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Abstract: We find a strong-converse bound on the private capacity of a quantum chan-
nel assisted by unlimited two-way classical communication. The bound is based on
the max-relative entropy of entanglement and its proof uses a new inequality for the
sandwiched Rényi divergences based on complex interpolation techniques. We provide
explicit examples of quantum channels where our bound improves upon both the trans-
position bound (on the quantum capacity assisted by classical communication) and the
bound based on the squashed entanglement. As an application, we study a repeater ver-
sion of the private capacity assisted by classical communication and provide an example
of a quantum channel with high private capacity but negligible private repeater capacity.
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1. Introduction

The goal of Shannon theory [1] is to quantify the amount of information that can be
reliably transmitted using many copies of a communication channel. To protect the
information from errors induced by the channel, particular coding schemes may be
applied. For a given class of coding schemes a capacity can be defined quantifying
the optimal rate of reliable information transmission achievable using schemes from
the class. In quantum Shannon theory there are many different capacities describing
relevant coding scenarios where certain types of classical or quantum assistance are
allowed. Here we are interested in capacities where arbitrary classical communication
between the two communicating parties is allowed to assist the transmission of quantum
or private information.

For a quantum channel T : MdA → MdB we denote by Q↔(T ) (P↔(T )) its
quantum (private) capacity assisted by two-way classical communication. While it is
true that P↔(T ) is an upper bound on Q↔(T ) it is important to have simpler upper
bounds in terms of single-letter quantities only depending on the quantum channel T .
Not many such bounds on Q↔ and P↔ are known: In [2] the squashed entanglement
of a quantum channel has been defined and shown to be an upper bound on P↔ (and
therefore also onQ↔). The transposition bound (see [3]) has been shown to be a strong-
converse bound onQ↔ in [4]. Finally, in [5] the entanglement cost of a quantum channel
has been defined and shown to be a strong-converse bound on Q↔.

For particular classes of channels other upper bounds are known. Recently, the class
of teleportation covariant channels has received much attention in this context [6–11].
Special cases of such channels have been considered in [12], and recently more relevant
examples have been identified. In particular, this family contains the Gaussian channels
in infinite dimensions as an important subclass [6]. We will be interested mostly in the
finite-dimensional case. For a finite-dimensional teleportation covariant channel T the
capacity P↔(T ) is equal to the distillable key of the Choi–Jamiolkowski state CT [13]
corresponding to the channel (see teleportation stretching [6] for a generalization of
these arguments to the case of infinite-dimensional quantum channels). Using that the
relative entropy of entanglement ER is an upper bound on the distillable key [14] any
finite-dimensional teleportation covariant channel fulfills the bound (see [6])

P↔(T ) = K↔(CT ) ≤ ER(CT ) (1)

and this is also a strong-converse bound (see [9]). It is still an open problem whether
a similar bound based on the relative entropy of entanglement (possibly involving an
optimization over the input state of the partial channel) holds for arbitrary quantum
channels T .

In this article we establish an upper bound on P↔ for arbitrary quantum channels
in terms of the max-relative entropy of entanglement. Given a quantum channel T :
MdA → MdB its max-relative entropy of entanglement is defined as

Emax(T ) = sup{E A′:B
max

(
T A→B (ρA′ A)

)
: ρA′ A ∈ D

(
CdA′ ⊗ CdA

)
, dA′ ∈ N}. (2)

Here E A′:B
max denotes the max-relative entropy of entanglement of states [15,16]. Our

paper is structured as follows:

• In Sect. 3 we use complex interpolation techniques to prove a new inequality (the
“data-processed triangle inequality”) for the sandwiched α-Rényi divergence (see
Sect. 2.1 for a definition).
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• Using the data-processed triangle inequality we show in Sect. 4 that for any quantum
channel T : MdA → MdB the quantity Emax(T ) is a strong-converse bound on
P↔(T ).

• In Sect. 5.1 we show that Emax(T ) is non-lockable (see Corollary 5.1 for the precise
statement).Weuse this feature of our bound in Sect. 6.1 to give examples of channels,
where our bound improves upon the previously known bounds (transposition bound,
squashed entanglement bound and entanglement cost).

• In Sect. 5.2 we give a weaker upper bound on P↔(T ) for any quantum channel
T : MdA → MdB that is slightly easier to evaluate than our original Emax bound.
As an applicationwe then study a repeater version of the private capacity in Sect. 6.2,
where the communicating parties can use an intermediate repeater station to perform
private communication. We show that there are quantum channels T which have a
high private capacity, but where the repeated private capacity can be arbitrarily close
to zero. This is the channel version of a result demonstrated in [17] where states
connecting the three parties are given.

• In the Appendix we give an example of a quantum channel that cannot be imple-
mented via an LOCC-protocol from any state preparable by a single use of the
channel (see Definition A.1). This property is needed to obtain a bound similar to
(1) based on the relative entropy of entanglement using the arguments of [6].

2. Preliminaries

In the following we denote the complex d × d-matrices byMd and the cone of positive
matrices byM+

d . The d × d identity matrix is denoted by 1d . The set of d × d quantum
states (i.e. positive d × d matrices with trace 1) is called Dd = D

(
Cd

)
. Pure states

will be denoted as projectors using the notation |ψ〉〈ψ | ∈ Dd for |ψ〉 ∈ Cd with
〈ψ |ψ〉 = 1. On multipartite systems we will often use indices A, B, . . . to indicate the
different tensor factors. For example we would write ρABC ∈ D

(
CdA ⊗ CdB ⊗ CdC

)
for a tripartite state. We use the common notation of omitting indices to denote partial
traces (i.e. the state ρA would be the marginal of ρABC on the A system). For general
linear maps T : MdA → MdB we write T A→B (ρAA′) ∈ D

(
CdB ⊗ CdA′ ) to denote its

partial application to the A system of the state ρAA′ . In this sense the Choi matrix [13]
of a linear map T : MdA → MdB is denoted by

CT = T A→B (ωA′ A) , (3)

where ωA′ A ∈ D
(
CdA′ ⊗ CdA

)
for dA = dA′ denotes the maximally entangled state in

the computational basis (i.e. ωA′ A = |�A′ A〉〈�A′ A| for |�A′ A〉 = 1√
dA

∑dA
i=1 |i A′ i A〉).

We will also use the notation ωd ∈ D
(
Cd ⊗ Cd

)
to denote this state in the cases where

the concrete systems are not important. Most linear maps we will use are quantum
channels (i.e. trace-preserving and completely positive [13]). A well-known example of
a positive, but not completely-positive, map is the transposition ϑd : Md → Md given
by ϑd(X) = X T in the computational basis. We will also use the notation ϑA to denote
the partial transposition on a particular system (named A in this case).

2.1. Sandwiched α-Rényi divergences. For quantum states ρ, σ ∈ D
(
Cd

)
and a pa-

rameter α ∈ (1,∞), the sandwiched α-Rényi divergence [18,19] is defined as
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Dα (ρ‖σ) =
{

1
α−1 log

(
tr

[(
σ

1−α
2α ρσ

1−α
2α

)α])
, if supp[ρ] ⊆ supp[σ ]

+∞, otherwise.
(4)

In [18] it has been shown that the limiting cases α = 1 and α = ∞ of Dα coincide with
quantities studied before: In the limit α → 1 we have

Dα (ρ‖σ) → D (ρ‖σ) = tr
[
ρ (log(ρ) − log(σ ))

]

which is the usual relative entropy [20]. We will sometimes write D1 to denote the
relative entropy. Taking the limit α → ∞ gives Dα (ρ‖σ) → Dmax (ρ‖σ) which is
the max-relative entropy [15]. For quantum states ρ, σ ∈ D

(
Cd

)
this quantity can be

defined in two equivalent ways as

Dmax (ρ‖σ) = inf{λ ∈ R+ : ρ ≤ 2λσ } =
{
log

(
‖σ− 1

2 ρσ− 1
2 ‖∞

)
if supp[ρ] ⊆ supp[σ ]

+∞, otherwise
(5)

using the convention inf ∅ = +∞.
In [21] it has been noted that the sandwiched α-Rényi divergence Dα (see (4)) for

α > 1 can be written in terms of a non-commutative Lα,σ -norm ‖ · ‖α,σ defined as

‖X‖α,σ = tr
[∣∣∣σ 1

2α Xσ
1
2α

∣∣∣
α] 1

α

for any X ∈ Md and σ ∈ M+
d . With the function 
σ : Md → Md given by 
σ (X) =

σ 1/2Xσ 1/2 we can write

Dα (ρ‖σ) = 1

α − 1
log

(
‖
−1

σ (ρ) ‖α
α,σ

)
(6)

for any quantum states ρ, σ ∈ D
(
Cd

)
with supp (ρ) ⊆ supp (σ ) using the Moore-

Penrose pseudo-inverse [22] in the case where σ is not full-rank.
For a linear map L : Md1 → Md2 we will use norms of the form

‖L‖(p,σ )→(q,σ ′) = sup
X∈Md1

‖L(X)‖q,σ ′

‖X‖p,σ

, (7)

which are the operator norms of the operator L as a mapping from the space (Md1, ‖ ·
‖p,σ ) to (Md2 , ‖ · ‖q,σ ′). For σ = 1d1 and σ ′ = 1d2 the above definition gives the
usual p → q-norms and we will use the common notation ‖ · ‖p→q in this case. The
main technical tool we will use, is the following non-commutative Riesz–Thorin-type
theorem. It should be noted that similar interpolation theorems have a long history
(see [23]).

Theorem 2.1 (Riesz–Thorin Theorem for L p,σ spaces [21]). Let L : Md1 → Md2 be
a linear map. For 1 ≤ p0 ≤ p1 ≤ ∞ and 1 ≤ q0 ≤ q1 ≤ ∞ and θ ∈ (0, 1) we define
pθ via

1

pθ

= θ

p0
+
1 − θ

p1
.

and qθ analogous. Then for positive definite matrices σ ∈ M+
d1

and σ ′ ∈ M+
d2

we have

‖L‖(pθ ,σ )→(qθ ,σ ′) ≤ ‖L‖θ
(p0,σ )→(q0,σ ′)‖L‖1−θ

(p1,σ )→(q1,σ ′).
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A consequence of the previous theorem is the monotonicity of the sandwiched α-
Rényi divergences under quantum channels for α > 1 (see [21]), i.e. the inequality

Dα (T (ρ)‖T (σ )) ≤ Dα (ρ‖σ) (8)

for any quantum channel T : Md1 → Md2 and quantum states ρ, σ ∈ DdA . Inequal-
ity (8) also holds for trace-preserving positive maps T as shown in [24] and for quantum
channels when α ≥ 1

2 [18,25].

2.2. α-Relative entropies of entanglement and related measures. For any α ≥ 1 we can
introduce an α-relative entropy of entanglement generalizing the usual relative entropy
of entanglement (also introduced recently in [9]).

Definition 2.1 (α-Relative Entropy of Entanglement). For a bipartite quantum state
ρAB ∈ D(CdA ⊗ CdB ) we define the α-relative entropy of entanglement as

E A:B
α (ρAB) = min{Dα(ρAB‖σAB) : σAB ∈ SepA:B

(
CdA ⊗ CdB

)
}

where SepA:B
(
CdA ⊗ CdB

)
denotes the set of separable states w.r.t. the bipartition

A : B.

Using the convergence of Dα it is clear that E A:B
α → E A:B

R as α → 1 for the relative
entropy of entanglement denoted by ER . Similarly we can take the limit α → ∞ and
obtain the max-relative entropy of entanglement1

E A:B
max (ρAB) = min{Dmax(ρAB‖σAB) : σAB ∈ SepA:B

(
CdA ⊗ CdB

)
},

which has been studied in [15,16,27]. For any α ≥ 1 the α-relative entropy of entangle-
ment can be used to quantify the transmission of entanglement over a quantum channel.
We will focus on the case α = ∞ and the following quantity (also recently introduced
in [9]):

Definition 2.2 (max-relative entropy of entanglement of a quantum channel). For a quan-
tum channel T : MdA → MdB we define the max-relative entropy of entanglement of
T as

Emax(T ) = sup{E A′:B
max

(
T A→B (ρA′ A)

)
: ρA′ A ∈ D

(
CdA′ ⊗ CdA

)
, dA′ ∈ N}. (9)

Using quasi-convexity of Dmax (see [15, Lemma 9]) and the Schmidt-decomposition
of pure quantum states it is not hard to show, that the dimension dA′ appearing in
the supremum can be chosen as the input dimension of the quantum channel. More
specifically, for any quantum channel T : MdA → MdB we get the following equivalent
expression

Emax (T ) = max{E A′:B
max

(
T A→B (|ψA′ A〉〈ψA′ A|)

)
: |ψA′ A〉〈ψA′ A| ∈ D

(
CdA′ ⊗ CdA

)
for dA′ = dA}.

In particular this shows that the max-relative entropy of a quantum channel is well-
defined and we will use a max instead of the sup in (9) to indicate that the optimum is
attained.

1 Also known as log-robustness [26].
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A

B

Fig. 1. Coding scheme assisted by classical communication (cf. Definition 2.3) in the case of m = 3 uses of
the channel T : MdA′ → MdB′ . Here L0 denotes an LOCC-operation used to create the separable initial

state ρ
(1)
A1 A′ B1

2.3. Quantum capacities assisted by classical communication. A quantum channel on
bipartite systems L : MdA ⊗ MdB → MdA′ ⊗ MdB′ is called implementable via
local operations and classical communications (w.r.t. bipartitions A : B and A′ : B ′ of
the input and output systems, respectively) if it can be written as a composition of any
number of channels L Aq :Bq→A′

q A′
c:B′

q B′
c
of the following form (X Aq Bq ∈ MdAq

⊗MdBq
):

L Aq :Bq→A′
q A′

c :B′
q B′

c
(X Aq Bq ) =

∑
i, j

(K A
i ⊗ K B

j )X Aq Bq (K A
i ⊗ K B

j )† ⊗ | j〉〈 j |A′
c
⊗ |i〉〈i |B′

c
.

(10)

Here K A
i : C|Aq | → C|A′

q | and K B
j : C|Bq | → C|B′

q | (i ∈ I, j ∈ J ) are Kraus operators
of quantum channels mapping system Aq to A′

q and system Bq to B ′
q respectively (i.e.∑

i (K A
i )†K A

i = 1Aq and
∑

j (K B
j )†K B

j = 1Bq ), and | j〉A′
c
and |i〉B′

c
are orthonormal

bases belonging to (effectively classical) systems Ac and Bc of dimension |J | and |I | (see
[28] for more details). In the following we will call a quantum channel implementable
via local operations and classical communications simply an LOCC-operation.

We can now define coding schemes assisted by classical communication:

Definition 2.3 (Coding schemes assisted by classical communication). Let T : MdA′ →
MdB′ be a quantum channel. A coding scheme assisted by classical communication with
m uses of the channel T is given by a separable initial state

ρ
(1)
A1 A′ B1

∈ SepA1 A′:B1

(
CdA1dA′ ⊗ CdB1

)

and a set of LOCC-operations {Li }m
i=1 (see also Fig. 1). Here

Li : MdAi
⊗ MdB′ ⊗ MdBi

→ MdAi+1
⊗ MdA′ ⊗ MdBi+1

for each i ∈ {1, . . . , m − 1} and
Lm : MdAm

⊗ MdB′ ⊗ MdBm
→ MdÃ

⊗ MdB̃
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are LOCC w.r.t. the bipartition into A and B systems for arbitrary dimensions dAi , dBi ,

dÃ, dB̃ . The output state of the coding scheme will be denoted by

φ
(m)

Ã B̃
= Lm ◦

m−1∏
i=1

(
T A′→B′ ◦ Li

)
◦ T A′→B′ (

ρ
(1)
A1 A′ B1

)
.

We will first state the definition of the quantum capacity assisted by two-way clas-
sical communication. In the presence of unlimited classical communication we can use
quantum teleportation [29] to turn any entanglement generation protocol into a quantum
communication protocol. Therefore, we can define the quantum capacity assisted by
two-way communication in terms of entanglement generation.

Definition 2.4 (Entanglement generation assisted by classical communication). Given
a quantum channel T : MdA′ → MdB′ consider a coding scheme assisted by classical
communication with m channel uses (as in Definition 2.3) given by LOCC-operations
{Li }m+1

i=1 , initial state ρ
(1)
A1 A′ B1

and output state φ
(m)

Ã B̃
∈ D

(
CdÃ ⊗ CdB̃

)
. Such a coding

scheme is called an (n, m, ε)-coding scheme for entanglement generation assisted by
classical communication iff the output dimensions fulfill dÃ = dB̃ = 2n and the output
state satisfies

ε = 1

2
‖φ(m)

Ã B̃
− ω2n ‖1.

Definition 2.5 (Quantum capacity assisted by classical communication). We call R ∈
R+ an achievable rate for quantum communication over the channel T assisted by
classical communication iff for each ν ∈ N there exists a (nν, mν, εν)-coding scheme
for entanglement generation assisted by classical communication (as in Definition 2.4)
withmν → ∞ as ν → ∞ such that R = limν→∞ nν

mν
and limν→∞ εν = 0. The quantum

capacity of T assisted by classical two-way communicationQ↔(T ) is defined to be the
supremum of all such achievable rates.

In a similar way we can define the private capacity assisted by classical two-way
communication. It has been shown in [14] that the tasks of private communication using
a quantum channel and public communication is equivalent to the task of distilling
private states using a coding scheme assisted by classical communication (see also [9]).
We will begin by defining these states:

Definition 2.6 (Private states [14]). A quantum state

γAk Bk As Bs ∈ D
(
CdAk ⊗ CdBk ⊗ CdAs ⊗ CdBs

)

with dAk = dBk = K and dAs = dBs is called a private state with K -dimensional key
part iff it is of the form

γAk Bk As Bs = U tw
Ak Bk As Bs

(
ωAk Bk ⊗ σAs Bs

)
(U tw

Ak Bk As Bs
)†

for some quantum state σAs Bs ∈ D
(
CdAs ⊗ CdBs

)
where we applied a twisting unitary

of the form

U tw
Ak Bk As Bs

=
dAk∑
i=1

dBk∑
j=1

|i〉〈i |Ak ⊗ | j〉〈 j |Bk ⊗ Ui j
As Bs
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with Ui j
As Bs

∈ UdAs dBs
unitary for any i, j . The systems Ak, Bk are called the key part

and As, Bs the shield part of the private state.

It can be shown (see [14]) that any private state with K -dimensional key part held by
two parties A and B can be used to generate at least log2(K ) secret bits shared between
the two parties (protected from any eavesdropper who might possess the purification of
the state). Note that in the above definition there might be more than log2(K ) secret bits
obtainable (i.e. the private state is not necessarily irreducible [14]).

Now we can define the private capacity assisted by classical communication as a
private state generation capacity.

Definition 2.7 (Coding scheme for private state generation assisted by classical com-
munication). Given a quantum channel T : MdA′ → MdB′ consider a coding scheme
assisted by classical communication with m channel uses (as in Definition 2.3) given by
LOCC-operations {Li }m+1

i=1 , initial stateρ
(1)
A1 A′ B1

andoutput stateφ
(m)

Ã B̃
∈ D

(
CdÃ ⊗ CdB̃

)
.

Such a coding scheme is called a (k, m, ε)-coding scheme for private state generation as-
sisted by classical communication iff the output dimensions factorize into dÃ = dAk dAs

and dB̃ = dBk dBs for dAk = dBk = 2k and dAs = dBs , and the output state satisfies

ε = 1

2
‖φ(m)

Ã B̃
− γAk Bk As Bs ‖1.

for a private state γAk Bk As Bs ∈ D
(
CdÃ ⊗ CdB̃

)
with 2k-dimensional key part.

Definition 2.8 (Private capacity assisted by classical communication). We call R ∈ R+

an achievable rate for private communication over the channel T assisted by classical
communication iff for each ν ∈ N there exists a (kν, mν, εν)-coding scheme for private
state generation assisted by classical communication (as inDefinition 2.7)withmν → ∞
as ν → ∞ such that R = limν→∞ kν

mν
and limν→∞ εν = 0. The private quantum

capacity of T assisted by classical two-way communication P↔(T ) is defined to be the
supremum of all such achievable rates.

In the remaining part of this section we will discuss some general upper and strong-
converse bounds on Q↔ and P↔. Recall that an upper bound B ≥ 0 on either Q↔
or P↔ is called a strong converse bound iff for any sequence of (nν, mν, εν)-coding
schemes (for ν ∈ N) leading to a rate R = limν→∞ nν

mν
> B the error fulfills εν → 1 as

ν → ∞. We will start with the transposition bound (originally introduced in [3]), based
on the matrix transposition ϑd : Md → Md , i.e. ϑd(X) = X T in any fixed basis.

Theorem 2.2 (Transposition bound [4]). For any quantum channel T : Md1 → Md2
we have

Q↔(T ) ≤ log2
(‖ϑd2 ◦ T ‖�

)

and the above bound is a strong-converse bound.

Another bound is based on the squashed entanglement introduced in [30,31]. Recall
the definition of the quantum conditional mutual information of a tripartite quantum
state ρAB E ∈ D

(
CdA ⊗ CdB ⊗ CdE

)
given by

I (A; B|E)ρAB E = S(ρAE ) + S(ρB E ) − S(ρE ) − S(ρAB E )
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where S(σ ) = −tr
(
σ log2(σ )

)
denotes the von-Neumann entropy of a quantum state

σ . Given a bipartite quantum state ρAB ∈ D
(
CdA ⊗ CdB

)
a quantum state σAB E ∈

D
(
CdA ⊗ CdB ⊗ CdE

)
is called an extension of ρAB iff σAB = ρAB . For a bipartite

quantum state ρAB ∈ D
(
CdA ⊗ CdB

)
the squashed entanglement [30,31] (w.r.t. the

bipartition A : B) is defined as

E A:B
sq (ρAB) = 1

2
inf{I (A; B|E)σAB E : σAB E ∈ D

(
CdA ⊗ CdB ⊗ CdE

)
extension of ρAB}

(11)
where the dimension dE ∈ N is arbitrary. Now the following bound holds:

Theorem 2.3 (Squashed entanglement of a quantum channel [2]). For any quantum
channel T : MdA → MdB we have

Q↔(T ) ≤ P↔(T ) ≤ Esq (T )

where Esq (T ) = sup{E A′:B
sq

(
T A→B (ρA′ A)

) : ρA′ A ∈ D
(
CdA′ ⊗ CdA

)}.
To our knowledge it is currently not known, whether Esq (T ) is a strong-converse

bound on either Q↔(T ) or P↔(T ).
Finally, another bound is based on the entanglement cost of a quantum channel [5].

For a bipartite quantum state ρAB ∈ D
(
CdA ⊗ CdB

)
the entanglement of formation is

defined as

E A:B
F (ρAB) = sup

{pi ,|ψi 〉AB }

∑
i

pi S
(
ψ A

i

)

where the supremum is over all pure state decompositions ρAB = ∑
i pi |ψi 〉〈ψi |AB

and ψ A
i = trB (|ψ〉〈ψ |AB) denotes the reduced density matrix. The entanglement of

formation of a quantum channel T : MdA → MdB is defined as

EF (T ) = sup
ρA′ A

E A′:B
F

(
T A→B (ρA′ A)

)

where the supremum is over bipartite states ρA′ A ∈ D
(
CdA′ ⊗ CdA

)
for any dimension

dA′ . The following theorem has essentially been proven in [5]:

Theorem 2.4 (Entanglement cost of a quantum channel). For any quantum channel
T : MdA → MdB the entanglement cost of T defined as

EC (T ) = lim
n→∞

1

n
EF

(
T ⊗n) ≤ EF (T ) (12)

is a strong-converse bound on P↔ (T ).

It has been shown in [30, Proposition 5] that

Esq (ρAB) ≤ EF (ρAB)

for any bipartite quantum state ρAB ∈ D
(
CdA ⊗ CdB

)
. Therefore, it follows from

Theorem2.3 that EC (T ) is an upper bound onP↔ (T ). That EC (T ) is a strong-converse
bound on Q↔ (T ) has been shown in [5, Theorem 24]. The inequality in the previous
theorem is [5, Lemma 14]. The fact that EC (T ) is a strong-converse bound on P↔ (T )

has not been shown before, but follows easily from [5]. Specifically, the proof of [5,
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Theorem 24] generalizes to the private capacity (possibly with modified error bounds)
by simply using that P↔ (id2) = 1 is a strong-converse capacity2 instead of using [5,
Corollary 22] in the original proof.

3. The Data-Processed Triangle Inequality

To establish new strong-converse bounds on the quantity P↔ we need the following in-
equality for the sandwiched α-Rényi divergences (see Definition 4).We call this inequal-
ity the data-processed triangle inequality as it resembles a triangle inequality (although
with changing distance measure) where some of the involved states are sent through a
positive trace-preserving map.

Theorem 3.1 (Data-processed triangle inequality). Let P : MdA → MdB be a positive
and trace-preserving map. For any α ≥ 1 and any quantum states ρ, σ ′ ∈ D

(
CdA

)
and

σ ∈ D
(
CdB

)
we have

Dα (P(ρ)‖σ) ≤ Dα(ρ‖σ ′) + Dmax(P(σ ′)‖σ).

Proof. Note that there is nothing to show whenever supp (ρ) � supp
(
σ ′) or

supp
(
P(σ ′)

)
� supp (σ ). If supp (ρ) ⊆ supp

(
σ ′) holds true, then positivity of P

implies supp (P(ρ)) ⊆ supp
(
P(σ ′)

)
. Hence, supp

(
P(σ ′)

)
� supp (σ ) has to hold

whenever both supp (P(ρ)) � supp (σ ) and supp (ρ) ⊆ supp
(
σ ′) are fulfilled. We can,

therefore, restrict the proof to the cases where all the divergences in the inequality are
finite, and w.l.o.g. to the case of full-rank σ and σ ′.

Let ρ, σ ′ ∈ D
(
CdA

)
and σ ∈ D

(
CdB

)
be fixed quantum states with σ and σ ′ of

full rank, and P : MdA → MdB a positive trace-preserving map. Consider some fixed
α > 1. By the definition of the (α, σ ′) → (α, σ )-norm (see (7)) we have

‖
−1
σ ◦ P(ρ)‖(α,σ ) ≤ ‖
−1

σ ◦ P ◦ 
σ ′ ‖(α,σ ′)→(α,σ )‖
−1
σ ′ (ρ)‖(α,σ ′). (13)

Applying Theorem 2.1 for p0 = q0 = 1 and p1 = q1 = ∞ and θ = 1
α
gives

‖
−1
σ ◦ P ◦
σ ′ ‖(α,σ ′)→(α,σ ) ≤ ‖
−1

σ ◦ P ◦
σ ′ ‖
1
α

(1,σ ′)→(1,σ )
‖
−1

σ ◦ P ◦
σ ′ ‖1−
1
α

(∞,σ ′)→(∞,σ )
.

(14)
For any positive trace-preserving map we have

‖
−1
σ ◦ P ◦ 
σ ′ ‖(1,σ ′)→(1,σ ) = ‖P‖1→1 = 1 (15)

and, using the Russo-Dye theorem [32, Corollary 2.9], we have

‖
−1
σ ◦ P ◦ 
σ ′ ‖(∞,σ ′)→(∞,σ ) = ‖
−1

σ ◦ P ◦ 
σ ′ ‖∞→∞ (16)

= ‖
−1
σ ◦ P ◦ 
σ ′(1dA)‖∞ = ‖
−1

σ ◦ P(σ ′)‖∞. (17)

Combining equations (13), (14), (15) and (17) we obtain

‖
−1
σ ◦ P(ρ)‖(α,σ ) ≤ ‖
−1

σ ◦ P(σ ′)‖1−
1
α∞ ‖
−1

σ ′ (ρ)‖(α,σ ′)

Taking logarithms, dividing by 1− 1
α
and writing the resulting inequality in terms of the

sandwiched α-Rényi divergence (see (6)) finishes the proof for α > 1. Taking the limit
α → 1 gives the statement for D1 = D. ��

2 This follows e.g. from [9, Proposition 18] as id2 is an erasure channel with erasure probability 0.
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Note that Theorem 3.1 contains some well-known inequalities as special cases. Set-
ting σ = P(σ ′) gives the data processing inequality (8) for the trace-preserving positive
map P . In the case where P = idd the identity map we get the inequality

Dα (ρ‖σ) ≤ Dα(ρ‖σ ′) + Dmax(σ
′‖σ) (18)

for any quantum states ρ, σ, σ ′ ∈ D
(
Cd

)
, which for α = ∞ resembles a triangle

inequality for Dmax (which can easily be shown directly).
We will now apply Theorem 3.1 to prove a statement quantifying how the α-relative

entropy of entanglement changes under partial application of a completely positive map:

Theorem 3.2. For any quantum channel T : MdA′ → MdB′ and any quantum state
ρAA′ B ∈ D(CdA ⊗ CdA′ ⊗ CdB ) for dA, dB ∈ N arbitrary, we have

E A:B B′
α

(
T A′→B′

(ρAA′ B)
)

≤ Emax (T ) + E AA′:B
α (ρAA′ B)

for any α ≥ 1.

Proof. Let T : MdA′ → MdB′ be a quantum channel and ρAA′ B ∈ D(CdA ⊗ CdA′ ⊗
CdB ) a quantum state for some dA, dB ∈ N. Furthermore let α > 1. For any σAB′ B ∈
D(CdA ⊗CdB′ ⊗CdB ) and σ ′

AA′ B ∈ D(CdA ⊗CdA′ ⊗CdB ) an application of Theorem

3.1 for P = T A′→B′
leads to

Dα

(
T A′→B′

(ρAA′ B)‖σAB′ B
)

≤ Dmax

(
T A′→B′

(σ ′
AA′ B)‖σAB′ B

)
+ Dα

(
ρAA′ B‖σ ′

AA′ B
)
.

Minimizing over σAB′ B ∈ SepA:B′ B
(
CdA ⊗ CdB′ ⊗ CdB

)
and restricting to states

σ ′
AA′ B ∈ SepAA′:B

(
CdA ⊗ CdA′ ⊗ CdB

)
leads to

E A:B′ B
α

(
T A′→B′

(ρAA′ B)
)

≤ E A:B′ B
max

(
T A′→B′

(σ ′
AA′ B)

)
+ Dα

(
ρAA′ B‖σ ′

AA′ B
)

≤ max
σ̃AA′ B∈Sep(AA′:B)

E A:B′ B
max

(
T A′→B′

(σ̃AA′ B)
)
+ Dα

(
ρAA′ B‖σ ′

AA′ B
)
.

Now minimizing over σ ′
AA′ B ∈ SepAA′:B

(
CdA ⊗ CdA′ ⊗ CdB

)
yields

E A:B′ B
α

(
T A′→B′

(ρAA′ B)
)

≤ max
σ̃AA′ B∈Sep(AA′:B)

E A:B′ B
max

(
T A′→B′

(σ̃AA′ B)
)

+E AA′:B
α (ρAA′ B) .

Let σ ′
0 ∈ SepAA′:B

(
CdA ⊗ CdA′ ⊗ CdB

)
attain the maximum in the previous equa-

tion. As σ ′
0 is separable there is a decomposition of the form σ ′

0 = ∑k
i=1 piγ

i
AA′ ⊗ φi

B

with k ∈ N, probabilities pi ∈ [0, 1] such that
∑k

i=1 pi = 1, and states {γ i
AA′ }k

i=1 ⊂
D(CdA ⊗ CdA′ ) and {φi

B}k
i=1 ⊂ D(CdB ). Now let τ i

AB′ ∈ SepA:B′
(
CdA ⊗ CdB′ ) be

such that

E A:B′
max

(
T A′→B′

(γ i
AA′)

)
= Dmax

(
T A′→B′

(γ i
AA′)‖τ i

AB′
)
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for each i ∈ {1, . . . , k}. With these states we get

max
σ̃AA′ B∈Sep(AA′:B)

E A:B′ B
max

(
T A′→B′

(σ̃AA′ B)
)

= min
σAB′ B∈Sep(A:B′ B)

Dmax

(
T A′→B′

(σ ′
0)‖σAB′ B

)

≤ Dmax

(
k∑

i=1

pi T
A′→B′

(γ i
AA′) ⊗ φi

B‖
k∑

i=1

piτ
i
AB′ ⊗ φi

B

)

≤ max
i∈{1,...,k} Dmax

(
T A′→B′

(γ i
AA′) ⊗ φi

B‖τ i
AB′ ⊗ φi

B

)

= max
i∈{1,...,k} Dmax

(
T A′→B′

(γ i
AA′)‖τ i

AB′
)

= max
i∈{1,...,k} E A:B′

max

(
T A′→B′

(γ i
AA′)

)

≤ Emax (T ) .

In the second line of the above computation we used that
∑k

i=1 piτ
i
AB′ ⊗ φi

B ∈
SepA:B′ B

(
CdA ⊗ CdB′ ⊗ CdB

)
as τ i

AB′ ∈ SepA:B′
(
CdA ⊗ CdB′ ) by definition. In the

third line we used that Dmax is joint quasi-convex [15, Lemma 9] and in the fourth line
that Dmax (ρ1 ⊗ σ1‖ρ2 ⊗ σ2) = Dmax (ρ1‖ρ2) + Dmax (σ1‖σ2) for any quantum states

ρ1, ρ2 ∈ D
(
Cd

)
and σ1, σ2 ∈ D

(
Cd ′)

with supp [ρ1] ⊆ supp [ρ2] and supp [σ1] ⊆
supp [σ2] (see for instance [18, Theorem 2]). ��

The following corollary bounds the α-relative entropy of entanglement of the state
obtained from alternately applying an LOCC-operation and a partial quantum channel
to some tripartite initial state.

Corollary 3.1. Let T : MdA′ → MdB′ be a quantum channel, m ∈ N ,and dAi , dBi ∈
N dimensions for each i ∈ {1, . . . , m}. Consider LOCC-operations {Li }m

i=1 w.r.t. the
bipartition into A and B systems acting as

Li : MdAi
⊗ MdB′ ⊗ MdBi

→ MdAi+1
⊗ MdA′ ⊗ MdBi

for any i ∈ {1, . . . , m} and

Lm : MdAm
⊗ MdB′ ⊗ MdBm

→ MdÃ
⊗ MdB̃

for arbitrary dÃ, dB̃ ∈ N. For any quantum state ρA1 A′ B1 ∈ D
(
CdA1 ⊗ CdA′ ⊗ CdB1

)

consider the state

φ Ã B̃ = Lm ◦
m−1∏
i=1

(
T A′→B′ ◦ Li

)
◦ T A′→B′ (

ρA1 A′ B1

)
.

Then we have

E Ã:B̃
α

(
φ Ã B̃

) ≤ m Emax (T ) + E A1 A′:B1
α

(
ρA1 A′ B1

)

for any α > 1.
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Proof. For i ∈ {1, . . . , m} we define the states

σ
(i)
Ai B′ Bi

=
i−1∏
k=1

(
T A′→B′ ◦ Li

)
◦ T A′→B′ (

ρA1 A′ B1

)
.

By the data-processing inequality (8) it is easy to see that Eα is non-increasing under
LOCC-operations as such operations preserve the set of separable states. Using this fact
and Theorem 3.2 alternately gives

E Ã:B̃
α

(
φ Ã B̃

) = E Ã:B̃
α

(
Lm

(
σ

(m)

Am B′ Bm

))

≤ E Am :B′ Bm
α

(
σ

(m)

Am B′ Bm

)

≤ Emax (T ) + E Am−1:B′ Bm−1
α

(
σ

(m−1)
Am−1B′ Bm−1

)

...

≤ (m − 1)Emax (T ) + E A1B′ B1
α

(
T A′→B′ (

ρA1 A′ B1

))

≤ m Emax (T ) + E A1 A′ B1
α

(
ρA1 A′ B1

)
.

��
In the next sectionwewill apply the previous corollary to the output state of a protocol

for P↔. This will establish the strong-converse bound in terms of Emax.

4. Strong Converse Bound on P↔

To prove a strong converse bound on P↔ we will use some notions introduced in [9].
Consider a private state

γAk Bk As Bs = U tw
Ak Bk As Bs

(
ωAk Bk ⊗ σAs Bs

)
(U tw

Ak Bk As Bs
)†

where U tw
Ak Bk As Bs

denotes a twisting unitary (see Definition 2.6). A privacy test corre-
sponding to γAk Bk As Bs (see [9, Definition 6]) is a 2-outcome measurement given by the
POVM

{�Ak Bk As Bs ,1Ak Bk As Bs − �Ak Bk As Bs } (19)

for the projector �Ak Bk As Bs = U tw
Ak Bk As Bs

(
ωAk Bk ⊗ 1As Bs

) (
U tw

Ak Bk As Bs

)†
. It can be

shown that a separable state only has a low probability of passing a privacy test (i.e. the
measurement (19) giving the outcome corresponding to �Ak Bk As Bs ) corresponding to a
private state. More specifically (see [33, equation (281)] or [9, Lemma 8]) for a privacy
test (19) corresponding to a private state γAk Bk As Bs with K -dimensional key part (i.e.
dAk = dBk = K as in Definition 2.6) it holds that

tr
(
�Ak Bk As Bs σAk Bk As Bs

) ≤ 1

K
(20)

for any separable state σAk Bk As Bs ∈ SepAk As :Bk Bs

(
CdAk dAs ⊗ CdBk dBs

)
. At the same

time the probability of a state passing the privacy test can be related to its distance to
the private state. The following Lemma has been shown in [9]:
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Lemma 4.1 (Lemma 7 in [9]). Let ρAk Bk As Bs ∈ D
(
CdAk ⊗ CdBk ⊗ CdAs ⊗ CdBs

)
be

a quantum state and �Ak Bk As Bs the projector appearing in the privacy test (see (19))
corresponding to a private state γAk Bk As Bs . Then

tr
(
�Ak Bk As Bs ρAk Bk As Bs

) ≥ F(ρAk Bk As Bs , γAk Bk As Bs )

where F(ρ, σ ) = ‖√ρ
√

σ‖21 denotes the fidelity.

Now we can prove a bound on the error of private state generation for protocols
assisted by classical communication. The proof follows a method given in [19] and uses
ideas from [9].

Lemma 4.2 (Bound on private communication error). Let T : MdA′ → MdB′ be a
quantum channel and α ∈ (1,∞). For any k, m ∈ N the error ε > 0 in an (k, m, ε)-
coding scheme for private state generation assisted by classical communication (as in
Definition 2.7) fulfills

ε ≥ 1 − 2− α−1
2α (k−m Emax(T )).

Proof. Let φ
(m)

Ã B̃
∈ D

(
CdÃ ⊗ CdB̃

)
denote the output state of the (k, m, ε)-coding

scheme, i.e.

φ
(m)

Ã B̃
= Lm ◦

m−1∏
i=1

(
T A′→B′ ◦ Li

)
◦ T A′→B′ (

ρ
(1)
A1 A′ B1

)

for LOCC-operations {Li }m
i=1 and initial state ρA1 A′ B1 ∈ SepA1 A′:B1

(
CdA1 ⊗ CdA′ ⊗

CdB1

)
as in Definition 2.3. Note that by the form of φ

(m)

Ã B̃
we can apply Lemma 3.1 to

show
E Ã:B̃

α

(
φ

(m)

Ã B̃

)
≤ m Emax (T ) (21)

where we used that by separability E A1 A′:B1
α

(
ρ

(1)
A1 A′ B1

)
= 0.

By assumption (from Definition 2.7) we have dÃ = dAk dAs and dB̃ = dBk dBs

with dAk = dBk = 2k and dAs = dBs , and there exists a private state γAk Bk As Bs ∈
D

(
CdÃ ⊗ CdB̃

)
with 2k-dimensional key part (see Definition 2.6) such that

ε = 1

2
‖φ(m)

Ã B̃
− γAk Bk As Bs ‖1. (22)

Let �(k)
Ak Bk As Bs

denote the projector in the privacy test corresponding to γAk Bk As Bs (see
(19)). Then by Lemma 4.1 we have

F := tr
(
�

(k)
Ak Bk As Bs

φ
(m)

Ã B̃

)
≥ F(φ

(m)

Ã B̃
, γ2k ) (23)

Now we define a binary flag channel B : D (
CdÃ ⊗ CdB̃

) → M2 by

B(X) = tr
(
�

(k)
Ak Bk As Bs

X
)

|1〉〈1| + tr
(
(1Ak Bk As Bs − �

(k)
Ak Bk As Bs

)X
)

|0〉〈0|
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where |0〉, |1〉 ∈ C2 denote the computational basis states. For any separable state
σ Ã B̃ ∈ Sep Ã:B̃

(
CdÃ ⊗ CdB̃

)
we can compute

Dα

(
φ

(m)

Ã B̃
‖σ Ã B̃

)
≥ Dα

(
B

(
φ

(m)

Ã B̃

)
‖B

(
σ Ã B̃

))

= 1

α − 1
log2

(
Fα p1−α + (1 − F)α(1 − p)1−α

)

≥ 1

α − 1
log2

(
Fα p1−α

)

≥ 1

α − 1
log2

(
Fα

(
1

2k

)1−α
)

= α

α − 1
log2(F) + k.

Here we introduced p = tr
(
σ Ã B̃�

(k)

Ã B̃

)
and used the data-processing inequality (8) of

the sandwiched α-Rényi divergences for the first inequality. In the last inequality we
used p ≤ 1

2k which follows from (20) and separability of σ Ã B̃ .

Minimizing over all separable states σ Ã B̃ ∈ Sep Ã:B̃
(
CdÃ ⊗ CdB̃

)
on the left-hand-

side of the previous equation and using (21) gives

m Emax (T ) ≥ E Ã:B̃
α

(
φ

(m)

Ã B̃

)
≥ α

α − 1
log2(F) + k.

By applying the Fuchs-van-de-Graaf inequality [34, Theorem 1] and (23) we get

ε ≥ 1 −
√

F(φ
(m)

Ã B̃
, γ2k ) ≥ 1 − √

F ≥ 1 − 2− α−1
2α (k−m Emax(T ))

for the communication error ε from (22). ��
Theorem 4.1. Let T : MdA′ → MdB′ be a quantum channel. Then the quantity
Emax (T ) is a strong-converse bound on P↔(T ).

Proof. Consider R > Emax (T ) such that for each ν ∈ N there exists an (kν, mν, εν)-
coding scheme for private state generation assisted by classical communication (as in
Definition 2.4) with mν → ∞ as ν → ∞ and R = limν→∞ kν

mν
. There exists a δ > 0

and a ν0 ∈ N such that

kν

mν

> Emax (T ) + δ

for all ν ≥ ν0. Therefore, using Lemma 4.2 we have for any ν ≥ ν0 and α > 1 that

εν ≥ 1 − 2− α−1
2α (kν−mν Emax(T ))

≥ 1 − 2− α−1
2α mνδ → 1

as ν → ∞.
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Finally we can regularize the above bound. Consider the regularized max-relative
entropy of a quantum channel T : MdA′ → MdB′

E∞
max (T ) := lim

n→∞
1

n
Emax

(
T ⊗n)

.

As a special case of [9, Theorem 13] (which can also be shown directly following the
proof of [35, Theorem 6] for the quantity Emax) we have for any n ∈ N

Emax
(
T ⊗n) ≤ nEmax (T ) + dA′ log2(n).

Dividing by n and taking the limit n → ∞ implies

E∞
max (T ) ≤ Emax (T ) .

We can therefore improve the bound from Theorem 4.1 (which is in particular an up-
per bound on P↔) by regularization. Note that by Definition 6.2 we have P↔ (T ) =
limn→∞ 1

nP↔
(
T ⊗n

)
. Applying the bound from Theorem 4.1 for the channels T ⊗n and

noting that Q↔ ≤ P↔ (by Definition 6.2) implies:

Corollary 4.1 (Regularizedupper boundonP↔).For any quantum channel T : MdA′ →
MdB′ we have

Q↔(T ) ≤ P↔(T ) ≤ E∞
max (T ) ≤ Emax (T ) .

5. Properties of Emax (T )

5.1. Non-lockability. Anentanglementmeasure is called non-lockable [36] if tracing out
a subsystem of dimension d ∈ N can only change themeasure by an amount logarithmic
in d. Here we show that this is the case for the max-relative entropy of entanglement (cf.
Theorem5.1). As a consequencewe show that for a quantum channel T A→BC : MdA →
MdB dC the difference of the quantities Emax

(
T A→BC

)
and Emax

(
trC ◦ T A→BC

)
can

be at most logarithmic in dC . We start with an elementary lemma which is probably
known:

Lemma 5.1. For some k ∈ N consider a convex combination ρAB = ∑k
i=1 piρ

i
AB of

bipartite quantum states ρi
AB ∈ D

(
CdA ⊗ CdB

)
and pi ∈ [0, 1] for i ∈ {1, . . . , k} such

that
∑k

i=1 pi = 1. Then we have

k∑
i=1

pi E A:B
max

(
ρi

AB

)
≤ E A:B

max (ρAB) +
k∑

i=1

pi Dmax

(
ρi

AB‖ρAB

)
.

Proof. Given states ρi ∈ D
(
CdA ⊗ CdB

)
for i ∈ {1, . . . , k} and ρ = ∑k

i=1 piρ
i
AB with

probabilities {pi }k
i=1 ⊂ [0, 1] fulfilling

∑k
i=1 pi = 1. Note that applying Theorem 3.1

for P = idd and α = ∞ gives

Dmax

(
ρi

AB‖σAB

)
≤ Dmax (ρAB‖σAB) + Dmax

(
ρi

AB‖ρAB

)
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for any states σAB ∈ D
(
CdA ⊗ CdB

)
. Minimizing over σAB ∈ SepA:B

(
CdA ⊗ CdB

)
leads to

E A:B
max

(
ρi

AB

)
≤ E A:B

max (ρAB) + Dmax

(
ρi

AB‖ρ
)

.

Finally multiplying the above inequalities by pi for each i ∈ {1, . . . k} and summing
over i leads to the statement of the lemma. ��

With the previous lemma we can show that the max-relative entropy of entanglement
is non-lockable. The argument is similar to an argument given in [36] for the relative
entropy of entanglement.

Theorem 5.1 (Non-lockability of the max-relative entropy of entanglement). For any
tripartite state ρAB B′ ∈ D

(
CdA ⊗ CdB ⊗ CdB′ ) we have

E A:B B′
max (ρAB B′) − E A:B

max (ρAB) ≤ 2 log2(dB′).

Proof. Note that

ρAB ⊗ 1dB′
dB′

=
∫

UdB′

(
1dAB ⊗ U

)
ρAB B′

(
1dAB ⊗ U

)† dU

= 1

k

k∑
i=1

(
1dAB ⊗ Ui

)
ρAB B′

(
1dAB ⊗ Ui

)†

where the integral is with respect to the Haar-measure on the unitary group UdB′ , and
where we used unitaries (Ui )

k
i=1 forming a unitary 2-design (see [37]). Applying Lemma

5.1 for the above convex combination gives

k∑
i=1

1

k
E A:B B′
max

((
1dAB ⊗ Ui

)
ρAB B′

(
1dAB ⊗ Ui

)†) − E A:B B′
max

(
ρAB ⊗ 1dB′

dB′

)

≤
k∑

i=1

1

k
Dmax

((
1dAB ⊗ Ui

)
ρAB B′

(
1dAB ⊗ Ui

)† ‖ρAB ⊗ 1dB′
dB′

)

= Dmax

(
ρAB B′ ‖ρAB ⊗ 1dB′

dB′

)

≤ 2 log2 (dB′) .

Here we used that Dmax is invariant under unitary transformations applied to both of its
arguments, and that ρAB B′ ≤ dB′ρAB ⊗ 1dB′ , which by (5) implies the last inequality.
Finally note that

E A:B B′
max

(
ρAB ⊗ 1dB′

dB′

)
= E A:B

max (ρAB)

by monotonicity under local operations. ��
Finally by applying Theorem 5.1 to the quantity Emax (see (9)) we obtain the follow-

ing:
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Corollary 5.1. Let T A→BC : MdA → MdB ⊗MdC be a quantum channel and consider
the reduced quantum channel T A→B = trC ◦ T A→BC . Then

Emax

(
T A→BC

)
≤ 2 log2(dC ) + Emax

(
T A→B

)

The previous corollary is used in Sect. 6.1 to show that the bound from Corollary 4.1
improves on both the transposition bound (see Theorem 2.2) and the squashed entan-
glement bound (see Theorem 2.3).

5.2. Simplified upper bounds. The optimizations over input states and separable states
make it hard to compute Emax (T ) (see (9)) for a concrete quantum channel T : MdA →
MdB . In the following we will give a slightly simpler bound in terms of the quantity

Bmax (T ) = min{Dmax (CT ‖CS) : S : MdA → MdB

entanglement breaking quantum channel}.
Here CT and CS denote Choi matrices (see (3)) of the channels T and S. Recall
that a quantum channel S : MdA → MdB is called entanglement breaking [38] iff
S A→B (ρA′ A) is separable for any bipartite state ρA′ A ∈ D

(
CdA′ ⊗ CdA

)
and where A′

is a system of any dimension. This is equivalent to separability of the Choi matrix CS .
Note that since trB (CS) = 1dA′ /dA′ (where we used that CS = S A→B (ωA′ A) now for

dA′ = dA) the above quantity is in general different from E A′:B
max (CT ).

Theorem 5.2 (Simplified upper bound). For a quantum channel T : MdA → MdB we
have

Emax (T ) ≤ Bmax (T ) .

Proof. Let S : MdA → MdB be an entanglement breaking channel. For any bipar-

tite quantum state ρA′ A ∈ D
(
CdA′⊗CdA

)
the output state S A→B (ρA′ A) is separable.

Therefore we have

E A′:B
max

(
T A→B (ρA′ A)

)

= inf{Dmax

(
T A→B (ρA′ A) ‖σA′ B

)
: σA′ B ∈ SepA′:B

(
CdA′ ⊗ CdB

)
}

≤ Dmax

(
T A→B (ρA′ A) ‖S A→B (ρA′ A)

)

= inf{λ ≥ 0 : T A→B (ρA′ A) ≤ 2λS A→B (ρA′ A)}.
The condition in the last infimum is certainly fulfilled if the linear map 2λS − T is
completely positive (in this case the condition holds for any state ρA′ A). Expressing
complete positivity of this linear map in terms of the Choi matrix [13] yields

E A′:B
max

(
T A→B (ρA′ A)

)
≤ inf{λ ≥ 0 : CT ≤ 2λCS} = Dmax (CT ‖CS) ,

where CT = T A→B (ωA′ A) denotes the Choi matrix of T (and CS the Choi matrix of
S). As the previous bound holds for any input state ρA′ A and any entanglement breaking
channel S : MdA → MdB the proof is finished. ��
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6. Applications

6.1. Flower channels. Herewewill compare the bound fromCorollary 4.1 to previously
knownbounds.Numerical computations show that for the qubit depolarizing channel, the
qubit erasure channel, and the qubit amplitude damping channel our bound does not out-
perform the transposition bound. It should also be noted that for channels implementable
from their image (seeDefinitionA.1 inAppendixA) including all teleportation-covariant
channels, the bound based on the relative entropy of entanglement (see [6]) performs
better than our bound (based on the max-relative entropy of entanglement). However,
for many important quantum channels (e.g. the channels considered in this section and
in Sect. 6.2) it is currently not known whether they are implementable from their image.
Moreover, in Appendix A we provide an example of a quantum channel which cannot
be implemented from its image. Instead of estimating our bound for the commonly used
standard examples, we will consider a particular construction of quantum channels in
high dimensions. This exploits the non-lockability of our bound to outperform the previ-
ously known bounds. As the transposition bound (see Theorem 2.2) only upper bounds
Q↔ and not P↔ we will only consider the former quantity in this section.

Here we will use a particular family of channels (so called flower channels) for
which the transposition bound (see Theorem 2.2), the bound based on the squashed
entanglement (see Theorem 2.3), and thereby also the entanglement cost bound (see
Theorem 2.4) perform exceptionally badly. The reason of this bad performance is that
all these bounds are lockable [36]. The new bound based on the max-relative entropy
is non-lockable (cf. Corollary 5.1), which leads to an improvement compared to the
other bounds. Moreover, the improvement can be made arbitrarily large by increasing
the dimension of the channels.

For d ∈ N consider the so called “flower” states given by

ρ
f
AA′ B B′ = 1

2d

d∑
i,k=1

2∑
j,l=1

〈k|U †
l U j |i〉 |i i〉〈kk|AB⊗| j j〉〈ll|A′ B′ ∈ D

(
Cd ⊗ C2 ⊗ Cd ⊗ C2

)

(24)
where U1 = 1d and U2 is the quantum Fourier transformation with entries

(U2) j,k = 1√
d

e2π i jk/d

for j, k ∈ {1, . . . , d}. In [36] and [39] several entanglement measures have been com-
puted for these states. The squashed entanglement (see (11)) is given by (see [39, Propo-
sition 4])

E AA′:B B′
sq

(
ρ

f
AA′ B B′

)
= 1 +

1

2
log2(d), (25)

and the logarithmic negativity is given by (see [36, p. 2])

log2
(
‖(ρ f

AA′ B B′)TB B′ ‖1
)

= log2
(√

d + 1
)

. (26)

Note that the previous quantities are unbounded in the limit d → ∞. However, the actual
entanglement in the statesρ f

AA′ B B′ is small, because tracing out the 2-dimensional system
B ′ leads a separable state

ρ
f
AA′ B = 1

2d

d∑
i=1

2∑
j=1

|i i〉〈i i |AB ⊗ | j〉〈 j |A′ .
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The two marginals of a flower state ρ
f
AA′ B B′ fulfill ρ

f
B B′ = ρ

f
AA′ = 12d/(2d).

Therefore, by the Choi–Jamiolkowski isomorphism [13] there is a unital quantum chan-
nel T AA′→B B′

f : M2d → M2d with Choi matrix ρ
f
AA′ B B′ . We call this channel a

flower channel. Note that the reduced channel T AA′→B
f = trB′ ◦ T AA′→B B′

f is entan-

glement breaking as its Choi matrix is the separable state ρ
f
AA′ B . This implies that

Emax

(
T AA′→B

f

)
= 0 and using Corollary 5.1 and the non-regularized bound from

Corollary 4.1 we get

Q2

(
T AA′→B B′

f

)
≤ Emax

(
T AA′→B B′

f

)
≤ 2 + Emax

(
T AA′→B

f

)
= 2. (27)

We can also estimate the transposition bound (see Theorem 2.2) and the bound based
on the squashed entanglement (see Theorem 2.3). By (26) and (25) we have

log2
(
‖ϑB B′ ◦ T AA′→B B′

f ‖�
)

≥ log2
(
‖(ρ f

AA′ B B′)TB B′ ‖1
)

= log2
(√

d + 1
)

Esq

(
T AA′→B B′

f

)
≥ E AA′:B B′

sq

(
ρ

f
AA′ B B′

)
= 1 +

1

2
log2(d).

These computations show that (27) improves upon the squashed entanglement and by the
discussion following Theorem 2.4 also upon the entanglement cost bound for d > 2. For
d > 9 our bound also improves upon the transposition bound. All these improvements
can be made arbitrary large by increasing the dimension d.

6.2. Non-repeatable private capacity. In [17] a general paradigm has been introduced
for sharing key using several quantum states sequentially connecting communication
nodes to bridge a possibly long distance between the communicating parties A and B.
Consider the casewhere only one intermediate nodeC connected to A and B by quantum
states ρ

(1)
AC and ρ

(2)
C B is available. The supremum of rates with which private key can be

established between A and B using arbitrary LOCC-operations acting on many copies

of the two states is the repeatable key rate KA↔C↔B

(
ρ

(1)
AC , ρ

(2)
C B

)
(see [17]).

It is clear that in the same scenario any pair of states with distillable entangle-
ment [40] can be used to create entanglement between A and B by first distilling
maximally entangled states between connecting A, C and C , B and then using a
standard repeater protocol. A similar statement is false when distillable key (instead of
distillable entanglement) is considered. In particular there are bipartite quantum states
ρd ∈ D

(
Cd ⊗ C2 ⊗ Cd ⊗ C2

)
(see [17]) from which private key can be extracted at

rate close to 1, but for which the repeatable key rate fulfills KA↔C↔B (ρd , ρd) ≈ 0.
Here we introduce the private repeater capacity of a pair of quantum channels. This

is a channel-version of the repeatable key rate with one intermediate node. Again the
two parties A and B communicate via an intermediate communication node C but now
use two quantum channels (from A to C and from C to B) and arbitrary classical
communication (between all three parties) to establish their secret key.

Note that this is a more realistic scenario than the state-version of [17]. It is conceiv-
able that in an actual communication scenario the communicating parties have quantum
channels to establish the quantum correlations for the creation of a secret key. But then
it would be artificial to restrict possible protocols to those creating a number of copies
of a fixed quantum state which are then used to obtain a secret key (see [17]). Here
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B

A

C

Fig. 2. Repeater coding scheme for private state generation assisted by classical communication (cf. Definition
6.1) in the case of m1 = 3 uses of the channel T1 : MdA′ → MdC ′ and m2 = 2 uses of the channel
T2 : MdC ′′ → MdB′ and channel order w = (1, 1, 2, 1, 2). Here L0 denotes an LOCC-operation used to

create the separable initial state ρ
(1)
A1 A′ B1

.

we consider general protocols allowing for different inputs for the quantum channels at
each stage of the protocol possibly depending on measurement outcomes and classical
information shared at earlier stages.

Even in this general framework there are channels with non-repeatable private ca-
pacity. In particular we give an example of quantum channels (which are derived from
the family of states considered in [17]) with private capacity P↔ close to 1, but arbitrar-
ily small private repeater capacity. We begin with the definition of the private repeater
capacity.

Definition 6.1 (Repeater coding schemes assisted by classical communication.) Let T1 :
MdA′ → MdC ′ and T2 : MdC ′′ → MdB′ denote two quantum channels where C ′ and
C ′′ denote systems controlled by a party C . A (k, m1, m2, ε)-repeater coding scheme
for private state generation assisted by classical communication (see Fig. 2) is given by a
wordw ∈ {1, 2}m form = m1 +m2 with |{i : wi = 1}| = m1 (and |{i : wi = 2}| = m2),
a separable initial state

ρ(1) ∈
⎧⎨
⎩
SepA1 A′:C1:B1

(
CdA1dA′ ⊗ CdC1 ⊗ CdB1

)
, if w1 = 1

SepA1:C1C ′:B1

(
CdA1 ⊗ CdC1dC ′ ⊗ CdB1

)
, if w1 = 2

and a set of LOCC-operations (w.r.t. the bipartition into A, B and C systems)

Li : MdAi
⊗ MdCi

⊗ MdBi
⊗ MdDwi

→ MdAi+1
⊗ MdCi+1

⊗ MdBi+1
⊗ MdEwi

for each i ∈ {1, . . . , m − 1} and
Lm : MdAm

⊗ MdCm
⊗ MdBm

⊗ MdDwm
→ MdÃ

⊗ MdB̃
.

Here we set D1 = A′ (i.e. a system at party A) and D2 = C ′′ (i.e. a system at party C)
and in the same way E1 = C ′ (i.e. a system at party C) and E2 = B ′ (i.e. a system at
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party B). The dimensions dAi , dBi , dCi ∈ N and dÃ = dB̃ are arbitrary. Furthermore,
we require the output state

φ
(m1,m2)

Ã B̃
= Lm ◦

m−1∏
i=1

(
T

Dwi →Ewi
wi ◦ Li

)
◦ T

Dw1→Ew1
w1

(
ρ(1)

)

to fulfill

ε = 1

2
‖φ(m1,m2)

Ã B̃
− γ Ã B̃‖1

for a private state γ Ã B̃ with 2k-dimensional key part (see Definition 2.6).

Note that the order (and number) of channel applications (specified by the word
w) in the protocols from Definition 6.1 is deterministic in the sense, that it cannot
depend on outcomes of measurements made during the protocol. This is to avoid the
complications from determining the rate of a protocol where the order and number of
channel applications is not fixed.

Definition 6.2 (Repeated private capacity assisted by classical communication). We
call R ∈ R+ an achievable rate for repeated private communication over the quantum
channels T1 : MdA′ → MdC ′ and T2 : MdC ′′ → MdB′ assisted by classical com-
munication iff for each ν ∈ N there exists a (kν, m1

ν, m2
ν, εν)-repeater coding scheme

for private state generation assisted by classical communication (as in Definition 6.1)

with m1
ν, m2

ν → ∞ as ν → ∞ such that R = min
(
limν→∞ kν

m1
ν
, limν→∞ kν

m2
ν

)
and

limν→∞ εν = 0. The repeated private capacity PA↔C↔B(T1, T2) is defined to be the
supremum of all such achievable rates.

Before stating our main result we will discuss some properties of the repeated private
capacity. For quantum channels T1 : MdA′ → MdC ′ and T2 : MdC ′′ → MdB′ consider
a sequence of coding schemes for PA↔C↔B(T1, T2) achieving a rate R > 0. By com-
bining the parties A and C (or C and B) any such sequence can be transformed into a
sequence of coding schemes for P↔ (T2) (or P↔ (T1)) achieving at least the same rate
R > 0. Therefore the following bound holds

PA↔C↔B(T1, T2) ≤ min (P↔ (T1) ,P↔ (T2)) . (28)

We also have the following lemma similar to [17, Lemma 12]:

Lemma 6.1 (Transposition trick). Let T1 : MdA′ → MdC ′ and T2 : MdC ′′ → MdB′
be two quantum channels such that ϑdC ′ ◦ T1 and T2 ◦ ϑdC ′′ are quantum channels as
well (here ϑd : Md → Md denotes the matrix transposition in any fixed basis). Then
we have

PA↔C↔B(T1, T2) = PA↔C↔B(ϑdC ′ ◦ T1, T2 ◦ ϑdC ′′ ).

Proof. The proof goes by transforming any protocol for the channels T1 and T2 into
a protocol for the channels T̃1 = ϑdC ′ ◦ T1 and T̃2 = T2 ◦ ϑdC ′′ leaving the output
state unchanged. For m1, m2 ∈ N consider a word w ∈ {1, 2}m for m = m1 + m2

with |{i : wi = 1}| = m1 (and |{i : wi = 2}| = m2). Now consider a protocol for
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repeated private state generation over the quantum channels T1 : MdA′ → MdC ′ and
T2 : MdC ′′ → MdB′ assisted by classical communication as in Definition 6.1 where
w specifies the order of channel uses. This protocol is given by a the set of LOCC-
operations {Li }m

i=1 (w.r.t. to the parties A, B and C) and initial state ρ(1), creating the
output state (see Definition 6.1)

φ
(m1,m2)

Ã B̃
= Lm ◦

m−1∏
i=1

(
T

Dwi →Ewi
wi ◦ Li

)
◦ T

Dw1→Ew1
w1

(
ρ(1)

)
.

For each i ∈ {1, . . . , m − 1} we can define new LOCC-operations by

L̃i = ϑĈi+1
◦ Li ◦ ϑĈ ′

i

where we denote by Ĉ ′
i all systems at party C in step i after the channel (either T1 or T2)

has been applied (see Definition 6.1). Similarly we denote by Ĉi+1 all systems at party
C before the channel has been applied. The L̃i are indeed LOCC-operations, which can
be seen from writing Li in its Kraus-decomposition (according to (10)) and applying
the partial transpositions. In the final step we define

L̃m = Lm ◦ ϑĈ ′
m
,

which is again LOCC (w.r.t. to the A, B and C systems) as there is no C system at the
output of this map. We also define a new initial state ρ̃(1) by

ρ̃(1) = ϑĈ1

(
ρ(1)

)
, (29)

which is a state since ρ(1) was chosen to be separable (see Definition 6.1).
Now note that the LOCC-operations {L̃i }m

i=1 with initial state ρ̃(1) define a new
protocol for repeated private state generation (with the same word w as before) for the
transposed channels T̃1 = ϑdC ′ ◦ T1 and T̃2 = T2 ◦ ϑdC ′′ . The output state of the new
protocol can be computed and is given by

φ̃
(m1,m2)

Ã B̃
= L̃m ◦

m−1∏
i=1

(
T̃

Dwi →Ewi
wi ◦ L̃i

)
◦ T̃

Dw1→Ew1
w1

(
ρ̃(1)

)

= Lm ◦ ϑĈ ′
m

◦
m−1∏
i=1

(
T̃

Dwi →Ewi
wi ◦ ϑĈi+1

◦ Li ◦ ϑĈ ′
i

)
◦ T̃

Dw1→Ew1
w1

(
ϑĈ1

(
ρ(1)

))

= Lm ◦
m−1∏
i=1

(
T

Dwi →Ewi
wi ◦ Li

)
◦ T

Dw1→Ew1
w1

(
ρ(1)

)
= φ

(m1,m2)

Ã B̃

where we used that

ϑĈ ′
i
◦ T̃

Dwi →Ewi
wi ◦ ϑĈi

= T
Dwi →Ewi
wi

for each i ∈ {1, . . . , m}. This shows that any protocol for the channels T1 and T2
corresponds to a protocol for the channels ϑdC ′ ◦ T1 and T2 ◦ ϑdC ′′ with the same output
state and hence the same error. Therefore, the achievable rates for both scenarios are the
same and so are their capacities. ��
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We will need a particular state constructed in [17]. Consider the state ρd ∈
D

(
CdA′ ⊗ CdA ⊗ CdB′ ⊗ CdB

)
for dA = dB = d and dA′ = dB′ = 2 defined as

ρd = 1

2

⎛
⎜⎜⎝

(1 − p(d))
1d
d ⊗ 1d

d 0 0 (1 − p(d))X
0 p(d)

√
Y Y † 0 0

0 0 p(d)
√

Y †Y 0
(1 − p(d))X† 0 0 (1 − p(d))

1d
d ⊗ 1d

d

⎞
⎟⎟⎠ .

(30)
Here we used p(d) = 1√

d+1
and matrices

X = 1

d
√

d

d∑
i, j=1

ui j |i j〉〈 j i |

Y = 1

d

d∑
i, j=1

ui j |i i〉〈 j j |

where U = (ui j )i j denotes the quantum Fourier transform given by

U |k〉 = 1√
d

d∑
j=1

e2π i jk/d | j〉.

The state ρd has been constructed such that it has positive partial transpose, but it is also
close to a private state. More specifically we have

‖ρd − γ2‖1 ≤ 2p(d) = 2√
d + 1

for the private state

γ2 = 1

2

⎛
⎜⎜⎝

1d
d ⊗ 1d

d 0 0 X
0 0 0 0
0 0 0 0

X† 0 0 1d
d ⊗ 1d

d

⎞
⎟⎟⎠

with 2-dimensional key part (see [17]). Now we can state the main result of this section:

Theorem 6.1 (Non-repeatable private capacity). There is a quantum channel Td : M2⊗
Md → M2 ⊗ Md such that

P↔ (Td) ≥ 1 − h2

(
1√

d + 1

)
→ 1,

but

PA↔C↔B (Td , Td) ≤ log2

(
1 +

1√
d + 1

)
→ 0

as d → ∞. Here h2(x) = −x log2(x)− (1− x) log2(1− x) denotes the binary entropy.
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Proof. Note that trB B′ (ρd) = 12
2 ⊗ 1d

d , which implies that ρd (see (30)) is the Choi
matrix [13] of a quantum channel Td . Moreover, since ρd has positive partial transpose
both linear maps ϑ2d ◦ Td and Td ◦ ϑ2d are also quantum channels. The private capacity
of Td fulfills

P↔ (Td) ≥ K↔ (ρd) ≥ 1 − h2(
1√

d + 1
)

where the second inequality has been proved in [17, p. 27]. In order to show the second
statement in the theorem we note that by Lemma 6.1 and (28)

PA↔C↔B (Td , Td) = PA↔C↔B (ϑ2d ◦ Td , Td ◦ ϑ2d) ≤ P↔ (ϑ2d ◦ Td) .

By the non-regularized bound from Corollary 4.1 and the simpler bound from Theorem
5.2 we have

P↔ (ϑ2d ◦ Td) ≤ Emax (ϑ2d ◦ Td) ≤ Bmax (ϑ2d ◦ Td) ≤ Dmax

(
ρ

TB′ B
d ‖CS

)

where we choose the separable Choi matrix

CS = 1

2(1 + p(d))

⎛
⎜⎜⎜⎝

(1 − p(d))
1d
d ⊗ 1d

d 0 0 0
0 2p(d)

√
Y Y † 0 0

0 0 2p(d)
√

Y †Y 0
0 0 0 (1 − p(d))

1d
d ⊗ 1d

d

⎞
⎟⎟⎟⎠ .

It can be easily checked that CS is the Choi matrix of an entanglement-breaking channel
S. Note that

ρ
TB′ B
d = 1

2

⎛
⎜⎜⎝

(1 − p(d))
1d
d ⊗ 1d

d 0 0 0
0 p(d)

√
Y Y † p(d)Y 0

0 p(d)Y † p(d)
√

Y †Y 0
0 0 0 (1 − p(d))

1d
d ⊗ 1d

d .

⎞
⎟⎟⎠

and a straightforward computation shows that Dmax

(
ρ

TB′ B
d ‖CS

)
≤ log2(1+ p(d)). This

implies that

PA↔C↔B (Td , Td) ≤ log2(1 + p(d)) = log2

(
1 +

1√
d + 1

)
.

��

7. Conclusion

Weestablished a new inequality involving the sandwichedα-Rényi divergences and used
it to study private communication via quantum channels assisted by classical communi-
cation. Specifically, we proved a strong-converse bound on the private capacity assisted
by unlimited classical two-way communication. Moreover, this is the first such bound
that is non-lockable. We exploited this fact to provide examples of quantum channels
for which our bound improves on the transposition bound (Theorem 2.2), the squashed
entanglement bound (Theorem 2.3) and the entanglement cost bound (Theorem 2.4).
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Furthermore, we used the bound to analyze a quantum repeater version of the private
capacity.

There are some open problems and directions of future research. The main open
problem is to show that the relative entropy of entanglement of a quantum channel
(instead of the max-relative entropy of entanglement, see (9)) is an upper bound (and
possibly a strong-converse bound) on P↔. So far, this bound has only been shown for
teleportation-covariant quantum channels [6]. Such a result might be obtained from the
bound in Theorem 4.1 (or Corollary 4.1) using a smoothing technique (cf. [27]).

It should be noted that quantities similar to (9) for different entanglement measures
(replacing the max-relative entropy of entanglement) based on the sandwiched α-Rényi
divergences have been studied before. In [35] the α-Rains information of a quantum
channel (based on a generalization of the Rains bound on distillable entanglement [41])
has been introduced. Here instead of optimizing over separable states leading to a relative
entropy of entanglement (cf. Definition 2.1) the optimization runs over a larger set (the
so called Rains set) of positive matrices (see [35] for details). To our knowledge it is not
known whether the α-Rains information (for any α ≥ 1) gives a strong converse bound
(or even an upper bound) on Q↔. For α = ∞ this follows almost from our work. The
only problem seems to be in the final part of the proof of Theorem 3.2, where we cannot
reduce the quantity involving the three systems A, B ′ and B to the Rains information
(only involving two systems).

Finally, we should say that the main results from this paper can be extended to infinite
dimensional systems using the general framework of non-commutative L p-spaces [42].
This will be contained in future work.
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Appendix A: Implementability of Quantum Channels via LOCC Operations

Here we study the class of quantum channels implementable via LOCC-operations
from a bipartite state shared between the communicating parties. For such channels
the interactive protocols of Definition 2.3 reduce to protocols involving only LOCC-
operations performed on copies of the fixed state used for the implementation (see
[12]). It is easy to see [6,9] that the distillable entanglement (key) of this state gives
an upper bound on the performance of such protocols in the cases of quantum (private)
communication.

The reduction of protocols described above is especially interesting when the state
used for implementation of the quantum channel is itself preparable using the quantum
channel exactly once (see below for a precise definition). This holds e.g. for teleportation-
covariant channels (see [6]). In this case the capacities Q↔ and P↔ of the channel
are equal to (not only upper bounded by) the distillable entanglement and distillable
key respectively of the state used for implementation. Moreover, since this state can
be produced using the channel, entanglement measures (e.g. squashed entanglement,
relative entropy of entanglement, etc.) of the state can be related to the corresponding
quantities of the channel (see also Theorem A.1 below). In this way [6,9] derive their
upper bounds on the private capacity for particular classes of channels.
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The quantum channels implementable from states using the teleportation protocol
have been characterized in [43]. However, in the case of general protocols such a char-
acterization is still missing, and it is not known which quantum channels can be imple-
mented in this way. Here we give an example of a quantum channel, which cannot be
implemented by any LOCC-protocol using a state preparable by only a single use of the
quantum channel itself. We begin with a definition:

Definition A.1. We call a quantum channel T : MdA → MdB implementable from
its image if there exists a bipartite quantum state σA′′ A′ ∈ D

(
CdA′′ ⊗ CdA′ ) for some

dA′′ ∈ N and dA′ = dA and an LOCC-operation � : MdAdA′′ ⊗ MdB′ → MdB for
dB′ = dB with respect to the bipartition into A and B systems such that

T A→B (ρA) = �AA′′:B′→B
(
ρA ⊗ (idA′′ ⊗ T A′→B′

) (σA′′ A′)
)

(31)

for any ρA ∈ DdA .

Consider an LOCC-monotone E A:B : D (
CdA ⊗ CdB

) → R+
0 for bipartite states.

Formally, E A:B is a family of functions depending on the dimensions dA and dB de-
creasing under LOCC-operations applied to the input (LOCC with respect to the chosen
bipartition A : B). To simplify notation we will omit the dependence on the dimensions.
Now we define an associated quantity for quantum channels T : MdA → MdB by
setting

E (T ) = sup
ρA′ A

E A′:B ((
idA′ ⊗ T A→B

)
(ρA′ A)

)
.

where the supremum is over states ρA′ A ∈ D
(
CdA′ ⊗ CdA

)
with arbitrary dA′ ∈ N (note

that this quantity is not finite in general, but it will be in the examples we consider). We
have the following simple consequence for quantum channels implementable from their
image:

Theorem A.1. For any LOCC-monotone E A:B and any quantum channel T : MdA →
MdB implementable from its image, i.e. of the form (31) for some state σA′′ A′ ∈
D

(
CdA′′ ⊗ CdA′ ), we have

E (T ) = E A′′:B′ ((
idA′′ ⊗ T A′→B′)

(σA′′ A′)
)

.

Proof. The inequality “≥” is clear. As E A:B is an LOCC-monotone we have

E (T ) = sup
ρA′′′ A

E A′′′:B ((
idA′′′ ⊗ T A→B

)
(ρA′′′ A)

)

= sup
ρA′′′ A

E A′′′:B ((
idA′′′ ⊗ �AA′′:B′→B

) (
ρA′′′ A ⊗ (idA′′ ⊗ T A′→B′

) (σA′′ A′)
))

≤ sup
ρA′′′ A

E A′′′ AA′′:B′ (
ρA′′′ A ⊗ (idA′′ ⊗ T A′→B′

) (σA′′ A′)
)

= E A′′:B′ (
(idA′′ ⊗ T A′→B′

) (σA′′ A′)
)

.

Here the last equality follows from the fact that removing or adding a local uncorrelated
system is an LOCC-operation.
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In the following we will only evaluate the LOCC-monotones ER and Esq on bipartite
states where the systems in the bipartition are clear from context. Therefore, we will
omit the indices denoting these systems to simplify notation. Now we can present the
main result of this appendix:

Theorem A.2. There exists a quantum channel T : MdA → MdB for some dimensions
dA, dB ∈ N that is not implementable from its image, i.e. there is no state σA′′ A′ and
LOCC protocol � such that T can be written as in (31).

For the proof we will need some special states. The antisymmetric state αd ∈
D

(
Cd ⊗ Cd

)
for d ≥ 2 is defined as

αd = 1

d(d − 1)
(1d ⊗ 1d − Fd) .

In [44, Lemma 6] it is shown that for even d ∈ N

Esq (αd) ≤ log2

(
d + 2

d

)
. (32)

It has also been shown in [44, Corollary 3] that for every d ≥ 2 we have

lim
n→∞

1

n
ER

(
α⊗n

d

) ≥ log2

(√
4

3

)
.

Clearly, for any ε > 0 this implies the existence of an Nε ∈ N such that

ER
(
α⊗n

d

) ≥ n

(
log2

(√
4

3

)
− ε

)
(33)

for all n ≥ Nε .Wewill also use the flower states ρ
f

d fromSect. 6.1 considered as bipartite
states with respect to the bipartition into A and B systems (both 2d dimensional, see
(24)). Note that the squashed entanglement of the flower states has an easy formula (see

(25)). Furthermore, as the partial trace trB′
(
ρ

f
d

)
over the 2-dimensional B ′ system is

separable we have (using non-lockability of ER , see [36]) that

ER

(
ρ

f
d

)
≤ 2. (34)

Finally observe that for any n, l ∈ N and dimension d = 2nln we have

τ0 := α⊗n
2l ∈ D

(
Cd ⊗ Cd

)
(35)

and

τ1 := ρ
f
2n−1ln ∈ D

(
Cd ⊗ Cd

)
. (36)

Using the formulas for ER and Esq from above, and additivity of the squashed entan-
glement (see [30, Proposition 4]) we compute (with N 1

2
defined before (33))
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ER (τ0) ≥ n

(
log2

(√
4

3

)
− 1

2

)
≥ 1

2
n for all n ≥ N1/2

ER (τ1) ≤ 2

Esq (τ0) = nEsq (α2l) ≤ n log2

(
1 +

1

l

)

Esq (τ1) = 1

2
+
1

2
n +

1

2
n log2 (l) .

Therefore, choosing n, l large enough we have

ER (τ1) � ER (τ0) (37)

Esq (τ1) � Esq (τ0) . (38)

Proof of Theorem A.2. Choose n, l ∈ N large enough such that the states τ0, τ1 ∈
D

(
Cd ⊗ Cd

)
(see (35) and (36)) for d = 2nln satisfy (37) and (38). Now define two

channels T0, T1 : Md → Md with Choi matrices CT0 = τ0 and CT1 = τ1 (note that
these maps are indeed trace-preserving).

The quantum channel T0 is teleportation implementable (as the channel correspond-
ing to the antisymmetric state is Weyl-covariant), i.e. it is of the form (31) with σ = τ0
and � the teleportation protocol (see [12]). Therefore, we can apply Theorem A.1 to
conclude that

ER (T0) = ER (τ0)

Esq (T0) = Esq (τ0)

Let B ′ denote the 2-dimensional part of the output system of T1 corresponding to the
B ′ system of τ1 (which is a flower state, see discussion following (24)). Then trB′ ◦ T1
is entanglement-breaking (as its Choi matrix is separable) and using non-lockability of
ER (see [36]) and the equations above we have

ER (T1) ≤ 2 � ER (τ0) = ER (T0) . (39)

For the squashed entanglement we obtain

Esq (T0) = Esq (τ0) � Esq (τ1) ≤ Esq (T1) . (40)

Now consider the switch channel T : Md ⊗ M2 → Md ⊗ M2 given by

T = T0 ⊗ P0 + T1 ⊗ P1

with projectors Pi : M2 → M2 given by Pi (ρ) = 〈i |ρ|i〉|i〉〈i | for i ∈ {0, 1}. In the
followingwedenote by “a” a2-dimensional systemat party A andby“b” a2-dimensional
system at party B. These will denote the switch systems used for the quantum channel
T . As

(
idA′ ⊗ T A→B

i

)
(ρA′ A) ⊗ |i〉〈i |b =

(
idA′ ⊗ T Aa→Bb

)
(ρA′ A ⊗ |i〉〈i |a) ,

for any ρA′ A ∈ D
(
CdA′ ⊗ CdA

)
and i ∈ {0, 1} we conclude that
ER (Ti ) ≤ ER (T ) (41)

Esq (Ti ) ≤ Esq (T ) . (42)
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Assume now that T is implementable from its image and let σA′′ A′a′ ∈
D

(
CdA′′ ⊗ CdA′ ⊗ C2

)
denote the state used for the implementation as in (31). Note

that the dimension dA′′ is arbitrary and we consider the joint system A′a′ as the input
(therefore taking the role of A′ in (31)) for the channel. We can write

σA′′ A′a′ =
1∑

i=0

1∑
j=0

Xi j
A′′ A′ ⊗ |i〉〈 j |a′

with matrices Xi j
A′′ A′ ∈ MdA′′ ⊗MdA′ . Positivity of σA′′ A′a′ implies positivity of X00

A′′ A′
and X11

A′′ A′ . Now we have

(
idA′′ ⊗ T A′a′→B′b′)

(σA′′ A′a′) =
1∑

i=0

(
idA′′ ⊗ T A′→B′

i

) (
Xii

A′′ A′
)

⊗ |i〉〈i |b′ .

As σA′′ A′a′ is normalized we can write(
idA′′ ⊗ T A′a′→B′b′)

(σA′′ A′a′)

= p
(
idA′′ ⊗ T A′→B′

0

) (
σ 0

A′′ A′
)

⊗ |0〉〈0|b′ + (1 − p)
(
idA′′ ⊗ T A′→B′

1

) (
σ 1

A′′ A′
)

⊗ |1〉〈1|b′

(43)

for p = tr
(
X00

A′′ A′
) ∈ [0, 1] and states

σ i
A′′ A′ =

⎧
⎨
⎩

1

tr
(

Xii
A′′ A′

) Xii
A′′ A′ , if tr

(
Xii

A′′ A′
) �= 0

0, else.

Note that p only depends on σ . Now applying Theorem A.1 (as ER and Esq are LOCC-
monotones) together with (43) and convexity of ER and Esq (see [30, Proposition 3] for
the latter) we obtain

ER (T ) ≤ pER (T0) + (1 − p)ER (T1) (44)

Esq (T ) ≤ pEsq (T0) + (1 − p)Esq (T1) (45)

Finally, it follows from (41), (44) and (39) that

ER (T0) ≤ ER (T ) ≤ pER (T0) + (1 − p)ER (T1) ≤ ER (T0) .

As ER (T1) � ER (T0) this implies that p = 1. The same line of reasoning for the
squashed entanglement using (42), (45) and (40) gives

Esq (T1) ≤ Esq (T ) ≤ pEsq (T0) + (1 − p)Esq (T1) ≤ Esq (T1) .

As Esq (T0) � Esq (T1) this implies that p = 0 which is a contradiction to the previous
derivation. ��

Note that the quantum channel T constructed in the previous example might be
implementable using LOCC-operations and a state that can be prepared from two or
more uses of the channel. This would be the case for example if the channel T1 (coming
from the flower state) would be implementable from its image. The reduction technique
for interactive protocols (see [6]) would still apply then, however relating Q↔ (or P↔)
to distillable entanglement (or distillable key) of a more complicated state. It is then not
clear how to obtain e.g. the bound based on the relative entropy of entanglement of the
quantum channel from the methods of [6] without an additional factor depending on the
number of channel uses to prepare this state.
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