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Abstract: We consider the orthogonal polynomials, {Pn(z)}n=0,1,..., with respect to the
measure

|z − a|2ce−N |z|2d A(z)

supported over the whole complex plane, where a > 0, N > 0 and c > −1. We look at
the scaling limit where n and N tend to infinity while keeping their ratio, n/N , fixed. The
support of the limiting zero distribution is given in terms of certain “limiting potential-
theoretic skeleton” of the unit disk. We show that, as we vary c, both the skeleton and
the asymptotic distribution of the zeros behave discontinuously at c = 0. The smooth
interpolation of the discontinuity is obtained by the further scaling of c = e−ηN in terms
of the parameter η ∈ [0,∞).

1. Introduction

Consider the ensemble of n point particles, {z j }nj=1 ⊂ C, distributed according to the
probability measure given by

1

Zn

∏

i< j

|zi − z j |2 · exp
(

− N
n∑

j=1

Q(z j )

)
·

n∏

j=1

d A(z j ), (1)

whereZn is the normalization constant, N > 0 is a (large) parameter, Q : C → R∪{∞}
is called an external potential and d A is the standard Lebesgue measure on the plane.

The statistical behavior of the particles has been studied [1] for a large class of
potentials in various contexts including random normal matrices and two-dimensional
Coulomb gas. For example, in the scaling limit where n and N tend to infinity while n/N
is fixed, it is known [12] that the counting measure of the particles converges weakly,

E
1

N

n∑

j=1

δ(z − z j ) → �Q

4π
χK ,
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where �Q = (∂2x + ∂2y )Q, χK is the indicator function of the compact set K ⊂ C that
we will call a droplet following [12], and the expectation value is taken with respect to
the measure in (1).

A connection to orthogonal polynomials can be provided by Heine’s formula. It says
that the averaged characteristic polynomial of the n particles is the (monic) orthogonal
polynomial of degree n, i.e.,

Pn(z) = Pn,N (z) = E

n∏

j=1

(z − z j )

satisfies the orthogonality condition,
∫

C

Pn,N (z)Pm,N (z)e−NQ(z)d A(z) = hn,N δnm (n,m = 0, 1, 2, . . .), (2)

where hn,N is a (positive) norming constant. From this connection, one might wonder if
the zero distribution of Pn would tend to the averageddistribution of the particles. Though
this is the case with the orthogonal polynomials on the real line (that corresponds to the
particles confined on the line), in the cases of two-dimensional orthogonal polynomials
so far studied [2,3,5,14–16], the limiting zero distribution is observed to be concentrated
on a small subset of the droplet, on some kind of potential-theoretic skeleton of K .1

A skeleton of K will refer to a subset of (the polynomial hull of) K with zero area, such
that there exists a measure that is supported exactly on the skeleton and that generates
the same logarithmic potential in the exterior of (the polynomial hull of) K as the
Lebesgue measure supported on K . One characteristic of such skeleton is that it can be
discontinuous under the continuous variation of the droplet K . A simple example [10]
comes from the sequence of polygons converging to a disk. The skeleton of the polygon,
which is the set of rays connecting each vertex to the center, does not converge to the
skeleton of the disk, the single point at the center. Such discontinuity can also occur, as
we will see, when the perturbed droplets have real analytic boundary.

In this paper we ask whether the zero distribution of Pn also exhibits the similar
discontinuity under the variation of the underlying droplet or, equivalently, under the
variation of the external potential. We consider the external potential given by

Q(z) = |z|2 + 2c

N
log

1

|z − a| , c > −1, a > 0. (3)

When N is large and c � N , this represents a small perturbation of the Gaussian
weight. It corresponds to the interacting Coulomb particles with charge +1 for each, in
the presence of an extra particle with charge +c at a. By a simple rotation of the plane,
the above Q covers the case with any nonzero a ∈ C.

We are interested in the scaling limit where N and n go to infinity while the ratio,
n/N , is fixed to a positive number. Below we will set N = n without losing generality
since the orthogonality (2) gives the relation

Pn, N (z; a) =
( n

N

)n/2
Pn, n

(√
N

n
z;
√

N

n
a

)
,

where Pn, N (z; a) = Pn, N (z) stands for the orthogonal polynomial with respect to the
external potential given by (3). Though we will mostly use N , we will keep n whenever
the expression holds true for general n �= N .

1 In some cases, the skeleton is also called “mother body” [10,11].
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1.1. Limiting skeleton. The potential (3) has been studied in [3] with the notation:
cthere = chere/N . Let us denote cthere by γ such that

γ = c

N
and Q(z) = |z|2 + 2γ log

1

|z − a| .

To state Theorem 1 let us introduce Kγ , μγ and Sγ , and define μ and S.
Let Kγ ⊂ C be the compact set, called a droplet, so that

μ(2D)
γ = 1

4π
χKγ

is the unique probability measure that minimizes the energy functional,

I [μ] =
∫

Q dμ +
1

2

∫∫
log

1

|z − w|dμ(z)dμ(w).

Let Sγ = suppμγ be the skeleton of Kγ , that is, the compact subset of C with zero area

such that the probability measure μγ generates the same logarithmic potential as μ
(2D)
γ :

Uμγ (z) = Uμ
(2D)
γ (z), z /∈ (polynomial convex hull of Kγ ). (4)

Here we denote Um(z) = − ∫ log |z − w| dm(w) for a positive Borel measure m. We
note that such skeleton may not be unique in general. We give explicit definitions of Sγ

and μγ in Sect. 2.
We define the limiting skeleton S by

S = {z ∈ C : Re(log z − az) = logβ − aβ, Re z ≤ β} , (5)

where

β = min{a, 1/a}.
From the equivalent representation of S in the real coordinates by

S =
{
(x, y) ∈ R

2 : x2 + y2 = β2e2a(x−β), x ≤ β
}

,

it is a simple exercise to show that, S ⊂ closD is a simple closed curve that encloses
the origin and intersects β. Wewill denote the interior and the exterior of S by Int S and
Ext S respectively. See Fig. 1 for some illustration of S.

We define μ to be the probability measure supported on S given by

dμ(z) = ρ(z)d�(z) = 1

2π

∣∣∣a − 1

z

∣∣∣d�(z), z ∈ S, (6)

where d� is the arclength measure of S. Alternatively, the same measure can be written
in terms of holomorphic differential by dμ(z) = (2π i)−1(1/z − a) dz.

Theorem 1. As γ → 0 we have the convergences,

Kγ → closD, μγ → μ, Sγ → S,

in the appropriate senses (i.e., respectively in Hausdorff metric, in weak-∗, and in Haus-
dorff metric).

The proof is in Sect. 2.
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Fig. 1. The zeros of orthogonal polynomials with degrees 80 (blue) and 600 (red) for c = 1. The left is for
a = √

2 and the right is for a = 1/
√
2. In both cases, zeros are close to the curves representing S (color figure

online)

Remark 1. In both examples: the one by Gustafsson [10] and the one from the above
theorem, the discontinuity occurs when the droplet becomes a disk. It is an interesting
question whether the discontinuity occurs with other shapes than a disk.We think that, at
least for an algebraic potential where the exterior of the droplet is a quadrature domain,
the discontinuity happens only with the disk. This is for the simple reason that the disk
is the only quadrature domain where the exterior domain is also a quadrature domain.

1.2. Strong asymptotics of PN and the location of zeros. Let us define

φA(z) = a(z − β) − log
z

β
,

φ(z) =
{

φA(z), z ∈ Ext S,

−φA(z), z ∈ Int S.

(7)

Note that Re φ ≡ 0 on S.
Let U be a certain neighborhood of S\{β} where Re φ ≤ 0. See Fig. 7 and the

paragraph below Lemma 4 for more details. Let Dβ be a disk neighborhood of β with
a fixed radius such that the map ζ : Dβ → C given below is univalent.

ζ(z) =
⎧
⎨

⎩

√
2NφA(z) = a

√
N (z − β)(1 +O(z − β)) for a > 1,

−NφA(z) = 1 − a2

a
N (z − β) (1 +O(z − β)) for a < 1.

(8)

Theorem 2. For a > 1and for any fixed nonzero c > −1, we have
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PN (z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zN
(

z

z − β

)c (
1 +O

(
1

N

))
, z ∈ Ext S\(U ∪ Dβ),

−βN
√
2π(a2 − 1)c

N 1/2−ca�(c)

eNa(z−β)

z − β

(
z − β

z − a

)c (
1 +O

(
1√
N

))
, z ∈ Int S\(U ∪ Dβ),

zN
(

z

z − β

)c (
1 +O

(
1

N

))

− βN
√
2π(a2 − 1)c

N 1/2−ca�(c)

eNa(z−β)

z − β

(
z − β

z − a

)c (
1 +O

(
1√
N

))
,

z ∈ U\Dβ,

zN
((

zζ(z)

z − β

)c

e
ζ2(z)
4 D−c(ζ(z)) +O

(
1√
N

))
, z ∈ Dβ .

Here D−c be the Parabolic cylinder function or Weber function and is defined by [19]

D−c(ζ ):= e
ζ2

4

i
√
2π

∫ ε+i∞

ε−i∞
e−ζ s+ s2

2 s−cds, ε > 0. (9)

Theorem 3. For a < 1 and for any fixed nonzero c > −1, we have

PN (z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zN
(

z

z − a

)c (
1 +O

(
1

N∞

))
, z ∈ Ext S\(U ∪ Dβ),

−a1+N (1 − a2)c−1

N 1−c�(c)

eNa(z−a)

z − a

(
1 +O

(
1

N

))
, z ∈ Int S\(U ∪ Dβ),

zN
(

z

z − a

)c (
1 +O

(
1

N∞

))

− a1+N (1 − a2)c−1

N 1−c�(c)

eNa(z−a)

z − a

(
1 +O

(
1

N

))
,

z ∈ U\Dβ,

zN
((

z

z − a

)c (
1 +O

(
1

N∞

))

−
(
zζ(z)

z − a

)c 1

eζ(z)

(
f̂ (ζ(z)) +O

(
1

N

)))
,

z ∈ Dβ.

(10)

Here

f̂ (ζ ) = −1

2iπ

∫

L
es

sc(s − ζ )
ds,

where the contour L begins at −∞, circles the origin once in the counterclockwise
direction, and returns to−∞. The error boundO(1/N∞)meansO(1/Nk) for arbitrary
integer k.

One can check that the branch cut discontinuity of (z/(z − a))c in the last equation of
(10) is canceled by the discontinuity of f̂ so that the asymptotic expression of PN in Dβ

is analytic.
From Theorems 2 and 3, one can notice that the zeros of PN can appear when the

two terms in the asymptotic expressions of PN in U\Dβ cancel each other and hence



308 S.-Y. Lee, M. Yang

must have the same order in N . Such cancellation may be expressed in terms of φA as
we presently explain below.

(
z

z − β

)c

= eNφA(z)
(
z − β

z − a

)c √
2π(a2 − 1)c

a�(c)N
1
2−c(z − β)

, for a > 1,

(
z

z − a

)c

= eNφA(z) a(1 − a2)c−1

N 1−c�(c)(z − a)
, for a < 1.

Taking the logarithm of the absolute values on both sides and after simple calculations,
we get

−Re φA(z) =
(
c − 1

2

)
log N

N
− log�(c)

N
+

1

N
log

∣∣∣∣∣

(
z − β

z − a

)c √
2π(a2 − 1)c

a(z − β)1−czc

∣∣∣∣∣, a > 1,

(11)

−Re φA(z) = (c − 1) log N

N
− log�(c)

N
+

1

N
log

∣∣∣∣
a(1 − a2)c−1

(z − a)1−czc

∣∣∣∣, a < 1.

(12)

As we will show in Lemma 4, Re φA is positive (resp. negative) in U ∩ Int S (resp.
in U ∩ Ext S). For a > 1, since the dominant term in the right hand side of (11) is(
c − 1

2

) log N
N , the zeros will approach S from Ext S for c > 1

2 and from Int S for c < 1
2 .

For a < 1, since the dominant term in the right hand side of (12) is (c − 1) log N
N , the

zeros will approach S from Ext S for c > 1 and from Int S for c < 1. See Fig. 1.
We also remark, without proof, that the limiting distribution of the zeros is given by μ

which is explicitly given in (6). This can be proven, for example, using the method in
[18] (Chapter III) and [17] (Theorem 2.3).

We remark that the case −1 < c < 0 is essentially treated in [2]. We note that the
limiting locus of zeros remains the same for both the positive and negative c (which
seems unexpected according to Remark 1.2 in [2]). It turns out that, as the value of c
gets bigger, we need higher order corrections in the Riemann–Hilbert analysis. To obtain
the result that works for an arbitrary value of c, therefore, we need an arbitrary order
correction in the Riemann–Hilbert analysis. This is done in Sect. 5 using the method
developed in [4].

We found that the limiting support of the zeros does not depend on c. Even for
c algebraically decaying in N (e.g., c = N−1000) the limiting support of the zeros
converges to S. However, when c decays exponentially in N , say c = e−ηN , the right
hand sides of both (11) and (12) converge to

−η = − lim
N→∞

log�(e−ηN )

N
, η > 0

and the zeros approach the curve in Int S given by the equation

Re φA(z) = η. (13)

A similar “sensitive behavior of zeros under a parameter” has been observed in [13].
It is simple to observe that the family of curves given by (13) for 0 ≤ η < ∞

continuously interpolates between the curve S and the origin. In Fig. 11, we show the
curves satisfying (13) for η = 0.2 and η = 0.4, with the corresponding zeros (Figs. 2,
3, 4).
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Fig. 2. Zeros of orthogonal polynomials when a = √
2, c = 1 and N = 300. The red line is S and the green

line is the solution set of (11). The right figure is the enlarged view of the left figure (color figure online)
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Fig. 3. When a = 1/
√
2, c = 1 and N = 100. The red line is S and the green line is the solution set of (12).

The right figure is the enlarged view of the left figure (color figure online)

To establish the behavior of zeros for scaling c, however, Theorems 2 and 3 are not
enough as the error bounds in the theorems are for fixed c. For c that scales to zero with
N we will prove Theorems 4 and 5 where the error bounds are uniform in c.

Remark 2. A simple way to understand the phenomenon is to recall the well–known
instability of roots of polynomials, for example, the zeros of Pn(z) = zn + a/nk still
tend to the uniform distribution on the unit circle as n → ∞ (for any fixed positive
k) although the polynomial is a O(n−k) perturbation of the monomial. This simple toy
example already shows that a perturbation that interpolates between the two behaviors
would require to have a = e−nη. In this perspective it is not unexpected to see the
exponentially small perturbations of the orthogonality measure in order to interpolate
the behaviors.

Remark 3. A main message of the paper is that the asymptotic zero locus can be quite
sensitive to the small perturbation of the underlying measure. In Fig. 5 we give another
numerical plot that supports such statement. The example considers the orthogonal poly-
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Fig. 4. The zeros of orthogonal polynomials with degrees 60 (blue) and 80 (magenta) for c = e−ηn , where
η = 0.4 (blue) and η = 0.2 (magenta). The left is for a = √

2 and the right is for a = 1/
√
2. In both cases,

zeros seem to converge to the curves given by (13) of the corresponding values (color figure online)
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Fig. 5. The zeros of orthogonal polynomialswith degrees from {20, 40, 90} andwith the orthogonalitymeasure
given by χK exp(−n|z|2)d A(z) where K = (−∞,+∞) × [−3i/2,+i∞) ⊂ C. The plot suggests that the
limiting support of zeros is not the origin

nomialswith the cutoff. Though the cutoffmay be considered as a “small perturbation” to
the underlying Coulomb particle system, it seems to affect the polynomial significantly.

In the next section we prove Theorem 1 about the limiting skeleton. In Sect. 3, we
prove the asymptotic result for a > 1 and c near 0. In Sect. 4, we prove the similar
result for an arbitrary c. In Sect. 5, we prove the asymptotic result mostly following the
arguments from the previous two sections. In the last section, we argue that the similar
method will give the result for the critical case of a ≈ 1, by showing that the local
parametrix satisfies the Riemann–Hilbert problem for the Painlevé IV equation.
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2. The Proof of Theorem 1

For the convenience of the readers we reproduce the useful definitions in [3].
For a < 1 for a sufficiently small γ we define

Kγ = D
(
0,
√
1 + γ

)\D(a,
√

γ ), (14)

where D(a, r) stands for the disc with radius r centered at a.
For a < 1we defineSγ to be the simple closed curve enclosing [0, a] and intersecting

βγ = a2 + 1 −√
(1 − a2)2 − 4a2γ

2a
> a,

such that the quadratic differential yγ (z)2dz2 is real and negative on Sγ where

yγ (z) := (−1)χIntSγ

[
a +

γ

z − a
− 1 + γ

z

]
.

Here, we denote the interior of the simple closed curve Sγ by IntSγ . We recall that χ is
the indicator function.

For a ≥ 1, the set Kγ is defined to be the closure of the interior of the real analytic
Jordan curve given by the image of the unit circle under fγ given by

fγ (ν) = ρν − κ

ν − α
− κ

α
,

whose parameters ρ > 0, κ ≥ 0, and 0 < α ≤ 1/a are given in terms of a and γ below.
First, ρ and κ are given by

ρ = 1 + a2α2

2aα
, κ = (1 − α2)(1 − a2α2)

2aα
.

The parameter α is given by the unique solution of Pγ (α2) = 0 such that 0 < α ≤ 1/a
where

Pγ (X) := X3 −
(
a2 + 4γ + 2

2a2

)
X2 +

1

2a4
.

The uniqueness is easily seen by Pγ (0) > 0 and Pγ (1/a2) = −2γ /a6 < 0. We note
that, as γ goes to zero, α goes to 1/a, κ goes to zero and ρ goes to 1.

For a ≥ 1 we define Sγ to be the smooth arc with the endpoints at

βγ := αρ − κ

α
+ 2i

√
κρ and βγ

such that the quadratic differential yγ (z)2dz2 is real and negative on Sγ where

yγ (z) :=
a(z − bγ )

√
(z − βγ )(z − βγ )

z(z − a)
, bγ = ρ

α
.2

2In [3] bγ is written as α/ρ by mistake.
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For all values of a, we define the probability measure μγ supported on Sγ by

dμγ = 1

2π
|yγ (z)|d�γ ,

where d�γ is the arclength measure of Sγ .

For all values of a, we define φγ by

φγ (z) =
∫ z

βγ

yγ (s) ds,

where the integration contour lies in the simply connected domainC\([0,∞)∪[βγ , βγ ]),
where [βγ , βγ ] stands for the vertical line segment connecting βγ and βγ (for a ≥ 1,
[βγ , βγ ] is a point on R

+). One can consider φγ to be defined over the whole complex
plane by analytic continuation over [0,∞) ∪ [βγ , βγ ] consistently for all γ .
Lemma 1. As γ goes to 0, φγ converges to φ0 := φγ=0 uniformly over a compact subset
in C\{0, a}.
Proof. It is simple to check that, as γ goes to zero, βγ converges to β and bγ converges
to a. Therefore yγ (z) converges to yγ=0(z), by choosing the branch cut of yγ at [βγ , βγ ]
that converges to β. This convergence is uniform away from the singularities of yγ at 0
and a. ��
Lemma 2. Let I = {it : −2π ≤ t ≤ 0}. The mapping φγ : Sγ \{βγ , βγ } →
I\{0,−i2π} is invertible.
Proof. We prove this for a > 1 as the other case is similar. We get φγ (βγ ) = 0 by
definition. We have

φγ (βγ ) =
∫ βγ

βγ

yγ (s) ds = 1

2

∮
yγ (s) ds,

where, in the first integral, the integration contour can be taken along Sγ and, in the
second integral, the integration contour goes around Sγ counterclockwise while the
branch cut of yγ is placed at Sγ (instead of at [βγ , βγ ]). The latter integration contour
can be deformed into three clockwise contours around ∞, 0 and a, which leads to

φγ (βγ ) = −2π i

2

(
Res
z=∞ yγ (z) + Res

z=0
yγ (z) + Res

z=a
yγ (z)

)
.

By Lemma 2.19 in [3], we have Resz=∞yγ (z) = 1,Resz=0yγ (z) = 1 + γ, and
Resz=a yγ (z) = −γ and, therefore, we have φγ (βγ ) = −2π i. Since φγ is con-
tinuous on Sγ (here we again place the branch cut of yγ at [βγ , βγ ]) we have
I ⊂ φγ (Sγ ). Sinceφγ has no critical point inSγ except at the endpoints,φγ is 1-to-1 and
I = φγ (Sγ ). ��
Lemma 3. Let {K j ⊂ C}∞j=1 be bounded a sequence of compact sets such that K∞,
the set of limit points of {K j }∞j=1, is also compact. If K j ’s are all connected such that
b j ∈ K j and lim j→∞ b j = b∞ then K∞ is connected to b∞.
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Proof. If not, there exist open sets O1 and O2 such that K∞ is the disjoint union of
K∞

⋂
O1 and K∞

⋂
O2. Since K∞ is compact and since both K∞

⋂
O1 and K∞

⋂
O2

are closed in the relative topology of K∞, both K∞
⋂

O1 and K∞
⋂

O2 are compact
and, therefore, there are disjoint open neighborhoods of the two disjoint compact sets
(a property of a Hausdorff space). Without loss of generality, we can call the disjoint
neighborhoods by O1 and O2. Suppose b∞ ∈ O2. For j large enough we have K j ⊂
O1
⋃

O2 and b j ∈ O2 and, therefore, K j ⊂ O2 because K j is connected. This is a
contradiction. ��
Proof of Theorem 1. AssumeSγ does not converge toS in Hausdorff metric. Then there
exist a sequence {p j } ⊂ S and {γ j } → 0 such that dist (p j ,Sγ j ) > 2ε for some ε > 0.
Taking a limit point z ∈ S of {p j } and choosing a subsequence if necessary we can
assume dist (z,Sγ j ) > ε for all j’s. Such z cannot be β ∈ S because {βγ j ∈ Sγ j }
converges to β as j goes to ∞. Since φγ j : Sγ j \{βγ j , βγ j } → I\{0,−2π i} is invertible
by Lemma 2, we can define

z j := φ−1
γ j

◦ φ0(z) ∈ Sγ j .

Let z∞ be a limit point of {z j }, then z∞ /∈ {0, a} because Sγ j is uniformly away from 0
and a for sufficiently small γ j . We also have z∞ �= β (and similarly, z∞ �= β) because,
if not, |z j − βγ j | would go to zero while |φγ j (z j ) − φγ j (βγ j )| = |φ0(z)| > 0.

Since (clos {z j }) ∩ {0, a} = ∅ Lemma 1 says that

|φ0(z) − φ0(z j )| = |φγ j (z j ) − φ0(z j )| j→∞−→ 0.

Since a subsequence of {φ0(z j )} converges to φ0(z∞) by the continuity of φ0, we have

φ0(z) = φ0(z∞). (15)

Let S∞ be the set of limit points of {Sγ j }. By Lemma 3 S∞ is connected to β. Since

S is the only component of φ−1
0 (I ) that is connected to β we have S∞ ⊂ S. From (15)

and z∞ ∈ S\{β, β}, we get z = z∞ by Lemma 2. This is a contradiction because z∞
is a limit point of {Sγ j } and, therefore, dist (z, z∞) ≥ ε. This concludes the proof of
Sγ → S (Fig. 6).

For a < 1, the convergence of Kγ to closD follows from (14).

1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5

1.0

0.5

0.0

0.5

1.0

Fig. 6. Illustration of the convergence, Sγ → S and Kγ → K , when a = 1/
√
2. For γ = 1/9 (left), Sγ is

drawn with thick line and the rest of the set {z : Re φγ (z) = 0} is drawn with the thin line; K is the shaded
region. Same for γ = 0 (right)
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For a ≥ 1, we need to show that ∂Kγ = fγ (∂D) converges to ∂D. Recall that, as γ

goes to zero,α goes to 1/a, κ goes to zero andρ goes to 1. It follows that limγ→0 fγ (v) =
v, which means Kγ → closD.

For all a, the convergence of μγ to μ follows from the facts Sγ → S and
limγ→0 |yγ (z)| = 2πρ(z) where ρ is defined in (6). ��

3. Matrix Riemann–Hilbert Problem

The following fact is from [3]:

Theorem. Let � be a simple closed curve enclosing the line segment [0, a] ⊂ C and
oriented counterclockwise. Let the analytic function ωn,N on C\[0, a] be defined by

ωn,N (z) :=
(
z − a

z

)c e−Naz

zn
,

where we choose the principal branch. Then the Riemann–Hilbert problem,
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Y (z) is holomorphic in C\�,

Y+(z) = Y−(z)

[
1 ωn,N (z)
0 1

]
, z ∈ �,

Y (z) =
(
I +O

(
1

z

))[
zn 0
0 z−n

]
, z → ∞,

has the unique solution given by

Y (z) =
⎡

⎢⎣
Pn(z)

1

2π i

∫

�

Pn(w)ωn,N (w)

w − z
dw

Qn−1(z)
1

2π i

∫

�

Qn−1(w)ωn,N (w)

w − z
dw

⎤

⎥⎦ ,

where Qn−1(z) is the unique polynomial of degree n − 1 such that

1

2π i

∫

�

Qn−1(w)ωn,N (w)

w − z
dw = 1

zn

(
1 +O

(
1

z

))
.

Lemma 4. For a < 1, there exists a neighborhood V of Int S such that Re φ(z) < 0 on
V \S and the boundary of V is a smooth Jordan curve. For a ≥ 1, there exists a domain
V such that it contains Int S\{β} and its boundary, ∂V , is a smooth Jordan curve that
intersects β. Also S is smooth except at β, where it makes a corner with the inner (i.e.
towards Int S) angle π/2. Lastly, Re φ > 0 on (β, a].
Proof. From the definition (7) of φ, Re φ is harmonic function away from S and the
origin. Since Re φ(z) diverges to −∞ as z goes to 0, Re φ(z) has to be negative every-
where in Int S—otherwise Re φ(z) has a local maximum in Int S, which is impossible.
For a < 1, since the only critical point, 1/a, of φ is away from S and since Re φA is
harmonic in a neighborhood of S, Re φ is negative in the vicinity of S. For a ≥ 1, since
β is the only critical point of φA, the claim in the lemma about the local shape of S
near β and about ∂V being intersecting β follows by the local analysis of the harmonic
function Re φA(z). Specifically, Re φA(z) is positive along the real axis on (0,∞)\{β},
and is negative near β in the vertical direction (i.e. imaginary direction) from β. ��
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Fig. 7. V and V0 for a > 1 (left) and a < 1 (right), S is the black curve, V is the interior of the contour
enclosing the shaded region, V0 is the interior of the contour enclosing the non-shaded region. These domains
are used to define the domain U at (16)

Fig. 8. Contours for the Riemann–Hilbert problem of � when a > 1 (left) and a < 1 (right). � is the black
curves and U is the shaded region bounded by the blue curves

Using V from the above lemma, we define the domain U as below

U = V \V0. (16)

Here V0 is a small open neighborhood of [0, β] such that its boundary, ∂V0, is a smooth
Jordan curve that is arbitrarily close to [0, β], see Fig. 7. The region U is the simply-
connected (when a ≥ 1) or doubly-connected (when a < 1) open neighborhood of
S\V0, disjoint from [0, a] and with a (piecewise) smooth boundary. We assign the
counterclockwise orientation on ∂U ∩ Ext S with respect to the domain U and the
counterclockwise orientation on ∂U ∩ Int S with respect to V0.

From now onwe let� exactly matchS insideU and away from a small neighborhood
of β. When a > 1, a part of the contour � goes outside U around the line segment
[β, a], see Fig. 8. Near β the reader should not be concerned too much about the exact
arrangement of � and U as it will become clear when we define the local parametrix.

Below we define the complex logarithmic potential of μ (6) by

g(z) =
∫

log(z − w) dμ(w),
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where the specific branch of the log is chosen below. As a function of z, this equals log z
(modulo 2π i) when z ∈ Ext S by (4) and Theorem 1, and has continuous real part, since
the jump of g on S is purely imaginary. These properties and (5) determine the explicit
expression of this function as follows,

g(z) =
{
log z, z ∈ Ext S,

az + logβ − aβ, z ∈ Int S.

From the g-function above, we can write

φ(z) = az + log z − 2g(z) + �, � = logβ − aβ

so that Re φ(z) = 0 when z ∈ S.
Following the standard nonlinear steepest descent method [7,8] applied to the matrix

Riemann–Hilbert problem for Y , we define Z as the final object after the multiple
transforms of Y given by

Z(z) = e
−N�
2 σ3Y (z) e−Ng(z)σ3e

N�
2 σ3

[
1 0

�
( z

z − a

)c
eNφ(z) 1

]
, (17)

where

� =

⎧
⎪⎨

⎪⎩

1, when z ∈ U ∩ Ext �,

−1, when z ∈ U ∩ Int �,

0, when z /∈ U.

Then Z solves the following Riemann–Hilbert problem,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z+(z) = Z−(z)

[
1 0( z

z−a

)c
eNφ(z) 1

]
, z ∈ ∂U,

Z+(z) = Z−(z)

[
0

( z−a
z

)c

−( z
z−a

)c 0

]
, z ∈ � ∩U,

Z+(z) = Z−(z)

[
1
( z−a

z

)c
e−Nφ(z)

0 1

]
, z ∈ �\U.

Z(z) = I +O(z−1), z → ∞.

(18)

We define

�(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢⎣

( z

z − β

)c
0

0
( z − β

z

)c

⎤

⎥⎦ , z ∈ Ext �,

⎡

⎢⎣
0

( z − a

z − β

)c

−
( z − β

z − a

)c
0

⎤

⎥⎦ , z ∈ Int �,

that satisfies the Riemann–Hilbert problem,
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�+(z) = �−(z)

⎡

⎢⎣
0

( z − a

z

)c

−
( z

z − a

)c
0

⎤

⎥⎦ , z ∈ S,

�(z) = I +O
(
1

z

)
, z → ∞.
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Note that, when a ≤ 1 and z ∈ Int S we have�(z) =
[

0 1
−1 0

]
. Also note that� is not the

only solution to the above Riemann–Hilbert problem—for any rational matrix function
R(z) with a pole at β such that R(∞) = I , R(z)�(z) is a solution. We will use this
fact in the next section.

4. a > 1: When c Near 0

From the definition of φA at (7), we obtain

φA(z) = a2

2
(z − β)2 (1 +O(z − β)) .

Let Dβ be a disk centered at β such that there exists a univalent map ζ : Dβ → C

as defined in (8). Under the mapping ζ the contour S maps into [0, e3π i/4t] ∪
[0, e−3π i/4t]t∈[0,∞).

In this section we intend to find P : Dβ → C
2×2 such that

Z∞(z) = �(z)

(
z − a

z

) c
2 σ3

P(z)

(
z − a

z

)− c
2 σ3

, z ∈ Dβ (19)

satisfies the jump condition of Z at (18), i.e., we require P to satisfy, in Dβ ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P+(z) = P−(z)

[
1 e−ζ(z)2/2

0 1

]
, z ∈ �\U,

P+(z) = P−(z)

[
1 0

eζ(z)2/2 1

]
, z ∈ ∂U ∩ Ext �,

P+(z) = P−(z)

[
1 0

e−ζ(z)2/2 1

]
, z ∈ ∂U ∩ Int �,

P+(z) =
[
0 −1
1 0

]
P−(z)

[
0 1

−1 0

]
, z ∈ � ∩U,

P+(z) = e−cπ iσ3P−(z)ecπ iσ3 , z ∈ R,

(20)

and the boundary condition, P(z) ∼ I on ∂Dβ . The fourth equation of (20) comes from

� in (19) and the last equation comes from the (conjugating) factors
(
(z−a)/z

)±(c/2)σ3

in (19). The jump contours, �\U and ∂U ∩ Int �, can be pushed arbitrarily close to the
real axis, so that the jump contours of P consists of R, iR and {t e±i3π/4}0<t<∞. See
Fig. 9 for the illustration of the jump contours in Dβ .

We want to transform P into a new matrix function, W , that has only constant jump
matrices from the right. Such transform may be given by

W (z) := ζ(z)−cσ3S · P(z) · T (ζ(z))−1 S−1, (21)

using a diagonal matrix, T , and a piecewise constant matrix, S, defined below,

T (ζ ) =

⎧
⎪⎪⎨

⎪⎪⎩

exp

(
ζ 2

4
σ3

)
, | arg ζ | < 3π/4,

exp

(
−ζ 2

4
σ3

)
, otherwise,

(22)
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Fig. 9. Jump contours of P (20) in Dβ (left) and the jump matrices of W (right)

and

S =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

I, Im ζ < 0 ∩ | arg ζ | < 3π/4,
ecπ iσ3 , Im ζ > 0 ∩ | arg ζ | < 3π/4,[
0 1

−1 0

]
, Im ζ < 0 ∩ | arg ζ | ≥ 3π/4,

ecπ iσ3
[
0 1

−1 0

]
, Im ζ > 0 ∩ | arg ζ | ≥ 3π/4.

(23)

Here we choose S such that S−1ζ(z)cσ3 satisfies all the left jumps of P , i.e.,
(
S−1ζ cσ3

)

+
=
[
0 −1
1 0

] (
S−1ζ cσ3

)

− , z ∈ � ∩U,

(
S−1ζ cσ3

)

+
= e−cπ iσ3

(
S−1ζ cσ3

)

− , z ∈ R,

such that W has the jump matrices only from the right. Furthermore, the jump matrices
ofW are constant matrices because of the right multiplication of T−1 in (21). The jump
on {t e±i3π/4}0<t<∞ disappears by the right multiplication by S−1. We summarize the
jump matrices of W below,

W+(z) = W−(z)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1 1 − e2icπ

0 1

]
, ζ(z) ∈ R

+,

[
1 0

e−2icπ 1

]
, ζ(z) ∈ iR+,

⎡

⎣
e2icπ e2icπ − 1

0 e−2icπ

⎤

⎦ , ζ(z) ∈ R
−,

⎡

⎣
1 0

−1 1

⎤

⎦ , ζ(z) ∈ iR−.

(24)

The following fact can be checked by direct calculation.
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Lemma 5. For z ∈ Dβ we have

�(z)

(
z − a

z

) c
2 σ3

S−1ζ cσ3 =
(
Nc/2η(z)

)σ3
,

where η : Dβ → C ,

η(z) := e−icπ/2

Nc/2

(
a − z

z

) c
2
(
z ζ(z)

z − β

)c

is a nonvanishing N-independent analytic function in Dβ .

Using the parabolic cylinder function (9) we define W : C\(R ∪ iR) → C
2×2 as

W(ζ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢⎣
D−c(ζ ) i

√
2πe

cπ i
2

�(c) D−1+c(iζ )

− �(c+1)√
2πecπ i

D−1−c(ζ ) e− cπ i
2 Dc(iζ )

⎤

⎥⎦ , −π
2 < arg(ζ ) < 0,

⎡

⎢⎣
D−c(ζ ) − i

√
2πe

3cπ i
2

�(c) D−1+c(−iζ )

− �(c+1)√
2πecπ i

D−1−c(ζ ) e
cπ i
2 Dc(−iζ )

⎤

⎥⎦ , 0 < arg(ζ ) < π
2 ,

⎡

⎢⎣
e−cπ iD−c(−ζ ) − i

√
2πe

3cπ i
2

�(c) D−1+c(−iζ )

�(1+c)√
2πe2cπ i

D−1−c(−ζ ) e
cπ i
2 Dc(−iζ )

⎤

⎥⎦ , π
2 < arg(ζ ) < π,

⎡

⎢⎣
ecπ iD−c(−ζ ) i

√
2πe

cπ i
2

�(c) D−1+c(iζ )

�(1+c)√
2π

D−1−c(−ζ ) e− cπ i
2 Dc(iζ )

⎤

⎥⎦ , π < arg(ζ ) < 3π
2 .

(25)

Lemma 6. There exists the asymptotic expansion of D−c(ζ ) given by

D−c(ζ ) = e− ζ2

4 ζ−c

(
n−1∑

s=0

(−1)s
(c)2s

s!(2ζ 2)s
+ εn(ζ )

)
, |arg ζ | <

π

2
. (26)

There exists a constant C > 0 independent of c such that

|εn(ζ )| ≤ C

∣∣∣∣∣
( c2 )n(

c+1
2 )n

n!(ζ 2)n

∣∣∣∣∣ , |arg ζ | <
π

2
.

Here, (·)n is Pochhammer’s Symbol defined by (x)n = �(x + n)/�(x).

The proof of this lemma is in A. Though the lemma only concerns |arg ζ | < π/2,
this turns out to cover every term that appears inW(ζ ) of (25) and leads to the following
lemma.
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Lemma 7. W(ζ(z)) satisfies the jump of W (24) and the asymptotic behavior

F(ζ ) := W(ζ ) ζ cσ3e
ζ2

4 σ3 = I +
C1

ζ
+
C2

ζ 2 +O
(

1

ζ 3

)
(27)

as |ζ | goes to ∞, where

C1 =
[

0
√
2πeiπc
�(c)

− �(c+1)√
2πeiπc

0

]
and C2 =

[− c(c+1)
2 0
0 c(c−1)

2

]
.

Moreover, as c → 0 and |ζ | → ∞, we get

F(ζ )F1(ζ )−1 = I +

⎡

⎣O
(
c ζ−2

)
O
(
c ζ−3

)

O
(
ζ−1

)
O
(
c ζ−2

)

⎤

⎦ , (28)

F(ζ )F1(ζ )−1F2(ζ )−1 = I +O
(
ζ−3

)
, (29)

where

F1(ζ ) = I +
1

ζ

⎡

⎣0
√
2πeiπc

�(c)
0 0

⎤

⎦ , (30)

F2(ζ ) = I +

⎡

⎢⎢⎣
−c(c + 1)

2

1

ζ 2

1

ζ 3

√
2πeiπcc2(c + 1)2

4�(c + 1)

− �(c + 1)√
2πeiπc

1

ζ

c(c + 1)

2

1

ζ 2

⎤

⎥⎥⎦ . (31)

The error bound in (28) is uniform over c ∈ [−1/2, 1/2] as ζ tends to infinity, and the
error bound in (29) is for a fixed c.

Proof. The proof of the jump is an exercise using the following identities [6,20]:

D−c(ζ ) = �(1−c)√
2π

[
e

−cπ i
2 Dc−1(iζ ) + e

cπ i
2 Dc−1(−iζ )

]
,

D−c(ζ ) = e−cπ iD−c(−ζ ) +
√
2π

�(c) e
(1−c)π i

2 Dc−1(−iζ ),

D−c(ζ ) = ecπ iD−c(−ζ ) +
√
2π

�(c) e
(c−1)π i

2 Dc−1(iζ ).

The proof of the asymptotic behavior is based onLemma6 about the asymptotic behavior
of the parabolic cylinder function. By Lemma 6, letting n = 1, we have

|ε1(ζ )| ≤ C

∣∣∣∣
c(c + 1)

ζ 2

∣∣∣∣ , |arg ζ | <
π

2
.

This leads to D−c(ζ ) = e−ζ 2/4ζ−c
(
1 +O (c(c + 1)/ζ 2

))
. Similarly, we can obtain the

asymptotic expression for D−1+c(iζ ), D−1−c(ζ ), and Dc(iζ ) and we get

F(ζ ) = F1(ζ ) +

⎡

⎢⎢⎢⎣

O
(
c(c + 1)

ζ 2

)
O
(

(c − 1)(c − 2)

ζ 3�(c)

)

O
(

�(c + 1)

ζ

)
O
(
c(c − 1)

ζ 2

)

⎤

⎥⎥⎥⎦ .

This leads to (28) using �(c) = c−1(1 + O(c)). Similarly, the equations (29) and (27)
follow from Lemma 6. ��
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Let H be a unimodular holomorphic matrix function on Dβ . We define W by

W (z) = H(z)W(ζ(z)), z ∈ Dβ. (32)

Combining (21), (27) and (32), the expression in (19) can be written as

�(z)
(
z−a
z

) c
2 σ3 P(z)

(
z−a
z

)− c
2 σ3

= �(z)

(
z − a

z

) c
2 σ3

S−1ζ cσ3H(z)W(z) ST (ζ(z))

(
z − a

z

)− c
2 σ3

= �(z)

(
z − a

z

) c
2 σ3

S−1ζ cσ3H(z)F(ζ(z)) ζ(z)−cσ3e−
ζ(z)2

4 σ3 ST (ζ(z))

(
z − a

z

)− c
2 σ3

.

By (22), (23) and Lemma 5, we obtain

ζ−cσ3e
−ζ2

4 σ3 ST (ζ(z))

(
z − a

z

)− c
2 σ3

= ζ−cσ3 S

(
z − a

z

)− c
2 σ3

=
(
Nc/2η(z)

)−σ3
�(z).

The above equations lead to the following Lemma.

Lemma 8. When z ∈ Dβ , we have

�(z)

(
z − a

z

) c
2 σ3

P(z)

(
z − a

z

)− c
2 σ3

=
(
Nc/2η(z)

)σ3
H(z)F(ζ(z))

(
Nc/2η(z)

)−σ3
�(z).

(33)

Theorem 4. For a > 1 and −1/2 ≤ c ≤ 1/2, we get

PN (z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zN
(

z

z − β

)c (
1 +O

(
1

Nc+1/2

))
, z ∈ Ext S\(U ∪ Dβ),

zN
((

z

z − β

)c
−

√
2π(a2 − 1)c

N1/2−ca�(c)

eNφA(z)

(z − β)

(
z − β

z − a

)c

+O
(

1

Nc+1/2 ,
eNφA

Nc+1/2

))
,

z ∈ U\Dβ,

zN
((

zζ

z − β

)c
e

ζ2(z)
4 D−c(ζ(z)) +O

(
1

N1/2 ,
1

N2c+1/2

))
, z ∈ Dβ .

The error bounds are uniform in c ∈ [−1/2, 1/2]. The big O notation with multiple
arguments is defined by O(A, B) = O(A) +O(B).

This theorem is similar to Theorem 2 except that the range of c is restricted to
[−1/2, 1/2] and the error bounds are uniform in the range.

Proof. Using F1 in (30) we can define a unimodular meromorphic matrix function with
a simple pole at β by

R(z) = I +

√
2π
(
a2 − 1

)c

N 1/2−ca �(c)

1

z − β

[
0 1
0 0

]
(34)
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such that we can set

H(z) =
(
Nc/2η(z)

)−σ3 R(z)
(
Nc/2η(z)

)σ3
F1(ζ(z))−1, (35)

i.e., the above is unimodular and holomorphic at β.
Now we define the strong asymptotics of Z that we will denote by

Z∞(z) :=
⎧
⎨

⎩

R(z)�(z), z /∈ Dβ,

�(z)

(
z − a

z

) c
2 σ3

P(z)

(
z − a

z

)− c
2 σ3

, z ∈ Dβ,
(36)

where the second line is given in Lemma 8. We get

Z∞
+ (z)

(
Z∞− (z)

)−1 = �(z)

(
z − a

z

) c
2 σ3

P(z)

(
z − a

z

)− c
2 σ3

�−1(z)R−1(z)

=
(
Nc/2η(z)

)σ3
H(z)F(z)

(
Nc/2η(z)

)−σ3 R−1(z)

=
(
Nc/2η(z)

)σ3
H(z)F̂(ζ )H−1(z)

(
Nc/2η(z)

)−σ3
,

(37)

where, in the last line, we define

F̂(ζ ) = F(ζ )F1(ζ )−1.

Defining the error matrix by

E(z) := Z∞(z) Z−1(z).

we get

E+(z)E−1− (z)

= Z∞(z)+
(
Z∞− (z)

)−1

=
(
Nc/2η(z)

)σ3
H(z)F̂(ζ )H−1(z)

(
Nc/2η(z)

)−σ3

= I +

⎡

⎢⎣
O
( c

N

)
O
( c

N 3/2−c

)

O
(

1

N 1/2+c

)
O
( c

N

)

⎤

⎥⎦ = I +O
(

1

N 1/2+c

)
, z ∈ ∂Dβ, (38)

where, in the last equality, we use the asymptotic behavior (28) for F̂(ζ ) =
F(ζ )F1(ζ )−1, and the asymptotic behavior of H given below.

H =
[
1 h(z)
0 1

]
, h(z) =

√
2π
(
a2 − 1

)c
√
Nη2(z)a �(c)

1

z − β
− 1

ζ(z)

√
2πeiπc

�(c)
= O

(
c√
N

)
.

(39)

One can check that the jump of E is exponentially small in N away from ∂Dβ using
Lemma 4 and (18). By the small norm theorem (e.g. Theorem 7.171 in [7] or [8]) we
obtain E(z) = I + O (1/Nc+1/2

)
and, therefore, Z∞(z)Z−1(z) = I + O (1/Nc+1/2

)
.

Note that the error bound is uniform over c ∈ [−1/2, 1/2].
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Using (17) we have (see (17) for the definition of �)

Y (z) = e
N�
2 σ3 Z(z)

[
1 0

− �
( z

z − a

)c
eNφ(z) 1

]
e

−N�
2 σ3eNg(z)σ3

= e
N�
2 σ3

(
I +O

(
1

N 1/2+c

))
Z∞(z)

[
1 0

− �
( z

z − a

)c
eNφ(z) 1

]
e

−N�
2 σ3eNg(z)σ3 .

Using (36), we calculate the strong asymptotics for z ∈ (Ext S ∩U )\Dβ as an example.

PN (z) = [Y (z)]11 =
[(

I +O
(

1

N1/2+c

))
Z∞(z)

[
1 0

− �
(

z
z−a

)c
eNφ(z) 1

]]

11

eNg(z)

=
[(

I +O
(

1

N1/2+c

))
R(z)�(z)

[
1 0

−
(

z
z−a

)c
eNφ(z) 1

]]

11

eNg(z)

=
⎡

⎣
(
I +O

(
1

N1/2+c

))⎡

⎣1
√
2π
(
a2−1

)c

N1/2−ca �(c)
1

z−β

0 1

⎤

⎦
[( z

z−β

)c 0

0
( z−β

z
)c

][
1 0

−( z
z−a

)ceNφ(z) 1

]⎤

⎦

11

zN

=
[(

1 +O
(

1

N1/2+c

))((
z

z − β

)c
−
(
z − β

z − a

)c √
2π(a2 − 1)c

a�(c)N1/2−c(z − β)
eNφ(z)

)

− O
(

1

N1/2+c

)(
z − β

z − a

)c
eNφ(z)

]
zN

= zN
((

z

z − β

)c
−
(
z − β

z − a

)c √
2π(a2 − 1)c

a�(c)N1/2−c(z − β)
eNφ(z) +O

(
1

N1/2+c

))
.

(40)

A similar calculation will give the following for z ∈ (Int S ∩U )\Dβ :

PN (z) = eNg(z)
((

z

z − β

)c
eNφ(z) −

(
z − β

z − a

)c √
2π(a2 − 1)c

a�(c)N1/2−c(z − β)
+O

(
1

N1/2+c

))
.

For z ∈ (Ext S\U ) ∩ Dβ we calculate the strong asymptotics using (36), (27) and
Lemma 8 to represent P in terms of W (25) and H(z) (35).

PN (z) = [Y (z)]11 =
[(

I +O
(

1

N1/2+c

))
Z∞

[
1 0

− �
(

z
z−a

)c
eNφ(z) 1

]]

11

eNg(z)

=
[(

I +O
(

1

N1/2+c

))
�(z)

(
z − a

z

) c
2 σ3

P(z)

(
z − a

z

)− c
2 σ3
]

11

zN

=
[(

I +O
(

1

N1/2+c

))(
Nc/2η(z)

)σ3
H(z)F(ζ(z))

(
Nc/2η(z)

)−σ3
�(z)

]

11
zN

=
[(

I +O
(

1

N1/2+c

))(
Nc/2η(z)

)σ3
[
1 h(z)
0 1

]

⎡

⎢⎣
D−c(ζ ) i

√
2πe

cπ i
2

�(c) D−1+c(iζ )

− �(c+1)√
2πecπ i

D−1−c(ζ ) e− cπ i
2 Dc(iζ )

⎤

⎥⎦
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· ζ cσ3e ζ2

4 σ3
(
Nc/2η(z)

)−σ3

⎡

⎣

(
z

z−β

)c
0

0
(
z−β
z

)c

⎤

⎦
]

11
zN

=
[(

z

z − β

)c
ζ(z)ce

ζ(z)2

4

(
D−c(ζ ) − h(z)

�(c + 1)√
2πecπ i

D−1−c(ζ )

)(
1 +O

(
1

N1/2+c

))

+O
(

1

N1/2+2c

)]
zN

=
[(

z

z − β

)c
ζ(z)ce

ζ(z)2

4 D−c(ζ ) +O
(

1√
N

,
1

N1/2+2c

)]
zN .

(41)

We used (39) at the last equality. Note that the above error bounds are uniform over
c ∈ [−1/2, 1/2].

For the other regions we skip the calculations as they are similar. ��

5. a > 1: Proof of Theorem 2

The proof of Theorem 2 is identical to the above proof of Theorem 4 except that we
use different R and H (hence different P). The construction of R and H will be more
involved and will be useful for the next case of a < 1 and, therefore, we will describe
the construction in a more general setting.

Here we describe how to construct R and P inductively such that the jump,
Z∞
+ (Z∞− )−1, of Z∞ is close to the identity up to O(N−L) for any given L > 0. The

inductive method that we describe here involves only algebraic manipulations—such as
the inverse of relatively small matrices.

We introduce several notations that we will use in this section.
Let us recall that ζ is a univalent function in Dβ such that ζ(β) = 0 and N−τa ζ(z)/(z−

β) is an N -independent and non-vanishing holomorphic function where (we include the
case, a < 1, for later)

τa =
{
1/2 for a > 1,
1 for a < 1.

The lemma below generalize the definition of F̂ that we used in the previous section.

Lemma 9. LetF be a unimodular piecewise analyticmatrix functionwith the asymptotic
expansion around ∞ given by

F = I +
C1

ζ
+
C2

ζ 2 + · · · ,

where C j ’s are constant 2×2matrices. For any positive integer L, there exists a positive
number of k and a decomposition

F(ζ ) = F̂(ζ )Fk(ζ ) · · · F1(ζ ), (42)

such that, for all 1 ≤ j ≤ k, Fj is a rational function with only singularity at the origin,
Fj (∞) = I , Fj (ζ ) − I is nilpotent and

F̂(ζ ) = I +O
(
ζ−L

)
.
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Proof. Assume

F(ζ ) = I +
C0

ζm
+O

(
1

ζm+1

)
, C0 =

[
c11 c12
c21 c22

]
.

Since detF = 1, we have c11 + c22 = 0. One can write C0 as the sum of three nilpotent
matrices, C0 = N1 + N2 + N3, where

N1 =
[
c11 −c211
1 −c11

]
, N2 =

[
0 c12 − c211
0 0

]
, N3 =

[
0 0

c21 − 1 0

]
.

We get

F(ζ )

(
I +

N1

ζm

)−1 (
I +

N2

ζm

)−1 (
I +

N3

ζm

)−1

= I +O
(

1

ζm+1

)
.

Using induction, this proves the lemma. ��
Given {Fk}k=1,2,···, we will define {Hk} and {Rk} inductively. Let H0 = I . Assume

that Hk−1 is holomorphic and non-vanishing at β, and Hk−1(z) = I + O(1/N τa ). We
define

F̃k(z) :=
(
N

c
2 η(z)

)σ3
Hk−1(z)Fk(ζ(z))H−1

k−1(z)
(
N

c
2 η(z)

)−σ3
. (43)

If Fk satisfies the property described in Lemma 9, we have the following truncated
Laurent series expansion near β,

F̃−1
k (z) = N

c
2 σ3

⎛

⎝I +
mk∑

j=−∞

A j

(z − β) j

⎞

⎠ N− c
2 σ3 ,

for some positive integer mk and some constant matrices {A j }. Given {A j }, the lemma
below constructs {Rk} inductively.
Lemma 10. Given F̃k(z) as above, the unique rational matrix function Rk such that its
only singularity is at β, Rk(∞) = I and Rk(z)F̃

−1
k (z) is holomorphic at β, is given by

Rk(z) = N
c
2 σ3

⎛

⎝I +
mk∑

j=1

Bj

(z − β) j

⎞

⎠ N− c
2 σ3 ,

where, for a sufficiently large N, B j ’s are given by

[Bmk , Bmk−1 , . . . , B1] = −[Amk , Amk−1 , . . . , A1]
(
I + M̃

)−1
.

The 2mk × 2mk matrix M̃ is given in block form by

M̃ =

⎡

⎢⎢⎣

A0 A−1 · · · A1−mk

A1 A0 · · · A2−mk
...

. . .
. . .

...

Amk−1 · · · A1 A0

⎤

⎥⎥⎦

and, for a sufficiently large N, I + M̃ is invertible. Moreover, det Rk ≡ 1.
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Proof. Let

M =

⎡

⎢⎢⎣

Amk Amk−1 · · · A1
Amk · · · A2

. . .
...

Amk

⎤

⎥⎥⎦ ,

In order to make Rk(z)F̃
−1
k (z) holomorphic at β, we require all the pole terms of

Rk(z)F̃
−1
k (z) to vanish. We obtain

[Bmk , Bmk−1 , . . . , B1] · M = 0, (44)

[Bmk , Bmk−1 , . . . , B1](I + M̃) + [Amk , Amk−1 , . . . , A1] = 0, (45)

where the first equation comes from the poles of the orders 2mk, 2mk − 1, . . . ,mk + 1,
and the second equation comes from the poles orders mk,mk − 1, . . . , 1.

We explain a useful bound on A j ’s. If Fk(ζ ) = I + O(ζ−mk ), then Fk(ζ(z)) =
I +O(N−mkτa ) on ∂Dβ . Therefore, we have A j = O(N−mkτa ) and ‖M̃‖ = O(N−mkτa ).
Hence I + M̃ is invertible for a sufficiently large N so that, from (45), we can obtain

[Bmk , Bmk−1 , . . . , B1] = −[Amk , Amk−1 , . . . , A1]
(
I + M̃

)−1
.

Let us show that (44) is satisfied. Since Fk(ζ ) − I is nilpotent, F̃−1
k (z) − I is nilpotent

and, therefore,

⎛

⎝
mk∑

j=−∞

A j

(z − β) j

⎞

⎠
2

= 0.

This implies M2 = 0 and MM̃ = −M̃M . Then,

[Bmk , Bmk−1 , · · · , B1] · M = −[Amk , Amk−1 , . . . , A1]
(
I + M̃

)−1 · M
= −[M]1st row

(
I − M̃ + M̃2 + . . .

) · M
= − [M · (I − M̃ + M̃2 + · · · ) · M]1st row= − [MM − MM̃M + MM̃2M + · · · ]1st row= − [MM + M2M̃ + M2M̃2 + · · · ]1st row = 0

The “1st row” means the 1st two rows or, equivalently, the 1st row in the 2 × 2 block
matrix. Since Rk(z)F̃

−1
k (z) is holomorphic at β and det F̃−1

k (z) ≡ 1, det Rk(z) is holo-
morphic at β. Since det Rk(∞) = 1, we have det Rk ≡ 1.

Now we show that Rk is unique. Assume R̃k also satisfies all the conditions satisfied
by Rk in the lemma. Then, Rk R̃

−1
k is holomorphic away from β, Rk(z)R̃k(z)−1 → I as

z → ∞, and Rk R̃
−1
k = Rk F̃

−1
k

(
R̃k F̃

−1
k

)−1 is holomorphic at β. Thus, Rk = R̃k . ��

Corollary 1. If Fk(ζ ) = I + O(ζ−m), then N− c
2 σ3Rk(z)N

c
2 σ3 = I + O(N−τam) when

z ∈ ∂Dβ.

Proof. From A j = O(N−mτa ), Bj = O(N−mτa ) follows. ��
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Using Rk(z) from the above lemma, we define Hk(z) by

Hk(z) =
(
N

c
2 η(z)

)−σ3
Rk(z)F̃

−1
k (z)

(
N

c
2 η(z)

)σ3
Hk−1(z). (46)

Since H0 = I , by induction, Hk(z) is holomorphic at β and unimodular. By Corollary
1 we get

Hk(z) = I +O(N−τa ), z ∈ Dβ. (47)

Lemma 11. For z ∈ ∂Dβ, we have

Z∞
+ (z)

(
Z∞− (z)

)−1 =
(
Nc/2η(z)

)σ3
H(z)F̂(ζ )H−1(z)

(
Nc/2η(z)

)−σ3
.

Proof. We have

Z∞
+ (z)

(
Z∞− (z)

)−1 = �(z)

(
z − a

z

) c
2 σ3

P(z)

(
z − a

z

)− c
2 σ3

�−1(z)R−1(z)

=
(
Nc/2η(z)

)σ3
H(z)F(z)

(
Nc/2η(z)

)−σ3 R−1(z)

=
(
Nc/2η(z)

)σ3
H(z)F̂(ζ )H−1(z)

(
Nc/2η(z)

)−σ3
.

(48)

The first equality is from (36), the second equality comes from Lemma 8, and the last
equality follows from (42) and

H = Hk =
(
Nc/2η

)−σ3
Rk · · · R1

(
Nc/2η

)σ3
F−1
1 · · · F−1

k , (49)

which follows from the inductive definition of Hk at (46) with H0 = I . The theorem is
proved using Lemma 9 and (47). ��
Proof of Theorem 2. Contrary to the proof of Theorem 4, all the error bounds will be
for a fixed c.

Here, we construct {R j } and {Hj } inductively from the initial data R1 = R and
H1 = H where R and H given in (34) and (35).

By (31) with (43) a calculation leads to,

F̃2(z) =
(
N

c
2 η(z)

)σ3
H1(z)F2(ζ(z))H−1

1 (z)
(
N

c
2 η(z)

)−σ3

= N
c
2 σ3

⎛

⎝I +

⎡

⎣ O ( 1N
) O

(
1

N3/2

)

O
(

1√
N

)
O ( 1N

)

⎤

⎦

⎞

⎠ N− c
2 σ3 . z ∈ ∂Dβ.

An estimate using H1 = I +O(N−1/2) in (47) gives the same result except the bound
at (12)-entry above may be relaxed to O(N−1). Then by Lemma 10 we have

R2(z) = N
c
2 σ3

(
I +

[ O ( 1N
) O ( 1N

)

O
(

1√
N

)
O
(

1√
N

)
])

N− c
2 σ3 .
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Using R1 = R with (34) we get

R2R1 = N
c
2 σ3

⎛

⎝I +

⎡

⎣ O ( 1N
) √

2π
(
a2−1

)c
√
Na �(c)

1
z−β

+O ( 1N
)

O
(

1√
N

)
O
(

1√
N

)

⎤

⎦

⎞

⎠ N− c
2 σ3 .

From (29) a further decompositions of F gives Fk = I +O (ζ−3
)
for k ≥ 3. Then, by

Corollary 1, we get

Rk · · · R3 = N
c
2 σ3(I +O(N−3/2))N− c

2 σ3 ,

and

Rk · · · R1 = N
c
2 σ3

⎛

⎝I +

⎡

⎣ O ( 1N
) √

2π
(
a2−1

)c
√
Na �(c)

1
z−β

+O ( 1N
)

O
(

1√
N

)
O
(

1√
N

)

⎤

⎦

⎞

⎠ N− c
2 σ3 , z ∈ ∂Dβ.

Using Lemma 9, we can have F̂(ζ ) = I + O (ζ−L
)
for an arbitrary L . Using Lemma

11 with

R = Rk · · · R1 and H = Hk = I +O(N−1/2),

we get Z∞
+

(
Z∞−

)−1 = I +O(N−L) on ∂Dβ. From the similar argument as in the proof
of Theorem 4, we obtain

Y (z) = e
N�
2 σ3

(
I +O

(
1

NL

))
Z∞(z)

[
1 0

− �
( z

z − a

)c
eNφ(z) 1

]
e

−N�
2 σ3eNg(z)σ3

uniformly over a compact set for an arbitrary positive integer L . The proof is finished
by calculations similar to (40) and (41). ��

6. a < 1

In this section, we consider the case a < 1 following closely the analysis of previous
two sections for the case a > 1.

From (7), we obtain

φA(z) = a2 − 1

a
(z − β) (1 +O(z − β)) .

We define ζ : Dβ → C by (8) where Dβ is a sufficiently small but fixed disc around
z = β such that ζ is one-to-one. Under the mapping ζ the contour S maps to the
imaginary axis (Fig. 10).

Inside Dβ we want to find P such that

Z∞(z) = �(z)

(
z − a

z

) c
2 σ3

P(z)

(
z − a

z

)− c
2 σ3
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Fig. 10. Jump contours of P (50) in Dβ (left); the shaded region (everywhere except the negative real axis)
is U

satisfies the jump conditions of Z in (18), i.e.,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P+(z) = P−(z)

[
1 0

eζ(z) 1

]
, z ∈ ∂U ∩ Dβ,

P+(z) =
[
0 −1
1 0

]
P−(z)

[
0 1

−1 0

]
, z ∈ � ∩ Dβ,

P+(z) = e−cπ iσ3P−(z)ecπ iσ3 , z ∈ (−∞, a] ∩ Dβ.

(50)

Let us define S by

S = S(ζ ) =

⎧
⎪⎨

⎪⎩

I, | arg ζ | < π/2,[
0 1

−1 0

]
, otherwise.

Here we choose S such that S−1ζ(z)
c
2 σ3 satisfies the left jump of P(z) from the second

and the third equations of (50). Then the matrix function,

W (z) = ζ(z)−
c
2 σ3 SP(z)S−1ζ(z)

c
2 σ3 , (51)

satisfies

W+(z) = W−(z)

[
1 −ζ(z)−ceζ(z)

0 1

]
, z ∈ ∂U ∩ Dβ.

Let H be a holomorphic matrix (that will be determined soon). A solution to the above
jump condition can be written by W (z) = H(z)F(ζ(z)) where

F(ζ ) :=
⎡

⎣1
−1

2iπ

∫

L
es

sc(s − ζ )
ds

0 1

⎤

⎦ . (52)
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Here the contour L is the image of ∂U under ζ , and it begins at −∞, circles the origin
once in the counterclockwise direction, and returns to −∞.

Lemma 12. For z ∈ Dβ we have

�(z)

(
z − a

z

) c
2 σ3

S−1ζ(z)
c
2 σ3 =

(
Nc/2η(z)

)σ3

where η : Dβ → C,

η(z) := 1

Nc/2

(
z ζ(z)

z − β

)c/2

,

is a nonvanishing N-independent analytic function in Dβ .

By Lemma 12, (51) and W = HF we get

�(z)

(
z − a

z

) c
2 σ3

P(z)

(
z − a

z

)− c
2 σ3

= �(z)

(
z − a

z

) c
2 σ3

S−1ζ (c/2)σ3W (z) ζ−(c/2)σ3 S

(
z − a

z

)− c
2 σ3

= �(z)

(
z − a

z

) c
2 σ3

S−1ζ (c/2)σ3H(z)F(ζ(z)) ζ−(c/2)σ3 S

(
z − a

z

)− c
2 σ3

=
(
Nc/2η(z)

)σ3
H(z)F(ζ(z))

(
Nc/2η(z)

)−σ3
�(z). (53)

This essentially proves the statement in Lemma 8 for a < 1.

Lemma 13. As |ζ | goes to ∞, F in (52) satisfies

F(ζ )F1(ζ )−1 = I +O
(

1

|ζ 2|
)

(54)

uniformly over c ∈ (−1, 2) and

F(ζ )F1(ζ )−1 · · · Fk(ζ )−1 = I +O
(

1

|ζ k+1|
)

(55)

where

Fk(ζ ) = I +
ck
ζ k

[
0 1
0 0

]
, ck = 1

2iπ

∫

L
sk−1es

sc
ds = sin(cπ)�(k − c)

π(−1)k−1 . (56)

Proof. We only show the proof of (54) as the proof of (55) is similar. The only nonzero

entry of
(
FF−1

1 − I
)
is the (12)−entry. For arg |ζ | < π/2, we have

∣∣∣
(
F(ζ )F1(ζ )−1

)

12

∣∣∣ = 1

2π

∣∣∣∣
∫

L
es

sc(s − ζ(z))
ds +

∫

L
es

scζ(z)
ds

∣∣∣∣

≤ 1

2π

∫

L

∣∣∣∣
ess

sc(ζ(z) − s)ζ(z)

∣∣∣∣ |ds| ≤ 1

2π

∫

L

∣∣∣∣
ess

scζ 2

∣∣∣∣ |ds|

= 1

2π |ζ 2|
∫

L

∣∣∣∣
ess

sc

∣∣∣∣ |ds|.
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In the second inequality, we use |ζ − s| ≥ |ζ | for Re ζ > 0 and s ∈ (−∞, 0]. One can
prove that the last integral is finite by deforming the contour away from the origin so
that the integrant is bounded from above.

When | arg ζ | ≥ π/2 a similar argument using the deformation of integration contour
leads to the proof of the lemma.Note that the branch cut (−∞, 0) of sc and the integration
contour L can be deformed, respectively, into {teiθ0}0<t<∞ for π/2 ≤ |θ0| ≤ π and the
corresponding contour around the new branch cut. We skipped the further details. ��
Theorem 5. For a < 1 we get

PN (z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

zN
(

z

z − a

)c (
1 +O

(
1

N 2−c

))
, z ∈ ExtS\(U ∪ Dβ),

zN
((

z

z − a

)c

− a(1 − a2)c−1

N 1−c�(c)

eNφA(z)

(z − a)
+O

(
1

N 2−c
,
eNφA

N 2−c

))
, z ∈ U\Dβ ,

zN
((

z

z − a

)c

−
(
zζ(z)

z − a

)c 1

eζ(z)

(
f̂ (ζ(z)) +O

( c

N

))
+O

(
1

N 2−c

))
, z ∈ Dβ .

where

f̂ (ζ ) = −1

2iπ

∫

L
es

sc(s − ζ )
ds.

Here the contour L is the image of ∂U under ζ , and it begins at −∞, circles the origin
once in the counterclockwise direction, and returns to−∞. The error bounds are uniform
over −1 < c < 2.

Proof. From F1 in (56) one can obtain R1 using Lemma 10 and obtain H1 by (49):

R1(z) = I +
a(1 − a2)c−1

N 1−c�(c)

1

z − a

[
0 1
0 0

]
,

H1(z) =
(
Nc/2η(z)

)−σ3
R1(z)

(
Nc/2η(z)

)σ3
F1(ζ(z))−1 =

[
1 h(z)
0 1

]
,

(57)

where (using c1 = 1/�(c) that appears in F1)

h(z) =
(
z − a

zζ(z)

)c (a(1 − a2)c−1

N 1−c�(c)

1

z − a

)
− 1

ζ(z)�(c)
= O

( c

N

)
. (58)

Setting R = R1 and H = H1, we can define Z∞ by (33) and (36). Defining the error
matrix by E = Z∞Z−1, by the similar calculation as (38) with F̂ = FF−1

1 and (54),
we get

E+(z)E−1− (z) = I +O
(

1

N 2−c

)
, z ∈ ∂Dβ,

uniformly over c ∈ (−1, 2). By the same argument as in the proof of Theorem 4 we
obtain

Z(z) =
(
I +O

(
1

N 2−c

))
Z∞(z).

The proof is finished by the calculations exactly similar to (40) and (41). To add a little
more detail, inside Dβ we need to use (58) to obtain the final result. Below we write the
strong asymptotics before using (58) as an example.
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((
z

z − a

)c
−
(
zζ(z)

z − a

)c (
f̂ (ζ(z)) + h(z)

)
eNφ(z) +O

(
1

N2−c

))
eNg(z), z ∈ ExtS ∩ Dβ .

We skip the computation. ��
Proof of Theorem 3. The proof will be similar to the above proof and the proof of The-
orem 2.

By (56), (57) and (43) we get

F̃2(z) =
(
N

c
2 η(z)

)σ3
H1(z)F2(ζ(z))H−1

1 (z)
(
N

c
2 η(z)

)−σ3

= N
c
2 σ3

(
I +

[
0 O (N−2

)

0 0

])
N− c

2 σ3 , z ∈ ∂Dβ.

(59)

From Lemma 10 and (59) we have

R2(z) = N
c
2 σ3

(
I +

[
0 O (N−2

)

0 0

])
N− c

2 σ3 .

Combined with R1 in (57), we get

R2R1 = N
c
2 σ3

⎛

⎝I +

⎡

⎣0
a(1 − a2)c−1

N�(c)

1

z − a
+O

(
1

N 2

)

0 0

⎤

⎦

⎞

⎠ N− c
2 σ3 .

From (56) in Lemma 13, we have Fk = I + O (ζ−3
)
for k ≥ 3. By Corollary 1, we

obtain

Rk · · · R3 = N
c
2 σ3(I +O(N−3))N− c

2 σ3 .

In fact, following the inductive construction of Rk and Hk in Sect. 5, one can find that
Rk’s are all upper diagonal matrix. Therefore, we get

Rk · · · R1 = N
c
2 σ3

⎛

⎝I +

⎡

⎣0
a(1 − a2)c−1

N�(c)

1

z − a
+O

(
1

N 2

)

0 0

⎤

⎦

⎞

⎠ N− c
2 σ3 , z ∈ ∂Dβ.

Using Lemma 9, we can have F̂(ζ ) = I + O (ζ−L
)
for an arbitrary L . Using Lemma

11 with

R = Rk · · · R1 and H = Hk = I +O(N−1),

we get Z∞
+

(
Z∞−

)−1 = I +O(N−L) on ∂Dβ. From the similar argument as in the proof
of Theorem 4, we obtain

Y (z) = e
N�
2 σ3

(
I +O

(
1

NL

))
Z∞(z)

[
1 0

− �
( z

z − a

)c
eNφ(z) 1

]
e

−N�
2 σ3eNg(z)σ3 .

for an arbitrary positive integer L . The proof is finished by calculations similar to (40)
and (41). ��
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7. Critical Case: a = 1

In this sectionwe consider a = 1+O(1/
√
N ). Herewe only argue that the strong asymp-

totics can be obtained through the parametrix of Painlevé IV equation (as suggested in
[2]) following the similar steps described previously.

There is a disk D1 centered at 1 such that there exists a univalent map ζ : D1 → C

that satisfies
(ζ(z) + x)2 = NφA(z) − NφA (1/a)

where

x := √
NφA(a) − NφA(1/a) = √

2N (a − 1)(1 +O(a − 1)).

Under the mapping ζ , we have ζ(a) = 0 and the critical point of φA maps to −x ; note
that φ(1/a) is the critical value of φA.

Inside D1 we require that �(z)
(
z−a
z

) c
2 σ3 P(z)

(
z−a
z

)− c
2 σ3

satisfies the jump condi-

tions (18) of Z . With the boundary condition of P on ∂D1 this leads to the following
jumps of P inside D1 (Fig. 11):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P+(z) = P−(z)

⎡

⎣
1 0

e−NφA(z) 1

⎤

⎦ , z ∈ ∂U ∩ Int�,

P+(z) = P−(z)

⎡

⎢⎣

1 0

eNφA(z) 1

⎤

⎥⎦ , z ∈ ∂U ∩ Ext�,

P+(z) =
⎡

⎢⎣

0 −1

1 0

⎤

⎥⎦P−(z)

⎡

⎢⎣

0 1

−1 0

⎤

⎥⎦ , z ∈ � ∩U,

P+(z) = e−cπ iσ3P−(z)ecπ iσ3 , z ∈ (0, a],

P(z) = I + o (1) , z ∈ ∂D1.

HereU and � are given similarly by those for a > 1 except the segment [β, a] becomes
a point at 1, see Fig. 12. We will show that suchP can be written in terms of the solution
of the Painlevé IV equation. To achieve this, we want to transform P into a new matrix
function, W , with only constant jump matrices from the right. Such transform is given
by

W (z) = e− �x
2 σ3ζ(z)

c
2 σ3 S · P(z) · T (z)−1 S−1, z ∈ D1, (60)

using a diagonal matrices T , a piecewise constant matrix S and a constant �x , defined
by

T (z) = exp

(
N

2
(−1)νφA(z)σ3

)
= exp

[
(−1)ν

2

(
ζ(z)2 + 2xζ(z) + �x

)
σ3

]
,

�x = x2 + NφA(1/a), S = S(z) =
[
0 1
1 0

]
·
[
0 1

−1 0

]ν

,
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1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Fig. 11. The zeros of orthogonal polynomials with degrees 40 (blue) and 300 (red), c = 1 and a = 1. The
solid line inside the disk is S (color figure online)

where

ν =
{
0, z ∈ Ext �,

1, z ∈ Int �.

Here we chose S such that S−1ζ(z)− c
2 σ3 satisfies all the left jumps of P , i.e.,

(
S−1ζ(z)−

c
2 σ3
)

+
=
[
0 1

−1 0

] (
S−1ζ(z)−

c
2 σ3
)

− , z ∈ � ∩U,

(
S−1ζ− c

2 σ3
)

+
= e−cπ iσ3

(
S−1ζ− c

2 σ3
)

− , z ∈ [−∞, 0].
Consequently, W has the jump matrices only from the right. Furthermore, the jump
matrices of W are constant matrices because of the right multipliction of T in (60),
and the jump on � disappears by the right multiplication by S−1. We obtain the jump
condition of W by

W+(z) = W−(z)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1 0
s1 1

]
, ζ(z) ∈ R

+,
[
1 s2
0 1

]
, ζ(z) ∈ iR+,

[
1 0
s3 1

]
, ζ(z) ∈ R

−,
[
1 s4
0 1

]
, ζ(z) ∈ iR−,



Discontinuity in the Asymptotic Behavior of Planar Orthogonal Polynomials 335

Fig. 12. Contours for the Riemann–Hilbert problem of � when a ≈ 1. � is the black curves and U is the
shaded region bounded by the blue curves

where s1 = 0, s2 = 1, s3 = e2icπ − 1 and s4 = −e−2icπ . The boundary condition at
∂D1 gives

W (z) = ζ(z)
c
2 σ3 (I + o (1)) e

(
ζ(z)2

2 +xζ(z)
)
σ3 , z ∈ ∂Dβ.

Here we used that �x = O(1) for a = 1 + O(1/
√
N ). According to page 34 of [6] (or

[9]) the Riemann–Hilbert problem for the Painlevé IV parametrix—�, following the
notation in [6]—exactly satisfies the jump condition above and the boundary condition:

�(ζ, x) =
(
I +

�−1(x)

ζ
+

�−2(x)

ζ 2 +O
(

1

ζ 3

))
e
(

ζ2

2 +xζ
)
ζ−�∞σ3 , z → ∞,

when

(1 + s2s3)e
2iπ�∞ + [s1s4 + (1 + s3s4)(1 + s1s2)]e−2iπ�∞ = 2 cos 2π�.

In our case we get � = c/2, �∞ = −c/2. It means that, using the same strategy
to Sect. 4 and 6, we could get the similar result about the asymptotics of orthogonal
polynomial in terms of Painlevé IV equation:

d2u

dx2
= 1

2u

(
du

dx

)2

+
3

2
u3 + 4xu2 + (2 + 2x2 − 4�∞)u − 8�2

u
,

where the solution u is related to the Riemann–Hilbert problem by

u(x) = −2x − d

dx
log
(
(�−1)(x)12

)
.
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A. Proof of Lemma 6

By [19] we can write

D−c(ζ ) = 2−c/2e−ζ 2/4U

(
c

2
,
1

2
,
ζ 2

2

)
,

where U has the following asymptotic expansion as |ζ | → ∞.

U

(
c

2
,
1

2
,
ζ 2

2

)
=
(

ζ 2

2

)− c
2 n−1∑

s=0

(
−ζ 2

2

)−s ( c
2

)
s

( c+1
2

)
s

s!(2ζ 2)s
+ ε̂n

(
ζ 2

2

)
, |arg ζ | <

π

2
.

The error term ε̂n is bounded by
∣∣∣∣ε̂n
(

ζ 2

2

)∣∣∣∣ ≤ 2
c
2 +n+1α

∣∣∣∣∣
( c2 )n(

c+1
2 )n

n!(ζ 2)n+
c
2

∣∣∣∣∣ exp
(
4αρ

|ζ 2|
)

,

where

α = 1

1 − σ
, σ =

∣∣∣∣
1 − 2c

ζ 2

∣∣∣∣ , ρ =
∣∣∣∣
c2 − c + 1

4

∣∣∣∣ +
σ(1 + σ

4 )

(1 − σ)2
.

We have

|εn(ζ )| = 2− c
2 |ζ |c

∣∣∣∣ε̂n
(

ζ 2

2

)∣∣∣∣ ≤ C

∣∣∣∣∣
( c2 )n(

c+1
2 )n

n!(ζ 2)n

∣∣∣∣∣ .

where

C = 2n+1|ζ 2|
(|ζ 2| − |1 − 2c|) exp

(∣∣∣∣
c2 − c + 1

4(|ζ 2| − |1 − 2c|)
∣∣∣∣ +

|1 − 2c|(|ζ 2| + |1−2c|
4 )

(|ζ 2| − |1 − 2c|)3
)

.

For |ζ 2|/|1 − 2c| big enough, we have C ≤ 2n+2.

B. Lax Pair: How the Numerical Calculation is Done

Define Ỹ (z) by Ỹ (z) = Ỹn(z) = Y (z)

[(
z−a
z

)c
1

eNaz 0

0 zn

]
, then the Riemann–Hilbert

problem for Ỹ (z) is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ỹ (z) is holomorphic in C\�,

Ỹ+(z) = Ỹ−(z)

[
1 1
0 1

]
, z ∈ �,

Ỹ+(z) = Ỹ−(z)

[
e2cπ i 0
0 1

]
, z ∈ (0, a),

Ỹ (z) =
(
I +O

(
1

z

))[(
z−a
z

)c
zn

eNaz 0

0 1

]
, z → ∞.
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We observe Ỹn(z) and Ỹn+1(z) have the same jump matrices. Since det Y (z) ≡ 1, the
inverse of Ỹ (z) exists in C\(� ∪ (0, a)), and we can define

An(z) = dỸn(z)

dz
Ỹn(z)

−1
.

The matrix function An(z) is meromorphic and can be determined by identifying the
singularities. For z → ∞, writing (we know that cn below is not related to the charge
“c” in the potential)

Ỹn(z) =
(
I +

1

z

[
an bn
cn dn

]
+ · · ·

)[(
z−a
z

)c
zn

eNaz 0

0 1

]
,

we get

An(z) =
[−Na 0

0 0

]
+
1

z

[
n Nabn

−Nacn 0

]
+O

(
z−2

)
.

Similarly we get the following for z → 0.

Ỹn(z) =
[
αn βn
γn ηn

]
(I +O(z))

[(
z−a
z

)c
1

eNaz 0

0 zn

]
,

An(z) = 1
z

[−c − (c + n)βnγn (c + n)αnβn
−(c + n)γnηn n + (c + n)βnγn

]
.

Therefore, we obtain

An(z) =
[−Na 0

0 0

]
+
1

z

[−c − (c + n)βnγn (c + n)αnβn
−(c + n)γnηn n + (c + n)βnγn

]

+
1

z − a

[
(c + n) (1 + βnγn) Nabn − (c + n)αnβn

−Nacn + (c + n)γnηn −n − (c + n)βnγn

]
.

Defining Mn(z) = Ỹn+1(z)Ỹn(z)
−1

we obtain, by the similar procedure as above,

Mn(z) =
[
z + an+1 − an −bn

cn+1 1

]
.

The compatibility of the Lax pair,

dỸn(z)

dz
= An(z)Ỹn(z),

Ỹn+1(z) = Mn(z)Ỹn(z),

gives

An+1(z)Mn(z) = dMn(z)

dz
+ Mn(z)An(z).

This gives the following recurrence relation:

an+1 = an +
bn (1 + βnγn)

αnβn
, αn+1 = bn

βn
, γn+1 = − 1

βn
,

bn+1 = (1 + n + a2N )bn
aN

+
(c + n)αnβn

N
+
b2n (1 + βnγn)

αnβn
,

βn+1 = c̃

(1 + c + n) ((c + n)αnβn − aNbn) α2
nβn

,
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where

c̃ = a2N − c − a(1 + 2(c + n))αnβn +
(
a2N − c − a(c + n)αnβn

)
βnγn

+ (c + n)(c + n + 1)α3
nβ

3
n + aN 2b3n (1 + βnγn)

2 ,

a0 = 0, b0 = a, α0 = 1, β0 = 1 + a2N , γ0 = 0.

The last line contains the initial condition of the recurrence relation. We used the above
relation to generate the orthogonal polynomials numerically.
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