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Abstract: We present a solution method for the inverse scattering problem for inte-
grable two-dimensional relativistic quantum field theories, specified in terms of a given
massive single particle spectrum and a factorizing S-matrix. An arbitrary number ofmas-
sive particles transforming under an arbitrary compact global gauge group is allowed,
thereby generalizing previous constructions of scalar theories. The two-particle S-matrix
S is assumed to be an analytic solution of the Yang–Baxter equation with standard prop-
erties, including unitarity, TCP invariance, and crossing symmetry. Using methods from
operator algebras and complex analysis, we identify sufficient criteria on S that imply
the solution of the inverse scattering problem. These conditions are shown to be satisfied
in particular by so-called diagonal S-matrices, but presumably also in other cases such
as the O(N )-invariant nonlinear σ -models.

1. Introduction and Overview

This paper is part of a research programon the non-perturbative construction and analysis
of integrable relativistic quantum field theories in two dimensions, prominent examples
being the Sinh-Gordon model, the Ising model, the Sine-Gordon model, the O(N ) σ -
models, and many more. Such field theories are simple enough to be accessible by a
range of different methods, and yet rich enough to sometimes resemble features of QFT
in four dimensions (see, for example [1,28]). The literature on integrable quantum field
theories in general is so voluminous that we have to restrict ourselves to mention the
monographs [1,7,35,55] as just a few sample references.

The main focus of the present article is the construction (in a sense to be made
precise) of a large family of such models. In some cases, a construction with the tools of
constructive quantum field theory in the Euclidean setting [27] has been accomplished
a long time ago. In particular, the Sine-Gordon model was constructed from its classical
Lagrangian by quantization and perturbative renormalization by Fröhlich [26]. More
recently, Benfatto, Falco andMastropietro proved the equivalence between the massless
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Sine-Gordon model and the Thirring model [9] and constructed the Thirring model in
the Euclidean setting [8]. Most other models, however, have not been established in a
non-perturbative manner yet.

It has been known for a long time that due to the presence of infinitely many conser-
vation laws, the dynamics (scattering) in integrable quantum field theories is severely
restricted, to the extent that the particle number is conserved in collisions of arbitrary
energy, and the full S-matrix is completely determined in terms of the two-particle
S-matrix (“factorizing S-matrix”) [1,31]. Moreover, also the form of the two-particle
S-matrix is subject to many constraints. This, on the one hand, often allows to determine
the two-particle S-matrix from kinematical reasoning alone (up to CDD ambiguities),
and, on the other hand, suggests to use the (quantum) two-particle S-matrix instead of
the (classical) Lagrangian as the datum defining the theory, and the starting point of its
construction and analysis.

This inverse scattering point of view underlies the bootstrap form-factor program
[5,55], where the aim is to calculate the Wightman n-point functions of local quantum
fields associated with a given factorizing S-matrix. Using fundamental QFT properties
like locality and covariance in conjunction with analytic and algebraic properties of
the S-matrix, it is often possible to explicitly compute form factors of the theory (see,
for example, [4]). The Wightman n-point functions are then given by infinite series of
integrals over form factors, and for a non-perturbative construction, it would be necessary
to control the convergence properties of these series. While this has been possible in a
few special cases [5], this problem remains largely open in general.

The present paper follows an alternative inverse scattering approach to the construc-
tion of integrable quantum field theories, see [37,40,51,52] for the initial papers in this
program, [10,16,22,44,58] for more recent developments, and [42, Ch. 10] for a review.
While the aim is, as in the form factor program, to construct an integrable quantum field
theory from a given two-particle S-matrix, the tools that are used in the construction
are different. In particular, the framework of algebraic quantum field theory [29] is used
instead of the framework of Wightman quantum field theory [57].

In the following, we give a detailed overview of the different steps of the construction
and the contents of the paper, and its relations to other developments within this program.
In several aspects, ourwork is a generalization of [40], where scalar theorieswith a single
species of particles without internal degrees of freedom were considered, to general
particle spectra.

Our starting point is thus a single particle spectrum consisting of an arbitrary finite
number of positive masses and a finite number of charges, corresponding to some arbi-
trary compact global gauge group, as well as a (two-body) S-matrix of arbitrary size.
These data have to satisfy a number of conditions, out of which we mention here in
particular a strict PCT symmetry. Another essential property is that the S-matrix has to
be an analytic crossing-symmetric solution of the Yang–Baxter equation, a property that
is trivially fulfilled in the scalar case. In Sects. 2.1 and 2.2, we specify our assumptions
in detail and recall from [44] how to build a suitable vacuum Hilbert space H from
them. This space is a generalized Fock space, defined by an S-dependent representation
of the permutation group, and carries a representation of the Zamolodchikov–Faddeev
algebra [60] by “S-twisted” creation/annihilation operators (see Proposition 2.4(iii)).

The framework we are using is not the most general one. Two possible extensions
are to consider only meromorphic (instead of analytic) S-matrices, with the poles of S
related to the bound states of the theory, or infinite-dimensional S, as is necessary for
describing situations in which the gauge group is no longer compact. We refer to [22,58]
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and [30] for new developments in these two directions. It should be noted, however, that
our setup already allows for a huge family of models, including the O(N ) σ -models as
particular examples.

Having fixed the single particle spectrum and S-matrix as the input data, the basic
strategy of the construction proceeds, as in the scalar case, through two main steps. In
the first step, carried out in [44] and reviewed here in Sect. 2.3, one exploits the crossing
symmetry of S (see Definition 2.1(iv)) to explicitly construct a pair of “wedge-local”
quantum fields φα(x), φ′β(y). These fields, labeled by spacetime points x, y ∈ R

2 and
indices α, β parameterizing the representation of the gauge group, commute with each
other if x lies spacelike to y and to the left of y (in a relativistic sense, see picture below).
This is tantamount to saying that these field operators are localized in (unbounded)
“wedge regions” like the so-called right wedgeWR ⊂ R

2, defined as the set of all points
lying to the right of the origin. Bothφ andφ′ furthermore transform covariantly under the
Poincaré group and the gauge group, and encode the two-body S-matrix in the vacuum
expectation values of their products φα(x) · φβ(y) (Theorem 2.5).

The second step of the construction consists in finding fields/observables B of direct
physical interest, which are localized in finite spacetime regions. By locality, this step
involves in particular the solution of the commutator constraints [B, φα(x)] = 0,
[B, φ′β(y)] = 0, if B is to be localized as shown in the picture above.

As the explicit solution of such commutator constraints is a complicated openproblem
even in the scalar case [16], we rather use a more abstract approach. It is at this stage
that we make use of the operator-algebraic description of quantum field theory [3,29],
which provides us with tools that are not readily available in other approaches. Our
construction program will therefore result in an algebraic description of a quantum field
theory (a “net of local algebras”) instead of a sequence of n-point functions.

Instead of the fields, we consider the von Neumann algebra F(WR) generated by all
fields φ′α(y), y ∈ WR . As a consequence of the properties of the field operators φ, φ′,
this algebra has the vacuum vector � as a cyclic and separating vector, and therefore
defines a modular operator � [17]. In this setting, the modular nuclearity condition of
Buchholz, D’Antoni, and Longo [19], demanding that the map

F(WR) � A �−→ �1/4U (x)A� ∈H , x ∈ WR, (1.1)

is nuclear (see Definition 3.5), is important. (HereU (x) denotes the unitary representing
translation by x on H ).

Namely, it is known from [21,40] that if this nuclearity condition holds, then the
existence of “large” algebras (type III1) of local fields/observables B with cyclic vacuum
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vector follows. Moreover, in this case our construction automatically yields a solution
of the inverse scattering problem, as has been shown in [44].

The main task in completing the second step of the construction program is therefore
to decide for which S the modular nuclearity condition holds. We recall the detailed
definition of this condition and its implications in Sect. 3.1, where we also compute the
relevant modular operators for the considered family of models (Bisognano–Wichmann
property, Proposition 3.3).

As we shall explain in the body of the text, the Bisognano–Wichmann prop-
erty entails that the abstract modular nuclearity condition takes a concrete form and
can be investigated with tools from complex analysis of several variables. More
specifically, we consider for any operator A ∈ F(WR) the functions (A�)αn (θ) :=
〈z†α1(θ1) · · · z†αn (θn)�, A�〉, where the θ j are rapidity variables and the z†α(θ) the cor-
responding Zamolodchikov creation operators.

It is a crucial aspect of our approach that the existence of local fields/observables is
encoded in the complex analytic structure of the functions (A�)αn , and can be inferred
without explicitly constructing such local operators. We identify two properties of par-
ticular significance in this context, “property (H)” (with “H” for “Hardy”) and the “inter-
twiner property”.

Property (H) demands that the (A�)αn (as functions of θ1, . . . , θn ∈ R) have an
analytic continuation into an n-dimensional tube domain of a particular form, and obey
suitable Hardy-type bounds on this tube (Definition 3.7). This property was already
known to hold in free field theories and scalar integrable models. We give here an
abstract proof that property (H) implies an n-particle version of modular nuclearity
(Theorem 3.10).

In Sect. 4, we then investigate the validity of property (H) concretely. It turns out
to be most efficient to represent various analytic continuations of the (A�)αn as sums
of “contractions diagrams” such as the one shown below, where each line carries an
index α and a rapidity θ , the orientations of the lines distinguish between creation and
annihilation operators, and crossings correspond to S-factors.

. . . . . .

Reading such diagrams analogously to knot partition functions ([34], see Sect. 4.1
for precise definitions) then allows us to conveniently organize and extract the analytic
and combinatorial properties of the functions (A�)αn .

This investigation works for general underlying S-matrix S, and in particular clarifies
the role of the crossing symmetry of S, which acts on (partial) diagrams according to

· · ·

μ
α
[θ]

ν
[θ ′]

λ

θ→θ−iπ−−−−−−−−→
· · ·

μ
α
[θ]

ν
[θ ′]

λ

,

(precisely explained in Sect. 4.1). Using these methods, we give a proof that property
(H) holds for a large class of “regular” S-matrices (Proposition 4.5).
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The second property relevant to the modular nuclearity condition is the so-called
“intertwiner property”. It is inspired by the fact that in many models (in particular, in the
O(N )-models), the S-matrix reduces to a tensor flip with a negative sign at zero rapidity
transfer. The intertwiner property demands that the (S-dependent) representation of the
permutation groupsSn , which underlies the definition of the vacuum Hilbert space, can
be intertwined in a suitable manner with the representation in which S is replaced by
the negative tensor flip (Definition 5.2). This intertwiner is required to preserve both,
algebraic and analytic properties coming from property (H).

On a technical level, the intertwiner property serves as a tool to improve estimates (in
dependence on the particle number n) on howwell the n-particle projections of (1.1) can
be approximated byfinite-dimensionalmaps. For all S-matrices satisfying the intertwiner
property, we obtain “full” modular nuclearity (as opposed to just an n-particle version),
and the inverse scattering problem for the underlying S is solved (Theorem 5.3).

The explicit characterization of all S satisfying the intertwiner property amounts to
characterizing a certain cohomology class of analytic cocycles ofSn-actions on tubes in
C
n . We do not completely solve this problem here, but rather construct a family of non-

trivial examples of (diagonal) S-matrices with the intertwiner property (Proposition 5.4).
We furthermore provide partial evidence to the effect that also the O(N )-models have
the intertwiner property.

In summary, our results translate the inverse scattering problem for integrable models
into a problem in complex analysis of several variables, related to the investigation of
property (H) and the intertwiner property. Whereas property (H) is shown to hold for all
regular S-matrices, the exact range of validity of the intertwiner property remains to be
determined. However, for a large class of non-scalar S-matrices a solution of the inverse
scattering problem is obtained. It is possible that (slight variations of) our methods will
also apply tomodelswith bound states, as they are currently being analyzed byCadamuro
and Tanimoto [22], in particular in the scalar case.

This paper is based on the PhD thesis of one of us [2].

2. Quantum Field Theories with Factorizing S-Matrices

2.1. Single particle spectrum. The starting point of our construction is the specifica-
tion of the single particle spectrum. We allow for finitely many massive particle species
carrying arbitrary charges. In this section, we recall the basic setup regarding the repre-
sentations of the corresponding Poincaré and gauge groups, following [44].

We consider a compact group G as global gauge group, and a finite setQ of equiva-
lence classes q of unitary irreducible representations ofG, interpreted as charge quantum
numbers as usual. For simplicity, we restrict ourselves to the case that to each charge q,
there exists exactly one mass m(q) > 0. This will, in particular, ensure that the models
we construct contain only massive, stable particles.1 The mass gap of the theory is,
therefore positive, and will be denoted

m◦ := min{m(q) : q ∈ Q} > 0. (2.1)

Since we are working on two-dimensional Minkowski space, we may parameterize the
upper mass shell H+

m(q) = {((p2 + m(q)2)1/2, p) : p ∈ R} by the rapidity θ , that is

pm(q)(θ) := m(q)

(
cosh θ
sinh θ

)
, θ ∈ R. (2.2)

1 Our results can be shown to hold also if finitely many isolated mass values are considered in each sector.
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Choosing L2(R, θ) as a natural representation space for the irreducible positive energy
representation U1,m of the Poincaré group with mass m, we define the one-particle
Hilbert space as H1 := L2(R, dθ)⊗ K, where K is a finite-dimensional Hilbert space
on which the gauge group G acts. This space decomposes into subspaces of fixed charge
q ∈ Q and mass m(q),

H1 =
⊕
q∈Q

L2(R, dθ)⊗Kq . (2.3)

The proper orthochronous Poincaré group P↑+ acts on H1 by means of the unitary,
strongly continuous representation

U1 :=
⊕
q∈Q

(
U1,m(q) ⊗ idKq

)
, (2.4)

which satisfies the relativistic spectrum condition with “mass gap”m◦ > 0, i.e. the joint
spectrum of the generators P = (P0, P1) of the translations is contained in {p ∈ R

2 :
p0 ≥ (p21 + m2◦)1/2}, and the mass operator M := ((P0)2 − (P1)2)1/2 has spectrum
{m(q) : q ∈ Q}.

The global gauge group G, on the other hand, is represented onH1 by the unitaries

V1(g) :=
⊕
q∈Q

(
idL2(R,dθ) ⊗ V1,q(g)

)
, g ∈ G, (2.5)

where V1,q is an irreducible representation of G in the class q. Clearly, V1 and U1
commute.

For several calculations, it will be useful to consider an orthonormal basis for eachKq .
The union of all these basis vectors over q ∈ Q, denoted by {eα : α = 1, . . . , dimK},
constitutes an orthonormal basis of K. Each index α thus corresponds to some charge
q[α] and mass m[α] := m(q[α]), and θ �→ ψα(θ) denotes the respective component of a
vector ψ ∈H1. In this basis, the Poincaré representation reads

(U1(a, t)ψ)α (θ) := eipm[α] (θ)·a ψα(θ − 2π t), (2.6)

where a ∈ R
2 denotes the spacetime translation, and t the parameter of the (rescaled)

Lorentz boost.
For our subsequent analysis, a PCT operator will be essential, and we introduce it

here on the one-particle level. For the existence of such an operator it is in particular
necessary to assume that with each q ∈ Q, also the complex conjugate representation
q̄ is contained inQ, as we shall do from now on. Charge conjugation then exchanges q
and q̄ , and can be expressed in the basis {eα}α by means of an involutive permutation,
which we denote α �→ ᾱ. That is, we have an antiunitary involution  on K, namely
(v)α = vᾱ , which commutes with V1. Together with the well-known TP operator for
U1,m (complex conjugation), this defines our one-particle PCT operator J1 as

(J1ψ)α(θ) := ψᾱ(θ). (2.7)

The index notation referring to the basis {eα}α is also used for tensor products:With (·, ·)
the scalar product in K, we define for vectors v ∈ K⊗n and tensors M : K⊗m → K⊗n ,
m, n ∈ N,

vα1,...,αn := (eα1 ⊗ · · · ⊗ eαn , v) (2.8)
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Mα1,...,αn
β1,...,βm

:= (eα1 ⊗ · · · ⊗ eαn ,Meβ1 ⊗ · · · ⊗ eβm ). (2.9)

When the length of a multi index is clear from the context, we also write α =
(α1, . . . , αn), etc.

Given M ∈ B(K⊗2) and n ≥ 2, another useful notation will be

Mn,k := 1k−1 ⊗ M ⊗ 1n−k−1, k = 1, . . . , n − 1, (2.10)

where 1 j denotes the identity on K⊗ j and Mn,k ∈ B(K⊗n).
The Hilbert space H1 and the representations U1, V1 can be second quantized as

usual: On the unsymmetrized Fock space

Ĥ :=
∞⊕
n=0

H ⊗n
1 �

∞⊕
n=0

(L2(Rn, dnθ)⊗K⊗n), (2.11)

we have the natural representations Û := ⊕∞n=0U⊗n1 of P↑+ and V̂ := ⊕∞n=0 V⊗n1 of
G. In our index notation, Û acts according to

(
Û (a, t)�

)α
n (θ) = e

i
∑n

k=1 pm[αk ] (θk )·a�α
n (θ1 − 2π t, . . . , θn − 2π t), (a, t) ∈ P↑+ .

(2.12)
Instead of passing to a symmetric or antisymmetric subspace of Ĥ , we will work

on a different subspace. To define it, we first need to introduce a suitable two-particle
S-matrix.

2.2. Two-particle S-matrices and S-symmetric Fock space. In our inverse scattering pro-
gram, a unitary two-particle S-matrix S is the most important input into the construction.
In fact, we will use such an object in the very definition of the vacuum Hilbert space of
ourmodels. Belowwe give an abstract definition of a two-particle S-matrix. Its properties
(Definition 2.1) are clearly motivated by scattering theory [31], but for the time being, S
will just serve as an algebraic object which induces a certain symmetrization procedure.
We will comment on its significance as the 2 → 2 part of a factorizing S-matrix later
on.

In order to formulate the properties of S in a basis independent manner, we make
use of the antiunitary involution  on K introduced earlier, (v)α = vᾱ , and the flip
operator F on K⊗K,

F : K⊗K→ K⊗K, F(u ⊗ v) := v ⊗ u. (2.13)

Definition 2.1. An S-matrix is a continuous bounded matrix-valued function S : {ζ ∈
C : 0 ≤ Im ζ ≤ π} → B(K ⊗ K), which is analytic in the strip S(0, π) := {ζ ∈ C :
0 < Im ζ < π}, and satisfies for arbitrary θ, θ ′ ∈ R, the following properties:

(i) Unitarity:

S(θ)∗ = S(θ)−1.

(ii) Hermitian analyticity:

S(θ)−1 = S(−θ).
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(iii) Yang–Baxter equation:

(S(θ)⊗ 11)(11 ⊗ S(θ + θ ′))(S(θ ′)⊗ 11)

= (11 ⊗ S(θ ′))(S(θ + θ ′)⊗ 11)(11 ⊗ S(θ)).

(iv) Crossing symmetry:

(u1 ⊗ u2, S(iπ − θ) v1 ⊗ v2)

= (u2 ⊗ v2, S(θ) u1 ⊗ v1) , ∀ u1, u2, v1, v2 ∈ K.

(v) PCT invariance:

( ⊗ ) F S(θ) F ( ⊗ ) = S(−θ).
(vi) Translational invariance:2 Let M =∑m Em denote the spectral decomposition of

the mass operator M of U1, and S the operator on H ⊗H that multiplies with
θ �→ S(θ). Then, for m �= m′,

(Em ⊗ 1) S (1⊗ Em′) = 0, (1⊗ Em) S (Em′ ⊗ 1) = 0.

(vii) Gauge invariance:
[S(θ), V1(g)⊗ V1(g)] = 0 g ∈ G.

The set of all such S-matrices will be denoted S.

Although the above definition is manifestly basis-independent, we shall mostly work
in the basis {eα}α of K introduced earlier. In particular, we note that in view of (i), (ii),
(iv), (v), the components of S in this basis satisfy

Sαβγ δ (θ) = Sβ̄ᾱ
δ̄γ̄

(−θ) = Sδ̄γ̄
β̄ᾱ

(θ), Sαβγ δ (iπ − θ) = Sγ̄ α
δβ̄

(θ), (2.14)

for any index α, β, γ, δ, and any rapidity θ ∈ R.
The set S can be completely determined in the scalar case, consisting of a single

species of neutral particles, i.e. K = C, G = {e} [38]. In this case the Yang–Baxter
equation, translational invariance and gauge invariance are trivially fulfilled.

As trivial examples of S that work for any gauge group G (and any V,K) we have
S = ±F (2.13), but depending on G, V,K, several other elements of S are known.
Some of these are of particular physical interest, such as the S-matrices of the O(N )

σ -models, corresponding to G = O(N ) on K = C
N in its fundamental representation

[1,59].
We will discuss some examples in Sect. 5. For the time being, the only properties of

S ∈ S that are relevant for our construction are those summarized in Definition 2.1. At
a later stage, we will however need to impose an additional regularity condition on S,
which we already introduce here.

Definition 2.2. An S-matrix S ∈ S is called regular if there exists 0 < κ < π
2 such that

S has a bounded analytic continuation to the enlarged strip S(−κ, π + κ) ⊃ S(0, π).
The family of all regular S-matrices is denoted S0 ⊂ S, and for S ∈ S0 and κ as above,
we write

‖S‖κ := sup{‖S(ζ )‖ : ζ ∈ S(−κ, π + κ)} <∞. (2.15)

2 This condition is equivalent to S commuting with the translation unitaries U1(a, 0)⊗U1(a, 0), a ∈ R
2.
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For a discussion of the (thermodynamical) motivation for this regularity property, we
refer to [40, p. 833].

We now come to the definition of a particular “S-symmetric” subspace of the unsym-
metrized Fock space Ĥ over H1. This Hilbert space is constructed by introducing an
S-dependent action Dn of the permutation group Sn of n elements on H ⊗n

1 [38]. We
put

(Dn(τk)�n) (θ1, . . . , θn):=S(θk+1 − θk)n,k�n(θ1, . . . , θk+1, θk , . . . , θn), �n ∈H ⊗n
1 ,

(2.16)

where τk ∈ Sn , k = 1, . . . , n−1, is the transposition that exchanges k and k +1. Setting
Dn(τk1 · · · τkl ) := Dn(τk1) · · · Dn(τkl ), we obtain for any permutation π ∈ Sn a unitary
tensor Sπn : Rn → U(K⊗n) such that

(Dn(π)�n) (θ) = Sπn (θ)�n(θπ(1), . . . , θπ(n)), �n ∈H ⊗n
1 . (2.17)

For transpositions π = τk , we have S
τk
n (θ) = S(θk+1 − θk)n,k by definition. For general

π , the tensor Sπn is a (tensor) product of several such factors, see also Sect. 4.1 for a
graphical notation.

As a consequence of properties (i)–(iii) of Definition 2.1, we have

Lemma 2.3. [45] Dn is a unitary representation of the permutation groupSn onH
⊗n
1 .

The mean over Dn ,

Pn := 1

n!
∑
π∈Sn

Dn(π), (2.18)

is the orthogonal projection onto the Dn-invariant subspace of H ⊗n
1 [38]. The S-

symmetrized Fock space H over H1 is then defined as

H :=
∞⊕
n=0

Hn, Hn := PnH
⊗n
1 , n ≥ 1, H0 := C, (2.19)

and its Fock vacuum as � := 1 ⊕ 0 ⊕ 0 . . .. General vectors � = (�0, �1, �2, . . .),
�n ∈Hn , are characterized by the symmetry property, θ ∈ R

n , 1 ≤ k < n,

�n(θ) = S(θk+1 − θk)n,k�n(θ1, . . . , θk+1, θk, . . . , θn), (2.20)

and finite Fock norm ‖�‖2 =∑∞n=0 ∫ dnθ�α
n (θ)�

α
n (θ) <∞. Here and in the follow-

ing we used the Einstein summation convention (sum over α1, . . . , αn = 1, . . . , dimK).
For later reference, we also introduce the particle number operator N on H ,

(N�)n := n�n, (2.21)

for vectors with
∑

n n
2‖�n‖2 <∞, and refer to the dense subspaceD ⊂H , consisting

of terminating sequences (�0, �1, . . . , �n, 0, . . .), as the subspace of finite particle
number.

Thanks to the properties of S ∈ S, the representations Û = ⊕∞n=0U⊗n1 and V̂ =⊕∞
n=0 V

⊗n
1 can be restricted to H , and we denote these restrictions by

U := Û
∣∣
H , V := V̂

∣∣
H . (2.22)
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Clearly, U is a strongly continuous positive energy representation of P↑+ , with up to a
phase unique invariant unit vector�, legitimizing thereby the interpretation of the latter
as the physical vacuum state. The PCT operator J on H is defined as

(J�)αn (θ) := �
αn ,...,α1
n (θn, . . . , θ1), � ∈H , (2.23)

which is well-defined because of property (v) in Definition 2.1. This operator is an
antiunitary involution which extendsU to a representation of the proper Poincaré group
P+ on H by assigning the space-time reflection j (x) := −x to U ( j) := J [53]. The
PCT operator J commutes with the representation V as shown in [44, Lemma 2.3.].

The S-symmetric Fock space H carries natural creation/annihilation operators,
which arise as the compressions of the canonical unsymmetrized creation/annihilation
operators on Ĥ to the S-symmetric subspace H . Given ϕ ∈H1, we define a creation
operator as

z†(ϕ)�n :=
√
n + 1 Pn+1(ϕ ⊗�n), �n ∈Hn, (2.24)

and an annihilation operator as z(ϕ) := z†(ϕ)∗. (Both, the creation and annihilation
operator, are considered on the domainD.) We relate to these operators the distributions
z†α(θ) and zα(θ) by

z†(ϕ) =
∫

dθ z†α(θ)ϕ
α(θ), z(ϕ) =

∫
dθ zα(θ)ϕα(θ). (2.25)

Proposition 2.4. [44] Let ϕ ∈H1 and � ∈ D.

(i) The operators z†(ϕ) and z(ϕ) act explicitly according to

(z(ϕ)�)αn (θ) = √n + 1
∫

dθ ′ϕβ(θ ′)�βα
n+1(θ

′, θ), (2.26a)

(
z†(ϕ)�

)
n(θ) =

1√
n

n∑
k=1

Sσkn (θ)
(
ϕ(θk)⊗�n−1(θ1, . . . , θ̂k, . . . , θn)

)
, n ≥ 1,

(2.26b)(
z†(ϕ)�

)
0 = 0, (2.26c)

where σk := τk−1τk−2 · · · τ1 ∈ Sn with σ1 := id and θ̂k denotes omission of θk .
(ii) With respect to the particle number operator N (2.21), there hold the bounds

‖z(ϕ)�‖ ≤ ‖ϕ‖ ‖N 1/2�‖, ‖z†(ϕ)�‖ ≤ ‖ϕ‖ ‖(N + 1)1/2�‖. (2.27)

(iii) The distributional kernels z†α(θ) and zα(θ) satisfy3

zα(θ)zβ(θ
′) = Sβαδγ (θ − θ ′)zγ (θ ′)zδ(θ), (2.28a)

z†α(θ)z
†
β(θ

′) = Sγ δαβ (θ − θ ′)z†γ (θ ′)z
†
δ (θ), (2.28b)

zα(θ)z
†
β(θ

′) = Sαγβδ (θ
′ − θ)z†γ (θ

′)zδ(θ) + δαβδ(θ − θ ′) · 1. (2.28c)

3 The exact positions of the indices in the relations (2.28) are best memorized via a diagrammatic notation,
which we introduce in Sect. 4.1.
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In the special case that S is the flip operator F (Sαβγ η(θ) = δαη δ
β
γ in components), this

construction yields theBose Fock spacewith its canonical CCRoperators. Similarly, S =
−F yields the CAR operators on the Fermi Fock space overH1. For generic S-matrices
the operators z†(ϕ), z(ϕ) form a representation of the so-called Zamolodchikov–Faddeev
algebra [60], commonly used in the context of integrable quantum field theories, see e.g.
[55].

2.3. Wedge-local fields and field algebras. The preparations made in the previous sec-
tions allow for the explicit construction of wedge local fields as shown in [44]. These
auxiliary operators play an important role in our analysis of the existence of local
fields/observables. We shall therefore review the relevant results of [44] in this section.

To introduce these fields, we fix some arbitrary S-matrix S ∈ S and define, in analogy
to a free field, a field operator on D as

φ( f ) := z†( f +) + z(J f −), f ∈ S (R2)⊗K, (2.29)

where z, z† are the creation and annihilation operators (2.26), and

f ±,α(θ) := f̃ α(±pm[α](θ)) =
1

2π

∫
d2x e±i pm[α] (θ)·x f α(x), θ ∈ R. (2.30)

Since f ±,α ∈ L2(R, dθ) for f α ∈ S (R2), the functions f ± may be considered as
vectors inH1. The operators (2.29) are related to the distributions

φα(x) = 1

2π

∫
dθ
(
z†α(θ) e

ipm[α] (θ)·x + zα(θ) e
−i pm[α] (θ)·x

)
(2.31)

by

φ( f ) =
∫

d2x φα(x) f
α(x), f ∈ S (R2)⊗K. (2.32)

In addition to φ, it is useful to introduce a second auxiliary field φ′, given by

φ′( f ) := J z†(J f +)J + J z( f −)J, f ∈ S (R2)⊗K. (2.33)

As shown in Theorem 2.5 below, the fields φ and φ′ have some of the usualWightman
type properties [57], such as covariance and cyclicity of the vacuum. However, the fields
φα(x), φ′α(x) are not localized at the space-time point x ∈ R

2, but rather in unbounded
wedge regions in R

2. Recall that the right wedge is WR := {x ∈ R
2 : x1 > |x0|}, and

the left wedge is WL := W ′
R = −WR , the causal complement of WR ⊂ R

2.

Theorem 2.5. [44] Let f ∈ S (R2)⊗K and � ∈ D.

(i) The map f �→ φ( f )� is linear and continuous.
(ii) Define ( f ∗)α(x) := f α(x). Then φ( f )∗ ⊃ φ( f ∗).
(iii) Each vector in D is entire analytic for φ( f ). If f = f ∗, then φ( f ) is essentially

self-adjoint on D.
(iv) φ( f ) transforms covariantly under P↑+ and G, that is,

U (a, t)φ( f )U (a, t)−1=φ( f(a,t)), f(a,t)(x) := f (�(t)−1(x−a)), (a, t) ∈ P↑+ ,
V (g)φ( f )V (g−1) = φ(V1(g) f ), (V1(g) f )(x) := V1(g) f (x), g ∈ G,

(2.34)
where �(t) is the Lorentz boost matrix with rapidity parameter 2π t .
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(v) Let f α( j)(x) := f α(−x). Then

Jφ( f )J = φ′( f( j)), Jφ′( f )J = φ( f( j)). (2.35)

(vi) For any open set O ⊂ R
2, the subspace

DO := span {φ( f1) · · ·φ( fn)� : f1, . . . , fn ∈ S (O)⊗K, n ∈ N0} (2.36)

is dense inH . That is, � is cyclic for the field φ.
(vii) The field φ is local if and only if S = F (the flip).

The statements (i)–(vii) also hold when φ and φ′ are exchanged.
(viii) Let f ∈ S (WR + a)⊗K and g ∈ S (WL + a)⊗K for some a ∈ R

2. Then

[φ′( f ), φ(g)]� = 0, � ∈ D, (2.37)

that is, the fields φ and φ′ are relatively wedge-local.

These results can be interpreted as follows: The fields φ, φ′ are not local in the usual
sense, but rather localized in wedges: φα(x) is localized in the (shifted) left wedge
WL + x , and φ′β(y) is localized in the (shifted) right wedge WR + y. This assignment of
localization regions to field operators is consistent with causal commutation relations
and covariance, including the PCT symmetry.

As the fields are localized in infinitely extended regions, they are however not the
fields of direct physical interest, but rather auxiliary objects (“polarization-free genera-
tors” [13]). The physical observables localized in a bounded regionO can be character-
ized by demanding that they ought to commute with all φα(x), φ′β(y) such that WL + x
and WR + y are spacelike to O.

3. Local Observables and the Modular Nuclearity Condition

3.1. Operator-algebraic formulation of the models. The commutation constraints on
local observables are best expressed in an operator-algebraic formulation, trading the
fields φ, φ′ for the von Neumann algebras they generate. Due to the essential self-
adjointness of the field operators, this can be easily done as follows: We define, x ∈ R

2,

F(WL + x) := {eiφ( f ) : f = f ∗ ∈ S (WL + x)⊗K}′′, (3.1a)

F(WR + x) := {eiφ′( f ) : f = f ∗ ∈ S (WR + x)⊗K}′′. (3.1b)
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Here the overline indicates the selfadjoint closure, and the exponentials are defined by
the functional calculus.

To translate the properties listed in Theorem 2.5 into von Neumann algebraic termi-
nology, we define the family of all wedgesW as the collection of all WL/R + x , x ∈ R

2.
Then (3.1) defines a map fromW to von Neumann algebras inB(H )with the following
properties.

Proposition 3.1. [44] Let S ∈ S and F(W ), W ∈W , be defined as in (3.1). Then, for
any W,W1,W2 ∈W , the following holds.

(i) Isotony: F(W1) ⊂ F(W2) if W1 ⊂ W2,
(ii) Covariance: U (λ)F(W )U (λ)−1 = F(λW ), λ ∈ P+,
(iii) Inner Symmetry: V (g)F(W )V (g)−1 = F(W ), g ∈ G,

(iv) Locality: F(W1) ⊂ F(W2)
′ if W1 ⊂ W ′

2,
(v) Cyclicity of the vacuum: F(W )� is dense inH .

Here F(W )′ denotes the commutant of F(W ) in B(H ), and W ′ ∈ W is the spacelike
(causal) complement of W ∈W .

We now turn to the question of extracting operators localized in bounded regions in
Minkowski space from the wedge algebras F(W ), W ∈W .

The prototype of such a bounded localization region is a double cone,

Ox,y := (WR + x) ∩ (WL + y), y − x ∈ WR . (3.2)

The causal complementO′x,y ofOx,y consists of two disjoint wedges,O′x,y = (WL +
x)∪ (WR + y). Thus any operator A ∈ B(H ) which models an observable localized in
Ox,y must commute with all observables localized in WL + x and WR + y by causality.
In other words, the maximal von Neumann algebra that can be associated with Ox,y is

F(Ox,y) := (F(WL + x) ∨ F(WR + y))′ = F(WL + x)′ ∩ F(WR + y)′. (3.3)

This yields our definition of von Neumann algebras associated with double cones. By
additivity, we can extend this definition to arbitrary regions: If R ⊂ R

2 is bounded and
open, we define F(R) ⊂ B(H ) as the smallest von Neumann algebra containing all
F(Ox,y), Ox,y ⊂ R. This construction indeed yields a local net {F(O)}O⊂R2 which
inherits its basic properties from those of the wedge algebras (3.1).

Proposition 3.2. The von Neumann algebras F(O) (3.3) satisfy the properties (i)–(iv)
of Proposition 3.1 with double cones instead of wedges.
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The simple proof of this proposition can be found in several places [6,14,38]. It
has to be noted, however, that Proposition 3.2 does not include the cyclicity result (v) of
Proposition 3.1. In fact, it seems possible that the double cone algebras (3.3) are trivial in
the sense thatF(O) = C ·1, which would mean that the model under consideration does
not contain any (non-trivial) local observables. To rule out this pathological situation,
and to identify those S-matrices for which local observables exist, the algebras (3.3)
have to be analyzed in more detail.

A direct construction of elements of the double cone algebras F(O) is difficult, as
can be expected from the complicated form that interacting local quantum fields always
have—see, however, [15,16] for results in this direction (for scalar S). We will focus
here rather on an abstract analysis of the double cone algebras (3.3), which circumvents
the explicit construction of local fields and relies on operator-algebraic methods. In
particular, we will make use of the modular data J̃ ,� [17] of the pairF(WR),� (which
exist because � is cyclic and separating for F(WR), see Proposition 3.1(v), (iv)).

As we will show in Proposition 3.3 below, the operators J̃ and � act “geometri-
cally correct”, i.e. as expected from the Bisognano–Wichmann Theorem [11,12] and
Borchers’ Theorem [14]. That is, the modular unitaries �i t and modular conjugation
J̃ coincide with the Lorentz boosts and PCT operator J from the representation U ,
respectively.

To motivate these results, we recall [11] that if f ∈ S (R2)⊗K has compact support
in WR , then f + ∈ H1 lies in the domain of the positive self-adjoint operator U (0, i

2 )

and

(U (0, i
2 ) f

+)(θ) = f +(θ − iπ) = f −(θ). (3.4)

Moreover, since ( f ∗)α(x) = f α(x), we have

(J f ±)α(θ) = ( f ∗)∓,α(θ). (3.5)

In view of the definitions (2.33) of φ′ and (2.26) of the creation/annihilation operators,
this yields, for compactly supported f ∈ S (WR)⊗K,

JU (0, i
2 )φ

′( f )� = JU (0, i
2 ) f

+ = ( f ∗)+ = φ′( f ∗)� = φ′( f )∗� = J̃�1/2φ′( f )�.

(3.6)

In the last step,wehavehere used the definingproperty of theTomita operator S = J̃�1/2

(not to be confused with the S-matrix S). This calculation already suggests a one particle
version of the Bisognano–Wichmann property. The full Bisognano–Wichmann property
is the statement of the next proposition.

Proposition 3.3. Let S ∈ S.

(i) The modular operator � and conjugation J̃ of (F(WR),�) are

�i t = U (0,−t), t ∈ R, J̃ = J. (3.7)

(ii) Haag duality for wedges holds:

F(W )′ = F(W ′), W ∈W. (3.8)
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Proof. The proof consists of several steps, see also [2] for further details. To begin
with, we note that the selfadjoint operators A := φ′( f ), with f ∈ S (WR) ⊗ K of
compact support, are affiliated with F(WR). This follows by a calculation on analytic
vectors, see for example [41]. It then follows by standard arguments that A� lies in
the domS = dom�1/2 and SA� = A∗�. By the same arguments, also AF�, where
F ∈ F(WR) is arbitrary, lies in the domain of S.

By modular theory, the Tomita operator of the pair (F(WR)
′,�) is S∗. We can then

repeat the same arguments as above to show that the selfadjoint closure of the other field
operator, φ( f ′), with f ′ ∈ S (W ′

R)⊗K of compact support, is affiliated with F(WR)
′,

and satisfies S∗φ( f ′)� = φ( f ′)∗�.
Next, we want to prove

S1geo ⊂ SE (1), (3.9)

where S1geo := JU (0, i
2 )E

(1) and E (1) is the projection onto H1. It follows from (3.6)
that (3.9) holds on the spaceD0 :=

{
� ∈H1 : � = φ′( f )�, supp f ∈ WR compact

}
,

which is dense inH1. To show that this extends to domS1geo, recall that S
1
geo is a closed

antilinear involution [18]. Its domain is therefore of the formdom S1geo = domU (0, i
2 ) =

K+i K ,where K is a real subspaceofH1.Anarbitrary vectorh+ik ∈ domS1geo,h, k ∈ K ,
can be approximated by sequences hn, kn ∈ D0 ∩ K , corresponding to real functions
f = f ∗, such that hn + ikn

n−→ h + ik ∈ dom S1geo. In particular, S1geo(hn + ikn) =
hn − ikn

n−→ h − ik, which by the closedness of S1geo gives S
1
geo(h + ik) = h − ik. But

S f + = f + (3.6), and we conclude S(h + ik) = h − ik, and thus (3.9).
To show the opposite inclusion, namely SE (1) ⊂ S1geo, note that E

(1) =∑q∈Q Emq ,

where the Emq are the spectral projections of the mass operator
√
P2. By a theorem of

Borchers [14], the Tomita operator S commutes with
√
P2 and consequently with E (1)

[47]. We proceed by defining S(W ′
R) := J S J and S1geo(W

′
R) := J S1geo J , corresponding

to the opposite wedge. It follows from locality and modular theory that S ⊂ S(W ′
R)
∗.

Since S(W ′
R) commutes with E (1), we have together with (3.9)

SE (1) ⊂ (S(W ′
R)E

(1))∗ ⊂ S1geo(W
′
R)
∗ = S1geo, (3.10)

where the last equality follows from JU (0, i
2 ) = U (0,− i

2 )J by the anti-unitarity of J .
Thus, we have shown

SE (1) = JU (0, i
2 )E

(1). (3.11)

As the polar decomposition of a closed operator is unique and S is closed, we obtain from
(3.11) a one particle version of the Bisognano–Wichmann theorem, namely�1/2E (1) =
U (0, i

2 )E
(1) and J̃ E (1) = J E (1). In particular, we have

�i t E (1) = U (0,−t)E (1), J̃ E (1) = J E (1). (3.12)

This result can now be used to prove the equality of the modular operator �i t with
U (0,−t) along the same lines as in [21]. To this end, define L(t) := U (0,−t)�−i t ,
t ∈ R, and φ′t ( f ) := L(t)φ′( f )L(t)−1 with f ∈ S (WR) ⊗ K of compact support.
Since L(t)F(WR)L(t)−1 ⊂ F(WR), φ′t ( f ) is affiliated with F(WR). Making use of
this, (3.12), and L(t)−1� = �, we have with A′ ∈ F(WR)

′
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φ′t ( f )A′� = A′φ′t ( f )� = A′L(t)φ′( f )�
= A′L(t)E (1)φ′( f )� = A′φ′( f )� = φ′( f )A′�.

That is,
(φ′t ( f )− φ′( f ))A′� = 0, A′ ∈ F(WR)

′, (3.13)

for any f as above. But F(WR)
′� is a core for φ′( f ) and φ′t ( f ) (this can be shown as

in [21]), which implies φ′( f ) = φ′t ( f ). Hence U (0,−t)�−i t acts trivially on F(WR),
and since � is cyclic for F(WR), it follows that U (0,−t)�−i t = 1 as claimed.

Similarly, one proves the equality of themodular conjugation J̃ with the PCToperator
J . Firstly, we have J̃F(WR) J̃ = F(WR)

′ bymodular theory and secondly JF(WR)J =
F(WL) by definition. Moreover, for an arbitrary wedge W we have F(W ′) ⊂ F(W )′
(Prop 3.1). Therefore, it follows that J̃ JF(WR)( J̃ J )−1 ⊂ F(WR). So with I := J̃ J ,
the operator φ′I ( f ) := Iφ′( f )I−1, f ∈ S (WR)⊗K, is affiliated with F(WR), and by
the same arguments as above we find (φ′I ( f )− φ′( f ))A′� = 0, for any A′ ∈ F(WR)

′.
Since F(WR)

′� is also a core for φ′I ( f ), we find φ′I ( f ) = φ′( f ) and consequently
I = 1.

Haag-duality, statement (ii), then follows easily from F(WR)
′ = J̃F(WR) J̃ =

JF(WR)J = F(WL) and covariance. ��
Our subsequent analysis of the double cone algebras will heavily rely on this explicit

form of the modular data of (F(WR),�). The reason for this is that we will use the so-
called modular nuclearity condition of Buchholz, D’Antoni, and Longo [19], formulated
in terms of �.

Fixing some“splitting distance” s > 0,we consider the double coneOs := O0,(0,s) ⊂
WR , and the corresponding von Neumann algebra

F(Os) = F(WL)
′ ∩ F(WR + (0, s))′.

In view of Proposition 3.3(ii), this algebra coincides with the relative commutant of the
inclusion F(WR + (0, s)) ⊂ F(WR).

Corresponding to this inclusion, we consider the linear maps

�(s) : F(WR)→H , �(s)A := �1/4Us A�, s > 0, (3.14)

whereUs := U (0, (0, s)) is a shorthand for the purely spatial translation by (0, s) ∈ R
2.

The maps �(s) are bounded with norm at most one by modular theory. We will
refer to the (much stronger) condition that �(s) is nuclear4 as the modular nuclearity
condition [19] (for the inclusion F(WR + (0, s)) ⊂ F(WR)).

4 Recall that a map between Banach spaces is called nuclear if it can be decomposed into a series of rank
one maps with summable norms, see Definition 3.5 below.
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Theorem 3.4. [21,40] Let the modular nuclearity condition be satisfied for some s > 0,
and let Oa,b be a double cone with

√−(a − b)2 > s. Then

(i) F(Oa,b) is isomorphic to the hyperfinite type III1 factor.
(ii) F(Oa,b) has the vacuum � as a cyclic vector.

The significance of the inequality
√−(a − b)2 > s is to guarantee that the double

cone under consideration has “relativistic diameter” larger than the double coneO0,(0,s),
for which modular nuclearity was assumed.

Nuclearity of the maps�(s) has several further consequences, in particular, the split
property ofF(WR+(0, s)) ⊂ F(WR).We refer to [19,20,23,40] for a discussion of these
properties, and to [43] for a recent strengthening of the concept of modular nuclearity. In
the present article, we will treat Theorem 3.4 as a condition which implies the existence
of infinite-dimensional algebras of observables localized in double cones.

Once the existence of non-trivial local observables is settled, one can use the results of
[44, Sect. 5] to conclude that the model described by S ∈ S solves the inverse scattering
problem:Based on the assumption that� is cyclic forF(O) for some double coneO, one
can compute all scattering states and the S-matrix, which turns out to be the factorizing
S-matrix with 2 → 2 body operator S. Furthermore, the model is even asymptotically
complete.

In light of these results, the main question to be addressed is the existence of local
observables. We will investigate this question via the modular nuclearity condition,
which is linked to Hardy space properties in the next section.

3.2. Modular nuclearity and Hardy spaces. Having identified the modular nuclearity
condition as a sufficient condition for the existence of local observables, we now turn
to the question of checking it in the models described in Sect. 2.3. We will follow the
same basic strategy that was applied in the case of a particle spectrum consisting of
only a single species of neutral massive particles [38,40], appropriately extended and
generalized to the present setting of a richer particle spectrum.

Let us first recall a few facts about nuclear maps.

Definition 3.5. Let X and Y be Banach spaces. A mapping T ∈ B(X ,Y) is called
nuclear if there exists a sequence of continuous linear functionals {ϕn}n∈N ⊂ X ∗ and a
sequence of vectors {yn}n∈N ⊂ Y such that

∞∑
n=1

‖ϕn‖X ∗ ‖yn‖Y <∞, T (x) =
∞∑
n=1

ϕn(x) yn, x ∈ X . (3.15)

The nuclear norm of such a linear map is defined by

‖T ‖1 := inf
∞∑
n=1

‖ϕn‖X ∗ ‖yn‖Y , (3.16)

where the infimum is taken over all possible representations (3.15) of T .

The sets of nuclear maps between two Banach spaces X and Y are denoted by
N (X ,Y). We will rely on the following facts [32,48].

Lemma 3.6. Let X ,Y,V,Z be Banach spaces. Then, we have
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(i) (N (X ,Y), ‖ · ‖1) is a Banach space.
(ii) ‖T ‖ ≤ ‖T ‖1 for any T ∈ N (X ,Y).
(iii) Let T ∈ N (X ,Y), B1 ∈ B(Y,Z) and B2 ∈ B(V,X ). Then B1T B2 ∈ N (V,Z),

and
‖B1T B2‖1 ≤ ‖B1‖ ‖T ‖1 ‖B2‖. (3.17)

(iv) Let H be a separable Hilbert space. Then, N (H ,H ) coincides with the set of
trace class operators on H , and

‖T ‖1 = Tr |T |, T ∈ N (H ,H ).

Our aim is to show that for s > 0 (at least for sufficiently large s), the maps�(s) are
nuclear maps, from the Banach space (F(WR), ‖ · ‖B(H )) to the Hilbert spaceH . In a
first step towards this aim, we introduce their n-particle contributions, n ∈ N0, s > 0,

�n(s) : F(WR)→Hn, �n(s)A := Pn�(s)A = �1/4Us(A�)n . (3.18)

In view of the second quantized nature of U (and thus of �), these operators sum to
�(s), i.e.

�(s) =
∞∑
n=0

�n(s). (3.19)

To show that �(s) is nuclear, we have to prove that all �n(s) are nuclear, and that the
series (3.19) converges in the nuclear norm ‖ · ‖1 (cf. Lemma 3.6(i)).

These questions will be addressed with tools from complex analysis. To see how
this connection comes about, we use our explicit knowledge of the translation unitaries
(2.12) and modular operator (3.7) to write down �n(s)A explicitly. More precisely,
the operator �1/4 in the definition of �, (3.14), coincides with a boost of imaginary
parameter iπ

2 , cf. (3.7). We, therefore, find with Formula (2.12)

(�n(s)A)
α(θ) =

n∏
k=1

e−m[αk ]s cosh θk · (A�)αn (θ1 − iπ
2 , . . . , θn − iπ

2 ), (3.20)

to be understood in terms of analytic continuation.
Our strategy for establishing nuclearity properties of �n(s) relies on Hardy space

properties of the functions (A�)n . As the derivation of these properties requires an
intricate procedure of iterated analytic continuations,wefirst explain the general strategy,
and begin by introducing some terminology.

For an open convex domainCn ⊂ R
n , wewill consider the tubeTCn := R

n+i Cn ⊂ C
n

based on Cn . The (vector-valued) Hardy space H2(TCn ,K⊗n) := H2(TCn ) ⊗ K⊗n is
defined as the space of all analytic functions h : TCn → K⊗n such that for any λ ∈ Cn ,
the function hλ : θ �→ h(θ + iλ) is an element of L2(Rn,K⊗n) := L2(Rn) ⊗ K⊗n ,
with L2(Rn,K⊗n)-norms ‖hλ‖2 uniformly bounded in λ. The Hardy space is a Banach
space w.r.t. the norm [56]

|||h||| := sup
λ∈Cn

‖hλ‖2 = sup
λ∈Cn

⎛
⎝∑

α

∫
Rn

dnθ
∣∣hα(θ + iλ)

∣∣2
⎞
⎠

1/2

<∞. (3.21)

Let us recall the following two facts about Hardy spaces on tubes [56]:
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• For h ∈ H2(TCn ,K⊗n), K ⊂ Cn compact and k = 1, . . . , n, there hold the uniform
limits

lim|θk |→∞
sup
λ∈K

|hα(θ + iλ)| = 0, (3.22)

with θ1, . . . , θk−1, θk+1, . . . , θn ∈ R.
• If Cn is an open polyhedron, (the interior of the convex hull of a finite subset of R

n),
any h ∈ H2(TCn ,K⊗n) has L2-boundary values, i.e. can be extended to TCn such

that the mapping Cn � λ �→ hλ ∈ L2(Rn,K⊗n) is continuous.

The desired connection between Hardy spaces and the quantum field theory models
build from an S-matrix is expressed in the following definition. The main idea is to study
analytic continuations of the functions (A�)n ∈ L2(Rn,K⊗n) to certain tube domains.

Definition 3.7. An S-matrix S ∈ S is said to have property (H) (for “Hardy”) if for any
n ∈ N, there exists an open polyhedron Cn ⊂ R

n such that

(i) λπ/2 := −(π2 , . . . , π
2 ) ∈ Cn , i.e.,

cn := ‖λπ/2 − ∂Cn‖∞ > 0, (3.23)

and Cn ⊂ (−π, 0)×n .
(ii) For any A ∈ F(WR), the function (A�)n can be analytically continued to Tn :=

R
n + i Cn .

(iii) For any A ∈ F(WR) and any s > 0, the analytic continuation of (Us A�)n to Tn
lies in the Hardy space H2(Tn,K⊗n), and there exists a constant υ(2s, n) > 0
such that.

|||(Us A�)n|||H2(Tn ,K⊗n) ≤ υ(2s, n) · ‖A‖, A ∈ F(WR). (3.24)

We will show later that this property holds in general cases by exploiting the local-
ization of A in WR (which corresponds to analyticity in rapidity space), and analyticity
and boundedness properties of S. To explain how these properties imply nuclearity of
�n(s), let us first state the following nuclearity result for Hardy spaces on tubes.

Proposition 3.8. Let Cn ⊂ R
n be an open polyhedron as in Definition 3.7, with distances

cn > 0 (3.23). Given s > 0, define the map

XCn ,s : H2(TCn ,K⊗n)→ L2(Rn,K⊗n),

(XCn ,sh)
α(θ) :=

n∏
k=1

e−
s
2m[αk ] cosh(θk ) · hα

λπ/2
(θ). (3.25)

Then XCn ,s is nuclear, with nuclear norm

‖XCn ,s‖1 ≤
(

dimK
( 12πm◦)1/2

· e−
sm◦
2 cos cn

cn(s cos cn)1/2

)n
, (3.26)

where m◦ = min{m[α] : α = 1, . . . , dimK} ∈ (0,∞) is the mass gap (2.1).

The proof of Proposition 3.8 makes use of the following lemma.
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Lemma 3.9. Let g ∈ L2(R), b ∈ R\{0}, and define an integral operator Rg,b on L2(R)

in terms of its integral kernel

Rg,b(θ, θ
′) := −sign (b)

2π i

g(θ)g(θ ′)
θ ′ − θ + ib

. (3.27)

Then, Rg,b is a positive trace class operator with trace norm

‖Rg,b‖1 = ‖g‖22
2π |b| . (3.28)

Proof. Note first that Rg,b = URg−,−bU∗, with the unitary (U f )(θ) := i · f (−θ),
f ∈ L2(R), and g−(θ) := g(−θ). Due to this unitary equivalence it suffices to consider
b > 0.

To show that Rg,b is positive, define Kb(θ) := −(2π i)−1(θ + ib)−1, which has
positive Fourier transform K̃b(η) = �(η)e−bη. Then we have, f ∈ L2(R),

〈 f, Rg,b f 〉 = 〈(g · f ), Kb ∗ (g · f )〉 =
√
2π〈(̃g · f ), K̃b · (̃g · f )〉 ≥ 0,

yielding Rg,b > 0. Since
∫
R

dθ Rg,b(θ, θ) = − 1

2π i

∫
dθ

g(θ)g(θ)

θ − θ + ib
= ‖g‖22

2πb
,

it follows by [50, Lemma on p. 65] that Rg,b is trace class with trace
‖g‖22
2πb , proving the

claim. ��
Proof of Proposition 3.8. As shorthand notations, we write C for the polyhedron Cn and
λ for λπ/2 in this proof, and also observe that we may replace

sm[αk ]
2 by δ := sm◦

2 in the
exponentials in (3.25) and estimate this larger operator instead.

Let h ∈ H2(TC,K⊗n), and consider a closed polydisc Dn(θ + iλ) ⊂ TCn with center
θ + iλ, θ ∈ R

n and radius r < d(λ, ∂C). By Cauchy’s integral formula,

hα(θ + iλ) = 1

(2π i)n

∮
Tn(θ+iλ)

dnζ ′ hα(ζ ′)∏n
k=1
(
ζ ′k − θk + i π2

) ,

where Tn(θ + iλ) denotes the distinguished boundary of Dn(θ + iλ). Since C is a polyhe-
dron, the Hardy space properties recalled on p. 930 can be used to the effect of deforming
the contour of integration to the boundary of the tube based on the cube λ + (−r, r)×n ,

hα(θ + iλ) = 1

(2π i)n
∑
ε

∫
Rn

dnθ ′
(

n∏
k=1

εk

θ ′k − θk − iεkr

)
hα(θ ′ + i(λ− rε)), (3.29)

where ε = (ε1, . . . , εn), with εk = ±1, k = 1, . . . , n.
Since C ⊂ (−π, 0)×n (see Definition 3.7), the function uδ(ζ ) := ∏k e

−iδ sinh ζk is
analytic and rapidly decaying in the real directions in TC . Hence (3.29) also holds for
uδ · h instead of h. We may therefore split uδ = uδ/2 · uδ/2, and write the operator XC,s
as (recall that λ = −(π2 , . . . , π

2 ))
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(
XC,sh
)α

(θ) = uδ/2(θ + iλ) · (uδ/2 · h)α (θ + iλ)

= uδ/2(θ+iλ)
(2π i)n

∑
ε

∫
Rn

dnθ ′
(

n∏
k=1

εk
θ ′k−θk−iεkr

) (
uδ/2 · h
)α

(θ ′ + i(λ− rε))

= aδ(θ)
∑
ε

∫
Rn

dnθ ′
(

n∏
k=1

εk e
− δ
2 cos(r)(cosh θk+cosh θ

′
k )

2π i(θ ′k−θk−irεk )

)

bδ,r,ε(θ
′)hα(θ ′ + i(λ− rε)),

where aδ(θ) :=∏n
j=1 e−

δ
2 (1−cos r) cosh θ j and bδ,r,ε(θ

′) :=∏n
j=1 e

i δ
2 ε j sin r sinh θ ′j .

We split this operation into four parts. On the very right, we have the evaluation
operators Eλ−rε : h �→ hλ−rε from H2(Tn,K⊗n) to L2(Rn,K⊗n), which are bounded
with operator norm at most 1 for any ε, by definition of the norm (3.21).

Next, there acts the unitary operator Bδ,r,ε (on L2(Rn,K⊗n)) multiplying with bδ,r,ε,
and on the very left, we have the operator Aδ multiplying by aδ . Also Aδ is bounded
with norm at most 1 on L2(Rn,K⊗n) because 1 − cos r > 0 as a consequence of
Dn(θ + iλ) ⊂ TC ⊂ R

n + i(−π, 0)×n .
Finally, the remaining integral kernel between Aδ and Bδ,r,ε can be expressed in

terms of the integral operators Rg,b from Lemma 3.9. Namely, defining gδ,r (θ) :=
exp[− δ

2 cos r cosh θ ] and R̂δ,r,ε := Rgδ,r ,−εr ⊗ 1 on L2(R)⊗K, we have

XC,s = Aδ

∑
ε

(
R̂δ,r,ε1 ⊗ · · · ⊗ R̂δ,r,εn

)
Bδ,r,ε Eλ−rε. (3.30)

Taking into account the norm bounds ‖Aδ‖ ≤ 1, ‖Bδ,r,ε‖ ≤ 1, ‖Eλ−rε‖ ≤ 1 as well as

‖R̂δ,r,ε‖1 = dimK · ‖gδ,r‖222πr (Lemma 3.9), we may use Lemma 3.6 to conclude

‖XC,s‖1 ≤
∑
ε

‖R̂δ,r,ε1 ⊗ · · · ⊗ R̂δ,r,εn‖1 =
(
dimK · ‖gδ,r‖

2
2

πr

)n
<∞.

This proves that XC,s is nuclear. To also establish the claimed bound on ‖XC,s‖1, we
estimate

‖gδ,r‖22 =
∫
R

dθ e−δ cos r cosh θ ≤
∫
R

dθ e−δ cos r (1+
θ2
2 ) = e−δ cos r

√
π

δ cos r
.

Now letting r → ‖λ− ∂C‖∞ finishes the proof. ��
Clearly, theHardy space operators XCns, (3.25) resemble the action of themaps�n(s)

(3.20). This connection is exploited to prove the following theorem.

Theorem 3.10. Assume that S ∈ S has property (H), with polyhedra Cn and constants
cn, υ(s, n) (Definition 3.7).

(i) For any n ∈ N0, s > 0, the map �n(s) is nuclear, with nuclear norm bounded by

‖�n(s)‖1 ≤ υ(s, n) · ‖XCn ,s‖1 <∞. (3.31)
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(ii) �(s) is nuclear for all s > 0 satisfying

∑
n

υ(s, n) · ‖XCn ,s‖1 <∞. (3.32)

Remark. Part (ii) of this theorem gives an abstract sufficient condition for modular
nuclearity to hold. To make use of it in concrete models, one has to find suitable bounds
on υ(s, n), ensuring that the series converges for finite s.

Both factors υ(s, n) and ‖XCn ,s‖1 in the series (3.32) depend on the size of the
polyhedra Cn . If S ∈ S has property (H) (see Definition 3.7) for some Cn , it clearly has
this property on any smaller polyhedron as well. Later we will see that while ‖XCn ,s‖1
becomes larger with shrinking Cn , cf. (3.26), the norm υ(s, n) becomes smaller. It will
therefore later be important to find a fine balance between these two quantities.

Proof. (i) We consider a decomposition�n(s) into a product of a bounded and a nuclear
map. According to property (H), the map

ϒCn ,s : F(WR)→ H2(TCn ,K⊗n), A �−→ (Us/2A�)n (3.33)

is a bounded linear map between the Banach spaces (F(WR), ‖ · ‖B(H )) and
(H2(TCn ,K⊗n), ||| · |||), with operator norm ‖ϒCn ,s‖ ≤ υ(s, n) <∞. By Proposition 3.8,
themap XCn ,s : H2(TCn ,K⊗n)→ L2(Rn,K⊗n) is nuclear. But by comparison of (3.20)
and the maps ϒCn ,s and XCn ,s , it follows that

�n(s) = XCn ,s ϒCn ,s . (3.34)

By Lemma 3.6(iii), this implies that �n(s) is nuclear, with ‖�n(s)‖1 ≤ ‖ϒCn ,s‖ ·‖XCn ,s‖1.
(ii) The series (3.32) dominates

∑
n ‖�n(s)‖1 by part (i). Hence its convergence

implies convergence of
∑

n �n(s) in nuclear norm. But the set of all nuclear maps
between two Banach spaces is closed in nuclear norm (Lemma 3.6(i)). Hence the con-
vergence of (3.32) implies nuclearity of �(s). ��

This theorem shows that nuclearity of �(s) follows if analyticity of (A�)n in suffi-
ciently large tubes around λπ/2 can be established (which gives lower bounds on the cn),
and if sharp enough bounds on the analytic continuations of (Us

2
A�)n can be obtained

(which imply upper bounds on υ(s, n)).
Theorem 3.10 thus reduces the inverse scattering problem to questions in complex

analysis. These aspects require a detailed investigation of the functions (A�)n , which
is carried out in the next section.

4. Hardy Space Properties of Wedge-Local Wavefunctions

In this section, we demonstrate that any regular S-matrix (Definition 2.2) has property
(H) (Definition 3.7), and estimate the constants υ(s, n), cn . We will adopt and suitably
generalize the strategy used in the scalar case [38,40].
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4.1. Analytic and combinatorial structure of contracted matrix elements. To establish
the Hardy properties of Definition 3.7, we start by deriving analyticity properties of the
functions (A�)αn , A ∈ F(WR). The first step in revealing these properties is given by
expressing (A�)αn as the matrix elements

(A�)αn (θ) =
1√
n! 〈z

†
α1
(θ1) . . . z

†
αn
(θn)�, A�〉, (4.1)

and relating the z†β(θ) to the time zero fields of the “left-local field” φ (2.29). These are

ϕα(x1) :=
√
2πφα(0, x1), πα(x1) :=

√
2π(∂0φ)α(0, x1), x1 ∈ R, (4.2)

to be understood in the sense of operator-valued distributions. In view of (2.29), their
smeared versions are, f ∈ S (R)⊗K,

ϕ( f ) = z†( f̂ ) + z(J f̂−), π( f ) = i
(
z†(ω f̂ )− z(ωJ f̂−)

)
, (4.3)

where f̂ α(θ) := f̃ α(m[α] sinh θ), f̂ α−(θ) := f̃ α(−m[α] sinh θ), and (no sum over α)

(ω�)α1 (θ) := ω[α](θ)�α
1 (θ), ω[α](θ) := m[α] cosh θ, � ∈ dom(ω) ⊂H1

(4.4)
is the one particle Hamiltonian.

The operators ϕ( f ) and π( f ) are well-defined on the space D of finite particle
number. Moreover, they are real in the sense that ϕ( f ∗) ⊂ ϕ( f )∗, π( f ∗) ⊂ π( f )∗, and
“left-local” in the sense that for A ∈ F(WR) and supp f ⊂ R−

[ϕ( f ), A]� = 0, [π( f ), A]� = 0, � ∈ D. (4.5)

These commutation relations can be proven by arguments analogous to those yielding
(2.37).

We now derive first Hardy space properties. This initial step is concerned with func-
tions of n = 1 variable, in which case a tube based on a polyhedron is simply an open
interval, and the tube based on it an open strip region in the complex plane. Based on
the localization of A in the right wedge and ϕα , πβ on the left, we obtain the following
generalization of a result established in the scalar case [40].

Lemma 4.1. Given A ∈ F(WR), n1, n2 ∈ N0, and �i ∈ Hni , i = 1, 2, define function-
als K , K † : S (R)⊗K→ C by

K ( f̂ ) := 〈�1, [z( f̂ ), A]�2〉, K †( f̂ ) := 〈�1, [z†( f̂ ), A]�2〉, (4.6)

where f̂ α(θ) := f̃ α(m[α] sinh θ). Then there exists a function K̂ ∈ H2(S(−π, 0))⊗K
whose boundary values satisfy

K ( f̂ ) =
∑
α

∫
dθ K̂α(θ) f̂ α(θ), K †( f̂ ) = −

∑
α

∫
dθ K̂α(θ − iπ) f̂ α(θ), (4.7)

and whose Hardy norm is bounded by

|||K̂ ||| ≤
(
(n1 + 1)1/2 + (n2 + 1)1/2

)
‖�1‖ ‖�2‖ ‖A‖. (4.8)
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Proof. We first derive a bound on the functionals K , K † (4.6). By application of the
particle number bounds (2.27) and the Cauchy–Schwarz inequality, we have

|K ( f̂ )| ≤ ‖z†( f̂ )�1‖‖A�2‖ + ‖A∗�1‖‖z( f̂ )�2‖
≤
(√

n1 + 1 +
√
n2
)
‖�1‖‖�2‖‖A‖ ‖ f̂ ‖,

|K †( f̂ )| ≤
(√

n1 +
√
n2 + 1
)
‖�1‖‖�2‖‖A‖ ‖ f̂ ‖.

It now follows from Riesz’ Lemma that the distributions K and K † are given by inte-
gration against functions K̂ , K̂ † ∈H1 = L2(R)⊗K, with norms bounded by

‖K̂ #‖2 ≤
(√

n1 + 1 +
√
n2 + 1
)
‖�1‖‖�2‖‖A‖. (4.9)

Next, we use the time zero fields (4.3) to derive the claimed analytic structure. To this
end, consider the functionals K± : S (R)⊗K→ C,

K−( f ) := 〈�1, [ϕ( f ), A]�2〉, K+( f ) := 〈�1, [π( f ), A]�2〉. (4.10)

Taking into account f̂ ∗α(θ) = (J f̂−)α(θ), we observe that solving (4.3) for z, z† gives

z( f̂ ) = 1

2

(
ϕ( f ∗) + iπ(ω−1 f ∗)

)
, z†( f̂ ) = 1

2

(
ϕ( f )− iπ(ω−1 f )

)
, (4.11)

and thus the same relation between the distributions K , K †, K±.
Since ϕ and π are localized on the left, and A in the right wedge, we have supp K± ⊂

R+. Thus, there exist functions p �→ K̃±(p) which are analytic in the lower half plane,
satisfy polynomial bounds at the real boundary and at infinity, and reproduce the Fourier
transforms of K± as their distributional boundary values [49, Thm. IX.16]. As sinh maps
the strip S(−π, 0) to the lower half plane, this also implies that

K̂+,α(θ) := K̃+,α(m[α] sinh θ), K̂−,α(θ) := m[α] cosh θ · K̃−,α(m[α] sinh θ),
(4.12)

are analytic in this strip. To relate these functions to K , K †, we compute

K ( f̂ )= 1

2

(
K−( f ∗) + i K+(ω

−1 f ∗)
)
= 1

2

∫
dp
(
K̃−,α(p) + iω(p)−1 K̃+,α(p)

)
f̃ α(p)

= 1

2

∫
dθ
(
K̂−,α(θ) + i K̂+,α(θ)

)
f̂ α(θ) =

∫
dθ K̂α(θ) f̂ α(θ)

and

K †( f̂ ) = 1

2

(
K−( f )− i K+(ω

−1 f )
)
= 1

2

∫
dθ
(
K̂−,α(−θ)− i K̂+,α(−θ)

)
f̂ α(θ)

=
∫

dθ K̂ †
α(θ) f̂

α(θ).

These equations imply

K̂α(θ) = 1

2

(
K̂−,α(θ) + i K̂+,α(θ)

)
, K̂ †

α(θ) =
1

2

(
K̂−,α(−θ)− i K̂+,α(−θ)

)
,

(4.13)
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and, in particular, the analyticity of θ �→ K̂α(θ) in the strip S(−π, 0). Furthermore, it
follows that the boundary values of K̂± also exist as functions in L2(R) ⊗ K. Since
K̂±,α(θ − iπ) = ±K̂±,α(−θ) for θ ∈ R by (4.12), we have K̂ †

α(θ) = −K̂α(θ − iπ).
It remains to prove that K̂ is an element of the Hardy space H2(S(−π, 0))⊗K. For

that purpose, we consider K̂ (s)
α (ζ ) := e−im[α]s sinh ζ K̂α(ζ ), with s > 0, which is clearly

analytic in the strip S(−π, 0) as well. The identity
∣∣∣K̂ (s)
−λ,α(θ)

∣∣∣ = 1

2
e−m[α]s sin λ cosh θ

∣∣∣K̂−,α(θ − iλ) + i K̂+,α(θ − iλ)
∣∣∣ (4.14)

yields that K̂ (s)
−λ,α ∈ L2(R) for all λ ∈ [0, π ] and s > 0, since θ �→ K̂±,α(θ − iλ) is

bounded by polynomials in cosh θ for θ →∞ and 0 < λ < π . Noting that ‖K̂ (0)
0/−π‖2 =

‖K̂ (s)
0/−π‖2 and (4.9), the three lines theorem may be applied and we arrive at

‖K̂ (s)
−λ‖2 ≤

(√
n1 + 1 +

√
n2 + 1
)
‖�1‖‖�2‖‖A‖, 0 ≤ λ ≤ π. (4.15)

Since (4.14) is monotonically increasing for s → 0, it follows that the uniform bound
(4.15) holds also for K̂−λ = K̂ (0)

−λ, with 0 ≤ λ ≤ π . This finishes the proof. ��
Lemma 4.1 is our basic tool to derive analyticity properties of the rapidity functions

(A�)αn from the localization of A in the right wedge WR , as we shall explain now. In
view of the properties of the creation operators z†α(θ) (see Proposition 2.4), we may
write

√
n! (A�)αn (θ) = 〈z†α1(θ1) . . . z†αn (θn)�, A�〉

= 〈z†α2(θ2) . . . z†αn (θn)�, [zα1(θ1), A]�〉,
and may therefore apply this Lemma 4.1 to conclude that (A�)αn is analytic in the
variable θ1 in the strip (−π, 0). Its boundary value at Im(θ1) = −π is given by

(A�)αn (θ1 − iπ, θ2, . . . , θn) = 〈z†α2 (θ2) . . . z†αn (θn)�, [A, z†
α1

(θ1)]�〉
= 〈z†α2 (θ2) . . . z†αn (θn)�, Az†

α1
(θ1)�〉 − 〈zα1 (θ1)z†α2 (θ2) . . . z†αn (θn)�, A�〉

= 〈z†α2 (θ2) . . . z†αn (θn)�, Az†
α1

(θ1)�〉 −
n∑

l=2
δ(θl − θ1)δ

αl ξl−1 δα1ξ1
l−1∏
m=2

S
αmξm
ξm−1βm

(θ1 − θm )

× 〈z†β2 (θ2) . . . z
†
βl−1 (θl−1)z

†
αl+1 (θl+1) . . . z

†
αn (θn)�, A�〉, (4.16)

where we used the Zamolodchikov exchange relations (2.28) in the last step.
To establish analyticity of (A�)αn not just in the single variable θ1, but in an n-

dimensional tube in C
n , we now move the leading creation operators z†α2(θ2) from the

left to the right hand side, and rewrite the above expression in terms of expectation
values of the commutator [zα2(θ2), A]. In this form, Lemma 4.1 can be applied again,
now yielding analyticity in the second variable θ2. As we will show below, this type of
argument results in an iterative procedure with which we can successively analytically
continue in all variables θ1, . . . , θn .

As can be seen from (4.16), this scheme will produce sums of products of delta
distributions, S-factors and matrix elements of A. To organize these terms efficiently,
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we will now introduce a graphical notation5 for certain (contracted) matrix elements of
A.

All our diagrams will consist of a number of oriented lines, which start/end either at
external vertices at the top of the diagram, or at the bottom. Each line carries an index
α ∈ {1, . . . , dimK} and a rapidity θ ∈ R, which we indicate by a label α, [θ ] where
necessary. The basic element of our graphical notation is

· · · · · ·

λ1[η1]
λ [η ]

ρ1[θ1]
ρr[θr ]

:= 〈�, zρr (θr ) · · · zρ1(θ1) A z†λ (η ) · · · z†λ1(η1)�〉
= 〈�, zλ1(η1) · · · zλ (η ) A∗ z†ρ1(θ1) · · · z†ρr (θr )�〉∗.

(4.17)
We have included the second formula with the conjugate matrix element because in

this form, the ordering of the operators matches the ordering of the lines in the diagram,
incoming lines represent creation operators, and outgoing lines represent annihilation
operators. In the following, by “left” and “right” we will always refer to the parts of the
diagram as shown, or the order in the second (conjugate) matrix element.

Besides these matrix elements of A, also S-factors and delta distributions will be
represented in our graphical notation. This is done in close analogy to the conventions
used in the context of knot diagrams [34]: A crossing6 between two oriented lines
corresponds to an S-factor as shown here:

The two upper indices of S correspond to the indices of the two incoming lines
(ordered left to right), the two lower indices of S correspond to the two outgoing lines
(ordered left to right), and the argument of S is the rapidity of the right incoming line
minus the rapidity of the left incoming line.

As in this picture, also in the following the rapidities of lines are always taken to stay
the same when crossing with other lines, but the index may change, i.e. we assign an
individual index to each line segment between external vertices and/or crossings.

With these conventions, the first two Zamolodchikov exchange relations (2.28) imply

· · · · · · · · · · · · = · · · · · · · · · · · ·

(4.18)

Here we have suppressed the indices/rapidities labeling the lines, and the equation
holds when arbitrary indices/rapidities are inserted, identical and in the same order on
the external vertices of the left and right hand sides. The proof of (4.18) amounts to

5 For an alternative algebraic description emphasizing the role of the representations Dn from Lemma 2.3
and avoiding diagrammatic notation, see [2].

6 We do not have to distinguish between over- and undercrossings because S induces a representation of
the permutation group instead of the braid group, see Definition 2.2(ii).
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inserting such labels according to (4.17) and carefully observing the index positions in
(2.28).

For themixed exchange relation (2.28c),we need to introduce “contractions” between
rapidities and/or indices. As usual in the context of knot partition functions, a line
between twoexternal verticeswith rapidities θ, θ ′ represents a delta distribution δ(θ−θ ′),
and in case this line does not cross any other lines, also a Kronecker delta δαβ between
the indices α, β of the two external vertices is understood:

α
[η]

β
[θ]

= δαβ δ(θ − η)

Together with our convention that incoming lines represent creation operators, and
outgoing ones annihilation operators, the mixed commutation Zamolodchikov relation
(2.28c) then reads for the right hand side of the diagrams (4.17)

· · · · · · = · · · · · · + · · · · · · + · · · + · · · · · · ,

(4.19)

and for the left hand side of (4.17)

· · · · · · = · · · · · · + · · · · · · + · · · + · · · · · · .

(4.20)

These equations can be proven by inserting indices/rapidities, repeatedly applying

(2.28c) and using zα(θ)� = 0 as well as Sαβγ δ (θ) = Sγ δαβ (−θ) (Definition 2.2(i), (ii)).
We now use this graphical notation to define contracted matrix elements of A. Given

two integers 0 ≤ k ≤ n, a contraction of type (n, k) is a diagram as in (4.17), with k
external vertices on the left and n − k external vertices on the right, and an arbitrary
number of contractions (pairings) between external vertices on the left and right hand
side. A contraction between two external vertices, say l on the left and r on the right, is
represented by a line from r to l.

The set of all contractions of type (n, k)will be denotedCn,k ; it contains contractions
C of length |C | (defined as the number of pairs in C) up to |C | ≤ min{k, n− k}, and we
also allow for the empty contraction C = { } with |C | = 0.

Each contractionC corresponds to a tensor-valueddistribution 〈A〉α1,...,αnC (θ1, . . . , θn)

on R
n , which is defined by attaching rapidities θ1, . . . , θn and indices α1, . . . , αn to the

external vertices of the diagram, ordered from left to right, taking the product of all S-
and δ-factors appearing in the diagram and the matrix element of A, and summing over
all internal lines, i.e. all lines that are not connected to one of the n external vertices.
Symbolically, this means

〈A〉C =
∑
internal
lines

∏
crossings

S
∏

contracted
lines

δ. (4.21)
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For example (with θab := θa − θb),

α1[θ1]
α2[θ2]

α3[θ3]
α4[θ4]

α5[θ5]
α6[θ6]

= δ(θ16)δ(θ34)δ
α3
α4

∑
β,γ,ε

Sα5α6βγ (θ65)S
βε
α2α1

(θ26) 〈z†γ (θ5)�, Az†ε (θ2)�〉.

For an unambiguous definition of 〈A〉C we exclude self intersecting lines (“type
I Reidemeister moves”). Then the diagram of a contraction C is uniquely defined by the
pairings in C up to the Reidemeister moves II and III [34]:

α

β

γ

δ
←→

α

β

γ

δ

α

β

γ

δ

η

ξ

←→
α

β

γ

δ

η

ξ

But as a consequence of Hermitian analyticity and the Yang–Baxter equation (Defini-
tion2.1(ii), (iii)), in both cases the left and right partial diagramgive the samecontribution
to 〈A〉C , as follows by straightforward calculation.

With these conventions,we have defined 〈A〉C for each contractionC ∈ Cn,k and each
A ∈ B(H ), and now comment on the analytic properties of this distribution. To begin
with, the matrix elements (4.17) are tempered (vector-valued) distributions because of
the particle number bounds (2.27) and the boundedness of A. Within 〈A〉C , they only
depend on those θ -variables that are not contracted, whereas the delta distributions
depend only on the contracted variables. Hence their product, as it appears in 〈A〉C , is
well-defined. Also the product of these distributions with the S-factors is well defined:
If we consider regular S ∈ S0 (Definition 2.2), the analyticity and boundedness of S
in a strip containing the real line implies that S is smooth and has bounded derivatives
on R via Cauchy’s integral formula. Thus we conclude that 〈A〉C is well-defined as a
tempered distribution on R

n , taking values in K⊗n , for any contraction C ∈ Cn,k .
The completely contracted matrix elements (of type (n, k)) of A are defined as

〈A〉conn,k :=
∑

C∈Cn,k

(−1)|C|〈A〉C , (4.22)

they are our main object of interest in the following.
To explain the relation between the completely contracted matrix elements 〈A〉conn,k

of some A ∈ F(WR) and its wavefunctions (A�)n , it is instructive to consider the two
special cases k = 0 and k = n. As either k = 0 (no left external vertices) or n − k = 0
(no right external vertices), in both cases, Cn,0 = Cn,n = {{ }} contains only the empty
contraction C = { }. By observing the orderings in (4.17), one finds

(〈A〉conn,0

)α
(θ) = 〈z†α1(θ1) . . . z†αn (θn)�, A�〉 = √n! (A�)αn (θ) (4.23)(〈A〉conn,n

)α
(θ) = 〈�, Az†αn (θn) . . . z

†
α1
(θ1)�〉

= √n! (A∗�)
αn ...α1
n (θn, . . . , θ1) =

√
n! (J A∗�)α1,...,αnn (θ). (4.24)
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Because of this close connection between the completely contracted matrix elements
of A and the wavefunctions (A�)n , analyticity and boundedness properties of the former
will imply corresponding properties of the latter.

Our next aim is to prove the following proposition on analytic continuations of the
completely contracted matrix elements.

Proposition 4.2. Let 0 ≤ k < n, S ∈ S0 and A ∈ F(WR).

(i) The distribution (〈A〉conn,k )
α(θ) has an analytic continuation in the variable θk+1 to

the strip S(−π, 0), and its boundary value at Im θk+1 = −π is

(〈A〉conn,k

)α1,...,αn (θ1, . . . , θk+1 − iπ, . . . , θn)

= (〈A〉conn,k+1

)α1,...,αk+1,...,αn (θ1, . . . , θk+1, . . . , θn). (4.25)

(ii) Let f1, . . . , fn ∈ S (R)⊗K and 0 ≤ λ ≤ π . Then here holds the bound

∣∣∣∣∣∣
∫

dnθ
( n⊗

j=1
f j (θ j ), 〈A〉conn,k (θ1, . . . , θk+1−iλ, . . . , θn)

)∣∣∣∣∣∣ ≤ 2n
√
n! ‖A‖·

n∏
j=1
‖ f j‖2.
(4.26)

Proof. (i) We begin the proof by considering special terms in the sum (4.22), namely
those which correspond to contraction diagramsC ∈ Cn,k in which the leftmost external
vertex in the right hand side of the diagram, i.e. line number k+1 in the full diagram, is not
contracted, and we denote the subset of these contractions by Ĉn,k ⊂ Cn,k . Throughout
this proof, we will label this line with index α and rapidity θ , so that it corresponds to
the annihilation operator zα(θ) to the left of A, cf. the first line in (4.17).

If we switch the order of zα(θ) and A in 〈A〉C , the incoming line labeled (α, θ) is
switched to the rightmost position of the left half of the diagram. We may then use the
mixed Zamolodchikov relation (4.20) to see that 〈A〉C with zα(θ) and A interchanged
coincides with the sum

∑
C ′∈P(C)〈A〉C ′ , where C ′ runs over the subset P(C) ⊂ Cn,k

of all contractions that differ from C precisely by adding an additional contraction
between line k + 1 and an uncontracted line on the left (in particular, |C ′| = |C | + 1).
Therefore, 〈 Â〉C := 〈A〉C−∑C ′∈P(C)〈A〉C ′ ,C ∈ Ĉn,k , can bewritten as the (contracted)
expectation value of the commutator [zα(θ), A].

We claim that 〈 Â〉αC (θ) (we suppress all dependence on the other rapidities and
indices here) has an analytic continuation in θ ∈ S(−π, 0). Indeed, by Lemma 4.1,
expectation values of [zα(θ), A] analytically continue to S(−π, 0), and the boundary
value at Im θ = −π is given by the same (contracted) expectation value, now taken of
[A, z†α(θ)].
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But to discuss the full θ -dependence of 〈 Â〉C , we also have to consider the dependence
of the S-factors in 〈A〉C on θ (the δ distributions do not depend on this variable because
θ is not contracted in C). Those S-factors that depend on θ arise from contractions
crossing the θ -line as shown in this figure:

· · ·

μ
α
[θ]

ν
[θ′]

λ

= Sαν
μλ(θ

′−θ)

Therefore θ always appears with a minus sign in the argument of S, and the S-factors
are analytic in θ ∈ S(−π, 0) as well.

To compute the boundary value at Im θ = −π , we have to take into account
both, the change from [zα(θ), A] to [A, z†α(θ)], and the crossing symmetry of S

(Definition 2.1(iv)), namely Sαβγ δ (θ + iπ) = Sγ α
δβ

(−θ). Expanding the commutator

[A, z†α(θ)] = A z†α(θ) − z†α(θ) A, the term with the creation operator to the right of
A corresponds to a contraction diagram of type (n, k + 1), where the incoming (α, θ)-
line has been transformed to an outgoing (α, θ)-line in the rightmost position on the left
hand side of the diagram. By observing the crossing relation

· · ·

μ
α
[θ]

ν
[θ ′]

λ

θ→θ−iπ−−−−−−−−→
· · ·

μ
α
[θ]

ν
[θ ′]

λ

,

one sees that this term is precisely 〈A〉α
C̃
(θ), where C̃ ∈ Cn,k+1 consists of the same

pairings as the original contraction C ∈ Cn,k , but the (α, θ)-line has been “crossed”
from the right to the left hand side of the diagram (in particular |C̃| = |C |). The other
term in the commutator, with the creation operator to the left of A, corresponds to
switching the incoming (α, θ)-line in the original diagram of C to an outgoing (α, θ)-
line in the same position. Using the mixed Zamolodchikov relation (4.19), it follows
that

〈 Â〉αC (θ − iπ) = 〈A〉α
C̃
(θ)−

∑
C̃ ′∈P̃(C̃)

〈A〉α
C̃ ′(θ), (4.27)

where P̃(C̃) ⊂ Cn,k+1 denotes the set of all contractions which differ from C̃ precisely
by contracting k+1, the rightmost line of the left half of the diagram,with an uncontracted
line on the right (in particular |C̃ ′| = |C̃ | for C̃ ′ ∈ P̃(C̃)).

To conclude the proof, we note that since any contraction C ∈ Cn,k either contracts
k + 1 or not, we have the disjoint unions Cn,k =⊔C {C � P(C)} and Cn,k+1 =⊔C̃ {C �
P̃(C̃)}, where C runs over Ĉn,k ⊂ Cn,k , and C̃ runs over Ĉn,k+1 ⊂ Cn,k+1, the set
of all contractions not contracting line k + 1 as a line on the left. Taking into account
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|C ′| = |C |+1 forC ′ ∈ P(C), the completely contracted matrix elements may be written
as

〈A〉conn,k =
∑

C∈Ĉn,k

{
(−1)|C|〈A〉C +

∑
C ′∈P(C)

(−1)|C ′|〈A〉C ′
}
=
∑

C∈Ĉn,k

(−1)|C|〈 Â〉C ,

(4.28)

which implies that (〈A〉conn,k )
α(θ) has an analytic continuation to S(−π, 0). At Im θ =

−π , (4.27) gives
[〈A〉conn,k ]α(θ − iπ) =

∑
C∈Ĉn,k

(−1)|C|〈 Â〉αC (θ − iπ)

=
∑

C̃∈Ĉn,k+1

(−1)|C̃ |
{
〈A〉α

C̃
(θ)−

∑
C̃ ′∈P̃(C̃)

〈A〉α
C̃ ′(θ)

}

=
∑

C∈Cn,k+1

(−1)|C|〈A〉αC (θ)

= (〈A〉conn,k+1)
α(θ).

This concludes the proof of part (i). ��
(ii) Let 0 ≤ k ≤ n, C ∈ Cn,k an arbitrary contraction, and f1, . . . , fn ∈ S 2(R)⊗K

be testfunctions. To estimate 〈A〉C ( f1 ⊗ · · · ⊗ fn), we split the integration variables
into three parts: First θ ∈ R

|C|, those variables in θ1, . . . , θk that are contracted by
C , second θ ′ ∈ R

n−k−|C|, those variables in θk+1, . . . , θn that are not contracted, and
third θ ′′ ∈ R

k−|C|, those variables in θ1, . . . , θk that are not contracted. An analogous
split is applied to the sum over indices, resulting in indices γ ,α,β with |γ | = |C |,
|α| = n − k − |C |, and |β| = k − |C |.

Carrying out all integrations over contraction delta functions, we find

〈A〉C ( f1 ⊗ · · · ⊗ fn) =
∫

dθ
∑
γ

∫
dθ ′
∫

dθ ′′
∑
α,β

Fα
θ ,γ (θ

′)Gβ
θ ,γ

(θ ′′)

× 〈z†α1 (θ ′1) · · · z†αn−k−|C | (θ ′n−k−|C |)�, Az†β1
(θ ′′1 ) · · · z†βk−|C | (θ

′′
k−|C |)�〉.

Here G results from f1⊗· · ·⊗ fk by application of S-factors and reordering of indices,
and analogously, F results from fk+1 ⊗ · · · ⊗ fn ; the separation of variables expressed
in F,G is possible because no S-factors appear that depend on uncontracted rapidities
on the left and right of the diagram of C .

We have written the rapidities θ and the γ -indices at the bottom to indicate that we
view F,G as testfunctions in n − k − |C | and k − |C | rapidities/indices, that depend
on θ, γ as parameters. By application of the Cauchy–Schwarz inequality, the particle
number bounds (2.27) and the boundedness of A, we get

|〈A〉C ( f1 ⊗ · · · ⊗ fn)| ≤
∫

dθ
∑
γ

√
(n−k−|C |)!√(k − |C |)! ‖Fθ ,γ ‖2 ‖Gθ ,γ ‖2 ‖A‖,

where ‖ · ‖2 denotes the norms on L2(Ra)⊗K⊗a , a = k, n− k. We now exploit the fact
that the S-factors are unitary, and the underlying tensor structure of F,G. This allows
us to proceed to
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|〈A〉C ( f1 ⊗ · · · ⊗ fn)| ≤
√
(n − k − |C |)!√(k − |C |)!

∫
dθ
∑
γ

|C |∏
j=1

(
f
γ j
l j

(θ j ) f
γ j
r j (θ j )
)
·
∏
i

′‖ fi‖2 ‖A‖,

where (l j , r j ) denote the pairs that are contracted by C , and the second product"′i runs
over all uncontracted lines. Now another application of Cauchy–Schwarz yields

|〈A〉C ( f1 ⊗ · · · ⊗ fn)| ≤
√
(n − k − |C |)!√(k − |C |)!

n∏
i=1
‖ fi‖2 ‖A‖,

and by using the estimate
∑

C∈Cn,k

√
(n − k − |C |)!√(k − |C |)! ≤ 2n

√
n! [40], we

arrive at the claimed inequality (4.26) for the boundary values at λ = 0 and λ = π .
The bound (4.26) implies, in particular, that upon integrating all variables but θk+1,

hαk+1(θk+1) :=
∫

dθ j
(〈A〉conn,k

)α
(θ)

n∏
j=1

j �=k+1

f
α j
j (θ j )

is square-integrable. From here, we can deduce (4.26) also for imaginary part 0 < λ < π

as in the scalar case: One uses the boundedness of S on S(0, π) and the bounds found
in Lemma 4.1 to see that also θk+1 �→ hαk+1−λ (θk+1) = hαk+1(θk+1 − iλ) is in L2(R) for
any 0 ≤ λ ≤ π and, by the first part, also analytic on S(−π, 0). By application of the
three lines theorem, it follows that (4.26) also holds for | ∫ dθk+1 hαk+1(θk+1 − iλ) f αk+1k+1
(θk+1)|. ��

4.2. Property (H) holds for regular S ∈ S0. Themodular group of (F(WR),�) acts on
the functions (A�)n , A ∈ F(WR), according to Proposition 3.3(i) as (�i t A�)αn (θ) =
(A�)αn (θ +4t λπ/2). Since A� ∈ dom�1/2, this implies analyticity of A�n in the “cen-
ter of mass rapidity” (θ1 + · · · + θn)/n in the strip S(−π, 0), with boundary value at the
lower boundary being (J A∗�)αn . In comparison to this general fact, we will now argue
that Proposition 4.2 implies much stronger analyticity properties of (A�)n , involving n
complex variables.

Starting at 〈A〉conn,0 = √
n!(A�)n (4.23), we see that

√
n!(A�)αn (θ) has an ana-

lytic continuation to θ1 ∈ S(−π, 0), with boundary value at Im θ1 = −π given
by (〈A〉conn,1 )

α1α2,...,αn (θ). This distribution has, in turn, an analytic continuation in

θ2 ∈ S(−π, 0), with boundary value at Im θ2 = −π given by (〈A〉conn,2 )
α1 α2,...,αn (θ),

etc. After n successive steps of analytic continuation we arrive at (〈A〉conn,n )
α1,...,αn (θ) =√

n! (J A∗�)αn .
To state the ensuing properties precisely, we define the n-dimensional tube

Tn := R
n − iGn, Gn := {λ ∈ R

n : π > λ1 > λ2 > · · · > λn > 0}. (4.29)

Corollary 4.3. (To Proposition 4.2 (i)) Let A ∈ F(WR). Then the function (A�)n ∈
L2(Rn,K⊗n) is the distributional boundary value of an analytic function (denoted by
the same symbol) (A�)n : Tn → K⊗n.
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Im ζ1

Im ζ2

(−π, 0)

(−π,−π) (0,−π)

0

λπ/2

Im ζ1

Im ζ2

κ

(−π, 0)

(−π,−π) (0,−π)

0 Im ζ1

Im ζ2

κ

(−π, 0)

(−π,−π) (0,−π)

0

Fig. 1. The two-dimensional bases −G2 (left), −B2(κ) (middle) and λπ/2 + C2(κ) (right)

Proof. The base −Gn is the convex closure of the n line segments from −π∑k
j=1 e j

to −π∑k+1
j=1 e j , k = 0, . . . , n − 1, where {e j } denotes the standard basis of R

n . By
Proposition 4.2, (A�)n is analytic on each of these line segments. The statement then
follows from the Malgrange Zerner Theorem [25] and can be proven along the same
lines as in the scalar case, see [38, Proof of Cor. 5.2.6. a)] for details. ��

In property (H) (Definition 3.7), it is required that (A�)n , A ∈ F(WR), is analytic
in a tube containing λπ/2 = −(π2 , . . . , π

2 ) in the interior of its base. As the point λπ/2
only lies at the boundary of −Gn (4.29), an extension of the domain of analyticity is
necessary, cf. Fig. 1.

Such an extension is only possible if S is regular in the sense of Definition 2.2,
which provides the main motivation for this definition. We will therefore from now on
assume that S is analytic and bounded on an enlarged strip, i.e. on S(−κ, π +κ) for some
0 < κ < π

2 . To describe the resulting domain of analyticity of (A�)n , we define

Bn(κ) := {λ ∈ R
n : 0 < λ1, . . . , λn < π, −κ < λr − λl < κ, 1 ≤ l < r ≤ n},

(4.30)
as well as

Cn(κ) := (− κ
2 ,

κ
2 )
×n, Tn(κ) := R

n + i
(
λπ/2 + Cn(κ)

) ⊂ −Bn(κ). (4.31)

Proposition 4.4. Let S ∈ S0 be analytic in S(−κ, π + κ) and A ∈ F(WR). Then (A�)n
is analytic in the tube R

n − iBn(κ).

Proof. We follow the proof of the scalar case [38, Proof of Prop. 5.2.7. a)]. To this end,
let σ ∈ Sn . By Corollary 4.3,

(A�)n (θ
σ ) := (A�)n (θσ(1), . . . , θσ(n))

is analytic in the permuted tube R
n − iGσ

n , where

Gσ
n := σGn = {λ ∈ R

n : π > λσ(1) > · · · > λσ(n) > 0}.
Since (A�)n ∈ Hn , this vector is invariant under the representation Dn of Sn (2.16),
i.e.

(A�)n (θ) =
(
Dn(σ ) (A�)n

)
(θ) = Sσn (θ) · (A�)n (θ

σ ). (4.32)

The tensor Sσn (θ) consists of factors of the form S(θr − θl), 1 ≤ l < r ≤ n, acting on
various tensor factors of K⊗n . As all such factors are analytic in the tube R

n + iB′n(κ)
with

B′n(κ) := {λ ∈ R
n : −κ < λr − λl < κ, 1 ≤ l < r ≤ n},

also all Sσn , σ ∈ Sn , are analytic in R
n + iB′n(κ).
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Im ζ1

Im ζ2

(−π, 0)

(−π,−π) (0,−π)

0

−Gid
2

−Gτ1
2

Im ζ1

Im ζ2

−κ

B′
2(κ)

−B2(κ)

(0,−π)

0

Fig. 2. Regions appearing in the proof of Proposition 4.4 for the case n = 2

Therefore, both sides of (4.32) admit an analytic continuation: The left hand side to
Tn = R

n − iGn as before and the right hand side to the tube based on B′n(κ) ∩ (−Gσ
n ).

Since convergence to the boundary in the sense of distributions gives the same value on
R
n , Epstein’s generalization of the Edge of the Wedge Theorem [24] can be applied,

yielding that (A�)n has an analytic continuation to the tube based on the convex closure
of ⋃

σ∈Sn

B′n(κ) ∩ (−Gσ
n ).

As the convex closure of
⋃

σ (−Gσ
n ) is the cube (−π, 0)×n , (A�)n is analytic in the tube

based on B′n(κ) ∩ (−π, 0)×n = −Bn(κ), cf. Fig. 2, and the proof is complete. ��
Thebases−Bn(κ) are of the form required inDefinition3.7:They containλπ/2 in their

interior, with n-independent distance constants cn (3.23) given by cn = m◦
2 cos κ

2 . This
implies that the nuclear norm of the map X−Bn(κ),s can be estimated as ‖X−Bn(κ),s‖1 ≤
C(s, κ,m◦)n (3.26). Furthermore, also the Hardy norm bounds required in Definition 3.7
hold on these tubes: By application of the mean value property, the bounds of Propo-
sition 4.2(ii) can be converted into pointwise bounds on (A�)n in the tube based on
−Gn . To estimate this function on the permuted tubes based on −Gσ

n , σ ∈ Sn , one
needs bounds on the tensor Sσn (θ) (4.32). This bound is, however, only of the form

supσ∈Sn
supζ∈Bn(κ)

‖Sσn (ζ )‖ ≤ Cn2 with some C > 1, in contrast to an incorrect esti-
mate in [40].

We therefore make an alternative choice of the tubes Cn , which results in υ(s, n) ∼
Cn , and ‖XCn ,s‖1 ∼ cs nn .

Proposition 4.5. Let S ∈ S0 be analytic and bounded by ‖S‖κ < ∞ on S(−κ, π + κ)

for some κ > 0. Then property (H) holds (Definition 3.7). The bases Cn can be chosen
as

Cn = λπ/2 +
(− κ

2n ,
κ
2n

)×n
, (4.33)

i.e., cn = κ
2n , and the Hardy bound constants (3.24) can be estimated as

υ(s, n) ≤ max

{
1,

√
2

κ

e−sm◦ sin κ

(πm◦s sin κ)1/4
‖S‖nκ (dimK)n/2

}
. (4.34)
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Proof. We already know that for A ∈ F(WR), the function (A�)n has an analytic
continuation to the tube based on −Bn(κ), which contains Cn . Clearly cn = ‖λπ/2 −
∂Cn‖∞ = κ

2n . But we have to give a proof of the Hardy properties of (A�)n , and the
bound (4.34).

Similarly to the strategy used in [39], we first work on the tube based on the simplex
C0n defined as the convex closure of 0,−κe1, . . . ,−κen (with {e j } j the standard basis
of R

n). To obtain Hardy estimates on the tube with base C0n , we need to control the
L2(Rn,K⊗n)-norms of (A�)n,λ, for any λ ∈ {0,−κe1, . . . ,−κen}.

For λ = 0, we clearly have ‖(A�)n‖ ≤ ‖A‖. For λ = −κe1, we recall the correspon-
dence (4.23), that is, (A�)αn (θ) = 1√

n! 〈z†α2(θ2) . . . z†αn (θn)�, [zα1(θ1), A]�〉. Hence, by
application of Lemma 4.1 it follows that

hα1−λ : θ1 �→
∫

dθ2 . . . dθn(A�)α1α2...αnn (θ1 − iλ, θ2, . . . , θn) f
α2...αn (θ2, . . . , θn)

is in L2(R, dθ) for any f ∈ L2(Rn−1) ⊗ K⊗n−1 and any 0 ≤ λ ≤ π . Moreover, we
have ‖h−λ‖2 ≤ ‖ f ‖2‖A‖. By the mean value property,

hα1(ζ ) = 1

πr2

∫
D(ζ,r)

dθ dλ hα1(θ + iλ),

with D(ζ, r) ⊂ R − i[0, π ] a disc of radius r and center ζ . Straightforward estimates
(see [40, p. 843]) then give the pointwise bound

∣∣hα1(θ1 − iλ)
∣∣ ≤ ( 2

π min{λ,π−λ}
)1/2 ‖ f ‖2‖A‖, θ1 ∈ R, 0 < λ < π.

This implies that for fixed α, θ1, λ, the function (θ2, . . . , θn) �→ (A�)αn (θ1 −
iλ, θ2, . . . , θn) is in L2(Rn−1) with norm bounded by

(
2

π min{λ,π−λ}
)1/2 ‖A‖.

To improve the falloff behavior in the first variable, we consider the shifted operator
Us AU−1s , s > 0, which has wavefunction (Us A�)αn (ζ ) = u[α]n,s(ζ ) · (A�)αn (ζ ), with
u[α]n,s(ζ ) := ∏n

k=1 e
−ism[αk ] sinh ζk . Using the previous pointwise bound on (A�)n , and

0 < κ < π
2 as well as cosh θ1 ≥ 1 + 1

2θ
2
1 , we find

‖(Us A�)n,−κ e1‖2 =
∑
α

∫
dθ1e

−2sm[α1] sin κ cosh θ1

∫
dθ2 . . . dθn

∣∣(A�)αn (θ1 − iκ, θ2, . . . , θn)
∣∣2

≤ 2‖A‖2
π κ

∑
α

∫
dθ1e

−2sm◦ sin κ cosh θ1

≤ 2(dimK)n‖A‖2
π κ

e−2sm◦ sin κ
∫

dθ1e
−sm◦(sin κ) θ21

≤ 2(dimK)n‖A‖2√
π κ

e−2sm◦ sin κ√
sm◦ sin κ

=: a(s, κ)2(dimK)n‖A‖2.
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To obtain bounds on ‖(Us A�)n,−κe j ‖ for j = 2, . . . , n, we need to take the S-
symmetry of (Us A�)n into account. To this end, recall from Definition 2.2 that for
0 < λ ≤ κ

sup
θ∈R

‖S(θ)‖ = 1, sup
θ∈R

‖S(θ + iλ)‖ ≤ 1, sup
θ∈R

‖S(θ − iλ)‖ ≤ ‖S‖κ <∞.

For any σ ∈ Sn , the tensor

ζk �→ Sσn (θ1, . . . , θk−1, ζk, θk+1, . . . , θn), θk ∈ R, k = 1, . . . , n,

is, as a (tensor-) product of several factors S(θl − θr ), analytic (at least) in the strip
S(−κ, κ). An estimate on this function is obtained by determining the number of ζk-
dependent factors S in the above tensor. To this end, recall the fact that any σ ∈ Sn
can be decomposed (non-uniquely) into a product of inv(σ ) transpositions τ j ∈ Sn ,
where inv(σ ) is the number of pairs (i, j), i, j = 1, . . . , n, with i < j and σ(i) > σ( j).
Therefore, we count that the maximal possible number of transpositions which involve
the element k is n−1. Hence, the representing tensor Sσn (θ1, . . . , θk−1, ζk, θk+1, . . . , θn)
contains at most n − 1 factors depending on the variable ζk . Moreover, each of those
factors is bounded by ‖S‖κ , and all other factors are bounded by 1. In view of the
S-symmetry (4.32) of (A�)n , we therefore have, j = 2, . . . , n,

‖(Us A�)n,−κe j ‖ ≤ ‖S‖n−1κ ‖(Us A�)n,−κe1‖ ≤ ‖S‖nκ a(s, κ) (dimK)n/2 ‖A‖.

It is furthermore clear from our proof that also for imaginary part λ on the line segments
connecting 0 and −κe j , we have finite L2-norms ‖(Us A�)n,λ‖ <∞. By Malgrange–
Zerner type estimates we therefore obtain

‖(Us A�)n,λ‖ ≤ max
{‖(Us A�)n‖, ‖(Us A�)n,−κe j ‖ : j = 1, . . . , n

}
(4.35)

≤ max
{
1, a(s, κ) (dimK)n/2 ‖S‖nκ

} · ‖A‖ (4.36)

for any λ in the simplex C0n .
It is easily checked that C0n contains the cube (− κ

n , 0)
×n , i.e., (4.35) holds, in partic-

ular, for λ ∈ (− κ
n , 0)

×n .
We proceed by considering the tube based on C−πn := (−π, . . . ,−π) + (0, κ

n )
×n .

Since (Us A�)αn,(−π,...,−π) = (J A∗(s)�)αn , cf. (4.23), it follows, due to ‖A∗‖ = ‖A‖,
immediately that the bound (4.35) also holds for λ ∈ C−πn .

To show the validity of (4.35) in the tube with base λπ/2 + (− κ
n , 0)

×n , we inter-
polate between C0n and C−πn . Both cubes, C0n and C−πn , are contained in the analyticity
domain of (Us A�)αn , and connected by the line segment l from the point (0, . . . , 0) to
(−π, . . . ,−π), cf. Fig. 3.
By modular theory we have that ‖(Us A�)n,λ‖ ≤ ‖A‖ for all λ ∈ l. Consequently,
the bound (4.35) also holds for λ in the convex closure of C0n ∪ C−πn ∪ l. But the cube
λπ/2 + (− κ

2n ,
κ
2n )

×n is contained in this region, yielding what is claimed. ��
Having verified property (H) (for regular S), wemay insert the values of cn andυ(s, n)

we found into (3.26) and (3.31). Simplifying the resulting expressions (in particular, with
cos κ

2n ≥ 1√
2
), we obtain the following corollary.
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Im ζ1

Im ζ2

κ(S)

(−π, 0)

(−π,−π) (0,−π)

0

Fig. 3. Cubes appearing in the proof of Proposition 4.5 for the case n = 2

Corollary 4.6. Let S ∈ S0, n ∈ N, s > 0. Then �n(s) is nuclear, and there exist
constants C1(s) > 0 (depending on s, κ,m◦, dimK, S, but not on n) and C2,C3 > 0
(depending only on κ,m◦, dimK, S, but not on n or s), such that

‖�n(s)‖1 ≤ C1(s)

(
C2 e−C3 s

s1/2

)n
· nn <∞. (4.37)

Explicit forms of C1(s),C2,C3 can be obtained easily from our previous estimates.
It is however more relevant to consider the dependence of this bound on n (and s). In par-
ticular, in view of the factor nn (which originates from the c−nn in (3.26)), Theorem 3.10
does not yield nuclearity of �(s) for any s > 0 because (4.37) is not summable in n.
We will therefore discuss in the next section how the bound (4.37) can be improved.

5. The Intertwiner Property and Examples

Our basic strategy to estimate the nuclear norm of �n(s) by ‖�n(s)‖1 ≤ ‖ϒCn ,s‖ ·‖XCn ,s‖1 has led to the bound (4.37) for regular S-matrices. To improve it in such
a way that it becomes summable over n (which would imply nuclearity of �(s) via
Theorem 3.10(ii)), we will in this section discuss a method for obtaining sharper bounds
on ‖XCn ,s‖1.

The basic idea to be used below is adopted from the scalar case [40] and consists in
a more stringent exploitation of the S-symmetry of our Hilbert space. As a motivating
example, and as a tool to be used later on, we first state a lemma which shows the effect
of S-symmetry in the most drastic case of total antisymmetry (corresponding to the case
S = −F , F the tensor flip), where a Pauli principle becomes effective.

Lemma 5.1. Let s > 0 and Cn ⊂ R
n an open polyhedron as in Definition 3.7, with

associated operator XCn ,s (3.25). Let P−n denote the projection onto the completely
antisymmetric subspace of L2(Rn,K⊗n) ∼= L2(R,K)⊗n. Then P−n XCn ,s is nuclear,
with nuclear norm

‖P−n XCn ,s‖1 ≤
2n

n! ·
(

dimK
( 12πm◦)1/2

· e−
sm◦
2 cos cn

cn(s cos cn)1/2

)n
, (5.1)

where m◦ = min{m[α] : α = 1, . . . , dimK} ∈ (0,∞) is the mass gap (2.1).
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The bound (5.1) should be compared with (3.26), fromwhich it differs by a factor 2n/n!.
Proof. Since P−n is bounded, and XCn ,s is nuclear by Proposition 3.8, it is clear that
P−n XCn ,s is nuclear aswell. Toobtain the claimedboundon its nuclear norm,we represent
XCn ,s as in (3.30)

P−n XC,s = P−n Aδ

∑
ε

(
R̂δ,r,ε1 ⊗ · · · ⊗ R̂δ,r,εn

)
Bδ,r,ε Eλ−rε. (5.2)

The definitions of the operators and parameters r, δ appearing here can be looked up in
the proof of Proposition 3.8, but will not be relevant for the following argument. We
only recall that the R̂δ,r,ε are positive trace class operators on L2(R,K), the operators
Aδ , Bδ,r,ε, and Eλ−rε are all bounded with norm at most 1, and Aδ is an operator that
multiplies with a symmetric function, and hence commutes with P−n . The sum runs over
the 2n terms indexed by ε1, . . . , εn = ±1, and therefore commutes with P−n as well.

We are thus left with the task to estimate the trace norm of the “compressed” sum
P−n
∑

ε(R̂δ,r,ε1 ⊗ · · · ⊗ R̂δ,r,εn )P
−
n . To this end, we consider the positive trace class

operator Zδ,r := (R̂2
δ,r,+1 + R̂2

δ,r,−1)1/2. By the operator monotonicity of the square

root, we have Zδ,r ≥ R̂δ,r,±1, and therefore R̂δ,r,ε1 ⊗ · · · ⊗ R̂δ,r,εn ≤ (Zδ,r )
⊗n for any

ε1, . . . , εn . Denoting the trace over the antisymmetric subspace P−n L2(Rn,K⊗n) by
Tr−, this yields by the monotonicity of the trace∥∥∥P−n

∑
ε

(R̂δ,r,ε1 ⊗ · · · ⊗ R̂δ,r,εn )P
−
n

∥∥∥
1

= Tr−
(∑

ε

R̂δ,r,ε1 ⊗ · · · ⊗ R̂δ,r,εn

)
≤ 2n Tr−

(
Z⊗nδ,r

)
.

The crucial effect of the antisymmetrization is now the estimateTr−
(
Z⊗nδ,r

) ≤ ‖Zδ,r‖n1/n!
(see, for example, [54, Lemma 3.3]), to be compared with Tr(Z⊗nδ,r ) = Tr(Zδ,r )

n .
To complete the proof, we estimate the trace norm of Zδ,r according to ‖Zδ,r‖1 ≤

‖R̂δ,r,+1‖1 + ‖R̂δ,r,−1‖1 [36]. As ‖R̂δ,r,−1‖1 = ‖R̂δ,r,+1‖1 by Lemma 3.9 and Proposi-
tion 3.8, this yields the bound ‖P−n XCn ,s‖1 ≤ 4n‖Rδ,r,+1‖n1/n!, which differs from the
bound underlying Proposition 3.8 by a factor 2n/n!. Estimating ‖Rδ,r,+1‖1 as before
therefore gives the claimed bound (5.1). ��

For general S ∈ S0, the effect of the projection onto an S-symmetric subspaceHn ⊂
L2(R,K)⊗n is not as drastic as the total antisymmetrization. In case S(0) = −F , the
exchange relations (2.28) are however “close” to the CAR relations for small rapidities.
In connection with the fact that all the relevant functions in our analysis drop off quickly
for large arguments, we can therefore expect some kind of “effective Pauli principle”
for S(0) = −F .

To describe this, we consider the representation DS
n of Sn (see Lemma 2.3), which

we denote here DS
n instead of Dn to emphasize the dependence on S ∈ S0. By its

definition, the tensors Sπn (θ), π ∈ Sn , θ ∈ R
n , satisfy the cocycle equation Sπσn (θ) =

Sπn (θ)S
σ
n (θπ ), where π, σ ∈ Sn , and θπ = (θπ(1), . . . , θπ(n)).

Given two S-matrices S, S̃ ∈ S, it is then straightforward to verify that the piecewise
defined tensor-valued functions

ÎS,S̃
n (θ) := S̃πn (θ)S

π
n (θ)

−1, θπ(1) < · · · < θπ(n), (5.3)
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induce unitary multiplication operators

ÎS,S̃
n : L2(Rn,K⊗n)→ L2(Rn,K⊗n), (ÎS,S̃

n �)(θ) := ÎS,S̃
n (θ)�(θ), (5.4)

that intertwine the representations DS
n and DS̃

n , i.e.

ÎS,S̃
n DS

n (σ ) = DS̃
n (σ )ÎS,S̃

n , σ ∈ Sn . (5.5)

By means of these intertwiners, one can therefore pass between different
S-symmetrizations; in particular, between the symmetry given by some S ∈ S and
its value at zero, which is also an S-matrix S(0) ∈ S. This procedure is efficient for
our nuclearity estimates if S(0) = −F , so that a Pauli principle can be used, and if the
intertwiners also preserve the Hardy space structure established so far.

We isolate the relevant properties in the following definition.

Definition 5.2. Let S ∈ S0 be regular, and choose polyhedra Cn such that property (H)
holds (see Definition 3.7). Then S is said to have the intertwining property if for any
n ∈ N, there exists an analytic tensor-valued function

In : Rn + iCn → B(K⊗n) (5.6)

such that:

(i) There exists a constant γ > 0 such that for any n ∈ N and any ζ ∈ R
n + iCn ,

‖In(ζ )‖B(K⊗n) ≤ γ n . (5.7)

(ii) There exists a constant γ̃ > 0 such that for any n ∈ N and any θ ∈ R
n , the tensor

In(θ + iλπ/2) is invertible, and

‖In(θ + iλπ/2)
−1‖B(K⊗n) ≤ γ̃ n . (5.8)

(iii) Multiplication by the tensor-valued function θ �→ In(θ + iλπ/2) maps the S-
symmetric subspace H S

n ⊂ L2(Rn,K⊗n) onto the S(0)-symmetric subspace

H S(0)
n ⊂ L2(Rn,K⊗n).

The actual intertwining property is contained in item (iii), which is, in particular,
satisfied if multiplication by In( · + iλπ/2) intertwines DS

n and DS(0)
n .

It has to be noted that the simple intertwiner (5.4) does in general not have the required
analyticity properties. If, however, an “analytic intertwiner” as specified inDefinition 5.2
can be found, modular nuclearity follows, as we show next.

Theorem 5.3. Let S ∈ S0 be regular, and suppose furthermore that S has the intertwin-
ing property, and S(0) = −F. Then, there exists smin <∞ such that�(s) : F(WR)→
H is nuclear for all s > smin.

Proof. We decompose �n(s) = XCn ,sϒCn ,s as in Theorem 3.10, and aim at improving
the estimate on the nuclear norm of XCn ,s (3.25) by using the intertwining tensors In
fromDefinition 5.2.Wewrite the same symbol In for the operator on H2(Rn+iCn,K⊗n)
which multiplies with this tensor, and In,λπ/2 for the operator on L2(Rn,K⊗n) which
multiplies with θ �→ In(θ + iλπ/2).

As before, we may replace all masses m[αk ] in (3.25) by their minimum m◦ to obtain
upper bounds on nuclear norms, and denote X̃Cn ,s the resulting operator. Since In is
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analytic and bounded on the tube based on Cn , we then have In,λπ/2 X̃Cn ,s = X̃Cn ,sIn
(cf. definition (3.25)).

In view of Definition 5.2(iii), we furthermore have that In,λπ/2 satisfies In,λπ/2H
S
n =

H S(0)
n = H −F

n , the n-fold totally antisymmetric tensor power of H1. This implies
In,λπ/2 X̃Cn ,s = P−n In,λπ/2 X̃Cn ,s = P−n X̃Cn ,sIn , with P−n the orthogonal projection
H ⊗n

1 →H −F
n as in Lemma 5.1.

Using the bounds from Definition 5.2(i), (ii), we find

‖XCn ,s‖1 ≤ ‖X̃Cn ,s‖1 = ‖I−1n,λπ/2
In,λπ/2 X̃Cn ,s‖1

≤ γ̃ n ‖P−n X̃Cn ,sIn‖1 ≤ γ̃ n γ n ‖P−n X̃Cn ,s‖1.
The last trace norm can now be estimated with Lemma 5.1. We keep the same bounds
as before on ‖ϒCn ,s‖ in ‖�n(s)‖1 ≤ ‖XCn ,s‖1‖ϒCn ,s‖. Since Lemma 5.1 gives an
improvement by a factor 2n/n! in comparison to (3.26), our new bound differs from the
one in Corollary (4.6) by a factor 2nγ n γ̃ n/n!.

Thus we have

‖�n(s)‖1 ≤ C1(s)

(
C2 e−C3 s

s1/2

)n
· n

n

n! <∞, (5.9)

with constantsC1(s) > 0 (dependingon s, κ,m◦, dimK, S, but not onn) andC2,C3 > 0
(depending only on κ,m◦, dimK, S, but not on n or s).

By Stirling’s formula, nn/n! ≤ en/
√
2π . Inserting this estimate, it is clear that (5.9)

is summable over n for all s such that e C2 e−C3s
s1/2

< 1, i.e. for s larger than some minimal
value 0 < smin <∞. By Theorem 3.10(ii), this implies nuclearity of �(s). ��

The intertwiner property is known to hold for all regular scalar S-matrices (i.e., with
K = C) [40]. A complete analysis of the intertwining properties of the cocycles Sπn will
be presented elsewhere. For the purposes of the present article, we restrict ourselves to
giving some examples of non-scalar S-matrices which have the intertwiner property.

These examples will be the so-called (regular) diagonal S-matrices (see, for example,
[33,46]). In our terminology, they are given by massive, neutral particles with an N -fold
internal degree of freedom, i.e. m[α] = m > 0 and α = α, α = 1, . . . , N := dimK.
The S-matrix is in this case of the form

S(θ)αβγ η := ωαβ(θ)δ
α
η δ

β
γ , (no summation over α, β), (5.10)

which corresponds to a diagonal (N 2 × N 2)-matrix when multiplied by the flip F , and
therefore solves the Yang–Baxter equation.

When the coefficients ωαβ are taken to be analytic bounded functions S(−κ, π + κ)

for some 0 < κ < π
2 , and required to satisfy

ωαβ(θ) = ωαβ(θ)
−1 = ωβα(−θ) = ωαβ(iπ + θ), (5.11)

then (5.10) defines a regular S-matrix S ∈ S0. All these requirements on the coefficient
function can be satisfied, in particular, if we take ωαβ = ωβα to be scattering functions,
i.e. regular S-matrices for K = C.

Proposition 5.4. Let S ∈ S0 be a regular diagonal S-matrix with symmetric coefficients,
i.e. ωαβ = ωβα in (5.10). Then S has the intertwining property (Definition 5.2).
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Proof. Let us define the intertwiners In . We set I0 = 1, I1(ζ ) = 11 = idK). For
n ≥ 2, we note that in view of (5.11), we have ωαβ(0) = ±1. We therefore have
ωαβ(θ) = εαβραβ(θ) with εαβ = ±1, and ραβ(0) = 1. We define

In(ζ1, . . . , ζn)αβ :=
∏

1≤l<r≤n

(
εαlαr

√
ραlαr (ζl − ζr )

)
(1n)

α
β , (5.12)

no sums over indices are implied here. As explained in the scalar case [40, Lemma 5.7],
these In are analytic on R

n + i(− κ
2 ,

κ
2 )
×n . By the assumed regularity of S, we have

|ωαβ(ζ )| ≤ γ for some γ > 0, and all ζ ∈ S(−κ, 0), whereas |ωαβ(ζ )| ≤ 1 for all
ζ ∈ S(0, κ). In the samemanner as in Proposition 4.5, we therefore obtain ‖In(ζ )‖ ≤ γ n

for ζ ∈ R
n + i(− κ

2n ,
κ
2n )

×n . This establishes property (i) of Definition 5.2.
For property (ii), we note that In(θ + iλπ/2) is unitary for all θ ∈ R

n because (5.12)
depends only on differences of rapidities, and for real arguments, the ωαβ are phase
factors. So property (ii) holds with γ̃ = 1.

(iii) We claim that In,λπ/2 has the intertwining property In,λπ/2D
S
n (σ ) = DS(0)

n (σ )

In,λπ/2 for any σ ∈ Sn . Since the projection PS
n is the mean over the representation DS

n ,

and similarly for PS(0)
n , the intertwining property implies

In,λπ/2H
S
n = In,λπ/2 P

S
n H

⊗n
1 = PS(0)

n In,λπ/2H
⊗n
1 = PS(0)

n H ⊗n
1 ,

and thus item (iii) in Definition 5.2.
To prove the intertwining property, we first note that since the transpositions generate

the symmetric group, it is sufficient to demonstrate In,λπ/2D
S
n (τk) = DS(0)

n (τk)In,λπ/2 ,
k = 1, . . . , n − 1. In view of the definition (2.16), this in turn is equivalent to

In,λπ/2(θ1, . . . , θn) S(θk+1 − θk)n,k = S(0)n,k In,λπ/2(θ1, . . . , θk+1, θk, . . . , θn),

(5.13)

where we have used the shorthand notation (2.10).
Using ωαβ(−ζ ) = ωαβ(ζ )

−1 and ωαβ = ωβα (the same properties hold for the ραβ ),
we compute (no summation convention used here)

(
In,λπ/2(θ)S(θk+1 − θk)n,k

)α
β
=
∏

1≤l<r≤n

(
εαlαr

√
ραlαr (θl − θr )

)
Sαkαk+1βkβk+1

(θk+1 − θk) δ
α
β

=
∏

1≤l<r≤n

(
εαlαr

√
ραlαr (θl − θr )

)
εαkαk+1ραkαk+1(θk+1 − θk) (Fn,k)

α
β

=
∏

1≤l<r≤n
(l,r) �=(k,k+1)

(
εαlαr

√
ραlαr (θl − θr )

)√
ραkαk+1(θk+1 − θk)(Fn,k)

α
β

= εαkαk+1(Fn,k)
α
β In,λπ/2(θ1, . . . , θk+1, θk, . . . , θn)

α
β

= (S(0)n,k)αβ In,λπ/2(θ1, . . . , θk+1, θk, . . . , θn)
α
β .

This finishes the proof. ��
By choosing arbitrary scattering functionsωαβ withωαβ(0) = −1, we have therefore

found a large family of S-matrices to which Theorem 5.3 applies.
The above construction of intertwiners does however not carry over to more general

S ∈ S0 in a straightforward manner, mainly due to the fact that various S-factors do



954 S. Alazzawi, G. Lechner

not commute. However, there are indications supporting the conjecture that for more
general regular scattering functions S ∈ S0, the intertwining property holds on the tubes
based on λπ/2 + (− κ

2n ,
κ
2n )

×n : For example, an intertwining property as required in
Definition 5.2(iii) can easily be proven for general S ∈ S0. However, the analyticity of
the intertwiner and the bounds required in part (i) of this definition impose additional
constraints which still remain to be solved.

As a particularly prominent non-diagonal example, we mention the S-matrices of the
O(N )-invariant nonlinear σ -models. In this case, the gauge group is G = O(N ) in its
defining self-conjugate irreducible representation onK = C

N , N ≥ 3. Hence, we have,
in particular, α = α and, moreover, m[α] = m, α = 1, . . . , N .

The derivation of the O(N ) nonlinear σ -model S-matrix relies on the existence of a
stable O(N )-vector multiplet of massive particles with equal massesm. As shown by the
Zamolodchikov brothers [59], by exploiting the O(N )-symmetry, the corresponding S-
matrices can been determined up to CDD ambiguities and themaximal analytic solutions
are of the form

SN (θ)
αβ
γ η = σ1(θ)δ

α
βδ

γ
η + σ2(θ)δ

α
γ δ

β
η + σ3(θ)δ

α
η δ

β
γ , (5.14)

with functions σk : R → C, k = 1, 2, 3, given by

σ2(θ) =

(

1
N−2 − i θ

2π

)

( 1
2 − i θ

2π

)

(
1
2 + 1

N−2 + i θ
2π

)

(
1 + i θ

2π

)

(
1
2 + 1

N−2 − i θ
2π

)

(−i θ

2π

)

(
1 + 1

N−2 + i θ
2π

)

( 1
2 + i θ

2π

) ,

σ1(θ) = − 2π i

N − 2
· σ2(θ)

iπ − θ
,

σ3(θ) = σ1(iπ − θ).

(5.15)

As has been observed in [44], this S-matrix is regular and “fermionic” in the sense that
SN (0) = −F . Furthermore, as the σ -model S-matrix SN (5.14) is a θ -dependent linear
combination of three O(N )-invariant operators, which commute among themselves, one
can show that intertwiners In as in Definition 5.2 exist for SN , at least up to tensor level
n = 2 [2]. The analysis of the intertwiner problem for n ≥ 3 requires new input, and we
must leave this question for another investigation.
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