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Abstract: We study partition functions of 3d N = 2 U(N ) gauge theories on com-
pact manifolds which are S1 fibrations over S2. We show that the partition functions
are free field correlators of vertex operators and screening charges of the q-Virasoro
modular double, which we define. The inclusion of supersymmetric Wilson loops in
arbitrary representations allows us to show that the generating functions of Wilson loop
vacuum expectation values satisfy two SL(2, Z)-related commuting sets of q-Virasoro
constraints. We generalize our construction to 3d N = 2 unitary quiver gauge theories
and as an example we give the free boson realization of the ABJ(M) model.
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1. Introduction

Quantum field theories in three dimensions have played a relevant role in theoretical
physics andmany branches ofmathematics sinceWitten’s seminalwork onWilson loops
inChern–Simons theory and Jones polynomials [1]. Chern–Simons theory and its refined
[2–4] or supersymmetric extensions feature prominently in topological string theory [5–
7], in the study of the low energy physics of string/M-theory through Hanany-Witten
brane constructions [8] or the celebrated ABJ(M) model for the effective theory of M2
branes [9,10]. The application of field theorymethods for studying 3dmanifolds and knot
theory has recently produced many new results and connections between the two fields,
culminated in the discovery of the 3d–3d correspondence [11–14] (see also the review
[15]) relating 3dN = 2 SCFTs arising fromM5 branes compactified on a 3dmanifold to
complex Chern–Simons on the latter [16]. More generally, the embedding of 3dN = 2
Chern–Simons-Yang-Mills theories in string/M-theory has provided many insights into
their physics, including 3d Seiberg-like dualities [17–22] and mirror symmetry [23–25].
However, a better understanding of the rich dynamics and web of dualities of these field
theories is desirable, perhaps exploiting some large symmetry hidden in this class of
theories: this is the topic of this work.

In this paper we focus on a wide class of 3dN = 2 Yang-Mills-Chern–Simons (YM-
CS) unitary quiver gauge theories. A simple yet instrumental example for our analysis
is the U(N ) theory coupled to 1 adjoint chiral multiplet, which has a distinguished role
also within the 3d–3d correspondence [14,26,27]. These theories can conveniently be
studied on compact backgrounds [28–33] such as the squashed S3

b , lens spaces L(r, 1)
and S2× S1. The application of supersymmetric localization [34] to this class of theories
[35–47] has been a powerful tool for studying non-perturbative gauge dynamics over
the past few years. In fact, one of the main outcomes of the localization method is that
expectation values of supersymmetric observables can be exactly computed by reducing
path integrals to finite dimensional matrix models (Coulomb branch localization), which
can then be analyzed from different angles. Our goal is to use these results to show that
there is a universal algebraic structure underlying the supersymmetric sector of these
theories in any such background, which we call the Wq,t modular double, or q-Virasoro
modular double for the single node quiver.

In order to explain our results it is enough to consider the reference example given by
the U(N ) theory coupled to 1 adjoint chiral multiplet and possibly (anti-)fundamental
chiral multiplets, in which case the Coulomb branch partition function of the theory can
be schematically written as

Z =
∑

�∈FN

∫
dN x �(x, �) e

∑
j V (x j ,� j ),

where the continuous anddiscrete variables {x, �} = {x j , � j , j = 1, . . . , N }parametrize
the localization locus, �(x, �) is the 1-loop contribution of the vector and adjoint mul-
tiplets, exp(

∑
j V (x j , � j )) is the 1-loop contribution of (anti-)fundamental matter and
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classicalCSaction,while the sum is over the different topological sectors:F = (∅, Zr , Z)

for S3
b , L(r, 1) and S2×S1 respectively. One of our main results is that 3d compact space

partition functions are free boson correlators of vertex operators (V(z)) and integrated
screening currents (S(x)) of a modular double version of the q-Virasoro algebra [48]
which we define, namely

Z =
∫
dN x 〈

∏

f

V f (z f )

N∏

j=1

S(x j ) 〉,

leading to a dual 2d CFT-like description in the spirit of the AGT correspondence [49–
51] and similar to the proposal of [52,53] for the SQED. The origin of the q-deformation
has been proposed to lie in the little string deformation of the 6d (2, 0) theory [54].

The central object of our construction is the modular double screening current S(x).
We define it to be the operator which commutes, up to total differences, with two
commuting copies (i = 1, 2) of the q-Virasoro generators {Tn,i , n ∈ Z}i=1,2 whose
q-deformation parameters are related by SL(2, Z) transformations, namely

[Tn,1,Tm,2] = 0, [Tn,i ,S(x)] = total difference,

q1 = e2π iε, q2 = e−2π ig·ε,

where g· is the standard g ∈ SL(2, Z) action on the modular parameter ε. In order to
avoid possible confusion, throughout this paper the index i = 1, 2 will be exclusively
used for distinguishing the two copies and nothing else. The qi are related to geometric
moduli of the gauge theory background (squashing or fibration parameters); in fact

g · ε = ε

1 − rε

for the lens space L(r, 1), whereas r = 1, 0 for the particular cases S3
b and S2×S1 respec-

tively. The fact that the q-deformation parameters are related by SL(2, Z) is crucial: in
this case we can give S(x) in terms of the screening currents S(w)i of the individual
q-Virasoro copies according to

S(x) =
∑

�∈F

w(x, �)1 w(x, �)2 S(w(x, �))1 ⊗ S(w(x, �))2,

where the dependence of the summands on the gauge theory continuous and discrete
variables is through the “holomorphic” coordinate w(x, �)1 and its “conjugate” in the
sense of the SL(2, Z) pairing, which acts also on the position in a certain way

w(x, �)2 = g · w(x, �)1.

From the gauge theory viewpoint, w(x, �)i are supersymmetric Wilson lines (wi ) at the
North (i = 1) and South (i = 2) poles of the S2 base

wi = Pexp

(
i
∮

Ci

(A − iσ |Ċi |ds)

)
,

evaluated at the localization locus and projected on a U(N ) fundamental weight ρ

w(x, �)1 = ρ
(
w(x, �)1

)
, w(x, �)2 = ρ

(
w(x, �)2

)
,
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whose expressions depend on the specific background. Here A denotes the gauge con-
nection, σ the vector multiplet scalar and Ci a supersymmetry preserving cycle.

The partition function is not the most general observable one can consider. Following
what we have just mentioned, an important class of observables that can be computed
through localization is given by supersymmetricWilson loops. The evaluation ofWilson
loop vacuum expectation values (v.e.v.) at the North or South poles of the S2 base of the
geometries we are considering amounts to insert

TrRi

(
w(x, �)i

)

into the Coulomb branch partition function, where Ri is a representation of the U(N )

gauge group. Using the standard character decomposition, we can package Wilson loop
v.e.v.’s in arbitrary representations into the generating function

Z(τ 1, τ 2) =
∑

R1,R2

∑

�∈FN

∫
dN x �(x, �) e

∑
j V (x j ,� j )

∏

i=1,2

TrRi (v(τ i ))TrRi (w(x, �)i ),

where the additional insertions TrRi (v(τ i )) can be thought of as background Wilson
loops. The generating function is the natural object to consider from a matrix model
perspective, and we can give it a q-Virasoro interpretation as well: for YM theories it
can be identified with the highest weight state

Z(τ 1, τ 2) �
∫
dN x

N∏

j=1

S(x j )|α〉.

In this language, (anti-)fundamentalmatter can be coupled to the gauge theory by shifting
the “time” variables τ i (isomorphic to the creation operators in the free boson repre-
sentation of q-Virasoro), or equivalently by acting on the state with additional vertex
operators. Inclusion of CS terms can be dealt with similarly. Remarkably, our identi-
fication implies the existence of two SL(2, Z)-related commuting sets of q-Virasoro
constraints (or Ward identities) satisfied by the YM generating function

Tn(τ i )Z(τ 1, τ 2) = 0, n > 0,

where Tn(τ i ) � Tn,i are differential operators in τ i , which express the highest weight
condition of the YM generating function. A similar description holds when including
CS terms. This observation opens up the possibility of characterizing compact space
generating functions as solutions of two infinite sets of PDEs. Similar considerations
have been put forward in [12–14,55,56], where it is shown that the algebra of line
operators and their action on 3d partition functions gives rise to recurrence relations
quantizing classical spectral curves or knot polynomials, and in [57–60], where the
relation of line operators with difference operators/quantum Hamiltonians of integrable
systems is discussed.

Our results fit nicely with the observed factorization properties of 3d compact space
partition functions [13,58,61–67]. All the manifolds we are interested in admit indeed
a decomposition into a pair of solid tori (D2 × S1)i=1,2, where the boundary homeo-
morphism is implemented by the g ∈ SL(2, Z) element acting on one boundary torus
with modulus ε. Gauge theory partition functions on the diverse compact spaces can
be recovered by SL(2, Z) gluings of partition functions on the solid torus D2 × S1.
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Supersymmetric partition functions on such elementary background are known as 3d
holomorphic blocks [13]

B3d
c =

∮

c
dN w ϒ3d(w),

and for U(N ) YM theories they have been shown [68] (see also the review [69]) to be
captured by free boson correlators of q-Virasoro screening currents and vertex operators
(H(z))

B3d
c =

∮

c
dN w 〈

∏

f

H f (z f )

N∏

j=1

S(w j ) 〉.

Our construction then reveals the algebraic structure behind the observed non-trivial
decomposition [62,67]

Z =
∑

�∈FN

∫
dN x ϒ3d(w(x, �))1ϒ

3d(w(x, �))2

of compact space partition functions. Moreover, in many cases it has been shown that Z
can be completely factorized as

Z =
∑

{c}

(
B3d

c

)

1

(
B3d

c

)

2
,

where the sum is over the supersymmetricmassive vacua of the effective 2d theory on the
cigar or flat connections in complex CS through the 3d–3d correspondence. Our general
results explain this property from the existence of two commuting sets of q-Virasoro
constraints satisfied by the generating functions.

Finally, our results can also be read in the context of the BPS/CFT correspondence
and 5dAGT. Supersymmetric 5d unitary quiver gauge theories in the�-background have
an interesting class of observables known as qq-characters, which have been recently
constructed in [70] (building on previous works [71,72]). In particular, it is shown in
[73] that the qq-characters generate quiver Wq,t symmetry algebras andWard identities
for 5d (extended) Nekrasov partition functions [74,75]. When 5d gauge theories can be
engineered by M-theory compactifications on toric Calabi–Yau 3-folds [76,77] or type
IIB (p, q)-webs [78,79], one can also use the refined topological vertex formalism [80–
82] to conveniently compute the 5d Nekrasov partition functions. Using this approach it
has been recently realized [83,84] that 5d gauge theories supported on (p, q)-webs form
a representation of theDing–Iohara–Miki algebra [85,86],which is the building block for
constructing Wq,t algebras (at least in the An case) as much as the strip geometry [87] is
the building block for constructing toric webs. In any case, the free boson representation
of the relevant symmetry algebra yields a matrix model description of the 5d Nekrasov
partition function [88–95], which at isolated points on the Coulomb branch describes
a 3d vortex theory [54,68,69,96]. We thus expect that our construction describes the
compact space version, or the non-perturbative completion in the sense of [97], of this
chain of dualities between gauge/string theory and quantum algebras.

The rest of this paper is organized as follows. In Sect. 2, we review some basics
in the theory of conformal matrix models and Virasoro constraints, and the analogous
constructions for the q-deformed case. We also review the q-Virasoro description of 3d
holomorphic blocks of U(N ) YM theories, and propose the q-Virasoro interpretation of
the Wilson loop generating function. In Sect. 3, we discuss in detail U(N ) YM theories
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on the squashed S3
b , focusing on the Coulomb branch partition function andWilson loop

generating function. We then discuss how these objects can be mapped to correlators
or highest weight states of the q-Virasoro modular double and we find two SL(2, Z)-
related commuting sets of q-Virasoro constraints annihilating the generating function.
We also comment on a few interesting limits of the gauge theory and the associated
constraints, such as the round S3 or special values of the adjoint mass. In Sect. 4, we
extend our analysis to the lens space partition function, the index and twisted index. In
Sect. 5, we discuss how CS terms can be described in the q-Virasoro side, leading to
“dressed” correlators and modified q-Virasoro constraints. In Sect. 6, we consider the
generalization to quiver gauge theories, with special focus on theABJ(M) theory, and the
relation to quiver Wq,t algebras. In Sect. 7, we summarize our results and comment on
open questions and interesting directions for future work, such as the possible 4d/elliptic
lift of our construction and the relation to 5d theories.

2. Matrix Models, Free Fields and 3d Gauge Theories

In this sectionwe summarize basic facts about theβ-ensemble and its free bosonVirasoro
construction, while for a detailed review we refer to [98,99]. This elementary discussion
will allow us to introduce the main tools which also apply to the q-deformed β-ensemble
and q-Virasoro algebra, for details we refer to [88,100]. We then recall the q-Virasoro
interpretation of 3d partition functions on D2 × S1 given by [68], and we extend the
duality by mapping the Wilson loop generating function to the q-deformed β-ensemble.

2.1. Virasoro matrix model. Let us consider the matrix model

Z(τ ) = N0

∫
dNw �β(w) e

√
β
∑

j V (w j |τ)
, V (w|τ) =

∑

n>0

τnwn, (2.1)

where �β(w) is the integration measure describing the interactions between the eigen-
valuesw, V (w|τ) is the potential whose shape is described by the time parameters τ ,N0
is a normalization parametrized by τ0 and β ∈ C. We refer to such a partition function
as a Virasoro matrix model if it satisfies the Virasoro constraints

Ln(τ )Z(τ ) = 0, n ∈ Z>0, (2.2)

where Ln(τ ) are differential operators in the time variables satisfying the positive mode
subalgebra of the full Virasoro algebra

[Ln, Lm] = (n − m)Ln+m +
c

12
n(n2 − 1)δn+m,0, n, m ∈ Z. (2.3)

The fact that the matrix model partition function depends on infinitely many parameters
and that it is subject to infinitely many constraints forming a closed algebra, is a strong
indication that the matrix model can be defined as the (unique) solution to the Virasoro
constraint equations (with suitable boundary conditions).

A simplemethod to built thematrixmodel satisfyingVirasoro constraints is exploiting
the free boson realization of the Virasoro algebra. Let us consider the Heisenberg algebra
(we display non-trivial relations only)

[an,am] = 2nδn+m,0, [P,Q] = 2, n, m ∈ Z\{0}, (2.4)
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and the Fock module Fα over the charged vacuum |α〉 spanned by the states

Fα =
⎧
⎨

⎩

|μ|∏

n=1

a−μn |α〉
⎫
⎬

⎭ ,

|μ|∏

n=1

aμn |α〉 = 0, |α〉 = e
α
2Q|0〉, P|α〉 = α|α〉, (2.5)

for any partition μ of length |μ| and given momentum α ∈ C. The operators

Ln = 1

4

∑

k 	=0,n

: an−kak : +1
2
anP − 1

2
Qβ(n + 1)an, n 	= 0,

L0 = 1

2

∑

k>0

a−kak +
P2

4
− 1

2
PQβ, Qβ = √β − 1√

β
,

(2.6)

where : : denotes normal ordering (i.e. positive modes to the right of negative modes
andP to the right ofQ), close theVirasoro algebra (2.3) with central charge c = 1−6Q2

β .
Using the algebra representation

a−n � nτn, an � 2
∂

∂τn
, Q � τ0, P � 2

∂

∂τ0
, |α〉 = e

α
2Q|0〉 � eτ0

α
2 · 1, (2.7)

we get the differential representation

Ln � Ln(τ ) =
∑

k≥0

kτk
∂

∂τn+k
+

n∑

k=0

∂2

∂τn−k∂τk
− Qβ(n + 1)

∂

∂τn
, n > 0. (2.8)

Then the original problem (2.2) can be solved by finding a free boson operator S(w)

whose commutator with the Virasoro generators is a total derivative, namely

[Ln,S(w)] = d

dw
O(w) (2.9)

for some (n-dependent) operator O(w). In fact, by defining1

Z = JN , J =
∫
dw S(w), (2.10)

through the representation (2.7) we immediately get2

Z|α〉 � Z(τ ), LnZ|α〉 � Ln(τ )Z(τ ) = 0, n > 0, (2.11)

where the last equality follows from the screening charge conservation [Ln, J] = 0
and the highest weight condition Ln>0|α〉 = 0.3 Notice that by packaging the Virasoro

1 A suitable choice of integration contour is to be understood.
2 This identification is usually achieved by an explicit projection onto the coherent state 〈α∞|G(τ ),G(τ ) =

exp( 12
∑

n>0 τnan), with α∞ = α + 2
√

βN and 〈α∞| the dual charged Fock vacuum (〈αa |αb〉 = δab).

This projection is equivalent to the representation (2.7): 2 ∂
∂τn

〈α∞|G(τ ) = 〈α∞|G(τ )an , nτn〈α∞|G(τ ) =
〈α∞|G(τ )a−n , α∞〈α∞|G(τ ) = 〈α∞|G(τ )P = 2 ∂

∂τ0
〈α∞|G(τ ).

3 For α = 0 there are the additional constraints n = −1, 0 due to sl2 invariance of the vacuum |0〉.
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generators into the current (stress tensor) L(z) = ∑n∈Z
Lnz−n−2, the constraints (2.2)

are equivalent to the regularity condition (Ward identities)

z2L(z|τ)Z(τ ) = Pol(z), (2.12)

for a certain (τ -dependent) polynomial Pol(z).
The central object of the free boson construction is the screening currentS(w) defined

by (2.9), and its free boson representation is given by

S(w) =: e−√
β
∑

n 	=0
w−n

n an : e
√

βQw
√

βP. (2.13)

This representation allows us to write down the matrix model explicitly, in fact

N∏

j=1

S(w j ) =:
N∏

j=1

S(w j ) : �β(w), �β(w) =
∏

k< j

(wk − w j )
2β, (2.14)

and hence

Z|α〉 =
∫
dN w �β(w)

∏

j

w
√

βα

j e
√

β
∑

n>0
∑

j

wn
j

n a−ne
√

βNQ|α〉 � Z(τ ), (2.15)

with V (w|τ) = α lnw +
∑

n>0 τnwn ,N0 = exp
√

βτ0(N + α

2
√

β
), where we used (2.7).

We conclude this brief review of Virasoro matrix models with three remarks. Firstly,
this 2d CFT construction can be easily generalized to other (quantum) algebras provided
that the free boson representation of generators and screening currents is known. For
instance, this is the case with W algebras and their q-deformation, which will be in fact
the main focus of this paper. Secondly, different looking matrix models may actually
be related by a simple redefinition of the time variables. Thirdly, the matrix model can
be enriched through the inclusion of vertex operators in the free boson correlator. In 2d
CFTs there is a distinguished set of operators called primaries, which in the free boson
representation are given by

Hγ (z) =: e− γ
2

∑
n 	=0

z−n
n an : e γ

2Qz
γ
2 P, γ ∈ C. (2.16)

Their OPE with the screening current is

Hγ (z)S(w) =: Hγ (z)S(w) : (1 − wz−1)
√

βγ z
√

βγ , (2.17)

whose effect is simply to add a constant background to the time variables

τn → τn − γ
z−n

n
, (2.18)

and to change the normalization by a constant multiplicative factor. For this reason we
will be mainly interested in theories without vertex operators.

2.2. q-Virasoro matrix model. The q-Virasoro algebra is the associative algebra gener-
ated by {Tn, n ∈ Z} satisfying the relation [48]
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f

(
w

z

)
T (z)T (w) − f

( z

w

)
T (w)T (z)

= − (1 − q)(1 − t−1)

(1 − p)

(
δ

(
p
w

z

)
− δ

(
p−1w

z

))
, (2.19)

where

T (z) =
∑

n∈Z

Tnz−n, f (z) =
∑

�≥0

f�z� = e
∑

n>0
(1−qn )(1−t−n )

n(1+pn )
zn

, δ(z) =
∑

n∈Z

zn,

(2.20)
and q, t, p ∈ C with p = qt−1. This algebra provides a 1-parameter deformation of
the Virasoro algebra. In fact, upon setting t = qβ , q = e�, we have the small � ∈ R

expansion

Tn = 2δn,0 + �
2β

(
Ln +

Q2
β

4
δn,0

)
+ O(�4), (2.21)

where the operators Ln close the Virasoro algebra (2.3) with central charge c = 1−6Q2
β .

The Heisenberg algebra (we display non-trivial relations only)

[an,am] = 1

n
(q

n
2 −q− n

2 )(t
n
2 − t−

n
2 )(p

n
2 + p− n

2 )δn+m,0, [P,Q] = 2, n, m ∈ Z\{0},
(2.22)

gives a free boson representation of the q-Virasoro algebra according to

T(z) =
∑

n∈Z

Tnz−n =
∑

σ=±1

�σ (z), �σ (z) =: eσ
∑

n 	=0
z−n

(1+p−σn )
an : qσ

√
β
2 P p

σ
2 , (2.23)

where β = ln t/ ln q. The q-Virasoro screening current is given by4

S(w) =: e−∑n 	=0
w−n

qn/2−q−n/2 an : e
√

βQw
√

βP. (2.24)

One can indeed verify that the defining relation

[Tn,S(w)] = O(qw) − O(w)

w
(2.25)

holds true for a certain (n-dependent) operator O(w), implying the conservation of the
screening charge for a suitable contour, [Tn,

∮
dw S(w)] = 0.

The q-Virasoro matrix model can now be constructed by exploiting the strategy
outlined in the previous subsection. The product of several q-Virasoro screening currents
yields

N∏

j=1

S(w j ) =:
N∏

j=1

S(w j ) : �β(w; q)cβ(w, 1; q)
∏

j

w
β(N−1)
j , (2.26)

with

�β(w; q) =
∏

k 	= j

(wkw
−1
j ; q)∞

(twkw
−1
j ; q)∞

, cβ(w, m; q) =
∏

k< j

(wkw
−1
j )β

�(tmwkw
−1
j ; q)

�(mwkw
−1
j ; q)

,

(2.27)

4 There is another screening current with q → t−1,
√

β → − 1√
β
, but we do not need it in this work.
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or

�β(w; q)cβ(w; q) =
∏

k< j

(wkw
−1
j )β(1 − w jw

−1
k )

(qt−1w jw
−1
k ; q)∞

(tw jw
−1
k ; q)∞

, (2.28)

where the q-Pochhammer symbol and � function are defined in (A.1) and (A.5) respec-
tively. As before, we can now define the operator

Z = JN , J =
∮
dN w S(w), (2.29)

and consider the state

Z|α〉 =
∮

dN w

2π iw
�β(w; q)cβ(w, 1; q)

∏

j

w

√
β(α+

√
βN−Qβ)

j e
∑

n>0

∑
j wn

j
qn/2−q−n/2 a−n

e
√

βNQ|α〉. (2.30)

Finally, the algebra representation

a−n � (q
n
2 − q− n

2 )τn, an � 1

n
(t

n
2 − t−

n
2 )(p

n
2 + p− n

2 )
∂

∂τn
, n ∈ Z>0,

√
βQ � τ0, P � 2√

β

∂

∂τ0
, |α〉 = e

α
2Q|0〉 � e

τ0
α

2
√

β · 1,
(2.31)

yields the matrix model

Z|α〉 � Z(τ ) = N0

∮
dN w

2π iw
�β(w; q)cβ(w, 1; q)e

∑
j V (w j |τ)

,

V (w|τ) = √β(α +
√

βN − Qβ) lnw +
∑

n>0

τnwn, N0 = e
τ0(N+ α

2
√

β
)
.

(2.32)

Due to the conservation of the screening charge [Tn, J] = 0 and the highest weight
condition Tn>0|α〉 = 0, the above partition function satisfies q-Virasoro constraints by
construction [88]

T (z|τ)Z(τ ) = Pol(z) ⇒ Tn(τ )Z(τ ) = 0, n > 0, (2.33)

where the operators Tn(τ ) can be read from the modes Tn using (2.31). Explicitly, we
have

Tn =

⎧
⎪⎨

⎪⎩

∑
σ=±1 qσ

√
β
2 P p

σ
2
∑

k≥0
Bk ({A(σ )

−k })Bn+k ({A(σ )
n+k })

(n+k)!k! , n ≥ 0

∑
σ=±1 qσ

√
β
2 P p

σ
2
∑

k≥0
Bk−n({A(σ )

n−k })Bk ({A(σ )
k })

(k−n)!k! , n < 0

, (2.34)

where we set

A(σ )
n = σ

an|n|!
(1 + p−σn)

, Bn({An}) = Bn(A1, . . . , An), B0 = 1, (2.35)
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with Bn({An}) the complete Bell polynomial defined by exp
∑

n>0
An
n! zn =

∑
n≥0

Bn({An})
n! zn .

As we have remarked at the end of the previous subsection, we can enrich the matrix
model with the inclusion of vertex operators. The q-deformation of the operator (2.16)
which is usually employed is [88] (see also [101] for a recent discussion)

Hγ (z) =: e−∑n 	=0
(tγ n/2−t−γ n/2)z−n

(qn/2−q−n/2)(tn/2−t−n/2)
λn : e γ

2
√

βQz
γ
2
√

βP, (2.36)

where we have introduced the new basis

λn = an(pn/2 + p−n/2)−1 (2.37)

of the Heisenberg algebra. The OPE with the q-Virasoro screening current is

Hγ (z)S(w) =: Hγ (z)S(w) : (q
1
2 t−

γ
2 wz−1; q)∞

(q
1
2 t

γ
2 wz−1; q)∞

zβγ , (2.38)

and thus the inclusion of such a vertex operator simply amounts to add a constant
background to the time variables

τn → τn − (q
1
2 t−

γ
2 z−1)n

n(1 − qn)
+

(q
1
2 t

γ
2 z−1)n

n(1 − qn)
, (2.39)

and to modify the normalization by a constant multiplicative factor. However, for our
purposes it is also convenient to consider the “half” vertex operator

Vγ (z) =: e−∑n 	=0
tγ n/2z−n

(qn/2−q−n/2)(tn/2−t−n/2)
λn : e γ

4
√

βQz
γ
4
√

βP, (2.40)

whose inclusionwill shift the timevariables by the last term in (2.39).With this definition,
we also have

Hγ (z) =: Vγ (z)V−γ (z)−1 : . (2.41)

2.3. Gauge theory on D2 × S1. In this subsection we review a relevant application of
the q-Virasoro theory for the study of 3d N = 2 gauge theories, and we also propose a
gauge theory interpretation of the q-Virasoro matrix model (2.32), extending the results
of [68,69].

Partition functions of 3dN = 2 gauge theories compactified on D2×S1 are computed
by 3d holomorphic block integrals introduced in [62] (see also [102] for derivation
through localization)

B3d
c =

∮

c

drkGw

2π iw
ϒ3d(w),

where the integral kernel ϒ3d(w) is determined by the specific theory with gauge group
G and the integration is over a basis of middle dimensional cycles {c = 1, . . .} in
(C×)rkG . The vector multiplet contributes with the 1-loop factor5

ϒ3d
vec(w) =

∏

α 	=0

(wα; q)∞, (2.42)

5 There can be anomalous terms in the 1-loop factors represented by quadratic polynomials. We will simply
omit these factors because they vanish for the theories we are considering in this section.
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where α is a root of the gauge Lie algebra, while a chiral multiplet in a gauge represen-
tationR contributes with

ϒ3d
N (w, m) =

∏

ρ∈R

1

(wρm; q)∞
, or ϒ3d

D (w, m) =
∏

ρ∈R
(qw−1

ρ m−1; q)∞, (2.43)

where ρ is a weight of R, m is a global U(1) fugacity and the index N or D refers to
Neumann or Dirichlet boundary conditions. The ε parameter

q = e2π iε (2.44)

can be interpreted as the disk equivariant parameter (D2 × S1 � R
2
ε × S1) or as the

modular parameter of the boundary torus (∂(D2×S1) � T
2).Moreover, one can consider

additional 2d vector, Fermi or chiral multiplets on the boundary torus and contributing
to the integral kernel respectively with [103–105]

∏

α 	=0

�(wα; q),
∏

ρ∈R
�(wρm; q)±1. (2.45)

These contributions are important to introduce the correct CS units and ensure local and
large gauge invariance [56,62,102].

As a concrete example we can consider the U(N ) YM theory coupled to 1 adjoint
chiral multiplet and additional Nf fundamental and anti-fundamental chiral multiplets,
in which case the 3d holomorphic block integral can be written as

B3d
c =

∮

c

dN w

2π iw

N∏

k 	= j=1

(wkw
−1
j ; q)∞

(mawkw
−1
j ; q)∞

N∏

j=1

w
κ1
j

Nf∏

f =1

(qw j m̄ f ; q)∞
(w j m f ; q)∞

, (2.46)

where ma is the adjoint fugacity, m f , m̄ f are the fugacities for the fundamental and anti-
fundamentals and we also turned on the Fayet-Iliopoulos (FI) parameter κ1. Notice that
the multiplet content is proper of anN = 4 theory, namely the vector and adjoint chiral
multiplets form aN = 4 vector multiplet, while the fundamental and anti-fundamental
chirals form a fundamental hyper multiplet, however supersymmetry is explicitly broken
down toN = 2 by mass parameters and superpotential terms which we do not discuss.

It was pointed out in [68] (see also the review [69] and [54,96] for the ADE gen-
eralization) that the matrix model above manifestly matches a free boson correlator of
q-Virasoro screening currents and vertex operators. In fact, by using the results reviewed
in the previous subsection we can immediately identify6

B3d
c =

∮

c
dN w 〈α∞|

Nf∏

f =1

Hγ f (z f )

N∏

j=1

S(w j )|α0〉, (2.47)

up to proportionality factors, provided that we identify

Gauge theory q ma m f m̄ f κ1

q-Virasoro q t q
1
2 t

γ f
2 z−1

f q− 1
2 t−

γ f
2 z−1

f

√
β(α0 +

√
βN − Qβ)

, (2.48)

6 Herewehave to use that theq-constant cβ(w; q) in (2.27) simply contributeswith a constantmultiplicative
factor to the integral along the contour chosen in [68].
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with α∞ = α0 + 2
√

βN +
∑

f γ f . We see that the screening currents provide the vector
and adjoint integration measure, while each vertex operator provide the 1-loop potential
of a pair of fundamental/anti-fundamental chiral multiplets (the letterH refers indeed to
hyper multiplet, while the half vertex operator V introduced in (2.40) couples a single
chiral).

The correlator (2.47) is a particular projection of the state given in (2.32): we have
simply to shift the time variables τn as in (2.39) and then set τn = 0. Therefore the natural
question arises whether we can give a gauge theory interpretation to the more general
state (2.32). In order to answer to this question we have to include more observables
in the gauge theory. One kind of such observable is given by supersymmetric Wilson
loops along the S1 at the tip of the disk.7 Such insertions contribute to the integral kernel
ϒ3d(w) with

TrR (w) = sR(w), (2.49)

whereR is an arbitrary U(N ) representation, sR(w) is the associated Schur polynomial,

w = ∏
j wh j

j is the Wilson line at the localization locus and {h j , j = 1, . . . , N } are
Cartan generators of the gauge group. By using the Cauchy identity

∑

R
sR(τ̂ )sR(w) = e−∑ j,k ln(1−τ̂kw j ) = e

∑
n>0 τn

∑
j wn

j , τn =
∑

k

τ̂ n
k

n
, (2.50)

we are naturally led to package Wilson loop v.e.v.’s into the generating function

Z(τ ) =
∑

R
sR(τ̂ )

∮

c

dN w

2π iw

N∏

j=1

w
κ1
j

N∏

k 	= j=1

(wkw
−1
j ; q)∞

(mawkw
−1
j ; q)∞

sR
(
w
)

=
∮

c

dN w

2π iw
�β(w) e

∑
n>0 τn

∑
j wn

j +κ1
∑

j lnw j , (2.51)

whichmatches (modulo the remark in footnote 6) the highest weight state (2.32) by using
the representation (2.31). Our interpretation also implies that the generating function of
the theory on D2 × S1 satisfies the q-Virasoro constraints (2.33).

Starting from the next section, we are going to study 3d N = 2 gauge theories on
compact spaces.We are going to show that the q-Virasoro algebra still plays a prominent
role, but we have to introduce a new remarkable structure: the modular double.

3. Gauge Theory on S3b

Supersymmetric gauge theories can be conveniently studied on compact spaces, and 3d
N = 2 YM-CS theories can be placed in a variety of backgrounds while preserving
2 supercharges of opposite R-charge [28–32]. Expectation values of supersymmetric
observables computed through Coulomb branch localization provide interesting exam-
ples of matrix models, and our goal is to show that we can use q-Virasoro/W algebras
techniques to study these theories. We will be focusing on single node U(N ) theories
coupled to 1 adjoint chiral multiplet and possibly (anti-)fundamental chirals, postponing
the discussion of more general unitary quiver theories to Sect. 6. We will not discuss

7 Other defects includes boundary degrees of freedom such as walls, see e.g. [56]. We will consider such
insertion in Sect. 5 when discussing the inclusion of CS terms.
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superpotential terms which cannot be seen by the matrix model except for possible
restrictions on the parameters of the theory.

In this section we focus on gauge theories on the squashed S3
b geometry [35–38] (see

also the review [106]). The S3
b can be defined by the usual embedding S3 ⊂ R

4 endowed
with the metric

ds2 = ω2
1(dx21 + dx22 ) + ω2

2(dx23 + dx24 ), b2 = ω2

ω1
, ω = ω1 + ω2, (3.1)

where ω1,2 are squashing parameters.8 For our purposes it is useful to keep in mind that
S3

b can be obtained by gluing two solid tori D2 × S1 through the S ∈ SL(2, Z) element
acting on the boundary torus with modular parameter ε, namely

q = e2π iε → e−2π iS·ε, ε → S · ε = −1

ε
. (3.2)

3.1. Generating function. Coulomb branch localization implies that the path integral
localizes onto trivial field configurations except for a constant profile of the adjoint vector
multiplet scalar X =∑ j X jh j in the Cartan subalgebra, which is to be integrated over.
If we consider the YM-CS theory coupled to 1 adjoint chiral multiplet of complexified
mass Ma

9 the partition function of the theory is given by10

Z = N0

∫

iRN
dN X �S(X) e

∑
j V (X j ), (3.3)

�S(X) =
∏

k 	= j

S2(Xk − X j |ω)

S2(Ma + Xk − X j |ω)
, (3.4)

where �S(X) is the integration measure capturing the vector and adjoint contributions
and the double Sine function is defined in (A.10). The potential V (X) is determined by
the classical CS action (including the FI)

V (X) = − iπκ2

ω1ω2
X2 +

2π iκ1
ω1ω2

X, (3.5)

where κ2 is the CS level and κ1 is the FI parameter, whileN0 is an overall normalization
constant. Notice that the theory with κ2 = κ1 = 0 is a.k.a. the N = 2∗ theory, namely
the pure N = 4 YM theory broken down to N = 2 by the adjoint mass.

A relevant class of observableswhich canbe computed though localization is provided
by supersymmetric Wilson loops in arbitrary representations of the gauge group, which
can be inserted along the great circles x3 = x4 = 0 (length 2π/ω1) or x1 = x2 = 0
(length 2π/ω2) at the North or South poles of the Hopf base (see for instance [108]).
Such insertions amount to evaluate the v.e.v. of

TrRi

(
e
2π i
ωi

X
)

= sRi (e
2π i
ωi

X
), (3.6)

8 In this parametrization the squashing parameters are assumed to be real. However, once the gauge theory
observables are computed by localization, ω1,2 can be taken to be complex.

9 The real mass is MR
a = iMa − iω2 �, where � is the Weyl dimension. The latter is absorbed into the

complex mass due to holomorphy [107].
10 To compare with the literature we have to use S2(ω/2 − iX |ω) = sb(X), where ω1 = ω−1

2 = b.
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for an arbitrary U(N ) representation Ri . Using the identity (2.50) we are naturally led
to package Wilson loop v.e.v.’s into the generating function

Z(τ 1, τ 2) =
∑

R1,R2

N0

∫

iRN
dNX �S(X) e

∑
j V (X j )

∏

i=1,2

sRi (τ̂ i )sRi (e
2π i
ωi

X
)

=
∫

iRN
dNX �S(X) e

∑
j V (X j )

∏

i=1,2

exp

⎛

⎝
∑

n>0

τn,i

∑

j

e
2π in
ωi

X j + τ0,i Nκ0

⎞

⎠ , (3.7)

where we parametrized N0 = exp Nκ0(τ0,1 + τ0,2). Therefore, the inclusion of Wilson
loops modifies the matrix model potential according to

V (X) → V (X |τ 1, τ 2) = V (X) +
∑

i=1,2

(
∑

n>0

τn,ie
2π in
ωi

X
+ τ0,iκ0

)
. (3.8)

Notice that the partition function Z is simply Z(0, 0). However, the generating function
is a much more interesting object to study as it contains more information than the
bare partition function. Moreover, the contribution of (anti-)fundamental matter can be
included as a background for the time variables and CS levels, which is the reason why
we will be mostly interested in the theory without (anti-)fundamental matter. In fact, a
fundamental chiral multiplet of complexified mass Mf can be coupled to the theory by
adding the following 1-loop term to the potential

V (X)fund. = − ln S2(X + Mf |ω). (3.9)

On the other hand, for generic squashing parameters (i.e. Im (ω2/ω1) 	= 0) the double
Sine function has the representation (A.13)

− ln S2(X |ω) = − iπ

2ω1ω2

(
X2 − Xω +

ω2 + ω1ω2

6

)
+
∑

i=1,2

∑

n>0

e
2π in
ωi

X

n(1 − e
2π in ω

ωi )
.

(3.10)
It is therefore clear that a fundamental chiral multiplet can be simply coupled to the
theory by shifting the time variables and CS levels according to

κ2 → κ2 +
1

2
, κ1 → κ1 +

ω

4
− Mf

2
, τn,i → τn,i +

e
2π in
ωi

Mf

n(1 − e
2π in ω

ωi )
, n > 0,

(3.11)

and lnN0 → lnN0 − iπ
2ω1ω2

(M2
f − Mfω − ω2

1+ω2
2−3ω2

12 ). It is worth noting that the shift
of the time variables alone corresponds to gauging a tetrahedron theory [12,13] for each
weight, which automatically gets rid of the parity anomaly due to half-integer CS units.

In the next subsection we are going to show that the generating function (3.7) has a
neat q-Virasoro interpretation and that it satisfies two commuting copies of q-Virasoro
constraints.
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3.2. Free boson realization. To begin with, let us consider thematrixmodel correspond-
ing to the gauge theory generating function (3.7) without pure CS action, i.e. κ2 = 0.
We discuss the inclusion of CS terms in Sect. 5. As reviewed in Sect. 2, the simplest
strategy to derive the constraints satisfied by thematrix model is to look for its free boson
realization. We can in fact give such representation by means of two commuting copies
of the very same Heisenberg algebra (2.22) (we display non-trivial relations only)

[an,i ,am,i ] = 1

n
(q

n
2

i − q
− n

2
i )(t

n
2

i − t
− n

2
i )(p

n
2
i + p

− n
2

i )δn+m,0,

[Pi ,Qi ] = 2, n, m ∈ Z\{0}, (3.12)

where the subindex i = 1, 2 denotes the two copies. The q-Virasoro and gauge theory
parameters are related by

Gauge ω1, ω2, Ma

q-Virasoro

Copy 1 Copy 2

q1 = e
2π i ω

ω1 q2 = e
2π i ω

ω2

t1 = e
2π i β1ω

ω1 = e
2π i
ω1

Ma t2 = e
2π i β2ω

ω2 = e
2π i
ω2

Ma

β1 = β β2 = β

. (3.13)

By introducing the fundamental weight variables (i.e. the Wilson lines evaluated on the
j th fundamental weight)

(w j )1 = e
2π i
ω1

X j , (w j )2 = e
2π i
ω2

X j , (3.14)

the integration measure (3.4) is reproduced by the current

S(X) = (w)1(w)2 S(w)1 ⊗ S(w)2, (3.15)

which is essentially the product of two commuting q-Virasoro screening currents defined
in (2.24). In fact

∏

j

S(X j ) =:
∏

j

S(w j )1 ⊗ S(w j )2 : �S(X) e
2π iω

√
β

ω1ω2
(
√

βN−Qβ)
∑

j X j , (3.16)

wherewe recall the definition Qβ = √
β−1/

√
β. Hereweused (2.27), the representation

(A.13) of the double Sine function and the modular property (A.6) of the � function
with ε = ω/ω1, r = 1. Table (3.13) summarizes the g ∈ SL(2, Z) gluing involved in
our construction

ε → g · ε = ε

1 − ε
⇒ q1 = e2π iε, q2 = e−2π ig·ε , (3.17)

which nicely reflects the geometric decomposition of S3
b into a pair of solid tori D2 × S1

each equipped with its own copy of the q-Virasoro algebra. Moreover, by parametrizing
X/ω1 = χ we also have the g ∈ SL(2, Z) action on the coordinates

χ → g · χ = χ

1 − ε
⇒ (w)1 = e2π iχ , (w)2 = e−2π ig·χ . (3.18)
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We should notice that the above parametrization is adapted to the lens space description
S3

b � L(1, 1) of the next section, but we can recover the more familiar description
through the S ∈ SL(2, Z) gluing by identifying ε � ε + 1.

We next define the operator

Z = J N , J =
∫

iR
dX S(X) (3.19)

built from the screening charge J . When acting on the charged Fock vacuum state |α〉
defined by

|α〉 = e
α
2Q1 ⊗ e

α
2Q2 |0〉, an,i |0〉 = 0, Pi |α〉 = α|α〉, n > 0, (3.20)

we get

Z|α〉 =
∫

iRN
dN X �S(X) e

2π iω
√

β
ω1ω2

(α+
√

βN−Qβ)
∑

j X j

×
⊗

i=1,2

exp

(
∑

n>0

∑
j (w

n
j )i

qn/2
i − q−n/2

i

a−n,i

)
e
√

βNQi |α〉. (3.21)

Using the algebra representation (2.31) we can finally write

Z|α〉 � Z(τ 1, τ 2) =
∫

iRN
dNX �S(X) e

2π iω
√

β
ω1ω2

(α+
√

βN−Qβ)
∑

j X j

×
∏

i=1,2

exp

⎛

⎝
∑

n>0

τn,i

∑

j

e
2π in
ωi

X j + τ0,i

(
N +

α

2
√

β

)⎞

⎠ , (3.22)

matching the gauge theory generating function provided that we identify

κ1 = ω
√

β(α +
√

βN − Qβ), κ0 = 1 +
α

2N
√

β
. (3.23)

In order to show that the matrix model (3.22) satisfies two commuting copies of
q-Virasoro constraints, we have to verify that the q-Virasoro generators Tn,i in the
free boson representation (3.12) commute with the screening current (3.15) up to total
differences, namely

[Tn,i ,S(X)] = O(λi + X)i − O(X)i (3.24)

for some (n-dependent) operator O(X)i and λi ∈ C. Indeed, assuming that
√

βPi has
integer eigenvalues,11 we can use theωi -periodicity in the i th copy and the relation (2.25)
valid for the two copies

[Tn,1,S(w)i ] = (w)−1
i (O(qiw)i − O(w)i ) δ1,i ,

[Tn,2,S(w)i ] = (w)−1
i (O(qiw)i − O(w)i ) δ2,i ,

(3.25)

to conclude that (3.24) holds true with

O(X)1 = (w)2 O(w)1 ⊗ S(w)2, O(X)2 = (w)1 S(w)1 ⊗ O(w)2, λ1,2 = ω2,1.

(3.26)

11 We can relax this constraint by modifying the zero modes without affecting the algebra.
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This non-trivial property of the screening current S(X) and the SL(2, Z) pairing justify
the name “modular double” that we are using for our construction. Finally, from the
interpretation (3.22) and the highest weight condition

Tn,i |α〉 = 0, n > 0, (3.27)

we easily get q-Virasoro constraints through the representation (2.31) of (2.33)

T (z|τ i )i Z(τ 1, τ 2) = Pol(z)i ⇒ Tn,i (τ i ) Z(τ 1, τ 2) = 0, n > 0,

for a certain (τi -dependent) polynomial Pol(z)i and where Tn,i (τ i ) are the differential
operators given in (2.34).

3.3. Round S3: W1,t and Virasoro limits. The q-Virasoro = Wq,t (A1) algebra admits
several interesting limits in which it reduces to other known algebras, the most famous
one being the conformal limit discussed around (2.21). Other interesting limits are: the
Hall-Littlewood limit q → 0 with t fixed [109] and recently discussed in [110] in the
context of the 5d AGT correspondence; the root of unity limit [111] recently discussed in
the context of the 4d AGT correspondence in [112,113]; the special values β = 1, 3/2, 2
inwhich case connectionswithKac-Moody, topological andW1+∞ algebras respectively
were discussed in [109]; the Frenkel-Reshetikhin limit t → 1 with q fixed (classical
q-Virasoro algebra) or q → 1 with t fixed [114], in which case the algebra becomes
commutative but inherits a natural Poisson algebra structure isomorphic to the Poisson
algebra obtained from the difference Drinfeld-Sokolov reduction of ŜL2 [115,116].

It would be very interesting to understand all these limits from the viewpoint of the
q-Virasoro modular double and 3d gauge theories on compact spaces, but the general
discussion is beyond the aim of this work. Also, we should observe that taking the
limits at the algebra level might be very subtle: in fact, it may happen that a particular
(naive) limit on one q-Virasoro factor is ill-defined on the other. In the following we will
simply ignore these subtleties and study instead a couple of particular limits where the
compact space generating function is perfectly defined and allows us to explicitly find the
constraints it satisfies by standard matrix model techniques. For concreteness, we will
focus on the S3

b geometry discussed in this section, analyzing the matrix model (3.22) in
special limits of the deformation parameters. First of all, we consider the round S3 limit
corresponding to ω1 → ω2 → 1 from a complex direction. In terms of the parameters
of the q-Virasoro algebra this limit corresponds to q1/2

1 → q1/2
2 → 1. However, in this

limit the value of t1/21 → t1/22 → e2π iβ is still a free parameter and each copy of the
q-Virasoro algebra should reduce to the W1,t (A1) algebra mentioned above. In order
to be able to study the matrix model exactly, we can take a further limit on β such that
t1 → t2 → ±1, in which case we expect to find a relation with the Virasoro algebra (a
different one w.r.t. (2.21) though).

β ∈ Z

2 or t = 1: Virasoro limit. The first simple example is when β ∈ Z

2 , in which
case t1,2 → t = e4π iβ → 1. In this limit the measure (3.4) of the matrix model (3.22)
reduces to the following expression

�S(X) =
(
(−1)β(2β−1)22β

)N (N−1) ∏

k 	= j

sin2β
(
π(Xk − X j )

)
, (3.28)

which can be derived from the reflection property (A.12). Therefore the matrix model
becomes
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Z(τ ) =
∫

iRN
dN X

∏

k 	= j

sin2β
(
π(Xk − X j )

)

× e2π iκ1
∑

j X j exp

⎛

⎝√2β
∑

n>0

∑

j

τne
2π inX j +

√
2βτ0Nκ0

⎞

⎠ , (3.29)

wherewe set
√
2βτn = τn,1+τn,2 and neglected an overall prefactorwhich is not relevant

for our further discussions. Introducing the exponentiated variables x j = e2π iX j , we can
rewrite the matrix model as

Z(τ ) =
∫ ∞

0
dNx

∏

j

x (1+2
√

βα)

j

∏

k 	= j

(xk − x j )
2βe

√
2β(
∑

n>0 τn
∑

j xn
j +τ0Nκ0), (3.30)

up tounimportant proportionality factors, andwhereweusedκ1 = 2
√

β(
√

βN−Qβ+α).
Now we can derive the constraints for this matrix integral using standard techniques (for
details we refer to [117–119]). We shift the integration variables x j → x j + εn xn+1

j ,
n ∈ Z>0, and collect all the variations under the integral, leading to the following Ward
identities

〈
∑

k�1

√
2βτkk

∑

j

xn+k
j + 2β

n−1∑

k=1

∑

�, j

xk
� xn−k

j

+
(
4βN + 2

√
βα + 1 + (n + 1)(1 − 2β)

)∑

j

xn
j 〉 = 0, (3.31)

where 〈 〉 denotes the matrix model average. Such identities are equivalent to the differ-
ential constraints Ln(τ )Z(τ ) = 0 where the Ln(τ ) operators are

Ln(τ ) =
∑

k�1

τkk
∂

∂τn+k
+

n−1∑

k=1

∂2

∂τk∂τn−k
+

(
2
√
2βN +

√
2α +

1√
2β

− (n + 1)Q2β

)
∂

∂τn
.

(3.32)
We can also use

2
∂

∂τ0
Z(τ ) = 2

√
2βNκ0Z(τ ), κ0 = 1 +

α

2N
√

β
, (3.33)

to rewrite

Ln(τ ) =
∑

k�1

τkk
∂

∂τn+k
+

n−1∑

k=1

∂2

∂τk∂τn−k
+

(
2

∂

∂τ0
+

1√
2β

− (n + 1)Q2β

)
∂

∂τn
.

(3.34)

These differential operators represent the Virasoro operators (2.8) with zero mode P �
2 ∂

∂τ0
+ 1√

2β
and central charge c = 1 − 6Q2

2β .

β ∈ 1
4 + Z

2 or t = −1: another Virasoro limit. Another situation in which we can
explicitly derive the constraints satisfied by the matrix model is when β ∈ 1

4 + Z

2 . This
case corresponds to t1,2 → t = e4π iβ → −1. In order to find the limit of the measure
(3.4) of the matrix model (3.22) we use
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S2(X + 1
2 |1, 1)

S2(X + n + 1
2 |1, 1)

= (−1)
n(n−1)

2 2n cosn(π X), n = 2β − 1

2
∈ Z, (3.35)

and the reflection property (A.12), leading the following matrix model

Z(τ ) =
∫

iRN
dNX

∏

k< j

sin2(π(Xk − X j )) cos
(4β−2)(π(Xk − X j ))

× e2π iκ1
∑

j X j exp

⎛

⎝√2β
∑

n>0

∑

j

τne2π inX j +
√
2βτ0Nκ0

⎞

⎠ , (3.36)

up to proportionality factors, and where we set
√
2βτn = τn,1 + τn,2. Rewriting the

matrix model in terms of the x j = e2π iX j variables we obtain

Z(τ ) =
∫ ∞

0
dNx

∏

j

x (1+2α
√

β)

j

∏

k< j

(xk − x j )
2(xk + x j )

2(2β−1)e
√
2β(
∑

n>0 τn
∑

j xn
j +τ0Nκ0),

(3.37)
up to proportionality factors, andwherewe used κ1 = 2

√
β(

√
βN −Qβ+α). Performing

the shift x j → x j +εn xn+1
j , n ∈ 2Z>0, and collecting all the variations under the integral

we arrive at the Ward identities

〈√2β
∑

k�1

τkk
∑

j

xn+k
j +

n∑

k=0

(
1 + (−1)k(2β − 1)

)

×
∑

�, j

xk
� xn−k

j +
(
2
√

βα + 2 − 2β
)∑

j

xn
j 〉 = 0. (3.38)

The reason why these Ward identities can be derived for even n only is that the variation
of
∏

k 	= j (xk + x j )
2β−1 contains

∑

k 	= j

xn+1
k + xn+1

j

xk + x j
=

n∑

k=0

∑

� 	= j

(−1)k xk
� xn−k

j , n ∈ 2Z, (3.39)

while for odd n a similar simplification to the r.h.s. does not take place. The derived
Ward identities can be generated by the action of the following differential operators on
the matrix model

Ln(τ ) =
∑

k�1

τkk
∂

∂τn+k
+

1

2β

n−1∑

k=1

(
1 + (−1)k(2β − 1)

)

× ∂2

∂τk∂τn−k
+

(
2

∂

∂τ0
+

√
2

β
− 2

√
β

2

)
∂

∂τn
. (3.40)

In order to interpret these operators,we canmake the following identification between the
differential and free boson operators satisfying the usual Heisenberg algebra [an,am] =
2nδn+m,0
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an � 2

√
1 + (−1)n(2β − 1)

2β

∂

∂τn
, a−n � n

√
2β

1 + (−1)n(2β − 1)
τn, n > 0,

P � 2
∂

∂τ0
+

2√
2β

− 2

√
β

2
.

(3.41)
Under this identification our operators become

Ln(τ ) � Ln = 1

4

∑

k 	=0,n

: an−kak : +1
2
anP, (3.42)

satisfying the Virasoro algebra with the central charge c = 1 when extended to n ∈ Z.

4. Other Compact Backgrounds

In this section we extend our results to other gauge theory backgrounds. Since the
analysis will be quite analogous to the previous one for the S3

b background, but with the
important difference given by non-trivial fundamental groups, we will be more concise
in the presentation.

4.1. L(r, 1). The focus of this subsection is on gauge theories on the squashed lens
space L(r, 1) = S3

b/Zr [39–43]. The lens space can be defined as the S3
b with metric

(3.1) and the additional Zr quotient by the action

x1 + ix2 → e
2π i
r (x1 + ix2), x3 + ix4 → e− 2π i

r (x3 + ix4). (4.1)

It is also useful to keep in mind that L(r, 1) can be obtained by gluing two solid tori
D2 × S1 through the gr ∈ SL(2, Z) element acting on the boundary torus with modular
parameter ε, namely

q = e2π iε → e−2π igr ·ε, ε → gr · ε = ε

1 − rε
. (4.2)

Generating function. Coulomb branch localization implies that the path integral local-
izes onto flat connections and a constant profile for the adjoint vector multiplet scalar
X in the Cartan, which is to be integrated over. Flat connections are classified by
π1(L(r, 1)) � Zr , and hence labeled by integers � ∈ Z

N
r which are to be summed

over (we consider unordered sequences). If we consider the YM-CS theory coupled to
1 adjoint chiral multiplet of complexified mass Ma the partition function of the theory
is given by

Z = N0

∑

�∈ZN
r

∫

iRN
dNX �r (X , �) e

∑
j V (X j ,� j ), (4.3)

where

�r (X , �) =
∏

k 	= j

S2,−(�k−� j )(Xk − X j |ω)

S2,−(�k−� j )(Ma + Xk − X j |ω)
, (4.4)

V (X, �) = − iπκ2

rω1ω2
X2 − iπκ2

r
�2 +

2π iκ1
rω1ω2

X. (4.5)
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Here κ2 is the CS level, κ1 the FI while the generalized double Sine function is defined in
(A.14). Supersymmetric Wilson loops can be inserted along the non-contractible cycles
at the North and South poles of the Hopf base. Such insertions amount to evaluate the
v.e.v. of

TrRi

(
e
2π i
rωi

X
esi

2π i
r �

)
, s1,2 = ±1, (4.6)

where e± 2π i
r � is the holonomy of the gauge connection along the non-contractible cycle.

The generating function thus reads as

Z(τ 1, τ 2) =
∑

�∈ZN
r

∫

iRN
dNX �r (X , �) e

∑
j V (X j ,� j |τ 1,τ 2),

V (X, �|τ 1, τ 2) = V (X, �) +
∑

i=1,2

(
∑

n>0

τn,ie
2π in
rωi

(X+si ωi �) + τ0,iκ0

)
,

(4.7)

where we parametrized N0 = eNκ0(τ0,1+τ0,2). A fundamental chiral multiplet of com-
plexified mass Mf together with 1/2 CS units can be coupled to the theory by shifting
the time variables according to

τn,i → τn,i +
e
2π in
rωi

Mf

n(1 − e
2π in ω

rωi )
. (4.8)

4.2. S2 × S1 (index). In this subsection we consider gauge theories on the S2 × S1

background associated to the superconformal index [44,45,66]. The S1 period can be
parametrized by q = e�ε . It is also useful to keep inmind that S2×S1 can be obtained by
gluing two solid tori D2× S1 through the id ∈ SL(2, Z) element acting on the boundary
torus with modular parameter ε

q = e�ε → e−�id·ε, ε → id · ε = ε. (4.9)

Generating function. Coulomb branch localization implies that the path integral local-
izes onto monopole configurations on S2 labeled by quantized fluxes � to be summed
over (we consider unordered sequences), and constant gauge holonomy x around S1 to
be integrated over the maximal torus. The adjoint vector multiplet scalar is also constant
and proportional to the flux. If we consider the YM-CS theory coupled to 1 adjoint chiral
multiplet with global fugacity ma the partition function of the theory is

Z = N0

∑

�∈ZN

∮

TN

dNx

2π ix
�id(x, �) e

∑
j V (x j ,� j ), (4.10)

where

�id(x, �) =
∏

k< j

m
−(�k−� j )
a (1 − xk x−1

j q
�k−� j

2 )(1 − x j x−1
k q

�k−� j
2 )×

× (m−1
a x j x−1

k q1+
�k−� j

2 ; q)∞(m−1
a xk x−1

j q1+
�k−� j

2 ; q)∞

(maxk x−1
j q

�k−� j
2 ; q)∞(max j x−1

k q
�k−� j

2 ; q)∞
, (4.11)
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V (x, �) = κ2� ln x + κ1 ln x + η1� ln q. (4.12)

Here κ2 is the CS level, κ1 is the FI and we turned on also the holonomy qη1 for the
topological U(1). Supersymmetric Wilson loops can be supported at the poles of S2,
and their evaluation amounts to computing the average of

TrRi

(
xsi q− �

2

)
, s1,2 = ±1. (4.13)

The generating function of Wilson loop v.e.v.’s. is therefore

Z(τ 1, τ 2) =
∑

�∈ZN

∮

TN

dNx

2π ix
�id(x, �) e

∑
j V (x j ,� j |τ 1,τ 2),

V (x, �|τ 1, τ 2) = V (x, �) +
∑

n 	=0

τn xnq− �
2 |n| + κ0(τ0,1 + τ0,2),

(4.14)

where we set τn,1 = τn , τn,2 = τ−n for n > 0 and parametrized N0 = eNκ0(τ0,1+τ0,2).
A fundamental chiral multiplet of global fugacity mf together with 1/2 CS units can be
coupled to the theory by shifting the time variables

τn → τn +
mn

f

|n|(1 − qn)
, n 	= 0. (4.15)

4.3. S2 × S1 (twisted index). In this subsection we consider gauge theories on the A-
twisted S2 × S1 background leading to the twisted index [46]. The metric is

ds2 = dθ2 + sin2 θ(dφ − 2πεdy)2 + dy2, (4.16)

where q = e2π iε can be interpreted as the angular momentum fugacity. This background
is characterized by a flux for the R-symmetry connection. It is also useful to keep inmind
that S2× S1 can be obtained by gluing two solid tori D2× S1 through the id ∈ SL(2, Z)

element acting on the boundary torus with modular parameter ε

q = e2π iε → e−2π iid·ε, ε → id · ε = ε. (4.17)

Generating function. Coulomb branch localization implies that the path integral local-
izes onto monopole configurations on S2 labeled by quantized fluxes � to be summed
over (we consider unordered sequences), and complexified constant gauge holonomy
x around S1 to be integrated over the maximal torus. If we consider the YM-CS the-
ory coupled to 1 adjoint chiral multiplet with fugacity v and R-charge R the partition
function of the theory is given by (we refer to [46] for the J.K. contour)

Z = N0

∑

�∈ZN

∮

J.K.

dNx

2π ix
�A(x, �) e

∑
j V (x j ,� j ), (4.18)

where
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�A(x, �) =
∏

k< j

(−1)�k−� j −Rq− �k−� j
2 (1 − xk x−1

j q
�k−� j

2 )(1 − x j x−1
k q

�k−� j
2 )

× v1−R(xk x−1
j )�k−� j

(vxk x−1
j q

1−(1+�k−� j −R)

2 ; q)1+�k−� j −R(vx j x−1
k q

1−(1+� j −�k−R)

2 ; q)1+� j −�k−R

,

(4.19)

V (x, �) = κ2� ln x + κ1 ln x + η1� ln q. (4.20)

Here κ2 is the CS level, κ1 the FI andwe turned on also the holonomy qη1 for the topolog-
ical U(1), while the finite q-Pochhammer symbol is defined in (A.3). Supersymmetric
Wilson loops wrapping the integral curve of ∂y + 2πε∂φ can be supported at the poles
of S2. The evaluation of a Wilson loop amounts to compute the average of

TrR
(
xqsi

�
2

)
, s1,2 = ±1. (4.21)

The generating function then reads as

Z(τ 1, τ 2) =
∑

�∈ZN

∮

J.K.

dN x

2π ix
�A(x, �) e

∑
j V (x j ,� j |τ 1,τ 2),

V (x, �|τ 1, τ 2) = V (x, �) +
∑

n 	=0

τn x |n|q− �
2 n + (τ0,1 + τ0,2)κ0,

(4.22)

wherewe also set τn,1 = τn , τn,2 = τ−n for n > 0 and parametrizedN0 = eNκ0(τ0,1+τ0,2).
A fundamental chiral multiplet with global fugacity mf together with 1/2 CS units can
be coupled to the theory by shifting the time variables

τn → τn +
m|n|

f

|n|(1 − qn)
, n 	= 0. (4.23)

Free boson realization. Thematrixmodels arising from the different backgrounds find a
unified description in terms of theVirasoromodular double. Let us start by identifying the
geometric parameters, fundamental weight variable w associated to the supersymmetric
Wilson loops, the adjoint mass, fugacity or R-charge as

q-Virasoro L(r, 1) S2 × S1 (index) S2 × S1 (twisted index)

q1 e
2π i ω

rω1 e�ε e2π iε

q2 e
2π i ω

rω2 e−�ε e−2π iε

(w)1 e
2π i
r �e

2π i
rω1

X
e−�ε �

2 x e−2π iε �
2 x

(w)2 e− 2π i
r �e

2π i
rω2

X
e−�ε �

2 x−1 e2π iε
�
2 x

t1 = qβ1
1 e

2π i
rω1

Ma ma e2π iε
R
2 v

t2 = qβ2
2 e

2π i
rω2

Ma m−1
a e−2π iε R

2 v

(β1, β2) (β, β) (β, β) (β, R − β)

. (4.24)

This table summarizes the g ∈ SL(2, Z) gluings involved in our construction. If we
denote ω/rω1 = ε, X/rω1 = χ for L(r, 1) or x = e2π iχ for S2 × S1, then the two
copies are related by
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q-Virasoro L(r, 1) S2 × S1 (index) S2 × S1 (twisted index)
q1 e2π iε e�ε e2π iε

q2 e−2π ig·ε e−�g·ε e−2π ig·ε

(w)1 e
2π i
r �e2π iχ e−�ε �

2 e2π iχ e−2π iε �
2 e2π iχ

(w)2 e− 2π i
r g·�e−2π ig·χ e−�g·ε g· �

2 e−2π ig·χ e−2π ig·ε g· �
2 e−2π ig·χ

g · ε ε
1−rε

ε ε

g · χ
χ

1−rε
χ − χ

g · � � � − �

. (4.25)

The matrix models are reproduced by the q-Virasoro modular double screening cur-
rent

S(χ) =
∑

�∈F

(w)1(w)2 S(w)1 ⊗ S(w)2, (4.26)

where we recall that F = (Zr , Z) for L(r, 1) and S2 × S1 respectively. In fact
∏

j

S(χ j ) =
∑

�∈FN

:
∏

j

S(w j )1 ⊗ S(w j )2 : �(χ, �)
∏

j

�0(χ j , � j ), (4.27)

where the measure �(χ, �) is the one appearing in (4.4), (4.11), (4.19) respectively, and

�0(χ j , � j ) =

⎧
⎪⎪⎨

⎪⎪⎩

e
2π iω

√
β

rω1ω2
(
√

βN−Qβ)X j : L(r, 1)
q−√

β� j (
√

βN−Qβ) : S2 × S1(index)

x R(N−1)+2
j q−� j (β− R

2 )(N−1) : S2 × S1(twisted index)

. (4.28)

Here we used (2.27), (2.28), (A.15), (A.6), (A.2), (A.4). We next define the operator

Z = J N , J =
∫

iR
dχ S(χ), (4.29)

yielding the state

Z|α〉 =
∑

�∈FN

∫
dNχ �(χ, �)

∏

j

�0(χ j , � j )(w j )
√

βα

1 (w j )
√

βα

2 (4.30)

×
⊗

i=1,2

exp

(
∑

n>0

∑
j (w

n
j )i

qn/2
i − q−n/2

i

a−n,i

)
e
√

βNQi |α〉. (4.31)

Using the algebra representation (2.31) we can finally match (4.7), (4.14), (4.22) iden-
tifying

L(r, 1) S2 × S1 (index) S2 × S1 (twisted index)
κ2 0 0 0
κ1 ω

√
β(

√
βN − Qβ + α) 0 2

√
βα + R(N − 1) + 2

κ0 1 + α

2N
√

β

η1 − −√
β(α +

√
βN − Qβ) (1 − N )

(
β − R

2

)

.

(4.32)
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In order to show that the generating function (4.30) satisfies q-Virasoro constraints,
we have to verify that

[Tn,i ,S(χ)] = total difference =
∑

�∈F

(O�(λi + χ)i − O�(χ)i ) , (4.33)

for some (n-dependent) operator O�(χ)i and λi ∈ C. Indeed, the relation (3.25) can be
used to conclude that (4.33) holds true with12

O�(X)1 = (w)2O(w)1 ⊗ S(w)2, O�(X)2 = (w)1 S(w)1 ⊗ O(w)2. (4.34)

Then two commuting sets of q-Virasoro constraints for the generating function (4.30)
follow by the usual algebra representation (2.31).

5. Inclusion of Chern–Simons Terms

In the previous sections we have reviewed how supersymmetric localization allows us
to compute partition functions or Wilson loop generating functions of 3d N = 2 U(N )

YM-CS theories on various compact spaces. Focusing on theories with no bare CS level,
we have shown that such observables have a natural interpretation in terms of what
we called the q-Virasoro modular double. Exploiting the free boson representation of
this construction, we have derived two commuting sets of (infinitely-many) differential
constraints that the generating functions have to satisfy.

In this section we analyze the inclusion of a bare CS level and its q-Virasoro interpre-
tation. The main observation is that CS terms with integer levels can be represented in
the matrix models by “SL(2, Z)-squares” of � functions (see comment around (2.45),
footnote 7 and [62] for more details)

e−SCS =
N∏

j=1

(
�(−q1/2

1 (w j )1; q1)

�(−q1/2
1 ; q1)

�(−q1/2
2 (w j )2; q2)

�(−q1/2
2 ; q2)

)κ2

, (5.1)

where (w j )i is a fundamental weight variable introduced in (4.24) and κ2 is the integer
CS level. In fact, by using the SL(2, Z) modular properties (A.6), (A.7), (A.8) of the �

function and (A.2) we have

�(−q1/2
1 (w)1; q1)

�(−q1/2
1 ; q1)

�(−q1/2
2 (w)2; q2)

�(−q1/2
2 ; q2)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e
− iπ X2

ω1ω2 : S3
b

e
− iπ X2

rω1ω2 e− iπ�2
r : L(r, 1)

x� : S2 × S1(index)

x� : S2 × S1(twisted index)

,

(5.2)
reproducing the localized CS action on the various backgrounds. From the q-Virasoro
perspective, the inclusion of CS terms in the gauge theory modifies the external Fock

12 For L(r, 1) we require for simplicity that
√

βPi /r has integer eigenvalues.
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states on which we evaluate the free boson operators by inserting additional vertex
operators creating particular coherent states13

|α〉 → Vκ2− |α〉, 〈α| → 〈α|Vκ2
+ , V± = V±,1 ⊗ V±,2,

V±,i = e
±∑n>0

(−1)nλ±n,i

(q
n/2
i −q

−n/2
i )(t

n/2
i −t

−n/2
i ) , (5.3)

where we recall the definition (2.37) of the operators λn,i . We can check that the vertex
operators (5.3) have the desired property by considering their OPE with the q-Virasoro
screening currents (we drop a normal ordering constant)

V+,i S(w)i V−,i = V−,i S(w)i V+,i �(−q1/2
i (w)i ; qi ). (5.4)

For instance, in the q-Virasoro modular double algebra associated to the S3
b geometry

studied in Sect. 3 we have

Vκ2
+ ZVκ2− |α〉 =

∫
dNX e

− iπκ2
ω1ω2

∑
j X2

j Vκ2−
∏

j

S(X j )Vκ2
+ |α〉

=
∫
dNX �S(X) e

− iπκ2
ω1ω2

∑
j X2

j e
2π iω

√
β

ω1ω2
(
√

βN−Qβ+α)
∑

j X j ×
⊗

i=1,2

× exp

(
∑

n>0

∑
j (w

n
j )i

qn/2
i − q−n/2

i

a−n,i −
∑

n>0

κ2(−1)n

(qn/2
i − q−n/2

i )(tn/2
i − t−n/2

i )
λ−n,i

)

e
√

βNQi |α〉, (5.5)

where we dropped a proportionality factor. Using the algebra representation (2.31)
we finally get the matrix model (3.7) with κ2 	= 0. We also see that while
(anti-) fundamental chiral matter can be included by shifting the time variables τ i in the
potential

∑
j V (X j |τ 1, τ 2), the inclusion of CS terms shifts the power sums

∑
j (w

n
j )i .

Also, the inclusion of CS terms will modify the differential constraints satisfied by the
generating functions,which can be computed by action of theq-Virasoromodular double
currents on the “dressed” state Vκ2

+ ZVκ2− |α〉.

5.1. Decoupling hyper multiplets. Another way to generate an integer CS term in the
gauge theory is to couple a pair of fundamental/anti-fundamental chiral multiplets (in
fact, a hyper multiplet) and then letting the physical masses go to infinity. In this limit
the multiplets can be integrated out and their contribution to the partition function sim-
plifies dramatically leaving behind an integer CS unit. Focusing on the S3

b geometry
for concreteness, this can be explicitly seen from the 1-loop matter contribution to the
matrix model potential

V (X)matter = − ln S2(X + M |ω) − ln S2(−X + M̄|ω), (5.6)

where M = −iMR+ ω
2 �, M̄ = −iM̄R+ ω

2 �̄ are the complexified masses with MR, M̄R

and �, �̄ being the real masses and Weyl dimensions respectively. We can further

13 The operators V±,i can be thought of as particular specializations of the vertex operator defined in (2.40)
when acting on the (dual) vacuum. While it is possible to use the more general vertex operator (2.40), we use
its specializations in order to avoid unnecessary clutterings.
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split MR = MV + MA, M̄R = −MV + MA, where MV , MA are the vector and axial
masses respectively. Upon specializing to MV = 0 and � = �̄, in the decoupling limit
MA → ±∞ the matter contribution reduces to

V (X)matter ∼ sign(MA)
iπ

ω1ω2
X2, (5.7)

where we neglected divergent background terms and used the asymptotic expansion of
the double Sine function

ln S2(X |ω) ∼ sign(Im(X))
iπ

2ω1ω2

(
X2 − ωX +

ω2 + ω1ω2

6

)
, |X | → ∞. (5.8)

We can now recognize in the above contribution an induced CS level κ2 = −sign(MA).
From the q-Virasoro viewpoint, the coupling/decoupling procedure of the chiral

multiplet pair involves the insertion of the modular double version of the vertex operator
(2.36), which for the S3

b geometry reads as

Hγ (Z) = Hγ (e
2π i
ω1

Z
)1 ⊗ Hγ (e

2π i
ω2

Z
)2, (5.9)

and the large momentum limit Im(ωβγ ) → ±∞. In order to see that we can take its
OPE with the modular double screening current, yielding

Hγ (Z)S(X) =: Hγ (Z)S(X) : e
iπ

ω1ω2
γβω(X+Z)

S2(
ω
2 + γβω

2 + X − Z |ω)S2(
ω
2 + γβω

2 − X + Z |ω)
.

(5.10)

When acting on the charged Fock vacuum |α〉 we obtain

Hγ (Z)S(X)|α〉 = e
π iω

ω1ω2
Z(βγ+

√
βγα)

e
2π iω
ω1ω2

X (1+
√

βα+ βγ
2 )

S2(
ω
2 + γβω

2 + X − Z |ω)S2(
ω
2 + γβω

2 − X + Z |ω)

×
⊗

i=1,2

exp

⎛

⎝
∑

n>0

e
2π in
ωi

X

qn/2
i − q−n/2

i

a−n,i +
∑

n>0

(tγ n/2
i − t−γ n/2

i )e
2π in
ωi

Z

(qn/2
i − q−n/2

i )(tn/2
i − t−n/2

i )
λ−n,i

⎞

⎠

e
√

βQi (1+
γ
2 )|α〉, (5.11)

and upon shifting α → α − √
βγ/2 and taking the limit Im(ωβγ ) → ±∞ we get an

effective contribution κ2 = sign(Im(ωβγ )) to the CS level in thematrixmodel potential.
It is worth observing that this mechanism is essentially equivalent to the one we have

discussed previously: in fact, on the one hand we can write

Hγ (Z)S(X) = [Hγ (Z)]0[Hγ (Z)]− S(X) [Hγ (Z)]+ OPE(X), (5.12)

where [ ]±,0 denotes the positive, negative or zero mode part and OPE(X) is the normal
ordering function giving rise to the CS level in the limit; on the other hand we can split
[Hγ (Z)]± = [Vγ (Z)V−γ (Z)−1]± as in (2.41), and in the limit one of the component
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vertices is predominant over the other and the resulting actionon the vacuum is essentially
equivalent to the action of V± defined in (5.3).

5.2. Pure Chern–Simons and torus knots. Since through the inclusion of the vertex oper-
ators (5.3) we can introduce CS terms in our q-Virasoro matrix models, it is interesting
to investigate the relation of the latter to pure CS matrix models [120,121]. Focusing
again on the S3

b geometry, we immediately see that upon setting β = 1/2 the generating
function (3.7) reduces to

Z(τ 1, τ 2) = (−4)
N (N−1)

2

∫

iRN
dNX

∏

k< j

sin

(
π

Xk − X j

ω1

)
sin

(
π

Xk − X j

ω2

)

× e
iπκ2
ω1ω2

∑
j X2

j e
2π iκ1
ω1ω2

∑
j X j

∏

i=1,2

exp

⎛

⎝
∑

n>0

τn,i

∑

j

e
2π in
ωi

X j + τ0,i Nκ0

⎞

⎠ ,

(5.13)

corresponding to the generating function of Wilson loops in pure CS theory on S3
b .

Physically, the value β = 1/2 corresponds to a massless adjoint chiral multiplet, and
hence its 1-loop contribution is trivial due to cancellations between opposite roots.

In contrast to Sect. 3.3, where we considered β = 1/2 as a particular case in the
round S3 geometry, here the algebra of the constraints is still given by the q-Virasoro
modular double.

A particularly interesting situation is when ω1 and ω2 are two coprime integers. In
this case the matrix model (5.13) corresponds to the Wilson loop generating function

for torus knots. Notice that in this limit the deformation parameters q1 = e
2π i ω

ω1 and

q2 = e
2π i ω

ω2 both go to roots of unity. It is also known that the matrix integral (5.13)
satisfy usual Virasoro constraints in this limit [122].

5.3. Refined Chern–Simons. The q-Virasoro matrix model (2.32), or equivalently the
D2 × S1 generating function (2.51), is of refined CS type [2–4]. In fact, the vector
and adjoint multiplets provide the Macdonald integration measure �β(w; q) (2.27).
Considering an S1 fibration over S2 with first Chern class κ , the partition function of
refined CS theory reads as

ZrCS(κ) =
∫

dN W �βrCS(e
W ; qrCS) e

− κ
2gs

∑
j W 2

j , (5.14)

where we used the parametrizationw = eW and qrCS = egs . In particular, κ = 0, 1 corre-
sponds to S2 × S1 and S3 respectively. Given the relation between the q-Virasoro matrix
model and refinedCS, it is natural to askwhether there is any relation between q-Virasoro
modular double matrix models, or equivalently 3d compact space generating functions,
and refined CS. For instance, the S3

b partition function (3.7) with κ1 = 0 reads as

Z(0, 0) =
∫

iRN
dNX �S(X) e

− iπκ2
ω1ω2

∑
j X2

j . (5.15)

In order to establish a clear relation with refined CS, let us start by taking the specializa-
tion βω = b2ω2, b2 ∈ Z>0, in the S3

b matrixmodel, in which case themeasure simplifies
to
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�S(X)

∣∣∣
β= b2ω2

ω

= 2b2N (N−1)
∏

j 	=k

b2−1∏

n=0

sin

(
π

nω2 + X j − Xk

ω1

)

= (−2ib2)b2N (N−1)
∏

j 	=k

b2−1∏

n=0

(e
iπ
ω1

(nω2+X j −Xk ) − e
− iπ

ω1
(nω2+X j −Xk )). (5.16)

On the other hand, the Macdonald measure for βrCS ∈ Z>0 (which is a common special-
ization in refined CS) simplifies to

�βrCS(e
W ; qrCS)

∣∣∣
βrCS∈Z>0

=
∏

k 	= j

βrCS−1∏

n=0

(1 − qn
rCSe

W j −Wk )

= q
N (N−1) βrCS(βrCS−1)

4
rCS

∏

j 	=k

βrCS−1∏

n=0

(q
n
2
rCSe

W j −Wk
2 − q

− n
2

rCS e
Wk−W j

2 ), (5.17)

implying that the S3
b matrix model collapses to the refined CS matrix model upon iden-

tifying gs = 2π iω2/ω1, βrCS = b2, W = 2π iX/ω1 and κ = κ2. Similarly, if we take
the more general specialization βω = b1ω1 + b2ω2, b1,2 ∈ Z>0, the �S(X) measure
collapses to two copies of the Macdonald measure due to (A.11). We can in fact relax
any specialization of the parameters and consider instead the limit where the S3

b is very
squashed, i.e. |ω1/ω2| � 1, in which case the double Sine function has the semiclassical
behaviour (assuming Im(ω2/ω1) > 0)

S2(X |ω) = e
iπ
2 B22(X |ω)(e

2π i
ω1

X ; e2π i
ω2
ω1 )∞(1 + O(e

2π i ω1
ω2 )), (5.18)

and hence
�S(X) = �β(e

2π i
ω1

X ; e2π i
ω2
ω1 )(1 + O(e

2π i ω1
ω2 )), (5.19)

up to proportionality factors. Therefore, the q-Virasoromodular doublemight give rise to
a doubled or non-perturbative version of refined CS.Moreover, it is known that the (large
N limit of) refined CS observables are captured by refined (closed) open topological
strings [2,4,123], and thus one can expect that the q-Virasoromodular double might also
play a role in the non-perturbative description of refined topological strings. This obser-
vation is in linewith those of [61,97], andwewill commentmore on this aspect in Sect. 7.

6. Generalization to Quiver Gauge Theories

Our discussion on the q-Virasoro structures in 3d N = 2 YM-CS theories has so
far focused on a single node U(N ) gauge group coupled to 1 adjoint and possibly
(anti-) fundamental chirals. The goal of this section is to show that our construction
admits a generalization to a huge class of 3d N = 2 unitary quiver gauge theories and
Wq,t (�) algebras of [73].

Let us start by recalling some algebraic definition from [73]. A quiver� is a collection
of nodes �0 and arrows �1, see Fig. 1 for an example. Given two nodes a, b ∈ �0 and
an arrow �1 � e : a → b, we can associate to the quiver the deformed Cartan matrix
Cab ∈ |�0| × |�0|

Cab = (1 + p−1)δab −
∑

e:b→a

m−1
e − p−1

∑

e:a→b

me, (6.1)
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a b

e

Fig. 1. Portion of a quiver �. We explicitly displayed 2 nodes a, b ∈ �0, an arrow e ∈ �1 from a to b, and
several arrows with source or target in a or b

the Heisenberg algebra (we display non-vanishing commutators only)

[aa
n,ab

m] = 1

n
(q

n
2 − q− n

2 )(t
n
2 − t−

n
2 )p

n
2 C [n]

ab δn+m,0, [Pa,Qb] = C [0]
ab , n, m ∈ Z\{0},

(6.2)
and the screening current

Sa(w) =: e−∑n 	=0
w−n

qn/2−q−n/2 a
a
n : e

√
βQa

w
√

βPa
, (6.3)

where q, t, p = qt−1, me ∈ C
14, while the [n] operationmeans replacing each parameter

with its nth power, for instance

C [n]
ab = (1 + p−n)δab −

∑

e:b→a

m−n
e − p−n

∑

e:a→b

mn
e . (6.4)

With these data the Wq,t (�) algebra can be defined to be the non-commutative associa-
tive algebra generated by the currents {Ta(z) =∑n∈Z

Ta
n z−n, a ∈ �0} and given as the

commutant up to total differences of the screening currents in the Heisenberg algebra

[Ta
n ,Sb(w)] = total difference. (6.5)

For instance, the single node quiver �0 = {1}, �1 = {∅} corresponding to the A1 Lie
algebra diagram gives rise to the q-Virasoro = Wq,t (A1) algebra reviewed in Sect. 2,
whereas the n-node quiver �0 = {1, . . . , n}, �1 = {ea : a → a + 1, a = 1, . . . , n − 1}
corresponding to the An Lie algebra gives rise to the Wq,t (An) algebra of [124]. More
generally, for quivers associated to simple Lie algebras the construction of [73] agrees
with [114].

Following the discussion of Sect. 2.3, we can now associate to the Wq,t (�) algebra
a 3d N = 2 unitary quiver gauge theory on D2 × S1, whose Wilson loop generating
function will be reproduced by the action of theWq,t (�) screening charges on a charged
Fock vacuum |α〉, α = {αa, a ∈ �0}, namely

Z({τ a}) �
∮ |�0|∏

a=1

dNa wa

2π iwa

|�0|∏

a=1

Na∏

j=1

Sa(wa, j )|α〉. (6.6)

It is important at this point to not confuse the � quiver of the algebra with the unitary
quiver of the 3d theory. For instance, the A1 quiver associated to the q-Virasoro algebra
has a single node and no arrows at all, while the dual gauge theory involves a U(N )

gauge vector and 1 adjoint chiral multiplet, whose quiver description usually consists of

14 To compare with [73] we have to set (q)here = (q2)there, (t)here = (q−1
1 )there.
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N

ad

3d quiverA1 quiver

1

Fig. 2. The quivers of q-Virasoro (left) and the corresponding 3d gauge theory (right)

a round node for the gauge group and a loop arrow for the adjoint, as depicted in Fig. 2.
In order to determine the dual 3d gauge theory description for the general case, the key
point is to understand the measure arising from the product of several screening currents

|�0|∏

a=1

Na∏

j=1

Sa(wa, j ) =:
|�0|∏

a=1

Na∏

j=1

Sa(wa, j ) :
|�0|∏

a=1

cβ(wa, 1; q)�β(wa; q)

Na∏

j=1

w
β(Na−1)
a, j

×
|�0|∏

a=1

∏

e:a→a

1

cβ(wa, me; q)

∏

1≤ j 	=k≤Na

(tmewa,kw
−1
a, j ; q)∞

(mewa,kw
−1
a, j ; q)∞

Na∏

j=1

w
−β(Na−1)
a, j

×
∏

1≤a<b≤|�0|

Na∏

j=1

Nb∏

k=1

∏

e:a→b

(tmewb,kw
−1
a, j ; q)∞

(mewb,kw
−1
a, j ; q)∞

w
−β
a, j

×
∏

e:b→a

(qm−1
e wb,kw

−1
a, j ; q)∞

(qt−1m−1
e wb,kw

−1
a, j ; q)∞

w
−β
a, j . (6.7)

From this expression we can immediately read off the corresponding 3d N = 2 gauge
theory: it is a � quiver YM theory with U(Na) gauge nodes each coupled to 1 adjoint
chiral multiplet, 1 bi-fundamental hyper multiplet (actually a pair of fundamental/anti-
fundamental chirals) for each arrow connecting different gauge nodes and 1 adjoint
hyper multiplet (a pair of adjoint chirals) for each loop edge. The generating function
of the theory is identified with a highest weight state of the Wq,t (�) algebra and will
satisfy the associated constraints

T a(z|τ a)Z({τ a}) = Pol(z) ⇒ T a
n (τ a)Z({τ a}) = 0, n > 0 (6.8)

by construction. (Anti-)fundamental chiral multiplets or CS levels for each gauge node
can be added on top of this construction as insertion of addition vertex operators, and
may be represented by auxiliary square nodes or integer labels respectively.

As it should be clear from the previous sections, if we want to discuss 3d theories on
compact spaces we should construct the modular double of the Wq,t (�) algebras. In the
q-Virasoro = Wq,t (A1) case, our construction of the modular double only relied on the
property (6.5) of the screening currents, and therefore we can generalize our analysis
to arbitrary Wq,t (�) algebras following the recipe given in Sects. 3, 4 for the various
geometries. As an application, in the followingwewill consider the simple but important
example of the (mass deformed) ABJ(M) theory on S3

b , where the relevant quivers are
shown in Fig. 3.
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3d quiverΓ quiver

N1 N2
anti-bif
anti-bif

bif

bif

ad ad

1 2

κ1
2 κ2

2

Fig. 3. The “ABJ(M) quiver” of the algebra (left) and the gauge theory (right)

6.1. ABJ(M) theory. The ABJ theory [10] is theN = 6 U(N1)κ2 ×U(N2)−κ2 CS theory
with 1 bi-fundamental and 1 anti-bi-fundamental hyper multiplets, where the subindex
denotes the CS level. In the case N1 = N2 the theory specializes to the ABJMmodel [9].
Using the notation of Sect. 3, its S3

b partition function reads as (see for instance [125])

ZABJ = N0

∫

iR

∏

a=1,2

dNaXa e
− iπκ2

ω1ω2
(
∑N1

j=1 X2
1, j −

∑N2
k=1 X2

2,k )

×
∏

a=1,2

∏

1≤ j<k≤Na

(2i)2 sin

(
π

Xa, j − Xa,k

ω1

)
sin

(
π

Xa, j − Xa,k

ω2

)

×
N1∏

j=1

N2∏

k=1

S2
(

ω
2 + X2,k − X1, j + ω

4 |ω)2
S2
(

ω
2 + X2,k − X1, j − ω

4 |ω)2
. (6.9)

In order to describe the partition function (or the generating function) of the ABJ the-
ory throughWq,t (�) techniques, let us start by considering a two node quiver� with two
oppositely oriented15 arrows connecting the two nodes as in Fig. 3. The corresponding
product of screening currents is a simple specialization of (6.7)

2∏

a=1

Na∏

j=1

Sa(wa, j ) =:
2∏

a=1

Na∏

j=1

Sa(wa, j ) : �β(wa; q)cβ(wa; q)

2∏

a=1

Na∏

j=1

w
β(Na−1)
a, j

×
N1∏

j=1

w
−2βN2
1, j

N2∏

k=1

(tm12w2,kw
−1
1, j ; q)∞

(m12w2,kw
−1
1, j ; q)∞

(qm−1
21 w2,kw

−1
1, j ; q)∞

(qt−1m−1
21 w2,kw

−1
1, j ; q)∞

,

(6.10)

where we set me = m12 for the arrow e : 1 → 2 and me = m21 for the arrow e : 2 → 1.
In order to describe the theory on S3

b we consider the modular double construction of
Sect. 3, namely we define

Sa(Xa, j ) = (wa, j )1(wa, j )2 Sa(wa, j )1 ⊗ Sa(wa, j )2,

(wa, j )i = e
2π i
ωi

Xa, j
, (me)i = e

2π i
ωi

Me
, e ∈ {(12), (21)}, i = 1, 2,

(6.11)

with the SL(2, Z) gluing as in table (3.13). Here Me are interpreted as the complexified
masses for the bi-fundamental hypers, namely iMe = MR

e + iω2 � where � is the Weyl

15 The orientation does not actually matter for the ABJ(M) theory.
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dimension, which we take to be � = 1/2. The corresponding product of screening
charges yields the operator

Z =
∫

iR

∏

a=1,2

dNaXa

2∏

a=1

Na∏

j=1

Sa(Xa, j )

= e
− iπωβN1N2

ω1ω2
(M12−M21)

∫

iR

∏

a=1,2

dNaXa :
2∏

a=1

Na∏

j=1

Sa(Xa, j ) :

×
∏

a=1,2

e
2π iω

√
β

ω1ω2
((−1)a√

β(N2−N1)−Qβ)
∑Na

j=1 Xa, j �S(Xa)

×
N1∏

j=1

N2∏

k=1

S2(ω − M21 + X2,k − X1, j |ω)S2(βω + M12 + X2,k − X1, j |ω)

S2(ω − ωβ − M21 + X2,k − X1, j |ω)S2(M12 + X2,k − X1, j |ω)
.

(6.12)

We now include CS terms as discussed in Sect. 5. The Wq,t (�) generalization of the
vertex operators (5.3) is given by

Va± = Va±,1 ⊗ Va±,2, Va
±,i = e

±∑n>0

(−1)nλa±n,i

(q
n/2
i −q

−n/2
i )(t

n/2
i −t

−n/2
i ) , (6.13)

where we have introduced the basis

λa
n,i = ab

n,i (C
[−n]
i )−1

ba p
n
2
i , Pa

λ,i = Pb
i (C

[0]
i )−1

ba , Qa
λ,i = Qb

i (C
[0]
i )−1

ba , n ∈ Z\{0}
(6.14)

of the two commuting (i = 1, 2) Heisenberg algebras satisfying (we display non-trivial
relations only)

[aa
n,i , λ

b
m,i ] = 1

n
(q

n
2

i − q
− n

2
i )(t

n
2

i − t
− n

2
i )δa,bδn+m,0,

[Pa
i ,Qb

λ,i ] = [Pa
λ,i ,Q

b
i ] = δa,b, n, m ∈ Z\{0}. (6.15)

We can now consider the dressed operator
∏

a=1,2

(Va
+

)κa
2 Z

∏

a=1,2

(Va−
)κa

2

= e
− iπωβN1N2

ω1ω2
(M12−M21)

∫

iR

∏

a=1,2

dNaXa :
2∏

a=1

(Va
+

)κa
2

⎛

⎝
Na∏

j=1

Sa(Xa, j )

⎞

⎠(Va−
)κa

2 :

×
∏

a=1,2

e
− iπκa

2
ω1ω2

∑Na
j=1 X2

a, j e
2π iω

√
β

ω1ω2
((−1)a√

β(N2−N1)−Qβ)
∑Na

j=1 Xa, j �S(Xa)

×
N1∏

j=1

N2∏

k=1

S2(ω − M21 + X2,k − X1, j |ω)S2(βω + M12 + X2,k − X1, j |ω)

S2(ω − ωβ − M21 + X2,k − X1, j |ω)S2(M12 + X2,k − X1, j |ω)
,

(6.16)

where the equality holds up to constant proportionality factors. The action of this operator
on the charged Fock vacuum |α〉 defined by
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α = {αa, a = 1, 2}, |α〉 = ⊗i=1,2e
∑

a αaQa
λ,i |0〉, aa

n>0|0〉 = 0, Pa
i |α〉 = αa |α〉,

(6.17)
yields the state

∏

a=1,2

(Va
+

)κa
2 Z

∏

a=1,2

(Va−
)κa

2 |α〉

= e
− iπωβN1N2

ω1ω2
(M12−M21)

∫

iR

∏

a=1,2

dNaXa

∏

a=1,2

e
− iπκa

2
ω1ω2

∑Na
j=1 X2

a, j e
2π iκa

1
ω1ω2

∑Na
j=1 Xa, j

× �S(Xa)

N1∏

j=1

N2∏

k=1

S2(ω − M21 + X2,k − X1, j |ω)S2(βω + M12 + X2,k − X1, j |ω)

S2(ω − ωβ − M21 + X2,k − X1, j |ω)S2(M12 + X2,k − X1, j |ω)

×
⊗

i=1,2

exp

(
∑

n>0

∑Na
j=1(w

n
a, j )i

qn/2
i − q−n/2

i

aa
−n,i −

∑

n>0

κa
2 (−1)n

(qn/2
i − q−n/2

i )(tn/2
i − t−n/2

i )
λa

−n,i

)

× e
√

βNaQa
i |α〉, (6.18)

up to proportionality factors, with κa
1 = ω

√
β((−1)a√

β(N2 − N1) − Qβ + αa). Using
the representation

aa
−n,i � (q

n
2

i − q
− n

2
i )τ a

n,i , λa
n,i � 1

n
(t

n
2

i − t
− n

2
i )

∂

∂τ b
n,i

, Qa
λ,i � τ a

0,i ,

Pa
i = ∂

∂τ a
0,i

, n > 0, (6.19)

this state describes the generating function of the mass deformed ABJ theory coupled
to two additional adjoint chiral multiplets and FI parameters

∏

a=1,2

(Va
+

)κa
2 Z

∏

a=1,2

(Va−
)κa

2 |α〉 � ZABJ(β, {Me}, {κa
1 }|{τ a

1, τ
a
2})

= 〈
∏

i=1,2

exp

⎛

⎝
2∑

a,b=1

∑

n>0

τ b
n,i

⎛

⎝δba

Na∑

j=1

(wn
a, j )i − (C [n]

i )−1
ba p−n/2

i

(−1)nκa
2

tn/2
i − t−n/2

i

⎞

⎠

⎞

⎠〉,

(6.20)

where

〈 1 〉 = N0

∫

iR

∏

a=1,2

dNaXa

∏

a=1,2

e
− iπκa

2
ω1ω2

∑Na
j=1 X2

a, j e
2π iκa

1
ω1ω2

∑Na
j=1 Xa, j �S(Xa)

×
N1∏

j=1

N2∏

k=1

S2(ω − M21 + X2,k − X1, j |ω)S2(βω + M12 + X2,k − X1, j |ω)

S2(ω − ωβ − M21 + X2,k − X1, j |ω)S2(M12 + X2,k − X1, j |ω)
,

N0 = e
− iπωβN1N2

ω1ω2
(M12−M21)

∏

i=1,2

e
∑2

a,b=1 τ b
0,i (δab

√
βNa+(C [0]

i )−1
ba αa)

.

(6.21)
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We can now specialize to β = 1/2, which effectively removes the adjoint chiral multi-
plets and reduces �S(Xa) to pure vector contributions (see Sect. 5.2)

�S(Xa)

∣∣∣
β= 1

2

=
Na∏

j,k=1

S2(Xa, j − Xa,k |ω) =
∏

i=1,2

∏

1≤ j<k≤Na

2i sin

(
π

Xa, j − Xa,k

ωi

)
.

(6.22)
Moreover, if we set

κ1
2 = −κ2

2 = κ2, κ1
1 = κ2

1 = 0, M12 = M21 = ω

4
, (6.23)

the CS levels have opposite signs, the FI parameters are set to zero and the bi-
fundamentals are massless, and hence we are effectively describing the ABJ theory.
This Wq,t (�) modular double description would allow us to write explicitly the Ward
identities satisfied by ABJ generating function by acting with the algebra generators.

7. Summary, Comments and Outlook

In this work we have shown that a wide class of 3dN = 2 unitary quiver gauge theories
on compact spaces hides a modular doubleWq,t symmetry, which we defined. Our argu-
ment was based on the realization of supersymmetric Wilson loop generating functions
as Fock states obtained through the action of vertex operators and screening charges
of the modular double on a vacuum state. Our interpretation implies the existence of
two SL(2, Z)-related commuting sets of Wq,t constraints (Ward identities) annihilating
the YM generating functions, corresponding to highest weight conditions. As recently
stressed in [84], these type of deformed Ward identities may be regarded as a further
step towards a proper definition of q-CFT theories, a deformation of ordinary 2d CFTs.
While most of the studies have so far focused on the chiral description, our work shows
that it is possible to consistently couple different chiral sectors into well-defined modu-
lar invariant objects [52,53]. This is familiar in 2d CFTs, where the invariance w.r.t the
Moore-Seiberg groupoid puts severe constraints on the physical theories [126]. From
this perspective it is not totally surprising that the structure of the modular double is
dictated by the compact space geometries: in fact, localization on spaces with bound-
aries (see [102,127–129] for recent discussions) is notoriously more complicated than
on closed spaces where there are no ambiguities due to the boundary (indeed, most of
the gauge theory dualities have been tested by using compact space observables).

There are a number of further directions worth studying, physically and mathemati-
cally. First of all, theWq,t modular double symmetry of 3dN = 2 quiver gauge theories
on compact spaces that we have considered represents a new tool for studying these the-
ories, which should supplement the existing large N [130,131] or Fermi gas techniques
[132–135]. Moreover, it is very likely that the 3d dualities mentioned in the introduction
(see also [136] for recent new results) have a natural and simple interpretation in Wq,t
language, perhaps along the lines of [137] in the more familiar 4d AGT context. It is
also interesting to observe the appearance ofW-like symmetries in these theories, which
are usually associated to area-preserving diffeomorphisms of membranes (a possible
connection between Wq,t algebras and the physics of membranes was already pointed
out in [109]).

Secondly, the 5d gauge theory origin of the quiver Wq,t algebras immediately raises
the question whether our 3d gauge theory inspired construction of the modular double
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can describe the parent 5d theories on compact spaces as well. While in the chiral case
(i.e., 5d theories on R

4 × S1) the answer is clearly affirmative according to the results of
[54,68,73,96], in the non-chiral case (i.e., 5d theories on compact spaces) the answer is
not straightforward (the rank 1 case was studied in [52,53]). First of all, the free boson
realization ofWq,t explicitly breaks the q, t symmetry of the 5d theory, which is however
restored in the large N limit (i.e., sending the number of screening currents to infinity
or going to the affine case). Secondly, 5d partition functions on S4 × S1 [138–140],
S5 [97,141–146], Y p,q [147,148] and toric Sasaki-Einstein manifolds [149] exhibit an
SL(3, Z) factorization property rather than just SL(2, Z). How this symmetry enhance-
ment can emerge from 3d considerations is highly non-trivial and we leave this topic for
future research. Here we just observe that the large N limit we have just mentioned is
essentially the geometric transition in open/closed topological strings [6,121,150,151].
Interestingly enough, the S3 and S5 partition functions have been proposed [97] to give
a non-perturbative definition of open and closed topological string partition functions
respectively, which is consistent with the expectation that our construction can describe
5d theories on compact spaces as well.

Thirdly, the Wq,t modular double algebra might also be useful to study 4d super-
symmetric gauge theories in all those situations where 3d theories appear as boundary
conditions or interfaces [12,13,15,152–154]. In particular, S-duality domain wall in 4d
N = 2 theories of classS [155] are realized by 3dN = 2U(N )YMtheories on S3

b [156–
160], and their partition functions are modular kernels of Liouville [161–163] or Toda
theories [160]. Moreover, our construction of the Wq,t modular double should easily lift
to the elliptic case [164,165]. In fact, as shown in [164], 4d holomorphic blocks [67] of
4d N = 1 U(N ) theories on D2 × T

2 are captured by correlators of vertex operators
and screening charges of the elliptic Virasoro algebra. Since 4d compact space partition
functions (including N = 1, 2 supersymmetric indexes [166–169], see also [170] for a
review) can be decomposed into holomorphic blocks as much as in 3d [67,171–173],
we expect that elliptic matrix models provided by Coulomb branch localization on 4d
manifolds with the topology of S3 × S1, L(r, 1) × S1 and S2 × T

2 [40,174–179] can
naturally be studied with the same techniques developed in this paper and [118]. This
perspective might also reveal interesting connections between the elliptic W algebras
and elliptic integrable systems arising in that context [180–182].

Finally, there are mathematical aspects that deserve further investigations. For
instance, our construction of the Wq,t modular double shares many similarities with
Faddeev’s Uq(sl2)modular double [183] (see also [184]). In that case there are two com-
muting copies of Uq(sl2) whose q-deformation parameters are related by S ∈ SL(2, Z)

and a unique simultaneousRmatrix for both copies; in our case there are two commuting
Wq,t algebras with q-deformation parameters related by SL(2, Z) elements and a unique
simultaneous screening current S for both copies. Interestingly enough, they are exactly
the representations of the Uq(sl2) modular double that are relevant in the construction
of the Liouville modular kernel, which has also a 3d gauge theory interpretation as we
mentioned. Therefore, we also hope that our results may help to clarify the precise rela-
tion between Uq(sl2) and q-Virasoro algebras (and their modular doubles), which is still
not very well understood, as well as the role of Wq,t algebras in ordinary 2d CFTs.
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A. Special Functions

We summarize the special functions and their properties used throughout the paper, for details we refer to
[185]. The (multiple) q-Pochhammer symbol is defined by

(x; q1, . . . , qn)∞ = exp

⎛

⎝−
∑

k>0

xk

k
∏n

i=1(1 − qk
i )

⎞

⎠ =
∏

k1,...,kn≥0

(1 − xq
k1
1 · · · qkn

n ). (A.1)

The last expression is valid for |qi | < 1, but it can be continued to other regions by means of

(x; q)∞ = 1

(q−1x; q−1)∞
. (A.2)

The finite q-Pochhammer symbol is defined by

(x; q)n = (x; q)∞
(qn x; q)∞

=
n−1∏

k=1

(1 − xqk ), (A.3)

and satisfies
(x; q)−n = (q−n x; q)−1

n . (A.4)
The � function is defined by

�(x; q) = (x; q)∞(qx−1; q)∞. (A.5)
The modular properties we are interested in are

�(e2π iX e
2π i�

r ; e2π iε)�(e
2π iX
rε−1 e− 2π i�

r ; e 2π iε
rε−1 )

= e
iπ
r �(r−�)e

−iπ
(

B22(X |1,ε)+B22(1+
X

rε−1 |1, ε
rε−1 )

)

, (A.6)

for r ∈ Z, � ∈ Zr , and

�(q− �
2 x; q)�(q− �

2 x−1; q−1) = (−q− 1
2 x)�, (A.7)

�(q− �
2 x; q)�(q

�
2 x; q−1) = (−x)�+1, (A.8)

for � ∈ Z. Here B22(X |ω) is the quadratic Bernoulli polynomial

B22(X |ω) = 1

ω1ω2

((
X − ω

2

)2 − ω2
1 + ω2

2
12

)
, ω = ω1 + ω2. (A.9)

The double Sine function S2(X |ω) is defined as the ζ -regularized product

S2(X |ω) =
∏

n1,n2≥0

n1ω1 + n2ω2 + X

n1ω1 + n2ω2 + ω − X
. (A.10)

Two important properties of the double Sine function are the quasi-periodicity

S2(X |ω)

S2(b1ω1 + b2ω2 + X |ω)
= (−1)b1b22b1+b2

b1−1∏

n1=0

sin

(
π

n1ω1 + X

ω2

)

×
b2−1∏

n2=0

sin

(
π

n2ω2 + X

ω1

)
, (A.11)

http://creativecommons.org/licenses/by/4.0/
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and the reflection
S2(X |ω)S2(ω − X |ω) = 1. (A.12)

For two generic complex numbers ω such that Im(
ω2
ω1

) 	= 0, the double Sine function has the factorized
expression

S2(X |ω) = e
iπ
2 B22(X |ω)

(
e
2π i
ω1

X ; e2π i
ω
ω1

)

∞

(
e
2π i
ω2

X ; e2π i
ω
ω2

)

∞
. (A.13)

The generalized double Sine function S2,�(X |ω) is [67]

S2,�(X |ω) = S2(X + ω1(r − [�]r )|ω, rω1)S2(X + ω2[�]r |ω, rω2), (A.14)

with [�]r the positive integer part of � mod r . For two generic complex numbers ω such that Im(
ω2
ω1

) 	= 0, we
also have the factorized expression

S2,�(X |ω) = e−
iπ
2r [�]r (r−[�]r )e

iπ
2 (B22(X |ω,rω1)+B22(X+rω2|ω,rω2))

× (e
2π i
rω1

(X+ω1�); e2π i
ω

rω1 )∞(e
2π i
rω2

(X−ω2�); e2π i
ω

rω2 )∞. (A.15)
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