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Abstract: We study real solutions of a class of Painlevé VI equations. To each such
solution we associate a geometric object, a one-parametric family of circular pentagons.
We describe an algorithm that permits to compute the numbers of zeros, poles, 1-points
and fixed points of the solution on the interval (1,+∞) and their mutual position. The
monodromy of the associated linear equation and parameters of the Painlevé VI equation
are easily recovered from the family of pentagons.

0. Introduction

Consider a linear differential equation

w′′ − Pw′ + Qw = 0, (1)

where P and Q are rational functions of the complex independent variable, and assume
that all singularities are regular, and all parameters (singular points, exponents and
accessory parameters) are real. Then the ratio f = w1/w2 of two linearly independent
solutions maps the upper half-plane onto a circular polygon (see Sect. 3 below for a
precise definition). Every simply connected circular polygon can be obtained this way.
Klein [31] and Van Vleck [44] used this connection between differential equations with
three singularities and circular triangles to count zeros and poles of hypergeometric
functions. We use a similar idea to count special points on a real interval of real solutions
of Painlevé VI equations

qxx = 1

2

(
1

q
+

1

q − 1
+

1

q − x

)
q2x −

(
1

x
+

1

x − 1
+

1

q − x

)
qx (2)

+
q(q − 1)(q − x)

2x2(x − 1)2

{
κ2
4 − κ2

1
x

q2
+ κ2

2
x − 1

(q − 1)2
+ (1 − κ2

3 )
x(x − 1)

(q − x)2

}
,

A. Eremenko: Supported by NSF Grant DMS-1665115.
A. Gabrielov: Supported by NSF Grant DMS-1161629.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-017-2921-y&domain=pdf
http://orcid.org/0000-0002-6681-7211


52 A. Eremenko, A. Gabrielov

where q is a function of x , and κ j are real parameters. By definition, special points
of a solution are those points x for which q(x) ∈ {0, 1, x,∞}, the points where the
assumptions of the existence and uniqueness theorem of Cauchy are violated.

Equation (2), which we call PVI, was originally discovered by Picard [40], Painlevé
[39] and Gambier [19] as the most general equation of the form

qxx = R(qx , q, x), (3)

where R is a rational function of qx , q whose coefficients are analytic in x , and whose
solutions have no movable singularities (poles are not counted as singularities). For PVI,
this means that all solutions admit a meromorphic continuation in the region C\{0, 1}.
Painlevé and Gambier classified all equations (3) without movable singularities, and
found that all except six of them can be reduced to linear or first order differential
equations. Of the six remaining equations, PVI is the most general, in the sense that the
other five can be obtained from it by certain degeneration process.

Meanwhile, Fuchs [18] independently discovered (2) as the condition of isomon-
odromic deformation of a linear differential equation (1) with five regular singularities,
one of them apparent with exponents 0 and 2. Later it was found that Painlevé equa-
tions arise in a variety of problems of mathematics and physics [9,24,32,34], and their
solutions, called Painlevé transcendents, gradually gain the status of special functions.

Besides applications,mostwork onPVI falls into three categories: (a) transformations
of the equation [28,37], (b) search for special solutions, like algebraic ones [33] or those
expressed in terms of classical special functions [24], and (c) asymptotics at the fixed
singularities 0, 1,∞ [23,30].

In this paper, we study real solutions of PVI with real parameters κ j on a real interval,
one of the three intervals between the fixed singularities (0, 1,∞). It is sufficient to
consider the interval (1,∞). Our main result is a combinatorial algorithm (which can be
performed without a computer) that determines the number of special points and their
mutual position on the interval. The outcome of the algorithm is a sequence of symbols
0, 1, x,∞ which shows in which order the solution q(x) of (2) takes these four values
as x increases from 1 to ∞. For example, an outcome sequence (0, 1, 1, x,∞) means
that for the solution q(x) there are points 1 < x1 < x2 < x3 < x4 < x5 < +∞ such
that

q(x1) = 0, q(x2) = q(x3) = 1, q(x4) = x4, q(x5) = ∞,

and no other special points on (1,+∞). The sequence of special points can be finite, or
infinite in one direction, or infinite in both directions.

In particular, we describe those solutions that have no special points on (1,∞).
Theorem 1 in Sect. 10 implies that

Every PVI equation with real parameters κ j has a real solution without special points
on (1,+∞). The projective monodromy representation of the auxiliary linear equation
(4) corresponding to such a solution satisfies the condition that for some j ∈ {1, . . . , 4}
the generators Tj−1 and Tj share the fixed point where their multipliers are e2π iκ j−1 and
e2π iκ j . For given parameters κ j , there can be at most one-dimensional family of such
solutions.

For a more precise formulation, see Sect. 10. This theorem allows us to give new
proofs of the recent results in [6,7] for the case of real solutions.

So we obtain global, exact (non-asymptotic) results describing qualitative features
of a quite general class of solutions, namely real solutions.
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We do this by exploring the connection with a linear differential equation of the type
(1) with 5 regular singularities, one of them apparent, discovered by Fuchs [Eq. (4)
below]. When all parameters of this linear equation are real, the ratio f of any two
linearly independent solutions of (4) maps the upper half-plane onto a circular pentagon
of a special kind: it is a circular quadrilateral, (or triangle, or digon) with a slit. We call
such circular pentagons special pentagons. Simple examples of special pentagons can
be seen in Figs. 9, 10a, c, 12a, c, 13a, c, e, g and 14.

All our results are stated in terms of these special pentagons corresponding to par-
ticular solutions. The monodromy of Eq. (4) is easily recovered from the pentagon.
Construction of the pentagon from the monodromy is described in “Appendix I”.

If the f -preimage of the tip of the slit is not counted as a vertex, our special pentagon
can be considered as a conformal quadrilateral. A real solution of PVI describes the
relation between the conformal modulus of this quadrilateral and the f -preimage of the
tip of the slit. For some values of themodulus the slit vanishes or becomes a cross cut, and
the pentagon becomes a circular quadrilateral. These values of the modulus correspond
to special points of the PVI solution. Thus the study of the number and mutual position
of these special points is equivalent to a geometric problem of describing the evolution
of a one-parameter family of special pentagons.

At a special point, the pentagon undergoes one of the four possible transformations,
which are described in Sect. 7.

Our algorithm consists of drawing a sequence of special pentagons according to these
transformation rules. As the sides of the pentagons belong to fixed circles that do not
change under our transformations, the algorithm is of purely combinatorial nature.

More precisely, the algorithm can be described as follows:

We start with a special pentagon. Then we shorten or lengthen the slit. When the slit
shortens and vanishes, or when it lengthens, hits the boundary and splits the pentagon,
several cases may occur:

(a) the conformal modulus degenerates, which means that x → 1 or x → +∞, and
the algorithm stops.

(b) the conformal modulus does not degenerate, in which case we apply one of the
transformations 1–4 described in Sect. 7, and repeat the procedure with the new
special pentagon.

To each transformation 1–4 of Sect. 7 corresponds a special point.

In the simplest cases, our pentagons are subsets of the sphere, so drawing them
presents no difficulty. In the general case, the pentagons are not subsets of the sphere
(their angles and sides can be arbitrarily large), and one needs a special tool for describing
them.

We do this using a representation of circular polygons by cell decompositions of
a disk which are called nets. This method was developed in [10,11,14–16] for other
problems.

We are grateful to C.-S. Lin who shared with us the result from his unpublished
preprint [6] which stimulated this paper. We also thank Philip Boalch, Galina Filipuk,
Alexander Its, Maxim Kontsevich, Oleg Lisovyy, Yan Soibelman and Vitaly Tarasov
for illuminating discussions of PVI, and the anonymous referees whose suggestions
improved the exposition.
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1. A Class of Linear Differential Equations

We consider the class of linear differential equations (1) of the form

w′′ −
⎛
⎝ 1

z − q
+

3∑
j=1

κ j − 1

z − t j

⎞
⎠ w′ +

⎛
⎝ p

z − q
−

3∑
j=1

h j

z − t j

⎞
⎠w = 0, (4)

where
(t1, t2, t3) = (0, 1, x), (5)

x > 1, κ j ≥ 0, p and q are real numbers. We impose the following conditions:

(a) ∞ is a regular singularity, with exponent difference κ4 ≥ 0,
(b) q is an apparent singularity, but the singularities at (0, 1, x,∞) are not apparent

(have non-trivial local projective monodromy).

It follows from the form of (4) that the exponents at q are 0 and 2, and t j are regular
singularities with exponents 0 and κ j for 1 ≤ j ≤ 3. The exponents at∞ are determined
from the Fuchs relation and from the assumption that their difference is κ4.

Conditions (a), (b) determine the h j uniquely in terms of p, q, x and κ j , 1 ≤ j ≤ 4,
by solving the following system of linear equations:
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Equations (6) and (7) correspond to condition (a), while Eq. (8) corresponds to condition
(b).

The determinant of this system is

x(x − 1)

q(q − 1)(q − x)
,

thus for given real κ j ≥ 0, p, x �∈ {0, 1}, and q �∈ {0, 1, x} the coefficients h j are
uniquely defined real numbers. Our notation in (2) and (4) is the same as in [28], but we
notice a misprint in the first line of [28, (2.1)]: q must be qx .

2. Isomonodromic Deformation and PVI

Let us choose the generators γ j of the fundamental group of � = C\{0, 1, x}, so that
γ1γ2γ3γ4 = 1, as shown in Fig. 1.

Let (w1, w2) be a pair of linearly independent solutions of (4) normalized by
(

w1(x0) w2(x0)

w′
1(x0) w′

2(x0)

)
= I. (9)
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Fig. 1. Loops defining M1, M2, M3, and M4

Performing an analytic continuation of these solutions along an element γ ∈ π1(�, x0)
we obtain

(w
γ
1 , w

γ
2 ) = (w1, w2)Mγ

for some Mγ ∈ GL(2, C). Notice that the map γ 	→ Mγ is an anti-representation of
the fundamental group.1

For the ratio f = w1/w2 we obtain

f γ = Tγ ◦ f,

where Tγ is a linear-fractional transformation. We identify the group of linear-fractional
transformations with PSL(2, C) = SL(2, C)/{±I }, and the quadruple (T1, T2, T3, T4)
is the set of generators of the projective monodromy representation π1(�, x0) →
PSL(2, C). The correspondence γ → Tγ is a group homomorphism. The generators
are chosen so that

T1T2T3T4 = id, (10)

and we assume that

Tj �= id, 1 ≤ j ≤ 4. (11)

For the matrices representing the generators Tj we use the same letters, and they are
related to the matrices Mj by

Tj = 1√
det Mj

MT
j , 1 ≤ j ≤ 4,

where T stands for the transposition.
When the parameters κ j are fixed, the projectivemonodromy representation of Eq. (1)

depends on x , p and q.

1 For the fundamental group we use the standard notation: product γ1γ2 means that the path γ1 is followed
by the path γ2.
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When we change x and deform the loops continuously, the condition that the mon-
odromy matrices do not change is that p = p(x) and q = q(x) satisfy the following
non-autonomous Hamiltonian system [28, (3.7)]:

dq

dx
= ∂h

∂p
,

dp

dx
= −∂h

∂q
.

Here the Hamiltonian h = h3 [see (4) for the definition of h3] is given by

x(x − 1)h = q(q − 1)(q − x)p2

− {(κ3 − 1)q(q − 1) + κ1(q − 1)(q − x) + κ2q(q − x)} p
+ κ0(κ0 + κ4)(q − x),

where

κ0 = (1 − κ1 − κ2 − κ3 − κ4)/2.

This Hamiltonian system is equivalent to (2). All solutions of PVI are obtained in this
way.

Special points of q(x) correspond to collisions of the singular point q with one of
the four other singular points of Eq. (4). Thus when x is a special point, (4) becomes an
equation with four regular singularities (Heun’s equation).

In this paper we consider parameters κ j ≥ 0, 1 ≤ j ≤ 4, and real solutions q(x)
of (2) defined for x ∈ (1,+∞). In view of the formulas (6), (7), (8), in this case all
parameters in (4) are real.

The condition on the monodromy matrices that ensures that the solution of PVI is
real is discussed in “Appendix I”.

Remark. A more general class of real Eq. (2) is obtained by allowing some κ j be pure
imaginary. In this case, Eq. (4) also has a geometric interpretation [41], but very different
from the interpretation in this paper: the developing map f (defined in the next section)
still maps the upper half-plane onto a Riemann surface bounded by four circles, but
when some κ j are imaginary, this Riemann surface has infinitely many sheets.

3. Circular Polygons

A circular n-gon is a bordered surface homeomorphic to a closed disk, spread over the
sphere without ramification points in the interior, and such that the border consists of n
arcs and n points separating them, so that each arc projects into a circle on the sphere
locally injectively.

Some circular polygons can be visualized as subsets of the Riemann sphere, see
Figs. 12, 13 and 15, which represent circular pentagons and quadrilaterals. But this is
not always the case, because we allow arbitrarily large interior angles and arbitrarily
long sides.

To give a more formal definition, we denote by S the conformal sphere (the unique
compact simply connected Riemann surface). A circle in S can be defined by using
only the conformal structure: it is the set of fixed points of an anti-conformal involution.
Conformal automorphisms of S send circles to circles.
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Let D be a conformal closed disk,2 and let {t j } be n distinct boundary points enu-
merated according to the standard orientation of ∂D. In what follows we understand the
subscript j in t j and in other similar notations as a residue modulo n.

A developing map is a continuous function f : D → S which is holomorphic in
D\{t1, . . . , tn} and satisfies

f ′(z) �= 0, z ∈ D\{t1, . . . , tn}, (12)

f (z) = f (t j ) + (c j + o(1))(z − t j )
α j as z → t j , (13)

where α j > 0 and c j ∈ C∗, or

f (z) = f (t j ) + (c j + o(1)/ log(z − t j ) as z → t j , (14)

and such that f ([t j−1, t j ]) are contained in some circles C j ⊂ S. Here and in what
follows we denote by [t j−1, t j ] and (t j−1, t j ) the closed and open arcs of the boundary
∂D beginning at t j−1 and ending at t j . Formulas (13), (14) need an evident modification
if f (t j ) = ∞, or f (z) = ∞ in (12). The circles C j need not be distinct. A circular
n-gon is identified with the ordered set

(D, t1, . . . , tn, f ). (15)

Sometimes we will omit the word “circular”, calling these objects simply polygons
(digons, triangles, quadrilaterals, etc.)

Two circular polygons

(D1, t
′
1, . . . , t

′
n, f1) and (D2, t

′′
1 , . . . , t ′′n , f2) (16)

are considered equal if there exists a conformal map φ : D1 → D2 such that φ(t ′j ) = t ′′j
and f1 = f2 ◦ φ. If the last equality is replaced by f1 = L ◦ f2 ◦ φ, where L ∈ Aut S
then the two polygons are called equivalent.

The points t j are called corners and the arcs (t j−1, t j ) sides of a polygon. The angle
at t j is defined as α j in (13), and we set α j = 0 if (14) holds.

Notice that we measure the angles in half-turns rather than radians.
We denote byC j the circle containing f ([t j−1, t j ]). Then we obtain n labeled circles

with the property that
C j ∩ C j+1 �= ∅, j ∈ Zn . (17)

Indeed, f (t j ) belongs to this intersection. Any such sequence of circles will be called
an n-circle chain, or simply a chain when it is clear what n is.

Notice that 0-gons are just disks, while 1-gons are disks with one marked point where
the angle is 1.

Sometimes it will be convenient to use a Riemannian metric on our polygons. To
introduce it, start with the standard spherical Riemannian metric of curvature 1 on S and
pull it back to D via f . The resulting metric ρ on D is a conformal Riemannian metric of
curvature 1 on D\{t1, . . . , tn}, has conic singularities with the angles α j at t j , and each
side (t j , t j+1) has constant geodesic curvature. All metric spaces with these properties
arise from circular polygons.

In what follows the word “distance” will always mean intrinsic distance: the infimum
of lengths of curves connecting two points, where the length of a curve is measured using
the intrinsic metric. The area of an n-gon is also measured in the pull-back spherical

2 The closure of a Jordan region.
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Fig. 2. Gluing a quadrilateral and a triangle

metric. It is easy to see that all our polygons have finite areas, moreover, the preimages
of points under developing maps are finite.

Polygons are equal if and only if the corresponding metric spaces are isometric. Of
course, equivalent polygons may be different as metric spaces.3

3.1. Gluing of two polygons. We will use the operation of gluing circular polygons
along a “matching” boundary arc. Suppose that for two polygons in (16), D1 and D2 are
the upper and lower halves of the unit disk, the interval (−1, 1) contains no corners of
either polygon, and is mapped by f1 and f2 to the same arc of a circle.4 Then there exist
a simple curve γ in the unit disk D with endpoints at ±1 dividing D into two regions
D′ and D′′, and conformal homeomorphisms φ1 : D′ → D1 and φ2 : D′′ → D2 such
that φ j (±1) = ±1 and f1 ◦ φ1(z) = f2 ◦ φ2(z), z ∈ [0, 1], see Fig. 2. Such conformal
homeomorphisms φ j exist by a theorem of Lavrentiev [21, Ch. VI, §1]. Then

f (z) =
{
f1 ◦ φ1(z), z ∈ D′
f2 ◦ φ2(z), z ∈ D′′

extended by continuity on γ , is the developing map of a new polygon which is called
the gluing of our two polygons along the common boundary arc.

3.2. Lengthening and shortening of the slit. Consider an (n+1)-gon Q = (D, t1, . . . , tn;
q, f ), where the corner q can be anywhere between the t j , this is why we use a different
notation for this corner. Suppose that the angle at q equals 2 and the f -images of the
two sides meeting at q belong to the same circle C . (If q ∈ (tk−1, tk) then C = Ck .)
This means that f maps a small neighborhood V of q in D homeomorphically onto a
disk centered at f (q) with a slit from the center to the circumference along an arc of the
circle C .

In this situation we say that the polygon has a slit, and b := f (q) is called the tip of
the slit. The slit itself is formally defined as follows:

The slit is themaximal interval [t, t ′] such that q ∈ [t, t ′] ⊂ [tk−1, tk] and the intrinsic
lengths of [t, q] and [q, t ′] are equal.

Examples can be seen in Fig. 3a, c where the tip of the slit is labeled by q.

3 One could use only PSL(2, C)-invariant notions, like cross-ratios instead of distances etc., as Klein does.
But we find the metric notions more convenient and more intuitive.

4 This “arc” can be longer than the whole circle. The precise meaning is that there is an increasing diffeo-
morphism ψ : [−1, 1] → [−1, 1] such that f2(t) = f1 ◦ ψ(t), t ∈ [−1, 1].
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Consider the small arc γ ⊂ D with endpoints q and c ∈ D which is defined by
γ = f −1(C) ∩ V .

Let φ be a conformal map of D onto D\γ . Then f1 = f ◦ φ defines a new (n + 1)-
gon with corners t ′j = φ−1(t j ) for 1 ≤ j ≤ n and q ′ := φ−1(c). We say that this new
polygon is obtained from the old one by lengthening the slit, and the old polygon is
obtained from the new one by shortening the slit.

Here is an alternative explanation of lengthening or shortening of the slit. Suppose
that D = H and q ∈ (tk−1, tk). As the sides (tk−1, q) and (q, tk) are mapped by f to the
same circle C , we can extend f by reflection to the lower half-plane H∗. The resulting
function f̃ is meromorphic in G = H ∪ H∗ ∪ (tk−1, tk), maps (tk−1, tk) into a circle C
and has exactly one simple critical point at q. Let σ be the reflection inC . Choose a small
disk B centered at f (q) and let V ⊂ G be the component of f̃ −1(B) which contains q.
Let ψs be a family of diffeomorphisms of the sphere S, which commutes with σ , whose
restriction to S\B is the identity map, and which moves f̃ (q) to a point s ∈ C near
f (q). Then the main existence theorem for quasiconformal mappings in [2] implies that
there is a quasiconformal homeomorphism φs : G → G which commutes with complex
conjugation and such that fs = ψs ◦ f̃ ◦ φs is holomorphic. The restriction of fs onto
H is the developing map of the deformed polygon Q′ = (H , t ′1, . . . , t ′n; q ′, fs) where
t ′j = φ−1

s (t j ) and q ′ = φ−1
s (q). The dependence of fs on s is real analytic.

Whenever we have a slit it can be lengthened or shortened. This operation does not
affect the angles, the chain of the polygon, or the images of the sides other than those
two meeting at q.

4. Relation Between Eq. (4) and a Class of Circular Pentagons

We consider Eq. (4) satisfying conditions (a) and (b) after (4).

Proposition 1. If p ∈ R, x > 1, and q ∈ R\{0, 1, x}, then the ratio f of any two
linearly independent solutions of (4) is the developing map of a circular pentagon with
D = H, and corners at (t1, t2, t3, t4) = (0, 1, x,∞) and q, with the angles κ j at t j ,
1 ≤ j ≤ 4, and 2 at q. The f -images of the two sides meeting at q belong to the same
circle.

Conversely, the developing map of every circular pentagon with such properties is
the ratio of two solutions of an Eq. (4) satisfying conditions (a), (b), with all parameters
real, and 0, 1, x, q all distinct.
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The projective monodromy group of (4) consists of the products of even numbers of
reflections in the circles containing the f -images of the sides of the pentagon. Condition
(11) holds if and only if no pair of sides meeting at t j , 1 ≤ j ≤ 4, is mapped by the
developing map into the same circle.

Notice that q can be on any of the four intervals (t j−1, t j ), j ∈ Z4.

Proof. Let f = w1/w2 be the ratio of linearly independent solutions. Then f ′ =
(w′

1w2 −w1w
′
2)/w

2
2, so f is locally univalent in the upper half-plane. If we impose real

initial conditions at some real non-singular point, both solutions will be real, and f will
be real on the interval between the singularities containing this point. Any other initial
condition will give new f related to the old one by a linear-fractional transformation,
so f (z) maps every interval between the singular points onto an arc of a circle. The
exponents at a singular point t j are 0 and κ j if 1 ≤ j ≤ 4, so locally f (z) behaves as
in (13), (14). At the point q, the exponents are 0 and 2, so the angle is 2, and this point
is a removable singularity of f by condition (b) after (4), so the sides meeting at q are
mapped to the same circle.

For the converse statement, suppose that a circular pentagon with D = H is given,
with the angles (κ1, κ2, κ3, κ4) at (0, 1, x,∞) and 2 at q, such that the sides meeting at q
aremapped by f into the same circle. Then f extends by reflections to the universal cover
ofC\{0, x, 1,∞}, and themonodromy of the extendedmap is a subgroup of PSL(2, C),
the group of linear-fractional transformations. This means that the Schwarzian derivative

R := f ′′′

f ′ − 3

2

(
f ′′

f ′

)2

(18)

is single valued, and the local behavior at t j and q implies that R has poles of order two
with

R(z) = 1 − κ2
j

2(z − t j )2
+ · · · , as z → t j ,

R(z) = − 3

2(z − q)2
+ · · · , as z → q,

and similarly at infinity, so R is a rational function. As the intervals of the real line
between the singularities are mapped to arcs of circles, R is real on the real line. As t j , q
and κ j are real, we conclude that the residues of R are also real. Then the general solution
of the Schwarz differential equation (18) is a ratio of two linearly independent solutions
of (4), see, for example [20,26]. The condition that the images of the sides meeting at q
belong to the same circle ensures that f has trivial monodromy at q, so q is an apparent
singularity with exponents 0 and 2. This completes the proof of Proposition 1.

If Ck is the circle containing f ([tk−1, tk]) then (C1,C2,C3,C4) is a chain of four
circles for which (17) holds and

C j �= C j+1, j ∈ Z4 (19)

in view of the condition (11). If we denote by σ j the reflection in C j , then the projective
monodromy generators are

Tj = σ jσ j+1, j ∈ Z4. (20)

This assumes that the fundamental group generators are chosen as in Fig. 1. To prove (20)
we notice that each loop γ j , 1 ≤ j ≤ 3, first crosses the interval (t j−1, t j ) from H to the
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lower half-plane, and crosses (t j , t j+1) back to H . The first crossing corresponds to the
reflection σ j and the second to the reflection in the circle σ jC j+1. This second reflection
is σ jσ j+1σ j , so the whole continuation around t j is performed with the reflection

σ jσ j+1σ jσ j = σ jσ j+1,

as stated. ��
If a projective monodromy representation satisfies (20) with some reflections σ j , we

say that this representation is generated by reflections. In “Appendix I” we will find
the necessary and sufficient conditions for Tj to be generated by reflections, and will
show how to find the σ j when these conditions hold. We will see that the reflections σ j
are uniquely defined by the monodromy generators, except in the case when all these
generators commute.

5. Special Pentagons

The previous section motivates consideration of pentagons with one angle equal to 2,
and the sides forming this angle mapped into the same circle by the developing map,
while each pair of sides meeting at one of the other corners is mapped by the developing
map to distinct circles.

We call them special pentagons and use the following notation

Q = (D, t1, t2, t3, t4; q, f ),

where t j are naturally ordered corners with angles α j , while q is the corner with angle 2
which can lie on any arc between the t j , and the sides meeting at q are mapped by f to
the same circle, while the circles containing f ([t j−1, t j ]) and f ([t j , t j+1]) are distinct
for all j ∈ Z4.

This notation is slightly inconsistent with our general notation for a circular pentagon,
because only t j are listed in their natural order, while q can be on any interval between
them. To stress this, we separate q from the t j by a semi-colon.

We recall that a conformal quadrilateral5 is a simply connected Riemann surface,
which is conformally equivalent to a disk,with 4marked prime ends.6 Conformal equiva-
lence of conformal quadrilaterals means the existence of a conformal map between them
which maps the marked points to the marked points.

Each conformal quadrilateral is conformally equivalent to a rectangle whose marked
boundary points are the corners.

We consider special pentagons

Q = (D, t1, . . . , t4; q, f )

as conformal quadrilaterals (D, t1, . . . , t4), forgetting the corner q, and define the mod-
ulus

mod Q ∈ (0,∞)

5 Not to be confused with circular quadrilateral!
6 For a Jordan region in the plane prime ends are just boundary points. For general simply connected regions

we refer to [1].
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as the extremal distance in D between the segments [t1, t2] and [t3, t4] of ∂D. For the
definition and general properties of the extremal distance we refer to [1] and “Appendix
III”.

To avoid confusion with the sides of a pentagon as defined before, we use the word
segments to denote [t j , t j+1] ⊂ ∂D. Thus one of the segments consists of two sides of
the pentagon and contains q, while each of the other three segments is the closure of one
side of the pentagon.

Every conformal quadrilateral is equivalent to (H , 0, 1, x,∞) for some x ∈ (1,∞).
With our convention that (t1, t2, t3, t4) = (0, 1, x,∞), the modulus is a strictly increas-
ing function of x , mapping (1,+∞) onto (0,+∞). An explicit expression of this function
can be found in [1] but we do not need this formula.

To state the properties of the extremal distance that we need, we use the intrinsic
distance on D defined in Sect. 3.

Lemma 1 ([15, Lemma 13.1] and Lemma A4 in “Appendix III”). Consider a sequence
of special pentagons Qn whose areas are bounded from above. If the intrinsic distance
between [t1, t2] and [t3, t4] tends to zero, while the intrinsic distance between [t2, t3] and
[t4, t1] stays away from zero, thenmod Qn → 0. If the intrinsic distance between [t2, t3]
and [t4, t1] tends to 0 while the intrinsic distance between [t1, t2] and [t3, t4] stays away
from zero then mod Qn → ∞.

6. Local Families of Special Pentagons

We recall that f (q) is called the tip of the slit. The slit can be lengthened or shortened
with f (q) moving on a circle. Lengthening or shortening the slit along the circle while
keeping all circles of the chain unchanged, we obtain a one-parametric family of special
pentagons, parametrized by some interval. We choose the length of the slit as parameter.

Lemma 2. As a function of the length of the slit, mod Q is monotone. It is strictly
increasing if q ∈ (t2, t3) ∪ (t4, t1) and strictly decreasing if q ∈ (t1, t2) ∪ (t3, t4).

This follows from the standard properties of the modulus, [1, 4.3] and Lemma A3 in
“Appendix III”.

As the slit shortens, it eventually vanishes, and we obtain a polygon with at most 4
sides. As the slit becomes longer, it eventually hits the boundary and becomes a cross-cut
which splits D into two polygons.

Such a family, obtained from a special pentagon by shortening the slit until it vanishes
and lengthening the slit until it hits the boundary, will be called a local family of special
pentagons. It is parametrized by an open interval (for example, the length of the slit),
and corresponds to an open interval on the ray (1,+∞) in view of Lemma 2.

In the remainder of this section we will study in detail what happens at the ends of
a local family. In the next section we will see how local families are combined into a
global family of special pentagons, parametrized by x ∈ (1,+∞), so that the special
pentagons of the global family depend continuously and even real-analytically on x .

Consider a local family of special pentagons Qx parametrized by x ∈ I where I is
an interval in (1,∞).

We say that the modulus degenerates if mod Qx → 0 or mod Qx → ∞ as x tends
to an endpoint of I . This means that this endpoint must be 1 or ∞.

First we state the conditions of degeneracy.



Circular Pentagons and Real Solutions of Painlevé VI Equations 63

Suppose that q ∈ (tk−1, tk). Suppose that the slit shortens and vanishes, then q must
collide with a corner tk−1 or tk . If the intrinsic length of [tk−1, q] is strictly smaller
than the intrinsic length of [q, tk] then q will collide with tk−1. If the intrinsic length of
[tk−1, q] is strictly greater than the intrinsic length of [q, tk] then q will collide with tk .
In both cases we obtain a non-degenerate quadrilateral in the limit, so x tends to some
x0 ∈ (1,∞), and x0 is a special point with the value q(x0) = t , where t ∈ {tk−1, tk}
is the corner with which q collided. If the intrinsic lengths of [tk−1, q] and [q, tk] are
equal, then as the slit shortens and vanishes, tk−1 and tk collide, and the limit polygon
is a triangle or a digon.

The degeneracy condition is thus the following:
D1. When the slit shortens and vanishes, mod Qx degenerates if and only if two

corners collide in the limit.
In other words, our special pentagon must be a slit triangle with the slit originating

at some vertex A, or a slit digon. Notice that the angle of the triangle at A may be an
integer, and the images of sides of the triangle which are adjacent at A may belong to
the same circle. If this integer is 1 we have a digon instead of a triangle.

Degeneration with shortening slit is illustrated in Fig. 9. When the sit vanishes, two
corners at 0 collide.

Now suppose that the slit lengthens. Then eventually it will hit the boundary from
inside at some point s ∈ ∂H .

This means that f (s) belongs to the circle of the slit (21)

and the intrinsic distance between q and s tends to zero.

Suppose that q ∈ (tk−1, tk). If s ∈ [tk+1, tk+2], then the modulus degenerates, other-
wise it does not. So we have the second degeneration condition:

D2. When the slit lengthens and splits the pentagon,mod Qx degenerates if and only
if the slit hits the segment which is opposite to the segment to which q belongs.

In other words, in the limit, the slit splits the boundary into two arcs, and the modulus
degenerates if and only if the closures of these two arcs contain at least two corners each.

For example, in Fig. 9, when the slit lengthens it eventually splits the pentagon into
two triangles. The tip ik of the slit hits the boundary at the point i which splits the side
(the half-circle) opposite to the side (0, ik) to which the tip ik belongs.

Now we consider non-degenerate cases, that is the cases when there exists a limit
quadrilateral when the slit vanishes or when it splits the pentagon.

Case 1. The slit vanishes, q collides with exactly one corner, and the angle of the special
pentagon at this corner is positive. See Fig. 3a, b.

Case 2. The slit lengthens and hits the boundary at an interior point of the side, splitting
the special pentagon into a quadrilateral and a digon with positive angle. See Fig. 4a, b.

It is also possible that as the slit lengthens, it hits the boundary at a corner. If the
modulus does not degenerate, this must be a corner neighboring q, for example tk . Then
the special pentagon splits into a non-degenerate quadrilateral and the remaining part
which can have only one corner at tk . Therefore the detached part must be a disk. This
we call

Case 3. The slit lengthens and hits the boundary at a corner. A disk splits away from the
special pentagon, leaving a non-degenerate quadrilateral. See Fig. 5a, b.
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The remaining cases happen when the slit vanishes as in Case 1, and the corner
with which the slit collides has zero angle, or when the slit lengthens, splits the special
pentagon, and one part of the split pentagon is a digon with zero angle. These cases will
be considered in the next section.

7. Transformations Connecting Local Families into a Global Family

In this section we explain what happens when x passes a special point x0, and q passes
one of the t j , so that Qx0 is a non-degenerate quadrilateral.

We describe four types of transformations that may occur. The first three correspond
to Cases 1, 2 and 3 of the previous section, and the 4-th transformation to the two
remaining cases with a zero angle.
Transformation 1 (Fig. 3). Vanishing slit, Case 1.
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Suppose that x passes a special point x0. Before this q ∈ (tk−1, tk), and when x = x0,
q(x0) = s, where s is one of the points tk−1, tk . After x passes x0, q and s interchange.
As the images of the sides lie on the same fixed circles, we have the transformation
shown in Fig. 3.

The slit whose image was an arc of a circle vanishes, and then a new slit starts
growing with the image on an arc of the circle that is adjacent to the previous circle at
the point where the image of old slit vanished.

The angle α of the limit quadrilateral at the corner where the slit vanishes satisfies

α > 1. (22)

Transformation 2 (Fig. 4). The slit hits an interior point s of a segment [see (21)]. The
slit is not tangent to this segment (Case 2).

If themodulus does not degenerate, smust be an interior point of the segment adjacent
to that segment which contains q. So there is exactly one corner t in the interior of one
boundary arc Z between q and s, and three corners on the complementary arc. When
q hits s, our pentagon splits into two polygons: a quadrilateral with the corners s and
t j �= t , and a digon with the corners s and and t . Notice that the angles at the two corners
of a digon are always equal. It is clear that the angle α of the limit quadrilateral at s is
less than 1: it is the inclination of the slit to the side that it hits. Thus

α < 1, (23)

while the digon has both angles 1 − α, at s and at t .
When the slit hits the boundary at an interior point of the side, a digon is detached,

and a vertical digon7 is attached on the side which was hit. One side of the old slit
becomes a side of the new pentagon.
Transformation 3 (Fig. 5). The slit hits a corner [see (21)] as described in Case rm 3.

In this case s is a corner, and there is no other corner on Z . When q hits s, the special
pentagon splits into a quadrilateral with corners at t j , 1 ≤ j ≤ 4 and the other part
which must be a disk. So if the limit quadrilateral has angle α at s then the special
pentagon before the limit has angle α + 1 at s.

So far we ignored the non-generic cases which may occur when some circles of the
chain are tangent: when the slit vanishes at a corner with zero angle, and when the slit
hits from inside a side which is tangent to it. In these cases one more transformation
occurs.
Transformation 4 (Fig. 6). The slit vanishes at a corner with zero angle and a digon with
zero angle is attached.

The slit shortens and vanishes at the corner with zero angle (which is shown at ∞ in
Fig. 6a, and the resulting quadrilateral in Fig. 6b has angle 1. After that, we attach to this
quadrilateral a digon with zero angle (shown as a strip in Fig. 6c, and the slit shortens
when x continues to change in the same direction.

When we run x backwards, we first encounter Fig. 6c with the lengthening slit
which hits the boundary of the pentagon from inside under zero angle. Similarly to
transformation 2, a digon detaches (the strip in Fig. 6c is a digon with zero angle), and
a new slit starts growing as in Fig. 6a.

Notice that unlike in all other transformations 1–3, the direction of the slit evolution
(whether it lengthens or shortens) does not change for this transformation. Two other
distinctions of this transformation from transformations 1–3 are that the old and new

7 A pair of digons with equal angles formed by two circles are called vertical.
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slit are on the same circle, and that q is on the same segment before and after the
transformation.

This is consistent with the fact that the special points of the function q(x) are simple,
unless the angle of the special pentagon corresponding to a special point is zero, in which
case this special point is a simple critical point for q(x) [22, Ch. 9, §46].

The process we described shows that every local family of special pentagons can be
extended to a global family of special pentagons, with the special pentagons becoming
quadrilaterals at isolated points. At these points one angle α of the pentagon becomes
angle β of the quadrilateral, and these angles are related as follows: β = α + 1 for
transformation 1, β = α − 1 for transformation 3, and β = 1 − α for transformation 2.

This continuation can be either performed indefinitely in one or both directions, or
the modulus can degenerate at one or both ends.

In Sects. 8, 9 and 10 we will analyse global families.

Remark. Transformations 1–4 suggest the following:

When Eq. (4) undergoes an isomonodromic deformation and q collides with some t j ,
then the resulting Heun equation has exponent difference ±(κ j + 1) at t j as in Case 1,
or ±(κ j − 1) as in Cases 2 and 3.

This is true in general, without our restriction that the κ j and x are real. To obtain
this result one can use asymptotics of p(x) and q(x) as x tends to a special point written
in [38, pp. 534–535], and obtain the limit equation with four singularities directly from
(4).

8. Explicit Description of Global Families

The previous section shows how local families are combined into a global family. A
global family Q(x), 1 < x < +∞ consists of local families of special pentagons
parametrized by intervals x j < x < x j+1. At the points x j ∈ (1,∞) the special
pentagon becomes a non-degenerate quadrilateral. A global family may consist of a
single local family; such families will be discussed in Sect. 10. The sequence x j can be
finite, or infinite in one direction, or in both directions. The smallest and the largest terms
of this sequence, when they exist, are 1 and∞. All other terms correspond to the special
points of the solution of PVI which is described by our global family. To describe global
families more precisely, we recall the construction of combinatorial objects related to
circular polygons.
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9. Representation of Polygons by Nets

Circular polygons are conveniently represented by nets [10,15,16]. Consider a polygon
given by (15). Its net is the cell decomposition of D by all f -preimages of the circles
Ck , where Ck is the circle that contains f ([tk−1, tk]). The corners are required to be
vertices of the net. The 1-cells of the net are labeled by their images. Two nets are
considered equal if there is an orientation preserving homeomorphism which maps one
onto another preserving the labels of the corners. Let e1 be the 1-cell on the boundary of
the net, oriented according to the orientation of the boundary, and beginning at t1. Two
polygons with developing maps f1, f2 are equal if their circles C j are the same, their
nets are equal, and the images e1, as oriented 1-cells, are equal.

In the illustrations we label the circles C j and corresponding 1-cells of the nets with
colors (or with different styles of lines in the black and white version).

It is difficult to characterize all possible nets of circular quadrilaterals or special
pentagons. The topological classification of generic 4-circle chains is given in “Appendix
II”. For each type of chain, one has a set of nets compatible with this chain. For the chain
topologically equivalent to a quadruple of generic great circles as in Fig. 11, one can
give the following characterization of the nets. Notice that the cell decomposition of the
sphere in Fig. 11 has the following property which must be inherited by the net:

(a) When two 2-cells share a boundary 1-cell, one of these two cells is a quadrilateral
and another is a triangle.
Moreover, the net has an evident additional property:

(b) All interior vertices have degree 4, and all vertices on the sides have degree 3.
Our standing assumption (11) implies that

(c) The degrees of the corners (as vertices of the net) are even.

These three properties completely characterize the nets of circular quadrilaterals over
the 4-circle chain shown in Fig. 11. See also Fig. 26a, where the same 4-circle chain is
shown. Thus for example, all cell decompositions in the right column of Fig. 23 are nets
of quadrilaterals with this 4-circle chain.

10. Real Solutions of PVI Without Special Points

Our paper [13] describes all complex solutions of PVI without special points in the
complex plane.

In this section we will describe all real solutions of PVI with real parameters, which
have no real special points.

For simplicitywe limit ourselves to the generic case: all parametersκ j are not integers,
and the circles of the chain are not tangent to each other. The last condition holds for
example when the projective monodromy contains no parabolic transformations.

Solutions without special points correspond to local families for which the modulus
degenerates on both ends. So degeneracy conditions D1 and D2 of Sect. 6 must be
satisfied (one condition on one end and another on another end).

Thus we have one of the three configurations shown in Fig. 7.
In a family without special points we must have

q(x) ∈ (t j , t j+1) for all x ∈ (1,∞)

and some j ∈ Z4. Suppose without loss of generality that j = 1, so that

q(x) ∈ (0, 1), x > 1. (24)
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The condition that f (0) = f (1)when the slit vanishes can be stated in terms of projective
monodromy representation:

Transformations T0 and T1 have a common fixed point

with multipliers e2π iκ1 and e2π iκ2 .
(25)

We will use the results of Klein [31] and Van Vleck [43] on circular triangles. First
of all we have

Lemma 3. For any positive numbers λ j , 1 ≤ j ≤ 3, there exists a unique equivalence
class of circular triangles with angles (λ1, λ2, λ3).

Sketch of the proof. The developing map of a triangle with angles λ j satisfies the
Schwarz differential equation:

f ′′′

f ′ − 3

2

(
f ′′

f ′

)2

= 1 − λ21

2z2
+

1 − λ22

2(z − 1)2
+

λ21 + λ22 − λ23 − 1

2z(z − 1)
,

see, for example, [26, p. 452] or [20, Ch. VI, §3]. Parameters λ j can be arbitrary non-
negative numbers, and for fixed parameters all solutions give equivalent triangles. This
proves the lemma. ��
Lemma 4. In a triangle with angles (λ1, λ2, λ3), the image of the closure of the side
opposite to λ1 under the developing map makes

E

(
λ1 − λ2 − λ2 + 1

2

)

full turns8 around the circle containing this image. Here E(x) is the integer part of x
for x > 0 and zero otherwise.

This is called the Ergänzungsrelation of Klein [31,43].
First we address the easier cases (b) and (c) in Fig. 7. Consider the case (b). In this

case, our triangle ABC is split into two parts, one of which is a digon with both angles
κ1, and the other part is a triangle with angles (κ2, κ3, κ4 − κ1). The image of a side of
a digon cannot cover a full circle. Therefore the image of the side N A of the triangle

8 When f : [a, b] → C is an immersion of a closed interval [a, b] into a circle C then the “number of full
turns” is defined as card f −1(a) − 1.
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cannot cover the full circle. The necessary and sufficient condition for this according to
Lemma 4 is

κ3 + κ1 ≤ κ2 + κ4 + 1. (26)

Similarly, Fig. 7c produces the condition

κ4 + κ2 ≤ κ1 + κ3 + 1. (27)

As there are no free parameters in the configurations in Fig. 7b, c, we conclude that
when (26) is satisfied, there is a single equivalence class of configurations of the form
Fig. 7b and when (27) is satisfied, there is a single equivalence class of configurations of
the form Fig. 7c with these angles. This means that each PVI with such parameters has
an isolated solution of type (b) or (c), or both. Notice that the two inequalities (26) and
(27) cover the whole range of real parameters, so we conclude that isolated solutions of
PVI of one or both types Fig. 7b, c always exist. There can be one or two of them.

Nowwe turn to the case (a).We introduce the auxiliary angle t ∈ [0, 1] as a parameter
(see Fig. 7a).

When t is fixed, there exist two equivalence classes of triangles with prescribed
angles: N AB with angles (t, κ2, κ3) and ANC with angles (κ1, 1 − t, κ4). Let f1 and
f2 be their developing maps.

The question is when we can glue such two triangles along the side N A. As we
assume that the circles of the chain are not tangent to each other, t ∈ (0, 1), and we
can post-compose the f j with linear-fractional transformations to achieve f j (N ) = 0,
f1(BN ) and f2(NC) belong to a line � through the origin, and f j (N A) is contained in
the real line for j = 1, 2. Then it is clear that the necessary and sufficient condition for
the possibility of gluing is that the image of the closed side N A under both developing
maps intersects the line � the same number of times. Indeed, if this is so, the images of
the point A under both developing maps are on the same side of the line � (or both at 0,
or both at ∞), and these images can be made equal by additional scaling z 	→ r z with
some r > 0.

As � intersects the real line at 0 and ∞ we are interested in the combined numbers
of zeros and poles of f j on N A.

Consider triangle N AB and denote by (λ1, λ2, λ3) the angles at (N , A, B). To count
the number of zeros and poles of f1 on N A times the image of AN intersects the circle
that contains N B we use the results of Klein [31] (see also [43]) on the number of zeros
of hypergeometric function on an interval [0, 1].

We recall that the hypergeometric function w(z) = F(α, β, γ, z) is the solution of
the hypergeometric equation

z(z − 1)
d2w

dz2
− (γ − (α + β + 1)z)

dw

dz
+ αβw = 0, (28)

which satisfies F(0) = 1 and is holomorphic at 0.A second linearly independent solution
of the same equation is

F1(z) = z1−γ F(α − γ + 1, β − γ + 1, 2 − γ, z).

Thus F/F1 is a developing map of a triangle whose angles are the absolute values of the
exponent differences of (28),

λ1 = |1 − γ |, λ2 = |γ − α − β|, λ3 = |α − β|.
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We choose

λ1 = 1 − γ, λ2 = α + β − γ, λ3 = α − β,

which defines α, β, γ uniquely. Notice that F1(0) = 0 because γ ∈ (0, 1). Then f1 =
F/F1 is the developing map of N AB, and the side N A = (0, 1).

The number of crossings between f1(AN ) and � is equal to the combined number of
zeros and poles of F and F1 on [0, 1]. We only consider the case λ1 ∈ (0, 1) which we
need.

According to [43] the number of zeros of F on [0, 1] is:
(i) zero, if [λ2] > [λ3],
(ii) E ((λ1 + λ3 − λ2 + 1)/2), if [λ3] > [λ2],
(iii) 0 or 1 depending on whether E ((λ1 + λ3 − λ2 + 1)/2) is even or odd, if [λ2] =

[λ3].
The number of zeros of F1 is always

E

(
λ3 − λ1 − λ2 + 1

2

)
+ 1.

Adding these together we obtain that the number of crossings between the image of
AN and the circle of BN equals to:

1. if [λ2] ≥ [λ3],
and to

E

(
λ1 + λ3 − λ2 + 1

2

)
+ E

(
λ3 − λ1 − λ2 + 1

2

)
+ 1, if [λ2] < [λ3].

Applying this result to N AB and the similar result to CAN , (or rather to its mirror
image), we obtain that the gluing is possible if and only if one of the following two
conditions holds:

(1) κ2 ≥ κ3 and κ1 ≥ κ4,
(2) κ2 < κ3 or κ1 < κ4, and

E

(
κ3 − κ2 + t + 1

2

)
= E

(
κ4 − κ1 − t + 2

2

)
, (29)

and

E

(
κ3 − κ2 − t + 1

2

)
= E

(
κ4 − κ1 + t

2

)
, (30)

To simplify these conditions, we put

t = u + 1/2, −1/2 ≤ u ≤ 1/2,

a = κ3 − κ2 + 1/2, b = κ4 − κ1 + 1/2. (31)

Then conditions (1)–(2) become

(1’) a ≤ 1/2, b ≤ 1/2, or
(2’) E((a + 1 + u)/2) = E((b + 1 − u)/2), and E((a − u)/2) = E((b + u)/2).
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Eliminating u ∈ (−1/2, 1/2) we obtain:

|a − b| < 1, or min{a, b} < 3/2, (32)

the shaded region in Fig. 8. For these values of parameters, PVI has an interval of
solutions without special points, in addition to one or two isolated solutions of types
(b), (c). The boundaries of the regions corresponding to (26) and (27) are shown as lines
a = b + 1 and b = a + 1 in Fig. 8.

Theorem 1. A real solution q(x) of PVI with real parameters κ j defined on (1,∞) and
satisfying q(x) ∈ (0, 1), x > 1 always exists. The monodromy corresponding to this
solution satisfies (25). Solutions of type Fig. 7a exist if (32)with a and b as in (31) holds,
and these solutions form an interval. Solutions of type Fig. 7b, c exist if (26) or (27)
hold, and these solutions are isolated.

The cases q(x) ∈ (t j , t j+1) for j = 2, 3, 4 are obtained by a cyclic permutation of
the angles in our conditions.

In [7], the following theorem is proved: Solutions of PVI with parameters
(1/2, 1/2, 1/2, 1/2) corresponding to unitary monodromy do not have special points
on a real interval between the fixed singularities.

These authors do not assume a priori that their solutions are real. For the case of real
solutions, this result can be obtained as follows.

Consider some special pentagon corresponding to a real solution of this equation.
The angles are (1/2, 1/2, 1/2, 1/2, 2), and the circles C j are great circles. Removing
the slit we would obtain a geodesic quadrilateral with angles (1/2, 1/2, 1/2, 3/2), or a
triangle with angles (1/2, 1/2, 1), but it is easy to see that such quadrilateral does not
exist (see for example, [11]). So it must be a geodesic triangle with angles (1/2, 1/2, 1).
Then the special pentagon must have the shape as in Fig. 7a, so our global family does
not have special points.

In [6], the following fact is proved: Solutions of PVI with parameters (1/2, 1/2, 1/2,
3/2) corresponding to unitary monodromy do not have poles on R\{0, 1}. Again, in
the case of real solutions, this follows from our results. When the special pentagon
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q0 1 x

-1 0 1

ik

Fig. 9. A special pentagon

corresponding to such a solution undergoes a transformation with q = ∞ the limit
quadrilateral must have angles (1/2, 1/2, 1/2, 1/2) or (1/2, 1/2, 1/2, 5/2). Geodesic
quadrilaterals with such angles do not exist [11].

We illustrate Theorem 1 with simple examples. Consider the special pentagon shown
in Fig. 9. Here

κ1 = κ2 = κ3 = κ4 = 1/2, (33)

and the slit is the segment [0, ik]. The developing map f maps the upper half-plane
conformally onto this pentagon with the boundary correspondence

(0, 1, q, x,∞) 	→ (−1, 0, ik, 0, 1). (34)

The inverse f −1 of the developing map sis easy to write explicitly:

f −1(z) = (1 + J (k))(w + J (k))

(1 − J (k))(w − J (k))
, w = −J

⎛
⎝

√
z2 + k2

1 + k2z2

⎞
⎠ ,

where

J (z) = (z + 1/z)/2

is the Joukowski function. This explicit formula gives

q = J (k) + 1

J (k) − 1
, x =

(
J (k) + 1

J (k) − 1

)2

.

Thus q(x) = √
x . This is a solution of PVI with parameters (33) which has no spe-

cial points in the complex plane (all such solutions are listed in [13]). The projective
monodromy representation corresponding to this solution is

T0(z) = T4(z) = 1/z, T1(z) = T3(z) = −z.
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Fig. 10. A global family of special pentagons

Changing the boundary correspondence (34) to

(0, 1, x, q,∞) 	→ (1,−1, 0, ik, 0),

we obtain another algebraic solution

q(x) = x +
√
x2 − x

without special points in the whole complex plane [13]. This solution was also obtained
in [3, Section 2].

11. Another Algebraic Solution

In this section we give another example where everything can be explicitly computed.
Consider the region Q in Fig. 10a. Let f be the conformal map of the upper half-plane
onto Q with the boundary correspondence

(0, 1, x,∞) 	→ (−1, eiπα,−eiπα, 1).

These conditions define x > 1 uniquely. Let q = f −1(k). Then q < 0. As the slit
lengthens, the tip k eventually hits 0, the modulus degenerates and we have x → +∞.
As the slit shortens and vanishes, we have transformation 1 occurring for some x0 ∈
(1,+∞). We have q(x0) = ∞. After the transformation we obtain Fig. 10c. When the
slit lengthens in Fig. 10c, it eventually hits the boundary at the point eiα , the modulus
degenerates, and x → 1. Thus in this example we have exactly one special point of
(1,+∞) and this special point is a pole. Themonodromy generators of (4) are determined
from (20), and we obtain

T1(z) = T4(z) = 1/z, T2(z) = e−2π iα/z, T3(z) = e2π iα/z.
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When α is rational, the developing map is an algebraic function, see [12, Section 6].
We set α = 1/2. To find f explicitly we denote

q = f −1(k), c = f −1(1 + i0), a = f −1(0), b = f −1(∞).

Consider the auxiliary function

g(z) = −1

4

(
z − 1

z

)2

.

It is of degree 4, real on the real and imaginary lines and on the unit circle, and has 6
critical points with critical values

g(0) = g(∞) = ∞, g(±1) = 0, g(±i) = 1.

Thus the composition h = g ◦ f maps the real line into itself and has no critical points in
the upper half-plane. This function h extends to the Riemann sphere by symmetry and
becomes a rational function. It is easy to see that the real rational function w = 1 − h
has:

(i) double poles at a and b,
(ii) a simple zero at x and a triple zero at 1,
(iii) w(1) = w(∞) = 1,
(iv) simple critical points at q and c, and w(c) = 0.

From (i), (ii) and (iii) we conclude that

w(z) = (z − 1)3(z − x)

(z − a)2(z − b)2
, and x = a2b2.

Another equation comes from condition (iv) which implies that 0 is a critical value.
Solving these two equations with respect to a and b with Maple, we obtain an algebraic
solution of PVI with parameters

(κ1, κ2, κ3, κ4) = (1/2, 3/2, 1/2, 1/2)

q(x) =
√
x − 3x√
x − 3

,

which has a single special point on (1,+∞), namely a pole at x = 9.

12. Some Other Cases Where q(x) Can Be Written Explicitly

We mention several special cases without going into detail.
1. Suppose that the projective monodromy representation is reducible. This means

that all linear-fractional transformations Tj have a common fixed point. Without loss
of generality, we place it at infinity. Then all monodromy transformations are affine,
and the circles C j of the chain are straight lines. Our pentagons are rectilinear and the
developing maps can be expressed by the Schwarz–Christoffel formula. Then q(x) can
be expressed in terms of hypergeometric integrals.

Indeed, the Schwarz–Christoffel formula of a rectilinear special pentagon gives

f (z) = c
∫ z

0
ζ α1−1(ζ − 1)α2−1(ζ − x)α3−1(ζ − q)dz = c(I1(z) − q I2(z)),
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where

I1(z) =
∫ z

0
ζ α1(ζ − 1)α2−1(ζ − x)α3−1dζ

and

I2(z) =
∫ z

0
ζ α1−1(ζ − 1)α2−1(ζ − x)α3−1dζ.

Normalization f (1) = a and f (∞) = b will define our special pentagon completely,
so we obtain with k = b/a

q(x) = k I1(1) − I1(∞)

k I2(1) − I2(∞)
,

an expression for q(x) in the form of hypergeometric integrals.
2. Suppose that one of the monodromy transformations is the identity, and the corre-

sponding angle is 1. Then our special pentagon is in fact a slit triangle (or a slit digon, or
a slit disk). In this case, the developing map itself can be expressed in terms of hypergeo-
metric functions, see [42], where the case of slit-triangle quadrilaterals has been studied
in great detail.

These are the two known cases of reduction of PVI when some solutions can be
explicitly found. In a certain sense there are no other cases [45], algebraic solutions
and some cases [35] when a solution can be expressed as a somewhat non-standard
combination of classical special functions.

13. Examples

We begin with the simplest examples when all special pentagons in a global family are
regions in the sphere, so the nets are not required for their description.

Example 1. The chain of circles corresponding to this example is shown in Fig. 11a.
Consider the conformal map f from the upper half-plane onto the shaded region in
Fig. 12a. This is the developing map of a special pentagon. The corners on ∂H are
shown below, and their images are shown in parentheses.

Suppose that the slit lengthens. Then the extremal distance between the segment
[(0), (1)] and the opposite segment [(x), (∞)] [which contains (q)] decreases, so the
extremal distance in H between [0, 1] and [x,∞] decreases, thus x decreases.

When (q) tends to [(0), (1)], modulus degenerates and x → 1.
When the slit shortens, x increases, and eventually the slit vanishes and we obtain

Fig. 12b. At this moment q = ∞. We have transformation 1, so after that a new slit
starts as shown in Fig. 12c and when it hits [(1), (x)], the extremal distance between
[0, 1] and [x,∞] tends to infinity which implies that x → +∞.

We conclude that solution q(x) of PVI which corresponds to this global family has
one pole on (1,∞), and has no zeros, no fixed points and no 1-points.

For example, this can be any four generic great circles, which corresponds to SU (2)
monodromy, determined by formula (20), see “Appendix III”.
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Fig. 12. Global family in Example 1

Example 2. In this example, Fig. 13, the image of the developing map is also a region in
the sphere. In Fig. 13a, when the slit increases, the extremal distance between [0, 1] and
[x,∞] decreases whichmeans that x decreases.When the slit hits the segment [(0), (1)],
this distance tends to zero, which means that x → 1.

As the slit in Fig. 13a decreases, x increases, and when the slit vanishes we obtain
Fig. 13b. At this moment q(x) = x , and we have transformation 1. As x increases
further we have Fig. 13c, and then, when (q) hits [(0), (1)], we obtain Fig. 13d. This
is transformation 2, and q(x) = 1 at this point. The digon on the right of Fig. 13c was
detached. According to the transformation 2, we attach to the quadrilateral in Fig. 13d the
vertical digon shown on the left of Fig. 13e. The slit in Fig. 13e shortens as x increases.
When it vanishes we obtain Fig. 13f where q(x) = 0, and we have transformation 2.
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Fig. 13. Global family in Example 2

After the transformation we obtain Fig. 13g, where the slit lengthens as x increases.
Eventually the slit hits [(1), (x)] which corresponds to x → +∞.

Therefore, the solution q(x) in this example has three special points x1 < x2 < x3
on (1,+∞), such that q(x1) = x1, q(x2) = 1, q(x3) = 0. These three special points
correspond to quadrilaterals in Fig. 13b, d, f. Monodromy is determined by the four
circles in Fig. 11b by formula (20).

Example 3. Consider the 4-circle chain shown in Fig. 14, where all pairs C j ,C j+1 are
tangent. A quadrilateral, which is a subset of the sphere, is the shaded region in Fig. 15b.
To obtain a special pentagon we make a slit [(0), (q)] shown in Fig. 15a. When this slit
lengthens, it eventually hits the segment [(x), (∞)] and modulus degenerates, x → 1.
As the slit shortens and vanishes in Fig. 15b, we have transformation 4. After that,
a digon with zero angle is attached to the shaded region in Fig. 15b along a small
arc [(0), (q)] in Fig. 15c, and the new slit [(q), (1)] continues to shorten. The special
pentagon in this figure is not a subset of the sphere anymore: the dark shaded area is
covered twice. When (q) hits (1), the slit in Fig. 15c vanishes, and a new transformation
4 occurs at a quadrilateral shown in Fig. 15d. Afterwards, a sequence of transformations
4 continues indefinitely, alternately at (0) and (1) with the segments [1, x] and [∞, 0]
of the pentagon increasing by a full circle length after each two transformations, thus
q(x) oscillates between 0 and 1 as x → +∞. The sequence of special points is (0,1,
(0,1), …).

Example 4. Each special pentagon in this family is mapped by the developing map to a
four-circle chain shown in Fig. 16. It is easy to check that Fig. 17b is a net corresponding
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to this chain. We make a cut as shown in Fig. 17a, and start a global family from this
local family.

The nets for the global family are shown in Figs. 17 and 18, with the left columns (a,
c, e, g, i, k) containing the local families of special pentagons, and the right columns (b,
d, f, h, j, l) containing quadrilaterals connecting the local families. Modulus degenerates
on one end (x → +∞). As x → 1, we have an infinite chain of local families so as x
increases we have the following sequence of special points:

(. . . , (∞,∞, 0, 0),∞, x)

and no 1-points. The sequence has period of length 4, (∞,∞, 0, 0) repeated infinitely
many times on the left. The monodromy in this example is
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(1) ( )x (0)( )a

Fig. 19. Three-circle chain for Example 5

M0 =
(

0 1
−1 0

)
, M1 =

(
0 i
i 0

)
, Mt =

(
0 Ri
Ri 0

)
,

where we assume that the inner and outer circles have radii 1 and R.

Example 5. Parameters are the same as in the previous example but monodromy is dif-
ferent. The global family is shown in Fig. 20, with the left column (a, c, e, g, i, …)
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containing the local families of special pentagons, and the right column (b, d, f, h, j, …)
containing quadrilaterals connecting the local families. The corresponding three-circle
chain is shown in Fig. 19b. There is an infinite sequence of local families; as x increases
from 1 to ∞ we have the following sequence of special points:

(0, (1, 1, 0, 0), . . .).

The sequence has period (1, 1, 0, 0) repeated infinitely many times on the right.
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Fig. 21. Four-circle chain for Example 6

Example 6. The circle chain (see Fig. 21) consists of twopairs of non-intersecting circles.
The global family is a doubly infinite sequence. A part of this global family is shown
in Fig. 22. It starts with a local family represented by a pentagon in Fig. 22a. As q
tends to a, this pentagon degenerates to the quadrilateral shown in Fig. 22b. In the
opposite direction, when q tends to x , the pentagon in Fig. 22a does not degenerate, and
the sequence continues indefinitely, with the length of the sides [1, x] and [∞, 0] ever
increasing. At the other end of the sequence shown in Fig. 22, a quadrilateral in Fig. 22j
is symmetric with respect to reflection preserving the vertices 1 and a′′ and exchanging
0 with x . The sequence then continues by a local family reflection symmetric to the
pentagon shown in Fig. 22i (with the direction of q reversed), and continues indefinitely,
with the length of the sides [0, 1] and [x,∞] ever increasing. We have a doubly infinite
sequence of special points

(. . . (∞,∞, x, x),∞, (0, 0,∞,∞), . . .).

The sequence is infinite in both directions, has period (∞,∞, x, x) on the left and
(0, 0,∞∞) on the right.

Example 7. Consider the 4-circle chain in Fig. 11c. To construct a global family, we
begin with a quadrilateral represented by a net in the right column of Fig. 23. That all
nets in this column represent some quadrilaterals follows from the criterion given in
Sect. 9.

Let us begin with the quadrilateral in Fig. 23b. To transform it to a special pen-
tagon, we make a slit as in Fig. 23a. Lengthening of this slit corresponds to decreasing
x . In particular, when the slit hits the point a in Fig. 23a, x → 1. Now we follow
pictures Fig. 23 alphabetically, in the direction of increasing x . So in Fig. 23a the slit
shortens. As it vanishes we obtain Fig. 23b, transformation 1 happens, and we pass to
Fig. 23c.

In Fig. 23c, the slit lengthens till q hits b. A transformation 2 happens, detaching a
digon with corners x and b in Fig. 23c to obtain the quadrilateral Fig. 23d. A point c in
Fig. 23d maps to the same point as x . A digon with the corners b and c is attached to
the interval [b, c] of the quadrilateral, resulting in a pentagon Fig. 23e. The slit shortens
towards x in Fig. 23e.When it hits x , the points x and c collide, andwe get a quadrilateral
in Fig. 23f. A transformation 1 happens at Fig. 23f, and the slit lengthens towards 1 in
Fig. 23g. As it hits 1, a disk with the red (dotted line) boundary is detached, resulting
in the quadrilateral Fig. 23h. The point e in Fig. 23h maps to the same point as 1.
A transformation 3 happens in Fig. 23h, with a disk with black (solid line) boundary
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Fig. 22. Nets for a part of the global family in Example 6

attached in Fig. 23i. As the slit in Fig. 23i shortens and q hits 1, the points 1 and e collide,
and we get the quadrilateral Fig. 23j.

Transformations occurring in the right column of Fig. 23 are: 1, 2, 1, 3, 1. The last
quadrilateral shown is Fig. 23j. It is symmetric with respect to the reflection which
exchanges 0 and x while leaving 1 and ∞ fixed. It is easy to see that in the further
continuation of the process we will obtain all pictures Fig. 23 in the reverse order (i)–(a)
subject to a reflection exchanging 0 and x .
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Fig. 23. Nets for a half of the global family in Example 7

So Fig. 23 represents only one half of the global family. The global family is sym-
metric, with the symmetry exchanging (0) and (x). The full sequence of special points is

(1, x, x, 1, 1, 1, 0, 0, 1).
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Appendix I. Monodromy Representations Corresponding to Quadrilaterals

A monodromy representation consists of 4 matrices in SL(2, C) which satisfy the rela-
tion (10). For real equations (4) these four matrices can be represented as products of
reflections in the circles C j containing the images of the sides of a special pentagon.
Here we will discuss which monodromy representations correspond to real equations,
and how to find the reflections σ j from matrices Tj .

This problem was addressed in [8], and we begin by restating the result obtained
there. First of all, we change the reference point of the fundamental group in Fig. 1 to
the point−1 as in Fig. 24, and deform the loops accordingly. Now consider a symmetric
set of generators of the fundamental group shown in Fig. 25. Let N1, N2, N3 be the
monodromy matrices corresponding to γ1, γ12, γ123. We have

N1 = T1, N2 = T1T2, N3 = T1T2T3.

When none of the κ j is an integer, monodromy representation determines equation (4)
uniquely for given real x and κ j [8, 4.2, 4.3]. This implies that monodromy representa-
tions correspond to real solutions of (4) normalized as in (9) with x0 = −1 if and only
if

N j = N−1
j , 1 ≤ j ≤ 3, (35)

which is equivalent to the condition obtained in [8].
We will derive a different condition, without the assumption on the κ j .
Consider an arbitrary quadruple of SL(2, C) matrices satisfying

T1T2T3T4 = id. (36)

0 1 x-1
1 2 3

4

Fig. 24. Modified loops

0 1 x-1
1

12
123

Fig. 25. Symmetric loops
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SL(2, C) acts on these quadruples by simultaneous conjugation. To parametrize con-
jugacy classes of monodromy representations we denote

t j = Tr Tj , t jk = Tr (Tj Tk) = Tr (TkTj ).

Conjugacy classes are parametrized by 7 complex numbers

t1, t2, t3, t4, t12, t23, t13 (37)

which are subject to one relation

t12t23t13 + t212 + t223 + t213
−t12(t1t2 + t3t4) − t23(t2t3 + t1t4) − t13(t1t3 + t2t4)

+t21 + t22 + t23 + t24 + t1t2t3t4 = 4. (38)

This relation was found by Fricke and Klein [17], and was studied in [4,25] and else-
where. Parametrization ofmonodromy representations by these data is discussed in detail
in [29]. In particular it is proved there that there are open dense sets on the hypersurface
(38) and on the space of conjugacy classes of monodromy representations which are
homeomorphic.

We say that a representation is generated by reflections if there exist four circles
C1,C2,C3,C4 such that the reflections σ j in these circles satisfy

Tj = σ jσ j+1, j ∈ Z4. (39)

Notice that (39) implies (35).
Arbitrary reflection can be written as

σ(z) = az + b

cz − a
, (40)

which we represent by the matrix

(
a b
c −a

)
, |a|2 + bc = 1, (41)

where b, c are real. Product of reflections represented by matrices A, B is a linear-
fractional transformation with matrix AB. Matrices A associated with reflections are
characterized by the properties that det A = −1 and A = A−1.

Let � j be the matrices representing the reflections σ j . Then �1 = I because of
our normalization, and we have T1 = �2, T2 = �2�3, T3 = �3�4. So N1 = T1
has matrix �2, N2 = T1T2 has matrix �2�2�3 = �3, and N3 = T1T2T3 has matrix
�3�3�4 = �4. Thus (35) is satisfied.

Our first question is which representations are generated by reflections.
First we notice that composition of two reflections always has real trace: it is elliptic

if the circles cross, parabolic if they are tangent and hyperbolic if they are disjoint.
Second, if (39) holds then Tj Tj+1 = σ jσ j+2 also has real trace for each j ∈ Z4. Thus if
(39) holds, the first six parameters in (37) must be real. In addition to this we have the
following inequality:
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Theorem A1. A monodromy representation (36) is generated by reflections if and only
if t1, t2, t3, t4, t12, t23 are real and

� := t21 t
2
3 + t22 t

2
4 + t212t

2
23 − 4(t21 + t22 + t23 + t24 + t212 + t223)

+4(t1t2t12 + t2t3t23 + t1t4t23 + t3t4t12)

−2(t1t2t3t4 + t2t4t12t23 + t1t3t12t23) + 16 ≤ 0. (42)

Monodromy transformations Tj determine the reflections σ j uniquely unless all Tj com-
mute, and the projective monodromy group is isomorphic to a subgroup of the multi-
plicative group of the unit circle or of the additive group of the real line.

Proof of Theorem A1. Uniqueness. Suppose that we have (39) and

Tj = σ ′
jσ

′
j+1, j ∈ Z4. (43)

First we notice that if σ j = σ ′
j for some j , then σk = σ ′

k for all k. Indeed σ j = σ ′
j

together with (39) and (43) implies σ j+1 = σ ′
j+1 and so on.

Therefore, it is sufficient to prove that σ2 = σ ′
2. We have

T1 = σ1σ2, T2 = σ2σ3. (44)

Lemma A1. If T1 and T2 are non-identical linear-fractional transformations which
together have at least three fixed points, and (44) holds, then σ2 is the reflection in
the unique circle which passes through all fixed points of T1 and T2.

Proof. If T1 �= id then the circles C1 and C2 of σ1 and σ2 are distinct and their points
of intersection are exactly the fixed points of T1. So C2 contains the fixed points of T1,
and T2. This proves the lemma.

How can T1 and T2 have at most 2 fixed points together?

(a) One is elliptic and another one is parabolic, sharing one fixed point.
(b) Both are parabolic.
(c) Both are elliptic sharing two fixed points, in which case they commute.

Consider the case (a). Suppose that the shared fixed point is ∞, T1(z) = e2π iαz and
T2(z) = z + c. Then C1 and C2 must be lines through the origin, and C2,C3 must be
parallel lines perpendicular to c. ThereforeC2 is the line through the origin perpendicular
to c, that is this circle is uniquely defined by T1 and T2.

Now we address (b). If in case (b) T1 and T2 do not share their fixed points, we may
assume that T1(z) = z + c while T2 has fixed point d ∈ C. Then C2 is the unique line
through d perpendicular to c.

If the parabolic transformations in (b) share the fixed point, then they are simultane-
ously conjugate to z + a and z + b, and C2 is a line perpendicular to both a and b, so a
and b are collinear.

So either the circle C2 is uniquely defined by T1, T2, or T1 and T2 commute, and
either both are elliptic or both are parabolic. If they are both parabolic, their families of
invariant circles must be the same.

This argument applies to every pair Tk, Tk+1. Therefore, the only cases when the σ j
are not defined by the Tj are the cases stated in the theorem. This completes the proof
of uniqueness.



88 A. Eremenko, A. Gabrielov

Existence. We have already noticed that reality of t1, . . . , t4, t12, t23 is necessary
for (39). It remains to prove that when these traces are real, inequality (42) is necessary
and sufficient.

We write a reflection as in (40), (41) In particular, we obtain the reflection in the real
axis when a = i, b = c = 0, and in the line eiα when a = ieiα, b = c = 0.

The trace of a product is

tr (σ1σ2) = 2Re (a1a2) + b1c2 + c1b2. (45)

We normalize by SU (2) conjugation so that two adjacent circles are the real line and
the line {reiα : r ∈ R}, and write the four matrices of reflections that we want to find as

(
a1 b1
c1 −a1

)
,

(
ieiα 0

0 ie−iα

)
,

(
i 0
0 i

)
,

(
a2 b2
c2 −a2

)
,

in this order. We can further normalize, and assume that 1 is a fixed point of the product
of the third and fourth reflections:

ia2z + ib2
ic2z − ia2

= z, where z = 1, (46)

which gives
c2 − b2 = 2Re a2. (47)

Now we write that the traces of products are given (real) numbers:

2Re (−ie−iαa1) = t1, (48)

2 cosα = t2, (49)

2Re (ia2) = t3, (50)

2Re (a2a1) + b2c1 + c2b1 = t4, (51)

2Re (−ia1) = t12, (52)

2Re (ieiαa2) = t23. (53)

Equations (47)–(53) are easy to solve. First, a1 is determined from (48), (52) and a2
from (50), (53). Then products b j c j are found from

b1c1 = 1 − |a1|2, b2c2 = 1 − |a2|2, (54)

which express the fact that determinants of our matrices are −1, and together with (47)
and (51) permits to find b j , c j . This amounts to solving two quadratic equations. One of
them always has real solutions. Inequality (42) comes from the condition that the second
also has real solutions, namely that all b j , c j are real.

We give the details of the computation. From (48), (52),

−ia1 = 1

2

(
t12 − i

t12 cosα − t1
sin α

)
. (55)

Similarly, from (50), (53),

ia2 = 1

2

(
t3 + i

t3 cosα − t23
sin α

)
. (56)
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Then

1 − |a1|2 = 1

t22 − 4

(
t21 + t22 + t212 − t1t2t12 − 4

)
, (57)

and

1 − |a2|2 = 1

t22 − 4

(
t22 + t23 + t223 − t2t3t23 − 4

)
. (58)

Using (55) and (56) we obtain

2Re (a2a1) = 1

4 − t22
(2t1t23 + 2t3t12 − t1t2t3 − t2t12t23) , (59)

and using (47)

c2 − b2 = t3 cosα − t23
sin α

. (60)

Next, from (54), (57), (58), we obtain

b1c1 = 1

t22 − 4

(
t21 + t22 + t212 − t1t2t12 − 4

)
, (61)

and

b2c2 = 1

t22 − 4

(
t22 + t23 + t223 − t2t3t23 − 4

)
. (62)

Solving first the system (60), (62) with respect to b2, c2, we obtain a quadratic equation
with discriminant

t22 t
2
3 − 4t22 − 4t23 + 16 = (t22 − 4)(t23 − 4) ≥ 0,

because t j ∈ [−2, 2]. So we always have real solution c2, b2.
Next we solve the system (51) with (59) and (61) with respect to b1, c1, using the

known product b2c2 from (62). This also leads to a quadratic equation, whose discrimi-
nant is a polynomial in t12, t23 and t j . This polynomial factors (using Maple) with one
factor t22 − 4 < 0 and the other factor is � in (42).

This completes the proof.

Remark on the proof. In the process of recovery of σ j we had to solve two quadratic
equations, so in general we had 4 choices to make. On the other hand, our normalization
condition (46) leaves two choices because two circles intersect at two points. Next, we
never used t13 in our recovery procedure for σ j . As t13 satisfies the quadratic equation
(38), assigning t13 narrows our choices to two.

An interesting question is what happens when the monodromy group is conjugate to
a subgroup of SU (2). Every element of SU (2) is the product of two reflections in great
circles. If an element of SU (2) is represented as a product of two reflections, then these
reflections must be in great circles, because these circles contain the fixed points of the
element which are diametrally opposite.

An interesting special case is when all seven parameters in (37) are real. According
to [36, Prop. III.1.1] this happens if and only if he projective monodromy group is a
subgroup of SU (2) or SL(2, R). When the group is generated by reflections, the first six
parameters in (37) are real, so all seven will be real if and only if the discriminant of (38),
as a quadratic equation with respect to t13, is non-negative. Straightforward computation
shows that this discriminant is nothing but � defined in (42). Thus we obtain
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Theorem A2. Let T1, T2, T3, T4 beunitarymatrices satisfying (36), andall sevenparam-
eters in (37) are real. This representation is generated by reflections if and only if� = 0,
which is equivalent to

2t13 + t12t23 − t1t3 − t2t4 = 0. (63)

Equation (63) is what (38) becomes when � = 0.

Remark. We mention a simple geometric interpretation of our conditions.
Condition that t12, t23 are real: the trace of a product of two elliptic transformations

is real if and only if their four fixed points lie on a circle.
Condition � = 0 gives a relation between six angles associated to a spherical or

hyperbolic quadrilateral: four angles of the quadrilateral, and two angles between the
circles containing the images of opposite sides. These six angles serve as natural param-
eters: spherical or hyperbolic quadrilaterals with prescribed angles at the corners form
a one-parametric family, while circular quadrilaterals with prescribed corners form a
two-parametric family.

TheoremA2 can be compared with Jimbo’s asymptotics [30]. (Amisprint in themain
result in [30] was corrected in [5]). It follows from the explicit formula expressing the
asymptotics in terms of the monodromy that for SU (2) or SL(2, R) monodromies this
asymptotics is real if and only if � = 0. For general monodromies (not in SU (2)) it is
difficult to determine directly when Jimbo’s formula gives a real asymptotics.

Appendix II. Topological Classification of 4-Circle Chains

We recall that a 4-circle chain consists of 4 labeled circles C j on the Riemann sphere
such that

C j �= C j+1, C j ∩ C j+1 �= ∅, j ∈ Z4. (64)

In this section we give a topological classification of generic chains. Generic means
that there are no tangent circles and no triple intersections. Two chains are considered
equivalent if there is an orientation-preserving homeomorphism of the sphere which
maps the union of circles of one chain onto the union of circles of another chain.

In fact, we classify generic unordered quadruples of circles with the following prop-
erty: each circle intersects at least two other circles. There are two kinds of such quadru-
ples: those in which each circle intersects all three other circles (see Fig. 26) and those
with a pair of non-intersecting circles (see Fig. 27). Note that the quadruples in Fig. 26d
and 27k are not reflection symmetric, thus each of them represents two equivalence
classes. We omit the elementary but tedious proof that these exhaust all possibilities. To
see that all these cell decompositions are distinct we indicated the faces with more than
3 edges in each cell decomposition.

It follows from the classification that the circles in Fig. 26 can be arbitrarily ordered
to form a 4-circle chain, while the circles in Fig. 27 form a 4-circle chain when ordered
so that non-intersecting circles are not adjacent.

Notice two equivalent reformulations of this problem: topological classification of
arrangements of four planes in the hyperbolic space, subject to the intersection condition
(64), and topological classification of possible intersections of a sphere with four planes
in the Euclidean space, under the condition that the planes Pj can be so ordered that
each line Pj ∩ Pj+1 intersects the sphere.
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Fig. 26. Generic chains a–h. All pairs of circles intersect
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Fig. 27. Generic chains i–o. Some pairs are disjoint

Remarks and conjectures. If all pairs of circles in the chain intersect, then there are
only finitelymany nets on this chainwith prescribed angles. This follows from the results
of [27]. In this paper, Ihlenburg proves that all circular quadrilaterals can be obtained
from finitely many topological types by applying four explicitly defined operations. All
these operations do not decrease angles, and three of them increase some angles. The
only operation which leaves all angles unchanged requires two disjoint circles in the
chain.

It follows that real solutions of PVI corresponding to all chains in Fig. 26 can have
only finitely many special points on an interval between fixed singularities. On the other
hand, our examples 4, 6 suggest that for all chains containing pairs of disjoint circles the
number of special points is infinite. Moreover, it looks like it is infinite in one direction
when there is one pair of disjoint circles, and infinite in both directions if there are two
such pairs, like in Fig. 21 which is the same as Fig. 27o.

Appendix III. Moduli of Conformal Quadrilaterals

Consider a closed rectangle Q in the plane with vertices 0, 1, 1 + ia, ia.
The number a > 0 is called the modulus, a = mod Q. Any Borel measurable

function ρ(z) ≥ 0 defines a conformal metric ρ(z)|dz| on Q: the length of a curve γ

and the area of a set E ⊂ Q are defined as

�ρ(γ ) =
∫

γ

ρ(z)|dz|, and Aρ(E) =
∫
E

ρ2(z)dxdy.
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Let � be the set of all curves in Q connecting the horizontal sides. Define

�ρ(�) = inf
γ∈�

�ρ(γ ),

and

λ(�) = sup
ρ

�2ρ(�)

Aρ(Q)
, (65)

where the sup is taken over all metrics for which the numerator and denominator are
finite and not zero.

Lemma A2. [2, I.D, Example 1] λ(�) = a. Formula (65) defines the extremal length of
an arbitrary family of curves � in Q. So defined extremal length is a conformal invariant
of a family of curves.

Let �′ be the family of all curves in Q connecting the vertical sides. Then evidently

λ(�)λ(�′) = 1. (66)

The following comparison inequalities immediately follow the from definition.

Lemma A3 [2, I.D, Theorem 2]. Consider two families of curves�1 and�2 and suppose
that every curve γ2 ∈ �2 contains some curve γ1 ∈ �1. Then λ(�1) ≤ λ(�2).

The assumption means that�1 has “more curves” and the curves of�2 are “longer”.
For a metric ρ, the intrinsic distance dρ(E1, E2) between two subsets E1 and E2 of

Q is defined as infimum of �ρ(γ ) over all curves connecting a point in E1 with a point
in E2.

Lemma A4. Suppose that a metric ρ has the following properties:

Aρ(B(r)) ≤ Kr2, (67)

for all r > 0 and for all intrinsic disks B(r) of radii r , the intrinsic ρ-distance between
the vertical sides is at least 2c, and the intrinsic ρ-distance between the horizontal sides
is less than ε/2.

Then mod Q ≤ δ, where

δ = 4(K + 1)

log(c/ε)
→ 0

as ε → 0, for any fixed K > 0, c > 0.

Proof. Choose a curve γ0 connecting the horizontal sides, and such that �ρ(γ0) < ε.
Let P be a point on γ0. Consider the closed ρ-disks B(ε) and B(c) of radii ε and c, both
centered at P . Then B(ε) contains γ0. Let �′ be the family of all curves in Q connecting
the vertical sides. Every curve γ ′ of this family crosses γ0, therefore γ ′ intersects both
B(ε) and Q\B(c). Therefore

λ(�′) ≥ λ(�1), (68)

where �1 is the family of all curves in Q connecting B(ε) with Q\B(c). To estimate
λ(�1) from below, consider the metric τ(z)|dz| defined by the function

τ(z) = ρ(z)

log(c/ε)dρ(z, P)
, z ∈ B(c)\B(ε),
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and zero otherwise. For every γ1 ∈ �1 we have

�τ (γ1) ≥ 1

log(c/ε)

∫ c

ε

ρ(z)|dz|
dρ(z, P)

≥ 1

log(c/ε)

∫ c

ε

ds

s
≥ 1.

Here we made the change of the variable s = dρ(z, P) and used the evident inequality
ds ≤ ρ(z)|dz|.

To estimate the τ -area of Q we define r0 = ε, rk = 2kr0, k = 1, . . . , N , N =
[log2(c/ε)] + 1, and let Bk be the ρ-disk of radius rk centered at P . Then, using (67),
we obtain

Aρ(Q) ≤ 1

log2(c/ε)

N∑
k=1

∫
Bk\Bk−1

ρ2(z)dxdy

r2k−1

≤ 4

log2(c/ε)

N∑
k=1

Aρ(Bk)

r2k

≤ 4K N

log2(c/ε)
≤ 4(K + 1)

log(c/ε)
.

Thus λ(�1) ≥ (log(c/ε))/(4(K + 1)), and using (66) and (68), we obtain

mod Q = λ(�) ≤ 4(K + 1)/(log(c/ε)).

This proves the lemma. ��
The upper half-plane can be mapped conformally onto Q so that

(0, 1, x,∞) 	→ (0, 1, 1 + ia, ia)

by the Schwarz–Christoffel formula. Let

φ(z) =
∫ z

0

dζ√
z(z − 1)(z − x)

.

Then the desired conformal map is φ(z)/φ(1), and the modulus a(x) = −iφ(∞)/φ(1).
It follows from Lemma A3 that x 	→ a(x) is increasing homeomorphism of (1,∞) onto
(0,+∞).

In our applications, the metric ρ arises as a pull-back of the standard spherical metric
of curvature 1 on the sphere S by a conformal local homeomorphism f : Q → S. If f is
p-valent (which means that every point has at most p preimages), then (67) is satisfied
with K = πp. Indeed, for spherical discs on S, (67) is satisfied with K = π by direct
computation, and f (B(r)) is evidently contained in a disk of radius r in S.
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