Commun. Math. Phys. 353, 821-852 (2017) Communications in
Digital Object Identifier (DOI) 10.1007/s00220-017-2885-y Math ematical

Physics

@ CrossMark

Relative Entropy Bounds on Quantum, Private and
Repeater Capacities

Matthias Christandl, Alexander Miiller-Hermes

QMATH, Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100,
Copenhagen, Denmark. E-mail: christandl@math.ku.dk; muellerh@posteo.net; muellerh@math.ku.dk

Received: 7 August 2016 / Accepted: 2 March 2017
Published online: 5 May 2017 — © Springer-Verlag Berlin Heidelberg 2017

Abstract: We find a strong-converse bound on the private capacity of a quantum chan-
nel assisted by unlimited two-way classical communication. The bound is based on
the max-relative entropy of entanglement and its proof uses a new inequality for the
sandwiched Rényi divergences based on complex interpolation techniques. We provide
explicit examples of quantum channels where our bound improves upon both the trans-
position bound (on the quantum capacity assisted by classical communication) and the
bound based on the squashed entanglement. As an application, we study a repeater ver-
sion of the private capacity assisted by classical communication and provide an example
of a quantum channel with high private capacity but negligible private repeater capacity.
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1. Introduction

The goal of Shannon theory [1] is to quantify the amount of information that can be
reliably transmitted using many copies of a communication channel. To protect the
information from errors induced by the channel, particular coding schemes may be
applied. For a given class of coding schemes a capacity can be defined quantifying
the optimal rate of reliable information transmission achievable using schemes from
the class. In quantum Shannon theory there are many different capacities describing
relevant coding scenarios where certain types of classical or quantum assistance are
allowed. Here we are interested in capacities where arbitrary classical communication
between the two communicating parties is allowed to assist the transmission of quantum
or private information.

For a quantum channel 7 : M,;, — My, we denote by Q. (T) (P (T)) its
quantum (private) capacity assisted by two-way classical communication. While it is
true that P, (T') is an upper bound on Q. (T) it is important to have simpler upper
bounds in terms of single-letter quantities only depending on the quantum channel 7.
Not many such bounds on Q., and P, are known: In [2] the squashed entanglement
of a quantum channel has been defined and shown to be an upper bound on P, (and
therefore also on Q.. ). The transposition bound (see [3]) has been shown to be a strong-
converse bound on Q.. in [4]. Finally, in [5] the entanglement cost of a quantum channel
has been defined and shown to be a strong-converse bound on Q...

For particular classes of channels other upper bounds are known. Recently, the class
of teleportation covariant channels has received much attention in this context [6—11].
Special cases of such channels have been considered in [12], and recently more relevant
examples have been identified. In particular, this family contains the Gaussian channels
in infinite dimensions as an important subclass [6]. We will be interested mostly in the
finite-dimensional case. For a finite-dimensional teleportation covariant channel T the
capacity P..(T) is equal to the distillable key of the Choi—Jamiolkowski state C7 [13]
corresponding to the channel (see teleportation stretching [6] for a generalization of
these arguments to the case of infinite-dimensional quantum channels). Using that the
relative entropy of entanglement Eg is an upper bound on the distillable key [14] any
finite-dimensional teleportation covariant channel fulfills the bound (see [6])

Po(T) =Ko (Cr) = ER(Cr) (D

and this is also a strong-converse bound (see [9]). It is still an open problem whether
a similar bound based on the relative entropy of entanglement (possibly involving an
optimization over the input state of the partial channel) holds for arbitrary quantum
channels 7.

In this article we establish an upper bound on P, for arbitrary quantum channels
in terms of the max-relative entropy of entanglement. Given a quantum channel 7 :
Mg, — Mg, its max-relative entropy of entanglement is defined as

Enax(T) = sup(Epif (T47F (o)) + paa € D(CW @ C) . dy €N} ()

Here Er‘g;f denotes the max-relative entropy of entanglement of states [15,16]. Our

paper is structured as follows:

e In Sect. 3 we use complex interpolation techniques to prove a new inequality (the
“data-processed triangle inequality”) for the sandwiched «-Rényi divergence (see
Sect. 2.1 for a definition).
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e Using the data-processed triangle inequality we show in Sect. 4 that for any quantum
channel T : My, — My, the quantity Engx(T) is a strong-converse bound on
Po(T).

e InSect. 5.1 we show that Ena (T) is non-lockable (see Corollary 5.1 for the precise
statement). We use this feature of our bound in Sect. 6.1 to give examples of channels,
where our bound improves upon the previously known bounds (transposition bound,
squashed entanglement bound and entanglement cost).

e In Sect. 5.2 we give a weaker upper bound on P..(T) for any quantum channel
T : My, — My, that is slightly easier to evaluate than our original Enax bound.
As an application we then study a repeater version of the private capacity in Sect. 6.2,
where the communicating parties can use an intermediate repeater station to perform
private communication. We show that there are quantum channels 7 which have a
high private capacity, but where the repeated private capacity can be arbitrarily close
to zero. This is the channel version of a result demonstrated in [17] where states
connecting the three parties are given.

e In the Appendix we give an example of a quantum channel that cannot be imple-
mented via an LOCC-protocol from any state preparable by a single use of the
channel (see Definition A.1). This property is needed to obtain a bound similar to
(1) based on the relative entropy of entanglement using the arguments of [6].

2. Preliminaries

In the following we denote the complex d x d-matrices by M, and the cone of positive
matrices by M. The d x d identity matrix is denoted by 1. The set of d x d quantum

states (i.e. positive d x d matrices with trace 1) is called D; = D ((Dd ) Pure states

will be denoted as projectors using the notation [¢)(y¥| € Dy for |¢) € €4 with
(¥|¥) = 1. On multipartite systems we will often use indices A, B, ... to indicate the
different tensor factors. For example we would write p4c € D (C% @ C% @ Cc)
for a tripartite state. We use the common notation of omitting indices to denote partial
traces (i.e. the state p4 would be the marginal of p4pc on the A system). For general
linear maps T : M, — Mg, we write TA~8 (pga) € D ((I]‘IB ® (DdA/) to denote its
partial application to the A system of the state p44/. In this sense the Choi matrix [13]
of alinear map T : My, — My, is denoted by

Cr=T*78 (warn), 3)

where wa4 € D (@dA’ ® (DdA) for d4 = dy denotes the maximally entangled state in
the computational basis (i.e. a4 = |Qaa){(Qaral for [Qara) = ﬁ Zflil liaria)).

‘We will also use the notation wg; € D ((Dd ®C ) to denote this state in the cases where
the concrete systems are not important. Most linear maps we will use are quantum
channels (i.e. trace-preserving and completely positive [13]). A well-known example of
a positive, but not completely-positive, map is the transposition ¥4 : My — My given
by 94(X) = X T in the computational basis. We will also use the notation 4 to denote
the partial transposition on a particular system (named A in this case).

2.1. Sandwiched a-Rényi divergences. For quantum states p, o € D ((Dd) and a pa-
rameter « € (1, 00), the sandwiched o-Rényi divergence [18,19] is defined as
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l—a l—a

— o
77 log (tr[(oﬁpof) ]) if supp[p] < supp[o]
+00, otherwise.

Dy (pllo) = { “4)

In [18] it has been shown that the limiting cases « = 1 and &« = oo of D,, coincide with
quantities studied before: In the limit « — 1 we have

Dy (pllo) — D (pllo) = tr [p (log(p) — log(0))]

which is the usual relative entropy [20]. We will sometimes write D; to denote the
relative entropy. Taking the limit « — o0 gives Dy (pll6) — Dmax (pllo) which is
the max-relative entropy [15]. For quantum states p, o0 € D ((D ) this quantity can be
defined in two equivalent ways as

1 1 X
tog (=3 por 3 loc) if supplo] < supplo]

Diax (pllo) = inf{r € R* : p <2%0} =
+00, otherwise

(5)
using the convention inf ¥ = +oo.
In [21] it has been noted that the sandwiched «-Rényi divergence D, (see (4)) for
a > 1 can be written in terms of a non-commutative Ly o-norm | - ||4,o defined as

a]é
forany X € My and o € M. With the function I', : My — My given by I'; (X) =
o12X61/2 we can write

1 1
1X oo = tr[)aﬂXuﬁ

Dy (pllo) =

—1
—log (IT;" (o) 15, ) ©
for any quantum states p, o0 € D ((Dd) with supp (p) € supp (o) using the Moore-
Penrose pseudo-inverse [22] in the case where ¢ is not full-rank.
For a linear map L : My, — My, we will use norms of the form

”L(X)”q,ﬂ/

=2, @)
xemy, 1 Xlpo

”L”(p,(r)—)(q,o’) =

which are the operator norms of the operator L as a mapping from the space (Myg,, || -
lpo) to (May, || - llg.67). For o = 14 and 0’ = 14, the above definition gives the
usual p — g-norms and we will use the common notation | - || 4 in this case. The
main technical tool we will use, is the following non-commutative Riesz—Thorin-type
theorem. It should be noted that similar interpolation theorems have a long history
(see [23]).
Theorem 2.1 (Riesz—Thorin Theorem for L, , spaces [21]). Let L : Mg, — Mg, be
a linear map. For 1 < pg < p1 <oocand1 < gy < q1 <ooand@ € (0, 1) we define
Do via
1 6 1-0
—=—+ .
pPo Po P1

and gy analogous. Then for positive definite matrices o € MZI and o' € M;Q we have

0 1-0
”L ” (po,0)—(q9,0") = ”L ” (po,0)—(qo,0") ”L ” (p1,0)—=(q1,0")"
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A consequence of the previous theorem is the monotonicity of the sandwiched «-
Rényi divergences under quantum channels for « > 1 (see [21]), i.e. the inequality

Do (T(p)|IT(0)) = Do (pllo) ®)

for any quantum channel 7" : My, — My, and quantum states p, o € Dy, . Inequal-
ity (8) also holds for trace-preserving positive maps 7" as shown in [24] and for quantum
channels when o > % [18,25].

2.2. a-Relative entropies of entanglement and related measures. For any o > 1 we can
introduce an «-relative entropy of entanglement generalizing the usual relative entropy
of entanglement (also introduced recently in [9]).

Definition 2.1 («-Relative Entropy of Entanglement). For a bipartite quantum state
pap € D(C% @ ©78) we define the a-relative entropy of entanglement as

E&P (pap) = min{Dy(panllons) © oap € Sepyp (O @ ©0))

where Sepy.p ((DdA ® (DdB) denotes the set of separable states w.r.t. the bipartition
A:B.

Using the convergence of Dy it is clear that EA8 — E Ié:B as o — 1 for the relative
entropy of entanglement denoted by Eg. Similarly we can take the limit « — oo and
obtain the max-relative entropy of entanglement'

EAB(pap) = min{Dmax (0aBlloaB) : 0ap € Sepy.p (@dA ® @dB)},

which has been studied in [15,16,27]. For any o > 1 the a-relative entropy of entangle-
ment can be used to quantify the transmission of entanglement over a quantum channel.
We will focus on the case « = oo and the following quantity (also recently introduced
in [9]):

Definition 2.2 (max-relative entropy of entanglement of a quantum channel). For a quan-
tum channel 7 : My, — My, we define the max-relative entropy of entanglement of
T as

Enax (T) = suplEgyat (T4 (parn)) & para € D(C @ C1) dy e N). ©)

Using quasi-convexity of Dpyax (see [15, Lemma 9]) and the Schmidt-decomposition
of pure quantum states it is not hard to show, that the dimension d4 appearing in
the supremum can be chosen as the input dimension of the quantum channel. More
specifically, for any quantum channel 7' : My, — M, we get the following equivalent
expression

Emax (T) = max{EA:B (TAﬁB(|wA,A><wA,A|)) W) (W al eD(CdA’ ®®dA) fordy = da).

In particular this shows that the max-relative entropy of a quantum channel is well-
defined and we will use a max instead of the sup in (9) to indicate that the optimum is
attained.

1 Also known as log-robustness [26].
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Lo Ly L, Ls

(1) (3)
PaAB, AB

Fig. 1. Coding scheme assisted by classical communication (cf. Definition 2.3) in the case of m = 3 uses of
the channel 7' : My Nine MdB/‘ Here L denotes an LOCC-operation used to create the separable initial

state p;ll) s

2.3. Quantum capacities assisted by classical communication. A quantum channel on
bipartite systems L : Mg, ® Mg, — My, ® My, is called implementable via
local operations and classical communications (w.r.t. bipartitions A : B and A’ : B’ of
the input and output systems, respectively) if it can be written as a composition of any
number of channels Ly, :B,— A} AL:B) B of the following form (X 4,5, € /\/lqu ®./\/ld3q ):

Loy, —a a8 (Xa8) =Y (K} @ KP) X5, (K ® K1) & 1/)(jla; ® li)ilp,-
ij

(10)
Here K/ : ClAdl — C44! and K]B : CIBsl — C!%4! (i € I, j € J) are Kraus operators
of quantum channels mapping system A, to A/q and system B, to BC’I respectively (i.e.
Zi(KiA)TKiA =14, and Zj(KJB)TKJB = 1p,), and |j) 4, and |i)p, are orthonormal
bases belonging to (effectively classical) systems A and B, of dimension | /| and | /]| (see
[28] for more details). In the following we will call a quantum channel implementable

via local operations and classical communications simply an LOCC-operation.
We can now define coding schemes assisted by classical communication:

Definition 2.3 (Coding schemes assisted by classical communication). LetT : Mg, —
M ,, be aquantum channel. A coding scheme assisted by classical communication with
m uses of the channel T is given by a separable initial state

,0/(411)A/31 € Sepa, i, (CdAldA/ ® CdBl)
and a set of LOCC-operations {L;}" | (see also Fig. 1). Here
Li: Ma,, @ May, @ May, > Ma,  ® Ma,, @ May, |
foreachi € {1,...,m — 1} and

Ly : May, ® May, @ Mgy, — Ma; @ Mg,



Relative Entropy Bounds on Quantum, Private and Repeater Capacities 827

are LOCC w.r.t. the bipartition into A and B systems for arbitrary dimensions d 4, , dp;,
d;, d. The output state of the coding scheme will be denoted by

m—1

’ ’ ’ ’ 1
¢g’;§) =1L,o 1_[ (TA —B oLi> oTA—B (pz(ﬁh)A’Bl)'

i=1

We will first state the definition of the quantum capacity assisted by two-way clas-
sical communication. In the presence of unlimited classical communication we can use
quantum teleportation [29] to turn any entanglement generation protocol into a quantum
communication protocol. Therefore, we can define the quantum capacity assisted by
two-way communication in terms of entanglement generation.

Definition 2.4 (Entanglement generation assisted by classical communication). Given
a quantum channel 7' : My,, — My, consider a coding scheme assisted by classical
communication with m channel uses (as in Definition 2.3) given by LOCC-operations

{L;}™], initial state pi\ll) g, and output state qﬁg’g € D (C% ® C8). Such a coding
scheme is called an (n, m, €)-coding scheme for entanglement generation assisted by
classical communication iff the output dimensions fulfill d ; = d = 2" and the output
state satisfies
Lo
€ = §”¢AI§ — won||1.

Definition 2.5 (Quantum capacity assisted by classical communication). We call R €
IR* an achievable rate for quantum communication over the channel T assisted by
classical communication iff for each v € N there exists a (n,, m,, €,)-coding scheme
for entanglement generation assisted by classical communication (as in Definition 2.4)
withm, — oocasv — oosuchthat R = lim,_, o r’:l—‘v andlim,_, o &, = 0. The quantum
capacity of T assisted by classical two-way communication Q. (7) is defined to be the
supremum of all such achievable rates.

In a similar way we can define the private capacity assisted by classical two-way
communication. It has been shown in [14] that the tasks of private communication using
a quantum channel and public communication is equivalent to the task of distilling
private states using a coding scheme assisted by classical communication (see also [9]).
We will begin by defining these states:

Definition 2.6 (Private states [14]). A quantum state
YAuBiA By €D ((DdAk ® 0% @ O @ (DdB-‘>

with dy, = dp, = K and da, = dp, is called a private state with K-dimensional key
part iff it is of the form

_ rrtw tw T
VABAgB; = UAkBkASB; (a)AkBk ® GAsBS) (UAkBkASBx)
for some quantum state o4, g, € D ((DdAs ® (Dde) where we applied a twisting unitary

of the form

da, dpy

U s = 3 D I)ila, ® 1) (i1, ® UL
i=1 j=1
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with Ui‘jx B, € U, dg, unitary for any i, j. The systems Ay, By are called the key part
and Ay, By the shield part of the private state.

It can be shown (see [14]) that any private state with K-dimensional key part held by
two parties A and B can be used to generate at least log, (K') secret bits shared between
the two parties (protected from any eavesdropper who might possess the purification of
the state). Note that in the above definition there might be more than log, (K) secret bits
obtainable (i.e. the private state is not necessarily irreducible [14]).

Now we can define the private capacity assisted by classical communication as a
private state generation capacity.

Definition 2.7 (Coding scheme for private state generation assisted by classical com-
munication). Given a quantum channel 7' : My,, — My, consider a coding scheme
assisted by classical communication with m channel uses (as in Definition 2.3) given by

LOCC-operations {L; }™*!, initial state ,0211) 45, and output state ¢%”g e D (C% @ C%).
Such a coding scheme is called a (k, m, €)-coding scheme for private state generation as-
sisted by classical communication iff the output dimensions factorize into d; = da,da,

and dj = dp,dp, forda, = dg, = 2" and da, = dp,, and the output state satisfies

1
€= §||¢%”g — VArBrAsBs ll1-

for a private state ya,p,a,8, € D ((Ddfi ® (Ddl;’) with 2%-dimensional key part.

Definition 2.8 (Private capacity assisted by classical communication). We call R € R*
an achievable rate for private communication over the channel T assisted by classical
communication iff for each v € N there exists a (k,,, m,, &,)-coding scheme for private
state generation assisted by classical communication (as in Definition 2.7) withm, — oo
as v — oo such that R = lim,_ r’;—”v and lim,_, o &, = 0. The private quantum
capacity of T assisted by classical two-way communication P, (7') is defined to be the
supremum of all such achievable rates.

In the remaining part of this section we will discuss some general upper and strong-
converse bounds on Q.. and P... Recall that an upper bound B > 0 on either Q..
or P., is called a strong converse bound iff for any sequence of (n,, m,, &,)-coding
schemes (for v € IN) leading to arate R = lim,—, o Z—”U > B the error fulfills ¢, — 1 as
v — oo. We will start with the transposition bound (originally introduced in [3]), based
on the matrix transposition ¥4 : Mg — My, ie. ¥4(X) = X7 in any fixed basis.

Theorem 2.2 (Transposition bound [4]). For any quantum channel T : My, — My,
we have

Qo (T) < logy (94, 0 Tls)
and the above bound is a strong-converse bound.

Another bound is based on the squashed entanglement introduced in [30,31]. Recall
the definition of the quantum conditional mutual information of a tripartite quantum
state papr € D (C¥ @ C% ® Ct) given by

I(A; BIE)p,pp = S(paE) + S(pBE) — S(0E) — S(0ABE)
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where S(o) = —tr (o log, (o)) denotes the von-Neumann entropy of a quantum state
o. Given a bipartite quantum state pap € D ((DdA ® (DdB) a quantum state copg €
D ((DdA QT Q (DdE) is called an extension of p4p iff cop = pap. For a bipartite

quantum state pap € D ((DdA ® €95 ) the squashed entanglement [30,31] (w.r.t. the
bipartition A : B) is defined as

. 1
EL" (pag) = 3 inf{1(A; B|E)g,p,  0aBE €D (CdA ®C" ® CdE) extension of psp}
1D

where the dimension dg € N is arbitrary. Now the following bound holds:

Theorem 2.3 (Squashed entanglement of a quantum channel [2]). For any quantum
channel T : My, — Mgy, we have

Qo (T) =Po(T) = Eg(T)

where Egy (T) = sup{E‘éI/ZB (TA_)B (,OA/A)) :paa €D (@dA’ ® ([jdA)}.

To our knowledge it is currently not known, whether Egq (T) is a strong-converse
bound on either @, (T) or P (T).

Finally, another bound is based on the entanglement cost of a quantum channel [5].
For a bipartite quantum state psp € D (CdA ® €98 ) the entanglement of formation is
defined as

Ex®(oap) = sup Y piS (%A)
{pi;lVidap}

where the supremum is over all pure state decompositions pap = Y_; pilViXVilas
and 1//{4 = trp (|} ¥ |ap) denotes the reduced density matrix. The entanglement of
formation of a quantum channel 7' : My, — My, is defined as

Ep (T) = sup B (T477 (o.0))
Pa’A

where the supremum is over bipartite states par4 € D ((DdA’ ® (DdA) for any dimension
d 4 . The following theorem has essentially been proven in [5]:

Theorem 2.4 (Entanglement cost of a quantum channel). For any quantum channel
T : Mg, — Mg, the entanglement cost of T defined as

Ec(T) = lim lEF (T®") < Ep (T) (12)
n—oon

is a strong-converse bound on P, (T).

It has been shown in [30, Proposition 5] that

Esq (paB) < EF (paB)

for any bipartite quantum state pap € D (CdA ® € ) Therefore, it follows from
Theorem 2.3 that E¢ (T') is an upper bound on P, (T'). That Ec (T) is a strong-converse
bound on Q., (T') has been shown in [5, Theorem 24]. The inequality in the previous
theorem is [5, Lemma 14]. The fact that E¢ (T') is a strong-converse bound on P, (T)
has not been shown before, but follows easily from [5]. Specifically, the proof of [5,
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Theorem 24] generalizes to the private capacity (possibly with modified error bounds)
by simply using that P, (id>) = 1 is a strong-converse capacity” instead of using [5,
Corollary 22] in the original proof.

3. The Data-Processed Triangle Inequality

To establish new strong-converse bounds on the quantity P., we need the following in-
equality for the sandwiched «-Rényi divergences (see Definition 4). We call this inequal-
ity the data-processed triangle inequality as it resembles a triangle inequality (although
with changing distance measure) where some of the involved states are sent through a
positive trace-preserving map.

Theorem 3.1 (Data-processed triangle inequality). Let P : Mg, — Mg, be a positive
and trace-preserving map. For any o > 1 and any quantum states p, o' € D ((DdA) and
oceD ((DdB) we have

Dy (P(p)llo) < Do (plio”) + Dmax (P (0)|0).

Proof. Note that there is nothing to show whenever supp (p) < supp (a’ ) or
supp (P (o’ )) ¢ supp (o). If supp (p) < supp (a’ ) holds true, then positivity of P
implies supp (P(p)) < supp (P(a’)). Hence, supp (P(U’)) {CZ supp (o) has to hold
whenever both supp (P (p)) € supp (o) and supp (p) < supp (0/ ) are fulfilled. We can,
therefore, restrict the proof to the cases where all the divergences in the inequality are
finite, and w.l.0.g. to the case of full-rank o and o’.

Let p, o’ € D(C%) and 0 € D (C) be fixed quantum states with o and ¢’ of
full rank, and P : My, — My, a positive trace-preserving map. Consider some fixed
a > 1. By the definition of the (&, 6’) — (a, o)-norm (see (7)) we have

IT;" o P(P)l@o) < IT5" 0 P o Tolliwon—@an T, (0)l@o- (13)

Applying Theorem 2.1 for pg = go = 1 and p; = g1 = oo and 6 = é gives
— _ 1 _ 1—1L
IT; o PoTorllwon— o) < IT5 0 PoTarllé ooy 1.0y ITo 0 PoTorll (o, s0.0):
For any positive trace-preserving map we have
IT;'oPo Corll(1,6n—1,00 = IPll1=1 =1 (15)
and, using the Russo-Dye theorem [32, Corollary 2.9], we have
ITs" o PoTollo0) 0000 = Ty 0 P oTorllooos (16)
=Ty e Poly(Laylleo = IT5" 0 P06l (17)
Combining equations (13), (14), (15) and (17) we obtain

_ _ =L
||Fa] o P(P)ll(a,0) = ||Fg1 o P(0)lloo © IIFJ/I(p)II(a,o')

Taking logarithms, dividing by 1 — é and writing the resulting inequality in terms of the
sandwiched «-Rényi divergence (see (6)) finishes the proof for o > 1. Taking the limit
o — 1 gives the statement for D; = D. O

2 This follows e.g. from [9, Proposition 18] as id is an erasure channel with erasure probability 0.
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Note that Theorem 3.1 contains some well-known inequalities as special cases. Set-
ting o = P(c”) gives the data processing inequality (8) for the trace-preserving positive
map P. In the case where P = id, the identity map we get the inequality

Dy (pllo) < Da(,OHU/) + Dmax(a/”U) (18)

for any quantum states p, 0,0’ € D ((Dd), which for « = oo resembles a triangle
inequality for Dy, (Which can easily be shown directly).

We will now apply Theorem 3.1 to prove a statement quantifying how the «-relative
entropy of entanglement changes under partial application of a completely positive map:

Theorem 3.2. For any quantum channel T : Mg,, — Ma,, and any quantum state
pang € D(C4 @ Clv @ C8) fordy, dg € N arbitrary, we have

EABB (TA —B (,OAA’B)) < Emax (1) + E}Y B (pan'p)

forany o > 1.

Proof. Let T : Mg, — Mag,, be a quantum channel and paa'p € D(C% @ Clv @
©“8) a quantum state for some d4, dg € N. Furthermore let o > 1. For any o455 €
D(C9 @ C48 @ C98) and Ohap € D(C¥% ® €4 @ C98) an application of Theorem
3.1for P = TA 8 leads to

A/ ! A/ ’
Do (TYF (oanm)loans) = Do (T4 @} yp)lloans) + Do (pan sl ) -

Minimizing over o4pg € Seps.pp (C% ® C¥ @ C#) and restricting to states
Ohap € SePaaB (CdA ®CW ® CdB) leads to

EXBB (TA —B (,OAA’B)> < EABEB (TA —B (GAArB)> + Dy (paaBlloyap)

A:B'B A'—-B  ~ /
= omax o EREE (T2 Gau) + D (panslohg) -
GuapESep(AA’:B)

Now minimizing over o, ,, , € Sep4 4.5 (C9r ® €l @ C98) yields

A:B'B A'—= B’ A:B'B A'—>B /~
E; (T (,OAA'B)) <_ max Eax (T (GAA'B))
Gap/pESEp(AA’:B)

+EAB (panrp) .

Let 0 € Sepy 4.5 (C94 ® €% ® C?) attain the maximum in the previous equa-
tion. As o) is separable there is a decomposition of the form o) = Z;‘:l Di yf"‘ 4 ® 4)}'3
with k € N, probabilities p; € [0, 1] such that Zf:l pi = 1, and states {y[fx A,}le C

D(C% @ C9v) and {¢py)i_; C D(C%). Now let 'y, € Sep,.p (C @ C') be
such that

Eqf (TY% (i) = Do (T4 a0 174
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foreachi € {1, ..., k}. With these states we get
max ENEE (TA _)B/(UAA’B))
G appESEp(AA’:B)
o . A'—=B' [/ 1
= min D (T F @) loans)
o4p pESep(A:B’B)

IA

k k
Dmax (Z piTA/_)B,(V,f\A/) ® ¢}5‘ ” Z PifixB/ ® ¢;§’>

i=1 i=1

<, max, Do (T4 (/44 ® G lithp © 0))

= max D (TA'—>B’ i el ,)
ie(loky T (Yaa)lTap

max EAB (TA/_)B/()/AA/))

iell,.. .k} max

Emax (T) .

| /\

In the second line of the above computation we used that ZL] Di ri\ g ® ¢>g €
Sep.pp (C @ CI8' @ CI%) as t), 5, € Sepy.p (C94 ® C¥8') by definition. In the
third line we used that Dp,ax is joint quasi-convex [15, Lemma 9] and in the fourth line
that Diax (01 ® 01102 ® 02) = Dmax (011102) + Dmax (01/|02) for any quantum states

p1, P2 € D((Dd) and 01,00 € D ((Dd/> with supp [p1] € supp[p2] and supp [o1] &
supp [02] (see for instance [18, Theorem 2]). O

The following corollary bounds the «-relative entropy of entanglement of the state
obtained from alternately applying an LOCC-operation and a partial quantum channel
to some tripartite initial state.

Corollary 3.1. Let T : Mg,, — Ma,, be a quantum channel, m € N ,and dya;, dp; €
N dimensions for each i € {1, ..., m}. Consider LOCC-operations {L;}"_ | w.r.t. the
bipartition into A and B systems acting as

L;: MdA,- ® Mg, ® MdB,» — MdAi+1 @ Ma, ® Mds,-
foranyi € {1,...,m}and
m: MdAm X MdB/ & MdBm — MdA ® ./\/ldé
for arbitrary d;, dg € N. For any quantum state pa, o'g, € D ((DdAI ® C @ 48 )

consider the state

m—1

1_[ (TA’%B’ ) o TA’%B’ (pAlA’Bl) )

Then we have

ESP (15) < mEmax (T) + ESVB (o4 4p,)

forany o > 1.
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Proof. Fori € {1, ..., m} we define the states

i—1

UXI_)B/BI_ = l_[ (TA_>B OLi) o TA_)B (IOAIA/BI) .
k=1

By the data-processing inequality (8) it is easy to see that E, is non-increasing under
LOCC-operations as such operations preserve the set of separable states. Using this fact
and Theorem 3.2 alternately gives

/i:[? _ /i:[? (m)
E, (¢Aé) =E, (Lm (UA,,,B’Bm))

Am:B By, ((m)
= E; OB By
Am—1:B' By { _(m—1)
< Emax (T) + Eq" " O A1 B By

= (= D Emx () + ESE B (TY2F (o aom,) )
< mEmax (T) + E" P (pa,am,)
O

In the next section we will apply the previous corollary to the output state of a protocol
for P.,. This will establish the strong-converse bound in terms of Epax.

4. Strong Converse Bound on P,

To prove a strong converse bound on P, we will use some notions introduced in [9].
Consider a private state

_rrtw tw T
VAyByAgBy = UAkBkASBX (a)AkBk ® GAJ‘BS) (UAkBkASBx)

where UXZ B.A, B, denotes a twisting unitary (see Definition 2.6). A privacy test corre-
sponding to ya, g, A, B, (see [9, Definition 6]) is a 2-outcome measurement given by the
POVM

(I A, By A, By LagBra, B, — Ta,Bua, B ) (19)

;
for the projector T4, p.a,B, = UXZBkAsBs (wa, B, ® Lap,) (UXZB](ASBS) . Tt can be
shown that a separable state only has a low probability of passing a privacy test (i.e. the
measurement (19) giving the outcome corresponding to ITx, p, 4, B,) corresponding to a
private state. More specifically (see [33, equation (281)] or [9, Lemma 8]) for a privacy
test (19) corresponding to a private state y4, p, A, 8, With K-dimensional key part (i.e.
da, = dp, = K as in Definition 2.6) it holds that

1

tr (TT A, B Ay B, OALB A By) < e (20)

for any separable state o4, . A,B, € S€Py,4,:B,B, ((DdAdex ® €985 ). At the same

time the probability of a state passing the privacy test can be related to its distance to
the private state. The following Lemma has been shown in [9]:



834 M. Christandl, A. Miiller-Hermes

Lemma 4.1 (Lemma 7 in [9]). Let pa, 5, 4.5, € D ((DdAk ® O @ C4 @dsx) be

a quantum state and Tl a, p A, B, the projector appearing in the privacy test (see (19))
corresponding to a private state YA, B, A, B,- 1hen

tr (TLa, BL A, B, PA BL A By ) = F (DAL BLASBy» VAL B A B,)

where F(p,0) = ||ﬁﬁ||% denotes the fidelity.

Now we can prove a bound on the error of private state generation for protocols
assisted by classical communication. The proof follows a method given in [19] and uses
ideas from [9].

Lemma 4.2 (Bound on private communication error). Let T : Mgy,, — Ma,, be a
quantum channel and o € (1, 00). For any k,m € N the error € > 0 in an (k,m, €)-
coding scheme for private state generation assisted by classical communication (as in
Definition 2.7) fulfills

€ > 1 — 25t k=mEnu(T))

Proof. Let ¢g’g e D ((Ddzi ® (Ddé) denote the output state of the (k, m, €)-coding
scheme, i.e.

m—1

(m) __ A'—=B’ ) A'—=B ( (1)
¢AB = mol_[(T oL,)oT (pA|A/Bl)
i=1
for LOCC-operations {L;}/L, and initial state ps,a'B, € Sepy, a5, (CdAl QT @

(DR 1) as in Definition 2.3. Note that by the form of qﬁ%"g we can apply Lemma 3.1 to

show L
E&F (97) < mEms (T) @1
where we used that by separability E& B (pill) " Bl) =0.

By assumption (from Definition 2.7) we have d; = da,da, and dy = dp,dp,
with ds, = dp, = 2k and da, = dp,, and there exists a private state ya, g, A,B, €
D (€% ® C“s) with 2*-dimensional key part (see Definition 2.6) such that

1
€= 1953 — vausas . (22)

Let l'[ff) By A, B, denote the projector in the privacy test corresponding to y4, B, A, B, (see
(19)). Then by Lemma 4.1 we have

o ® ) (m)
F=u (nAkBkASqusAé) > F(@U yx) (23)

Now we define a binary flag channel B : D (C% @ C98) — M, by

B(X) =tr (ng‘szAstx) 1)(1] +tr ((Mwmxm - ankaAsBs)x) 10)(0]
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where |0), |[1) € C? denote the computational basis states. For any separable state
0ip € S€Pi.; ((Ddfi ® (Ddt?) we can compute

Do (#505) = D (B (05 ) 18 (045))
110g (Fa = 4 (1 = Fy*(1 _p)l—a)
1 L log, (Fa - a)
1 (YT
7 log, (F (2—k> )

¢ 1 log, (F) +k.

v

v

Here we introduced p = tr (a 1B HX‘I)}) and used the data-processing inequality (8) of

the sandw1ched «-Rényi divergences for the first inequality. In the last inequality we
used p < 5 which follows from (20) and separability of o 7 5.

M1n1m1z1ng over all separable states 0 ;5 € Sep ;.5 ((DdA ® (Ddé) on the left-hand-
side of the previous equation and using (21) gives

Emax (T) = EP (91) = —— logy(F) +£.

By applying the Fuchs-van-de-Graaf inequality [34, Theorem 1] and (23) we get

—JF@ y) = 1= VF = 1275 k-mEan (D)

for the communication error € from (22). O

Theorem 4.1. Let T : Mg,, — Ma, be a quantum channel. Then the quantity
Emax (T) is a strong-converse bound on P (T).

Proof. Consider R > Enax (T) such that for each v € N there exists an (k,, m,, &,)-
coding scheme for private state generation assisted by classical communication (as in

Definition 2.4) with m, — oo as v — oo and R = lim,_, ,];—” There existsa é > 0
and a vy € N such that

kv
— > Enax (T) +6

my
for all v > vg. Therefore, using Lemma 4.2 we have for any v > vy and o > 1 that
€, > 1 — 2~ (o=my Emax (1))
>1—2"mmd |

as vy — oQ.
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Finally we can regularize the above bound. Consider the regularized max-relative
entropy of a quantum channel 7' : My,, — Mg,

!
EX (T):= lim. ;Emax (7).

As a special case of [9, Theorem 13] (which can also be shown directly following the
proof of [35, Theorem 6] for the quantity En,x) we have for any n € N

Emax (T®n) < nEmax (T) +da logy(n).
Dividing by » and taking the limit n — oo implies
Eqx (T) < Emax (T).

We can therefore improve the bound from Theorem 4.1 (which is in particular an up-
per bound on P.,) by regularization. Note that by Definition 6.2 we have P, (T) =
lim, o %72_) (T®”). Applying the bound from Theorem 4.1 for the channels 7®" and
noting that Q., < P, (by Definition 6.2) implies:

Corollary 4.1 (Regularized upper bound on P..). For any quantum channel T : Mgy, —
Ma,, we have

Qu(T) = Po(T) < Eqy (T) < Emax (T).

max

5. Properties of Epax (T)

5.1. Non-lockability. Anentanglement measure is called non-lockable [36] if tracing out
a subsystem of dimensiond € N can only change the measure by an amount logarithmic
in d. Here we show that this is the case for the max-relative entropy of entanglement (cf.
Theorem 5.1). As a consequence we show that for a quantum channel 747 8¢ : My =
M e the difference of the quantities Emay (T475€) and Eqay (trc o TA75C) can
be at most logarithmic in dc. We start with an elementary lemma which is probably
known:

Lemma 5.1. For some k € N consider a convex combination pap = ZL] pg,oi‘ g of
bipartite quantum states ,ofw eD ((DdA ® (DdB) and p; € [0, 1] fori € {1, ..., k} such
that Zle pi = 1. Then we have

k k
Z Pi Erﬁaf ()023) = E{?laf (paB) + Z Di Dmax ()023 ”)OAB) .
i=1 i=1

Proof. Given states p; € D (€44 @ C9) fori € {1,...,k}and p = 3"5_, pipl, , with

k< [0, 1] fulfilling Z;(:l pi = 1. Note that applying Theorem 3.1

probabilities {p;};_;
for P = id; and @ = oo gives

Dax (pixB“UAB) < Dmax (paBlloap) + Dmax (;OZBH,OAB)
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for any states 045 € D (C9 ® C¢). Minimizing over o5 € Sep,.z (C ® C¢)
leads to

Er?mx <pfAB) = Erﬁcg (pAB) + Diax <pilB ”10) .

Finally multiplying the above inequalities by p; for each i € {1, ...k} and summing
over i leads to the statement of the lemma. 0O

With the previous lemma we can show that the max-relative entropy of entanglement
is non-lockable. The argument is similar to an argument given in [36] for the relative
entropy of entanglement.

Theorem 5.1 (Non-lockability of the max-relative entropy of entanglement). For any
tripartite state pagp € D ((Ddf‘ ® T g (Ddﬂ’) we have

EABE (papp) — ENE (pap) < 21ogy(dp).

Proof. Note that

1g4,,
PAB ® dB =/ (]ldAB ®U) PABB (]ldAB ®U)TdU
B’ dp
@ ,
“k Z (i @ Ui) pagp (Layy ® Ui)k
i=1
where the integral is with respect to the Haar-measure on the unitary group Uy,,, and
where we used unitaries (U; )le forming a unitary 2-design (see [37]). Applying Lemma
5.1 for the above convex combination gives

2

i=1

/! / d /
ENSE(( ( La,, @ Ui) papp (Layy ® Ui)T) EnBE <,0A ® d,:/ >

?\“Ir—

k
1 14,
< Z z max <(]1dA3 ® Ul) PABB’ (1dAB by Ul) ||/0AB ® dLlj)

1a,
= Dpax | paBB ll0aB ® d
B,

<2log, (dg) .
Here we used that Dy, is invariant under unitary transformations applied to both of its

arguments, and that pagp’ < dp'pap ® 1a,,, which by (5) implies the last inequality.
Finally note that

Erﬁde ( dB ) - max (IOAB)

by monotonicity under local operations. O

Finally by applying Theorem 5.1 to the quantity Ep,x (see (9)) we obtain the follow-
ing:



838 M. Christandl, A. Miiller-Hermes

Corollary 5.1. Let T4~ BC . My, = Mg, @ My, be a quantum channel and consider
the reduced quantum channel TA78 = trc o TA7BC Then

Emax (TA%BC) < 2log,(dc) + Emax (TA%B)

The previous corollary is used in Sect. 6.1 to show that the bound from Corollary 4.1
improves on both the transposition bound (see Theorem 2.2) and the squashed entan-
glement bound (see Theorem 2.3).

5.2. Simplified upper bounds. The optimizations over input states and separable states
make it hard to compute Enax (T) (see (9)) for a concrete quantum channel ' : My, —
M. In the following we will give a slightly simpler bound in terms of the quantity
Bax (T) = min{Dpax (Cr|ICs) : S MdA g MdB
entanglement breaking quantum channel}.
Here Cy and Cg denote Choi matrices (see (3)) of the channels 7 and S. Recall
that a quantum channel S : Mg, — My, is called entanglement breaking [38] iff
SA=B (p4r4) is separable for any bipartite state py4 € D ((EdA’ ® (UdA) and where A’

is a system of any dimension. This is equivalent to separability of the Choi matrix Cs.

Note that since trg (Cs) = 14,,/da’ (where we used that Cg = §A—B (war4) now for
ds = da) the above quantity is in general different from Eé‘l;{f (Cr).

Theorem 5.2 (Simplified upper bound). For a quantum channel T : Mg, — Mg, we
have

Emax (T) < Bmax (T) .

Proof. Let S : My, — My, be an entanglement breaking channel. For any bipar-
tite quantum state par4 € D ((E‘lA’@@dA) the output state S48 (py/4) is separable.
Therefore we have

EpE (TA_)B (pA/A))
= inf(Dax (T4 (paa) o) : o € Sepyp (O @ C7))
= Dunax (T 5 (o) I1S°7F (o00))
=inf(h > 0: 7478 (para) 22878 (parn)).

The condition in the last infimum is certainly fulfilled if the linear map 2*S — T is
completely positive (in this case the condition holds for any state p4/4). Expressing
complete positivity of this linear map in terms of the Choi matrix [13] yields

EAZ (1478 (par)) < inf{h 2 0 Cr < 2*Cs) = Dyan (CrlICs).
where C7 = TA78 (w4 4) denotes the Choi matrix of T (and Cs the Choi matrix of
S). As the previous bound holds for any input state p4’4 and any entanglement breaking
channel S : My, — My, the proof is finished. O
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6. Applications

6.1. Flower channels. Here we will compare the bound from Corollary 4.1 to previously
known bounds. Numerical computations show that for the qubit depolarizing channel, the
qubit erasure channel, and the qubit amplitude damping channel our bound does not out-
perform the transposition bound. It should also be noted that for channels implementable
from their image (see Definition A.1 in Appendix A) including all teleportation-covariant
channels, the bound based on the relative entropy of entanglement (see [6]) performs
better than our bound (based on the max-relative entropy of entanglement). However,
for many important quantum channels (e.g. the channels considered in this section and
in Sect. 6.2) it is currently not known whether they are implementable from their image.
Moreover, in Appendix A we provide an example of a quantum channel which cannot
be implemented from its image. Instead of estimating our bound for the commonly used
standard examples, we will consider a particular construction of quantum channels in
high dimensions. This exploits the non-lockability of our bound to outperform the previ-
ously known bounds. As the transposition bound (see Theorem 2.2) only upper bounds
Q. and not P, we will only consider the former quantity in this section.

Here we will use a particular family of channels (so called flower channels) for
which the transposition bound (see Theorem 2.2), the bound based on the squashed
entanglement (see Theorem 2.3), and thereby also the entanglement cost bound (see
Theorem 2.4) perform exceptionally badly. The reason of this bad performance is that
all these bounds are lockable [36]. The new bound based on the max-relative entropy
is non-lockable (cf. Corollary 5.1), which leads to an improvement compared to the
other bounds. Moreover, the improvement can be made arbitrarily large by increasing
the dimension of the channels.

For d € N consider the so called “flower” states given by

2
1
Pavsy = 35 Z (KIU Uj1i) liiykk g @iy € D (€7 @ €2 @ € © ©2)
i,k=1j,l=1
(24)
where U1 = 14 and U is the quantum Fourier transformation with entries
1 ,
(UZ) ik = _eZka/d
J «/3
for j,k € {1,...,d}. In [36] and [39] several entanglement measures have been com-

puted for these states. The squashed entanglement (see (11)) is given by (see [39, Propo-
sition 4])

I pR 1
ES P (0l ypn) = 1+ 3 loga(@). 25)
and the logarithmic negativity is given by (see [36, p. 2])
log, (||(p£A,BB,)TBB’ ||1) — log, (JE+ 1) . (26)

Note that the previous quantities are unbounded in the limitd — oco. However, the actual

entanglement in the states p £ g p 18 small, because tracing out the 2-dimensional system
B’ leads a separable state

d
1
Phag = o Z liiiilag ® |j)jlar

”M'\’
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The two marginals of a flower state ,oi:A/BB, fulfill pgg/ = p/];A, = To4/(Q2d).
Therefore, by the Choi—Jamiolkowski isomorphism [13] there is a unital quantum chan-

nel T;‘A/_’BB/ : Mog — Moy with Choi matrix p/{A,BB,. We call this channel a

flower channel. Note that the reduced channel T;‘A/—’B = trpy o T;‘A/_’BB, is entan-

glement breaking as its Choi matrix is the separable state p£ - This implies that

Emax (T;‘A,”B ) = 0 and using Corollary 5.1 and the non-regularized bound from

Corollary 4.1 we get
0 (TH4= ) < B (TP BF) <24 B (T4 7F) =2, 27)

We can also estimate the transposition bound (see Theorem 2.2) and the bound based
on the squashed entanglement (see Theorem 2.3). By (26) and (25) we have

togy (1955 0 T/ 5% ) = Togy (104 4p) "' 1) = loga (V +1)

/*> / /. ’ 2 1
E,, (T;\A BB) > ESélA ‘BB (P;fo/BB/) =1+ 3 log, (d).

These computations show that (27) improves upon the squashed entanglement and by the
discussion following Theorem 2.4 also upon the entanglement cost bound for d > 2. For
d > 9 our bound also improves upon the transposition bound. All these improvements
can be made arbitrary large by increasing the dimension d.

6.2. Non-repeatable private capacity. In [17] a general paradigm has been introduced
for sharing key using several quantum states sequentially connecting communication
nodes to bridge a possibly long distance between the communicating parties A and B.
Consider the case where only one intermediate node C connected to A and B by quantum
states ,oglé and ,o(c2 1)9 is available. The supremum of rates with which private key can be
established between A and B using arbitrary LOCC-operations acting on many copies

of the two states is the repeatable key rate o«.cwp (,oi‘lé, ,o(czl)g) (see [17)).

It is clear that in the same scenario any pair of states with distillable entangle-
ment [40] can be used to create entanglement between A and B by first distilling
maximally entangled states between connecting A, C and C, B and then using a
standard repeater protocol. A similar statement is false when distillable key (instead of
distillable entanglement) is considered. In particular there are bipartite quantum states
pa €D ((Dd RCrIRTCY® @2) (see [17]) from which private key can be extracted at
rate close to 1, but for which the repeatable key rate fulfills «.cp (04, pa) = 0.

Here we introduce the private repeater capacity of a pair of quantum channels. This
is a channel-version of the repeatable key rate with one intermediate node. Again the
two parties A and B communicate via an intermediate communication node C but now
use two quantum channels (from A to C and from C to B) and arbitrary classical
communication (between all three parties) to establish their secret key.

Note that this is a more realistic scenario than the state-version of [17]. It is conceiv-
able that in an actual communication scenario the communicating parties have quantum
channels to establish the quantum correlations for the creation of a secret key. But then
it would be artificial to restrict possible protocols to those creating a number of copies
of a fixed quantum state which are then used to obtain a secret key (see [17]). Here
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©2)
pﬁ{’/xqa‘ [0

Fig. 2. Repeater coding scheme for private state generation assisted by classical communication (cf. Definition
6.1) in the case of m! = 3 uses of the channel T} : MdA, — Mdc’ and m? = 2 uses of the channel
T M‘lc” — MdB’ and channel order w = (1, 1, 2, 1, 2). Here L denotes an LOCC-operation used to

create the separable initial state p,(qll) A'By

we consider general protocols allowing for different inputs for the quantum channels at
each stage of the protocol possibly depending on measurement outcomes and classical
information shared at earlier stages.

Even in this general framework there are channels with non-repeatable private ca-
pacity. In particular we give an example of quantum channels (which are derived from
the family of states considered in [17]) with private capacity P., close to 1, but arbitrar-
ily small private repeater capacity. We begin with the definition of the private repeater
capacity.

Definition 6.1 (Repeater coding schemes assisted by classical communication.) Let Ty :
My W Mdc/ and 7> : /\/ldc,, — /\/ldB, denote two quantum channels where C” and

C” denote systems controlled by a party C. A (k, m', m?, €)-repeater coding scheme
for private state generation assisted by classical communication (see Fig. 2) is given by a
wordw € {1, 2} form = m'+m? with |{i : w; = 1}| = m! (and |{i : w; = 2}| = m?),
a separable initial state

SepAlA/:Cl:Bl ((DdAldA, ® Cla ® CdBl) cifwp =1

M ¢
SepA1:C1C’:Bl ((DdA] ® Cderder ® (DdB]) , ifw; =2

I

and a set of LOCC-operations (w.r.t. the bipartition into A, B and C systems)
L;: MdA,» ®Mdcl, ®Md3i ® MdDwi — MdAi+1 ®Mdci+l ® MdBm ® MdEwi
foreachi € {1,...,m — 1} and
Ly : Ma,, ® Mac,, @ May, @ Map, —— Ma; @ Ma,.

Here we set D1 = A’ (i.e. a system at party A) and D, = C” (i.e. a system at party C)
and in the same way E| = C’ (i.e. a system at party C) and E, = B’ (i.e. a system at
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party B). The dimensions du,, dp;, dc; € N and d; = dj are arbitrary. Furthermore,
we require the output state

m—1

I m? Dwi‘)Ewi Dy, —Ey
") = Lo [ (7, o Li) o Ty~ (o)
i=1

to fulfill
1 1,2
_ (m*,m=)
6_§”¢Aé —viglh

for a private state y ; z with 2_dimensional key part (see Definition 2.6).

Note that the order (and number) of channel applications (specified by the word
w) in the protocols from Definition 6.1 is deterministic in the sense, that it cannot
depend on outcomes of measurements made during the protocol. This is to avoid the
complications from determining the rate of a protocol where the order and number of
channel applications is not fixed.

Definition 6.2 (Repeated private capacity assisted by classical communication). We
call R € IR* an achievable rate for repeated private communication over the quantum
channels 77 : Mg,, - Mg, and T, : My, — My, assisted by classical com-
munication iff for each v € IN there exists a (k,, m}), m%, &y)-repeater coding scheme
for private state generation assisted by classical communication (as in Definition 6.1)

2

5 — oo as v — oo such that R = min <limvﬁoo %, lim,_ 5 ’I;—"z) and

with m}, m
lim,_,» &, = 0. The repeated private capacity Pa.c«p(T1, T2) is defined tol be the

supremum of all such achievable rates.

Before stating our main result we will discuss some properties of the repeated private
capacity. For quantum channels 77 : Mg,, — Mg, and T : Mgy, — Mag,, consider
a sequence of coding schemes for P4«.c«.p(T1, T2) achieving a rate R > 0. By com-
bining the parties A and C (or C and B) any such sequence can be transformed into a
sequence of coding schemes for P, (T») (or P (T7)) achieving at least the same rate
R > 0. Therefore the following bound holds

Pascop(T1, T2) < min(Ps (T1), Po (T2)) . (28)
We also have the following lemma similar to [17, Lemma 12]:

Lemma 6.1 (Transposition trick). Let Ty : Mg,, — Mg, and T : Ma., — Ma,,
be two quantum channels such that ¥4 v o1 and T> o Vd, are quantum channels as
well (here Vg : Mg — My denotes the matrix transposition in any fixed basis). Then
we have

Paocos(Tt, T2) = PaocoBWdy o Ti, T2 0 U4,.,)-

Proof. The proof goes by transforming any protocol for the channels 77 and 7> into
a protocol for the channels 77 = ﬂdc, oTyand To = T> o ﬁdc,, leaving the output

state unchanged. For m', m? € N consider a word w € {1,2}" for m = m! + m?
with |{i : w; = 1}| = m! (and |{i : w; = 2}| = m?). Now consider a protocol for
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repeated private state generation over the quantum channels 77 : My Wihne M,,gc, and
T : Mdc// — ./\/ldB, assisted by classical communication as in Definition 6.1 where
w specifies the order of channel uses. This protocol is given by a the set of LOCC-
operations {L;}{" | (w.r.t. to the parties A, B and C) and initial state oW, creating the
output state (see Definition 6.1)

Dw.—>Ew. Dw —>Ew
¢(m m — Lm o 1_[ (Tu); i i 5 Lt) o Tw] 1 1 (p(l)> .
i=1

For eachi € {1, ..., m — 1} we can define new LOCC-operations by

L,‘ = ﬁé_ﬂ oL;o ﬁé‘f

where we denote by c 7 all systems at party C in step i after the channel (either 77 or 7»)

has been applied (see Definition 6.1). Similarly we denote by Cis1 all systems at party
C before the channel has been applied. The L; are indeed LOCC-operations, which can
be seen from writing L; in its Kraus-decomposition (according to (10)) and applying
the partial transpositions. In the final step we define

imZLmoﬁé,,

which is again LOCC (w.r.t. to the A, B and C systems) as there is no C system at the
output of this map. We also define a new initial state 51 by

70 =0 (07). (29)

which is a state since p'! was chosen to be separable (see Definition 6.1).

Now note that the LOCC-operations {L; J7L, with initial state s define a new
protocol for repeated prlvate state generatlon (w1th the same word w as before) for the
transposed channels T1 = Uy o © T, and Tz =T oty o The output state of the new
protocol can be computed and is given by

m—1
T “’Dw- Ew- T ~ Dy Ey ~
¢(m m — Lm ° l_[ (Tw, i B OLi) o Tw1 17 Ewy (p(1)>
i=1
- "‘Dw[-_)Ew[ Duv —Ey
=Lyo l?c, o l_[ (Twi o ﬂém oL;o 19@1_,) oTy," K (l?él (p(l)>)
i=1

Dwi%Ew _>Ew L 2
—L,o ]_[ (Tw,. Li) i <p<1>) — )

where we used that

—>Eul

~ Dy, —
P¢r 0 T, 0 B¢ = =T,

for each i € {1,...,m}. This shows that any protocol for the channels 77 and 7>
corresponds to a protocol for the channels 9,4 o1 and 7> o ¥y - with the same output
state and hence the same error. Therefore, the achievable rates for both scenarios are the
same and so are their capacities. O
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We will need a particular state constructed in [17]. Consider the state p; €
D (Cl @ € @ C9% ® C9%) for dy = dg = d and dyy = dp = 2 defined as

(1 - p) ® 4 0 0 (1 - p)X

_! 0 pNYYT 0 0

S 0 0 pAWYTY 0

(1= p@)X’ 0 0 (1 - pd)i @ La
(30)
Here we used p(d) = T and matrices
Z u,/|l] (Jjil
dfl ,j=1

d
1 i
Y= > uiliikjl

i,j=1

where U = (u;;);; denotes the quantum Fourier transform given by

U

U|k Z ﬂl]k/d|J

The state p; has been constructed such that it has positive partial transpose, but it is also
close to a private state. More specifically we have

2
— <2p() =
loa — y2li1 p(d) Jiil

for the private state

X
0
0

el eNeNel
el e NNl

1, 14
s
with 2-dimensional key part (see [17]). Now we can state the main result of this section:

Theorem 6.1 (Non-repeatable private capacity). There is a quantum channel Ty : M>®
Mg — Mo ® My such that

1
Po(Ty)>1—h -1,
(Ta) 2(\/3_'_1)

but

1
Paocos (Tq, Ty) <log, (1 + m) -0

asd — o0o. Here ha(x) = —xlog, (x) — (1 —x) log, (1 — x) denotes the binary entropy.
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Proof. Note that trgp (p4) = % ® ]ld—", which implies that pg (see (30)) is the Choi
matrix [13] of a quantum channel 7;. Moreover, since p; has positive partial transpose

both linear maps 4 o T; and T o ¥4 are also quantum channels. The private capacity
of T, fulfills

1
PoTy) = Ko (pa) = 1 — hz(m)

where the second inequality has been proved in [17, p. 27]. In order to show the second
statement in the theorem we note that by Lemma 6.1 and (28)

Paocos Ta, Tg) = Paoco (P2a 0 Ty, Ty 0 924) < Pos (92a 0 1y) .

By the non-regularized bound from Corollary 4.1 and the simpler bound from Theorem
5.2 we have

Ty
Po (924 0 Ty) < Emax (P24 © Ty) < Bmax (924 © Ta) < Dmax (de i ||CS)

where we choose the separable Choi matrix

(1-pdnle el 0 0 0

Coe 1 0 2p(VYYT 0 0

ST 21+ p(ay) 0 0 2p(@VYTY 0
0 0 0 (1-pdni el

It can be easily checked that Cy is the Choi matrix of an entanglement-breaking channel
S. Note that

(1-pani el 0 0 0

oTws _1 0 p(d)VYYT p(d)Y 0

d 2 0 p@Yt  pdVYTY 0
0 0 0 (1= p)i ® 4.

and a straightforward computation shows that Dpax (pg’” Ic s) <log,(1+p(d)). This
implies that

Paoceos (Ta, Ta) <logy(1+ p(d)) =log, (1 +

ﬁ1+1>,

7. Conclusion

We established a new inequality involving the sandwiched «-Rényi divergences and used
it to study private communication via quantum channels assisted by classical communi-
cation. Specifically, we proved a strong-converse bound on the private capacity assisted
by unlimited classical two-way communication. Moreover, this is the first such bound
that is non-lockable. We exploited this fact to provide examples of quantum channels
for which our bound improves on the transposition bound (Theorem 2.2), the squashed
entanglement bound (Theorem 2.3) and the entanglement cost bound (Theorem 2.4).
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Furthermore, we used the bound to analyze a quantum repeater version of the private
capacity.

There are some open problems and directions of future research. The main open
problem is to show that the relative entropy of entanglement of a quantum channel
(instead of the max-relative entropy of entanglement, see (9)) is an upper bound (and
possibly a strong-converse bound) on P.,. So far, this bound has only been shown for
teleportation-covariant quantum channels [6]. Such a result might be obtained from the
bound in Theorem 4.1 (or Corollary 4.1) using a smoothing technique (cf. [27]).

It should be noted that quantities similar to (9) for different entanglement measures
(replacing the max-relative entropy of entanglement) based on the sandwiched «-Rényi
divergences have been studied before. In [35] the «-Rains information of a quantum
channel (based on a generalization of the Rains bound on distillable entanglement [41])
has been introduced. Here instead of optimizing over separable states leading to arelative
entropy of entanglement (cf. Definition 2.1) the optimization runs over a larger set (the
so called Rains set) of positive matrices (see [35] for details). To our knowledge it is not
known whether the «-Rains information (for any @ > 1) gives a strong converse bound
(or even an upper bound) on Q... For @« = oo this follows almost from our work. The
only problem seems to be in the final part of the proof of Theorem 3.2, where we cannot
reduce the quantity involving the three systems A, B’ and B to the Rains information
(only involving two systems).

Finally, we should say that the main results from this paper can be extended to infinite
dimensional systems using the general framework of non-commutative L ,-spaces [42].
This will be contained in future work.
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Appendix A: Implementability of Quantum Channels via LOCC Operations

Here we study the class of quantum channels implementable via LOCC-operations
from a bipartite state shared between the communicating parties. For such channels
the interactive protocols of Definition 2.3 reduce to protocols involving only LOCC-
operations performed on copies of the fixed state used for the implementation (see
[12]). It is easy to see [6,9] that the distillable entanglement (key) of this state gives
an upper bound on the performance of such protocols in the cases of quantum (private)
communication.

The reduction of protocols described above is especially interesting when the state
used for implementation of the quantum channel is itself preparable using the quantum
channel exactly once (see below for a precise definition). This holds e.g. for teleportation-
covariant channels (see [6]). In this case the capacities Q., and P., of the channel
are equal to (not only upper bounded by) the distillable entanglement and distillable
key respectively of the state used for implementation. Moreover, since this state can
be produced using the channel, entanglement measures (e.g. squashed entanglement,
relative entropy of entanglement, etc.) of the state can be related to the corresponding
quantities of the channel (see also Theorem A.l below). In this way [6,9] derive their
upper bounds on the private capacity for particular classes of channels.
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The quantum channels implementable from states using the teleportation protocol
have been characterized in [43]. However, in the case of general protocols such a char-
acterization is still missing, and it is not known which quantum channels can be imple-
mented in this way. Here we give an example of a quantum channel, which cannot be
implemented by any LOCC-protocol using a state preparable by only a single use of the
quantum channel itself. We begin with a definition:

Definition A.1. We call a quantum channel 7' : My, — My, implementable from

its image if there exists a bipartite quantum state o474 € D ((DdA” ® (DdA’) for some
dyr € N and dys = da and an LOCC-operation A : My,4,, ® Ma, — Mgy for
dp = dp with respect to the bipartition into A and B systems such that

TA=8 (pp) = A E=E (py @ Gy @ TA™F) (0a0a))  GBD)

for any ps € Dy,.

Consider an LOCC-monotone EA8 : D (C% @ C9%) — R for bipartite states.
Formally, E4*8 is a family of functions depending on the dimensions d4 and dp de-
creasing under LOCC-operations applied to the input (LOCC with respect to the chosen
bipartition A : B). To simplify notation we will omit the dependence on the dimensions.
Now we define an associated quantity for quantum channels 7' : My, — My, by
setting

E(T) = sup ENB ((idAr ® TA”B) (,oA,A)) .

PA’A

where the supremum is over states p4/4 € D ((DdA/ ® (DdA) with arbitrary d4» € IN (note
that this quantity is not finite in general, but it will be in the examples we consider). We
have the following simple consequence for quantum channels implementable from their
image:

Theorem A.1. For any LOCC-monotone E4*8 and any quantum channel T : My =
My, implementable from its image, i.e. of the form (31) for some state oarp €
D ((DdA” ® (DdA’), we have

E(T) = EA"F ((idAw ® TA/”B/) (aA”A/)) .

Proof. The inequality “>"is clear. As EA*8 is an LOCC-monotone we have
E(T)= sup pA"B ((idAW ® TA»B) (/)A’”A))
PAM A

— sup EA"B ((idAw ® AAA”:B/_’B) (pAmA ® (idyr @ TAE) (o4 A/)))

PA A

A
»
[=1
)
&y
>
N
=

’ (PA”’A ® (idyr © TA ™) (UA”A’))

=E ((idA" ®T4~H) (GA”A’)> :

Here the last equality follows from the fact that removing or adding a local uncorrelated
system is an LOCC-operation.
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In the following we will only evaluate the LOCC-monotones Eg and Ey, on bipartite
states where the systems in the bipartition are clear from context. Therefore, we will
omit the indices denoting these systems to simplify notation. Now we can present the
main result of this appendix:

Theorem A.2. There exists a quantum channel T : My, — Mg, for some dimensions
da,dp € N that is not implementable from its image, i.e. there is no state o an and
LOCC protocol A such that T can be written as in (31).

For the proof we will need some special states. The antisymmetric state oy €
D (C? @ C7) ford > 2 is defined as

Qg 1y @1y —Fy).

1
T dd-1)

In [44, Lemma 6] it is shown that for even d € IN

d+2
Eyq () < log, (%) - (32)

It has also been shown in [44, Corollary 3] that for every d > 2 we have

1 4
A, R ") 2 loes <\f3> -

Clearly, for any € > 0 this implies the existence of an N, € N such that

Eg (¢2") = n (log2 (@) - E) (33)

foralln > N.. We will also use the flower states p L{ from Sect. 6.1 considered as bipartite
states with respect to the bipartition into A and B systems (both 2d dimensional, see
(24)). Note that the squashed entanglement of the flower states has an easy formula (see
(25)). Furthermore, as the partial trace trp/ (pcj; ) over the 2-dimensional B’ system is

separable we have (using non-lockability of Eg, see [36]) that
Er(p]) =2 (34)
Finally observe that for any n,/ € N and dimension d = 2"/" we have
:=a5"' €D ((Dd ® @d) (35)

and
7] = pzfn,lln eD ((Dd ® (Dd) . (36)

Using the formulas for Eg and E, from above, and additivity of the squashed entan-
glement (see [30, Proposition 4]) we compute (with N 1 defined before (33))
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4 1 1
Eg(to) >n (10g2 (\/;) — 5) > En foralln > Ny

Eg (1)) <2

1

1 1 1
Esq ('L']) = E + El’l + En 10g2 (l) .

Therefore, choosing n, [ large enough we have

Eg (11) < Eg (10) (37)

Esq (t1) > Esq (0) - (38)
Proof of Theorem A.2. Choose n,l € IN large enough such that the states 7o, 71 €
D (C? ® €©?) (see (35) and (36)) for d = 21" satisfy (37) and (38). Now define two
channels Tp, T1 : Mg — M, with Choi matrices Cg, = 19 and Cr; = 71 (note that
these maps are indeed trace-preserving).

The quantum channel Ty is teleportation implementable (as the channel correspond-
ing to the antisymmetric state is Weyl-covariant), i.e. it is of the form (31) with o = 19
and A the teleportation protocol (see [12]). Therefore, we can apply Theorem A.1 to
conclude that

Egr (To) = Er (10)
Esq (To) = Egy (70)

Let B’ denote the 2-dimensional part of the output system of 7} corresponding to the
B’ system of | (which is a flower state, see discussion following (24)). Then trg: o T}
is entanglement-breaking (as its Choi matrix is separable) and using non-lockability of
Eg (see [36]) and the equations above we have

Er (1) <2 K Eg(w0) = Eg (T0) . (39)
For the squashed entanglement we obtain
Esq (To) = Esq (t0) K Esq (11) < Egq (Th) . (40)
Now consider the switch channel T : My ® My — My ® M; given by
T=Ty® Ph+T1 ® P,
with projectors P; : My — Mj given by P;i(p) = (i|pli)|i)i| for i € {0, 1}. In the

[Pl

following we denote by “a” a2-dimensional system at party A and by “b” a 2-dimensional
system at party B. These will denote the switch systems used for the quantum channel
T.As

(ida ® TA=5) (o) @ liNilo = (ida @ T4~ 5) (opra @ liNila)
for any pgrq € D ((DdA/ ® @dA) and i € {0, 1} we conclude that

Eg (Ti) < ER(T) (41)
Esq (Ti) = Esq (T). (42)
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Assume now that 7 is implementable from its image and let oavayr €
D ((DdA” Q Cla @ (DZ) denote the state used for the implementation as in (31). Note
that the dimension d4~ is arbitrary and we consider the joint system A’a’ as the input
(therefore taking the role of A" in (31)) for the channel. We can write

11
ij .
OAAa = Z Z XA”A’ ® li)XJjla
i=0 j=0
with matrices XX,,A, € Ma,, ® Mg,,. Positivity of o475/, implies positivity of X%Q,A,
and X Ll/, ar- Now we have

1

. 'y ! . ' .. o
(idar & T4 5Y) @prwa) = 3 (idar @ T4~ ) (X114 ) @ lidil
i=0
As o 47474 18 normalized we can write

(idA// ® TA/”/HBW) (caraar)
= p (idar @ T35 ) (0% ) @ 10001 + (1 = p) (idar @ T =) (o)) @111
43)

for p =tr (X%‘?,A,) € [0, 1] and states

mXX,,A,, iftr (XX,,A,) #O

0, else.

GA”A’ =

Note that p only depends on 0. Now applying Theorem A.1 (as E and Ej, are LOCC-
monotones) together with (43) and convexity of Ex and Ej, (see [30, Proposition 3] for
the latter) we obtain

Er(T) < pER(To) + (1 — p)Eg (T1) (44)
Esq (T) < pEsq (To) + (1 — p)Esq (T1) (45)
Finally, it follows from (41), (44) and (39) that
Egr (To) < ER(T) < pER (To) + (1 — p)Eg (T1) < Eg (T0) .

As Er (T1) <« Eg (Tp) this implies that p = 1. The same line of reasoning for the
squashed entanglement using (42), (45) and (40) gives

Esq () = Esq (T) = pEsq (To) + (1 — p)Esq (T) < Esq (T1).

As Egq (To) < Egq (1) this implies that p = 0 which is a contradiction to the previous
derivation. O

Note that the quantum channel 7 constructed in the previous example might be
implementable using LOCC-operations and a state that can be prepared from two or
more uses of the channel. This would be the case for example if the channel 77 (coming
from the flower state) would be implementable from its image. The reduction technique
for interactive protocols (see [6]) would still apply then, however relating Q.. (or P.,)
to distillable entanglement (or distillable key) of a more complicated state. It is then not
clear how to obtain e.g. the bound based on the relative entropy of entanglement of the
quantum channel from the methods of [6] without an additional factor depending on the
number of channel uses to prepare this state.
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