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Abstract: Prethermalization refers to the transient phenomenon where a system ther-
malizes according to a Hamiltonian that is not the generator of its evolution. We provide
here a rigorous framework for quantum spin systems where prethermalization is exhib-
ited for very long times. First, we consider quantum spin systems under periodic driving

at high frequency ν. We prove that up to a quasi-exponential time τ∗ ∼ e
c ν

log3 ν , the
system barely absorbs energy. Instead, there is an effective local Hamiltonian ̂D that
governs the time evolution up to τ∗, and hence this effective Hamiltonian is a conserved
quantity up to τ∗. Next, we consider systems without driving, but with a separation of
energy scales in the Hamiltonian. A prime example is the Fermi–Hubbard model where
the interaction U is much larger than the hopping J . Also here we prove the emergence
of an effective conserved quantity, different from the Hamiltonian, up to a time τ∗ that
is (almost) exponential in U/J .

1. Introduction

1.1. Periodically driven systems. Time-dependent periodic perturbations arise naturally
in various physical systems, e.g. when a physical system is irradiated with electromag-
netic fields. Such periodically driven quantum systems exhibit rich and often unexpected
behaviour [8]. One classic example is the dynamical localization of a kicked quantum
rotor [18]. Another well-known (but non-quantum) example is the Kapitza pendulum
[22], where a sufficiently fast periodic drive stabilizes the otherwise unstable fixed point
in which the pendulum stands on its head.

More recently, it has been suggested that periodic driving can be used as a tool to
design interesting and exotic many-body Hamiltonians. The underlying idea here is that
the time evolution operator U (t), generated by a periodically modulated Hamiltonian
H(t) = D + V (t) with period T , could be recast as

U (mT ) = e−imT ̂D for m ∈ Z, (1.1)
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with ̂D the ‘effective’ Hamiltonian, and U (T ) sometimes called ‘monodromy’ or Flo-
quet’ operator. A prime example of (1.1) is where the system consists of non-interacting
fermions on the lattice:

H(t) =
∑

x,y∈�

h(x, y, t)c∗
x cy,

with cx , c
∗
x , fermionic field operators and h(·, ·, t) the kernel of a self-adjoint operator

on l2(�) with the volume � a finite subset of Zd . We write the one-particle unitary
evolution u(t), solving d

dt u(t) = −ih(t)u(t) with u(0) = 1. Then an algebraic exercise
yields (1.1) with

̂D =
∑

x,y

̂d(x, y)c∗
x cy, with ̂d solving e−iT̂d = u(T ).

If T ‖h(t)‖ � 1, then the spectrum of u(T ) covers only a small patch of the unit circle
and one can construct ̂d as a convergent series in h(t), 0 < t ≤ T . Its leading term
(as T → 0) is the averaged Hamiltonian 1

T

∫ T
0 dth(t). Hence, under these conditions

̂D can be chosen as a local many-body Hamiltonian that is moreover locally close to
1
T

∫ T
0 dt H(t).When calling extensive operators ‘local’, wemean that they can bewritten

as a sum of local terms, the range of which does not grow with volume. The expansion
alluded to is in general known as the ’Magnus’ expansion’, see e.g. [8,29].

Recent theoretical works [13,25,32] suggest, based on the quantum version of the
ergodic hypothesis (Eigenstate Thermalization Hypothesis), that generic periodically
driven many-body systems eventually do heat up to an infinite temperature, and so one
would not expect the strict equality (1.1) to hold for a local ̂D. Apart fromnon-interacting
systems, (1.1) can still be true if D describes a disordered many-body localized system,
and T ‖V (t)‖ is sufficiently small. In that case, numerics and theory [3,26,33] suggest
that (1.1) holds with ̂D similar to D. But, as said, this is not our prime interest here and
we study systems for which (1.1) is not expected to hold strictly.

In this paper, we argue instead that in great generality, the equality (1.1) holds how-

ever, approximatively, up to the quasi-exponential time τ∗ ∼ e
c ν

log3 ν , i.e. for mT ≤ τ∗,
with ν = 2π/T the frequency, for a local Hamiltonian ̂D. In particular, we prove that
̂D is approximatively conserved up to time τ∗, and that the evolution of local observ-
ables O(t) = U (t)OU∗(t) for stroboscopic times t ∈ TN is well-approximated by the
effective Heisenberg evolution eit ̂DOe−it ̂D .

The physical significance of our work is hence that we rigorously underpin the use
of effective Hamiltonians ̂D. Part of the appeal of this idea is that ̂D can have different
properties from the original static Hamiltonian D, for example, nonzero Chern numbers,
see Refs. [4,8,19,23,28].

1.2. Heuristics and connection to non-driven systems. The emergence of an effective
conserved quantity is not specific to periodically driven systems, and we now outline
how to generalize our results to closed (i.e. non-driven) Hamiltonian dynamics. At the
same time, we develop the basic intuition that underlies our results.

1.2.1. Driven systems in Floquet representation. To analyze the evolution equation
i∂tφ(t) = H(t)φ(t), with H(t) = H(t + T ) acting on a Hilbert space H, a stan-
dard technique is to work in an extended space, see [20] for details. If a sufficiently
regular ψ(θ, t) ∈ L2(R/TZ,H) solves the equation
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i∂tψ(θ, t) = ( − i∂θ + H(θ)
)

ψ(θ, t), (1.2)

(with i∂θ defined with periodic boundary conditions) then φ(t) = ψ(t, t) solves the
equation i∂tφ(t) = H(t)φ(t). Under Fourier transform L2(R/T,H) 	→ l2(Z,H) :
ψ(θ) → ψ̃(k), the equation (1.2) reads

i∂t ψ̃(k, t) = kνψ̃(k, t) + ˜H ψ̃(k, t) (1.3)

where ν = 2π/T and ˜H acts by convolution with ˜H(k). The generator of (1.3), acting
on the extended space, is given by

G := νN + D + V . (1.4)

where N ismultiplication by k, D is the part of ˜H that acts diagonally in the k-coordinate,
by multiplication with

˜H(0) =
∫ T

0
dt H(t)

and V is the remaining part, given by

Vψ(k) =
∑

k′ �=k

˜H(k − k′)ψ(k′).

If ‖V ‖, ‖D‖ � ν, then spectral perturbation theory would apply and we could
construct spectral subspaces for G, corresponding to different k, as those are separated
by large gaps ν. In particular, this would lead to the existence of a ̂D satisfying (1.1). In
a generic many-body system, D, V have norm proportional to the volume and spectral
perturbation theory should not be expected to apply. Before continuing this line of
thought, we first present the time-independent setup (closed systems), since there the
starting point is similar to the setup we arrived at in (1.4)

1.2.2. Closed systems. The strategy for closed systems is to find a staticHamiltonian that
has the same structure and phenomenology as the extended operator G defined above.
Its important features are that there is a term νN with large spectral gaps. However, this
is not so easy to achieve in a many body system. If we take N = ∑

x Nx a sum of strictly
local and commuting terms, then it is not sufficient that νNx have large spectral gaps,
compared to the strength of other local terms. An obvious possibility is however when
the spectrum of all of the νNx is a subset of νZ and we will exploit this possibility. The
Fermi–Hubbard model is a natural example

G = J
∑

x∼y,σ

cx,σ c
∗
y,σ +U

∑

x

nx,↓nx,↑ =: H +UN ,

with interaction U much larger than J , and U playing the role of ν above. To allow for
a unified discussion, we will hence simply write ν instead of U . Note that the spectrum
of Nx = nx,↓nx,↑ here is 1 (when there are two fermions at x , this is a ’doublon’) and
0 (otherwise). Our theory expresses rigorously that doublons and singlons (sites with
a single fermion) do not interact up to quasi-exponentially long times in ν/J , see also
[9,11,35]. We refer to Sect. 3.4 for more discussion.
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1.2.3. Non-convergent perturbation theory. In both of the above setups, the point is that
the Hamiltonian G = νN +H is dominated by νN , where N is a sum of local terms, and
it has spectral gaps that remain open in the thermodynamic limit. As already remarked,
it is certainly not true that spectral perturbation theory applies as such, as the norm of
the perturbation H grows with volume whereas the gaps do not. However, what is true is
that matrix elements of the perturbation are smaller than the gaps of νN . To substantiate
this, let |η〉 = ⊗x |ηx 〉 be the product basis of eigenvectors of N . Here |ηx 〉 are a basis of
the single-site space C4 in which Nx is diagonal, and we write N (η) ≡ 〈η|N |η〉. Then,
the point is that, whenever N (η) �= N (η′), then

|〈η′|H |η〉| ≤ O(1), i.e. not growing with volume. (1.5)

This means that 〈η′|H |η〉
|νN (η′) − νN (η)| = O(1/ν) � 1 (1.6)

That is, perturbation theory seems applicable in first order, and the same analysis can be
repeated at higher orders. Even though this is really a weaker property than convergent
perturbation theory, it does have a physical consequence, namely that the transitions
caused by the perturbation take place at a rate slower than 1/ν. As far as we know,
the easiest way to see this is by performing a unitary transformation that eliminates the
perturbation in first order, e.g. to perform a KAM step, see [21] for a celebrated recent
application and an account of the technique. In our case, we can proceed to eliminate
further orders and it is clear that the rate of transitions is actually smaller than any power
of 1/ν. The reason why we cannot proceed ad infinitum (and indeed, do not believe it
would yield a physically correct result) is that in higher orders the operator H in (1.5)
gets replaced with an operator whose local terms grow in range and norm as the order
increases. We basically show that only at n∗’th order, with n∗ = ν, the condition (1.6)
gets violated. Physically, this means that at that order the perturbation connects different
subspaces of N resonantly and hence the rate of transition is indeed roughly given by
(1/ν)n∗ , the strength of the perturbation at that order. For a rather intuitive calculation
we refer to [2], where we prove that the linear response heating rate is bounded by e−cν .
The present paper is not restricted to linear response and the final bound on the ’heating

rate’ is rather e
−c ν

log3 ν due to combinatorial factors. However, in dimension 1, we can
obtain e−cν , see [1], at the cost of restricting H to be a sum of strictly local terms.

1.3. Previous results. Among ourmodels, themost tractable is certainly the case of non-
interacting fermions (strictly speaking, fermionic lattice systems are not covered here,
but this could easily be remedied). It is therefore surprising that the phenomenon of
‘localization in energy’ has barely been rigorously studied in the absence of interaction,
i.e., for the one-particle case. In [12], localization was proved for periodically kicked
operators. The authors of [37] considered the disordered Anderson model with a local
time-periodic perturbation and proved the stability of localization. In [6], the same is
achieved for a quasi-periodic perturbation, which can be viewed as the case of multiple
frequency dimensions. Very recently, [15] considered the problem from a very similar
point of view as in the present paper: [15] proves stability of Anderson localization
with a periodic driving term, provided that the driving frequency is not too small. High-
frequency asymptotics (instead of strict localization) in periodically driven quantum
systems have been investigated in [16,34,39] by techniques similar to ours, but are not
applicable to the many-body problem.



A Rigorous Theory of Many-Body Prethermalization 813

We move now to interacting many-body systems. Some recent works proved bounds
for linear response heating rate at high frequency, see [2,7]. Moreover, when preparing
the first version of this manuscript, a result very similar to the present paper appeared:
[24,30] construct an effective Hamiltonian by truncating theMagnus expansion and they
prove that it generates the local dynamics up to exponentially long times. In the case
where the driving is localized (as opposed to ‘a sum of local terms’), [24] contains a
much stronger result, namely that the one-cycle unitary of the process is close in operator
norm to the unitary generated by an effective Hamiltonian. The main difference between
[24,30] and the present paper, apart from the technique, is that our results are valid for
arbitrary dimension.

Lookingmore broadly,we note that there is a large literature on reducibility and quasi-
reducibility of Hamiltonian systems, see e.g. [17]. This is in flavour and methodology
of course very similar to our work, but the focus is different: reducibility is trivial in
the quantum setup as the system is linear, and the only issue is with the locality of the
reduced equation, cf. the discussion in the introduction. Finally, our results on closed
(time-independent) systems are in a certain sense special cases of a Nekoroshev bound
for many-body systems, see [10,14] and references therein.

2. Results for Driven Systems

2.1. Setup. We start from a time-dependent Hermitian Hamiltonian H(t) = H∗(t),
acting on H� = (Cq)⊗� with � a finite subset of the lattice Zd , and q < ∞.

We are hence dealing with bounded operators throughout, but we will always state
bounds that are uniform in the volume �. The time-dependence is periodic:

H(t) = H(t + T ),

with period T and the mapping t 	→ H(t) is measurable and bounded. We split

H(t) = D + V (t),

by setting

D := 〈H〉 := (1/T )

∫ T

0
H(t), V (t) = H(t) − D.

The dynamics is given by U (t), the unitary family generated by H(t):

U (t) = −i
∫ t

0
dt ′H(t ′)U (t ′).

which can indeed be solved for measurable, bounded t 	→ H(t). Since our assumptions
do not guarantee that one can construct an everywhere differentiable U (t), we have not
defined U (t) as the solution of ∂tU (t) = −iH(t)U (t), but this will not play any role in
what follows.
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2.2. Locality and potentials. We need some standard notion of locality. Let B� be
the algebra of bounded operators acting on H�, equipped with the standard norm
‖O‖ = supψ∈H�,‖ψ‖=1 ‖Oψ‖. We denote by BS ⊂ B�, with S ⊂ �, the subalgebra
of operators of the form 1�\S ⊗ OS , which is canonically identified with the operators
acting on (Cn)⊗S : we say that 1�\S ⊗ OS ‘acts within S’ and in an abuse of notation,
also refer to it as OS . For any operator Z we can decompose (in a nonunique way)
Z = ∑

S∈Pc(�) ZS , where ZS ∈ BS and Pc(�) denotes the set of finite, connected (by
adjacency) subsets of �. The collection (ZS) is usually referred to as an (interaction)
potential, see e.g. [31,36] and in fact, all of our results will be about such potentials.
However, to keep the notation simple, we prefer not to make this distinction explicit and
to keep the notation Z for operator and potential. In principle, this creates an ambiguity
as it is not clear which potential is meant (nonuniqueness of decomposition). In practice,
all potentials will be derived in a straightforward way from the potential (HS(t)) of
H(t), which is an input to our work. For example, the above definitions specify V, D
by linear operations on H , and it is understood that the potentials are given as, for ex-
ample, DS := (1/T )

∫ T
0 HS(t) and VS := HS − DS . We will also define below the

potential eadAn∗ . . . eadA0 Z for potentials A j , Z . To make this explicit, we expand all
exponentials in a power series (recall that all our operators are bounded) and we define
the ’commutator of potentials Q, Z ’ as

(adQ(Z))S :=
∑

S1,S2:S1∪S2=S

[QS1, ZS2 ]

where we note that only S1 ∩ S2 �= ∅ contribute. This defines inductively eadQ Z .
We define a family of norms on (time-dependent) potentials, parametrized by a spatial

decay rate κ

‖Z‖κ := sup
x∈�

∑

S∈Pc(�):S�x
eκ|S| sup

t
‖ZS(t)‖, κ > 0

Note that these norms are tailor-made for operators (potentials) that are sums of local
terms that themselves are independent of the global volume �, in particular for many-
body Hamiltonians. In principle, one could take � infinite, i.e. � = Z

d . In that case
Z still makes sense as a potential (but not as an operator) and eadA j , in case A j is
anti-Hermitian, still makes sense as an automorphism of the C∗-algebra of quasilocal
operators (but eA j does not make sense as a unitary). We will not adopt this point of
view and we prefer to have a finite � throughout, so that also the operators remain
well-defined.

2.3. General results. We will always assume that the frequency ν is large compared to
some local energy scales, namely that there is a decay rate κ0 > 0 such that

ν ≥ 9π‖V ‖κ0

κ0
, n∗ ≥ 1, (2.1)

where

n∗ :=
⌊

ν/ν0

(1 + ln ν/ν0)3

⌋

− 2, with ν0 := 54π

κ2
0

(‖D‖κ0 + 2‖V ‖κ0

)

.



A Rigorous Theory of Many-Body Prethermalization 815

In the theorem below (and further in the text), C refer to numerical constants that can
be chosen independent of all model parameters. Most importantly, they are independent
of the volume �. By K we denote numbers that can depend on all model parameter, but
not on the frequency ν and the volume �.

Theorem 2.1. Assume that (2.1) holds, then there are Hermitian operators (potentials)
̂D, ̂V (t) and a unitary Y (t) such that the unitary

̂U (t) := Y (t)U (t)

solves

̂U (t) = −i
∫ t

0
dt ′(̂D + ̂V (t ′))̂U (t ′),

and the following are satisfied:

1. ̂D is time-independent and Y (t), ̂V (t) are T -periodic. Y (t) = 1 for stroboscopic
times t ∈ TN.

2. Set the decay rate κn∗ := κ0(1 + log(n∗ + 1))−1, then

‖̂D − D‖κn∗ ≤ C(ν0/ν), ‖̂V ‖κn∗ ≤ C(2/3)n∗‖V ‖κ0 . (2.2)

3. The unitaries Y (t) are defined by Y (t) = eAn∗ (t) . . . eA0(t) with operators A j (t) to
be specified later. They are close to identity and quasilocal in the sense that

‖Y (t)ZY ∗(t) − Z‖κn∗ ≤ C(ν0/ν)‖Z‖κ0 , for any operator (potential) Z, for all t ∈ R.

(we write Y (t)ZY ∗(t) = eadAn∗ . . . eadA0 Z to interpret it as a potential, see Sect. 2.2)

For a Z that is local, and not merely a sum of local terms, the last bound of the theorem
above is obviously useless; in this case, it actually follows easily from our construction
that Y (t)ZY ∗(t)−Z has small operator norm.Note that the times t ∈ TZ are, artificially,
singled out to play a distinguished role, namely Y (TZ) = 1. A more intuitive way to
phrase this result is by going to a periodically rotating frame, given by the unitary Y (t). If
ψ(t) solves ∂tψ(t) = −iH(t)ψ(t), then ̂ψ(t) = Y (t)ψ(t) solves ̂ψ(t) = −îH(t)̂ψ(t)
with

̂H(t) = Y (t)H(t)Y ∗(t) − iY (t)∂t Y
∗(t).

Theorem 2.1 asserts then that the Hamiltonian ̂H(t) generating this evolution is almost
time-independent for large ν, since the time-dependent part ̂V has local terms of order

(2/3)
ν/ν0

(1+ln(ν/ν0))3 .

2.4. Physical consequences. As explained above, our technical result suggests that the
evolution is well-described by an effective Hamiltonian, at least for stroboscopic times.
This implies that the effective Hamiltonian ̂D is a quasi-conserved quantity, see (2.3)
in the upcoming theorem. Since D is close to ̂D, this also implies that D itself is well-
conserved, (2.4). In other words, apart from a quantity of order 1/ν, the energy density
grows very slowly.
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Theorem 2.2 (Slow heating).

1

|�| ‖U
∗(t)D̂U (t) − D̂‖ ≤ t K0 (2/3)n∗ for t ∈ TN, (2.3)

1

|�| ‖U
∗(t)DU (t) − D‖ ≤ t K0 (2/3)n∗ + C(ν0/ν), for any t ≥ 0 (2.4)

with K0 = C‖D‖κ0‖V ‖κ0 and n∗ as in Theorem 2.1.

Note that in this theorem, we use the standard operator norm ‖ · ‖, but we divide
by volume. Next, we state how the evolution of local operators is approximated by
the evolution with the time-independent Hamiltonian ̂D. For a local observable O , the
difference

̂U∗(t)ÔU (t) − eit
̂DOe−it ̂D

grows very slowly as it is due to the term ̂V . However, to make this precise, we need
to control spatial spreading of eit ̂DOe−it ̂D , which is done by invoking a Lieb-Robinson
bound. Since ̂U (t) = U (t) for stroboscopic times, we get then

Theorem 2.3 (Approximation of local observables). For any rate0 < r < ln(3/2), there
are numbers K (O), K ′(O) < ∞, depending on model parameters and the observable
O, but not ν, such that

‖U∗(t)OU (t) − eit
̂D Oe−it ̂D‖ ≤ K (O)e−rn∗(t + K ′(O))d+1, for t ∈ TN.

This theorem is for us the most clear expression of the fact that ̂D really describes
the dynamics for very long times. We do not see how to improve the dependence of the
bound on t , unless one would manage to replace the Lieb-Robinson bound by a diffusive
bound. Phrased in a different way, this result says that the dynamics generated by ̂D is
close to the actual dynamics up to a time that grows quasi-exponentially in ν. Theorem
2.3 is actually a particular case of a more general statement valid for any t ∈ R, provided
that eit ̂D Oe−it ̂D is replaced by eit ̂DY (t)OY ∗(t)e−it̂D .

3. Results for Time-Independent Systems

3.1. Setup. We turn to a time-independent setup.
Let us have a family of ‘number operators’ Nx acting on site x . By number operators,

we simply mean that σ(Nx ) ⊂ Z, for every x , with σ(·) the spectrum. Set

N :=
∑

x

Nx

The idea is that a multiple of this operator dominates the Hamiltonian of our system; the
total Hamiltonian is

G := νN + H

with ν large compared to the local energy scales of H . We decompose H = D + V with

D := 〈H〉 =
∑

n∈Z
χ(N = n)Hχ(N = n), V = H − 〈H〉

such that [N , D] = 0. The choice of not simply calling the total Hamiltonian H is to
make the analogy with the time-dependent case maximal, as will be clear later. Relevant
examples of this setup will be discussed below.
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3.2. General result. To state the result, we now exploit the notational similarity with the
time-dependent case, which allows for most definitions and formulas to be identical in
both cases. The norms ‖ · ‖κ are defined as before, except that the supremum over time
is now omitted (there is no time-dependence).

We assume that the parameter ν is large compared to some local energy scales, namely
that there is a decay rate κ0 > 0 such that

ν ≥ 9π‖V ‖κ0

κ0
, n∗ ≥ 1, (3.1)

where

n∗ :=
⌊

ν/ν0

(1 + ln ν/ν0)3

⌋

− 2, with ν0 := 54π

κ2
0

(‖D‖κ0 + 2‖V ‖κ0

)

.

In the theorem below (and further in the text), C refer to numerical constants that can
be chosen independent of all model parameters. Most importantly, they are independent
of the volume �.

Theorem 3.1. Assume that (3.1) holds, then there are Hermitian operators (potentials)
̂H , ̂D, ̂V and a unitary Y , such that

Y (νN + H)Y ∗ = νN + ̂H = νN + ̂D + ̂V

with

1. ̂D = 〈 ̂H〉, i.e. [̂D, N ] = 0.
2. Set the decay rate κn∗ := κ0(1 + log(n∗ + 1))−1, then

‖̂D − D‖κn∗ ≤ C(ν0/ν), ‖̂V ‖κn∗ ≤ (2/3)n∗‖V ‖κ0 . (3.2)

3. The unitaries Y are close to the identity and quasilocal in the sense that, for any
operator (potential) Z,

‖Y ZY ∗ − Z‖κn∗ ≤ C(ν0/ν)‖Z‖κ0 .

3.3. Physical consequences. Thanks to the above theorem, we identify two extensive
quantities that stay almost conserved for quasi-exponentially long times in ν. Let

D = Y ∗
̂DY, N = Y ∗NY.

The following result derives from Theorem 3.1 in the same way Theorem 2.2 follows
from Theorem 2.1.

Theorem 3.2. For any t ≥ 0,

1

|�| ‖U
∗(t)DU (t) − D‖ ≤ t K0(2/3)

n∗ , (3.3)

1

|�| ‖U
∗(t)NU (t) − N‖ ≤ t K ′

0(2/3)
n∗ , (3.4)

with K0 = C‖D‖κ0‖V ‖κ0 , K
′
0 = C(supx ‖Nx‖)‖V ‖κ0 , and n∗ as in Theorem 3.1.
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Let us notice that

N = 1

ν
G − 1

ν
H (3.5)

so N simply equals a conserved quantity plus a term of norm proportional to |�|/ν;
hence N is always conserved up to an error of order |�|/ν. Our second theorem states
that the evolution of local observables is well-described by the effective Hamiltonian
νN + ̂D, modulo an error of order 1/ν and up to quasi-exponentially large times.

Theorem 3.3. For any 0 < r1 < 1
d+1 ln(3/2), and local operator O, there is a K3(O)

such that

‖U∗(t)OU (t) − eit (νN+̂D)Oe−it (νN+̂D)‖ ≤ 1

ν
K3(O), for t ≤ er1n∗ .

To prove this theorem, we start from

YU∗(t)Y ∗OYU (t)Y ∗ = eit (νN+̂H)Oe−it (νN+̂H)

en thenuseLieb-Robinsonbounds to replace the right hand sideby eit (νN+̂D)Oe−it (νN+̂D),
up to an error that remains small for t ≤ er1n∗ . This is analogous to the proof of Theorem
2.3. Then, one gets rid of the Y,Y ∗ by using that these unitaries are locally close to iden-
tity, in particular, ‖Y ∗OY − O‖ ≤ 1

ν
K (O). Such statements are similar to Statement 3)

of Theorem 3.1 and their proof is an obvious variation.

3.4. Examples.

3.4.1. Fermi–Hubbard chain. Weconsider the Fermi–HubbardHamiltonian, for J,U ∈
R,

G = J
∑

x∼y,σ

cx,σ c
∗
y,σ +U

∑

x

nx,↓nx,↑

where σ ∈ {↑,↓}, cx,σ , c∗
x,σ are fermionic field operators, i.e.

{cx,σ , c∗
x ′,σ ′ } = δx,x ′δσ,σ ′ , {cx,σ , cx ′,σ ′ } = 0, {c∗

x,σ , c∗
x ′,σ ′ } = 0

and nx,σ = c∗
x,σ cx,σ and nx = ∑

σ nx,σ . Apart from the energy, there are two conserved
quantities, namely nσ = ∑

x nx,σ . We now assume that U � J . We set ν ≡ U and

Nx := nx,↓nx,↑ = χ(nx = 2), N =
∑

x

Nx ,

i.e. N is the number of doublons in the system. Now we find D as the part of H that
commutes with N :

D = Ts + Td := J
∑

x∼y,σ

cx,σ c
∗
y,σ χ(nx + ny = 1) + J

∑

x∼y,σ

cx,σ c
∗
y,σ χ(nx + ny = 3)

where Ts, Td stand for the ‘singlon’ and ‘doublon’ kinetic energies, respectively. In fact,
both Ts, Td commute with N . The total Hamiltonian is hence νN + Ts + Td + V, in
accordance with the general abstract setup.
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As observed in (3.5), the density of doublons, N
|�| , is conserved up to a quantity of

order O(1/ν) by energy conservation. According to Theorem 3.2, we conclude thatN ,
a dressed version of the number of doublons N , as well as D = Ts + Td are extensive
quasi-conserved quantities, up to an (almost) exponentially small quantity for (almost)
exponentially long times in ν. This remarkable feature shows thus the appearance of a
long pre-thermal regime in the Fermi–Hubbard chain in the regime where J/U � 1.

3.4.2. XYZ chain with large magnetic field. We consider the spin s-chain with Hamil-
tonian

G =
∑

x

J1S
1
x S

1
x+1 + J2S

2
x S

2
x+1 + J3S

3
x S

3
x+1 + h

∑

x

S3x

with Sα the spin-s representation of SU (2) acting on C
2s+1 and Sα

x copies thereof on
site x . We choose h � Jα and we set ν ≡ h and

Nx := S3x , i.e. the magnetization

The operator D is then given by

D =
∑

x

J (S1x S
1
x+1 + S2x S

2
x+1) + J3S

3
x S

3
x+1, 2J = J1 + J2

which indeed commutes with the magnetization N . So we see here that there is an
emergent U (1) symmetry in D, corresponding to the conservation of N .

4. Renormalization of Hamiltonians

4.1. Recursion formulae. We now describe our main scheme to transform the Hamil-
tonian. It is inspired by [3,5,21]. Let us rename the operators H(t), D, V (t) as H0(t),
D0, V0(t) and we will now construct Hn(t), Dn, Vn(t), with n up to n∗. We mostly drop
the t in the notation and it is simply understood that Dn are time-independent, whereas
other operators are T -periodic. At each scale we define Dn, Vn from Hn by setting

Dn := 〈Hn〉 := (1/T )

∫ T

0
Hn(t), Vn = Hn − Dn .

Hn+1 is constructed out of Hn by

Hn+1 := e−An Hne
An − ie−An∂te

An (4.1)

where An is determined by

Vn − i∂t An = 0, An(t = 0) = 0 (4.2)

and we note that An is indeed T -periodic because 〈Vn〉 = 0. Note that though we have
not demanded t 	→ V (t) to be smooth, but simply bounded and measurable, the use of
derivatives above is justified. Indeed, the integral of a bounded, measurable function f
is differentiable almost surely (because it has bounded variation on intervals) and the
derivative equals f almost surely.
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We have now defined all operators Hn . To appreciate why such a procedure is useful,
i.e. why the Vn decrease with n, we unwrap the recursion relation a bit. We define the
transformations (O is an arbitrary operator)

γn(O) := e−An OeAn = e−adAn O.

and

αn(O) :=
∫ 1

0
ds e−s An Oes An =

∫ 1

0
ds e−sadAn O.

The latter involves a dummy time s that has nothing to do with the cycle time t ; the
transformation αk is defined pointwisely for any t in the cycle. The use of αn is that

e−An∂te
An = αn(∂t An)

as one easily checks by an explicit calculation. If An(t) for different t would commute
among themselves, then we would simply find back the familiar expression

e−An∂te
An = ∂t An, (wrong in general)

Recasting (4.1) with the help of the above notation, we get

Hn+1 = γn(Hn) − iαn(∂t An) (4.3)

= γn(Dn) + (γn(Vn) − Vn) + (Vn − i∂t An) − i(αn(∂t An) − ∂t An) (4.4)

= γn(Dn) + (γn(Vn) − Vn) − (αn(Vn) − Vn). (4.5)

For later convenience, we remark that, upon splitting Hn+1 = Dn+1 + Vn+1,

Dn+1 = Dn + 〈Wn〉, Vn+1 = Wn − 〈Wn〉, (4.6)

with

Wn := (γn(Dn) − Dn) + (γn(Vn) − Vn) − (αn(Vn) − Vn). (4.7)

This defines the iteration scheme and we now move to bounds.

4.2. Iterative bounds. The relation (4.7)makes it particularly intuitive thatWn and hence
Vn+1 are of higher order in ( 1

ν
) than Vn . Indeed, from (4.2) and periodicity of Vn(t),

‖An‖κ ≤ (T/2)‖Vn‖κ , for any κ > 0

and (4.7) contains three exponentials of Ak with zero’th order terms removed, so that
keeping only the first order suggests a bound like

‖Vn+1‖κ ≈ (T/2)‖Vn‖κ (‖Dn‖κ + 2‖Vn‖κ) . (4.8)

To make this precise, we will allow the decay rate κ on the left-hand side to be slightly
smaller than that on the right hand side. We consider a family of norms by fixing a
strictly decreasing sequence of decay rates κn > 0, n ≥ 1. Eventually we will choose
κn = (1+ log(n +1))−1κ0 with κ0 chosen appropriately for the initial Hamiltonians (cfr.
statement of Theorem 2.1), but for the time being it is convenient to keep the sequence
κn general. We will abbreviate ‖ · ‖κ(n) by ‖ · ‖n . The following lemma is our prime (and
only) tool:
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Lemma 4.1. Let Z , Q be potentials and assume that 3‖Q‖n ≤ δκn := κn − κn+1. Then

‖eQ Ze−Q − Z‖n+1 ≤ 18

δκnκn+1
‖Z‖n‖Q‖n .

Since ‖Z‖n+1 ≤ ‖Z‖n, we also get

‖eQ Ze−Q‖n+1 ≤ (

1 +
18

δκnκn+1
‖Q‖n

)‖Z‖n .
We postpone the combinatorial proof, relying on cluster expansions, to Sect. 5.1.

4.3. Bounds on transformed potentials. We set

v(n) := ‖Vn‖n, d(n) := ‖Dn‖n, δd(n) := ‖Dn+1 − Dn‖n+1.
We do not need to introduce any shorthand for ‖An‖n since ‖An‖n ≤ (T/2)v(n), as
follows from (4.2). From (4.7) to Lemma 4.1, we then get

‖Wn‖n+1 ≤ T

2
m(n)v(n) [d(n) + 2v(n)] , m(n) := 18

δκnκn+1

provided that (3T/2)v(n) ≤ δκn . In that case, (4.6) yields

2δd(n), v(n + 1) ≤ Tm(n)v(n) [d(n) + 2v(n)]

To get recursive bounds, it is handy to demand that

Tm(n) [d(n) + 2v(n)] < 2/3, (4.9)

because then
v(n + 1), δd(n) ≤ (2/3)v(n) (4.10)

and hence
d(n + 1) + 2v(n + 1) ≤ d(n) + 2v(n) (4.11)

which makes it easy to check the validity of (4.9) at the next order. Indeed, we see that
if

(3T/2)m( j) [d(0) + 2v(0)] ≤ 1, (3T/2)v( j) ≤ δκ j , for any 0 ≤ j ≤ n
(4.12)

then

δd(n), v(n + 1) ≤ v(0)(2/3)n+1.

Let us now use the specific choice κn := κ0
1+ln(n+1) , then the second condition of (4.12)

is always satisfied provided that

(3T/2)C0v(0) ≤ κ0, with C0 = sup
n≥0

(2/3)n(n + 2) ln(2 + n) ≤ 3

Thus we find that the conditions

9πv(0)κ−1
0 ≤ ν, ν0 ≤ ν, with ν0 := 54π

κ2
0

[d(0) + 2v(0)]

allow us to start the procedure and we can continue, i.e. (4.12) remains satisfied, i.e. at
least as long as (1 + ln(2 + n))3(n + 2) ≤ ν/ν0, hence at least up to n = n∗ with

n∗ =
⌊

ν/ν0

(1 + ln ν/ν0)3

⌋

− 2.
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4.4. Proof of Theorem 2.1. The above calculation completes an important part of the
proof of Theorem 2.1, namely the bound on ‖Vn‖n at n = n∗. The bound on ̂D follows
by summing the d(n). Let us now derive the stated bounds on Y . By repeated application
of Lemma 4.1 and the bounds derived above, we have the first inequality in (for some
c > 0)

‖eadAn . . . eadA0 Z‖n+1 ≤ ‖Z‖0
n

∏

j=0

(1 + C(ν0/ν)e−cj ) ≤ C‖Z‖0 (4.13)

The second inequality follows because (ν0/ν) ≤ 1 (and redefining C). Let

En+1 := eadAn . . . eadA0 Z − Z ,

so that

En+1 − En = eadAn (eadAn−1 . . . eadA0 Z) − (eadAn−1 . . . eadA0 Z)

Then we use again Lemma 4.1 and (4.13) (together with the bounds leading to (4.13))
to get

‖En+1 − En‖n+1 ≤ Ce−cn(ν0/ν)‖Z‖0
Item 3) of Theorem 2.1 follows now by

‖En∗+1‖n∗+1 ≤
n∗
∑

j=0

‖E j+1 − E j‖ j+1 ≤ C(ν0/ν)‖Z‖0.

5. Proofs

5.1. Proof of Lemma 4.1. As in the previous section, we drop the dependence on t from
the notation. Starting from (5.1), one checks that we get indeed the correct bounds on
potentials when reinstating (the supremum over) t .

We assume that Q �= 0, Z �= 0, else the claim is trivial. All sets S ⊂ � that appear
below are assumed to be connected. We expand the exponential

eadQ (ZS0) =
∞
∑

m=0

1

m!
∑

S1,...Sm

adQSm
. . . adQS2

adQS1
ZS0 .

The integrand vanishes unless S j has nonempty overlap with ∪ j−1
i=0 Si . Localising and

taking norms, we get

‖(eadQ ZS0 − ZS0)P‖ ≤
∞
∑

m=1

1

m!
c,P
∑

S1,...,Sm

‖ZS0‖
∏

j

(2‖QSj ‖), (5.1)

where
∑c,P

... indicates that the family of sets S0, . . . , Sm is connected (they cannot be
split into two nonemptymutually disjoint collections) and the union is P = ∪ j=0,...,mSj .
Multiplying with eκn+1|P| and summing over S0, we get

eκn+1|P|‖(eadQ Z − Z)P‖ ≤
∞
∑

m=1

e−κ(n+1)m

m! (
3

δκn
)m+1‖Z‖n‖Q‖mn )

c,P
∑

S0,...Sm

∏

j

v(S j )

(5.2)
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where we introduced the shorthand

v(S) := (
δκn

3
) eκ(n+1)|S|

(‖ZS‖
‖Z‖n +

2‖QS‖
‖Q‖n

)

and we exploited the fact that

|P| ≤ −m +
m

∑

j=0

|S j |

Next, we use the assumption that 3‖Q‖n ≤ δκn together with e−κ(n+1)m ≤ 2
κ(n+1)(m+1)

to get

(5.2) ≤ 2(3/δκn)
2(κ(n + 1))−1‖Z‖n‖Q‖n)

︸ ︷︷ ︸

=:Ln

∞
∑

m=1

1

(m + 1)!
c,P
∑

S0,...Sm

∏

j

v(S j ).

Taking the sum over P with P � x , we get then

‖eadQ Z − Z‖n+1 ≤ Ln sup
x

∞
∑

m=1

1

(m + 1)!
c

∑

S0,...Sm

⎛

⎝

m
∑

j=0

χ(x ∈ S j )

⎞

⎠

m
∏

j=0

v(S j ). (5.3)

where ’c’ in the sum
∑c

S0,...,Sm indicates, as above, that the collection of sets is con-
nected. To perform the sum over connected graphs rooted in S j , we use some standard
combinatorial tools: polymer expansions. Note that by the definition of the ‖ · ‖n , we
have

∑

S:S∩S′ �=∅
v(S) exp (δκn|S|) ≤ δκn|S′| for any S′, (5.4)

and this assures that one can inductively sum the graphs. A convenient reference is [38].
Theorem 1 in [38] (more precisely, eq. (5) in the proof of said theorem) states that

∞
∑

n=1

1

(m + 1)!
c

∑

S0,...Sm

⎛

⎝

m
∑

j=0

χ(x ∈ S j )

⎞

⎠

m
∏

j=0

v(S j ) ≤ δκn .

To translate the relevant result there to our work, we identifyAwith the set of connected
subsets of � ⊂ Z

d , the measure μ on A with the discrete measure with weights v(S),
the function −ζ(·, ·) with the indicator that two sets are non-disjoint and the function
a(S) = δκn|S|. The criterion (3) in [38] is then precisely (5.4) andwe use it for singletons
S′ = {x}.

5.2. Proofs of Corollary 2.2. By Theorem 2.1,

U∗(t)Y ∗(t)̂DY (t)U (t) − ̂D = i
∫ t

0
ds ̂U∗(s) [̂V (s), ̂D] ̂U (s),
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and hence the operator norm of the above expression is bounded by
∫ t

0
ds‖[̂V (s), ̂D]‖ ≤ 2t |�|‖̂D‖0‖̂V ‖0 (5.5)

≤ Ct |�|‖D‖κ0‖V ‖κ0(2/3)
n∗ , (5.6)

where the first inequality is a straightforward calculation and the second is item 2) of
Theorem 2.1. For stroboscopic times t ∈ TN, for which Y (t) = 1, this gives (2.3). To
get (2.4), we use (5.6) together with a bound on ‖D − D̂‖ following from (2.2), and a
bound on ‖D − Y (t)DY ∗(t)‖ following from item (3) of Theorem 2.1.

5.3. Proof of Theorem 2.3 . We use the Duhamel formula to write

̂U∗(t)ÔU (t) − eit
̂DOe−it ̂D =

∫ t

0
ds W ∗(s)[̂V (s), eis

̂DOe−iŝD]W (s), (5.7)

with W (s) = ̂U (s)−1
̂U (t). Hence, to get a bound on the left-hand side, it suffices to

estimate the norm of the commutator. The latter is small by the smallness of ̂V (s), but
we also need a Lieb-Robinson bound [27] to avoid getting terms proportional to volume:

Lemma 5.1 (Lieb-Robinson bound). Let Z = ∑

S ZS be a Hermitian operator (poten-
tial) with ‖Z‖2κ < ∞ for some κ > 0. Let the operators A, B act within X,Y ⊂ �,
respectively. Then,

‖[A, eit Z Be−it Z ]‖ ≤ ‖A‖‖B‖e−κ(d(X,Y )−vt) min(|X |, |Y |)
with Lieb-Robinson speed v = v(Z , κ) := C(d)(κ−(d+2)eκ )‖Z‖2κ and C(d) only de-
pending on the spatial dimension d.

This is a direct consequence of Theorem 2.1 (in particular, eq. 2.17 following it)
in [31], with obvious adaptations to the notation and setup of the present paper (for
example; the function F is chosen as F(r) = e−κr (1 + r)−(d+1)).

We start from (5.7) and we choose O supported in a set S0. By unitarity ofW (s), we
bound the right-hand side as

∑

S

‖[̂VS(s), e
iŝD(r)

Oe−iŝD(r) ]‖ (5.8)

and we can bound the summands by either the above Lieb-Robinson bound, or a trivial
norm bound, yielding

|S|e−κ(d(S,S0)−vs) ‖̂VS(s)‖‖O‖, or 2‖̂VS(s)‖‖O‖. (5.9)

with the LR velocity v = v(̂D, κ), see theorem above. We estimate (5.8) by

C(1 + 1
κ
)|S0|‖̂V ‖κ‖O‖

∫ t

0
ds ξd , ξ := vs + |S0| (5.10)

using the first and second bound of (5.9) for S such that d(S, S0)−vs ≤ 0 and d(S, S0)−
vs > 0, respectively. Nowwe choose 2κ = κn∗ , and the bound on ‖̂V ‖κn∗ fromTheorem
2.1, to bound (5.10) by K (O)e−kn∗(t + K ′(O))d+1, with K (O), K ′(O) depending on
our model parameters and O , but not on ν and t .

Taking then t ∈ TN so that ̂U (t) = U (t), we get the theorem from (5.7).
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5.4. Proofs for the time-independent setup. Let us see that the algebra in the time-
independent setup is identical to the one in the time-dependent problem, so that the
proof of the theorems can be taken over in a straightforward way.

G = νN + H = νN + D + V, where [D, N ] = 0

with ν large compared to the local energy scales of H . The goal is to transform this
Hamiltonian into

νN + ̂H = νN + ̂D + ̂V

with ̂V quasi-exponentially small in ν and ̂D commuting with N . As in the time-
dependent case, let us rename H, D, V as H0, D0, V0 and we now construct inductively
the sequence of operators Hn, Dn, Vn . At each step, the splitting Hn = Dn+Vn is defined
by

Dn = 〈Hn〉, Vn = Hn − Dn,

with

〈O〉 = (1/T )

∫ T

0
dt eitνN Oe−itνN , T := 2π/ν.

Indeed, this operation eliminates any off-diagonal elements in N -basis, hence we have
[〈O〉, N ] = 0. The renormalization step defining Hn+1 is

e−An (νN + Hn)e
An = νN + Hn+1

with An determined so that it satisfies the equation

[νN , An] + Vn = 0.

We choose the solution given by

An := − i

T

∫ T

0
dt

∫ t

0
dseisνN Vne

−isνN

Indeed, we find that

[νN , An] = − i

T

∫ T

0
dt

∫ t

0
ds

d

ds
(eisνN Vne

−isνN ) = −〈Vn〉 + Vn = Vn

where the last equality 〈Vn〉 = 0 is by the definition of Vn . A straightforward bound
gives

‖An‖ ≤ T

2
‖Vn‖

Defining now γn, αn just as before, i.e.

γn(O) := e−An OeAn = e−adAn O,

and

αn(O) :=
∫ 1

0
ds e−s An Oes An =

∫ 1

0
ds e−sadAn O,
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we get indeed

Hn+1 = γn(Hn) + γn(νN ) − νN (5.11)

= γn(Hn) − αn([An, νN ]) (5.12)

= γn(Dn) + (γn(Vn) − Vn) + (Vn − [An, νN ]) − (αn([An, νN ]) − [An, νN ])
(5.13)

= γn(Dn) + (γn(Vn) − Vn) − (αn(Vn) − Vn). (5.14)

This equation is identical to the one for the time-dependent setup and all the bounds can
be copied.
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