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Abstract: We prove that the eigenvectors associated to small enough eigenvalues of a
heavy-tailed symmetric random matrix are delocalized with probability tending to one
as the size of the matrix grows to infinity. The delocalization is measured thanks to a
simple criterion related to the inverse participation ratio which computes an average
ratio of L4 and L2 -norms of vectors. In contrast, as a consequence of a previous result,
for random matrices with sufficiently heavy tails, the eigenvectors associated to large
enough eigenvalues are localized according to the same criterion. The proof is based
on a new analysis of the fixed point equation satisfied asymptotically by the law of a
diagonal entry of the resolvent of this matrix.

1. Introduction

Anderson localization has attracted a lot of interest in both mathematical and physical
communities over the past decades (we refer to the book [29] and the recent monograph
[8]). One of the most tractable models to study this phenomenon is given by random
Schrödinger operators on trees, see notably [1,2] for the derivation of the phase diagram
at the physical level of rigor, [3–5] for proofs of localization at strong disorder and
high energy, and [6,7,26,27] for proofs in the regime of delocalization. It was shown
that at small energy the system displays delocalized waves whereas at large energy
waves are localized. This phenomenon is related to the transition between a continuous
spectrum and a discrete spectrum. Even, a transition between these two phases at a given
energy, the so-called mobility edge, could be proved [7]. Such a transition is expected
to happen in much more general settings, see e.g. [24]. In this article, we prove the
existenceof a similar phenomenon for randommatriceswith heavy tails, as conjectured in
[17,31,33]. This is in contrast with the full delocalization observed for light tails Wigner
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matrices [21–23]. Indeed, we shall prove that for Lévy matrices with heavy enough tail,
eigenvectors are delocalized for small enough energy, whereas they are localized for
large enough energy. We are not able to prove a sharp transition but the mobility edge
value is predicted in [17,33] based on the replica trick. In fact, we already proved in [16]
that eigenvectors are delocalized provided the entries have roughly speaking finite L1-
norm, whereas a localization phenomenon appears for sufficiently heavy tail and large
energy. However, we left open the question of proving delocalization at small energy
and very heavy tails, or at least to exhibit a single criterion that would allow one to
distinguish these two phases. In this article we remedy this point.

Let us first describe roughly our main results. Consider a symmetric matrix A of size
n × n with independent equidistributed real entries above the diagonal. Assume that the
tail of Ai j is such that, for some 0 < α < 2,

nP(|Ai j | ≥ t) �t→∞ t−α ,

(in a sense which will be made precise later on). Then, for z ∈ C\R, consider the
following fractional moment of the resolvent:

yz(β) = 1

n

n∑

k=1

(�(A − z I )−1
kk )β , (1)

(yz , as other variables in this text, may depend implicitly in n). For β = 1, as n goes
to infinity and then z goes to E ∈ R on the real line, yz(1)/π converges towards the
spectral density, which turns out to be positive [11,12,15]. However, we proved in [16]
that for β = α/2, and for sufficiently heavy tails (0 < α < 2/3), as n goes to infinity
and then z goes to E ∈ R large enough, yz(α/2) goes to zero. This can be shown to
imply a localization of eigenvectors with large enough eigenvalue or energy. On the
other end, we prove in the present article that for 0 < α < 2 (outside a countable subset
of (0, 2)), as n goes to infinity and then z goes to E ∈ R small enough, yz(α/2) is
bounded below by a positive constant. Back to eigenvectors, this in turn allows us to
prove delocalization at small energies versus localization at high energies according to
the following criterion. Consider an orthonormal basis of Rn of eigenvectors of A. Let
I = [E − ηn, E + ηn] be an interval of the real line so that ηn goes to zero as n goes to
infinity. Let �I denote the set of eigenvectors of A with eigenvalues in I and set, if �I
is not empty,

QI = n
n∑

k=1

⎛

⎝ 1

|�I |
∑

u∈�I

〈u, ek〉2
⎞

⎠
2

.

We will explain below why QI is related to the nature of eigenvectors in �I . Then, the
main result of this article is that for ηn going to zero more slowly than n−ρ for some
ρ > 0, for E large enough, QI goes to infinity (Theorem 1.1), whereas for E small
enough, it remains finite (Theorem 1.2). See Fig. 1 for an illustration of known and
predicted results on eigenvectors.

Let us now describe our results more precisely. For integer n ≥ 1, we consider an
array (Ai j )1≤i≤ j≤n of i.i.d. real random variables and set, for i > j , Ai j = A ji . Then,
we define the random symmetric matrix:

A = (Ai j )1≤i, j≤n .
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Fig. 1. Left illustration of known results on eigenvectors. The blue ‘loc’ zone represents the localization
regime in Theorem 1.1, the red ‘deloc’ zone is Theorem 1.2. The pink ‘weak deloc’ zone is the L∞-bound
on eigenvectors (5), [16, Theorem 1.2]. Right the phase diagram of Bouchaud–Cizeau [17] as corrected by
Tarquini–Biroli–Tarzia [33]. The mobility edge is the boundary of the localization and delocalization regimes

The eigenvalues of the matrix A are real and are denoted by λn ≤ · · · ≤ λ1. We also
consider an orthogonal basis (u1, . . . , un) of Rn of eigenvectors of A, for 1 ≤ k ≤ n,
Auk = λkuk .

If X11 = √
nA11 is a random variable independent of n and with variance equal to

1, then A is a normalized Wigner matrix. In the large n limit, the spectral properties of
this matrix are now well understood, see e.g. [9,10,14,20,32]. The starting point of this
analysis is the Wigner’s semicircle law, which asserts that for any interval I ⊂ R, the
proportion of eigenvalues in I is asymptotically close to μsc(I ), where μsc is the distri-
bution with support [−2, 2] and density fsc(x) = 1

2π

√
4 − x2. Many more properties

of the spectrum are known. For example, if X11 is centered and has a subexponential
tail, then, from [22,23], for any p ∈ (2,∞] and ε > 0, with high probability,

max
1≤k≤n

‖uk‖p ≤ n1/p−1/2+ε, (2)

where for u ∈ R
n , ‖u‖p = (∑n

i=1 |ui |p
)1/p and ‖u‖∞ = max |ui |. This implies that

the eigenvectors are strongly delocalized with respect to the canonical basis.
In this paper, we are interested in heavy-tailed matrices, it corresponds to the assump-

tion that the measure defined on R+ = (0,∞),

Ln(·) = nP(|A11|2 ∈ ·) (3)

converges vaguely as n goes to infinity to a (non trivial) Radon measure L on R+. For
example, if A11 is a Bernoulli 0-1 variable with mean c/n, then L is equal cδ1. In this
case, (up to the irrelevant diagonal terms) A is the adjacency matrix of an Erdős-Rényi
graph, where each edge is present independently with probability c/n. In this paper,
we will focus on Lévy matrices introduced by Bouchaud and Cizeau [17]. They can be
defined as follows. We fix 0 < α < 2 and assume that X11 = n1/αA11 is a random
variable independent of n such that

P(|X11| ≥ t) ∼t→∞ t−α. (4)

In the above setting, they correspond to the case L = (α/2)x−α/2−1dx , where dx is
the Lebesgue measure on R+. For technical simplicity, we will further restrict to X11 a
symmetric α-stable random variable such that for all t ∈ R,

E exp(i t X11) = exp(−σα|t |α),
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with σα = π/(2 sin(πα/2)�(α)). With this choice, the random variable X11 is normal-
ized in the sense that (4) holds.

The spectrum of heavy-tailed matrices is far from being perfectly understood. It
differs significantly fromclassicalWignermatrices. Thismodel of randommatrix admits,
as scaling limit, a self-adjoint operator on a random tree (see [15]). In the Lévy case (4),
for any interval I ⊂ R, the proportion of eigenvalues in I is asymptotically close toμ
(I )
where the probability measureμ
 depends on 0 < α < 2, it is symmetric, has supportR,
a bounded density f
 which is analytic outside a finite set of points. Moreover, f
(0) has
an explicit expression and as x goes to ±∞, f
(x) ∼ (α/2)|x |−α−1, see [11,13,15,19].

The eigenvectors of Lévy matrices have been rigorously studied in [16]. It is shown
there that if 1 < α < 2, there is a finite set Eα such if K ⊂ R\Eα is a compact set, for
any ε > 0, with high probability,

max {‖uk‖∞ : λk ∈ K } ≤ n−ρ+ε, (5)

where ρ = (α − 1)/((2α) ∨ (8 − 3α)). Since ‖u‖p ≤ ‖u‖1−2/p∞ ‖u‖2/p2 , it implies that
the L p-norm of most eigenvectors is O(n2ρ/p−ρ+o(1)). Notice that when α → 2, then
ρ → 1/4 and it does not match with (2). We do not expect the upper bound (5) to be
optimal.

When 0 < α < 1, the situation turns out to be very different. In [17], Bouchaud
and Cizeau have conjectured the existence of a mobility edge, Eα > 0, such that all
eigenvectors uk with |λk | < Eα − o(1) are delocalized in a sense similar to (5) while
eigenvectors uk with |λk | > Eα + o(1) are localized, that is they have a sparse repre-
sentation in the canonical basis. A nearly-explicit formula for Eα is computed in [33].
In [16], the existence of this localized phase was established when 0 < α < 2/3. More
precisely, for I an interval ofR, as above�I is the set of eigenvectors whose eigenvalues
are in I . Then, if �I is not empty, for 1 ≤ k ≤ n, we set

PI (k) = 1

|�I |
∑

u∈�I

〈u, ek〉2,

where |�I | is the cardinal of �I . In words, PI (k) is the average amplitude of the k-th
coordinate of eigenvectors in �I . Theorem 1.1 in [16] asserts that |�I | is of order n|I |
for intervals I of length |I | ≥ n−ρ for some ρ > 0 (depending on α). By construction,
PI is a probability vector:

n∑

k=1

PI (k) = 1.

Observe also that PR(k) = 1/n. If the eigenvectors in �I are localized and I contains
few eigenvalues, then we might expect that for some k, PI (k) � 1/n, while for most of
the others PI (k) = o(1/n). Alternatively, if the eigenvectors in�I are well delocalized,
then PI (k) = O(1/n) for all k.More quantitatively, wewill measure the (de)localization
of eigenvectors through

QI = n
n∑

k=1

PI (k)
2 ∈ [1, n]. (6)

The scalar log(QI ) is proportional to the Rényi divergence of order 2 of PI with respect
to the uniform measure (1/n, . . . , 1/n). If QI ≤ C then for any t > 0, the number of k
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such that PI (k) ≥ t
√
C/n is at most n/t2. The scalar QI is also closely related to the

inverse participation ratio, which can be defined as (the inverse of)

�I = n

|�I |
∑

u∈�I

n∑

k=1

〈u, ek〉4 = n

|�I |
∑

u∈�I

‖u‖44 ∈ [1, n].

Using
∑

u∈S x4u ≤ (
∑

u∈S x2u )2 ≤ |S|∑u∈S x4u , we find

QI ≤ �I ≤ QI |�I |.
We will write that a sequence of events En defined on our underlying probability

space holds with overwhelming probability, if for any t > 0, ntP(Ec
n) goes to 0 as n

goes to infinity. As we shall check, [16, Theorem 1.3] implies the following localization
statement.

Theorem 1.1 (Localization of eigenvectors of large eigenvalues [16]). Let 0 < α < 2/3,
0 < κ < α/2 and ρ = α/(2 + 3α). There exists Eα,κ such that for any compact
K ⊂ [−Eα,κ , Eα,κ ]c, there is a constant c1 > 0 and, if I ⊂ K is an interval of length
|I | ≥ n−ρ(log n)2, then

QI ≥ c1|I |− 2κ
2−α ,

with overwhelming probability.

In this work, we shall prove the converse of this statement and prove notably that
there exists a neighborhood of 0 where eigenvectors are delocalized.

Theorem 1.2 (Delocalization of eigenvectors of small eigenvalues). There exists a
countable set A ⊂ (0, 2) with no accumulation point on (0, 2)\{1/2, 1} such that the
following holds. Let α ∈ (0, 2)\A and ρ′ = α/(4+α)∧1/4. There are E ′

α > 0 and con-
stants c0, c1 > 0 such that, if I ⊂ [−E ′

α, E ′
α] is an interval of length |I | ≥ n−ρ′

(log n)c0 ,
then

QI ≤ c1,

with overwhelming probability.

As we shall see in the course of the proof, QI is finite for I = [E − η, E + η] with
η going to zero iff the fractional moment of the resolvent yz(α/2), defined in (1), is
bounded below by a positive constant as n goes to infinity. Our point will therefore be
to provide such a bound.

We note that the parameter QI could be replaced for any p > 1 by

n p−1
n∑

k=1

PI (k)
p.

Then, the statements of Theorems 1.1 and 1.2 are essentially unchanged (up tomodifying
the value of ρ′ in Theorem 1.2 and the exponent δ > 0 in the lower bound QI ≥ c1|I |−δ

in Theorem 1.1). We have chosen to treat the case p = 2 for its connection with the
inverse participation ratio.

There are still many open problems concerning Lévy matrices. In the forthcoming
Corollary 5.13,weprove a local law (i.e. a sharp quantitative estimate of |�I | for intervals
I of vanishing size) which improves for small value of α on Theorem 1.1 in [16]. We
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conjecture that such local law holds for all α ∈ (0, 2) and for all intervals I of length
much larger that 1/n.

There is no rigorous results on the local eigenvalue statistics for Lévy matrices, see
[33] for a recent account of the predictions in the physics literature. It is expected that for
1 < α < 2 the local eigenvalue statistics are similar to those of the Gaussian Orthogonal
Ensemble (GOE). For 0 < α < 1 and energies larger than some Eα , we expect that the
local eigenvalue statistics are asymptotically described by a Poisson point process. In
the regime 0 < α < 1 and energies smaller than Eα , [33] also predicts a GOE statistics.

For 0 < α < 1, proving the existence of such mobility edge Eα is already a very
interesting open problem. The core of the difficulty is to better understand a fixed point
equation that is satisfied by the weak limit of (A − z I )−1

11 as n goes to infinity. More
precisely, in [15] it is shown that the analytic function z �→ (A− z I )−1

11 onC+ converges
weakly for the finite dimensional convergence to the random analytic function z �→
R
(z) on C+ which is the unique solution of the recursive distributional equation for all
z ∈ C+,

R
(z)
d= −

⎛

⎝z +
∑

k≥1

ξk Rk(z)

⎞

⎠
−1

, (7)

where {ξk}k≥1 is a Poisson process on R+ of intensity measure (α/2)x−α/2−1dx , inde-
pendent of (Rk)k≥1, a sequence of independent copies of R
. In [15], R
(z) is shown to
be the resolvent at a vector of a random self-adjoint operator defined on Aldous’ Poisson
Weighted Infinite Tree (for its precise definition, see [15]). Equation (7) is closely related
to the equation satisfied by the resolvent of random Schrödinger operator on a tree (see
the monograph [8]). The random diagonal potential in random Schrödinger operators is
replaced here by a random hopping factor between the vertices of the tree. The mobil-
ity edge could be alternately described as the transition between absolutely continuous
and singular spectrum for this random self-adjoint operator defined on Aldous’ Poisson
Weighted Infinite Tree. Without entering into more details, we may mention that The-
orems 1.1 and 1.2 have a consequence for the spectral decomposition of this random
operator (respectively, almost surely, no absolutely continuous spectrum at high energies
for 0 < α < 2/3 and purely absolutely continuous spectrum at low energies). Also, it
would be interesting to understand to which extent the methods of [5,7] are applicable
for this random operator.

More generally, the Lévy matrix is an example of a broader class of random matrices
with heavy tails. The qualitative behavior of the spectrum depends on the Radonmeasure
Ln in (3) and its vague limit, which we denoted by L . It is a challenging question to
understand how L influences the nature of the spectrum around a given energy (regularity
of the limiting spectral measure, localization of eigenvectors, local eigenvalue statistics).

The paper is organized as follows. In Sect. 2, we prove that Theorem 1.1 is a direct
consequence of a result in [16]. Section 3 gives an outline of the proof of Theorem 1.2.
The actual proof is contained in Sects. 4 and 5.

2. Proof of Theorem 1.1

We use a localization estimate proved in [16]. For 0 < α < 2/3, 0 < κ < α/2 and
ρ = α/(2 + 3α), it follows from [16, Theorem 1.3] that there exists Eα,κ such that for
any compact K ⊂ [−Eα,κ , Eα,κ ]c, there are constants c0, c1 > 0 and for all integers
n ≥ 1, if I ⊂ K is an interval of length |I | ≥ n−ρ(log n)2, then
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nα/2−1
n∑

k=1

PI (k)
α/2 ≤ c1|I |κ , (8)

with overwhelming probability.
We may use duality to obtain from (8) a lower bound on QI . From Hölder inequality,

we write for 0 < ε < 1 and 1/p + 1/q = 1,

1 =
n∑

k=1

PI (k) = 1

n

n∑

k=1

(nPI (k))
ε(nPI (k))

1−ε

≤
(
nεp−1

n∑

k=1

Pεp
I (k)

)1/p (
n(1−ε)q−1

n∑

k=1

P(1−ε)q
I (k)

)1/q

.

We choose ε = α/(4 − α) and p = 2 − α/2. We have εp = α/2, (1 − ε)q = 2 and
p/q = 1 − α/2. Hence, if the event (8) holds, we deduce that

(c1|I |κ)
− q

p = c′
1|I |−

2κ
2−α ≤ QI .

It completes the proof of Theorem 1.1.

3. Outline of Proof of Theorem 1.2

3.1. Connection with the resolvent. For z ∈ C+ = {z ∈ C : �(z) > 0}, the resolvent
matrix of A is defined as

R(z) = (A − z I )−1.

The next lemma shows that the quadratic mean of the diagonal coefficients of the
resolvent upper bounds QI .

Lemma 3.1. Let η > 0, I = [λ − η, λ + η] and z = λ + iη ∈ C+. If |�I | �= 0, we have

QI ≤
(
n|I |
|�I |

)2 (1

n

n∑

k=1

(�Rkk(z))
2

)
.

Proof. We use the classical bound for 1 ≤ k ≤ n,

∑

u∈�I

〈u, ek〉2 ≤
n∑

j=1

2η2〈u j , ek〉2
η2 + (λ j − λ)2

= 2η�Rkk(z)

We get,

QI ≤ 4nη2

|�I |2
n∑

k=1

(�Rkk(z))
2,

as requested. ��
Incidentally, we remark from [16, Lemma 5.9] and the above proof of Theorem 1.1

that there is a converse lower bound of QI involving the average of (�Gkk(z))β for any
0 < β < 1.
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We may now briefly describe the strategy behind Theorem 1.2. Take I = [λ − η, λ+
η] ⊂ K be an interval and z = λ + iη. First, from [16, Theorem 1.1], there exists a
constant c > 0, such that, with overwhelming probability, |�I | ≥ cn|I |. Thanks to
Lemma 3.1, it is thus sufficient to prove that

1

n

n∑

k=1

(�Rkk(z))
2 = O(1).

From general concentration inequalities, it turns out that the above quantity is self aver-
aging for η ≥ n−ρ . Using the exchangeability of the coordinates, it remains to prove
that

E(�R11(z))
2 = O(1).

Now, the law of R11(z) converges as n goes to infinity to a limit random variable, say
R
(z), whose law satisfies a fixed point equation. In Sect. 4, in the spirit of [27], we will
study this fixed point and prove, by an implicit function theorem, that E(�R
(z))2 =
O(1). In Sect. 5, it will remain to establish an explicit convergence rate of R11(z) to
R
(z) to conclude the proof of Theorem 1.2. A careful choice of the norm for this
convergence will be very important. We outline the content of these two sections in the
next subsection.

3.2. The fixed point equations. The starting point in our approach is Schur’s complement
formula,

R11(z) = −
⎛

⎝z − n− 1
α X11 + n− 2

α

∑

2≤k,�≤n

X1k X1�R
(1)
k� (z)

⎞

⎠
−1

= −
⎛

⎝z + n− 2
α

∑

2≤k≤n

X2
1k R

(1)
kk (z) + Tz

⎞

⎠
−1

, (9)

where R(1) is the resolvent of the (n − 1) × (n − 1) matrix (Xk�)2≤k,�≤n and we have
set

Tz = −n− 1
α X11 + n− 2

α

∑

2≤k �=�≤n

X1k X1�R
(1)
k� (z).

It turns out that Tz is negligible, at least for �z large enough. Assuming that, we observe
that the moments of �R11(z) are governed by the order parameter

yz = 1

n

n∑

k=1

(�Rkk(z))
α
2 .

Indeed,

�R11(z) � −�
⎛

⎝z + n− 2
α

∑

2≤k≤n

X2
1k R

(1)
kk (z)

⎞

⎠
−1

≤
⎛

⎝n− 2
α

∑

2≤k≤n

X2
1k�R(1)

kk (z)

⎞

⎠
−1

.
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The resolvent R and R(1) being close, we can justify that yz � 1
n

∑n
k=2(�R(1)

kk (z))
α
2 .

Then, taking moments and using the formula, for p > 0, �(x) > 0,

1

x p
= 1

�(p)

∫ ∞

0
t p−1e−xt dt, (10)

we deduce that

E[(�R11(z))
p] ≤ 1

�(p)

∫ ∞

0
t p−1

E[e−t (�R11(z))−1]dt

� 1

�(p)

∫ ∞

0
t p−1e−�(1−α/2)tα/2n−1∑n

k=2(�R(1)
kk (z))

α
2 dt

� 1

�(p)

∫ ∞

0
t p−1e−�(1−α/2)tα/2 yz dt, (11)

where, in the second step, we used that the variable X2
1k are in the domain of attraction of

the non-negative α/2-stable law (this approximation will be made more precise notably
thanks to Lemma 5.7). The main point becomes to lower bound yz . To this end, we shall
extend it as a function on K1 = {u ∈ C : arg(u) ∈ [−π

2 , π
2 ]} and set

γz(u) = �
(
1 − α

2

)
× 1

n

n∑

k=1

(−i Rkk(z) · u)
α
2

where

h · u = �(u)h + �(u)h̄ = (�(u) + �(u))�(h) + i(�(u) − �(u))�(h).

Observe that we wish to lower bound

γz(e
iπ/4) = 2

α
4 �
(
1 − α

2

)
× 1

n

n∑

k=1

(�(Rkk(z)))
α
2 = 2

α
4 �
(
1 − α

2

)
yz .

We shall study the function γz thanks to a fixed point argument. We shall use that
γz is homogeneous. Also, we shall further restrict ourselves to u in the first quadrant
K+

1 = {z ∈ C : arg(z) ∈ [0, π
2 ]}. Here and after, for z ∈ C, we take the argument arg(z)

in (−π, π ]. We can see that γz is approximately solution of a fixed point equation by
using (9). To state this result, let us first define the space Hα/2,κ , κ ∈ [0, 1), in which
we will consider γz . For any β ∈ C, we letHβ denote the space of C1 functions g from
K+

1 to C such that g(λu) = λβg(u), for all λ ≥ 0. For κ ∈ [0, 1), we endow Hβ with
the norms

‖g‖∞ = sup
u∈S+1

|g(u)|,

‖g‖κ = ‖g‖∞ + sup
u∈S+1

√
|(i · u)κ∂1g(u)|2 + |(i · u)κ∂i g(u)|2, (12)

where S+1 = {u ∈ K+
1 , |u| = 1} and ∂εg(u) ∈ C is the partial derivative of g at u with

respect to the real (ε = 1) or imaginary part (ε = i) of u. We denoteHβ,κ the closure of
Hβ for ‖.‖κ . The spaceHβ,κ is a Banach space. Notice also thatHβ,0 andHβ coincide.
The norm ‖.‖κ will turn out to be useful with κ > 0 to obtain concentration estimates
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for γz as well as to establish existence and good properties for its limit γ 

z (there κ ≥ 0

is sufficient).
We define formally the function F given for h ∈ K1, u ∈ S1+ and g ∈ Hα/2 by

Fh(g)(u) =
∫ π

2

0
dθ(sin 2θ)

α
2 −1
∫ ∞

0
dy y− α

2 −1
∫ ∞

0
dr r

α
2 −1

e−rh·eiθ
(
e−r

α
2 g(eiθ ) − e−yrh·ue−r

α
2 g(eiθ+yu)

)
. (13)

F−i z is related to a fixed point equation satisfied by γz . Namely let

cα = α

2
α
2 �(α/2)2

and ǔ = i ū = �(u) + i�(u). (14)

For z ∈ C+, we introduce the map Gz onHα/2 given by

Gz( f )(u) = cαF−i z( f )(ǔ) . (15)

Finally we let

γ̄z(u) = Eγz(u) = �
(
1 − α

2

)
E(−i R11(z) · u)

α
2 .

Then, γ̄z(u) ∈ Hα/2 and we shall prove that

Proposition 3.2. Let α ∈ (0, 2) and δ ∈ (0, α/2). There exists c > 0 such that if for
z ∈ C+ and some ε > 0, we have |z| ≤ ε−1, �z ≥ n−δ/α+ε, E(�R11(z))α/2 ≥ ε and
E|R11(z)| ≤ ε−1 then for all p ≥ α/2 and all n large enough (depending on α, ε, p),

‖γ̄z − Gz(γ̄z)‖1−α/2+δ ≤ (log n)c
(
η−α/2M̄α/2

z + η−α/2n−δ/2 + M̄1−α/2
z 1α>1

)

|E|R11(z)|p − rp,z(γ̄z)| ≤ (log n)c
(
η−p M̄α/2

z + η−α/2n−δ/2
)

|E(−i R11(z))
p − sp,z(γ̄z(1))| ≤ (log n)c

(
η−p M̄α/2

z + η−α/2n−δ/2
)
,

where we have set η = �z, M̄z = E�R(1)
22 (z)/(n�z) and, for f ∈ Hα/2

rp,z( f ) = 21−p/2

�(p/2)2

∫ π
2

0
dθ sin(2θ)p/2−1

∫ ∞

0
drr p−1er(i z)·eiθ−rα/2 f (eiθ ),

and for x ∈ K1,

sp,z(x) = 1

�(p)

∫ ∞

0
drr p−1eirz−rα/2x .

Using that R(1) is close to R, we can upper bound M̄z if we can lower bound γ̄z by
(11). Similarly, we can upper boundE|R11|p if we can lower bound γ̄z by (11). Assuming
for a moment that we can obtain such bounds (by using a bootstrap argument) the above
proposition shows that γ̄z is approximately a fixed point for Gz .

It turns out that, for any z ∈ C+, γ̄z converges to γ 

z ∈ Hα/2 as n goes to infinity,

where γ 

z is a solution of the equation f = Gz( f ) (even we cannot prove that there is

a unique solution of this equation). We will check that this last equation has a unique
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explicit solution of interest for z = i t , t ≥ 0 with γ 

0 also in Hα/2. We will study the

solutions of the equation f = Gz( f ) for z close to 0 and f close to γ 

0 thanks to the

Implicit Function Theorem on Banach space. We will show that for most α in (0, 2), if
|z| is small enough, Gz has a unique fixed point in the neighborhood of γ 


0 . Moreover,
the real part of this solution is lower bounded by a positive constant. Let us summarize
these results in the following statement:

Proposition 3.3. There exists a countable subsetA ⊂ (0, 2)with no accumulation point
on (0, 2)\{1/2, 1} such that the following holds. Let κ ∈ [0, 1) and α ∈ (0, 2)\A. There
exists τ > 0 such that if |z| ≤ τ , then γ 


z is the unique f ∈ Hα/2,κ such that f = Gz( f )
and ‖ f − γ 


0 ‖κ ≤ τ . Moreover, uniformly in |z| ≤ τ , γ 

z (eiπ/4) is real and bounded

from below and, for any p > 0, r p,z(γ 

z ) is bounded from above.

The possible existence of the setA should be purely technical. Our proof requires that
A contains {1/2, 1}, but it could be larger as our argument is based on the fact that some
function, analytic in α, does not vanish except possible on a set with no accumulation
points.

We will also deduce the following result.

Proposition 3.4. Let A be as in Proposition 3.3, α ∈ (0, 2)\A, κ ∈ [0, 1) and γ 

z be as

in Proposition 3.3 for |z| small enough. There exist τ > 0 and c > 0 such that if |z| ≤ τ

and ‖γ − γ 

z ‖κ ≤ τ then

‖γ − γ 

z ‖κ ≤ c ‖γ − Gz(γ )‖κ .

As a corollary of the above three propositions, we will prove that γz(eiπ/4) is lower
bounded for n sufficiently large. In the next section, we study the fixed point equation
for Gz and establish Propositions 3.3 and 3.4. In Sect. 5, we will prove Proposition 3.2
and complete the details of the proof of Theorem 1.2.

4. Analysis of the Limiting Fixed Point Equation

In this section, we study the fixed point equation f = Gz( f ) where Gz was defined
by (15). We start with general properties of the function Gz in Subsection 4.1. Then, in
Subsection 4.2, we will study the regime z in a neighborhood of 0 thanks to an implicit
function theorem and provide the proofs of Propositions 3.3 and 3.4.

4.1. Analysis of the function Fh. In this first part, we show that the function Fh is well
defined as amap fromH0

α/2,κ = ∪ε>0Hε
α/2,κ intoHα/2,κ withHε

α/2,κ the set of functions
in f ∈ Hα/2,κ such that � f (u) > ε for all u in S+1 . We also check that Fh has good
regularity properties. Notice thatH0

α/2,κ is an open subset ofHα/2,κ for our ‖ · ‖κ norm.

We set Hε
α/2 = Hε

α/2,0. Finally, the closure H̄0
α/2,κ of H0

α/2,κ is the set of functions in
Hα/2,κ whose real part is non-negative on K+

1 .

Lemma 4.1. Let h ∈ K1 and 0 < α < 2. Let κ ∈ [0, 1). Fh defines a map from H0
α/2,κ

toHα/2,κ . Moreover, if�(h) > 0, Fh defines a map from H̄0
α/2,κ to H̄0

α/2,κ and, for some
constant c = c(α) > 0,

‖Fh(g)‖κ ≤ c

�(h)α/2 +
c

�(h)α
‖g‖κ . (16)
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Finally, if g ∈ H̄0
α/2,κ , |rp,ih(g)| ≤ c/�(h)p and |sp,ih(g(1))| ≤ c/�(h)p for some

constant c = c(α, p).

We shall also prove that Fh is Fréchet differentiable and more precisely

Lemma 4.2. Let h ∈ K1, 0 < α < 2, κ ∈ [0, 1), and g ∈ H0
α/2,κ . The Fréchet derivative

of Fh at g is the bounded operator given, for any f ∈ Hα/2,κ , by

DFh(g)( f )(u)

=
∫ π

2

0
dθ(sin 2θ)

α
2 −1

∫ ∞

0
dy y− α

2 −1

×
∫ ∞

0
dr rα−1e−rh·eiθ

(
f (eiθ )e−r

α
2 g(eiθ ) − f (eiθ + yu)e−yrh·ue−r

α
2 g(eiθ+yu)

)
.

Moreover, (h, g) �→ Fh(g) is continuously differentiable onK1 ×H0
α/2,κ and (h, g) �→

DFh(g) is continuous in K1 × H0
α/2,κ → B(Hα/2,κ ,Hα/2,κ ).

As a corollary we shall see that all the functions defined in Proposition 3.2 are
Lipschitz in some appropriate norm.

Lemma 4.3. For any α ∈ (0, 2), κ ∈ [0, 1) and a > 0, Gz is Lipschitz on Ha
α
2 ,κ

: there

exists c > 0 such that for any z ∈ C and f, g ∈ Ha
α
2 ,κ

,

‖Gz( f ) − Gz(g)‖κ ≤ c ‖ f − g‖κ + c(‖ f ‖κ + ‖g‖κ)‖ f − g‖∞ .

Similarly, for any z ∈ C and f, g ∈ Ha
α
2 ,κ

, any x, y ∈ K1, �(x)∧�(y) ≥ a, any p > 0,

|rp,z( f ) − rp,z(g)| ≤ c ‖ f − g‖∞ and |sp,z(x) − sp,z(y)| ≤ c |x − y|.
Proof of Lemmas 4.1 and 4.2. We treat simultaneously the case where g ∈ Ha

α/2,κ for

some a > 0 or g ∈ H̄0
α/2,κ but�(h) ≥ b > 0.We set for ζ ≥ 0 (mainly ζ = 0, α, α/2, 1)

and f ∈ Hζ,κ ,

ϕ
ζ,h
g, f (u) =

∫ π
2

0
dθ(sin 2θ)

α
2 −1

∫ ∞

0
dy y− α

2 −1
∫ ∞

0
dr r

α
2 +ζ−1

(
f (eiθ )e−rh·eiθ e−r

α
2 g(eiθ )

− f (eiθ + yu)e−rh·(eiθ+yu)e−r
α
2 g(eiθ+yu)

)
.

This corresponds to the definition of Fh when f = 1 and ζ = 0, and to its derivative
in the direction of f when ζ = α/2. We need to check that ϕ

ζ,h
g, f has finite norm. To

take into account the singularity of the integration in y at the origin, we cut the integral
over y in two pieces: one accounts for integration over [0, 1/2] and the other for the
integration over [1/2,+∞). We let ϕζ,h

g, f (u) = ϕ
ζ,h
g, f (1)(0) − ϕ

ζ,h
g, f (1)(u) + ϕ

ζ,h
g, f (2)(u) with

ϕ
ζ,h
g, f (1)(u) =

∫ π
2

0
dθ(sin 2θ)

α
2 −1

∫ ∞
1
2

dy y−1− α
2

∫ ∞

0
dr r

α
2 +ζ−1e−rh·(eiθ+yu)

× f (eiθ + yu)e−r
α
2 g(eiθ+yu),
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ϕ
ζ,h
g, f (2)(u) =

∫ π
2

0
dθ(sin 2θ)

α
2 −1

∫ 1
2

0
dy y−1− α

2

∫ ∞

0
dr r

α
2 +ζ−1

(
f (eiθ )e−rh·eiθ e−r

α
2 g(eiθ )

− f (eiθ + yu)e−rh·(eiθ+yu)e−r
α
2 g(eiθ+yu)

)
.

For the first expression, we can bound the integral uniformly in θ by using �(h · u) ≥
�(h)|u| for all u ∈ K+

1 . We get a finite constant C such that

|ϕζ,h
g, f (1)(u)| ≤ C‖ f ‖∞ sup

θ∈[0, π
2 ]

∫ ∞
1
2

dy y−1− α
2

∫ ∞

0
dr r

α
2 −1+ζ |eiθ + yu|ζ e−ar

α
2 |eiθ+yu| α

2 e−br |eiθ+yu|

≤ C‖ f ‖∞ sup
θ∈[0, π

2 ]

∫ ∞
1
2

dy y−1− α
2 |eiθ + yu|− α

2

which are bounded uniformly in u ∈ K+
1 (observe that |eiθ + yu| ≥ 1 for eiθ ∈ S+1 and

y ≥ 0). The constant C depends on a ∨ b > 0. We used (and will use again repeatidly)
the following straightforward inequality : for any h ∈ K1, x ∈ K1 and β > 0,

∫ ∞

0

∣∣∣∣r
β−1e−rhe−r

α
2 x
∣∣∣∣ dr ≤ min

(
�

(
2β

α

)
�(x)−

2β
α , �(β)�(h)−β

)
. (17)

Similarly for ϕ
ζ,h
g, f (2), we have to bound, for 0 ≤ y ≤ 1/2 and 0 ≤ θ ≤ π/2,

L(r, y, θ) :=
∣∣∣∣e

−rh·eiθ
(
f (eiθ )e−r

α
2 g(eiθ ) − f (eiθ + yu)e−yrh·ue−r

α
2 g(eiθ+yu)

)∣∣∣∣

≤
∣∣∣∣( f (e

iθ ) − f (eiθ + yu)e−yrh.u)e−r
α
2 g(eiθ )

∣∣∣∣ e
−br

+ | f (eiθ + yu)|
∣∣∣∣e

−r
α
2 g(eiθ ) − e−r

α
2 g(eiθ+yu)

∣∣∣∣ e
−br . (18)

To bound increments of functions in terms of the κ-norm, let us use that the linearity of
x �→ i.x and that if g ∈ Hα/2 then its derivative is homogeneous of order α/2 − 1. We
get for z, w ∈ K+

1 ,

|g(z) − g(w)| ≤ ‖g‖κ |z − w|
∫ 1

0
dt

|z + t (w − z)|κ+ α
2 −1

|i · (z + t (w − z))|κ .

A similar bound holds for f with ζ in place of α/2. Notice that for z = eiθ and
w = eiθ + yu, z + t (w − z) = eiθ + t yu. Using that |e−x − e−y | ≤ |x − y|e−�(x)∧�(y)

and 1 ≤ |eiθ + t yu| ≤ 3/2 for t ∈ [0, 1] and y ∈ [0, 1/2], we deduce that

L(r, y, θ) ≤ Cy(‖ f ‖κ + ‖ f ‖∞r + ‖ f ‖∞‖g‖κr
α
2 )e−ar

α
2 −brφ(eiθ , eiθ + yu) ,

where C is a constant and

φ(z, w) = 1 +
∫ 1

0

dt

|i · (z + t (w − z))|κ .
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For z = eiθ and w = eiθ + yu,

|i · (z + t (w − z))| = |cos(θ) − sin(θ) + t y(�(u) − �(u))|.
Now, the [0, π/2] → [−1, 1] function w(θ) = cos(θ) − sin(θ) is decreasing and
|w′(θ)| = cos θ + sin θ ∈ [1,√2]. Since |t y(�(u) − �(u))| ≤ 1/2, it follows that
θ �→ |i.(z + t (w − z))| vanishes once at θ0 ∈ (δ, π/2 − δ) for some δ > 0. As a
consequence, we find that since κ < 1,

sup
y∈[0,1/2],u∈S+1

∫ π
2

0
dθ |(sin 2θ)

α
2 −1|φ(eiθ , eiθ + yu)| < +∞ .

Therefore, we can integrate L(r, y, θ) under θ and y to find that

∫ π
2

0
dθ(sin 2θ)

α
2 −1
∫ 1/2

0
dy y− α

2 −1
∫ ∞

0
dr r

α
2 +ζ−1L(r, y, θ)

≤ C
∫ π

2

0
dθ(sin 2θ)

α
2 −1
∫ 1/2

0
dy y− α

2 −1
∫ ∞

0
dr r

α
2 +ζ−1y

(
‖ f ‖κ + ‖ f ‖∞r‖g‖κ‖ f ‖∞r

α
2

)
e−ar

α
2 −brφ(eiθ , eiθ + yu)

≤ C (‖ f ‖κ + ‖g‖κ‖ f ‖∞) ,

where the constant C changes from line to line (and depends of a ∨ b). We thus obtain
that ‖ϕζ,h

g, f (k)‖∞ < ∞ for k ∈ {1, 2}, and collecting all bounds that ‖ϕζ,h
g, f ‖∞ < ∞ is

finite. We now check that ‖(i · u)κ∂εϕ
ζ,h
g, f ‖∞ < ∞ for ε ∈ {1, i}. To this end, notice that

by homogeneity,

∂εe
−r

α
2 g(eiθ+yu) = yr

α
2 |eiθ + yu| α

2 −1∂εg(v)e−r
α
2 g(eiθ+yu) (19)

where v = (eiθ + yu)/|eiθ + yu| ∈ S+1 . Therefore, we get for g ∈ Hα/2,κ and f ∈ Hζ,κ ,
∣∣∣∣∂ε[ f (eiθ + yu)e−rh·(eiθ+yu)e−r

α
2 g(eiθ+yu)]

∣∣∣∣

≤ yr |h||eiθ + yu|ζ ‖ f ‖∞e−ar
α
2 |eiθ+yu| α

2 −br |eiθ+yu|

+ y|eiθ + yu|ζ−1+κ‖ f ‖κ |i · (eiθ + yu)|−κe−ar
α
2 |eiθ+yu| α

2 −br |eiθ+yu|

+ yr
α
2 |i · (eiθ + yu)|−κ |eiθ + yu| α

2 +ζ−1+κ‖ f ‖∞‖g‖κe
−ar

α
2 |eiθ+yu| α

2 −br |eiθ+yu|.

Using (17), we get for some constant C , depending on (α, a, b) such that
∫ ∞

0
dr r

α
2 +ζ−1

∣∣∣∣∂ε[ f (eiθ + yu)e−yrh·ue−r
α
2 g(eiθ+yu)]

∣∣∣∣

≤ Cy

(
|h||eiθ + yu|− α

2 −1‖ f ‖∞ + |eiθ + yu|− α
2 −1+κ‖ f ‖κ |i · (eiθ + yu)|−κ

+ |i · (eiθ + yu)|−κ |eiθ + yu|− α
2 −1+κ‖ f ‖∞‖g‖κ

)
. (20)
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The above expression is integrable on [0,∞) × [0, π/2] with respect to y− α
2 −1

(sin 2θ)
α
2 −1dydθ for any κ ∈ (0, 1). Indeed, take B ≥ 0. Then, we claim that

JB,α,κ (u) := |i · u|κ
∫ π

2

0
dθ(sin 2θ)

α
2 −1
∫ ∞

0
dy y− α

2
|eiθ + yu|−B

|i · (eiθ + yu)|κ (21)

is uniformly bounded if B + κ > 1− α
2 . To see that, observe that if i · u = 0 the integral

is clearly finite, where as otherwise

JB,α,κ (u) =
∫ π

2

0
dθ(sin 2θ)

α
2 −1
∫ ∞

0
dy y− α

2
|eiθ + yu|−B

| i ·eiθi ·u + y|κ
.

Cut this integral into two pieces: either θ is small or close to π/2, say in [0, π/6] ∪
[π/3, π/2], or it is in (π/6, π/3), at distance greater than π/6 from 0 and π/2. In
the first case, we integrate in y a function which is uniformly bounded at a positive
distance of y0 = −i · eiθ / i · u which is away from the origin, blows up at most at y0
where it behaves like |y − y0|−κ and behaves like y−B−κ− α

2 at infinity (independently
of i ·u), and hence with uniformly bounded integral. In the second case, we can integrate
first on θ , bounding (sin 2θ)−1 uniformly from above, whereas we can use the bound
|eiθ + yu| ≥ 1 ∨ y for θ ∈ [0, π

2 ], u ∈ S+1 . Then, observe that

ψ(x) =
∫ π

3

π
6

dθ

|i · eiθ + x |κ

is uniformly bounded, and goes to zero as |x |−κ as x goes to infinity. Hence, we bound
ψ from above uniformly by a constant times (1 + |x |κ)−1. This implies that the second
part of the integral is bounded, up to a multiplicative constant, by

|i · u|κ
∫ ∞

0
dy y− α

2
(1 ∨ y)−B

1 + |i · u|κ yκ
= |i · u|κ+ α

2 −1
∫ |i ·u|

0
dx

x− α
2

1 + xκ

+ |i · u|κ+ α
2 +B−1

∫ ∞

|i ·u|
dx

x− α
2 −B

1 + xκ
,

which is uniformly bounded if B + κ > 1 − α
2 (and even vanishes as |i · u| goes to 0 :

the first term is of order |i · u|κ and the order of the second term depends on whether
α/2 + B is less, equal or larger than 1).

Applying (21) in (20) (with B = 1 + α/2 − κ or 1 + α/2) shows that ϕζ,h
g, f ∈ Hα/2,κ

and in fact collecting the previous bounds we get

‖ϕζ,h
g, f ‖κ ≤ C(‖ f ‖κ + ‖ f ‖∞‖g‖κ) (22)

with a finite constant C depending on a ∨ b > 0.
In particular Fh is bounded from Ha

α/2,κ into Hα/2,κ if a > 0 and Fh is bounded

from H̄0
α/2,κ intoHα/2,κ if �(h) ≥ b. In this last case, our proof also shows that

‖Fh(g) − Fh(0)‖κ ≤ C�(h)‖g‖κ .

for some constant C�(h) depending on �(h). However, from the homogeneity relation,
for t > 0,

Fh(t
α/2g) = t−α/2Fh/t (g).
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we get, with t = �(h),

‖Fh(g)‖κ = t−α/2‖Fh/t (t
−α/2g)‖κ

≤ t−α/2‖Fh/t (0)‖κ + t−α/2‖Fh/t (t
−α/2g) − Fh/t (0)‖κ

≤ Ct−α/2 + t−αC1‖g‖κ

where we noticed that ‖Fh(0)‖κ is uniformly bounded when �(h) = 1. Finally, the last
statement of Lemma 4.1 is an immediate consequence of inequality (17). This completes
the proof of Lemma 4.1. The fact that DFh(g)( f )(u) = ϕ

α,h
g, f (u) follows easily since

g ∈ Ha
α/2,κ implies that g + f ∈ Ha′

α/2,κ with a′ = a − ‖ f ‖∞. Finally, from (22),
DFh(g) is a bounded operator.

We now check the continuity of DFh(g) in h and g. It is sufficient to prove that for any
a > 0, there exists a constant c = c(α, a) such that for all f ∈ Hα/2,κ , g, g′ ∈ Ha

α/2,κ ,
h, h′ ∈ K1,

‖DFh(g)( f ) − DFh′(g′)( f )‖κ ≤ c‖ f ‖κ(|h − h′| + ‖g − g′‖κ). (23)

To this end, we prove the same bound for ϕ
α/2,h
g, f instead of DFh(g). By interpolation,

we may write that

ϕ
α/2,h
g, f (2) − ϕ

α/2,h′
g′, f (2) = −

∫ 1

0
ds[ϕα/2+1,hs

g,(h−h′).∗ f + ϕ
α,h′
gs , f (g−g′)]

with hs = sh + (1− s)h′, gs = sg + (1− s)g′ and [(h − h′). ∗ f ](u) = (h − h′).u f (u)

is in Hα/2+1. The bound then again follows from (22). It completes the proof of (23).
In particular, we see that h → DFh(g)( f ) is Lipschitz. Similarly, we can compute the
partial derivative in h of (h, g) �→ Fh(g) with respect to the real (ε = 1) or imaginary
part (ε = i) of h. We find

∂εFh(g) = ϕ
1,h
g,ε.∗1

and see that it has finite ‖.‖κ norm and it is continuous in g. ��
Proof of Lemma 4.3. From

Gz( f ) − Gz(g) =
∫ 1

0
dθDGz(θ f + (1 − θ)g)( f − g)

we deduce from (22) that

‖Gz( f ) − Gz(g)‖κ ≤ c ‖ f − g‖κ + c (‖ f ‖κ + ‖g‖κ)‖ f − g‖∞.

The proof of the second statement is straightforward. ��

4.2. Implicit function theorem: proofs of Propositions 3.3 and 3.4. In this subsection,
we analyze the solutions for the fixed point equation governed by Gz for z small. For
z ∈ C+, we first connect Gz with the random variable R
(z) in C+ which satisfies the
fixed point equation (7) introduced in [15]. To this end, we set
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γ 

z (u) := �(1 − α

2
)E[(−i R
(z) · u)

α
2 ] ∈ H̄0

α/2 .

Integrating (7), it turns out that γ 

z satisfies the following fixed point equation.

Lemma 4.4. Let z ∈ C+ and 0 < α < 2. Then for all u ∈ K+
1 ,

γ 

z (u) = Gz(γ



z )(u) = cαF−i z(γ



z )(ǔ),

where cα and ǔ are defined in (14). Moreover, for any p > 0, E|R
(z)|p = rp,z(γ 

z ) and

E(−i R
)
p = sp,z(γ 


z (1)).

Proof. The statements are a consequence of the Lévy–Khintchine formula applied to the
Poisson process (ξk), see e.g. [15, (4.5)]: if (wk) are independent of (ξk), i.i.d. complex
random variables with �(wk) > 0 we have

E exp

(
−
∑

k

ξkwk

)
= exp

(
−�
(
1 − α

2

)
Ew

α/2
1

)
. (24)

The first statement of the lemma is [16, Lemma 5.3]. The second statement is a straight-
forward modification of the proof of the forthcoming Corollary 5.8 and (24). To avoid
repetition we skip the details of the proof. ��

We first rely on results from [15] to find γ 

0 . We know that for z = iη, η > 0, R
(iη)

is pure imaginary (see [15]). It follows that γ 

iη(u) = (1 · u)

α
2 aη, where aη satisfies an

explicit fixed point equation. Also, we have aη → a0 as η → 0 and, by [15, Lemma
4.3],

a0 =
(

�
(
1 − α

2

)

�
(
1 + α

2

)
)1/2

.

In particular, γ 

0 (u) := (1 · u)

α
2 a0 is in H0

α/2, it is the limit of γ 

iη as η → 0 and, by

Lemma 4.2, it satisfies the fixed point equation γ 

0 = G0(γ



0 ). We are interested in

DG0(γ


0 ). First, by Lemma 4.2,

DF0(γ


0 )( f )(u)

=
∫ π

2

0
dθ(sin 2θ)

α
2 −1
∫ ∞

0
dy y− α

2 −1

×
∫ ∞

0
dr rα−1

(
f (eiθ )e−r

α
2 a0(1·eiθ )

α
2 − f (eiθ + yu)e−r

α
2 a0(1·(eiθ+yu))

α
2

)

= 2

αa20

∫ π
2

0
dθ(sin 2θ)

α
2 −1
∫ ∞

0
dy y− α

2 −1
(

f (eiθ )

(1 · eiθ )α − f (eiθ + yu)

(1 · (eiθ + yu))α

)
. (25)

Observe that, for z ∈ K+
1 , (1.z) = �(z) + �(z) and |z| ≤ (1.z) ≤ √

2|z|. Define
the unitary operator, J ( f )(u) = f (ǔ). and for α ∈ (0, 2), we consider the operator on
Hα/2,κ given by

Kα = −cαDF0(γ


0 )J,

where, with an abuse of notation, DF0(γ 

0 ) is the operator defined on the right hand side

of (25). Then −Kα is precisely equal to DG0(γ


0 ). Our goal is to show that I + Kα is

invertible to apply the implicit function theorem. The main result of this section is the
following result.



132 C. Bordenave, A. Guionnet

Theorem 4.5. Let κ ∈ [0, 1). Let A be the subset of α in (0, 2) such that I + Kα is not
an isomorphism ofHα/2,κ . If F is a closed subset of (0, 2)\{1/2, 1}, thenA∩ F is finite.

The proof of Theorem 4.5 will require a careful analysis of the operator Kα . We
postpone it to the next subsection. We first use it to prove Propositions 3.3 and 3.4.

Proof of Proposition 3.3. Since z �→ R
(z) is analytic and |R
(z)| ≤ 1/�(z), it is easy
to check that z �→ γ 


z is continuous from C+ toHα,κ (see the forthcoming Lemma 5.2).
Also, as already pointed out, γ 


z converges to γ 

0 as z goes to 0. Hence, by Lemma 4.2, the

definition ofA, and the Implicit Function Theorem in Banach spaces (see [28, Theorem
2.7.2]), for any t > 0, there exists τ > 0 such that for all z ∈ C+, |z| ≤ τ ,

‖γ 

z − γ 


0 ‖κ ≤ t.

We take t = 2α/4a0/2. We deduce that if |z| ≤ τ ,

�(1 − α/2)2
α
4 E(�R
(z))

α
2 = γ 


z (eiπ/4) ≥ γ 

0 (eiπ/4) − t = t.

Hence, with c = a0/2, if |z| ≤ c0, we have

�(1 − α/2)E(�R
(z))
α
2 ≥ c.

Now, from (7), we have the bound, |R
(z)| ≤ 1/
(∑

k≥1 ξk�Rk(z)
)
. Using Lemma 4.4

and the formula (10), we get

rp,z(γ


z ) = E|R
(z)|p ≤ 1

�(p)

∫ ∞

0
x p−1

Ee−x
∑

k ξk�(Rk )dx

= 1

�(p)

∫ ∞

0
x p−1e−xα/2�(1−α/2)E�(R
)

α/2
dx

≤ 1

�(p)

∫ ∞

0
x p−1e−cxα/2

dx,

where at the second line we have used (24). ��
Proof of Proposition 3.4. From Theorem 4.5, Lemmas 4.1, 4.2, we may apply the
inverse function Theorem to T : (z, f ) �→ (T1(z), T2(z)) = (z, f − Gz( f )) on
C×H0

α/2,κ . It follows that there exists an open neighborhood U of (0, γ 

0 ), such that T

is an homeomorphism from U to V = T (U ). Moreover, T−1
|U has Fréchet derivative at

y = (z, g) ∈ V given by (DT (T−1
|U y))−1. If τ is taken small enough, (z, γ 


z ) ∈ U for all
|z| ≤ τ . Also, since γ 


z = Gz(γ


z ), if τ is taken small enough, we may further assume

that {z} × B(γ 

z , 2τ) ⊂ U and {z} × B(0, 2τ) ⊂ V , where B( f, τ ) is the open ball for

the norm ‖ · ‖κ . We then apply the fundamental theorem of calculus to t �→ T−1
|U (z, ft )

where ft = t (γ − Gz(γ )) to deduce

‖γ 

z − γ ‖κ = ‖

(
T−1(z, 0) − T−1(z, γ − Gz(γ )

)

2
‖κ ≤ c‖γ − Gz(γ )‖κ .

It implies the Proposition with c = sup ‖(DT (x))−1‖, where ‖ · ‖ is the operator norm
and the supremum is over all x = (z, f ), |z| ≤ τ , f ∈ B(γ 


z , τ ). ��
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4.3. Proof of Theorem 4.5. The strategy of the proof of Theorem 4.5 is quite intricate.
The road map is the following:

1. Prove that the operator Kα is compact on the Banach space Hα/2,κ . Hence, I + Kα

is not an isomorphism iff −1 is an eigenvalue of Kα .
2. We could not study directly the spectrum of Kα but that of another compact operator

Hα , an operator on a larger Hilbert space whose spectrum contains the spectrum of
Kα . We prove that Hm

α is trace class for m large enough (depending on α).
3. To show that −1 is not an eigenvalue of Hα , we want to show that for some large

even number m, det(I − Hm
α ) does not vanish except possibly on a discrete set of α,

where det(I + ·) denotes the Fredholm determinant. To this end, we first show that
α �→ det(I − Hm

α ) is analytic on �(α) ∈ (0, 2)\{1/2, 1}.
4. We finally check that α �→ det(I − Hm

α ) does not vanish when the imaginary part of
α goes to infinity and conclude the whole argument.

Step 1 : Compactness. We start by the compactness of Kα = −cαDF0(γ 

0 )J .

Lemma 4.6. For any κ ∈ (0, 1), any α ∈ U = {z ∈ C : �(z) ∈ (0, 2)}, the operator
Kα is compact inHα/2,κ .

Proof. We introduce the multiplication operator, M( f )(u) = f (u)(1.u)−α . We notice
that M is a bounded operator from Hα/2,κ to H−α/2,κ . We will now prove that the
H−α/2,κ toHα/2,κ operator

T f (u) =
∫ π

2

0
dθ(sin 2θ)

α
2 −1
∫ ∞

0
dy y− α

2 −1
(
f (eiθ ) − f (eiθ + yu)

)

is compact. It will conclude the proof since DF0(γ 

0 ) = (

2/(αa20)
)
T M . Let B be the

set of f ∈ H−α/2,κ such that ‖ f ‖κ ≤ 1. We should prove that T B is a compact set of
Hα/2,κ . Note that M is bounded, invertible and with bounded inverse as 1.u is bounded

above and below by a positive number. By Lemma 4.2, T = (2/(αa20)
)−1

DF0(γ 

0 )M−1

is a bounded operator in Hα/2,κ and |T f (1)| ≤ C‖ f ‖κ is bounded. It is sufficient to
prove that there exists a compact set K of Cκ(S+1 ) (the space of continuous functions
on S+1 equipped with the norm ‖|i · u|κ · ‖∞) such that u �→ ∂ε(T f )(u) is in K for all
f ∈ B and ε ∈ {1, i}.

To this end, we observe that, if g(u) = ∂ε f (u), then ∂ε(T f )(u) = −Pg(u) where

Pg(u) =
∫ π

2

0
dθ(sin 2θ)

α
2 −1
∫ ∞

0
dy y− α

2 g

(
eiθ + yu

|eiθ + yu|
)

|eiθ + yu|−1− α
2 . (26)

We should thus prove that P is a compact operator on Cκ(S+1 ). This amounts to prove
that Pκ(g)(u) = (i ·u)κ P((i.∗)−κg)(u) is compact in C0(S+1 ) = C(S+1 ). To this end, we
write P as a kernel operator. We assume that u = eiω. We wish to perform the change
of variable from (θ, y) to (θ, ψ) defined, for θ �= ω, by

eiψ = eiθ + yu

|eiθ + yu| .
The set y ∈ (0,∞) is mapped bijectively to ψ ∈ (θ, ω) if θ < ω or ψ ∈ (ω, θ) if
θ > ω. Since |eiθ + yu| = ei(θ−ψ) + yei(ω−ψ) is a real number, taking the imaginary
part, we arrive at

y = sin(θ − ψ)

sin(ψ − ω)
.
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Taking the real part, we find

|eiθ + yu| = cos(θ − ψ) +
sin(θ − ψ) cos(ω − ψ)

sin(ψ − ω)
= sin(θ − ω)

sin(ψ − ω)
.

Also,

dy

dψ
= −cos(θ − ψ) sin(ψ − ω) + cos(ψ − ω) sin(θ − ψ)

sin2(ψ − ω)
= − sin(θ − ω)

sin2(ψ − ω)
.

We may then express P as

Pg(eiω) =
∫ π

2

0
dψg(eiψ)k(ω,ψ), (27)

where k is a kernel on [0, π/2]2 defined by, for ψ > ω,

k(ω,ψ) = sin(ψ − ω)α−1
∫ π

2

ψ

dθ(sin 2θ)
α
2 −1 sin(θ − ψ)−

α
2 sin(θ − ω)−

α
2 ,

while if ψ < ω,

k(ω,ψ) = sin(ω − ψ)α−1
∫ ψ

0
dθ(sin 2θ)

α
2 −1 sin(θ − ψ)−

α
2 sin(θ − ω)−

α
2 .

This implies that Pκ has kernel

kκ(ω,ψ) = (i · eiω)κ(i · eiψ)−κk(ω,ψ) .

With our alternative expression for Pκ , we can readily prove the compactness on C(S+1 ).
From [25, Theorem 12.1], it suffices to prove that for any ω ∈ [0, π/2], if ωn → ω,

∫ π/2

0
|kκ(ω,ψ) − kκ(ωn, ψ)|dψ → 0. (28)

If α ∈ (0, 2) is real, then kκ(ω,ψ) ≥ 0 and we have that
∫ π/2

0
|kκ(ω,ψ)|dψ = |i · eiω|κ

∫ π
2

0
dθ(sin 2θ)

α
2 −1
∫ ∞

0
dy y− α

2
|eiθ + yeiω|−1− α

2 +κ

|i · (eiθ + yeiω)|κ
is continuous in ω by dominated convergence (recall κ < 1 and |eiθ + yeiω| is bounded
below). Consequently, from Scheffé’s Lemma, to prove (28), it is sufficient to check
that for almost all ψ ∈ [0, π/2], k(ωn, ψ) converges to k(ω,ψ). It is however imme-
diate that for any ψ �= ω, the above convergence holds. It completes the proof in
the case α real. In the general case, writing explicitly the dependence of k in α, we
find |kα(ω,ψ)| ≤ k�(α)(ω,ψ). We conclude similarly by dominated convergence that∫ π/2
0 |kα

κ (ωn, ψ)|dψ → ∫ π/2
0 |kα

κ (ω,ψ)|dψ . Almost sure convergence of kα(ωn, ψ) is
again clear from the formula. ��
Step 2 : Trace class for an affiliated operator. The next step would be to compute
the spectrum of Kα . Unfortunately, we have not been able to compute it explicitly. We
instead first define an operator Hα whose spectrum contains the spectrum of Kα . For a
suitable even power m, we will then prove that the Fredholm determinant of I − Hm

α

depends analytically on α. To this end, we set X = S+1 ×{0, 1, i} and consider the Hilbert
spaces L2

κ(S+1 ) and L2
κ(X) with respective norms
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‖g‖L2
κ (S+1 ) =

√∫ π
2

0
|g(eiψ)|2 dψ

|i · eiψ |κ

and ‖ f ‖L2
κ (X) =

√
‖ f0‖2L2

0(S
+
1 )
+
∑

ε∈{1,i}
‖ fε‖2L2

κ (S+1 )
,

where, for shorter notation, we have set fε : u �→ f (u, ε). We extend a function f in
L2

κ(X) to a function on K+
1 × {0, 1, i}, by setting f (λu, 0) = λα/2 f (u, 0), f (λu, ε) =

λα/2−1 f (u, ε) for ε ∈ {1, i}. We define a new operator S : Cκ(X) → Cκ(X) by the
formula, for u = u1 + iu2 and ε ∈ {1, i},

S f (u, 0) = 2

α

∫ π
2

0
dθ(sin 2θ)

α
2 −1
∫ ∞

0
dy y− α

2

×
(
u1 f1(eiθ + yu) + u2 fi (eiθ + yu)

(1.(eiθ + yu))α
− α

(1 · u) f0(eiθ + yu)

(1 · (eiθ + yu))1+α

)

S f (u, ε) =
∫ π

2

0
dθ(sin 2θ)

α
2 −1
∫ ∞

0
dy y− α

2

(
fε(eiθ + yu)

(1 · (eiθ + yu))α
− α

(1 · u) f0(eiθ + yu)

(1 · (eiθ + yu))1+α

)
.

Let P be defined by (26), we observe that in matrix form

S =
⎛

⎝
M00 M01 M0i
M10 I 0
Mi0 0 I

⎞

⎠

⎛

⎝
P 0 0
0 P 0
0 0 P

⎞

⎠

⎛

⎝
N0 0 0
0 N1 0
0 0 Ni

⎞

⎠ , (29)

where Mεε′ and Nε are the bounded multiplication operators in L2(S+1 ), M00 f (u) =
−2(1 · u) f (u), M10 f (u) = Mi0 f (u) = −α(1 · u) f (u), M01 f (u) = 2

α
u1 f (u),

M0i f (u) = 2
α
u2 f (u), N0 f (u) = (1 · u)−α−1 f (u) and N1 f (u) = Ni f (u) =

(1 · u)−α f (u). The proof of Lemma 4.6 shows that S is a compact operator on Cκ(X)

since P is compact and the Mεε′ and Nε are bounded. We set

Hα = c′
αSJ, (30)

where c′
α = cα(2/(αa20)) and the operator J is extended on L

2
κ (X) by setting (J f )ε(u) =

fε(ǔ). Now, if f ∈ Hα/2,κ , we set ∂0 f (u) = f and f̄ (u, ε) = ∂ε f (u) ∈ L2
κ(X). We

shall use the identity

∫ ∞

0
dy y− α

2 −1
(

f (eiθ )

(1 · eiθ )α − f (eiθ + yu)

(1 · (eiθ + yu))α

)

= −
∫ ∞

0
dy y− α

2 −1
∫ y

0
dt ∂u

(
f (v)

(1.v)α

)

v=eiθ+tu

= − 2

α

∫ ∞

0
dt t−

α
2

(
∂u f (eiθ + tu)

(1 · (eiθ + tu))α
− α

(1 · u) f (eiθ + tu)

(1 · (eiθ + tu))1+α

)
.

Hence, we have by (25) for ε = 0, 1, i ,

∂ε (Kα f ) (u) = (Hα f̄ )ε(u).
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In particular, if f ∈ Hα/2,κ is an eigenvector of Kα then, we have f̄ ∈ Cκ(X) and f̄
is an eigenvector of Hα with the same eigenvalue. It follows that the spectrum of Kα is
included in the spectrum of Hα . We may summarize this inclusion as

σHα/2,κ (Kα) ⊆ σCκ (X)(Hα). (31)

Since Cκ(X) ⊂ L2
κ(X), we can see Hα as an operator on L2

κ(X). The next lemma is the
main technical ingredient for this part of the proof. It proves that if �(α) is not equal to
1 or 1/2, Hm

α is a trace class operator if m is large enough (depending on α).

Proposition 4.7. Let κ ∈ (0, 1). For integer � ≥ 0, let V� = {α ∈ C : 2−� < �(α) <

2−�+1} and W� = V�/3 = {α ∈ C : 2−� < 3�(α) < 2−�+1}. If α ∈ V� then H2�

α is

a Hilbert–Schmidt operator in L2
κ(X). Finally, if α ∈ W� with � ≥ 1, then H3·2�

α is a
Hilbert–Schmidt operator in L2

κ(X).

Proof. Let P be defined by (26) and set (Q f )(u, ε) = P( fε)(u). From (29), and since
the Mεε′ and the Nε are uniformly bounded, the Hilbert Schmidt norm of Hm

α in L2
κ(X)

is always bounded by the Hilbert–Schmidt norm of Pm in L2
κ(S+1 ) (up to a constant

factor). We deduce that it is sufficient to prove that Pm is Hilbert–Schmidt on L2
κ(S+1 ).

Bound on the kernel of P. It is simpler to work with P in its kernel form (27). We claim
that,

|k(ω,ψ)| ≤

⎧
⎪⎨

⎪⎩

C |ψ − ω|�(α)−1 (sin(2ψ) ∧ sin(2ω))−�(α)/2 if 0 < �(α) < 1,

C (sin(2ψ) ∧ sin(2ω))−1/2
(
1 ∨ ln

(
sin(2ψ)
|ω−ψ |

))
if �(α) = 1,

C (sin(2ψ) ∧ sin(2ω))�(α)/2−1 if 1 < �(α) < 2,
(32)

where the constant C is uniform over all �(α) in a closed set of (0, 2). Indeed, let
us assume for example that ψ < ω and prove that (32) holds. If β = �(α), since
sin(x) ≥ 2x/π for x ∈ [0, π/2], we get

|k(ω,ψ)| ≤ C |ψ − ω|β−1
∫ ψ

0

(
θ ∧

(π

2
− θ
)) β

2 −1 |θ − ψ |− β
2 |θ − ω|− β

2 dθ. (33)

Now, for 0 < a < b, if 0 < β < 1,

I =
∫ a

0
x

β
2 −1|x − a|− β

2 |x − b|− β
2 dx

= a− β
2

∫ 1

0
x

β
2 −1|x − 1|− β

2 |x − b/a|− β
2 dx ≤ Cb− β

2 .

If 1 ≤ β < 2, then a singularity appears when b/a is close to 1.

I ≤ Ca− β
2

∫ 1

0
|x − 1|− β

2 |x − b/a|− β
2 dx

= Ca− β
2

∫ 1

0
x− β

2 (x + (b/a − 1))−
β
2 dx

≤ Ca− β
2 (b/a − 1)−β+1

∫ (b/a−1)−1

0
x− β

2 (x + 1)−
β
2 dx .
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Since sin(x) ≤ x , we deduce from (33) that (32) holds if ψ ≤ π/4, ψ < ω. If
π/4 < ψ < ω < π/2 then, we should upper bound for 0 < a < b < 1,

I I =
∫ a

0
|1 − x | β

2 −1|a − x |− β
2 |b − x |− β

2 dx

=
∫ a

0
(x + (1 − a))

β
2 −1x− β

2 (x + b − a)−
β
2 dx .

Now, with s = b − a and t = 1 − a > s,
∫ 1

0
x− β

2 (x + t)
β
2 −1(x + s)−

β
2 dx = s−β/2

∫ 1/s

0
x− β

2 (x + t/s)
β
2 −1(x + 1)−

β
2 dx

≤ Cst−β/2 + s−β/2
∫ ∞

1
x−β(x + t/s)

β
2 −1dx

≤ Cst−β/2 + t−β/2
∫ ∞

s/t
x−β(x + 1)

β
2 −1dx .

If 0 < β < 1, the above expression is O(t−β/2). If β > 1, it is of order O(s1−β tβ/2−1).
Finally, if β = 1, it is O(t−1/2(1 ∨ log(t/s))). It completes the proof of (32).

Case �(α) > 1. We have that, if δ, κ ∈ [0, 1),
∫

[0,1]2
dx

|x − 1/2|κ
dy

|y − 1/2|κ (x ∧ y)−δ = 2
∫ 1

0

dy

|x − 1/2|κ
∫ y

0

dx

|x − 1/2|κ x
−δ < ∞.

(34)

In particular, if β = �(α) > 1, then, we deduce from (32) applied to δ = 2− β and the
fact that if u = eiθ , θ ∈ (0, π/2),

|u − eiπ/4| ≤ |θ − π/4| ≤ (π/2)| sin(θ − π/4)| = (π/(2
√
2))|i.u| , (35)

that

∫

[0,π/2]2
|k(ω,ψ)|2 dω

|i · eiω|κ
dψ

|i · eiψ |κ ≤ C

(∫

[0, π
2 ]2

(ψ ∧ ω)β−2 dω

|ω − π
4 |κ

dψ

|ψ − π
4 |κ
)2

is finite for β > 1 and κ < 1. Hence P and Hα are Hilbert–Schmidt operators in L2
κ(X).

Case 0 < �(α) < 1. If β = �(α) < 1, then, we need to take powers of P , to obtain a
kernel operator in the Hilbert–Schmidt class. Let � ≥ 1, we assume that

2−� < β < 2−�+1. (36)

By recursion,wewill upper bound thekernel of P2t and show that P2�
isHilbert–Schmidt

in L2
κ(S+1 ). To perform that, we will use the following inequality in the recursion. Let

0 < ζ, ζ ′ < 1 and 0 < a < b, we set

Iζ,ζ ′(a, b) =
∫ 1

0
|x − a|ζ−1|x − b|ζ ′−1(x ∧ a)−ζ/2(x ∧ b)−ζ ′/2dx

≤
{
Ca−(ζ+ζ ′)/2(b − a)ζ+ζ ′−1 if 0 < ζ + ζ ′ < 1,
Ca−ζ/2b−ζ ′/2 if 1 < ζ + ζ ′.

(37)
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and Iζ = Iζ,ζ . Indeed, as in (34), we decompose the integration interval over [0, a], [a, b]
and [b, 1]. It follows easily from the scaling arguments below (33) that the integral over
[0, a] is dominating if 2ζ < 1 and the integral over [b, 1] is dominating if 2ζ > 1.

From (32), up to a change a variable x = sin(ω), it suffices to prove that the kernel
operator P̄ in L2([0, 1]),

k̄(x, y) = |x − y|β−1(x ∧ y)−β/2

satisfies that P̄2�
isHilbert–Schmidt in L2

κ ([0, 1])=
{
f : ∫ 10 | f (x)|2|x− 1

2 |−κdx < ∞
}
.

For t ≥ 1, we set ζt = 2t−1β. If k̄t is the kernel of P̄2t−1
, we have,

k̄2(x, y) ≤ Iζ1(x, y).

Now, if β is an in (36) with � = 1, then 2ζ1 = 2β > 1 and from (37), P̄2 is Hilbert–
Schmidt since k̄2(x, y) ≤ Cx−β/2y−β/2 and β < 1. If � ≥ 2, we find from (37),

k̄2(x, y) ≤ C |x − y|ζ2−1(x ∨ y)−ζ2/2,

and

k̄3(x, y) ≤ C Iζ2(x, y).

We deduce easily by recursion that for some new constant C > 0,

k̄�(x, y) ≤ C |x − y|ζ�−1(x ∧ y)−ζ�/2.

and
k̄�+1(x, y) ≤ C Iζ�

(x, y) ≤ C ′x−ζ�/2y−ζ�/2. (38)

Now, since ζ�/2 = 2�−2β and 2�−1β < 1, the operator P̄2�
is Hilbert–Schmidt in

L2
κ(S+1 ). It proves the first statement of the proposition.
For the second statement, we proceed similarly but startingwith the kernel P3 instead

of P2. First, if 2β < 1 but 3β > 1, from (37) the kernel of P3, which is bounded by
Iβ,2β , is in L2

κ(S+1 ). For β ∈ (3−12−�, 3−12−�+1), � ≥ 1, we can proceed by recursion
as above. ��

We recall that if an operator is Hilbert–Schmidt, its square is trace class. Hence,
Proposition 4.7 implies that

Corollary 4.8. Let κ ∈ (0, 1). Let V = {α ∈ C : �(α) ∈ (0, 2)\{1/2, 1}}, there exists
m ∈ N finite such that Hm

α is trace class in the Hilbert space L2
κ(X). More precisely, let

V� and W� be as in Proposition 4.7. If α ∈ V�, � ≥ 0, H2�+1

α is trace class and if α ∈ W�,

� ≥ 1, H3·2�+1

α is trace class.

Step 3 : Analyticity of the Fredholm determinant. From Corollary 4.8, the Fredholm
determinant of Hm

α is then properly defined for α ∈ V and m large enough. We now
want to justify that α �→ det(I − Hm

α ) is analytic on V . Consider a trace class operator
Q in L2

κ(X), written for some measurable kernel q : X2 → C,

Q f (x) =
∫

X
q(x, y) f (y)dρ(y),
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where ρ is the underlying measure of our L2 space, that is L2
κ(X) = L2(X, ρ) with

∫
f dρ =

∫

[0,π/2]
f0(e

iψ)dψ +
∑

ε∈{1,i}

∫

[0,π/2]
fε(e

iψ)
dψ

|i · eiψ |κ .

There is a specific choice of q which is especially relevant. If x = (eiω, ε) and
y = (eiψ, δ), 0 < ω,ψ < π/2, we consider the average value around (x, y), for r > 0,

q(x, y, r) = 1

r2

∫

Cr

q((eiω, ε), (eiψ, δ))dψdω,

with Cr = ([ω − r/2, ω + r/2] × [ψ − r/2, ψ + r/2]) ∩ [0, π/2]2. We define the
Lebesgue value of q as q̃(x, y) = limr↓0 q(x, y, r). From Lebesgue’s Theorem, ρ ⊗ ρ-
a.e., q̃(x, y) = q(x, y). From Brislawn’s Theorem [18], q̃(x, x) exists ρ-a.e. and we
have Tr(Q) = ∫X q̃(x, x)dρ(x). As a consequence, Simon [30, Theorem 3.7] implies

det(I + Q) =
∞∑

n=0

1

n!
∫

Xn
det
(
q̃(xi , x j )

)
1≤i, j≤n

n∏

i=1

dρ(xi ). (39)

This representation of the Fredholmdeterminantwill be used in the proof of the following
lemma.

Lemma 4.9. Let f ∈ L2(X, ρ), � be an open connected set of C and for z ∈ V , let Qz
be a trace class operator in L2(X, ρ) with a measurable kernel qz(x, y). Assume that
ρ ⊗ ρ-a.e. (i) for all z ∈ �, |qz(x, y)| ≤ f (x) f (y) and (ii) z �→ qz(x, y) is analytic on
�. Then z �→ det(I + Qz) is analytic on �.

We will use repeatedly the following elementary consequence of Cauchy’s formula
and Lebesgue dominated convergence.

Lemma 4.10. Let � be an open set of C and for each z ∈ �, let x �→ f (x, z) be a
measurable function in a measure space (X, ρ). Assume that there exists g ∈ L1(X, ρ)

such that ρ-a.e. (i) for all z ∈ �, | f (x, z)| ≤ g(x) and (ii) z �→ f (x, z) is analytic on
�. Then z �→ ∫

X f (x, z)dρ(x) is analytic on �.

Proof of Lemma 4.9. Since f ∈ L2(X, ρ), it also belongs to L1(X, ρ). From (i)–(ii)
and Lemma 4.10 for any r > 0, ρ ⊗ ρ-a.e., z �→ qz(x, y, r) is analytic on �. From
Vitali’s convergence theorem, it follows that, ρ ⊗ ρ-a.e., z �→ q̃z(x, y) is analytic on �.

Now, we let pz(x, y) = q̃z(x, y)/( f (x) f (y)). By assumption (i), ρ ⊗ ρ-a.e., for all
z ∈ C |pz(x, y)| ≤ 1. From the multi-linearity of the determinant,

Dz(x1, . . . , xn) = det
(
q̃z(xi , x j )

)
1≤i, j≤n = det

(
pz(xi , x j )

)
1≤i, j≤n

n∏

i=1

f (xi )
2.

However, from Hadamard’s inequality, ρ⊗n-a.e.,

∣∣∣det
(
pz(xi , x j )

)
1≤i, j≤n

∣∣∣ ≤ nn/2.
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Hence, ρ⊗n-a.e., for all z ∈ �, |Dz(x1, . . . , xn)| ≤ nn/2∏n
i=1 f (xi )2. From (ii), ρ⊗n-

a.e., z �→ Dz(x1, . . . , xn) is analytic. We deduce by a new application of Lemma 4.10
that

z �→ 1

n!
∫

Xn
Dz(x1, . . . , xn)

n∏

i=1

dρ(xi )

is analytic on � and bounded by ‖ f ‖2n
L2(X)

nn/2/n! ≤ n−n/2Cn , with C = e‖ f ‖2
L2(X)

.

The series
∑

n n
−n/2Cn being convergent, a new application of Vitali’s convergence

theorem proves the analycity on � of

z �→
∞∑

n=0

1

n!
∫

Xn
Dz(x1, . . . , xn)

n∏

i=1

dρ(xi ).

It remains to use (39). ��
Proposition 4.11. For integer � ≥ 0, let V� andW� be as in Proposition 4.7. The function
α �→ det(I − H2�+1

α ) is analytic on V�. For � ≥ 1, α �→ det(I − H3·2�+1

α ) is analytic on
W�.

Proof. We only treat the first case, the second being similar. Let � ⊂ V� be an open set
with �̄ ⊂ V�. In particular for all α ∈ �,

2−� < β0 < �(α) < β1 < 2−�+1.

Consider the operator P defined in (26) on L2
κ(S+1 ). We denote the kernel of P2s−1

by ks (it depends implicitly on α ∈ V�). We will prove that for all ω,ψ ∈ (0, π/2)2,
α �→ k�+1(ω,ψ) is analytic on� and that |k�+1(ω,ψ)| ≤ C f (sin(2ψ)) f (sin(2ω))with

f (x) =
{
xβ0/2−1 if � = 0
x−2�−2β1 if � ≥ 1.

We will then argue that we have the same properties for the kernels of H2�

α and H2�+1

α .
It will remain to apply Corollary 4.8 and Lemma 4.9 to conclude the proof.

Iterated kernels of P, case � = 0. From the explicit form of the kernel k = k1 in (27),
we see by Lemma 4.10 that, for all ω,ψ , α �→ k1(ω,ψ) is analytic on �. From (32),
|k1(ω,ψ)| ≤ C(sin(2ψ) ∧ sin(2ω))β0/2−1 ≤ C f (sin(2ψ)) f (sin(2ω)).
Iterated kernels of P, � ≥ 1. First, from the explicit form of the kernel k = k1 in
(27) and Lemma 4.10, for all ω �= ψ , α �→ k1(ω,ψ) is analytic on � and from (32),
|k1(ω,ψ)| ≤ C |ψ − ω|β0−1(sin(2ψ) ∧ sin(2ω))−β1/2.

We set δ� = 2�−1β1 and ζ� = 2�−1β0. We use the following inequality (which
generalizes (37)) for 0 < a, b < 1, 0 < δ, ζ < 1,

Jζ,δ(a, b) =
∫ 1

0
|x − a|ζ−1|x − b|ζ−1(x ∧ a)−δ/2(x ∧ b)−δ/2dx

≤
{
Ca−δ(b − a)2ζ−1 if 0 < 2ζ < 1,
Ca−δ/2b−δ/2 if 1 < 2ζ .
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We may argue as in the proof of Proposition 4.7 and use Lemma 4.10 by recursion on
1 ≤ s ≤ �. We obtain that |ks(ω,ψ)| ≤ Cs |ψ − ω|ζs−1(sin(2ψ) ∧ sin(2ω))−δs/2 and
α �→ ks(ω,ψ) analytic on � for all ω �= ψ in (0, π/2). Since 2ζ� = ζ�+1 = 2�β0 > 1,
we find that k�+1(ω,ψ) ≤ C f (sin(2ψ)) f (sin(2ω)) and is analytic in α ∈ � for all
(ω,ψ) ∈ (0, π/2)2.

Iterated kernels of Hα . For x = (eiω, ε), y = (eiψ, δ) ∈ X , let hs(x, y) be the kernel of
H2s−1

α . We now study the analyticity of the kernels of α �→ hs(x, y) for s ≥ 1. First, in
(30), the function α �→ c′

α is analytic onU . It thus suffices to study Ŝ = SJ . If P̂ = P J ,
we have from (29) in matrix form

Ŝ =
⎛

⎝
M00 M01 M0i
M10 1 0
Mi0 0 1

⎞

⎠

⎛

⎝
P̂ 0 0
0 P̂ 0
0 0 P̂

⎞

⎠

⎛

⎝
N1 0 0
0 N2 0
0 0 N3

⎞

⎠ J

In particular, the kernel of Ŝ at x = (eiω, ε), y = (eiψ, δ) ∈ X is equal to
σ(x, y) = gα

ε,δ(ψ)k1(ψ, ω) f α
ε,δ(ω), where gα

ε,δ(ψ), f α
ε,δ(ω) are bounded and ana-

lytic in α ∈ �. This factors gα
ε,δ(ψ), f α

ε,δ(ψ) is harmless and the above argument
carries over easily to this more general situation. We find that the kernel σ�(x, y)
of Ŝ2

�−1
satisfies for all ω,ψ ∈ (0, π/2)2, α �→ σ�+1(x, y) is analytic on � and

|σ�+1(x, y)| ≤ C f (sin(2ψ)) f (sin(2ω)). By a new application Lemma 4.10, the same
holds for σ�+1 replaced by σ�+2. Finally, since Hα = c′

α Ŝ, the same holds for h�+2. By

Corollary 4.8, H2�+1

α is trace class. Hence, the conditions of Lemma 4.9 are fulfilled for

−H2�+1

α , we obtain that α �→ det(I − H2�+1

α ) is analytic on �. ��
Step 4 : Proof of Theorem 4.5. We need a final lemma before proving Theorem 4.5

Lemma 4.12. Let � ≥ 0 be an integer and 2−� < β < 2−�+1. If m ≥ 2� then,

lim
t→∞ ‖Hm

β+i t‖ = 0,

where ‖ · ‖ denotes the operator norm in L2
κ(X). Similarly, the same conclusion holds

if 2−� < 3β < 2−�+1 with � ≥ 1 and m ≥ 3.2�.

Proof. We observe that Hβ+i t = f (t)Ŝ, where Ŝ = SJ and f (t) = 2cβ+i t
αa20

goes to zero

when t goes to infinity by definition (14). Moreover, the operator norm of Ŝm = Ŝmα is
bounded by the Hilbert–Schmidt norm of Ŝm�(α) which is finite by Proposition 4.7 if m
is large enough. ��

We are now ready to prove Theorem 4.5. Let � ≥ 0 be an integer, V�,W� be as in
Proposition 4.7 and F be a closed subset of V�. From (31) and Lemma 4.6, if I + Kα

is not an isomorphism of Hα/2 then −1 is an eigenvalue of Hα in Cκ(X) and 1 is an
eigenvalue of Hm

α in Cκ(X) for any m even. If α ∈ V�, we take m = 2�+1, then by
Corollary 4.8, Hm

α is a trace class operator in L2
κ(X). Since Cκ(X) ⊂ L2

κ(X), from
Theorem [30, Theorem 3.7], we have det(I − Hm

α ) = 0. In summary,

A ∩ F ⊂ {α ∈ F : det(I − Hm
α ) = 0}.

However, by Proposition 4.11, ϕ : α �→ det(I − Hm
α ) is analytic on V� and by

Lemma 4.12, det(I − Hm
α ) is non-zero for �(α) large enough. It follows that the level

set 0 of ϕ cannot have accumulation points in F . Similarly, if F ⊂ W�, F cannot have
accumulation points. This proves Theorem 4.5. ��
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5. Local Law : Proofs of Proposition 3.2 and Theorem 1.2

In this section, we conclude the proof of Theorem 1.2. We will first establish Proposi-
tion 3.2, the main technical steps are an adaptation of [16]. Then, using the result of the
previous section, we will derive a quantitative estimate on the resolvent of A.

5.1. Concentration and deviation inequalities. We start by recalling a lemma on the
concentration for the diagonal of the resolvent of random matrices. The Lipschitz norm
of f : C → C is

‖ f ‖L = sup
x �=y

| f (x) − f (y)|
|x − y| .

Lemma 5.1 ([16, Lemma C.3]). Let β ∈ (0, 1) and z = E + iη ∈ C+. Let B ∈ Mn(C)

be a random Hermitian matrix and G = (B − z)−1. Let us assume that the vectors
(Bi )1≤i≤n, where Bi := (Bi j )1≤ j≤i ∈ C

i , are independent. Then for any f : C → R

and every t ≥ 0,

P

(∣∣∣∣∣
1

n

n∑

k=1

f (Gkk) − E
1

n

n∑

k=1

f (Gkk)

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− nη2t2

8‖ f ‖2L

)
.

Wewill need concentration inequalities for the norm ‖.‖κ . Our first claim checks that
the norm ‖ · ‖κ has some Hölder regularity.

Lemma 5.2. Let β ∈ (0, 1) and for k ∈ {1, 2}, xk ∈ K1, |xk | ≤ η−1, η ≤ 1.

(i) We define γk ∈ H̄0
β by

γk(u) = (xk · u)β .

There exists a constant c = c(β) such that for any 0 < δ < β,

‖γk‖1−β+δ ≤ c|xk |β and ‖γ1 − γ2‖1−β+δ ≤ cη−β
(|x1 − x2|β + ηδ|x1 − x2|δ

)
.

(ii) Assume additionally that �(xk) ≥ s. We set γk(u) = (x−1
k · u)β . Then, for some

c = c(β),
‖γ1 − γ2‖1−β+δ ≤ csβ−2η2β−1|x1 − x2|. (40)

Proof. We prove the second statement of (i). The first statement is easy. We shall use
two simple bounds. First, for any β ∈ (0, 1], for all x, y ∈ K1

|xβ − yβ | ≤ |x − y|β. (41)

Secondly, for any u ∈ K+
1 , h ∈ K1,

|h||i · u| ≤ |h · u| ≤ √
2|h||u|, (42)

(see [16, Equation (55)]). From (41)–(42), we get

|γ1(u) − γ2(u)| ≤ |x1 · u − x2 · u|β ≤ 2β/2|x1 − x2|β. (43)

Similarly, we get
|γ1(u) − γ1(u

′)| ≤ 2β/2η−β |u − u′|β. (44)
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Hence,

sup
u∈S+1

|γ1(u) − γ2(u)| ≤ c|x1 − x2|β.

We also need to control the derivative of γ1 − γ2. For ε ∈ {1, i},
∂εγk(u) = β(xk · u)β−1(xk · ε).

We consider the function g ∈ Hβ defined for x ∈ K1 by g(x) = (x · u)β−1(x · ε). For
s > 0 to be fixed later, let φ : C → C be equal to one for |z| ≥ 2s, equal to zero for
|z| ≤ s and growing linearly with the modulus in between. Thus φ is Lipschitz with
constant 1/s. We write

g(x) = (1 − φ(x · u))g(x) + φ(x · u)g(x) = g1(x) + g2(x).

From (42),

|x · ε| ≤ √
2|x | ≤ √

2
|x · u|
|i · u| . (45)

If follows that the function g1 is bounded by c0sβ/|i · u|. Moreover, the derivative with
respect to x of g(x) is equal for ε′ ∈ {1, i},

∂ε′g(x) = (β − 1)(x · u)β−2(ε′ · u)(x · ε) + (x · u)β−1(ε′ · ε),

where ∂1 is the derivative with respect to the real part of x and ∂i is the derivative with
respect to the imaginary part of x . Using (45), we deduce that on the support of the
function x �→ φ(x · u), g is Lipschitz with constant csβ−1/|i · u|. Thus g2 is Lipschitz
with constant csβ−1/|i · u| (for some new constant c > 0). It follows that

|∂εγ1(u) − ∂εγ2(u)| ≤ |g1(x1)| + |g1(x2)| + |g2(x1) − g2(x2)|
≤ c1s

β |i · u|−1 + c1s
β−1|x1 − x2||i · u|−1.

We choose s = |x1 − x2|, we find for some new constant c > 0.

|∂εγ1(u) − ∂εγ2(u)| ≤ c|x1 − x2|β |i · u|−1. (46)

The above bound is not quite enough due to the factor |i · u|−1. Let β ′ = β − δ and
a = (1 − β)/(1 − β ′) < 1 From (41) for any u, v ∈ S+1 , x ∈ K1,

∣∣∣∣∣

(
(x · u)a

i · u
)β ′−1

−
(

(x · v)a

i · v

)β ′−1
∣∣∣∣∣ ≤
∣∣∣∣

i · u
(x · u)a

− i · v

(x · v)a

∣∣∣∣
1−β ′

.

If |i · u| ≥ |i · v|, we find from (42)
∣∣∣∣

i · u
(x · u)a

− i · v

(x · v)a

∣∣∣∣ ≤
∣∣∣∣
(i · u − i · v)

(x · u)a

∣∣∣∣ +
∣∣∣∣
(i · v)((x · v)a − (x · u)a)

(x · u)a(x · v)a

∣∣∣∣

≤ |u − v|
|x |a |i · u|a +

√
2
a |u − v|a

|x |a |i · u|2a−1
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where at the last step, we have used (41) (for β = a < 1). Using that |xk | ≤ η−1, we
arrive at

|(i · u)1−β ′
∂εγk(u) − (i · v)1−β ′

∂εγk(v)|

≤ η−β

( |u − v|
(|i · u| ∨ |i · v|)a

)1−β ′

+ η−β

( |u − v|
(|i · u| ∨ |i · v|)2−1/a

)1−β

(47)

Now,we fix s to be chosen later. For any v ∈ S+1 , there exists u ∈ S+1 , such that |u−v| ≤ s

and |i · u| ≥ s/2, see (35). Let t = η−β(s/(s/2)a)1−β ′
+ η−β(s/(s/2)2−1/a)1−β , we

have from (47) that
∣∣∣(i · v)1−β ′

(∂εγ1(v) − ∂εγ2(v))

∣∣∣ ≤ 2t +
∣∣∣(i · u)1−β ′

(∂εγ1(u) − ∂εγ2(u))

∣∣∣.

Observe that sβ−β ′ = sδ = ctηβ . Hence, from (46), we get

∣∣∣(i · v)1−β ′
(∂εγ1(v) − ∂εγ2(v))

∣∣∣ ≤ cη−βsδ + c|x1 − x2|βs−β ′
.

We choose s = η|x1 − x2|. The second statement of (i) follows.
To prove the claim (ii), observe that the derivative of x �→ (x−1 · u)β in the direction

ε ∈ {1, i} is
−βx−2(ε · u)(x−1 · u)β−1.

We observe that �(x · u) ≥ �(x) ≥ s and �(x−1) = �(x)/|x |2. This derivative is
bounded by c(�x)β−1|x |−2β . Thus, we find from the intermediate value theorem that
|γ1(u) − γ2(u)| ≤ csβ−1η−2β |x1 − x2|.

Similarly, the derivative of x �→ (x−1 · u)β−1(x−1 · ε′) in the direction ε ∈ {1, i} is

−(β − 1)x−2(ε · u)(x−1 · u)β−2(x−1 · ε′) − x−2(x−1 · u)β−1(ε · ε′).

Thederivative is bounded by c|x |1−2β�(x)β−2+c|x |−2β�(x)β−1 ≤ 2c|x |1−2β�(x)β−2.
��

Lemma 5.3. Let β ∈ (0, 1) and z = E + iη ∈ C+. Let B ∈ Mn(C) be a random
Hermitian matrix, G = (B − z)−1, and we define γ ∈ H̄0

β by

γ (u) = 1

n

n∑

k=1

(−iGkk · u)β .

Let us assume that the vectors (Bi )1≤i≤n are independent, where Bi = (Bi j ) j≤i ∈ C
i .

Then, there exists a constant c = c(β) such that for any 0 < δ < β and t ≥ 0,

P
(‖γ − Eγ ‖1−β+δ ≥ t

) ≤ c(ηβ t)−
1
δ exp

(
−cn(ηβ t)

2
δ

)
.

Proof. For 1 ≤ k ≤ n, we set hk = −iGkk . We also set γ (u) = γ (u)−Eγ (u). The first
step is to find a concentration inequality for the function γ (u) and its derivatives for any
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fixed u ∈ S+1 . It will follow from Lemma 5.1. We consider the function f ∈ Hβ defined
for x ∈ K1 by f (x) = (x · u)β . For s > 0 to be fixed later, let φ : C → C be equal
to one for |z| ≥ 2s, equal to zero for |z| ≤ s and growing linearly with the modulus in
between. Thus φ is Lipschitz with constant 1/s. We write,

f (x) = (1 − φ(x · u)) f (x) + φ(x · u) f (x) = f1(x) + f2(x).

The function f1 is bounded by (2s)β . Let t > 0, we set s such that (2s)β = t/4. We get

P

(∣∣∣γ (u)

∣∣∣ ≥ t
)

= P

(∣∣∣∣∣
1

n

n∑

k=1

f (hk) − E
1

n

n∑

k=1

f (hk)

∣∣∣∣∣ ≥ t

)

≤ P

(∣∣∣∣∣
1

n

n∑

k=1

f2(hk) − E
1

n

n∑

k=1

f2(hk)

∣∣∣∣∣ ≥ t/2

)

≤ 2 exp
(
−cnη2t2/β

)
, (48)

where the last line follows from Lemma 5.1 and that f2 is Lipschitz with constant
csβ−1 = c′t1−1/β .

Similarly, for ε ∈ {1, i}, we have

∂εγ (u) = 1

n

n∑

k=1

β(hk · u)β−1(hk · ε).

We consider the function g ∈ Hβ defined for x ∈ K1 by g(x) = (x · u)β−1(x · ε). As
in the proof of Lemma 5.2, we decompose g(x) = g1(x) + g2(x) with g1 bounded by
c0sβ/|i ·u| and g2 Lipschitz with constant csβ−1/|i ·u|. Now, for fixed t > 0, we choose
s > 0 such that c0sβ/|i · u| = t/4. Using Lemma 5.1, we find

P

(∣∣∣∂εγ (u)

∣∣∣ ≥ t
)

≤ P

(∣∣∣∣∣
1

n

n∑

k=1

g2(hk) − E
1

n

n∑

k=1

g2(hk)

∣∣∣∣∣ ≥ t/2

)

≤ 2 exp
(
−cnη2t2/β |i · u|2/β

)
.

Hence, for any t ≥ 0,

P

(∣∣∣(i · u)1−β+δ∂εγ (u)

∣∣∣ ≥ t
)

≤ 2 exp
(
−cnη2t2/β |i · u|2−2δ/β

)
. (49)

In the second and final step of the proof, we use a net argument to obtain the concen-
tration for the norm. If F is a s-net of S1+ with 2β/2η−βsβ = t/4, from (44), we deduce
that for any t ≥ 0,

P

(
sup
u∈S+1

∣∣∣γ (u)

∣∣∣ ≥ t

)
≤ P

(
sup
u∈F

∣∣∣γ (u)

∣∣∣ ≥ t/2

)
.

There exists a net F of cardinal bounded by 1/s. From the union bound and (48), we
deduce that

P

(
sup
u∈S+1

∣∣∣γ (u)

∣∣∣ ≥ t

)
≤ c

ηt1/β
exp
(
−cnη2t2/β

)
.
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Similarly, consider F is a s-net of S1+ of cardinal at most 1/s such that |i ·u| ≥ s/2 for all
u ∈ F . Setβ ′ = β−δ. From (47), if η−β(s/(s/2)a)1−β ′

+η−β(s/(s/2)2−1/a)1−β = t/4,
we have that for any t ≥ 0,

P

(
sup
u∈S+1

∣∣∣(i · u)1−β ′
∂εγ (u)

∣∣∣ ≥ t

)
≤ P

(
sup
u∈F

∣∣∣(i · u)1−β ′
∂εγ (u)

∣∣∣ ≥ t/2

)
.

Observe that sβ−β ′ = sδ = ctηβ . From the union bound and (49), we deduce that

P

(
sup
u∈S+1

∣∣∣(i · u)1−β ′
∂εγ (u)

∣∣∣ ≥ t

)
≤ c(ηt1/β)−β/δ exp

(
−cnη2β/δt2/δ

)
.

It concludes the proof. ��
The following lemma is a variant of the preceding statement.

Lemma 5.4. Let 0 < α < 2, β ∈ (0, 1), (hk)1≤k≤n ∈ Kn
1 and (gk)1≤k≤n be iid standard

normal variables. We define γ ∈ H̄0
β by

γ (u) = 1

n

n∑

k=1

(hk · u)β |gk |α.

Assume that for all k ≥ 1, |hk | ≤ η−1. Then, there exists a constant c = c(α, β) such
that for any 0 < δ < β and 0 ≤ t ≤ η−β ,

P
(‖γ − Eγ ‖1−β+δ ≥ t

) ≤ c(ηβ t)−
1
δ exp

(
−cn(ηβ t)

2
δ

)
.

Proof. We start by a preliminary concentration inequality. For 0 < α < 2, the variable
|gk |α is sub-exponential. From Bernstein’s inequality, for any t ≥ 0, we have

P

(∣∣∣∣∣
∑

k

xk |gk |α − E

∑

k

xk |gk |α
∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−c

t2

‖x‖22
∧ t

‖x‖∞

)
.

Since ‖x‖2 ≤ √
n‖x‖∞, if ϕ(t) = t ∧ t2,

P

(∣∣∣∣∣
∑

k

xk |gk |α − E

∑

k

xk |gk |α
∣∣∣∣∣ ≥ nt

)
≤ 2 exp

(
−cnϕ

(
t

‖x‖∞

))
. (50)

In particular, for any u ∈ S+1 ,

P(|γ (u) − Eγ (u)| ≥ t) ≤ 2 exp
(−cnϕ(tηβ)

)
,

and for ε ∈ {1, i}, from (45),

P(|∂εγ (u) − E∂εγ (u)| ≥ t) ≤ 2 exp
(−cnϕ(tηβ |i · u|)) .

We then repeat the net argument used in Lemma 5.1. Setting, L = 1
n

∑
k |gk |α , the

inequalities (43)–(47) are replaced respectively by

|γ (u) − γ (v)| ≤ L2β/2η−β |u − v|β.
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and

|(i · u)1−β ′
∂εγ (u) − (i · v)1−β ′

∂εγ (v)| ≤ Lη−β

( |u − v|
(|i · u| ∨ |i · v|)a

)1−β ′

+ Lη−β

( |u − v|
(|i · u| ∨ |i · v|)2−1/a

)1−β

Arguing as in Lemma 5.1, we find that for any t ≤ η−β ,

P
(‖γ − Eγ ‖1−β+δ ≥ t�

) ≤ c(ηβ t)−
1
δ exp

(
−cn(ηβ t)

2
δ

)
+ P(L ≥ �).

From Bernstein’s inequality, for � = 2E|g1|α , P(L ≥ �) ≤ exp(−cn). ��
We conclude this subsection with a perturbation inequality for the resolvent.

Lemma 5.5. Let β ∈ (0, 1], B, B ′ ∈ Mn(C) be hermitian matrices, z = E + iη and
R = (B − z)−1 and R′ = (B ′ − z)−1. Then,

n∑

k=1

|Rkk − R′
kk |β ≤ 2n1−βη−β rank(B − B ′).

Proof. It is a variant of the proof of [16, Equation (91)]. The resolvent identity asserts that
M = R − R′ = R(B ′ − B)R′. It follows that r = rank(M) ≤ rank(B − B ′). We notice
also that ‖M‖ ≤ 2η−1. Hence, in the singular value decomposition of M = UDV , at
most r entries of D = diag(s1, . . . , sn) are non zero and they are bounded by ‖M‖. We
denote by u1, . . . , ur and v1, . . . , vr the associated orthonormal vectors so that

M =
r∑

i=1

si uiv
∗
i ,

and

∣∣Rkk − R′
kk

∣∣ = |Mkk | =
∣∣∣∣∣

r∑

i=1

si 〈ui , ek〉〈vi , ek〉
∣∣∣∣∣ ≤ ‖M‖

r∑

i=1

|〈ui , ek〉||〈vi , ek〉|.

From the subadditivity of x �→ |x |β , we get
∣∣Rkk − R′

kk

∣∣β ≤ ‖M‖β
r∑

i=1

|〈ui , ek〉|β |〈vi , ek〉|β.

Finally, from Hölder inequality,

n∑

k=1

∣∣Rkk − R′
kk

∣∣β ≤ ‖M‖β
r∑

i=1

n1−β

(
n∑

k=1

|〈ui , ek〉|2
)β/2( n∑

k=1

|〈vi , ek〉|2
)β/2

= r‖M‖βn1−β.

It completes the proof. ��

5.2. Properties of α-stable variables. In this subsection, we let (Xk)1≤k≤n be iid sym-
metric α-stable random variables with distribution Stabα(0, σ ) for some σ > 0 and
0 ≤ α < 2. More precisely, for all t ∈ R,
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E exp(i t X) = exp
[−σα|t |α ] (51)

Our first lemma is a deviation inequality for quadratic forms with heavy tails (in a
slightly modified form).

Lemma 5.6 ([16, Lemma 3.3]). Let B ∈ Mn(C). For any 0 < α < 2, there exists a
constant c = c(α) > 0 such that for n ≥ 2 and t ≥ 0,

P

⎛

⎝

∣∣∣∣∣∣
n− 2

α

∑

1≤k �=�≤n

Xk X�Bk�

∣∣∣∣∣∣
≥ σ 2

√
Tr(BB∗)

n2
t

⎞

⎠ ≤ ct−α log (n(t ∨ 2)) log(t ∨ 2).

We also use the following identity (which is special case of a more general distribu-
tional identity).

Lemma 5.7 ([16, Corollary B.2]). Let (hk)1≤k≤n ∈ Kn
1 . Then

E exp

(
−

n∑

k=1

hk X
2
k

)
= E exp

(
−2

α
2 σα

n∑

k=1

h
α
2
k |gk |α

)
,

where (g1, · · · , gn) is a standard gaussian vector N (0, I ).

In the proof of Proposition 3.2, we shall use the following key corollary.

Corollary 5.8. Let (hk)1≤k≤n ∈ Kn
1 and z ∈ C+. Define the function f ∈ H̄0

α/2,

f (u) = �
(
1 − α

2

)
E

⎛

⎝
(

−i z + n− 2
α

n∑

k=1

X2
k hk

)−1

.u

⎞

⎠

α
2

.

and for p ≥ 0, the scalars

ζ = E

∣∣∣∣∣−i z + n− 2
α

n∑

k=1

X2
k hk

∣∣∣∣∣

−p

and ξ = E

(
−i z + n− 2

α

n∑

k=1

X2
k hk

)−p

.

We have f = EGz(Z), ζ = Erp,z(Z) and ξ = Esp,z(Z ′) with

Z(u) = 2
α
2 σα × 1

n

n∑

k=1

(hk · u)
α
2 |gk |α and Z ′ = 2

α
2 σα × 1

n

n∑

k=1

h
α
2
k |gk |α,

where (g1, . . . , gn) is a standard Gaussian vector N (0, I ).

Proof. The proof is again essentially contained in [16], we reproduce it.We set h = −i z,
�(h) > 0. We have

f (u) = �
(
1 − α

2

)
E

⎛

⎜⎝
h · ǔ + n− 2

α
∑n

k=2 X
2
1khk .ǔ∣∣∣h + n− 2

α
∑n

k=2 X
2
1khk

∣∣∣
2

⎞

⎟⎠

α
2

.
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We use the formulas, for all w ∈ K1, β > 0,

|w|−2β = (w)−β(w̄)−β = �(β)−2
∫

[0,∞)2
dxdy xβ−1yβ−1e−xw−yw̄

= �(β)−221−β

∫ π
2

0
dθ sin(2θ)β−1

∫ ∞

0
dr r2β−1e−rw·eiθ .

and for 0 < β < 1,

wβ = β�(1 − β)−1
∫ ∞

0
dx x−β−1(1 − e−xw).

With h = −i z, we find that f (u) is equal to

cα

∫ π
2

0
dθ sin(2θ)

α
2 −1
∫ ∞

0
dx x− α

2 −1

×
∫ ∞

0
dr rα−1

E

(
e−rh·eiθ−n− 2

α
∑

X2
k rhk ·eiθ − e−h·(reiθ+xǔ)−n− 2

α
∑

X2
k hk ·(reiθ+xǔ).

)
.

The above integrals are absolutely integrable since �(h) > 0. It remains to perform the
change of variable x = r y and use Corollary 5.7.

Similarly, with h = −i z,the above formula for |w|−2β with β = p/2 asserts that

ζ = �(p/2)−221−p/2
∫ π

2

0
dθ sin(2θ)p/2−1

∫ ∞

0
drr p−1

Ee−rh·eiθ−n− 2
α
∑

X2
k rhk ·eiθ .

We then use Lemma 5.7 and that �(1/2) = √
π . The proof of the last statement is

identical. ��
The inverse of a non-negative α/2-stable random variable has a light tail.

Lemma 5.9 ([16, Lemma B.3]). Let S be a non-negative α/2-stable variable with
Laplace transform, t ≥ 0, E exp(−t S) = exp(−tα/2). Then, there exists c > 0
such that E exp(cS−α/(2−α)) < ∞. In particular, for some C > 0, for any t ≥ 1,
ES−t < (Ctα/(2−α))t .

5.3. Proof of Proposition 3.2. We first introduce the variable which depend on n and
z ∈ C+,

Mz = Tr R(1)(z)R(1)(z)∗

n2
= Tr�(R(1)(z))

n2�z .

We recall that γz ∈ H̄0
α/2 was defined for u ∈ S+1 by

γz(u) = �
(
1 − α

2

)
× 1

n

n∑

k=1

(−i Rkk(z) · u)
α
2 .

For short notation, as in the statement of Proposition 3.2, their expectations are denoted
by

M̄z = EMz and γ̄z = Eγz .
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Finally, we set η = �(z) and

γ̃z = γ̄z(1) = �(1 − α

2
)E(−i Rkk(z))

α
2 .

We will use that the resolvent R and R(1) are close. For example, we observe that
∣∣∣∣Mz − Tr�(R(z))

n2η

∣∣∣∣ ≤
3

n2η2
and

∣∣∣∣M̄z − E�R11(z)

nη

∣∣∣∣ ≤
3

n2η2
, (52)

(we apply Lemma 5.5 to the matrix B ′ given by B ′
i j = Bi j1(i, j ≥ 2). Its resolvent R′

i j

coincides with R(1)
i j for all i, j ≥ 2 and R′

11 = −1/z). We will also need a technical
lemma.

Lemma 5.10. If h ∈ K1 and 0 < β < 1, �(hβ) ≥ (�h)β .

Proof. We may assume without loss of generality that |h| = 1 and �(h) ≥ 0. Then the
lemma is equivalent to the inequality, for any x ∈ [0, π/2],

cos(βx) ≥ (cos x)β .

which can easily be checked by showing that f (x) = x−1 log cos(x) is decreasing (for
instance by showing that f ′(0) < 0 and f ′′(x) ≤ 0). ��

As explained in subsection 3.2, the approximate fixed point for γ will come from
Schur’s complement formula (9). We recall that

R11(z) = −(ih + i Qz + Tz)
−1, (53)

where we have set h = −i z ∈ K1, Hk = −i R(1)
kk (z) and

Qz = n− 2
α

∑

2≤k≤n

X2
1k Hk

Tz = n− 1
α X11 + n− 2

α

∑

2≤k �=�≤n

X1k X1�R
(1)
k� (z).

We introduce the function in Hα/2,

Iz(u) = �
(
1 − α

2

)
E

(
(h + Qz)

−1 .u
) α

2

We will often drop the explicit dependence in z. Finally, F is the σ -algebra generated
by the variables (Xi j ), i, j ≥ 2. Note that Q and T are F-measurable and (X1k), k ≥ 1,
is independent of F .

The proof of Proposition 3.2 is divided in four steps.

Step 1 : from Iz to Gz(γ̄ ). From Corollary 5.8, we have

Iz = EGz(Z). (54)

with Z given by

Z(u) = �
(
1 − α

2

)
× 1

n

n∑

k=2

(Hk · u)
α
2

|gk |α
E|gk |α ,
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where (g1, . . . , gn) is a standard Gaussian vector N (0, I ) independent of F . Indeed,
with our choice σα = π/(2 sin(πα/2)�(α)) in (51), we have

2α/2σα = 2α/2−1�(α/2)�(1 − α/2)/�(α) = �(1 − α/2)/E|g1|α,

where we used the classical identities E|g1|α = 2α/2�(1/2 + α/2)/
√

π and, for 0 <

β < 1, �(β)�(1 − β) = π/ sin(πβ), �(β)�(1/2 + β) = √
π21−2β�(2β). We set

Z̄(u) = EF Z(u) = �
(
1 − α

2

)
× 1

n

n∑

k=2

(Hk · u)
α
2 .

From Lemma 5.4, with overwhelming probability, we get

‖Z − Z̄‖1−α/2+δ ≤ (log n)cη−α/2n−δ/2.

Similarly, from Lemma 5.3, with overwhelming probability, we have

‖γ − γ̄ ‖1−α/2+δ ≤ (log n)cη−α/2n−δ/2.

We consider the matrix B ′ given by B ′
i j = Bi j1(i, j ≥ 2). Its resolvent R′

i j coincides

with R(1)
i j for all i, j ≥ 2 and R′

11 = −1/z. Using Lemma 5.2, as Z̄ equals γ up to

replacing R by R(1),

‖Z̄ − γ ‖1−α/2+δ ≤ cη−α/2n−1

(
1 +

n∑

k=1

|Rkk(z) − R′
kk(z)|α/2 + ηδ

n∑

k=1

|Rkk − R′
kk |δ
)

.

We apply Lemma 5.5 to the matrix B ′ and use the triangle inequality, it gives

‖Z̄ − γ ‖1−α/2+δ ≤ cη−α/2n−1 + cη−αn−α/2 + cη−α/2n−δ ≤ cη−α/2n−δ.

So finally, with overwhelming probability, we deduce

‖Z − γ̄ ‖1−α/2+δ ≤ (log n)cη−α/2n−δ/2. (55)

Observe that the right hand side is o(1) for our range of η (we can take δ as close
from α/2 as wished). The assumption E|R11(z)| ≤ ε−1 and Lemma 5.2 imply that for
some c > 0, ‖γ̄ ‖1−α/2+δ ≤ c . On the other end, Lemma 5.2 also implies the rough
bound ‖Z‖1−α/2+δ ≤ Lη−α/2 with L = (c/n)

∑n
k=2 |gk |α . For any p ≥ 0, EL p being

bounded, we deduce from (55) that
(
E‖Z − γ̄ ‖p

1−α/2+δ

)1/p ≤ (log n)cη−α/2n−δ/2 and E‖Z‖p
1−α/2+δ ≤ c. (56)

We now claim for that for some ε′ > 0, with overwhelming probability, for all u ∈ S+1

�(Z · u) > ε′ and �(γ̄ · u) > ε′ (57)

(that is Z , γ̄ ∈ Hε′
α/2,δ). First, since ‖Z − γ̄ ‖∞ ≤ ‖Z − γ̄ ‖1−α/2+δ = o(1), it suffices to

prove that γ̄ ∈ Hε′
α/2,δ up to modifying the value of ε′. We should thus check that (for

some new ε′ > 0), for all u ∈ S+1

�E(−i R11 · u)α/2 > ε′.
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The assumptionE(�(−i R11))
α/2 ≥ ε implies that for any u ∈ S+1 ,E(�(−i R11.u))α/2 ≥

ε (since �(h · u) ≥ �(h)). Using Lemma 5.10, we deduce that �E(−i R11.u)α/2 ≥ ε. It
proves (57).

We now want to apply (54). Let V be the event of overwhelming probability such
that (57) holds. On V , we apply Lemma 4.3, while on V c, we use Lemma 4.1(16). It
gives

‖Iz − Gz(γ̄ )‖1−α/2+δ ≤ E‖Gz(Z) − Gz(γ̄ )‖1−α/2+δ

≤ cE(1 + ‖γ̄ ‖1−α/2+δ + ‖Z‖1−α/2+δ)‖Z − γ̄ ‖1−α/2+δ

+ cη−α
E1V c

(‖Z‖1−α/2+δ + ‖γ̄ ‖1−α/2+δ

)

≤ (log n)cη−α/2n−δ/2 , (58)

where the last inequality follows from (56) and Cauchy-Schwartz inequality.

Step 2 : bounds on Q and T . Recall that Z(eiπ/4) = (c/n)
∑n

k=2 �(Hk)
α
2 |gk |α . From

Lemma 5.7, given F , with Q = Qeiπ/4 , we have

�(Q)
d= cS[Z(eiπ/4)]2/α, (59)

where S is a non-negative α/2-stable variable independent of Z . By Lemma 5.9, for
a > 0 and b > 0 small enough,

P(S ≤ (log n)−a) = P

(
ebS

− α
2−α ≥ eb(log n)

aα
2−α

)
≤ ce−b(log n)

aα
2−α

.

Hence, if aα/(2−α) > 1, the event {S ≤ (log n)−a} holds with overwhelming probabil-
ity. Putting together (55) and (59), we deduce that for some c0 > 0, with overwhelming
probability,

�(Q) ≥ 2(log n)−c0 . (60)

Similarly, from Lemma 5.7, given F ,

|Q| ≤ cn− 2
α

n∑

k=2

|Hk |X2
1k

d= cSY 2/α, (61)

where, given F , S is as above and independent of Y given by

Y = 1

n

n∑

k=2

|Hk | α
2

|gk |α
E|gk |α ,

with (g1, . . . , gn) iid standard normal variables. We set

Ȳ = EFY = 1

n

n∑

k=2

|Hk | α
2 .

From (50), with overwhelming probability,

|Y − Ȳ | ≤ (log n)cn−1/2η−α/4 = o(1).
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By Lemma 5.5,

|Ȳ − ρ| ≤ cn−α/2η−α/2 = o(1).

where

ρ = 1

n

n∑

k=1

|Rkk |α/2.

Let ρ̄ = Eρ = E|R11|α/2. The proof of (48) gives for any t ≥ 0,

P(|ρ − ρ̄| ≥ t) ≤ 2 exp(−cnη2t4/α).

Hence, with overwhelming probability,

|ρ − ρ̄| ≤ (log n)cn−α/4η−α/2 = o(1).

By assumption ρ̄ ≤ ε−1. It follows that with overwhelming probability,

|Y | ≤ 2ε−1.

We denote by F the event

{|Y | ≤ c0 and �(Q) ≥ 2(log n)−c0}.
From what precedes, if c0 is large enough, the event F holds with overwhelming prob-
ability. We also consider the event :

E = {|T | ≤ (log n)−c0
}

Since Mz ≤ 1/(nη2) ≤ 1, by Lemma 5.6, if 0 ≤ t ≤ 1

PF (|T | ≥ t) ≤ cMα/2t−α(log n), (62)

and, consequently, for β > α and 0 ≤ t ≤ 1, for some constant c = c(α),

EF |T |β1(|T | ≤ t) ≤ c

β − α
Mα/2tβ−α(log n). (63)

Thus by Chebychev’s inequality for some c > 0,

PF (Ec) ≤ Mα/2(log n)c. (64)

Step 3 : from Schur’s formula (53) to Iz . In (61), up to enlarge our probability space,
wemay assume that the variables (Y, S, Q, T ) are defined on the same probability space.
From (53), Jensen’s inequality and Lemma 5.2, for any s > 0,

‖γ̄ − Iz‖1−α/2+δ ≤ cE‖((h + Q − iT )−1 · u)α/2 − ((h + Q)−1 · u)α/2‖1−α/2+δ

≤ (log n)cESα−11S≤s |T |1E + cη−α/2(
P(S ≥ s) + P(Ec ∪ Fc)

)
,

(65)

wherewe have used that on E∩F , |h+Q−iT | and |h+Q| are O(S) and�(h+Q−iT ) ≥
�(Q) − |T | ≥ (log n)−c0 .
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We first consider the case 0 < α ≤ 1 in (65) where we take s = ∞. Let p = log n
and 1/q +1/p = 1. We have q = 1+1/ log n +o(1/ log n). From Hölder inequality and
Lemma 5.9

ESα−1|T |1E ≤
(
ES p(α−1)

)1/p(
E|T |q1E

)1/q ≤ (log n)c
(
E|T |q1E

)1/q
.

Recall that E = {|T | ≤ (log n)−c0}. Also Jensen’s inequality implies that EMα/2 ≤
M̄α/2. We deduce from (63) that

(
E|T |q1E

)1/q ≤
(
(log n)c M̄α/2

)1/q ≤ (log n)c M̄α/2,

where the last inequality comes from M̄ ≥ cn−1 which follows from (52) and the
assumptions of Proposition 3.2. Hence, from (64)–(65),

‖γ̄ − Iz‖1−α/2+δ ≤ (log n)c M̄α/2 + (log n)cη−α/2M̄α/2 ≤ (log n)c
′
η−α/2M̄α/2.

Similarly, for 1 < α < 2, we choose s = M−1 in (65). Let p = α/(2(α − 1)) > 1 and
q = α/(2 − α) > α. Since 1/q + 1/p = 1, from Hölder inequality, we find for n large
enough,

ESα−11S≤s |T |1E ≤
(
ESα/21S≤s

)1/p(
E|T |q1E

)1/q ≤ (log n)
(
E|T |q1E

)1/q
,

where we have used thatESα/21(S ≤ s) ≤ c log(s∨2) and M̄ ≥ cn−1. Since α/(2q) =
1 − α/2, we get from (63)–(64),

‖γ̄ − Iz‖1−α/2+δ ≤ (log n)c M̄1−α/2 + (log n)cη−α/2M̄α/2.

We deduce from (58) that the first statement of Proposition 3.2 holds.

Step 4 : from Schur’s formula (53) to E|R11|p and ERp
11. We only treat the case

E|R11|p. The case of ERp
11 is identical. Let Jz = E|h + Q|−p. From Corollary 5.8

Jz = Erp,z(Z),

where Z is as above defined in (54). We drop the parameters (p, z). From Jensen’s
inequality,

|J − r(γ̄ )| ≤ E|r(Z) − r(γ̄ )|.
We then argue as in (58) : when the event V holds, we apply Lemma 4.3 and when V
fails to hold, we use instead that |r(g)| ≤ cη−p for g ∈ H̄0

α (Lemma 4.1). It gives in
conjunction with (56)

|J − r(γ̄ )| ≤ cE‖Z − r(γ̄ )‖∞ + cη−p
P(Ec) ≤ (log n)cη−α/2n−δ/2. (66)

Wemay now repeat the third step. Recall the variable S defined in (61) and the events
E, F . We observe that for any x, y ∈ C,

∣∣∣∣
1

|x |p − 1

|y|p
∣∣∣∣ ≤

|x − y|
|x |p|y|p

p−1∑

k=0

|x |k |y|p−k−1 ≤ p
|x − y|
s p+1

,
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where s = �(x) ∧ �(y). Hence, from (53), Jensen’s inequality,

|E|R11|p − J | ≤ E
∣∣|h + Q − iT |−p − |h + Q|−p

∣∣

≤ (log n)cE|T |1E + 2η−p
P(Ec ∪ Fc),

where we have used that on E ∩ F , �(h + Q − iT ) ≥ �(Q) − |T | ≥ (log n)−c0 . Using
(63)–(64), we arrive at

|E|R11|p − J | ≤ (log n)cη−p M̄α/2.

Together with (66), it implies the second statement of the proposition. ��

5.4. Local law in neighborhood of the origin. We denote by

γ̃ 

z = γ 


z (1) = �(1 − α/2)E(−i R
)
α/2,

where R
 was defined by (7). Lemma 4.4 asserts that γ̃ 

z = �(1 − α/2)sα/2,z(γ̃



z ). We

prove the following theorem:

Theorem 5.11. For α ∈ (0, 2)\A, there exist τ > 0, c > 0 and 0 < δ < α/2 such that
if |z| ≤ τ and �(z) ≥ (log n)cn−α/(2+α), then

‖γ̄z − γ 

z ‖1−α/2+δ = o(1) and |E|R11| − r1,z(γ



z )| = o(1).

Finally, if p ≥ α/2 is such that �(z) ≥ (log n)cn−α/(2p+α),

|E|R11(z)|p − rp,z(γ


z )| = o(1)

|E(−i R11(z))
p − sp,z(γ̃



z )| = o(1).

We first check that the assumptions of Proposition 3.2 are met for any fixed z ∈ C+.

Lemma 5.12. If z ∈ C+, there exists c = c(z) > 0 such that |R11(z)| ≤ c−1 and
E�(R11(z))α/2 ≥ c.

Proof. Recall that |R11| ≤ 1/�(z). For the lower bound, let X1 = (X1k)2≤k≤n . Since
�(R(1)) ≥ 0, we have from (53)

�(R11) = �(z) + 〈X1,�R(1)X1〉
|z + i Q + T |2 ≥ 1

3

�(z)

|z|2 + |Q|2 + |T |2 .

By (62), since M ≤ n−1�(z)−2 ≤ c/n, we have P(|T | ≥ 1) ≤ cn−α/2(log n) ≤ 1/4
for n large enough. Finally, from (61), E|Q|δ < c if δ < α/2. We deduce that P(|Q| ≥
t) ≤ 1/4 for t large enough. Then, with probability at least 1/2, �(R11) ≥ �(z)/
(3|z|2 + 3t + 3). ��
Proof of Theorem 5.11. Set rz = r1,z and ηmin = (log n)c0n−α/(2+α) for some c0 > 0
to be chosen later on. Since α/(2 + α) < 1/2, we may choose 0 < δ < α/2 such that
for all η ≥ ηmin and fixed c > 0,

(log n)cη−α/2n−δ/2 = o(1). (67)



156 C. Bordenave, A. Guionnet

We fix such parameter δ. We use a continuity argument. Assume that for some z1 =
E + iη1 ∈ C+, with |z1| ≤ τ and η1 ≥ ηmin, we have that

‖γ̄z1 − γ 

z1‖1−α/2+δ ≤ ε and |E|R11(z1)| − rz1(γ



z1)| ≤ ε (68)

where ε ≤ τ/2 is an arbitrarily small constant and τ is as inProposition3.4.Let z = E+iη
withη1−n−3/δ ≤ η ≤ η1.Usingη ≥ 1/

√
n,wehave |Rkk(z)−Rkk(z1)| ≤ |η−η1|/η2 ≤

2n−3/δ+1 ≤ 2n−2/δ . Hence, by Lemma 5.2, for β ∈ (0, 1), as |Rkk(z)| ≤ η−1 ≤ √
n,

‖γ̄z1 − γ̄z‖1−β+δ ≤ cnβ/2n−2β/δ + cnβ/2−δ/2n−2 = o(1).

The same holds for ‖γ 

z1−γ 


z ‖1−β+δ . Takingβ = α/2,we get from the triangle inequality

‖γ̄z − γ 

z ‖1−α/2+δ ≤ 2ε ≤ τ. (69)

Similarly, using the continuity of z �→ rz( f ) for f ∈ H0
α/2, we get

|E|R11(z)| − rz(γ


z )| ≤ 2ε.

By Proposition 3.3, there exists a constant c1 > 1 such that for all z ∈ Cwith |z| ≤ τ ,

|rz(γ 

z )| ≤ c1 and γ 


z (eiπ/4) ≥ c−1
1 .

Hence, if ε is small enough, we deduce that

E|R11(z)| ≤ 2c1 and E(�R11(z))
α/2 ≥ 1

2c1�(1 − α/2)
.

Wemay thus apply Proposition 3.2. The first inequality of Proposition 3.2, in conjunction
with Corollary 3.4 and (69), implies that

‖γ̄z − γ 

z ‖1−α/2+δ ≤ (log n)c

(
η−α/2M̄α/2 + η−α/2n−δ/2 + M̄1−α/21α>1

)
. (70)

The second inequality of Proposition 3.2 gives thanks to Lemma 4.3 and the above
inequality gives

|E|R11| − rz(γ


z )| ≤ (log n)c

(
η−1M̄α/2 + η−α/2n−δ/2

)
. (71)

From (52), we have

M̄ = E�(R(1)
22 )

nη
≤ E|R11|

nη
+

3

n2η2
≤ 2c1 + 3

nη
.

We deduce from (70)–(71) and (67) that

‖γ̄z − γ 

z ‖1−α/2+δ ≤ (log n)cη−αn−α/2 + o(1)

and |E|R11| − rz(γ


z )| ≤ (log n)cη−1−α/2n−α/2 + o(1).

It is easy to check that if c0 in choice of ηmin is small enough, the above terms are o(1).
It follows that z satisfies (68) with the same ε.

We may thus use of continuity argument, for any fixed z with |z| ≤ τ , (68) holds
by Lemma 5.12, Proposition 3.2 and Lemma 3.4. By iteration, it proves that (68) holds
for all z ∈ C+ with |z| ≤ τ and �(z) ≥ ηmin. It proves the first statement of Theo-
rem 5.11. The second statement is then a direct consequence of a new application of
Proposition 3.2. ��
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Theorem5.11 implies a control of the number of eigenvalues in an interval. Recall that
|�I | is the number of eigenvalues of A in the interval I . We denote byμ
 the probability
measure on R whose Cauchy-Stieltjes transform is is1,z(γ̃ 


z ) = ER
 (defined by (7)) :
for any z ∈ C+,

∫
dμ
(λ)

λ − z
= is1,z(γ̃



z ).

It is notably shown in [11,12,15] that μ
 has a bounded positive continuous density
which is explicit at 0.

Corollary 5.13. For α ∈ (0, 2)\A, there exist τ > 0 and c > 0 such that if I ⊂ [−τ, τ ]
is an interval of length at least (log n)cn−α/(2+α), then with overwhelming probability,

∣∣∣∣
|�I |
n

− μ
(I )

∣∣∣∣ = o(1)|I |.

Proof. Define the probability measure μ(I ) = |�I |/n. By construction, the Cauchy-
Stieltjes transform of μ is 1

nTr R. By [16, Lemma 3.7], up to modifying the value of c
and τ , it is sufficient to prove that with overwhelming probability,

1

n
Tr (−i Rz) = s1,z + o(1)

for all z such that |z| ≤ τ and �(z) ≥ (log n)cn−α/(2+α). By Lemma 5.1, with over-
whelming probability

∣∣∣∣
1

n
Tr (−i Rz) − E

1

n
Tr (−i Rz)

∣∣∣∣ ≤ (log n)n−1/2η−1 = o(1).

Since E 1
nTr (−i R) = E(−i R11), the conclusion follows from Theorem 5.11. ��

Corollary 5.14. For α ∈ (0, 2)\A, there exist τ > 0 and c > 0 such that if |z| ≤ τ ,
�(z) ≥ (log n)c(n−α/(4+α) ∨ n−1/4), then with overwhelming probability,

1

n

n∑

k=1

|Rkk(z)|2 ≤ c.

Proof. Set z = E + iη. We apply Lemma 5.1 with f (x) = |x |2 ∧ η−2. It is Lispchitz
with constant 2η−1. We deduce that with overwhelming probability,

∣∣∣∣∣
1

n

n∑

k=1

|Rkk(z)|2 − E|R11(z)|2
∣∣∣∣∣ ≤ (log n)n−1/2η−2 = o(1).

It remains to apply Theorem 5.11. ��

5.5. Proof of Theorem 1.2. Sinceμ
 has a positive continuous density, there exists c > 0
such that
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μ
(I ) ≥ c|I |
for any interval I ⊂ [−τ, τ ]. Hence, Corollary 5.13 implies that |�I | ≥ cn|I |/2
with overwhelming probability. Thus Lemma 3.1 implies that QI is bounded by
4
c2n

∑n
k=1 |Rkk(z)|2 Then, Theorem 1.2 is an immediate consequence of

Corollary 5.14. ��
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