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Abstract: We study complex Chern–Simons theory on a Seifert manifold M3 by em-
bedding it into string theory. We show that complex Chern–Simons theory on M3 is
equivalent to a topologically twisted supersymmetric theory and its partition function
can be naturally regularized by turning on a mass parameter. We find that the dimen-
sional reduction of this theory to 2d gives the low energy dynamics of vortices in four-
dimensional gauge theory, the fact apparently overlooked in the vortex literature. We
also generalize the relations between (1) the Verlinde algebra, (2) quantum cohomology
of the Grassmannian, (3) Chern–Simons theory on � × S1 and (4) index of a spinc

Dirac operator on the moduli space of flat connections to a new set of relations between
(1) the “equivariant Verlinde algebra” for a complex group, (2) the equivariant quantum
K-theory of the vortex moduli space, (3) complex Chern–Simons theory on �× S1 and
(4) the equivariant index of a spinc Dirac operator on the moduli space of Higgs bundles.
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1. Introduction

In recent years, there has been a lot of work on realizing conformal theories in two di-
mensions and Chern–Simons theories with complex gauge groups on the world-volume
of branes in string theory. Most of these constructions, though, focus on “non-compact”
(irrational) theories. In particular, such a central element in two-dimensional CFT as
the Verlinde formula [1] has not yet found its home in supersymmetric brane configu-
rations.

The Verlinde formula is a simple and elegant expression for the number of conformal
blocks in a 2d rational CFT on a Riemann surface �. The number depends only on
the topology of �, an integer number k called the “level”, and a choice of a compact
Lie group G that in most of our discussion we assume to be simple. For instance,
when � is a closed Riemann surface of genus g and G = SU (2) the Verlinde formula
reads:

dimH(�g; SU (2)k) =
(
k + 2

2

)g−1 k+1∑
j=1

(
sin

π j

k + 2

)2−2g
. (1.1)

This expression and its generalization to arbitrary G have a number of remarkable prop-
erties. First, for a fixed g, the expression on the right-hand side is actually a polynomial
in k. Moreover, even though the coefficients of this polynomial are, in general, rational
numbers, at every k ∈ Z it evaluates to a positive integer number (=number of conformal
blocks).

The space H that appears in the Verlinde formula (1.1) can be also viewed as the
Hilbert space associated to quantization of a symplectic manifold (Mflat(�;G), kω)

that we briefly review in Sect. 4. Despite many realizations of quantization problems
in superstring theory and SUSY field theories [2–6], a simple quantization problem
that leads to (1.1) has not been realized. In this paper, we not only realize the Verlinde
formula (1.1) as a partition function of a certain brane system, but we also propose its
vast generalization based on the embedding in superstring theory.



Equivariant Verlinde Formula from Fivebranes and Vortices 3

In particular, we wish to re-create a “complexification” of the beautiful story that
involves a number of exactly solvable theories, centered around the Verlinde formula:

dimH(�;G, k) = ZCS(S
1 ×�) (1.2a)

= dim H0(M,L) (1.2b)

=
∫
M

ec1(L) ∧ Td(M) (1.2c)

= ZG/G(�) (1.2d)

= ZA-model(Gr(N , k)) (1.2e)

= dimHom(B′,Bcc) (1.2f)

= dimHom(B̃′, B̃cc). (1.2g)

The first line here simply follows from the fact that the problem of quantizing
(Mflat(�;G), kω) is what one encounters in Chern–Simons gauge theory. The lat-
ter theory is topological [7,8] and, therefore, has trivial Hamiltonian H = 0, so that
dimension of its Hilbert space can be computed via path integral on S1×�. The second
line is the result of geometric quantization of the moduli space M = Mflat(�;G) of
classical solutions with the prequantum line bundle L, and (1.2c) follows from a further
application of the Grothendieck–Riemann–Roch theorem.

Then, (1.2d) relates it to the partition function of the G/G gauged WZW model [9],
and (1.2e) is based on the relation [10] to the partition function (more precisely, a certain
correlation function) of the topological A-model on � with the Grassmannian target
space Gr(N , k). Finally, (1.2f) and (1.2g) follow from representing the Hilbert space
HCS as the space of open strings in the A-model [2] of complexification ofM, namely
Mflat(�;GC), and in the B-model [5] of its mirrorMflat(�; LGC), where LG denotes
the GNO or Langlands dual group.

Unlike the classical phase space M = Mflat(�;G), its complexification
Mflat(�;GC) is non-compact and, therefore, the correspondingHilbert spaceH(�;GC,

k) is infinite-dimensional. This fact is well known in the study of Chern–Simons theory
with complex gauge group and all related problems where Mflat(�;GC) shows up.
Thus, it is unclear what the analogue of (1.1) and (1.2) might be if we naively replace
a compact group G by its complexification GC. However, by identifyingMflat(�;GC)

with the Hitchin moduli space, we argue that the infinite-dimensional Hilbert space
H(�;GC, k) comes equipped with a natural Z-grading:

H(�;GC, k) =
⊕
n∈Z

Hn (1.3)

such that each graded piece, Hn , is finite-dimensional. This allows us to introduce the
graded dimension ofH(�;GC, k), which we call the “equivariant Verlinde formula”:

dimβ H(�;GC, k) :=
∑
n

tn dimHn, (1.4)

where t = e−β . We then generalize each line in (1.2) and, in particular, formulate several
new TQFTs in three and two dimensions that compute the graded dimension (1.4). For
example, for G = SU (2), g = 2 and large enough k, the equivariant Verlinde formula
gives
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dimβ H(�;GC, k) = 1

6
k3 + k2 +

11

6
k + 1

+

(
1

2
k3 + 3k2 − 1

2
k − 3

)
t

+
(
k3 + 8k2 − 3k + 6

)
t2

+

(
5

3
k3 + 16k2 − 71

3
k + 6

)
t3

+

(
5

2
k3 + 29k2 − 109

2
k + 63

)
t4

+ . . . ,

(1.5)

where a careful reader can recognize (1.1) as the degree-0 piece, i.e.,

H0 = H(�;G, k). (1.6)

Also, one can verify that the coefficient of tn is always a positive integer, agreeing with
its interpretation as dimension ofHn . (In writing the t-expansion (1.5) we assumed that
k is sufficiently large; the exact formula (7.51) is given in Sect. 7 and always yields
positive integer coefficients for all k.)

As we explain in the rest of the paper, the equivariant Verlinde formula provides
a connection between SUSY theories—e.g. realized on world-volume of various brane
systems—andquantization, namelyquantizationof compact spaces, such asMflat(�;G)

and BunG , as well as their non-compact counterparts, such as Mflat(�;GC) and the
Hitchin moduli space. In particular, there are two 3d N = 2 theories that will play an
important role throughout this paper: the so-called “Lens space theory” T [L(k, 1);β]
and the mass deformation of a 3d N = 4 sigma-model:

3d N = 2 theory T [L(k, 1);β]
super-Chern–Simons at level k
with adjoint field � of mass β

3d N = 2 theory T [� × S1;β]
sigma-model with targetMH
and a real mass β for U (1)β

flavor symmetry

(1.7)

To compute the equivariant Verlinde formula, the first theory needs to be put on �× S1

and topologically twisted, while the latter theory leads to an expression for (1.4) in terms
of the equivariant integral over the Hitchin moduli space. The former is also equivalent
to the IR limit of 3d N = 2 SQCD with an adjoint multiplet that can be found on
the world-sheet of half-BPS vortex strings. Thus, familiar vortex strings know about
t-deformation of the Verlinde algebra!

Now we present a more detailed outline of the paper and summary of the results.

1.1. Outline of the paper. In Sect. 2, we state the problem and introduce a one-parameter
deformation of complex Chern–Simons theory on Seifert manifolds.

The two theories (1.7) are special cases of T [M3;β], where M3 is an arbitrary Seifert
manifold. As we explain in Sect. 2, when M3 is a Seifert manifold, the corresponding 3d
N = 2 theory T [M3] has a special flavor symmetry that we call U (1)β . Turning on the
realmassβ for this flavor symmetry gives a family of 3dN = 2 theoriesT [M3;β]which,
via 3d–3d correspondence, provide a definition and natural regularization of complex



Equivariant Verlinde Formula from Fivebranes and Vortices 5

Fig. 1. A genus-2 Riemann surface can be decomposed into two pairs of pants

Chern–Simons theory onM3. Then, in Sect. 2.1,we give the second, equivalent definition
of complex Chern–Simons on M3 as a standard topological twist of the 3dN = 2 theory
T [L(k, 1);β] on M3. (Evidence for this equivalence is presented in Sect. 5.)

Section 3 relates exactly soluble theories described in this paper to familiar brane
constructions in type IIA and type IIB string theory. On one hand, it will give us a
concrete description of the Lens space theory T [L(k, 1);β] as summarized in (1.7) and,
on the other hand, it will link our story to the classical problem about vortices on a plane,
R
2 ∼= C. Non-compactness of the plane leads to non-compactness of the vortex moduli

space, which often is an obstacle in defining its topological and geometric invariants.
This problem is easily cured in the equivariant setting, equivariant with respect to the
rotation symmetry of the plane. In particular, it leads us to identify the equivariant
quantum K-theory of the vortex moduli space with the “equivariant Verlinde algebra”
for complex Chern–Simons theory (whose explicit form is described in Sect. 7) and
provides an analogue of (1.2e).

Section 4 gives a precise definition of the graded dimension (2.12) via 3d–3d corre-
spondence and shows that it can be written as an equivariant integral over the Hitchin
moduli space. This provides an analogue of (1.2c). The same graded dimension will be
computed in other sections from a variety of different viewpoints.

In Sect. 5, we demonstrate that β-deformed complex Chern–Simons theory is equiv-
alent to a certain twist of 3d N = 2 theory T [L(k, 1);β],

twist of T [L(k, 1);β] on
a Seifert manifold M3

= β-deformed complex

Chern–Simons on M3
, (1.8)

and compute its partition function (2.15) on � × S1 using the standard localization
techniques. This gives a “three-dimensional” calculation of the equivariant Verlinde
formula and, as such, can be regarded as a “complexification” of (1.2a).

The goal of Sect. 6 is to establish the analogue of (1.2d) for the graded dimension (1.4).
We call the resulting 2d TQFT the “equivariant G/G gauged WZW model”. In Sect. 7,
we formulate this theory as a set of gluing rules, by associating the “equivariant Higgs
vertex” to each pair of pants, as in Fig. 1. In this section, we also discuss t-deformation
and categorification of the Verlinde algebra.

In fact, 3d and 2d topological theories that compute (1.4) are part of a larger family of
TQFTs labeled by R ∈ Z. In three dimensions, R can be identified with the R-charge of
the adjoint multiplet� in the twisted theory T [L(k, 1);β]. This leads to a generalization
of (1.8). Via reduction to two dimensions, we obtain a large family of new TQFTs that
generalize the gauged WZW model. Certain special values of R correspond to models
that have been previously studied from different viewpoints.

From this perspective, Sects. 4 and 7 are all about the special case R = 2. Section 5
talks about general R, but most of the concrete formulae are written for R = 2. This is
well compensated in Sect. 6, whose main goal is to describe the family of 2d TQFTs on
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� for general R. Then, in Sect. 6.1.1 we again focus on R = 2 that gives the equivariant
G/G model (EGWZW) and whose partition function computes the equivariant Verlinde
formula. Similarly, in Sect. 6.1.2 we focus on R = 0 which gives the G/G gauged
WZW-matter model (GWZWM).

In total, in this paper we present five independent and concrete ways to compute the
equivariant Verlinde formula:

• a three-dimensional computation in a topologically twisted 3d N = 2 theory on
M3 = � × S1 (Sect. 5);

• a computation based on 3d–3d correspondence that leads to an equivariant integral
over the Hitchin moduli space MH (Sects. 4, 7);

• a two-dimensional computation in the equivariant G/G model on � (Sect. 6.1.1);
• another two-dimensional calculation in the abelian 2d theory on the Coulomb branch

(Sect. 6.2);
• yet another two-dimensional calculation based on pair-of-pants decomposition of�

and the “equivariant Higgs vertex” (Sect. 7).

It would be nice to add to this list a computation based on the 4d N = 2 Lens space
index [11,12]. Also, in Sect. 3.2 we outline a generalization of (1.2e) that allows us to
compute the equivariant Verlinde formula in the twisted theory on the vortex world-
sheet. It would be nice to carry out the details of this approach and make contact with
the equivariant vortex counting in [13].

2. Fivebranes on Riemann Surfaces and 3-Manifolds

Our starting point is the following configuration of M-theory fivebranes:

space-time: L(k, 1)b × T ∗M3 × R
2

∪
N fivebranes: L(k, 1)b × M3,

(2.1)

that is also used e.g. in 3d–3d correspondence. Here, M3 is an arbitrary 3-manifold,
embedded in a local Calabi–Yau 3-fold T ∗M3 as the zero section. As a result [14], the
three-dimensional part of the fivebrane world-volume theory is topologically twisted.
Namely, the topological twist along M3 is the so-called Blau–Thompson twist [15,16].
It preserves four real supercharges on the fivebrane world-volume, so that the effective
theory in the remaining three dimensions of the fivebrane world-volume (which are
not part of M3) is 3d N = 2 theory. This theory is usually denoted TN [M3] since it
depends on the number of fivebranes in (2.1) and on the choice of the 3-manifold M3.
(Sometimes, one simply writes T [M3] when the number of fivebranes is clear from the
context, or denotes this theory T [M3;G].)

The effective 3d N = 2 theory TN [M3] can be further put on a curved background
[17,18], in particular on a squashed Lens space L(k, 1)b:

L(k, 1)b := {(z, w) ∈ C
2, b2|z|2 + b−2|w|2 = 1}/Zk, (2.2)

where the action of Zk is generated by (z, w) �→ (e2π i/k z, e−2π i/kw). Then, reversing
the order of compactification, it has been shown [19,20] that the effective 3d theory on
M3 is the complex Chern–Simons theory, confirming the conjecture of [13,21] (see also
[22–26]).
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Therefore, one can reduce the six-dimensional (2, 0) theory in two different ways,
summarized by the following diagram:

6d (2, 0) theory on L(k, 1)b × M3
↙ ↘

3dN = 2 theory T [M3] complex Chern–Simons
on L(k, 1)b theory on M3

(2.3)

The statement of 3d–3d correspondence is that physics of complexChern–Simons theory
on M3 is encoded in the protected (supersymmetric) sector of the 3d N = 2 theory
T [M3]. For instance, SUSYvacua of the theory T [M3] are in one-to-one correspondence
with the complex flat connections on M3. Various supersymmetric partition functions
of T [M3;G] compute quantum GC invariants of M3, e.g. the vortex partition function
(on R

2
�
× S1) gives the perturbative partition function of complex Chern–Simons theory

labeled by a flat connection α:

Zvortex
TN [M3](�, α) = Zα

CS(M3; �). (2.4)

Similarly, and closer to the setup in (2.1) that we shall use in this paper, the partition
function of 3d N = 2 theory T [M3] on the squashed Lens space is equal to the full
partition function of complex Chern–Simons theory on M3 at level (k, σ = k 1−b2

1+b2
):

ZTN [M3] [L(k, 1)b] = Z (k,σ )
CS [M3;GL(N , C)] . (2.5)

This correspondence, relating partition functions of a supersymmetric theory with those
of a TQFT, is obviously a very interesting one. However, there is much to be understood
on both sides. On the right-hand side, one basic problem is to produce a simple and
effective technique to compute the partition function of complex Chern–Simons theory
on arbitrary 3-manifolds (see [27–29] for some steps in this direction). On the “super-
symmetric” left-hand side of the 3d–3d correspondence, the main problem is to develop
tools for building the theory TN [M3] associated with a given M3. Previous attempts to
tackle this problem either address only a certain sector of the theory TN [M3] that does
not capture all SUSY vacua/flat connections [21,24] or build the full theory TN [M3]
only for particular 3-manifolds [30] and, therefore, are not systematic.

In particular, one motivation for our work is to understand TN [M3] for Seifert 3-
manifolds which, aside from the abelian case discussed in [31, Sect. 2.2], escaped atten-
tion in 3d–3d correspondence. A Seifert manifold is the total space of a circle V-bundle
over a two-dimensional, closed and orientable orbifold �,

S1 ↪−→ M
π−→ �. (2.6)

Although all computations in this paper can be easily generalized to arbitrary Seifert
manifolds, for simplicity and concreteness we often carry out explicit computations in
the basic example of a product M3 = � × S1 explaining how generalizations can be
achieved.

With M3 = � × S1, the eleven-dimensional geometry (2.1) becomes:

symmetries: U (1)N SU (2)R� �
space-time: L(k, 1)b × T ∗� × S1 × R

3

∪
N fivebranes: L(k, 1)b × � × S1

(2.7)
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Now, one needs to do the topological twist only along a Riemann surface� which is em-
bedded in the local Calabi–Yau 2-fold T ∗� in a supersymmetric way as the zero section.
In particular, it preserves half of supersymmetry on the fivebrane world-volume, which
now also includes the S1 factor. Interpreting this S1 as the M-theory circle, the above
system of fivebranes reduces to N D4-branes, which carry maximally supersymmetric
5d super-Yang–Mills on their world-volume.A further reduction of 5d super-Yang–Mills
on a Riemann surface with a partial topological twist along � ⊂ T ∗� requires gauge
field and its superpartners to obey certain equations on �. This partial twist was studied
exactly 20 years ago [32,33] and the corresponding BPS equations turn out to be the
Hitchin equations [34], so that the effective 3d N = 4 theory is a sigma-model with
Hitchin moduli spaceMH (�;G) as the target. In recent years, this setup was also used
in connection with the geometric Langlands program, AGT correspondence, etc.

To summarize, when M3 = � × S1, the effective 3d theory TN [� × S1] has N =
4 supersymmetry and the R-symmetry group is enhanced to SU (2)R × SU (2)N . A
subgroup of this R-symmetry group can be easily identified with isometries of the M-
theory geometry: SU (2)R is the double cover of the rotation group SO(3) acting on the
last factor R

3 in (2.7), while U (1)N (= a subgroup of SU (2)N ) acts on the cotangent
fiber of T ∗�.

One can introduce new parameters by weakly gauging these symmetries. We will
be interested in a “canonical mass deformation” of T [� × S1] which gives a N = 2
theory that in (1.7) we denoted T [� × S1;β]. This deformation can be done to any 3d
N = 4 theory by regarding it as a 3d N = 2 theory, whose R-symmetry group U (1)R′
is generated by j3N + j3R , and weakly gaugingU (1)β generated by j3N − j3R . Here we use
j iN ,R, i = 1, 2, 3 to denote the generators of SU (2)N × SU (2)R .

Note, from the viewpoint ofN = 2 supersymmetry,U (1)β is a flavor symmetry that
acts on the sigma-model target MH (�;G) as

U (1)β : (A,�) �→ (A, eiθ�), (2.8)

where each point in MH (�;G) is represented by a Higgs bundle (A,�), see Sect. 4
for a brief review. Weakly gauging this U (1)β symmetry deforms N = 4 sigma-model
with target MH (�;G) to a N = 2 theory T [� × S1;β] with the same field content,
but where half of the fields have (real) mass β. This deformation of T [� × S1] can
be realized in the brane geometry (2.7) by introducing �-background on both the two-
dimensional cotangent fiber of T ∗� and on R

2 ⊂ R
3 with the equivariant parameters β

and−β, respectively. We continue the discussion of the 3dN = 2 theory T [�× S1;β]
in Sect. 4.

Now, let us consider what this deformation means on the other side of the 3d–3d
correspondence, i.e. for the complex Chern–Simons theory on M3. When M3 = �× S1

and β = 0 we have ordinary (undeformed) complex Chern–Simons theory, whose
partition function on �× S1 computes the dimension of the Hilbert space associated to
�:

ZCS[� × S1;GC] = dimHCS(�;GC). (2.9)

The space HCS(�;GC) is infinite-dimensional due to non-compactness of the gauge
group and one needs to regularize it in order to make sense of the above expression.
We will do so by considering the graded dimension with respect to a Z-grading on
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Table 1. The spectrum of 5dN = 2 super-Yang–Mills theory on S2 ×� × S1

5d SO(5)L × SO(5)R Field SO(2)L × U (1)L × U (1)N × U (1)R
A5d (5, 1) A 0 ±2 0 0

A0 0 0 0 0
B ±2 0 0 0

φ5d (1, 5) φ 0 0 ±2 0
φ0 0 0 0 0

λ5d (4, 4) Y 0 0 0 ±2
λ ±1 ±1 ±1 ±1

HCS(�;GC) induced by the circle action U (1)β . We call the resulting TQFT the “β-
deformed complex Chern–Simons theory”. Note that the β-deformed complex Chern–
Simons theory is well-defined not only on�× S1 but also on arbitrary Seifert manifolds
since this is the class of 3-manifolds for which one finds the extra symmetry U (1)β .

In order to understand howU (1)β acts on the fields of complexChern–Simons theory,
we can follow e.g. [19] and reduce the six-dimensional (2, 0) theory on the Hopf fiber
of L(k, 1) to obtain 5dN = 2 super-Yang–Mills theory on S2× (�× S1). The Lorentz
and R-symmetry group SO(5)L×SO(5)R of the five-dimensional theory is broken down
to

SO(5)L × SO(5)R → SO(2)L × SO(3)L ×U (1)N × SU (2)R . (2.10)

Here SO(2)L is theLorentz symmetry factor associatedwith S2,while the second SO(3)L
is the Lorentz factor associated with � × S1. If we choose the metric on � to be
independent of S1, the holonomy group is reduced from SO(3) to U (1). So in order to
do the topological twist along �, we only need to use a U (1)L subgroup of SO(3)L
and identify the new Lorentz group U (1)′ with the diagonal subgroup of U (1)L ×
U (1)N . Also, the �-background picks out a U (1)R subgroup of SU (2)R . In Table 1,
we summarize how the fields in 5d super-Yang–Mills decompose and transform under
SO(2)L ×U (1)L ×U (1)N ×U (1)R .

After the topological twist, the scalarφ becomes a one-form on�. In fact,A = A+iφ
andA0 = A0 + iφ0 can be identified with the components of the connection of complex
Chern–Simons theory along the� and S1 directions, respectively. TheU (1)β symmetry
(2.8) does not act on A, A0 or φ0 but acts on φ by rotating its two components (φ1, φ2):

θ ∈ U (1)β :
(

φ1
φ2

)
�→
(
cos θ · φ1 − sin θ · φ2
sin θ · φ1 + cos θ · φ2

)
. (2.11)

As it is precisely φ, the imaginary part of the complex gauge connection, that gives
rise to divergence in (2.9), one might hope that the Z-grading of the Hilbert space
HCS(�;GC) induced by U (1)β symmetry could provide the desired regularization.
Indeed, aswe showbelow, for each value of theZ-grading, the corresponding component
of the Hilbert spaceHCS(�;GC) is finite-dimensional, so that the partition function of
the β-deformed complex Chern–Simons theory is a polynomial in t = e−β that gives
the graded dimension (1.4) of the Hilbert space:

dimβ HCS(�;GC) = ZCS[� × S1;GC, β]. (2.12)

The coefficient of tn counts the dimension of the subspace that has eigenvalue n with
respect to the symmetry U (1)β .
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In Chern–Simons theory with compact gauge group G, the Verlinde formula [1] is
an explicit expression for ZCS[� × S1;G] and one of our primary goals in this paper
is to obtain its analog—which we call the “equivariant Verlinde formula”—for Chern–
Simons theory with complex gauge group GC. In contrast to the Verlinde formula that
depends on the choice of the gauge group G, level k, and topology of �, the equivariant
Verlinde formula in addition depends also on β. Already at this stage one can anticipate
some of its properties and behavior in different limits of β:

• When β → +∞, we expect the equivariant Verlinde formula to reduce to the usual
Verlinde formula, because in this limit the only contribution to (2.12) comes from the
singlet sector with respect to U (1)β and the contributions involving field φ, which
is charged under this symmetry, are typically suppressed. Hence, in this limit the
β-deformed complex Chern–Simons theory with gauge group GC becomes Chern–
Simons theory with compact gauge group G. So the equivariant Verlinde formula is
a one-parameter deformation of the usual Verlinde formula.

• When β → 0, we expect the equivariant Verlinde formula to be divergent because
in this limit β will not provide any regularization for Chern–Simons theory with a
complex gauge group GC.

Combining these two points together, one can view the equivariant Verlinde formula as
an interpolation between the Verlinde formula with group G and with group GC.

2.1. Two different approaches to complex Chern–Simons theory. In general, there are
two standard ways to preserve supersymmetry on a curved space M :

• Deformation. One way to preserve supersymmetry is to modify the supersymmetry
algebra.An effectiveway of doing this is to couple the theory to supergravity and find
consistent background values for these auxiliary fields [17]. This approach usually
requires M to have non-trivial isometries.

• Topological Twisting. Anotherway is to perform a topological twist [35]. In a theory
realized on world-volume of branes, this operation corresponds to embedding M as
a calibrated submanifold in a special holonomy space [14]. This approach does not
require M to have a symmetry.

Recall our eleven-dimensional geometry (2.7):

N fivebranes: L(k, 1)b × � × S1

∩
space-time: L(k, 1)b × T ∗� × S1 × R

3

� �
symmetries: U (1)N SU (2)R

(2.13)

We too have two possible ways to formulate the β-deformed complex Chern–Simons
theory living on � × S1 as a topological theory with BRST symmetry. The first is to do
“deformation”, which means to reduce 6d (2, 0) theory on L(k, 1) as in [19], but now
in the presence of the �-background. The second (and much easier) approach is to do a
topological twist along L(k, 1), just like we did it along M3.

In the eleven-dimensional geometry, this can be conveniently achieved by combining
the R

3 factor with L(k, 1) to obtain T ∗L(k, 1). As the cotangent bundle of a Lens space
is trivial, there is no topological obstruction to doing so, although we do need to modify
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the metric of R
3 so that the total space is Ricci-flat. In other words, now L(k, 1) is

embedded as a special Lagrangian submanifold inside a local Calabi–Yau 3-fold:

N fivebranes: L(k, 1)b × � × S1

∩ ∩
space-time: T ∗L(k, 1)b × T ∗� × S1

� �
symmetries: SU (2)R U (1)N

(2.14)

In order to introduce the equivariant parameter β, we need to single out anR
2−β subspace

ofR3 to turn on the�-background. So, nowwe also need to specify how thisR
2 is fibered

over L(k, 1). Lens spaces are particular examples of Seifert manifolds, and L(k, 1) is the
total space of a degree k S1-bundle over CP

1. If we take R
2−β to be the cotangent fiber

of CP
1, then the two sides of the 3d–3d correspondence are treated on equal footing1

and this is exactly what we will do.
To summarize, the β-deformed complex Chern–Simons theory on � × S1 can be

described as the topological twist of the 3d N = 2 “Lens space theory” T [L(k, 1);β],
and our next task is to identify this theory and analyze its dynamics. Among other things,
this gives another possible way to define the graded dimension (1.4) or the partition
function of the β-deformed complex Chern–Simons theory (2.12):

dimβ HCS(�;GC) = ZCS[� × S1;GC, β] = Z twisted
T [L(k,1);β]

[
� × S1

]
.

(2.15)

In Sect. 5 we present further evidence for the proposed relation (1.8) by calculating par-
tition function and comparing with the prediction of the 3d–3d correspondence, i.e. with
the equivariant integral over the Hitchin moduli space.

3. Branes and Vortices

The theories studied in this paper describe low-energy physics of certain brane configura-
tions in type IIA and type IIB string theory. In particular, the type IIB brane configuration
will help us identify the Lens space theory T [L(k, 1);β] and its type IIA dual will make
contact with the dynamics of vortices in 4d N = 2 SQCD with a U (k) gauge group.

3.1. “Lens space theory” T ��L(k, 1)�� from brane constructions. The reduction of the 6d
(2, 0) theory on L(k, 1) can be most easily performed by regarding this Lens space as
the total space of a T

2 torus fibration over an interval. At each endpoint of the interval,
the torus degenerates to a circle. The first homology group of the torus is

H1(T
2) = Z⊕ Z (3.1)

1 In this paper we focus on the special case M3 = � × S1, but it can be replaced with a more general
Seifert manifold. And L(k, 1) can also be replaced with a more general Seifert manifold, making the two sides
of the correspondence completely symmetric.
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Fig. 2. CP
1 can be viewed as the total space of a circle fibration over an interval, with degenerate fibers at the

endpoints of the interval

Fig. 3. The Lens space L(k, 1) can be viewed as the total space of a 2-torus fibered over an interval. Near
each endpoint of the interval, a particular cycle of the torus degenerates

generated by [a] and [b]. Regarding the Lens space L(k, 1) as a Hopf fibration over CP
1

a la (2.6), we can also identify [a] with the homology class of the Hopf fiber and [b]
with the latitude circle of the base CP

1 which shrinks on both ends of the interval, see
Fig. 2.

Then, in representing L(k, 1) as a T
2-fibration over the interval, the vanishing cycle

at one endpoint of the interval is homologous to [b], whereas non-trivial topology of the
Hopf fibration requires the vanishing cycle at the other endpoint of the interval to be
[b] + k[a]. This torus fibration is illustrated in Fig. 3. Note, near the left endpoint of the
interval, the base CP

1 looks like a cigar and the total space of its cotangent bundle can
be identified with a Taub-NUT space, such that [b] is the S1 fiber that vanishes at the
Taub-NUT center.

Now we are ready to reduce our 11-dimensional setup (2.14) on the torus T
2. Our

choice of space-time coordinates is summarized in the following table:

Space-time 0 1 2 3 4 5 6 7 8 9 10
M5 – – – · · · – · · – –

Geometry � S1 R
2
β RHopf Interval R

2−β T
2

We use (x0, x1, x2) to parametrize�× S1, which for now we assume to be flat, until we
are ready to implement the topological twist along �. We use (x3, x4) to parametrize
the cotangent fiber R

2
β of �. And we let the Hopf fiber S1 (a-cycle of the torus)
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NS5 (1,k)-fivebrane

N D3's
x5

x9
x6

Fig. 4. The NS5–D3–(1,k) brane system in type IIB string theory

to be parametrized by a periodic coordinate x9 and its cotangent space RHopf to be
parametrized by x5. We use x6 to be the coordinate on the interval base of the torus
bundle, and (x7, x8) to be coordinates on the cotangent space R

2−β of CP
1, where CP

1

is the base of the Hopf fibration. Lastly, we choose the b-cycle to be parametrized by x10.

Type IIB brane configuration We are going to use a famous duality between M-theory
on a 2-torus and type IIB string theory on a circle, so that the SL(2, Z) duality group
of type IIB theory has a nice geometric interpretation as the mapping class group of the
T
2. What happens to M5-branes supported on L(k, 1)b ×� × S1 upon this reduction?
The fivebranes wrapping a torus give rise to a stack of N D3-branes and the boundary

condition it satisfies demands that we have a NS5-brane on one side of the interval and
a (1, k)-fivebrane on the other side of the interval:

Space-time 0 1 2 3 4 5 6 7 8 9
N D3’s – – – · · · �� · · ·
NS5 – – – – – – · · · ·

(1, k)-Brane – – – – – � · · · �

(3.2)

This brane configuration is illustrated in Fig. 4 and can be equivalently derived as follows.
As we pointed out earlier, near the left endpoint of the interval, the base CP

1 looks
like a cigar and the total space of its cotangent bundle can be identified with a Taub-
NUT space, such that [b] is the S1 fiber that vanishes at the Taub-NUT center. Reducing
M-theory on the circle fiber of the Taub-NUT space gives rise to a D6-brane, while N
M5-branes become N D4-branes. In the coordinate system described above, the D6-
brane is located at the Taub-NUT center:

x6 = x7 = x8 = 0. (3.3)

In other words, its world-volume spans the space-time directions 0123459. And it is
easy to see that the D4-branes are extended along 01269. This is summarized in the
table below:

Space-time 0 1 2 3 4 5 6 7 8 9
D4 – – – · · · � · · –
D6 – – – – – – · · · –

Here we are looking at the geometry near the left endpoint of the interval x6 so the
D4-branes appear to be semi-infinite in the x6 direction. Then, we perform a T-duality
along the Hopf fiber direction parametrized by x9. The D6-brane turns into a D5-brane
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NS5
N D3's

x5

x9
x6

k D5's

NS5

(1,k)-brane

Fig. 5. The (1,k)-brane in Fig. 4 is a bound state of an NS5-brane and k D5-branes

with world-volume 012345, while the D4-brane becomes a D3-brane spanning 01236.
For convenience we perform S-duality, which replaces D5 with an NS5-brane while
leaving D3’s invariant. We can perform a similar analysis near the right end-point of the
interval and obtain N D3’s ending on another NS5. But this picture at the right endpoint
of the interval is in a different SL(2, Z) duality frame of type IIB theory; in the original
frame we will have a (1, k)-fivebrane instead of an NS5-brane. Also, the (1, k)-brane is
rotated in the (x5, x9) plane

(1, k)-brane: x6 = x7 = x8 = 0, kx5 = x9, (3.4)

since it can be decomposed into an NS5-brane in 012345 and k D5-branes in 012349,
as illustrated in Fig. 5.

To summarize, our M-theory setup (2.14) is dual to the type IIB brane configuration
(3.2) illustrated in Figs. 4 and 5. In particular, 3d N = 2 Lens space theory T [L(k, 1)]
can be identified with the theory on D3-branes in Figs. 4 and 5. Besides an 3d N = 2
vector multiplet, it also contains an N = 2 chiral multiplet � in the adjoint represen-
tation of the gauge group G = U (N ) that corresponds to the motion of D3-branes in
directions x3 and x4. Weakly gauging theU (1)β symmetry (2.11) that rotates x3 and x4

gives a real mass β to �:

δSmass =
∫

d3xd4θ � eβθ2 �†. (3.5)

Thus, we end up with the theory described in (1.7). (Here, β plays the role of mass pa-
rameter and, hence, is dimensionful. Starting from Sect. 4, a dimensionless “equivariant
parameter” β will also appear. As they are related simply by a 2πRS1 factor, with RS1

being the radius of the Seifert S1 fiber, to avoid clutter we use the same symbol β for
both quantities.)

Type IIA brane configuration Our main application of the Lens space theory T [L(k, 1);
β] in this paper is that its twisted partition function onM3 = �×S1 gives the equivariant
Verlinde formula. In particular, in Sects. 6 and 7 we will study the circle reduction of
this theory to 2d TQFT on �. The latter is what we are going to call the equivariant
G/G gauged WZW model and has a nice interpretation in our brane construction. This
dimensional reduction corresponds to a T-duality along the S1 direction parametrized by
x2. Upon this T-duality, N D3-branes in Fig. 5 transform into N D2-branes in directions
016, while k D5-branes turn into k D4-branes in directions 01349. The resulting type IIA
brane configuration is shown in Fig. 6 and describes vortices in U (k) four-dimensional
SUSY gauge theory:
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NS5

N D2's
x5

x9
x6

NS5
k D4's

Fig. 6. The NS5–D2–NS5–D4 brane system in Type IIA string theory obtained by dimensionally reducing
the system in Fig. 4

2d N = (2, 2) “vortex theory” on D2-branes

U (N ) SQCD with k fundamental chiral multiplets
and one adjoint chiral multiplet � of mass β

(3.6)

The type IIB and type IIA brane configurations in Figs. 5 and 6 will be extremely
useful to us for analyzing 3d N = 2 theory T [L(k, 1);β] and its reduction to 2d, re-
spectively. In particular, we can use either the UV or IR limit of these theories to study
topological twist on a Riemann surface �. In the analogous problem that involves 4d
N = 2 gauge theory, the twist of the UV theory leads to Donaldson invariants, whereas
topological twist of the IR limit leads to Seiberg–Witten equations. Similarly, we can ob-
tain different expressions for the equivariant Verlinde formula (and equivariant Verlinde
algebra) by implementing topological twist at different energy scales.

If we perform topological twist in the UV theory, we obtain a 3d TQFT discussed
in Sect. 5. On the other hand, if we follow 3d N = 2 theory T [L(k, 1);β] to the IR,
then we do not even need to perform the topological twist: for generic values of β �= 0
the theory has a mass gap and in the IR automatically flows to a TQFT that we call the
equivariant G/G gauged WZW model. As we show next, there is yet another phase of
the Lens space theory T [L(k, 1);β] that relates it to a classical problem about vortices.

3.2. Vortices and equivariant G/G gaugedWZWmodel. Although exactly soluble field
theories discussed in this paper have a natural home in mathematical physics, they can
be also realized in nature.

In particular, we claim that the low-energy effective theory of N vortices in 4dN = 2
SQCD with U (k) gauge group and �-background in the plane orthogonal to the vortex
world-sheet is the equivariant G/G model. Furthermore, we claim that the equivariant
Verlinde algebra (i.e. the algebra of loop operators in the β-deformed complex Chern–
Simons theory)whose explicit formwill be discussed inSect. 7 is given by the equivariant
quantum K-theory of VN ,k , the moduli space2 of N U (k) vortices on the plane R

2 ∼= C.
Here, the word “equivariant” means equivariant with respect to the rotation symmetry of
the plane; this is precisely our symmetryU (1)β . In the physics literature, this equivariant
K-theory of vortex moduli spaces was first discussed in [13].

This provides an equivariant generalization of a beautiful story discovered byWitten
[10] that relates the � × S1 partition function of U (N ) Chern–Simons theory at level
k (i.e. the Verlinde formula) and the algebra of Wilson loops (i.e. the Verlinde alge-
bra) to the quantum cohomology of the Grassmannian Gr(N , N + k). Our equivariant
generalization of this relation can be derived by starting with a “big theory”:

2 Notice, that in the usual notation for the vortex moduli space k stands for the number of vortices, while
N is the rank of the gauge group, whose role is reversed in our notations here.
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3d N = 2U (N )super-Chern–Simons theory at level
k

2
+ k chiral multiplets QA=1,...,k in the fundamental representation (3.7)

+ 1 massive chiral multiplet � in the adjoint representation with mass β.

Because the gauge group is U (N ), we can turn on an FI parameter ζ and analyze the
vacuumstructure as a function of ζ .Wewill show that, as ζ varies, this theory interpolates
between the Lens space theory in (1.7) and 3d N = 2 sigma-model with the vortex
moduli space VN ,k as the target and a potential that makes VN ,k effectively compact.

In order to analyze the vacuum structure of this theory, we need to study the scalar
potential as a function of scalar fields, which are the following. Let σi , i = 1, 2, . . . , N
be the eigenvalues of a scalar field σ in the N = 2 vector multiplet. The scalar compo-
nents of QA will be denoted qiA and assembled into a N × k matrix q. And the adjoint

superfield � contains a N × N matrix of scalar fields ϕ
j

i .
A similar 3d N = 2 theory without the adjoint multiplet � was discussed in [36].

In the regime ζ < 0 it has a unique supersymmetric vacuum where σ acquires an
expectation value

σ = −ζ

k
· Id. (3.8)

This gives a positive mass to all fundamental chiral multiplets QA. Integrating these
chiral multiplets out leaves us with N = 2 U (N ) super-Chern–Simons theory at level
k. On the other hand, if ζ > 0 then one has σ = 0 and the D-term equation is now

ζ · Id = qq†. (3.9)

For k ≥ N , the moduli space of solutions to this equation is the Grassmannian Gr(N , k)
and, therefore, the low energy physics is described by the N = 2 Grassmannian sigma
model. If one puts low-energy theories for both ζ < 0 and ζ > 0 on � × S1 and per-
forms the topological twist, one arrives at the conclusion thatU (N )k−N Chern–Simons
theory3 on � × S1 is equivalent to the topological A-model of Gr(N , k). Put in other
words, the Verlinde algebra can be identified with the quantum cohomology ring of the
Grassmannian. So this argument reproduces the main result of [10].

Now let us add themassive adjoint chiral multiplet�. For ζ � 0, the supersymmetric
vacuum characterized by

σ = −ζ

k
· Id (3.10)

still exists and gives a mass to all the QA’s. However, the mass of � still comes en-
tirely from (3.5). Indeed, the only other potential contribution to the mass of its scalar
component ϕ is the term

∣∣[σ, ϕ]∣∣2, (3.11)

but the identity matrix commutes with any value of ϕ. A similar argument shows that
fermions in the � multiplet also remain massless as σ gets a vev. Therefore, for ζ � 0,
after integrating out all the fundamental multiplets QA, the low-energy effective theory

3 N = 2 U (N )k super-Chern–Simons theory is equivalent to U (N )k−N bosonic Chern–Simons theory
because integrating out gauginos in the adjoint representation shifts the level by −N .
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is described by N = 2 U (N )k super-Chern–Simons theory with an adjoint chiral su-
perfield � of (real) mass β, which is precisely our 3d N = 2 theory TN [L(k, 1);β].
Hence, we showed that TN [L(k, 1);β] can be identified with the ζ � 0 phase of the
“big theory” (3.7).

On the other hand, in the regime ζ > 0 the D-flatness condition of the theory (3.7)
looks like

ζ · Id = qq† + [ϕ, ϕ†]. (3.12)

Therefore, the low-energy physics is described by an N = 2 sigma-model with the
target space

VN ,k ∼=
{
(q, ϕ)

∣∣ζ · Id = qq† + [ϕ, ϕ†]
}

/U (N ). (3.13)

This space is conjectured by Hanany and Tong [37] to be homeomorphic to the moduli
space VN ,k of N U (k) vortices on R

2. Hence, for ζ > 0 the low-energy physics of (3.7)
is described by the N = 2 sigma-model with the target space VN ,k and a potential

V = 1

2
β2 |ϕ|2 (3.14)

that comes from the mass of �, cf. (3.5). Putting the low-energy theories for both ζ < 0
and ζ > 0 on � × S1 and performing the topological twist leads to the following
conclusion:
The β-deformed complex Chern–Simons theory on S1×� is equivalent to a topological

sigma-model to the vortex moduli space VN ,k equipped with the potential (3.14).
Note, one can perform different topological twists on � parametrized by different

assignments of the R-charge to the adjoint multiplet �. This leads to a large family of
quasi-topological theories in three dimensions, only one of which (for R = 2) happens
to be related to complex Chern–Simons theory. It is interesting, though, to study the
entire family of such theories, related to different variants of the equivariant quantum
K-theory as shown here. Reduction of this family to 2d TQFTs labeled by R ∈ Z will
be discussed in detail in Sect. 6.

It would be interesting to derive the equivariant G/G model on the vortex world-
sheet via the anomaly inflow [38] from 4d N = 2 SQCD with U (k) gauge group (and
�-background in the plane orthogonal to the vortex world-sheet). A similar question for
half-BPS surface operators in 4d gauge theory withN = 4 supersymmetry was studied
in [39].

4. Equivariant Integration over Hitchin Moduli Space

In this section we consider the “supersymmetric” (i.e. left) side of the 3d–3d correspon-
dence (2.3) whenM3 = �×S1 or, more generally, a Seifert manifold. This, in particular,
will give the precise meaning to the graded dimension in (2.12) and show that it can be
written as the equivariant integral over the Hitchin moduli space.

As explained in Sect. 2 and summarized in (1.7), the 3dN = 2 theory T [�× S1;β]
is a sigma-model with the Hitchin moduli space MH as the target and has a real mass
for the U (1)β flavor symmetry, whose action is described in (2.8) and (2.11).
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4.1. Quantization of Hitchin moduli space. The dimension of the Hilbert space of
Chern–Simons theory with compact gauge group G can be naturally expressed as an
integral over the moduli space of flat connections Mflat. Let A be a connection on the
principal G-bundle over the Riemann surface � and FA its curvature. Then the moduli
space of flat connections is

Mflat(�;G) = {A|FA = 0} /G, (4.1)

where G is the group of gauge transformations. This space is equipped with a natural
symplectic form [40]:

ω = 1

4π2

∫
�

Tr δA∧δA, (4.2)

where δ is the de Rham differential onMflat. With this particular normalization ω is the
generator of the integral cohomology group H2(Mflat, Z).

The classical phase space of Chern–Simons theory at level k on � is precisely the
symplectic space

(Mflat(�;G), kω
)
, (4.3)

and the Hilbert space HCS(�;G, k) can be obtained by quantizing it [8]. In fact,
Mflat(�;G) is a compact Käher space as the complex structure of � defines a complex
structure on Mflat(�;G) that is compatible with ω. As a consequence, one can apply
the technique of geometric quantization [41] to identify HCS(�;G) with the space of
holomorphic sections of a “prequantum line bundle” L⊗k :

HCS(�;G, k) = H0
(
Mflat(�;G),L⊗k

)
, (4.4)

where L is the universal determinant line bundle with curvature ω. The index theorem,
combinedwith theKodaira vanishing theorem for the higher cohomology groups, relates
the dimension of the Hilbert space to the index of a spinc Dirac operator and then to an
integral over Mflat(�;G):

dimHCS(�;G, k) = χ(Mflat,L⊗k) = Index(/∂L⊗k ) =
∫
Mflat

Td(Mflat)∧ekω,

(4.5)

where Td (Mflat(�;G)) is the Todd class ofMflat(�;G).
Now let us consider Chern–Simons theory with complex gauge group GC. The clas-

sical phase space is a symplectic manifold

(Mflat(�;GC) ∼=MH (�;G), kωI + σωK
)
. (4.6)

Here MH (�;G), later abbreviated as MH , is the moduli space of G-Higgs bundles
over � [34]:

MH (�;GC) =
{
(A, φ)

∣∣∣∣ FA − φ∧φ = 0
dAφ = d†Aφ = 0

}
/G. (4.7)
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The adjoint-valued one-form φ ∈ �1(�, g) is precisely our field φ that appeared earlier
in Table 1. The Hitchin moduli space is hyper-Kähler: it comes equipped with three
complex structures (I, J, K ) and three real symplectic forms:

ωI = 1

4π2

∫
�

Tr (δA∧δA − δφ∧δφ) , (4.8)

ωJ = 1

2π2

∫
�

Tr (δA∧�δφ) , (4.9)

ωK = 1

2π2

∫
�

Tr (δA∧δφ) . (4.10)

This space can be viewed as a natural complexification of Mflat(�;G) and it is bira-
tionally equivalent to T ∗Mflat. The canonical determinant bundle L also extends natu-
rally to a line bundle over MH that we continue to call L. The curvature of L is now
ωI . (This extension of L from Mflat(�;G) to MH is one of the key elements in the
“brane quantization” of the moduli space of flat connections [2].)

Just as in the quantization of (4.3), the quantization of (4.6) leads to a Hilbert space
whose dimension can be formally expressed as an integral over MH similar to (4.5):

dimHCS(�;GC, k) =
∫
MH

Td(MH )∧ekωI +σωK . (4.11)

However, as the Hitchinmoduli space is non-compact, the integral above is divergent, in-
dicating that the Hilbert space associated with complex Chern–Simons theory is infinite-
dimensional.

An interesting feature of the Hitchin moduli space is that it admits a circle action with
compact fixed point loci which, anticipating a connection with an earlier discussion, we
shall call U (1)β . This action was used by Hitchin [34] to study topology of the moduli
space of Higgs bundles and in the literature is sometimes referred to as “the Hitchin
action”. The corresponding vector field V on MH is generated by the Hamiltonian:

μ = 1

2π

∫
�

Tr (φ∧�φ), (4.12)

with the symplectic form ωI :

δμ = 2πιVωI . (4.13)

Indeed, one can see that this action, rotating theHiggs fieldsφ, is exactly (2.11),which ro-
tates the cotangent space of�where thefieldφ lives.Using thisU (1)β action,we can reg-
ularize the divergent integral in (4.11) by converting it to an equivariant integral. First we
define the equivariant differential associatedwith theHamiltonianU (1)β action onMH :

D = δ + 2πβιV . (4.14)

Here β is the generator of

H∗S1(pt) = H∗(CP
∞) = C[β], (4.15)
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assigned degree 2 in the equivariant cohomology tomake D homogeneous.We have cho-
sen β for this equivariant parameter, so that it can be identified with the mass parameter
in the previous discussion. Then, the equivariantly closed extension of ωI is

ω̃I = ωI − βμ, (4.16)

which satisfies

Dω̃I = 0. (4.17)

Because ωK is not invariant under U (1)β , we set σ to zero in (4.11). In the original
problem of quantizing (4.6) it means that we set the “imaginary part” of the complex
Chern–Simons theory to zero. Since all the relevant characteristic classes have equivari-
ant extensions, it is natural to replace the divergent integral (4.11) with an equivariant
integral that computes the equivariant index:

∫
MH

ch
(
L⊗k

)
∧Td(MH ) = Index(/∂L⊗k ) � IndexS1(/∂L⊗k ;β)

=
∫
MH

ch
(
L⊗k, β

)
∧Td(MH , β). (4.18)

In particular, the equivariant Chern character

ch(L⊗k, β) = exp (kω̃I ) = exp (kωI − kβμ) (4.19)

exponentially suppresses the contribution of parts far away from Mflat(�;G) ⊂MH ,
where μ � 0. Therefore, one may hope that a positive value of β provides the desired
regularization of the naive expression (4.11).

Using the Atiyah–Bott localization formula [42] one can rewrite the right-hand side
of (4.18) as an integral over the critical manifolds, Fd , of μ:

IndexS1(/∂L⊗k , β) =
∑
Fd

e−βk·μ(Fd )

∫
Fd

Td(Fd)∧ekωI∏
i

(
1− e−xi−βni

) , (4.20)

which is manifestly convergent as all critical manifolds are compact. In the denominator
we used the splitting principle to decompose the normal bundle of Fd into line bundles
Li whose equivariant Chern classes are 1 + xi + βni .

The equivariant index (4.20) is going to be our definition for the graded dimension
of the Hilbert space of complex Chern–Simons theory (2.12):

dimβH(�;GC, k) = ZCS[� × S1;GC, k, β]
= indexS1(/∂L⊗k ;β) =

∫
MH

Td(MH , β)∧ exp(kω̃I ). (4.21)

Note, every quantity in this formula, except for the first one (viz. the partition function
of complex Chern–Simons theory with β deformation) has precise mathematical def-
inition and at this stage can in principle be computed directly. In Sect. 7 we perform
the equivariant integration explicitly in the case of G = SU (2) for some punctured
Riemann surfaces and obtain the SU (2) “equivariant Verlinde algebra” generalizing the
usual Verlinde algebra.
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However, this direct approach becomes progressively more complicated as the rank
of the gauge group gets larger and larger. Our goal is to evaluate (4.21) indirectly, using
the 3d–3d correspondence (2.3) to compactify the fivebrane theory on L(k, 1) first and
then use string dualities of Sect. 3 to derive the exact solution of the β-deformed complex
Chern–Simons theory on M3 = � × S1 (and, more generally, on Seifert manifolds).
We hope that many alternative ways for computing the integral (4.21) presented in this
paper can shed light on the singularity structure of the moduli space of Higgs bundles
(when the rank and the degree are not coprime).

Before we proceed, let us point out that in [43] a similar integral over MH which
computes the “equivariant volume”,

Volβ(MH ) =
∫
MH

exp(ω̃I ), (4.22)

was studied using the “topological Yang–Mills–Higgs model”. This model was later
analyzed in detail in [44,45]. As the equivariant index is the K-theoretic lift of the equiv-
ariant volume, we expect the β-deformed complex Chern–Simons theory to share a lot
of similarities with the Yang–Mills–Higgs model. In particular, it should have a BRST
symmetry. One way to obtain a theory with BRST symmetry is to start with a supersym-
metric theory and perform a topological twist. As we will see in the next section, this is
indeed the case: the β-deformed complex Chern–Simons theory on�× S1 is equivalent
to a topologically twisted 3d N = 2 supersymmetric gauge theory.

5. β-Deformed Complex Chern–Simons

5.1. ComplexChern–Simons theory from topological twist. Sincegeneric 3dN = 2 the-
ories have R-symmetry groupU (1) they cannot be twisted on general 3-manifolds with
holonomy group SO(3). However, ifM3 = �×S1 is equippedwith ametric such that the
U (1)S Seifert action rotating the S1 factor is an isometry, then the holonomy group is re-
duced toU (1) and one can perform a “semi-topological” twist for a 3dN = 2 theory on
M3. After the twist, the resulting theory does not depend on the choice of metric, as long
asU (1)S is still an isometry of that metric. Equivalently, upon the dimensional reduction
on a circlefiber it gives truly topological theory in twodimensions.WhenM3 is not�×S1

but still Seifert, equipped with a U (1)S invariant metric, one cannot do the topological
twist to a 3d N = 2 theory but can still put it on M3 by deforming the supersymmetry
algebra. This is the approach taken by Källén in [46] for N = 2 super-Chern–Simons
theory and by Ohta and Yoshida in [47] for N = 2 Chern–Simons-matter theories.

Here, we apply this to a particular 3d N = 2 theory, namely T [L(k, 1);β] that one
finds after the reduction of the 6d (2, 0) fivebrane theory on a Lens space. As any other
3d N = 2 theory, T [L(k, 1);β] can be twisted on � × S1 or defined on more general
Seifert manifolds using deformed SUSY. Then, according to Sect. 2, this theory on M3
will be precisely the sought-after “β-deformed GC complex Chern–Simons theory” at
level k. At this stage, from the definition in Sect. 2, we know the following three facts
about this β-deformed GC complex Chern–Simons theory at level k:

1. For β → +∞ it reduces to Chern–Simons theory with compact gauge group G at
level k.

2. For β → 0 it becomes Chern–Simons theory with non-compact gauge group GC.
3. For general β, we would expect the theory to produce the equivariant integral (4.20)

over the Hitchin moduli space MH if we put it on � × S1.



22 S. Gukov, D. Pei

Now we demonstrate that 3d N = 2 theory T [L(k, 1);β] twisted on � × S1 indeed
satisfies all these criteria, thereby verifying (1.8). Then, in Sect. 5.2, we compute its
partition function (2.15) using localization.

5.1.1. The limit β → +∞ and compact group G. In the β → +∞ limit, the adjoint
chiral multiplet� in T [L(k, 1);β] can be integrated out and it will produce a shift of the
Chern–Simons level k → k′ = k + hg, where hg is the dual Coxeter number of the Lie
algebra g. Then we are left with N = 2 super-Chern–Simons theory with gauge group
G at level k′. This theory can be further reduced to pure bosonic Chern–Simons theory
after integrating out gauginos λ, λ† and bosonic fields σ, D. The functional determinant
associated with gauginos is not well defined and one needs to regularize it. A standard
way to do this is to add a Yang–Mills term to the theory and send the Yang–Mills
coupling to infinity. Using this regularization, which is natural from the brane picture, the
functional integral over gaugino fields will produce a further shift k′ → k, see e.g. [48].

Notice that expectation values of physical observables in Chern–Simons theory at
level k usually depend on k′ = k + hg, which comes from gluon loops. Combined with
this, there are in total three level-shifting effects, which are summarized below.

1. Integrating out N = 2 adjoint chiral multiplet with large positive mass shifts the
level by +hg.

2. Integrating out gauginos in super-Chern–Simons theory shifts the level by −hg.
3. Integrating over gauge fields to compute partition function or expectation values of

physical observables effectively renormalizes the level by +hg.

The effects of 1 and 2 cancel each other so that T [L(k, 1);β →∞] is equivalent to
pure bosonic Chern–Simons theory at level k.

5.1.2. The limit β → 0 and complex group GC. In this limit T [L(k, 1);β] is a super-
conformal theory and topological twist is crucial in order to produce a TQFT. (In general,
a gapped theory is expected to flow to a TQFT in the infrared even without a topological
twist.) The topological twist ofN = 2 super-Chern–Simons theory with general matter
content on a Seifert manifold is discussed in [47]. In particular, on � × S1 a chiral
multiplet will yield two BRST-multiplets (ϕ, ψ) and (χ, η). Here ϕ and η are bosons
while ψ and χ are fermions. Regarded as fields on �, they are respectively sections of

(ϕ, ψ) ∈ �
[
�0(Lg⊗ C)

]
,

(χ, η) ∈ �
[
�1(Lg)

]
, (5.1)

where Lg is the Lie algebra of the loop group LG. Using the complex structure of
the Riemann surface, one can decompose (χ, η) into (1, 0)-forms (χz, ηz) and (0, 1)-
forms (χz, ηz). Similarly, the components of a vectormultiplet (A, λ, σ, D) now become
(Az, Az, A0, λz, λz, λ0, σ, D). (See appendix of [47] for definitions of these fields and
their transformation rules.) In what follows, we will focus on the matter part which
comes from the chiral multiplet �. The corresponding BRST transformations are4

Qϕ = ψ, Qψ = −iD0ϕ − iσϕ,

Qχz = ηz, Qηz = −i(D0 + σ)χz + βχz,

Qχz = ηz, Qηz = i(D0 + σ)χz + βχz . (5.2)

4 Notation in [47] differs from ours by z ↔ z. The notation used here is chosen to agree with that in gauged
WZW-matter model, which will be discussed below.
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However, this is not the only possible twist of the 3d N = 2 theory T [L(k, 1);β].
The twist described above corresponds to assigning R-charge5 R = 0 for �. Since the
new Lorentz group of the Riemann surface U (1)′L is taken to be the diagonal subgroup
ofU (1)L ×U (1)′R , this assignment makes the scalars ϕ remain scalar after the twist. As
T [L(k, 1);β] has no F-term interactions6 and the U (1)′R R-charge assignment for � is
unconstrained, nothing prevents us from considering more general integer values of R.
In particular, what turns out to be related to complex Chern–Simons theory is the case
of R = 2. When R = 2, the fields are sections of:

(ϕ, ψ) ∈ �
[
�1(Lg)

]
,

(χ, η) ∈ �
[
�0(Lg⊗ C)

]
, (5.3)

and we will write them in components as (ϕz, ϕz, ψz, ψz, χ, η). The BRST transforma-
tions are:

Qϕz = ψz, Qψz = −(D0 + σ)ϕz + βϕz,

Qϕz = ψz, Qψz = (D0 + σ)ϕz + βϕz,

Qχ = η, Qη = −i(D0 + σ)χ. (5.4)

Nowwe describe the relation between this twisted SUSY theory and complex Chern–
Simons theory, whose action at level (k, σ ) = (k, 0) is

S(k,0)
CS (A, φ) = k

4π

∫ (
A∧d A +

2

3
A∧A∧A − φdAφ

)
, (5.5)

where A = A + A0dx0 and φ = φ + φ0dx0 are gauge fields in 3d. We see that the
part involving Higgs field φ, which will eventually be identified with the adjoint scalar
Lagrangian in T [L(k, 1);β = 0], is well separated from the gauge field Lagrangian.

At this stage, there are two obvious disconnects with the twist of N = 2 theory
T [L(k, 1)]. First of all, theU (1)β flavor symmetry is missing in complex Chern–Simons
theory. Secondly, complex Chern–Simons theory is invariant under a larger gauge group
GC. The two difficulties actually cancel each other as we will see next.

We first rewrite the action (5.5) in the geometry � × S1:

S(k,0)
CS (A, φ, A0, φ0) = k

4π

∫
�×S1

Tr (A∧D0A + 2A0∧A∧A
+2A0∧d A − 2φ0∧dAφ − φ∧D0φ) . (5.6)

Here D0 is the covariant derivative along the S1 fiber of the Seifert manifold or � × S1

in our basic example. The integral over φ0 can be explicitly carried out and gives a delta
function that implements the constraint

dAφ = 0. (5.7)

After integrating out φ0, the Lagrangian is invariant under U (1)β , but the condition
above is not. A natural way to cure this problem is to impose the gauge choice

d†Aφ = 0. (5.8)

5 Our convention is such that the superspace coordinates θ has R-charge 1.
6 Recall, that the real mass is given by a D-term.
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Note, the above two equations are also two of the three Hitchin equations. After these
steps, the only term in the Lagrangian that depends on φ is proportional to

φ∧D0φ. (5.9)

In the twisted 3dN = 2 theory T [L(k, 1);β = 0], the wholematter part of the action
is Q-exact, and nothing prevents us from changing it into another Q-exact term, such as

1

2
Q (ϕz∧ψz − ψz∧ϕz) = ψz∧ψz + ϕz∧D0ϕz . (5.10)

After integrating out ψ , gauginos λ, scalars σ and D, we obtain precisely the complex
Chern–Simons action. (Notice, that the shifts of level caused by ψ and λ cancel each
other.)

5.2. Equivariant Verlinde formula. The Verlinde formula is usually written as a sum
over highest weight integrable representations of the loop group LG at level k (see e.g.
(1.1) for G = SU (2), in which case it is simply a sum over j = 1, 2, . . . , k + 1):

j ∈ �G,k =
(

�wt

W × (k + h)�rt

)′
. (5.11)

Here hg is the dual Coxeter number of the Lie algebra g and the prime means that the
fixed points are removed. It is natural to expect that the equivariant Verlinde formula, de-
fined as the partition function of the β-deformed complex Chern–Simons theory (2.12),
takes a similar form.

Now, oncewe established the equivalence of theβ-deformed complexChern–Simons
with the twist of 3dN = 2 theory T [L(k, 1);β] described in the previous subsection, we
can use the standard localization techniques to compute its partition function. Thus, one
can follow e.g. the techniques of [47] to calculate the partition function of theβ-deformed
complex Chern–Simons theory not only on�× S1 but on any Seifert manifolds M3, and
with arbitrary R-charge assignment for adjoint chiral multiplet �. Here, for simplicity,
we focus on the particular case of R = 2 and M3 = � × S1. Generalization of the
equivariant Verlinde formula to arbitrary value of R ∈ Z will be discussed in the next
section from a 2d perspective.

Using the localization procedure described in [47], one can express the whole parti-
tion function as a path integral over two-dimensional abelian fields

Zβ−CS [�;U (N ), k, t] = 1

|W |
∫

DσaDλaDAa

[∏
α

(
1− e2π i(σa−σb)

)1−h]
�3d

× exp

{
i
∫

�

[(
(k + N )σa −

N∑
b=1

σb +
N − 1

2

)
Fa +

k

4π
λa∧λa

]}
, (5.12)

where (σa, λa, Aa), a = 1, 2, . . . , N are fields living on � and valued in the Cartan of
u(N ). The important factor �3d is the matter contribution to the path integral

�3d =
detχ

[
−iL0 − ad(2πσ)+iβ

�

]

detϕ
[
−iL0 − ad(2πσ)+iβ

�

] , (5.13)
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whereL0 is the Lie derivative along the Seifert fiber and � = 2πRS1 is the circumference
of the Seifert S1 fiber. If we set �3d to a constant by sending β to infinity, the rest of
the path integral is exactly the partition function of Chern–Simons theory on � × S1

and it gives the ordinary Verlinde formula. Hence, the functional determinant (5.13)
contains interesting information about how the equivariant Verlinde formula depends on
the deformation parameter β and we now evaluate it.

First we decompose χ and ϕ into Fourier modes

χ(z, z, θ) =
∑
m∈Z

χm(z, z)e−imθ ,

ϕ(z, z, θ) =
∑
m∈Z

ϕm(z, z)e−imθ . (5.14)

These modes are sections of

χm ∈ �[�0(�, g⊗ C)],
ϕm ∈ �[�1(�, g)]. (5.15)

Then (5.13) can be decomposed into

∏
m∈Z

detχ [−iL0 − ad
( 2πσ

�

)− iβ
�
]

detϕ[−iL0 − ad
( 2πσ

�

)− iβ
�
]

=
∏
α

∏
m∈Z

[
−2πm

�
− α

(
2πσ

�

)
− iβ

�

]Index ∂ A|(α)

. (5.16)

Here α runs over all roots of g. From this expression, it is easy to see that � only enters as
a normalization factor, in agreement with the TQFT nature of the β-deformed complex
Chern–Simons theory.

After ignoring a normalization factor that does not depend on the deformation pa-
rameter β, the functional determinant is

�3d =
∏
α

{
(α(2πσ) + iβ)

+∞∏
m=1

[
(2πm)2 − (α(2πσ) + iβ)2

]}1−h−α(n)

. (5.17)

Here we also used the index theorem

Index ∂ A|(α) = 1− h − α(n), (5.18)

with the last term being the degree of the line bundle labeled by α:

α(n) = 1

2π

∫
�

αa F
a . (5.19)

The infinite product over m gives a sine function:

�3d =
∏
α

[
(α(2πσ) + iβ)

+∞∏
m=1

(2πm)2 ·
(
1− (α(2πσ) + iβ)2

(2πm)2

)]1−h−α(n)

∝
∏
α

[
2 sin

(
α(πσ) +

iβ

2

)]1−h−α(n)

=
∏
α

∣∣∣1− e2π iα(σ)−β
∣∣∣1−h−α(n)

.

(5.20)
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Introducing t = e−β , we decompose the contribution of abelian fields (product over
zero roots in

∏
α) from that of non-abelian fields (product over non-zero roots):

�3d = �3d
ab ·�3d

nab, (5.21)

where the abelian functional determinant, modulo a normalization factor,7 is given by

�3d
ab =

1

(1− t)N (h−1) , (5.22)

while the non-abelian contribution is

�3d
nab =

⎡
⎣∏

α �=0
Mα(σ, t)

⎤
⎦
1−h−α(n)

, (5.23)

with

Mα(σ, t) = 1− te2π iα(σ). (5.24)

The non-abelian contribution �3d
nab can be further decomposed into

�3d
nab =

∏
α �=0

[Mα(σ, t)]1−h · e− 1
2π

∫
� α(F) logMα . (5.25)

The part that depends on F can be combined with another term in (5.12):

i
∫

�

(
(k + N )σa −

N∑
b=1

σb +
N − 1

2

)
Fa (5.26)

to give

i
∫

�

ζa F
a, (5.27)

where

ζa(σ ) = kσa − i

2π

∑
b �=a

log

(
e2π iσa − te2π iσb

te2π iσa − e2π iσb

)
. (5.28)

Performing a functional integral over Aa and over non-zero modes of λa in (5.12) gives
a collection of delta-functions requiring ζa to be an integer:∑

la∈Z

δ(ζa − la). (5.29)

Then we integrate over σa’s. The delta-functions produce a factor

∑
{σ }∈{Bethe}

det

∣∣∣∣ ∂ζa

∂σb

∣∣∣∣
−1

. (5.30)

7 We did not keep track of the overall normalization constant, but it can be easily restored by demanding
that β → +∞ gives back the usual Verlinde formula.
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Here {Bethe} stands for the set of solutions to the following Bethe ansatz equations:

e2π ikσa
∏
b �=a

(
e2π iσa − te2π iσb

te2π iσa − e2π iσb

)
= 1, for all of a = 1, 2, . . . , N . (5.31)

The set of solutions to the Bethe ansatz equations is acted upon by the Weyl group, and
after modding out by this symmetry, the solutions are labeled by Young tableaux with
at most N rows and k columns. Notice that the Bethe ansatz equations are the same for
all choices of the R-charge assignment to the adjoint chiral multiplet �.

Further integrating over the zero modes of λa gives a factor
∣∣∣∣ ∂ζa

∂σb

∣∣∣∣
h

. (5.32)

Therefore, the partition function is

Zβ−CS(�;U (N ), k, t)

=
∑

{σ }∈{Bethe}

⎡
⎣ 1

(1− t)N
det

∣∣∣∣ ∂ζa

∂σb

∣∣∣∣
∏
a �=b

1(
e2π iσa − te2π iσb

) (
e2π iσa − e2π iσb

)
⎤
⎦
h−1

.

(5.33)

This “equivariant Verlinde formula” enjoys many interesting properties, some of which
extend the remarkable properties of the ordinary Verlinde formula, cf. (1.1). In the next
section,wepresent yet another derivationof this formula, from the two-dimensional point
of view. Furthermore, we extend it to an entire family parametrized by the choice of the
R-charge assignment of � and then make various comments about this general result.

6. A New Family of 2d TQFTs

In the previous section, we have seen that twisted 3d N = 2 theory T [L(k, 1);β] on
�× S1 can be viewed as a one parameter deformation of complex Chern–Simons theory
and it provides a natural way to regularize the latter theory. In fact, there is an entire
family of twisted theories labeled by R ∈ Z, the R-charge of the adjoint multiplet � in
3d N = 2 theory T [L(k, 1);β].

In this section, we wish to study dimensional reduction of this family to two dimen-
sions. In particular, we find a new family of 2d TQFTs labeled by R ∈ Z that generalize
the G/G gauged WZW model and compute their partition functions on an arbitrary
Riemann surface �. In certain special cases, we can compare our results to the previous
literature.

6.1. Equivariant G/G gaugedWZWmodel. Weknow fromSect. 3.2 that the low-energy
dynamics of T [L(k, 1);β] is given by a topological sigma-model to the vortex moduli
space with a potential. In the limit β → +∞, the effective target space of the sigma-
model becomes the Grassmannian and the topological sigma-model is equivalent to the
G/G gauged WZWmodel. Our next goal is to give an equivariant generalization of the
gauged WZW model, which we call the “equivariant G/G gauged WZW model”.

The Lagrangian formulation of this theory can be directly obtained by dimensional
reduction of the β-deformed complex Chern–Simons theory on S1, but we won’t follow
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this approach. Instead, we write down the Lagrangian formulation of the equivariant
G/G gauged WZWmodel and then show that it leads to the same partition function on
� as the β-deformed complex Chern–Simons theory on � × S1.

The fields in the ordinary, non-equivariant G/G model are (A, λ, g), where A is the
gauge field, g ∈ G ∼= Map(�,G) is a group-valued field, and λ is an auxiliary Grass-
mann 1-form in the adjoint representation that is required to make the BRST symmetry
manifest. The BRST charge Qg depends on g and takes the following form [49]:

Qg A = λ,

Qgλ
(1,0) = (Ag)(1,0) − A(1,0),

Qgλ
(0,1) = −

(
Ag−1

)(0,1)
+ A(0,1), (6.1)

where

Ag = g−1Ag + g−1dg. (6.2)

At level k, the action of the G/G model is

kSG/G(A, λ, g) = kSG(A, g)− ik�(A, g) +
i

4π

∫
�

Tr (λ∧λ), (6.3)

with the first term on the right-hand side being the kinetic term

SG(g, A) = − 1

8π

∫
�

Tr (g−1dAg∧�g−1dAg), (6.4)

and the second term being the topological term

�(g, A) = 1

12π

∫
B
Tr

[(
g−1dg

)3]− 1

4π

∫
�

Tr
(
Adgg−1 + AAg

)
. (6.5)

Here, B is a handlebody with ∂B = �.
Now we add the chiral multiplet

� = ϕ + θ±ψ± + θ2F, (6.6)

and perform the topological twist. In order to do this, just like in three dimensions, we
need to assign R-charge R to the superfield � underU (1)V . The brane construction dis-
cussed in Sect. 3 naturally leads to R = 2, but one can consider more general situations,
where R is an arbitrary integer.

Identifying the diagonal subgroup ofU (1)L ×U (1)V with the twisted Lorentz group
makes ϕ a section of �0(�, K R/2), ψ± a section of �0

(
�, K (R−1±1)/2), and F a sec-

tion of H0(�, K R/2−1), where K is the canonical bundle of the Riemann surface �.
So, after the twist we end up with two BRST-multiplets that come from �:

(ϕ, ψ = ψ+) ∈ �
[
�0(�, K R/2)

]
,

(χ = ψ−, η = F) ∈ �
[
�0(�, K R/2−1)

]
, (6.7)

along with their complex conjugate (ϕ†, ψ†) and (χ†, η†) from �†.
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For R = 2, the fields (χ, η) are scalars while (ϕ, ψ) are (1, 0)-forms, which indeed
corresponds to the geometry of M5-branes wrapped on� ⊂ T ∗�. Similarly, for R = 0,
the fields (ϕ, ψ) are scalars, while (χ, η) are (0, 1)-forms. This choice of the R-charge
corresponds to the geometry of�×C. We come back to the detailed discussion of these
two choices after describing the family of 2d TQFTs labeled by arbitrary (even) integer
values of R.

At this stage, one can proceed in many different ways to study this family of TQFTs
parametrized by R. For example, one can take a “top-down approach” by starting with
the UV Lagrangian of theN = (2, 2) SQCD with a massive adjoint chiral superfield �

and study the resulting model after topological twist using localization.8 However, since
our goal is to generalize the gauged WZW model, we would like to have an explicit
Lagrangian formulation that resembles the gauged WZW model. In fact, this is already
partially achieved in the literature. As it turns out, for R = 0, the theory becomes the
G/G gauged WZW-matter model that was introduced in [50]. Here, we generalize the
approach of [50] to formulate an entire family of such theories with a general value of
R. We shall refer to this new TQFT as the “equivariant G/G model”.

The fields of the equivariant G/G model with general R are (A, λ, ϕ,ψ, η, χ, g),
where A, ϕ, η, g are bosons and the rest are fermions. The BRST charge Q(g,t) acts on
the fields in the following way:

Q(g,t)A = λ, Q(g,t)λ
(1,0) = (Ag)(1,0) − A(1,0), Q(g,t)λ

(0,1) = −
(
Ag

−1)(0,1)
+ A(0,1),

Q(g,t)ϕ = ψ, Q(g,t)ψ = t
(
ϕg)− ϕ, Q(g,t)ψ

† = −t
(
ϕ†
)g−1

+ ϕ†,

Q(g,t)χ = η, Q(g,t)η = tχg − χ, Q(g,t)η
† = −t

(
χ†
)g−1

+ χ†,

Q(g,t)g = 0, (6.8)

where

Ag = g−1Ag + g−1dg,
ϕg = g−1ϕg,
χ g = g−1χg. (6.9)

The action of Q(g,t) in (6.8) is almost exactly the same as in [50], except that spins of
fields (6.7) depend on R. Also, notice that our conventions here slightly differ from [50]
by η ↔ η† and χ ↔ χ†.

The square of the BRST charge Q2
(g,t) = L(g,t) defines a bosonic transformation

on the space of fields and the action of the theory needs to be invariant under it. In
the gauged WZW-matter model, the action consists of the original action of the gauged
WZW model and a Q(g,t)-exact term,

SGWZWM = SGWZW + Q(g,t)(S
′), (6.10)

and the theory does not depend on S′ as long as the latter satisfies

L(g,t)S
′ = 0. (6.11)

8 An example of this theory, for R = 2, is the world-volume theory on D2-branes in Fig. 6.
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The freedom of choosing different forms of S′ can be used to localize the partition func-
tion. In the equivariantG/G model with general R, the action also takes the form (6.10):

SR−EGWZW = SGWZW + Q(g,t)(S
′), (6.12)

with S′ obeying

L(g,t)S
′ = 0. (6.13)

There are different ways to explain why the BRST transformation and the Lagrangian
take this particular form. For example, one can start with the Lagrangian and BRST
transformation of the β-deformed complex Chern–Simons theory and compactify on a
circle to directly derive the equivariantG/G model. Or, one can start with the UV theory
(3.6) in 2d and analyze the IR limit following [10]. Here we will follow a simplified
version of the latter approach to illustrate that (6.8) and (6.12)—which may seem a little
strange at a first glance—are, in fact, what one should expect.

The Lagrangian of the UV theory (3.6) consists of two parts. The first part is
N = (2, 2)U (N ) SQCD with k fundamental chiral multiplets, which in the IR flows to
the gauged WZW model. In the IR, the field g is identified with the scalar component
σ of the vector multiplet:

g ∼ σ. (6.14)

In analyzing the low-energy fate of the second term, we can assume g = 1. Then, only
the mass term remains, and we have

SR−EGWZW(A, λ, ϕ,ψ, η, χ, g = 1) = kSGWZW(A, λ, g = 1)

+
∫

d2z
(
m2ϕϕ† + mψψ†

)
. (6.15)

Indeed, the above action is invariant under Q(1,t) and the second term can be written as
∫

d2z
(
m2ϕϕ† + mψψ†

)
= Q(1,t)S

′ =
∫

d2z
[m
2

Q(1,t)

(
ϕψ† − ψϕ†

)]

(6.16)

if we set the IR mass to be

m = 1− t. (6.17)

It is easy to verify that

L(1,t)S
′ = 0. (6.18)

This simplified situation with g = 1 tells us that the form of the BRST-transformation
(6.8), which has no derivative terms, and the form of the action (6.12), where the extra
fields only enter via BRST exact terms, are indeed expected.

Nowweproceed to find the partition function of the equivariantG/GmodelwithG =
U (N ) and general R. As onewould expect, this theory shares a lot of similarities with the
gaugedWZW-matter model that corresponds to R = 0 and the localization computation
is very similar, except that the spin assignments of various fields can be different. So,
instead of repeating everything in section 3 of [50], we only sketch the computation and
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point out how these two theories are different. First we modify S′ to be symmetric in the
two BRST-multiplets (ϕ, ψ) and (χ, η) (cf. equations (3.15) and (3.16) in [50]):9

Smatter(g, A, ϕ, ψ, η, χ) = Q(g,t)S
′

= Q(g,t)

[
1

4π

∫
�

Tr
(
ϕψ† − ψϕ† + χη† − ηχ†

)]

= 1

2π

∫
�

{(
ϕ − tϕg, ϕ

)
+ (ψ,ψ) +

(
χ − tχ g, χ

)
+ (η, η)

}
. (6.19)

Here (·, ·) stands for the inner product and its definition for each field is clear from the
context.

Now, following [51], we perform the abelianization and integrate out the off-diagonal
components of g, A and λ. After abelianization, g belongs to the Cartan torus, generated
by Ha, a = 1, 2, . . . , N :

g = exp

(
2π i

N∑
a=1

σaH
a

)
, (6.20)

and the fields (A, λ, g) are replaced by the abelian fields (Aa, λa, σa). Notice that the
principalU (1)N -bundle may be non-trivial; it is characterized by the flux (n1, . . . , nN ),

na = 1

2π

∫
�

Fa, (6.21)

and we need to sum over all flux sectors. The theory after abelianization is a BF-model
with B valued in theCartan torus, coupled to the rest of the fields (ϕ, ψ, χ, η). As all these
matter fields have Gaussian action, they can be integrated out explicitly. We first decom-
pose them into the Cartan-Weyl basis that diagonalizes the adjoint action of g = e2π iσ :

ϕ =
N∑

a=1
ϕaH

a +
∑
α

ϕαE
α, (6.22)

χ =
N∑

a=1
χaH

a +
∑
α

χαE
α, (6.23)

where the α’s are the roots of su(N ) and

Ade2π iσ (Eα) = e2π iα(σ)Eα. (6.24)

Upon this decomposition, the trivial adjoint u(N ) bundle now splits into a direct sum of
line bundles C

N ⊕⊕α Vα and the fields ϕα and χα take values in

ϕα ∈ �
[
�0(�, K R/2 ⊗ Vα)

]
, (6.25)

χα ∈ �
[
�0(�, K R/2−1 ⊗ Vα)

]
. (6.26)

9 We believe there should be no factor of k multiplying Smatter as appears in [50].
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Integrating out matter fields valued in the Cartan gives a functional determinant

�2d
ab =

N∏
a

Detχ (1− t)

Detϕ(1− t)
, (6.27)

while integrating out the matter fields valued in the Vα’s will leave us with another
functional determinant:

�2d
nab =

∏
α>0

Detχ
[
Mα(σ, t) · M−α(σ, t)

]
Detϕ

[
Mα(σ, t) · M−α(σ, t)

] , (6.28)

where, as in Sect. 5.2,

Mα(σ, t) = 1− te2π iα(σ). (6.29)

Since χ is fermionic, the functional determinant associated to it appears in the numera-
tor, while the bosonic determinant for the fields ϕ appears in the denominator. Up to this
point, everything is independent of the R-charge assignment of the chiral multiplet �

and, in fact, all dependence on the choice of R is encoded in this functional determinant.
As χα and ϕα both contain two degrees of freedom, the numerator and the denom-

inator almost cancel. They don’t cancel completely because the number of zero modes
is different for these two fields. This difference can be computed using the Hirzebruch–
Riemann–Roch theorem:

dim�0(�, K R/2−1 ⊗ Vα)− dim�0(�, K R/2 ⊗ Vα)

= 1− h + (1− R/2)(2h − 2)− α(n) = −χ(�) · 1− R

2
− α(n).

Here h is the genus, χ(�) = 2 − 2h, and the last term α(n) is the degree of the line
bundle Vα , which can be written as an integral

α(n) = 1

2π

∫
�

α(F) = 1

2π

∫
�

αa F
a . (6.30)

As a result, the first functional determinant is simply

�ab(R) =
N∏
i=1

(1− t)−χ(�) 1−R
2 = (1− t)N (h−1)(1−R), (6.31)

and the second functional determinant becomes

�nab(R) =
∏
α>0

Det(1,0)
[
Mα(σ, t) · M−α(σ, t)

]
Det0

[
Mα(σ, t) · M−α(σ, t)

] =
∏
α

Mα(σ, t)(h−1)(1−R)−α(n)

=
∏
α

[Mα(σ, t)](h−1)(1−R) · e− 1
2π

∫
� α(F) logMα .

The partition function for general R is now (cf. (3.29) in [50])

Z R = [�;U (N ), k, t] = 1

|W |
∫

DσaDλaDAa

[∏
α

(
1− e2π i(σa−σb)

)1−h]
�ab�nab

× exp

{
i
∫

�

[(
(k + N )σa −

N∑
b=1

σb +
N − 1

2

)
Fa +

k

4π
λa∧λa

]}
. (6.32)
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The Fa-dependent part of �nab combines with other terms in the exponent that are
proportional to Fa to give

ζa(σ ) = kσa − i

2π

∑
b �=a

log

(
e2π iσa − te2π iσb

te2π iσa − e2π iσb

)
. (6.33)

Integrating over Aa and over non-zero modes of λa gives a collection of delta-functions
requiring ζa to be integral: ∑

la∈Z

δ(ζa − la). (6.34)

Then we integrate over the σa’s. The delta-functions will produce a factor of

∑
{σ }∈{Bethe}

det

∣∣∣∣ ∂ζa

∂σb

∣∣∣∣
−1

. (6.35)

Here {Bethe} stands for the set of solutions to the following Bethe ansatz equations:

e2π ikσa
∏
b �=a

(
e2π iσa − te2π iσb

te2π iσa − e2π iσb

)
= 1, for all of a = 1, 2, . . . , N . (6.36)

The set of solutions to the Bethe ansatz equations is acted upon by the Weyl group, and
after the quotient by this symmetry, the solutions are labeled by Young tableaux with at
most N rows and k columns. Notice that the Bethe ansatz equations are the same for all
choices of R-charge assignment.

Further integrating over the zero modes of λa gives a factor∣∣∣∣ ∂ζa

∂σb

∣∣∣∣
h

. (6.37)

Therefore, the partition function is

Z R(�;U (N ), k, t) =
∑

{σ }∈{Bethe}

⎡
⎢⎣(1− t)N (1−R) det

∣∣∣∣ ∂ζa

∂σb

∣∣∣∣
∏
a �=b

(
e2π iσa − te2π iσb

)1−R

e2π iσa − e2π iσb

⎤
⎥⎦
h−1

This is the partition function of the equivariant G/G model with a general R-charge
assignment. Now we proceed to discuss two important cases R = 2 and R = 0.

6.1.1. R = 2 and the equivariant Verlinde formula. Aswe emphasized earlier, the brane
constructions in Sect. 3 naturally lead to R = 2, which is the case that we are mostly
interested in. The corresponding 2d TQFT is the equivariantG/G model whose partition
function gives the equivariant Verlinde formula:

ZEGWZW(�;U (N ), k, t) =
∑

{σ }∈{Bethe}

×
⎡
⎣ 1

(1− t)N
det

∣∣∣∣ ∂ζa

∂σb

∣∣∣∣
∏
a �=b

1(
e2π iσa − te2π iσb

) (
e2π iσa − e2π iσb

)
⎤
⎦
h−1

.

It has several nice properties:
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• For t = 0 (β → +∞), the “equivariant Verlinde formula” turns into the ordinary
Verlinde formula, as one can directly verify.

• In the limit t → 1 (β → 0), the equivariant Verlinde formula diverges as

Z ∼ (1− t)−(h−1)·dim(G). (6.38)

This is indeed what one would expect from the geometry of the Hitchin moduli
space, that (up to higher codimension strata) looks like T ∗Mflat. Notice, the order
of the pole in the above formula, (h − 1) · dim(G), is precisely the complex dimen-
sion of the cotangent fiber, whose non-compactness causes the divergence of the
equivariant integral (4.18) in the limit t → 1.

• The equivariant Verlinde formula should be a power series with integer coefficients,
because it is defined as the graded dimension of the Hilbert space of complex Chern–
Simons theory, cf. (1.4) and (2.12). This is indeed the case, as we will explicitly
verify for G = SU (2) in Sect. 7, where a cutting and gluing approach is developed
to calculate the same partition function from basic building blocks that only involve
rational functions of t that can be written as power series with integer coefficients.

• In the limit k → +∞, with k ·β fixed, the equivariant Verlinde formula turns into the
formula for the equivariant volume of MH , or equivalently, the partition function
of the topological Yang–Mills–Higgs model in [43].

To the best of our knowledge, the equivariant Verlinde formula associated with the
choice R = 2 is novel. In [44,45], a model named “generalized G/G gauged WZW
model” was proposed. Although it shares some similarities with the equivariant G/G
model, the BRST-transformation rules, the Bethe ansatz equations and the partition func-
tion are all different. It would be interesting to see what the geometric interpretation of
the generalized G/G model is, as well as to study its embedding into critical string
theory as we have done in Sect. 3.

For the other special value of R = 0 we get the G/G gauged WZW-matter model
of Okuda and Yoshida, which did appeared in the mathematical literature, albeit in a
completely different form (as we explain next).

6.1.2. R = 0 and gauged WZW-matter model. For R = 2, the field χ is a scalar and
ϕ is a 1-form. When R = 0, their spin assignments are reversed, cf. (6.7). Therefore,
the h-dependent parts of the functional determinants are simply inverted when one goes
from one case to the other:

�ab(R = 2) = 1

�ab(R = 0)
= 1

(1− t)N (h−1) , (6.39)

�′nab(R = 2) = 1

�′nab(R = 0)
=
[∏

α

Mα(σ, t)

]1−h
. (6.40)

Here

�′nab(R) =
[∏

α

Mα(σ, t)

](h−1)(R−1)
(6.41)
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is the part of �nab that does not depend on Fa . So, the partition function of the G/G
gauged WZW-matter model is

ZGWZWM(�;U (N ), k, t)=
∑

{σ }∈{Bethe}

⎡
⎣(1− t)N det

∣∣∣∣ ∂ζa

∂σb

∣∣∣∣
∏
a �=b

e2π iσa − te2π iσb

e2π iσa − e2π iσb

⎤
⎦
h−1

.

(6.42)

Itwas verifiednumerically in [50] that, for small values of k, N and h, theG/G gauged
WZW-mattermodel gives a 2d TQFTwhose corresponding Frobenius algebra is the “de-
formed Verlinde algebra” constructed by Korff in [52]. Korff’s construction is motivated
by the q-bosonmodel and uses the cylindric generalization of skewMacdonald functions.

In fact, the partition function of the gauged WZW-matter model appeared in the
mathematical literature even earlier! It can be identified with an index formula for the
moduli stack of algebraic GC-bundles over � first conjectured by Teleman [53] and
later proved by Teleman and Woodward [54]. As we mentioned earlier, considering
the index associated to the prequantum line bundle L over BunGC

(�)—which is ba-
sically Mflat(�;G) away from stacky points—gives the Verlinde formula. Telemann
and Woodward then considered higher rank bundles over BunGC

(�). In particular, they
considered the following bundle:

λt (TM)⊗ L⊗k ∈ K 0(M, Q)[t], (6.43)

where λt stands for the total lambda class, defined as follows. For a vector bundle V
over space X , let λl(V ) be the K 0-class of �l V , then

λt (V ) = 1 + tλ1(V ) + t2λ2(V ) + ... ∈ K 0(X, Q)[t]. (6.44)

One can explicitly check that, at least for G = U (N ), the index of this bundle can be
identified with the partition function of the gauged WZW-matter model, modulo a sign
convention for the equivariant parameter:

tTW = −there. (6.45)

6.2. Relation to Bethe/Gauge Correspondence. In [55–57], Nekrasov and Shatashvili
proposed a relation between integrable models and supersymmetric gauge theories with
four supercharges. In this paper, we are concerned with two types of 3d N = 2 theo-
ries: T [L(k, 1);β] and T [�× S1;β]. Of course, these two theories are special cases of
T [M3;β], where M3 is an arbitrary Seifert manifold.

The theory T [� × S1;β], which was the subject of Sect. 4, does not have a Chern–
Simons term; it is a canonical mass deformation of 3d N = 4 theory. The relation
between theories of this type and integrable models was also explored in [58,59]. Here,
we shall focus on the Lens space theory T [L(k, 1);β].

Although Okuda and Yoshida [50] found a relation between the gaugedWZW-matter
model and the q-boson model, the connection to SUSY gauge theory was missing. The
results of our work fill this gap. In particular, according to our discussion in Sect. 5.1,
the gauged WZW-matter model is precisely 3d N = 2 theory T [L(k, 1);β] twisted
on � × S1. This kind of scenario was discussed by Nekrasov and Shatashvili in [60],
and we now embed T [L(k, 1);β] into the framework of Bethe/gauge correspondence
following their work.
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From thematter content (1.7) of T [L(k, 1);β], one can easilywrite down the effective
twisted superpotential:

W̃eff(σ ) = (k + N )π i
N∑

a=1
σ 2
a − π i

(
N∑

a=1
σa

)2

+
1

2π i

∑
a �=b

Li2
[
te2π i(σa−σb)

]

+ (N − 1)π i
N∑

a=1
σa . (6.46)

The first two terms come from the Chern–Simons term of the 3dN = 2 vector multiplet.
One can directly see that, after integrating out W-bosons, the levels for the SU (N ) and
the U (1) parts of the U (N ) gauge group are now k + N and k, respectively. The third
term in (6.46) comes from the adjoint chiral multiplet in 3d. And, unsurprisingly,

t = e−�β, (6.47)

where � is the circumference of the S1 Seifert fiber. The last term in (6.46) also originates
from 3d gauge fields:

2π i〈ρ, σ 〉 = π i
∑
a>b

(σa − σb) ∼ π i(N − 1)
N∑

a=1
σa . (6.48)

Here ρ is the Weyl vector, and, in the last step, we have used the fact that the shift

W̃eff −→ W̃eff + 2π i
N∑
a

naσa (6.49)

generates a symmetry of the 2d abelian system.
The Bethe ansatz equations are given by

exp

[
∂W̃eff

∂σa

]
= e2π iζa = 1, for all a = 1, 2, . . . , N . (6.50)

The topological action is
∫

�

[
∂W̃eff

∂σa
Fa +

1

4π i

∂2W̃eff

∂σa∂σb
λa∧λb + U(σ )R

]
, (6.51)

where the last term involves the Euler density R and the dilaton coupling

U(σ ) = Ugauge(σ ) + Umatter(σ ), (6.52)

such that

Ugauge(σ ) =
∑
α

log
(
1− eα(σ )

)
, (6.53)

and

Umatter(σ ) =
(
R − 1

2

)
Tr adj

[
log
(
1− te−σ

)]
. (6.54)
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Here and throughout the paper, R is theU (1)V R-charge assigned to� and, in fact, this is
the only place where R enters our formula. For the two choices of R-charge assignment
discussed in Sects. 6.1.1 and 6.1.2 we have:

U(σ )R=0matter = −U(σ )R=2matter. (6.55)

Then, the partition function of the topologically twisted theory is written as a sum over
solutions to the Bethe ansatz equations:

Z R
(
T [L(k, 1);β];� × S1

)
=

∑
{σ }∈{Bethe}

(
e−U R(σ ) det

∣∣∣∣ 1

2π i

∂2W̃eff

∂σa∂σb

∣∣∣∣
)g−1

.(6.56)

One can check that this expression indeed agrees with the partition functions obtained
previously. In particular, it gives the equivariant Verlinde formula for R = 2 and the
partition function of the gauged WZW-matter model for R = 0.

Each summand in the partition function of the twisted SUSY gauge theory should be
mapped to the squared norm of a Bethe state on the integrable model side. (Bethe states
have a natural normalization and their norms are physical quantities.) As was checked in
[50], the summands in the partition function of the gauged WZW-matter model indeed
correspond to the squared norms of Bethe states of the q-boson model. Naturally, this
raises a series of questions: What about the partition functions of topological theories
with R �= 0? What is their meaning on the integrable model side? Is R = 0 “special”?

It would be also interesting to study (quantum) spectral curves for 3dN = 2 theories
T [L(k, 1);β] and T [M3;β] following [58, sec. 5]. The spectral curves for these theories
are expected to be spectral curves of integrable systems related to the ones discussed here
by spectral duality. In particular, it should provide a candidate for the spectral duality of
the q-boson model, and it would be interesting to make contact with [61].

7. t-Deformation and Categorification of the Verlinde Algebra

In previous sections, we focused on the partition function of the β-deformed complex
Chern–Simons theory on � × S1—the equivariant Verlinde formula—and have shown
that it can be derived in at least three different ways (the first is intrinsically three-
dimensional and the other two are two-dimensional):

1. Section 5.2: Starting with the 3d N = 2 theory T [L(k, 1);β] one can perform a
topological twist on � × S1 and compute the partition function using localization
à la [47].

2. Section 6.1: One can first reduce twisted T [L(k, 1);β] to 2d to obtain the equivari-
antG/G gaugedWZWmodel on� and apply localization techniques and compute
its partition function as in [50].

3. Section 6.2: One can first compactify T [L(k, 1);β] on a circle and obtain the low-
energy effectiveN = (2, 2) abelian gauge theory governed by the twisted effective
superpotential as a function on the Coulomb branch. Then one can twist this 2d
theory and compute its partition function following [60].

Naturally, the next step is to go beyond the partition function and incorporate oper-
ators. Indeed, one would expect loop operators to play very interesting role in complex
Chern–Simons theory, just as they do in ordinary Chern–Simons theory. Recall that in
Chern–Simons theory with compact gauge group G, Wilson loops are labeled by in-
tegrable representations of the loop group LG and their fusion rules give the Verlinde
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algebra, which basically describes how the tensor product of two representations de-
composes. Then one can ask what the analog of this story in the β-deformed complex
Chern–Simons theory is.

It turns out that a finite β simply deforms the Verlinde algebra to what we call the
“equivariant Verlinde algebra”. For example, the usual fusion rule for G = SU (2) at
level k = 9 for two fundamental representations

2⊗ 2 = 1⊕ 3 (7.1)

is deformed into

2⊗ 2 = 1

1− t2
1⊕ 1

1− t
3⊕ t

1− t
5⊕ t2

1− t
7⊕ t3

1− t2
9. (7.2)

Clearly, in the limit t → 0 (β → ∞) one recovers (7.1). Expressions like (7.2) are
ubiquitous in computations of refined BPS invariants and categorification of quantum
group invariants [62,63]. In fact, just like in those examples, each coefficient on the
right-hand side of (7.2) is a graded dimension (1.4) of an infinite-dimensional vector
space Vj that appears as a “coefficient” in the OPE of line operators in 3d:

2⊗ 2 =
⊕
j

V j ⊗ (2j + 1). (7.3)

In other words, as explained e.g. in [64,65], replacing � × S1 by � × R leads to a
categorification in the sense that numerical coefficients are replaced by vector spaces
(whose dimensions are the numerical coefficients). In the present case, we obtain a cat-
egorification of the equivariant Verlinde algebra since the “coefficients” in the OPE of
line operators on � × R are indeed vector space, namely Vj in our case. In the present
example, (7.3) is a categorification of (7.2) with

V0 = C[x0]{0},
V1 = C[x1]{0},
V2 = C[x2]{1},
V3 = C[x3]{2},
V4 = C[x4]{3}, (7.4)

where dimβ(x0) = dimβ(x4) = 2, dimβ(x1) = dimβ(x2) = dimβ(x3) = 1, and {n}
denotes the degree shift by n units.

Of course, one can obtain a deformed algebra such as (7.2) by computing the partition
function on � × S1 with insertion of multiple loop operators that lie along the S1 fiber
direction, using similar localization techniques as in previous sections. This problemwill
be studied more systematically elsewhere. In this section, we will analyze a simplified
version of this problem with G = SU (2) using a completely different method. Namely,
we evaluate the equivariant integrals over Hitchin moduli space directly for some simple
Riemann surfaces and build the TQFT using cutting and gluing.

7.1. “Equivariant Higgs vertex”. In order to perform cutting and gluing, it is impor-
tant to generalize everything to punctured Riemann surfaces. We use �h,n to denote a
Riemann surface with genus h and n ramification points p1, p2, . . . , pn ∈ �. Here we
only consider “tame” ramification discussed in detail in [64,65]. Near each puncture
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pr , the ramification data is specified by a triple denoted as10 (αI , αJ , αK ) ∈ T3, where
T = U (1) is the Cartan torus of G = SU (2). However, our approach only applies
directly to cases where αJ = αK = 0, as U (1)β , which we use to regularize the non-
compactness of the moduli space, acts on αJ + iαK by multiplying it with a phase. In
order to make it invariant underU (1)β , we need to impose the condition αJ = αK = 0.
In the following, we simply use αr to denote αI associatedwith the ramification point pr .

Then the moduli space of ramified Higgs bundlesMH (�h,n;α1, α2, . . . , αn) can be
identified with the moduli space of flat SL(2, C) connections over �h,n with boundary
condition that near a puncture pr , only the real part A of the connection A = A + iφ
develops a singularity

A ∼ αr dθ. (7.5)

Equivalently, we demand the holonomy around each puncture pr to be in the same
conjugacy class as

e2π iαrσ
3 = exp

[
2π i

(
αr 0
0 −αr

)]
. (7.6)

The action of the affineWeyl group on α’s leaves the conjugacy class of the monodromy
invariant. So without loss of generality, we assume all αr ’s to live in the Weyl alcove
[0, 1

2 ].
As in the unramified case, we can consider the problem of quantizing

MH (�h,n;α1, α2, . . . , αn) with symplectic form kωI and our goal is to identify a
2d TQFT whose partition function is the dimension of the Hilbert space
H(�h,n;α1, α2, . . . , αn). This TQFT—which we call SU (2) “equivariant Verlinde
TQFT”—is equivalent to the equivariant G/G model of Sect. 6.1.1 specialized to the
choice of G = SU (2), but formulated in a different way, via cutting and gluing.

Any 2d TQFT can be formulated in a set of Atiyah–Segal axioms, which assign a
Hilbert space V to a circle S1 and an element in Hom(V⊗n, C) to a punctured Riemann
surface �h,n . In particular, if n = 0, the TQFT assigns to a genus-h Riemann surface
an element in Hom(C, C). This element is determined by the image of 1 ∈ C, which is
precisely the partition function in physicists’ language.

Two-dimensional TQFTs are particularly simple, as any Riemann surface, punctured
or not, can be cut along circles to be decomposed into three basic ingredients: the cap, the
cylinder and pair of pants, cf. Fig. 1. One only needs to determine how the TQFT functor
acts on the three basic building blocks. If we find a basis eμ (or in physicists’ notation
{〈μ|}) of V , then the TQFT assigns “metric” ημν to a cylinder, “fusion coefficients” f μνρ

to a pair of pants, and a distinguished state eØ ∈ V to a cap. This is summarized inTable 2.
Topological invariance requires the “equivariant Higgs vertex” f μνρ to be symmetric

in the three indices. Also, as a four-holes sphere can be decomposed into two pairs of
pants in different ways, the fusion coefficients have to satisfy the commutativity relation:

f μ1ν1ρ1ηρ1ρ2 f
μ2ν2ρ2 = f μ1ν2ρ1ηρ1ρ2 f

μ2ν1ρ2 . (7.7)

Here ηρ1ρ2 =
(
η−1

)ρ1ρ2 is the inverse metric naturally defined on V ∗⊗2. Using these
properties, it is easy to prove that a 2d TQFT is equivalent to a commutative Frobenius

10 This triple is denoted as (α, β, γ ) in [64,65]. Here we use a different notation to avoid confusion with the
equivariant parameter β.
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Table 2. Building blocks of a 2d TQFT

algebra. For the equivariant Verlinde TQFT, the corresponding algebra is the “equivari-
ant Verlinde algebra”, the one parameter generalization of the Verlinde algebra that we
alluded to.

Before figuring out what V, ημν, f μνρ and eØ are, we first see what the prediction
from the equivariant gauged WZW model looks like. First of all, the dimension of V
should be the number of solutions to the Bethe ansatz equations

dim V = ZEGWZW

[
T
2; SU (2)

]
=

∑
{Bethe}

1. (7.8)

The Bethe ansatz equations for SU (2) can be obtained11 by combining the two equations
for U (2),

e2π ikσ1
(
e2π iσ1 − te2π iσ2

te2π iσ1 − e2π iσ2

)
= 1, (7.9)

e2π ikσ2
(
e2π iσ2 − te2π iσ1

te2π iσ2 − e2π iσ1

)
= 1, (7.10)

11 There are two ways of eliminating the U (1) factor. Apart from the one described here, one can also set
σ1 = −σ2. This corresponds to U (2)/U (1) = SU (2)/Z2 = SO(3).
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into a single equation satisfied by

σ = 1

2
(σ1 − σ2) ∈

[
0,

1

2

]
. (7.11)

So the Bethe ansatz equation for SU (2) is simply

e4π ikσ
(
e2π iσ − te−2π iσ

te2π iσ − e−2π iσ

)2

= 1. (7.12)

In the limit β → +∞ (t → 0), the equivariant Verlinde TQFT becomes the ordinary
Verlinde TQFT (i.e. G/G WZW model) and the Bethe ansatz equation becomes:

e4π i(k+2)σ = 1. (7.13)

There are k + 1 solutions to this equation, namely:

σl = l + 1

2(k + 2)
, l = 0, 1, . . . , k. (7.14)

One can verify that this number of solutions is independent of β and will always be
k + 1. So, regardless of the value of β, the Hilbert space V of a 2d TQFT is always
k + 1-dimensional.

There is one subtle point that is worth mentioning. In the literature there is some
confusion about the “end point contribution” to the Verlinde formula. Namely, l = −1
and l = k + 1 also give valid solutions to the equation (7.13) and they indeed appear
in localization computation (see e.g. [51]). However, their contribution is divergent if
genus h > 1, and it was argued that they should be simply ignored. Our approach gives a
different point of view on this issue. For any positive value of β, solutions σ−1 and σk+1
are never inside the interval [0, 1

2 ] and, therefore, they never contribute to the equivari-
ant Verlinde formula. When β → +∞, we have σ−1 → 0 from the left and σk+1 → 1

2
from the right. If we think of the ordinary Verlinde formula as the β →∞ limit of the
equivariant Verlinde formula, then we should never include the contributions associated
to σ−1 and σk+1. Similar phenomena happen when β → 0. In that limit, σ0 and σk move
toward the endpoints of [0, 1

2 ]. But as they will always be inside the interval, one should
always include their full contributions.

The fact that V is finite dimensional is also expected from the geometry of the Hitchin
moduli space. If there is no puncture, thenMH (�h,n; SU (2))with symplectic form kωI
is always quantizable. However, if we add punctures, kωI may not have integral periods
over all 2-cycles ofMH (�h,n;α1, α2, . . . , αn), and this will be an obstruction to quan-
tization. So, the α’s need to satisfy certain integrality conditions that we now analyze.

In general, the moduli space of a ramified Higgs bundle can be conveniently viewed
as a fibration of coadjoint orbits over the moduli space of unramified Higgs bundles.
More concretely, in the case of GC = SL(2, C), we have

T ∗CP
1
α1
× . . .× T ∗CP

1
αn
→ MH (�h,n;α1, α2, . . . , αn)

↓
MH (�h,n),

(7.15)
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where T ∗CP
1
αr
= Oαr is the orbit of αr in sl(2, C) under adjoint action. Then integrality

of the periods of kωI is translated to the following condition:
∫

CP
1
αr

kωI = 2kαr ∈ Z. (7.16)

If we introduce

λr = 2kαr ∈ [0, k], (7.17)

then there are k + 1 possible values of λr for each puncture pr , corresponding to k + 1
states 〈λ|’s in V . And this indeed agrees with the prediction of the equivariant gauged
WZWmodel. These states correspond to point-like defects on the Riemann surface, and
from the three-dimensional point of view, these defects are Wilson loops along the S1

fiber direction of � × S1.
Another prediction from physics is that the partition function of the equivariant Ver-

linde TQFT—or, equivalently, the value of the equivariant integral (4.18) overMH—can
be naturally written as a sum over solutions to the Bethe ansatz equation. A similar phe-
nomenon was already pointed out back in [43], but it was never verified or properly
understood. Next, we will construct the TQFT and see how the Bethe ansatz equation
for SU (2) naturally arises when one attempts to diagonalize the fusion rules.

7.2. Equivariant Verlinde algebra from Hitchin moduli space. In order to derive the
“equivariant Higgs vertex” f λ1λ2λ3 , we do the equivariant integration over the Hitchin
moduli space, MH (�0,3;α1, α2, α3), associated with the three-punctured sphere. The
virtual dimension of this space is 2 × (3h − 3 + n) = 0, so we expect it to be a col-
lection of points which makes the equivariant integration very easy. We first consider
the limit β → +∞. In this limit, the equivariant integral becomes an ordinary integral
over the moduli space of SU (2) connections and simply counts the number of points
in M = Mflat(�0,3; SU (2), α1, α2, α3). In fact, this moduli space is either a point or
empty. So the fusion coefficient f λ1λ2λ3

β→+∞ is either 1 or zero. One special thing about this
zero-dimensional moduli space is that the quantizability condition is slightly more sub-
tle, as the coadjoint orbitsCP

1
αi
’s are no longer real 2-cycles. More precisely, in addition

to requiring (α1, α2, α3) to satisfy integrality condition

(λ1, λ2, λ3) = 2k(α1, α2, α3) ∈ Z
3, (7.18)

one also needs to require λ1 + λ2 + λ3 to be even. Then, the condition for f λ1λ2λ3
β→+∞ to be

1 is that (λ1, λ2, λ3) satisfies both the quantization condition and the “triangle inequal-
ity”. We now explain the second condition more precisely, which is important for the
equivariant generalization later.

When the quantization condition is satisfied, the triple (λ1, λ2, λ3) corresponds to an
integer point in the cube {(x, y, z)|0 ≤ x, y, z ≤ k}. There is a tetrahedron inside this
cube with four faces given by the following four equations:

d0 = λ1 + λ2 + λ3 − 2k = 0,

d1 = λ1 − λ2 − λ3 = 0,

d2 = λ2 − λ3 − λ1 = 0,

d3 = λ3 − λ1 − λ2 = 0. (7.19)
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Fig. 7. The definition of �λ and �λ′ = �λ/
√
3

Define the distance of a point (λ1, λ2, λ3) to the tetrahedron faces as, see Fig. 7,

�λ = max(d0, d1, d2, d3). (7.20)

We also define another quantity

�α = �λ

2k
. (7.21)

If �λ ≤ 0, then the point is either inside the tetrahedron or on the boundary of it and
Mflat(�0,3; SU (2)) is a point. If �λ > 0, then the point is outside the tetrahedron
and Mflat(�0,3; SU (2)) is empty. We call this condition “triangle inequality” for the
following reason: when d1 > 0 or d2 > 0 or d3 > 0, the three λ’s won’t be able to form
a triangle. The situation d0 > 0 corresponds to the case when the triangle is too large to
live in SU (2), which is a compact group.

Combining the quantization condition with the �λ ≤ 0 condition, we obtain the
fusion coefficient in the β → +∞ limit:

f λ1λ2λ3 =
{
1 if λ1 + λ2 + λ3 is even and �λ ≤ 0,
0 otherwise. (7.22)

We now consider the case of finite β. The geometry of the relevant Hitchin moduli
space MH is described in detail in [66]. What differs from the β → +∞ case is that
MH (�0,3;α1, α2, α3) is never empty and is always a point. This is consistent with a
general property of moduli space of parabolic Higgs bundles: the topology only depends
on the quasi-parabolic structure. Then, the equivariant integral∫

MH

Td(MH , β)∧ekω̃I (7.23)

simply becomes

e−βkμ0 = e−β�λ/2 = t�λ/2, (7.24)
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where

μ0 = �α (7.25)

is the value of the moment map for U (1)β at that point [66]. So we have the fusion
coefficients

f λ1λ2λ3 =
⎧⎨
⎩
1 if λ1 + λ2 + λ3 is even and �λ ≤ 0,
e−β�λ/2 if λ1 + λ2 + λ3 is even and �λ > 0,
0 if λ1 + λ2 + λ3 is odd.

(7.26)

The next thing one needs is the metric ημν associated to a cylinder. As the Hitchin
moduli spaceMH

(
�0,2; SU (2)

)
has negative virtual dimension, one needs to be care-

ful when trying to make sense of the equivariant integral. Alternatively, one can de-
duce ημν from the equivariant Verlinde number associated with other Riemann sur-
faces. For example, one can consider the four-holed sphere and do the integration over
MH

(
�0,4; SU (2)

)
. This moduli space is an elliptic surface with the elliptic fibration

over C, which is precisely the Hitchin fibration. The only singular fiber is the “nilpotent
cone”, the fiber over zero of the Hitchin base C, and has Kodaira type I ∗0 (or, affine D4
in physicists’ notation), see e.g. [65] for details. These nice properties make the equiv-
ariant integration easy to do. But instead of presenting the results of this computation,
we directly give the form of the metric that is obtained by combining this result with the
fusion coefficients:

ηλ1λ2 = diag{1− t2, 1− t, 1− t, . . . , 1− t,︸ ︷︷ ︸
k − 1 entries that are all (1− t)

1− t2}. (7.27)

Notice that becauseMH
(
�0,2; SU (2)

)
has virtual complex dimension−2, η has a first

order zero when t → 1, instead of a pole. Also, the metric is diagonal and only becomes
the identity matrix when t = 0.

Once we know f and η, it is easy to find the state 〈Ø| from the consistency of the
gluing rules (attaching a cap to a pair of pants should give a cylinder):

f μνØ = ημν. (7.28)

And one finds

〈Ø| = 〈0| − t〈2|, (7.29)

when k ≥ 2. For k = 1 and k = 0, 〈Ø| = 〈0| and one can further verify that the Verlinde
TQFT is not deformed by turning on β in these two cases.

Before proceeding further it is convenient to introduce a normalized basis {〈λ| =
(ηλλ)

1/2 〈λ|} in which the TQFT “metric” η is the identity. In this basis, the commuta-
tivity relation (7.7) becomes simply

f λ1μν f λ2νξ = f λ2μν f λ1νξ . (7.30)

The above relation can be interpreted as the mutual commutativity of k + 1 matrices
[ f 0], [ f 1], . . ., [ f k+1], where

[ f μ]νρ = f μνρ, (7.31)

is a (k + 1)× (k + 1) matrix.
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Now, that we have all the building blocks of the equivariant Verlinde TQFT, we can
calculate any correlation function on any Riemann surface. However, the basis {〈0|, 〈1|,
. . . 〈k|}, or its normalized version, is not themost convenient for this purpose. Onewould
like to work in a different basis {〈̂0|, 〈̂1|, . . ., 〈̂k|} where the fusion rules are diagonal-
ized. Namely, in the normalized basis, the matrices [ f 0], [ f 1], . . ., [ f k] are mutually
commutative and simultaneously diagonalizable, with {〈̂0|, 〈̂1|, . . ., 〈̂k|} being the set
of eigenvectors. As the fusion coefficients f μνρ are completely symmetric in the three
indices, in the diagonal basis we have

f μ̂̂νρ̂ ∼ δμ̂̂νρ̂ , (7.32)

where δabc is the “3d Kronecker delta function” (equal to 1 when a = b = c and zero
otherwise).

Before attempting to find this newbasis,wefirst briefly comment on its normalization.
There are two possible choices: we can choose either

f μ̂̂νρ̂ = δμ̂̂νρ̂ , (7.33)

or

ημ̂̂ν = δ
μ̂
ν̂ . (7.34)

If the first normalization is chosen, this basis is what mathematicians would call the
“idempotent basis” of the equivariant Verlinde algebra and it coincides with the basis
formed by “Bethe states”. We will work with the second choice of normalization, where
one does not need to distinguish between upper and lower indices.

7.3. Bethe Ansatz equation from the fusion rules. The standard way to find the eigenvec-
tors of a set of commuting matrices is to first pick a linear combination of the matrices
and to solve for the eigenvalues. At this point, one may (correctly) anticipate that the
characteristic polynomial equation of a particular linear combination of [ f ]’s gives the
Bethe ansatz equation. Indeed, this is true and that matrix is

[ fB] = [ f1] − t[ f3], (7.35)

when k ≥ 3. For k = 2, [ fB] = [ f1] does not depend on β at all. As it turns out, β

only appears in the normalization factor when k = 2, making this case uninteresting. So
from now on, we assume that k ≥ 3. Written in the matrix form, fB is

[ fB] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√
1 + t 0 0 0 · · · 0√

1 + t 0 1 0 0 · · · 0

0 1 0 1
...

0 0 1
. . .

. . . 0

0 0
. . . 0 1 0

...
... 1 0

√
1 + t

0 0 · · · 0 0
√
1 + t 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.36)

The characteristic polynomial equation for [ fB] is
det (x[I ] − [ fB]) = 0, (7.37)
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where [I ] is the identity matrix of size (k + 1)× (k + 1). By expanding this determinant
along the first and last columns, it is easy to find that

det
(
x[I ] − [ fB]

) = x2Ak−1 − 2x(1 + t)Ak−2 + (1 + t)2Ak−3, (7.38)

where An is a polynomial in x defined as the determinant of a n × n matrix

An = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x −1 0 0 0 · · · 0
−1 x −1 0 0 · · · 0

0 −1 x −1 ...

0 0 −1 . . .
. . . 0

0 0
. . . x −1 0

...
... −1 x −1

0 0 · · · 0 0 −1 x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.39)

Using the initial condition A0 = 1 and A1 = x , along with the recursion relation

An+1 = x An − An−1 (7.40)

that can be derived by expanding the determinant along the first column, one finds

An = sin [2π(n + 1)σ ]

sin 2πσ
. (7.41)

Here we made the following change of variables

x = 2 cos 2πσ. (7.42)

Then, one finds the characteristic polynomial equation (7.37) to be

e4π ikσ
(
e2π iσ − te−2π iσ

te2π iσ − e−2π iσ

)2

= 1. (7.43)

This is exactly theBethe ansatz equation (7.12) for the equivariant SU (2)/SU (2) gauged
WZW model!

For 0 < t < 1, the equation (7.43) always has k + 1 real solutions σl , l = 0, 1, . . . , k
inside the interval

(
0, 1

2

)
. So we can assume σ0 < σ1 < ...σk . As we mentioned previ-

ously, in the limit t → 0, the Bethe ansatz equation (7.43) becomes

e4π i(k+2)σ = 1. (7.44)

And in the other limit t → 1, the Bethe ansatz equation (7.43) becomes

e4π ikσ = 1. (7.45)

This agrees with the fact that the quantum shift of the level k in Chern–Simons theory
with complex gauge group is zero [2].

There is another interesting property satisfied by the Bethe ansatz equation (7.43). If
σ ∈ (0, 1

2 ) is a solution to (7.43), then 1
2 − σ is also a solution. So the k + 1 roots {σl}

are naturally paired. As a consequence, if k is even, σk/2 = 1
4 is always a solution.
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Now we have the eigenvalues xl = 2 cos 2πσl that are solutions to (7.43), and the
next step is to find the eigenvectors 〈̂l|. In the normalized basis, they are (k + 1) × 1
matrices [vl ] that can be obtained by solving the linear equation

[ fB][vl ] = xl [vl ]. (7.46)

It is easy to find

[vl ] = Cl

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
1 + t sin 2πσl
sin 4πσl

sin 6πσl − t sin 2πσl
sin 8πσl − t sin 4πσl

...

sin 2kπσl − t sin 2(k − 2)πσl
sin 2(k+1)πσl−t sin 2(k−1)πσl√

1+t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.47)

Here Cl is a normalization factor

C−2l =
∣∣∣1− te4π iσl

∣∣∣2 · k + 2

2
+ 2t cos 4πσl − 2t2. (7.48)

In the new basis, the fusion rules are:

f μ̂̂νρ̂ = Nμ̂δμ̂̂νρ̂ . (7.49)

Explicitly, the “eigenvalues of the fusion rules” Nl ’s are

Nl = 1√
1− t · sin 2πσl

∣∣1− te4iπσl
∣∣2 . (7.50)

In particular, from gluing 2h − 2 copies of pairs of pants (as in Fig. 1), it immediately
follows that on a closed Riemann surface �h the partition function is

Z(�h; k, t) =
k∑

l=0
N 2h−2
l

= 1

(1− t)h−1
k∑

l=0

(
k + 2

2
+
2t cos 4πσl − 2t2∣∣1− te4π iσl

∣∣2
)h−1

×
(

1

sin 2πσl
∣∣1− te4π iσl

∣∣
)2h−2

. (7.51)

We call this the “SL(2, C) equivariantVerlinde formula”. It is easy to check that for t = 0
it indeed reduces to the SU (2) Verlinde formula. In the special case of h = 0, we have

Z(S2; k, t) =
k∑

l̂=0
N−2
l̂
=

k∑
l̂=0
|〈̂l|φ〉|2 = 〈φ|φ〉 = 1− t3. (7.52)

For generic values of t , this formula gives a non-trivial identity satisfied by roots of the
Bethe Ansatz equation.
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To a n-punctured Riemann surface, the 2d TQFT functor assigns a vector in (V ∗)⊗n :

Z(�h,n; k, t) =
k∑

l=0
N 2h−2+n
l 〈̂l|⊗n . (7.53)

Acknowledgements. Wewish to thankAntonAlekseev for a wonderful set of notes [67] that we recommend to
all the beginners.We also thank S. Shatashvili for discussions of this work in Fall 2013 and Spring 2014, which
stimulated [60]. We also benefited from discussions with Mina Aganagic, Sir Michael Atiyah, Tudor Dimofte,
Abhijit Gadde, Jaume Gomis, Nigel Hitchin, Tadashi Okazaki, Satoshi Okuda, Pavel Putrov, Richard Went-
worth and Wenbin Yan. This work is funded by the DOE Grant DE-SC0011632, NSF Grants DMS 1107452,
1107263, 1107367 (the GEAR Network), and the Walter Burke Institute for Theoretical Physics.

References

1. Verlinde, E.P.: Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys.
B 300, 360 (1988)

2. Gukov, S., Witten, E.: Branes and quantization. Adv. Theor. Math. Phys. 13, 1. arXiv:0809.0305 (2009)
3. Dijkgraaf, R., Hollands, L., Sulkowski, P.: Quantum curves and D-

modules. JHEP 0911, 047. arXiv:0810.4157 (2009)
4. Nekrasov N., Witten E.: The omega deformation, branes, integrability, and Liouville theory. JHEP 1009,

092. arXiv:1002.0888 (2010)
5. Gukov, S.: Quantization via mirror symmetry. Jpn. J. Math. 6, 65. arXiv:1011.2218 (2011)
6. Yagi, J.: �-Deformation and quantization. JHEP 1408, 112. arXiv:1405.6714 (2014)
7. Schwarz, A.: New topological invariants arising in the theory of quantized fields. In: Baku International

Topological Conference, Abstracts (Part 2), Baku (1987)
8. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351 (1989)
9. Gerasimov, A.: Localization in GWZW and Verlinde formula. arXiv:hep-th/9305090

10. Witten, E.: The Verlinde algebra and the cohomology of the Grassmannian. arXiv:hep-th/9312104
11. Alday, L.F., Bullimore, M., Fluder, M.: On S-duality of the superconformal index on lens spaces and 2d

TQFT. JHEP 1305, 122. arXiv:1301.7486 (2013)
12. Razamat, S.S., Yamazaki, M.: S-duality and the N = 2 lens space in-

dex. JHEP 1310, 048. arXiv:1306.1543 (2013)
13. Dimofte, T., Gukov, S., Hollands, L.: Vortex counting and Lagrangian 3-manifolds. Lett. Math.

Phys. 98, 225–287. arXiv:1006.0977 (2011)
14. Bershadsky, M., Vafa, C., Sadov, V.: D-branes and topological field theories. Nucl. Phys. B 463, 420–

434. arXiv:hep-th/9511222 (1996)
15. Blau, M., Thompson, G.: Aspects of NT ≥ 2 topological gauge theories and D-branes. Nucl. Phys.

B 492, 545–590. arXiv:hep-th/9612143 (1997)
16. Blau, M., Thompson, G.: Euclidean SYM theories by time reduction and special holonomy mani-

folds. Phys. Lett. B 415, 242–252. arXiv:hep-th/9706225 (1997)
17. Festuccia, G., Seiberg, N.: Rigid supersymmetric theories in curved super-

space. JHEP 1106, 114. arXiv:1105.0689 (2011)
18. Imamura, Y., Yokoyama, D.: N = 2 supersymmetric theories on squashed three-sphere. Phys. Rev.

D 85, 025015. arXiv:1109.4734 (2012)
19. Cordova, C., Jafferis, D.L.: Complex Chern–Simons from M5-branes on the squashed three-sphere.

arXiv:1305.2891
20. Lee, S., Yamazaki, M.: 3d Chern–Simons theory from M5-

branes. JHEP 1312, 035. arXiv:1305.2429 (2013)
21. Dimofte, T., Gaiotto, D., Gukov, S.: Gauge theories labelled by three-manifolds. Commun. Math.

Phys. 325, 367–419. arXiv:1108.4389 (2014)
22. Terashima, Y., Yamazaki, M.: SL(2,R) Chern–Simons, Liouville, and gauge theory on duality

walls. JHEP 1108, 135. arXiv:1103.5748 (2011)
23. Cecotti, S., Cordova, C., Vafa, C.: Braids, walls, and mirrors. arXiv:1110.2115
24. Dimofte, T., Gaiotto, D., Gukov, S.: 3-Manifolds and 3d indices. Adv. Theor. Math. Phys. 17, 975–

1076. arXiv:1112.5179 (2013)
25. Yagi, J.: 3d TQFT from 6d SCFT. JHEP 1308, 017. arXiv:1305.0291 (2013)
26. Dimofte, T.: Complex Chern–Simons theory at level k via the 3d–3d correspondence. Commun. Math.

Phys. 339(2), 619–662. arXiv:1409.0857

http://arxiv.org/abs/0809.0305
http://arxiv.org/abs/0810.4157
http://arxiv.org/abs/1002.0888
http://arxiv.org/abs/1011.2218
http://arxiv.org/abs/1405.6714
http://arxiv.org/abs/hep-th/9305090
http://arxiv.org/abs/hep-th/9312104
http://arxiv.org/abs/1301.7486
http://arxiv.org/abs/1306.1543
http://arxiv.org/abs/1006.0977
http://arxiv.org/abs/hep-th/9511222
http://arxiv.org/abs/hep-th/9612143
http://arxiv.org/abs/hep-th/9706225
http://arxiv.org/abs/1105.0689
http://arxiv.org/abs/1109.4734
http://arxiv.org/abs/1305.2891
http://arxiv.org/abs/1305.2429
http://arxiv.org/abs/1108.4389
http://arxiv.org/abs/1103.5748
http://arxiv.org/abs/1110.2115
http://arxiv.org/abs/1112.5179
http://arxiv.org/abs/1305.0291
http://arxiv.org/abs/1409.0857


Equivariant Verlinde Formula from Fivebranes and Vortices 49

27. Dimofte, T., Gukov, S., Lenells, J., Zagier, D.: Exact results for perturbative Chern–Simons theory with
complex gauge group. Commun. Number Theor. Phys. 3, 363–443. arXiv:0903.2472 (2009)

28. Dimofte, T.: Quantum Riemann surfaces in Chern–Simons theory. Adv. Theor. Math. Phys. 17, 479–
599. arXiv:1102.4847 (2013)

29. Gukov, S., Sulkowski, P.: A-polynomial, B-model, and quantiza-
tion. JHEP 1202, 070. arXiv:1108.0002 (2012)

30. Chung, H.-J., Dimofte, T., Gukov, S., Sulkowski, P.: 3d–3d correspondence revis-
ited. JHEP 1604, 140. arXiv:1405.3663 (2016)

31. Gadde, A., Gukov, S., Putrov, P.: Fivebranes and 4-manifolds. In: Ballmann, W. et al. (ed.) Arbeitstagung
Bonn, Progress in Mathematics 319, pp. 155–245. Springer, Berlin arXiv:1306.4320 (2016)

32. Harvey, J.A., Moore, G.W., Strominger, A.: Reducing S duality to T duality. Phys. Rev. D 52, 7161–
7167. arXiv:hep-th/9501022 (1995)

33. Bershadsky, M., Johansen, A., Sadov, V., Vafa, C.: Topological reduction of 4-d SYM to 2-d sigma
models. Nucl. Phys. B 448, 166–186. arXiv:hep-th/9501096 (1995)

34. Hitchin, N.J.: The selfduality equations on a Riemann surface. Proc. Lond. Math. Soc. 55, 59–131 (1987)
35. Witten, E.: Topological quantum field theory. Commun. Math. Phys. 117, 353 (1988)
36. Kapustin, A., Willett, B.: Wilson loops in supersymmetric Chern–Simons-matter theories and duality.

arXiv:1302.2164
37. Hanany, A., Tong, D.: Vortices, instantons and branes. JHEP 0307, 037. arXiv:hep-th/0306150 (2003)
38. Callan, C.G., Harvey, J.A.: Anomalies and fermion zero modes on strings and domain walls. Nucl. Phys.

B 250, 427 (1985)
39. Buchbinder, E.I., Gomis, J., Passerini, F.: Holographic gauge theories in background fields and surface

operators. JHEP 0712, 101 (2007)
40. Atiyah, M., Bott, R.: The Yang–Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond.

A 308, 523–615 (1982)
41. Souriau, J.-M.: Quantification g om trique. Commun. Math. Phys. 1(5), 374–398 (1966)
42. Atiyah, M.F., Bott, R.: The moment map and equivariant cohomology. Topology 23(1), 1–28 (1984)
43. Moore, G.W., Nekrasov, N., Shatashvili, S.: Integrating over Higgs branches. Commun. Math.

Phys. 209, 97–121. arXiv:hep-th/9712241 (2000)
44. Gerasimov, A.A., Shatashvili, S.L.: Higgs bundles, gauge theories and quantum groups. Commun. Math.

Phys. 277, 323–367. arXiv:hep-th/0609024 (2008)
45. Gerasimov, A.A., Shatashvili, S.L.: Two-dimensional gauge theories and quantum integrable systems.

arXiv:0711.1472
46. Kallen, J.:Cohomological localizationofChern–Simons theory. JHEP1108, 008. arXiv:1104.5353 (2011)
47. Ohta, K., Yoshida, Y.: Non-Abelian localization for supersymmetric Yang–Mills–Chern–Simons theories

on Seifert manifold. Phys. Rev. D 86, 105018. arXiv:1205.0046 (2012)
48. Kao, H.-C., Lee, K.-M., Lee, T.: The Chern–Simons coefficient in supersymmetric Yang–Mills

Chern–Simons theories. Phys. Lett. B 373, 94–99. arXiv:hep-th/9506170 (1996)
49. Blau, M., Thompson, G.: Equivariant Kahler geometry and localization in the G/G model. Nucl. Phys.

B 439, 367–394. arXiv:hep-th/9407042 (1995)
50. Okuda, S., Yoshida, Y.: G/G gauged WZW-matter model, Bethe Ansatz for q-boson model and

commutative Frobenius algebra. JHEP 1403, 003. arXiv:1308.4608 (2014)
51. Blau, M., Thompson, G.: Derivation of the Verlinde formula from Chern–Simons theory and the G/G

model. Nucl. Phys. B 408, 345–390. arXiv:hep-th/9305010 (1993)
52. Korff, C.: Cylindric versions of specialised Macdonald functions and a deformed Verlinde algebra. Com-

mun. Math. Phys. 318, 173–246. arXiv:1110.6356 (2013)
53. Teleman, C.: K-theory of the moduli of bundles over a Riemann surface and deformations of the Verlinde

algebra. ArXiv Mathematics e-prints (June, 2003). arXiv:math/0306347
54. Teleman, C., Woodward, C.T.: The index formula on the moduli of G-Bundles, ArXiv Mathematics

e-prints (Dec, 2003). arXiv:math/0312154
55. Nekrasov, N.A., Shatashvili, S.L.: Supersymmetric vacua and Bethe ansatz. Nucl. Phys. Proc.

Suppl. 192(193), 91–112. arXiv:0901.4744 (2009)
56. Nekrasov, N.A., Shatashvili, S.L.: Quantum integrability and supersymmetric vacua. Prog. Theor. Phys.

Suppl. 177, 105–119. arXiv:0901.4748 (2009)
57. Nekrasov, N.A., Shatashvili, S.L.: Quantization of integrable systems and four dimensional gauge

theories. arXiv:0908.4052
58. Gadde, A., Gukov, S., Putrov, P.: Walls, lines, and spectral dualities in 3d gauge theo-

ries. JHEP 1405, 047. arXiv:1302.0015 (2014)
59. Gaiotto, D., Koroteev, P.: On three dimensional quiver gauge theories and integrabil-

ity. JHEP 1305, 126. arXiv:1304.0779 (2013)
60. Nekrasov, N.A., Shatashvili, S.L.: Bethe/gauge correspondence on curved

spaces. JHEP 1501, 100. arXiv:1405.6046 (2015)

http://arxiv.org/abs/0903.2472
http://arxiv.org/abs/1102.4847
http://arxiv.org/abs/1108.0002
http://arxiv.org/abs/1405.3663
http://arxiv.org/abs/1306.4320
http://arxiv.org/abs/hep-th/9501022
http://arxiv.org/abs/hep-th/9501096
http://arxiv.org/abs/1302.2164
http://arxiv.org/abs/hep-th/0306150
http://arxiv.org/abs/hep-th/9712241
http://arxiv.org/abs/hep-th/0609024
http://arxiv.org/abs/0711.1472
http://arxiv.org/abs/1104.5353
http://arxiv.org/abs/1205.0046
http://arxiv.org/abs/hep-th/9506170
http://arxiv.org/abs/hep-th/9407042
http://arxiv.org/abs/1308.4608
http://arxiv.org/abs/hep-th/9305010
http://arxiv.org/abs/1110.6356
http://arxiv.org/abs/math/0306347
http://arxiv.org/abs/math/0312154
http://arxiv.org/abs/0901.4744
http://arxiv.org/abs/0901.4748
http://arxiv.org/abs/0908.4052
http://arxiv.org/abs/1302.0015
http://arxiv.org/abs/1304.0779
http://arxiv.org/abs/1405.6046


50 S. Gukov, D. Pei

61. Mironov, A., Morozov, A., Runov, B., Zenkevich, Y., Zotov, A.: Spectral dualities in XXZ spin chains
and five dimensional gauge theories. JHEP 1312, 034. arXiv:1307.1502 (2013)

62. Gukov, S., Stosic, M.: Homological algebra of knots and BPS states. Geom. Topol. Monogr. 18, 309–
367. arXiv:1112.0030 (2012)

63. Fuji, H., Gukov, S., Stosic, M., Sulkowski, P.: 3d analogs of Argyres-Douglas theories and knot
homologies. JHEP 1301, 175. arXiv:1209.1416 (2013)

64. Gukov, S., Witten, E.: Gauge theory, ramification, and the geometric Langlands program.
arXiv:hep-th/0612073

65. Gukov, S.: Gauge theory and knot homologies. Fortschr. Phys. 55, 473–490. arXiv:0706.2369 (2007)
66. Boden, H.U., Yokogawa, K.: Moduli spaces of parabolic Higgs bundles and parabolic K(D) pairs over

smooth curves: I. eprint, p. 10014 (Oct, 1996) arXiv:alg-geom/9610014
67. Alekseev, A.: Notes on equivariant localization. Lect. Notes Phys. 543, 1–24 (2000)

Communicated by X. Yin

http://arxiv.org/abs/1307.1502
http://arxiv.org/abs/1112.0030
http://arxiv.org/abs/1209.1416
http://arxiv.org/abs/hep-th/0612073
http://arxiv.org/abs/0706.2369
http://arxiv.org/abs/alg-geom/9610014

	Equivariant Verlinde Formula from Fivebranes and Vortices
	Abstract:
	1 Introduction
	1.1 Outline of the paper

	2 Fivebranes on Riemann Surfaces and 3-Manifolds
	2.1 Two different approaches to complex Chern–Simons theory

	3 Branes and Vortices
	3.1 ``Lens space theory'' T[[ L(k,1)]] from brane constructions
	3.2 Vortices and equivariant G/G gauged WZW model

	4 Equivariant Integration over Hitchin Moduli Space
	4.1 Quantization of Hitchin moduli space

	5 β-Deformed Complex Chern–Simons
	5.1 Complex Chern–Simons theory from topological twist
	5.2 Equivariant Verlinde formula

	6 A New Family of 2d TQFTs
	6.1 Equivariant G/G gauged WZW model
	6.2 Relation to Bethe/Gauge Correspondence

	7 t-Deformation and Categorification of the Verlinde Algebra
	7.1 ``Equivariant Higgs vertex''
	7.2 Equivariant Verlinde algebra from Hitchin moduli space
	7.3 Bethe Ansatz equation from the fusion rules

	Acknowledgements.
	References




