which is the so-called rooted measure of hε;
2. condition on the event Eε

δ .

Under the rooted measure ceγ hε(z)dhεdz, hε can be written as ([DS11, Section 3.3])

hε = h̃ε
0 + (2Q − γ ) log ε + γGDε (·, ŵε) + γGDε (·, 0) (29)

where ŵε is sampled from its marginal law under the rooted measure1 and h̃ε
0 is an zero

boundary GFF on Dε that is independent of ŵε.

1 As explained in [DS11], the marginal law of ŵε has density ∝ ∫
eγ h

ε(z)dhε where the integration is
over the law of hε .
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As stated in Proposition 4.3, we apply the Mobius transform z �→ (ŵε)−1z to pull
(0, ŵε,∞) back to (0, 1,∞). Let D̂ε = |ŵε|−1Dε, then the resulting field after coor-
dinate change is

ĥε = ĥε
0 + (2Q − γ ) log ε + γGD̂ε (·, 1) + γGD̂ε (·, 0) + Q log |ŵε| (30)

where ĥε
0 denotes the zero boundary GFF on D̂ε. Moreover, the event Eε

δ becomes
μĥε (C) ∈ [e−γ δ, eγ δ], and thus by conditioning ĥε on the event Eε

δ , we obtain the field
in the statement in Proposition 4.3.

In other words, if we first sample (ŵε, hε) according to P̂
ε
δ , then map (0, ŵε,∞) to

(0, 1,∞), then the resulting field after coordinate change of hε is exactly ĥε on D̂ε as
in (30) conditioning on μĥε (C) ∈ [e−γ δ, eγ δ].

Proof of Proposition 4.3. By Lemma 4.4, log |ŵε| = oε(| log ε| 23 ) with probability 1−
oε,δ(1) under P̂ε

δ . Here and henceforth we use the notation oε,δ(1) to denote a quantity
such that limδ→0 limε→0 oε,δ(1) = 0.

Let |D̂ε| be the radius of D̂ε. By Lemma 4.4, we can write

ĥε = ĥε
0 − (2Q − γ + qε) log |D̂ε| + γGD̂ε (·, 1) + γGD̂ε (·, 0) (31)

where under P̂ε
δ ,

|D̂ε| → ∞ and lim
δ→0

lim
ε→0

qε

| log ε|−1/3 = 0 in law. (32)

Now let Âε be the circle average of ĥε
0 along ∂D and

Ĥ ε = { Âε + (2Q − 3γ + qε) log ε ≥ −| log ε|2/3}.
We claim that

P̂
ε
δ[Ĥ ε] = 1 − oε,δ(1). (33)

We will prove (33) as a corollary of Lemma 4.6 below. Let us now see how it implies
Proposition 4.3. Given (33), to study the limiting measure in Proposition 4.3 as ε → 0
and then δ → 0, it suffices to study the limiting measure obtained by the following
procedure:

Step 1 sample a pair of random variables (D̂ε, qε) such that as ε → 0, δ → 0, it

holds that |D̂ε| → ∞ and qε = o
(∣∣ log |D̂ε|∣∣−1/3

)
in law. (Notice that in

particular the pair obtained from the marginal law on ŵε as above satisfies these
conditions);

Step 2 given (D̂ε, qε), sample a zero boundary GFF on D̂ε (denoted by ĥε
0) and con-

struct ĥε by (31). Condition on both μĥε(C)
∈ [e−γ δ, eγ δ] and Ĥ ε occuring.

In fact, although the measure in Proposition 4.3 before taking the limit is not exactly
as the one sampled from the above two steps, by (32) and (33), the limits of these two
procedures coincide in law.

Now we are ready to use the proof of Theorem 3.1 for the case z1 = 0, z2 =
1. First, notice that the sampling of the Step 2 is independent of Step 1 given D̂ε.
Thus to obtain the limiting law in Proposition 4.3 we can simply assume that qε is a
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deterministic vanishing sequence and D̂ε is a sequence of deterministic growing disks.
Now suppose thatwe replace (2Q−γ ) by (2Q−γ +bε) in (10)where bε is a deterministic
sequence converging to 0. Then one can step-by-step examine that in Sect. 3, if whenever
encountering (2Q − 3γ ) we replace it by (2Q − 3γ + bε), the same arguments still
work. In particular, the conclusion of Theorem 3.1 still holds, thus Proposition 4.3
follows. ��

To finish off, we prove the claim (33). By examining (30), (31) along with (32), we
see that with probability 1 − oε,δ(1) the difference between Âε + (2Q − 3γ ) log ε and
the circle average of ĥε along ∂D is o(| log ε|2/3). Moreover, the circle average of ĥε

along ∂D and the circle average of hε along |ŵε|∂D differ by Q log |ŵε| = o(| log ε|2/3)
again with probability 1− oε,δ(1). Finally, since the total variational distance of P̂ε

δ and
P

ε
δ is oδ(1), we have that P̂ε

δ[Ĥ ε] ≥ P
ε
δ[H̃ ε] − oε,δ(1), where H̃ ε is the event that the

circle average of hε along |wε|∂D is larger than −| log ε|2/3. Thus (33) follows from:

Lemma 4.6. limδ→0 limε→0 P
ε
δ[H̃ ε] = 1.

Proof. Recall the setting of the proof of Lemma 4.4. In the cylindrical coordinates, the
radial component of hε can be written as Xε

t = Bt − (Q − γ )t such that Bt evolves
as a standard Brownian motion and Blog ε = 2(Q − γ ) log ε. By the coordinate change
formula and Lemma 4.4,

P
ε
δ[H̃ ε] ≥ P

ε
δ

[
Xε− log |wε | ≥ −| log ε|2/3/2

]
− oε,δ(1). (34)

Let Lε be the location where Xε
t achieves its maxima and Fε be the event that Xε

Lε ≥
−| log ε|2/3/4. Then (27) in Lemma 4.4 implies that:

P[Fε|Eε
δ ] = 1 − oε(1) for fixed δ. (35)

But now the proof of Proposition 4.2 implies that Xε
log |wε | − Xε

Lε is a tight sequence of
random variables. Hence (34) and (35) together yield Lemma 4.6. ��
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