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Abstract: In this paper we study the stochastic quantization problem on the two di-
mensional torus and establish ergodicity for the solutions. Furthermore, we prove a
characterization of the �4

2 quantum field on the torus in terms of its density under trans-
lation. We also deduce that the �4

2 quantum field on the torus is an extreme point in the
set of all L-symmetrizing measures, where L is the corresponding generator.

1. Introduction

In this paper we consider stochastic quantization equations on T
2: Let H = L2(T2):

d X = (AX − a1 : X3 : +a2X)dt + dW (t),

X (0) = x,
(1.1)

where A : D(A) ⊂ H → H is the linear operator

Ax = �x − x, D(A) = H2(T2).

: x3 :, i.e., Wick power, whose definition will be given in Sect. 2, means the renormal-
ization of x3 a1 > 0 and a2 is a real parameter. W is the L2(T2)-cylindrical (Ft )-Wiener
process defined on a probability space (�,F , P) equipped with a normal filtration (Ft ).

This equation arises in the stochastic quantization of Euclidean quantum field theory.
For a2 > 0, it is also called the Allen-Cahn equation in [BDW16] and the references
therein. Consider the measure

ν(dφ) = ce−2
∫ :q(φ):dξμ(dφ),
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where q(φ) = a1
4 φ4 − a2

2 φ2, c is a normalization constant and μ is the Gaussian free
field. The latter will be defined in Sect. 2 as well as the renormalization : · :. ν is called
the �4

2-quantum field in Euclidean quantum field theory. By heuristical calculations,
ν is an invariant measure for the solution to (1.1), which has been made rigorous in
[RZZ15]. There have been many approaches to the problem of giving a meaning to the
above heuristic measure in the two dimensional case and the three dimensional case (see
[GRS75,GlJ86,S74] and the references therein). In [PW81] Parisi and Wu proposed a
program for Euclidean quantum field theory of gettingGibbs states of classical statistical
mechanics as limiting distributions of stochastic processes, especially those which are
solutions to non-linear stochastic differential equations. Then one can use the stochastic
differential equations to study the properties of the Gibbs states. This procedure is
called stochastic field quantization (see [JLM85]). The �4

2 model is the simplest non-
trivial Euclidean quantum field (see [GlJ86] and the reference therein). The issue of the
stochastic quantization of the �4

2 model is to solve the Eq. (1.1) and to prove that the
invariant measure is the limit of the time marginals as t → ∞. The marginals converge
to the Euclidean quantum field.

In [JLM85] the existence of an ergodic, continuous, Markov process having ν as an
invariant measure has been proved, where ν is constructed above with A changed to the
Dirichlet Laplacian on a bounded domain. In fact, they consider the Markov process
given by the solution to the following equation for 0 < ε < 1

10

d X = [−(−A)ε X − (−A)−1+ε(a1 : X3 : +a2X)]dt + (−A)−
1
2 +

ε
2 dW (t),

X (0) = x,

which is easier to solve than (1.1) (corresponding to the case ε = 1) because of the
regularization of the operator A. Moreover, they prove that the associated semigroup
converges to ν in the L2-sense. In [AR91] weak solutions to (1.1) have been constructed
by using theDirichlet form approach in the finite and infinite volume case. In [MR99] the
stationary solution to (1.1) has also been considered in their general theory of martingale
solutions for stochastic partial differential equations. In [DD03] again in the case of the
torus, i.e. in finite volume, Da Prato and Debussche define the Wick powers of solutions
to the stochastic heat equation in the paths space and study a shifted equation instead of
(1.1) in the finite volume case. They split the unknown X into two parts: X = Y1 + Z1,
where Z1(t) = ∫ t

−∞ e(t−s)AdW (s). Observe that Y1 is much smoother than X and that
in the stationary case

: Xk :=
k∑

l=0

Cl
kY l

1 : Zk−l
1 :, (1.2)

with Cl
k = k!

l!(k−l)! being a binomial coefficient and : Zk−l
1 : being the Wick product,

which motivated them to consider the following shifted equation:

dY1

dt
= AY1 − a1

3∑

l=0

Cl
3Y l

1 : Z3−l
1 : +a2(Y1 + Z1)

Y1(0) = x − Z1(0).

(1.3)

They obtain local existence and uniqueness of the solution Y1 to (1.3) by a fixed point
argument. By using the invariant measure ν they obtain a global solution to (1.1) by
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defining X = Y1 + Z starting from almost every starting point. In [MW15] the authors
consider the following equivalent equation:

dY

dt
= AY − a1

3∑

l=0

Cl
3Y l : Z̄3−l : +a2(Y + Z̄)

Y (0) = 0,

(1.4)

where Z̄(t) = et Ax +
∫ t
0 e(t−s)AdW (s) and : Z̄ k−1−l : will be defined later. We call

(1.4) the shifted equation for short. They obtain global existence and uniqueness of
the solution to (1.4) directly from every starting point both in the finite and infinite
volume case. Actually, (1.3) is equivalent to (1.4). For the solution Y1 to (1.3), defining
Y (t) := Y1(t) + et A Z1(0) − et Ax , we can easily check that Y is a solution to (1.4) by
using the binomial formula (2.2) below.

In [RZZ15] we prove that X − Z̄ , where X is obtained by the Dirichlet form approach
in [AR91] and Z̄(t) = ∫ t

0 e(t−s)AdW (s) + et Ax , also satisfies the shifted equation (1.4).
Moreover, we obtain that the �4

2 quantum field ν is an invariant measure for the process
X0 = Y + Z̄ , where Y is the unique solution to the shifted equation (1.4). It is natural
to ask whether this invariant measure ν is the unique invariant measure for X0. If ν is
the unique invariant measure for X0, then ν is the limiting distribution of the stochastic
processes X0. This problem is the main point in the stochastic field quantization as we
mentioned above in the �4

2 model on the torus.
This problem has been studied in [AKR97] and the references therein. It is proved

in [AKR97] that the stochastic quantization of a Guerra–Rosen–Simon Gibbs state on
S ′(R2) in infinite volume with polynomial interaction is ergodic if the Gibbs state is
a pure phase, i.e. an extreme Gibbs state. This result also holds for the finite volume
case if one takes Dirichlet boundary conditions. Moreover, by [R86] we know that ν

constructed above with A changed to a Dirichlet Laplacian on a bounded domain is a
pure phase, which implies that the stochastic quantization of the Gibbs state is ergodic.
However, the idea in [R86] and the results in [AKR97] cannot be applied for the torus.
In this case we don’t know whether ν is a pure phase. We also emphasize that it is not
obvious that ν is a pure phase even if ν is absolutely continuous with respect to μ. In
this case, the zero set of dν

dμ
, i.e. { dν

dμ
= 0}, which is hard to analyze analytically, may

divide the state space into different irreducible components, which immediately implies
non-ergodicity, i.e. the existence of two invariant measures. In this paper we study this
problem using the techniques from SPDE. We analyze the shifted equation directly and
obtain that ν is the unique invariant measure of X0.

We also emphasize that Dirichlet form theory is crucially used in [AKR97]. Hence for
the Dirichlet boundary condition case, one can only obtain that the associated semigroup
converges to the Gibbs state for quasi-every starting point. In our paper we analyze X0
starting from every point in Cα for some α < 0, which will be defined in Sect. 2. As a
result, we can conclude that the associated semigroup converges to ν for every starting
point in Cα .

Theorem 1.1. ν is the unique invariant probability measure for the process X0. More-
over, the associated semigroup Pt converges to ν weakly in Cα , as t goes to ∞.

Remark 1.2. As in [DD03,RZZ15], one can replace the term − : X3 : by any Wick
polynomial of odd degree 2N − 1 with negative leading coefficient and obtain the same
results in an analogous way. Indeed, we can also obtain corresponding L p estimates by
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similar calculations as in the proof of [RZZ15, Theorem3.10] andLemma3.4.Moreover,
we replace Y1 in (4.5) by Y 2N−2

1 and do similar calculations without changing the Besov
space and can obtain the corresponding estimate required in the proof of Theorem 4.1
in an analogous way.

Remark 1.3. By [GlJ86] we know that for q(φ) given by a polynomial φ4 − λφ2 with λ

large enough, the quantum fields in the infinite volume case may have different phases.
Indeed, the two different measures in [GJS75] have been obtained by taking approxi-
mation of two different convergent sequences of measures obtained from the underlying
specification with two different boundary conditions (see [GRS75] and [R86]). The lim-
its ν1 and ν2 of these two sequences are the same on locally measurable functions, but
they differ on the tail field on which they are uniquely determined (see [P76] and [R86]).
This will not happen in the finite volume case. We expect that ν1 and ν2 are two different
invariant measures for X0 in the infinite volume case if they have a similar property as
in [GlJ86, Corollary 12.2.4]. However, so far one only knows one state in the infinite
volume case obtained in [GlJ86, Chapter 11] satisfying the property in [GlJ86, Corollary
12.2.4].

For the proof of Theorem 1.1, we use an argument from an abstract framework
developed for application to SDEswith delay [HMS11]. In general by applying a theorem
in [HMS11] (see Theorem 4.1), we can reduce the problem of uniqueness of the invariant
measure to the convergence of solutions of (1.1) to solutions of an auxiliary system
when time tends to infinity. However, in our case we cannot consider the solution to
(1.1) obtained by Dirichlet form theory directly since it does not start from every point in
some Polish space and the regularity of the solution to (1.1) is too rough to be controlled.
Formally : X3 := X3 − ∞X , which makes it more difficult to analyze the Eq. (1.1)
directly. Instead we consider the shifted equation (1.4) and do the required a-priori
estimates for the solutions to (1.4). Correspondingly, we also construct an auxiliary
system for the shifted form [see (3.3)].Moreover, to apply [HMS11]we have to construct
a suitable set such that the generalized coupling has positive mass on it and the two
solutions can converge to each other on this set when time tends to infinity.

As a consequence of Theorem 1.1 we can give a characterization of ν in terms of its
density under translation:

Theorem 1.4. ν is the unique probability measure such that the following hold

(i) ν is absolutely continuous with respect to μ with dν
dμ

∈ L p(S ′(T2), μ) for some
p > 1;

(ii) (“quasi-invariance”) dν(z+tk)
dν(z) = atk(z) = a0

tk(z)a
a1,a2
tk (z) for z ∈ H−1−ε

2 , k ∈
C∞(T2), t > 0 with

a0
tk(z) = exp[−t〈(−� + 1)k, z〉 − 1

2
t2〈(−� + 1)k, k〉]

and

aa1,a2
tk (z) = exp[−a1

2

3∑

i=0

Ci
4t4−i : zi : (k4−i ) + a2

1∑

i=0

Ci
2t2−i : zi : (k2−i )].
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Here H−1−ε
2 for some ε > 0 is defined in Sect. 2 and in the following 〈·, ·〉 means the

dualization between the elements in C∞(T2) and H−1−ε
2 , respectively. : z3 : is a fixed

version of the Wick power we define in Sect. 2. By [AR91, Proposition 6.9] we can
choose z →: z3 : as a measurable map from H−1−ε

2 to H−1−ε
2 .

Property (ii) is similar to the quasi-invariance (i.e. invariance up to a density) of the
usual Gaussian measure. Here a0

tk is the translation density for the Gaussian part and
aa1,a2

tk corresponds to the polynomial part.
Similarly we obtain the following uniqueness result for the L-symmetrizing mea-

sures.

Theorem 1.5. ν is the unique probability measure such that the following hold:

(i) ν is absolutely continuous with respect to μ with dν
dμ

∈ L p(S ′(T2), μ) for some
p > 1;

(ii)
∫

Luvdν = ∫
Lvudν for u ∈ FC∞

b , where

Lu(z) = 1

2
Tr(D2u)(z) + 〈z, ADu〉 − 〈a1 : z3 : −a2z, Du(z)〉

for z ∈ H−1−ε
2 and FC∞

b is as defined in Sect. 4.

Remark 1.6. From the proof of Theorems 1.4 and 1.5 we know that assuming (i) in
Theorem 1.4 to hold, it follows that (ii) in Theorems 1.4 and 1.5 are equivalent to the
logarithmic derivative of ν along k being given by

βk = 2〈z, Ak〉 − 2〈a1 : z3 : −a2z, k〉,
for z ∈ H−1−ε

2 , k ∈ C∞(T2). Here the logarithmic derivative of a measure ν along k is
a ν-integrable function βk such that the following integration by parts formula holds:

∫
∂u

∂k
dν = −

∫
βkudν.

Moreover, we can prove that ν is an extreme point of the following convex set.

Corollary 1.7. ν is an extreme point of the convex set Ma, which denotes the set of all
probability measures on S ′(T2) satisfying (ii) in Theorem 1.4.

Corollary 1.8. ν is an extreme point of the convex set G, which denotes the set of all
probability measures on S ′(T2) satisfying (ii) in Theorem 1.5.

Remark 1.9. (i) By [AKR97, Theorem 3.3] we know that ν being an extreme point
of the convex set Ma is equivalent to ν being C∞(T2)-ergodic, which is al-
so equivalent to the maximal Dirichlet form (Eν, D(Ev)) being irreducible. For
the definition of the maximal Dirichlet form (Eν, D(Ev)), we refer to [AKR97,
Section 3].

(ii) Since the irreducibility is so crucial we recall here some characterizations of it
in terms of the semigroup (Tt )t>0 and generator (L , D(L)) of (Eν, D(Ev)). The
following are equivalent:
1. (Eν, D(Ev)) is irreducible.
2. (Tt )t>0 is irreducible, i.e., if g ∈ L2(ν) such that Tt (g f ) = gTt f for all

t > 0, f ∈ L2(ν) then g = const .
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3. If g ∈ L2(ν) such that Tt g = g for all t > 0 then g = const .
4.

∫
(Tt g − ∫

gdν)2dν →t→∞ 0 for all g ∈ L2(ν).
5. If u ∈ D(L) with Lu = 0, then u = const .
Here we emphasize that we don’t knowwhether the maximal Dirichlet form is the
same as the minimal Dirichlet form defined in the proof of Theorem 1.4 below,
which is the issue of the Markov uniqueness problem. If the maximal Dirichlet
form is associated with a strong Markov process (i.e. is a quasi-regular Dirichlet
form in the sense of [MR92]), then it is the same as the minimal Dirichlet form
(see [RZZ15, Theorem 3.12]).

(iii) The fact that the maximal Dirichlet form (Eν, D(Ev)) is irreducible can also be
proved by a similar argument as in the proof of [BR95, Theorem 6.15] and by
using Theorem 1.4.

We also want to mention that recently there has arisen a renewed interest in SPDEs
related to such problems, particularly in connection with Hairer’s theory of regularity
structures [Hai14] and related work by Gubinelli et al. [GIP13]. By using these the-
ories one can obtain local existence and uniqueness of solutions to (1.1) in the three
dimensional case (see [Hai14,CC13]). Furthermore, very recently in [MW16] Mourrat
and Weber have obtained global well-posedness of the solution to (1.1) in the three
dimensional case based on the paracontrolled distribution method.

This paper is organized as follows: In Sect. 2, we collect some results related to Besov
spaces and we recall some basic facts onWick powers. In Sect. 3, we prove the necessary
a-priori estimates of solutions to (1.1). In Sect. 4, we prove Theorems 1.1, 1.4 and 1.5.

Note added in the revised version: After this paper had entered the refereeing process,
two papers, by Tsatsolis andWeber [TW16] andHairer andMattingly [HM16], appeared
on arXiv, addressing a similar problem as solved in this paper. However, their approaches
are entirely different from ours and are based on first proving the strong Feller property
for the process. In fact, the authors in [TW16] obtain the strong Feller property and
exponential ergodicity for p(�)2 modelwhereas the authors in [HM16] present a general
method to establish the strong Feller property for solutions of SPDE driven by singular
noise in the framework of the theory of regularity structures.

2. Preliminaries

2.1. Notations and some useful estimates. In the following we recall the definitions of
Besov spaces. For a general introduction to the theory we refer to [BCD11,Tri78,Tri06].
The space of real valued infinitely differentiable functions of compact support is denoted
byD(Rd) orD. The space of Schwartz functions is denoted byS(Rd). Its dual, the space
of tempered distributions is denoted by S ′(Rd). The Fourier transform and the inverse
Fourier transform are denoted by F and F−1.

Let χ, θ ∈ D be nonnegative radial functions on R
d , such that

(i) the support of χ is contained in a ball and the support of θ is contained in an
annulus;

(ii) χ(ξ) +
∑

j≥0 θ(2− jξ) = 1 for all ξ ∈ R
d .

(iii) supp(χ) ∩ supp(θ(2− j ·)) = ∅ for j ≥ 1 and suppθ(2−i ·) ∩ suppθ(2− j ·) = ∅
for |i − j | > 1.

We call such a pair (χ, θ) dyadic partition of unity, and for the existence of dyadic
partitions of unity see [BCD11, Proposition 2.10]. The Littlewood-Paley blocks are now
defined as
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�−1u = F−1(χFu) � j u = F−1(θ(2− j ·)Fu).

For α ∈ R, p, q ∈ [1,∞], u ∈ D we define

‖u‖Bα
p,q

:= (
∑

j≥−1

(2 jα‖� j u‖L p )q)1/q ,

with the usual interpretation as l∞ norm in case q = ∞. The Besov space Bα
p,q consists

of the completion ofD with respect to this norm and the Hölder-Besov space Cα is given
by Cα(Rd) = Bα∞,∞(Rd). For p, q ∈ [1,∞),

Bα
p,q(Rd) = {u ∈ S ′(Rd) : ‖u‖Bα

p,q
< ∞}.

Cα(Rd) � {u ∈ S ′(Rd) : ‖u‖Bα∞,∞(Rd ) < ∞}.
The reason that Cα is smaller is that some functions in {u ∈ S ′(Rd) : ‖u‖Bα∞,∞(Rd ) < ∞}
cannot be approximated in Cα-norm by smooth functions. We point out that everything
above and everything that follows can be applied to distributions on the torus (see
[S85,SW71]). More precisely, let S ′(Td) be the space of distributions on T

d . Besov
spaces on the torus with general indices p, q ∈ [1,∞] are defined as the completion of
C∞(T2) with respect to the norm

‖u‖Bα
p,q (Td ) :=

⎛

⎝
∑

j≥−1

(2 jα‖� j u‖L p(Td ))
q

⎞

⎠

1/q

,

and the Hölder-Besov space Cα is given by Cα = Bα∞,∞(Td). We write ‖ · ‖α instead of
‖ · ‖Bα∞,∞(Td ) in the following for simplicity. For p, q ∈ [1,∞)

Bα
p,q(Td) = {u ∈ S ′(Td) : ‖u‖Bα

p,q (Td ) < ∞}.
Cα

� {u ∈ S ′(Td) : ‖u‖α < ∞}. (2.1)

In this part we give estimates on the torus for later use. Set � = (−A)
1
2 . For s ≥

0, p ∈ [1,+∞] we use Hs
p to denote the subspace of L p(Td), consisting of all f which

can be written in the form f = �−s g, g ∈ L p(Td) and the Hs
p norm of f is defined to

be the L p norm of g, i.e. ‖ f ‖Hs
p

:= ‖�s f ‖L p(Td ).
To study (1.1) in the finite volume case, we will need several important properties of

Besov spaces on the torus and we recall the following Besov embedding theorems on
the torus first (c.f. [Tri78, Theorem 4.6.1], [GIP13, Lemma 41]):

Lemma 2.1. (i) Let 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ q1 ≤ q2 ≤ ∞, and let α ∈ R. Then
Bα

p1,q1(T
d) is continuously embedded in Bα−d(1/p1−1/p2)

p2,q2 (Td).

(ii) Let s ≥ 0, 1 < p < ∞, ε > 0. Then Hs+ε
p ⊂ Bs

p,1(T
d) ⊂ Bs

1,1(T
d).

(iii) Let 1 ≤ p1 ≤ p2 < ∞ and let α ∈ R. Then Hα
p1 is continuously embedded in

Hα−d(1/p1−1/p2)
p2 .

Here ⊂ means that the embedding is continuous and dense.

We recall the following Schauder estimates, i.e. the smoothing effect of the heat flow,
for later use.
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Lemma 2.2. [GIP13, Lemma 47]

(i) Let u ∈ Bα
p,q(Td) for some α ∈ R, p, q ∈ [1,∞]. Then for every δ ≥ 0

‖et Au‖Bα+δ
p,q (Td ) � t−δ/2‖u‖Bα

p,q (Td ),

where the constant we omit is independent of t .
(ii) Let α ≤ β ∈ R. Then

‖(1 − et A)u‖α � t
β−α
2 ‖u‖β.

One can extend the multiplication on suitable Besov spaces and also have the duality
properties of Besov spaces from [Tri78, Chapter 4]:

Lemma 2.3. (i) Let α, β ∈ R and p, p1, p2, q ∈ [1,∞] be such that

1

p
= 1

p1
+

1

p2
.

The bilinear map (u; v) �→ uv extends to a continuous map from Bα
p1,q × Bβ

p2,q

to Bα∧β
p,q if α + β > 0.

(ii) Let α ∈ (0, 1), p, q ∈ [1,∞], p′ and q ′ be their conjugate exponents, respectively.
Then the mapping (u; v) �→ ∫

uvdx extends to a continuous bilinear form on
Bα

p,q(Td) × B−α
p′,q ′(Td).

We recall the following interpolation inequality and multiplicative inequality for the
elements in Hs

p (cf. [Tri78, Theorem 4.3.1], [Re95, Lemma A.4], [RZZ15a, Lemma
2.1]):

Lemma 2.4. (i) Suppose that s ∈ (0, 1) and p ∈ (1,∞). Then for u ∈ H1
p

‖u‖Hs
p

� ‖u‖1−s
L p(Td )

‖u‖s
H1

p
.

(ii) Suppose that s > 0 and p ∈ (1,∞). If u, v ∈ C∞(T2) then

‖�s(uv)‖L p(Td ) � ‖u‖L p1 (Td )‖�sv‖L p2 (Td ) + ‖v‖L p3 (Td )‖�su‖L p4 (Td ),

with pi ∈ (1,∞], i = 1, . . . , 4 such that

1

p
= 1

p1
+

1

p2
= 1

p3
+

1

p4
.

2.2. Wick power. In the following we recall the definition of Wick powers. Let μ =
N (0, 1

2 (−� + 1)−1) := N (0, C).
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2.2.1. Wick power on L2(S ′(T2), μ) In fact μ is a measure supported on S ′(T2). We
have the well-known (Wiener-Itô) chaos decomposition

L2(S ′(T2), μ) =
⊕

n≥0

Hn,

where Hn is the Wiener chaos of order n (cf. [Nua06, Section 1.1.1]). Now we define
the Wick power by using approximations: for φ ∈ S ′(T2) define

φε := ρε ∗ φ,

with ρε an approximate delta function,

ρε(ξ) = ε−2ρ(
ξ

ε
) ∈ D,

∫
ρ = 1.

Here the convolution means that we view φ as a periodic distribution in S ′(R2). For
every n ∈ N we set

: φn
ε :C := cn/2

ε Pn(c−1/2
ε φε),

where Pn, n = 0, 1, . . . , are the Hermite polynomials defined by the formula

Pn(x) =
[n/2]∑

j=0

(−1) j n!
(n − 2 j)! j !2 j

xn−2 j ,

and cε := ∫
φ2

εμ(dφ) = ∫ ∫
Ḡ(ξ1 − ξ2)ρε(ξ2)dξ2ρε(ξ1)dξ1 = ‖K̄ε‖2L2(R×T2)

. Then

: φn
ε :C∈ Hn . Here and in the following Ḡ is the Green function associated with −A

on T
2 and let K̄ (t, ξ) be such that K̄ (t, ξ1 − ξ2) is the heat kernel associated with A on

T
2 and K̄ε = K̄ ∗ ρε with ∗ means convolution in space and we view K̄ as a periodic

function on R
2.

For Hermite polynomial Pn we have for s, t ∈ R

Pn(s + t) =
n∑

m=0

Cm
n Pm(s)tn−m, (2.2)

where Cm
n = n!

m!(n−m)! .
A direct calculation yields the following:

Lemma 2.5. [RZZ15, Lemma 3.1] Let α < 0, n ∈ N and p > 1. : φn
ε :C converges to

some element in L p(S ′(T2), μ; Cα) as ε → 0. This limit is called n-th Wick power of φ

with respect to the covariance C and denoted by : φn :C .

Now we introduce the following probability measure. Let

ν = c exp (−1

2

∫

T2
(a1 : φ4 :C −2a2 : φ2 :C )dξ)μ,

where c is a normalization constant. Then by [GlJ86, Sect. 8.6] for every p ∈ [1,∞),
ϕ(φ) := exp (− 1

2

∫
T2(a1 : φ4 :C −2a2 : φ2 :C )dξ) ∈ L p(S ′(T2), μ).
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2.2.2. Wick power on a fixed probability space Nowwefixaprobability space (�,F , P)

equipped with a normal filtration (Ft ) and W is an L2(T2)-cylindrical (Ft )-Wiener
process. In the following we assume that F is the σ -field generated by {〈Wt , h〉, h ∈
L2(T2), t ∈ R

+}. We also have the well-known (Wiener-Itô) chaos decomposition

L2(�,F , P) =
⊕

n≥0

H′
n,

where H′
n is the Wiener chaos of order n (cf. [Nua06, Section 1.1.1]). In the follow-

ing we set Z(t) = ∫ t
0 e(t−s)AdW (s), and we can also define Wick powers of Z(t) by

approximations: Let Zε(t, ξ) = ∫ t
0 〈K̄ε(t − s, ξ − ·), dW (s)〉. Here 〈·, ·〉 means inner

product in L2(T2).

Lemma 2.6. [RZZ15, Lemma 3.4] For α < 0, n ∈ N and t > 0, : Zn
ε (t) ::=

c
n
2
ε Pn(c

− 1
2

ε Zε(t)) converges in L p(�, C((0, T ]; Cα)). Here the norm for C((0, T ]; Cα)

is supt∈[0,T ] tδ‖ · ‖α for δ > 0. The limit is called Wick power of Z(t) with respect to the
covariance C and denoted by : Zn(t) :.

Now following the technique in [MW15] we combine the initial value part with the
Wick powers by using (2.2). We set V (t) = et Ax, x ∈ Cα for α < 0 and

Z̄x (t) = Z(t) + V (t),

and for n = 2, 3,

: Z̄ n
x (t) :=

n∑

k=0

Ck
n V (t)n−k : Zk(t) : .

By Lemma 2.2 we know that V ∈ C([0, T ], Cα) and V ∈ C((0, T ], Cβ) for β > −α

with the norm supt∈[0,T ] t
β−α
2 ‖ · ‖β . Moreover,

t
β−α
2 ‖V (t)‖β � ‖x‖α, (2.3)

for β > −α. Then by [RZZ15, Lemmas 3.5] we have Z̄x ∈ L p(C((0, T ], Cα)).
By (2.3) and Lemma 2.3 it is easy to obtain the following result:

Lemma 2.7. Let α < 0, x ∈ Cα . Then we have for t > 0 and any ε > 0

‖Z̄x (t)‖α ≤ ‖Z(t)‖α + ‖x‖α,

‖ : Z̄2
x (t) : ‖α ≤ C[‖ : Z2(t) : ‖α + tα−ε‖x‖α‖Z(t)‖α + tα−ε‖x‖2α],

‖ : Z̄3
x (t) : ‖α ≤ C[‖ : Z3(t) : ‖α + t2α−ε‖x‖2α‖Z(t)‖α

+ tα−ε‖x‖α‖ : Z2(t) : ‖α + t2α−ε‖x‖3α].
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3. The Necessary A-Priori Estimates

Now we follow [MW15,RZZ15] and give the existence and uniqueness of solutions to
(1.1) by considering the shifted equation.

We fix α < 0 with −α small enough, in the following. For Z = (Z , : Z2 :, : Z3 :),
0 < δ < −α, define

‖Z‖LT := sup
0≤t≤T

(‖Z(t)‖α, tδ‖ : Z2(t) : ‖α, tδ‖ : Z3(t) : ‖α

)

and

�0 = {Z ∈ C([0, T ]; Cα), : Zn :∈ C((0, T ]; Cα) for n = 2, 3, ‖Z‖LT < ∞ ∀T > 0}.
Then

P[�0] = 1.

We also introduce the following notations: for Y ∈ C([0, T ], Cβ), Z ∈ C([0, T ]; Cα)

with β > −α

�(Y, Z) := −a1(3Y 2Z + 3Y : Z2 : + : Z3 :) + a2(Y + Z).

By [RZZ15, Theorem 3.9] we know that the solution to (1.1) can be written as X =
Y + et Ax + Z = Y + Z̄x for x ∈ Cα , where Y satisfies the following shifted equation:

dY = [AY − a1Y 3 + �(Y, Z̄x )]dt, Y (0) = 0. (3.1)

Here and in the following (3.1) and other equations are interpreted in the mild sense:

Y (t) =
∫ t

0
e(t−s)A[−a1Y 3 + �(Y, Z̄x )](s)ds.

As a result, X is a mild solution to the following equation

d X = [AX − a1(X − Z̄x )
3 + �(X − Z̄x , Z̄x )]dt + dW, X (0) = x . (3.2)

That is to say:

Theorem 3.1. For ω ∈ �0, x ∈ Cα , there exists exactly one mild solution X (ω) ∈
C([0,∞); Cα) to the Eq. (3.2) satisfying (X − Z̄x )(ω) ∈ C([0,∞); Cβ) for some β >

−α > 0.

Proof. For ω ∈ �0, x ∈ Cα , by Lemma 2.7 we know that for n = 2, 3,

Z̄x ∈ C([0,∞); Cα), : Z̄ n
x :∈ C((0,∞); Cα),

and for every T > 0

sup
0≤t≤T

[‖Z̄x (t)‖α, t−2α+δ‖ : Z̄2
x (t) : ‖α, t−2α+δ‖ : Z̄3

x (t) : ‖α

]
< ∞.

Then [MW15, Theorem 6.5] implies that for ω ∈ �0 there exist exactly one solution
Y (ω) ∈ C([0,∞); Cβ) for some β > −α satisfying (3.2) in the mild sense. From this
we can conclude the result easily. ��
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Remark 3.2. Here for ω ∈ �0 X is an ω-wise mild solution to the Eq. (3.2), whose
definition is stronger than the usual (probabilistically) mild solution to the stochastic
differential equation (3.2).

Now we can define the semigroup associated with X and obtain an invariant measure
for X : For t ≥ 0, f ∈ Bb(Cα), define

Pt f (x) := E f (X (t, x))

for the solution X (t, x) to (3.2) with initial value x ∈ Cα . Here E denotes to take
expectation under P . By Theorem 3.1 we obtain that X is aMarkov process with (Pt )t≥0
as the associated semigroup. By [RZZ15, Theorem 3.10] we know that ν is an invariant
measure for X , where ν is defined after Lemma 2.5. In the next section we will prove
that ν is the unique invariant measure for X . To prove this, we introduce the following
equation, which has a new dissipation term compared to (3.1).

For given x0, x1 ∈ Cα consider the following equation

d

dt
Ỹ = AỸ − λ(Ỹ − Y + et A(x1 − x0)) − a1Ỹ 3 + �(Ỹ , Z̄x1), Ỹ (0) = 0, (3.3)

where λ > 1 will be determined later.
By similar arguments as the proof of [MW15, Theorem 6.5] and [RZZ15, Theorem

3.10] we can easily derive the following result:

Theorem 3.3. For x0, x1 ∈ Cα and ω ∈ �0, there exists a unique mild solution Ỹ ∈
C([0,∞); Cβ) to the Eq. (3.3).

Define X̃ := Ỹ + et Ax1 + Z = Ỹ + Z̄x1 with Ỹ obtained in Theorem 3.3. Then X̃ satisfies
the following equation in the mild sense:

d X̃ = [AX̃−λ(X̃−X)−a1(X̃− Z̄x1)
3+�(X̃− Z̄x1 , Z̄x1)]dt+dW, X̃(0) = x1. (3.4)

Now we give the necessary a-priori estimates for the solutions to (3.1) and (3.3)
for later use. We will derive L p-norm estimates for the solutions to (3.1) and (3.3)
respectively. We can get the ‖ · ‖L p -norm estimate directly, but only with p depending
on α, which is not enough for later use. Hence we first obtain the ‖ · ‖L p -norm estimates
from 1 to t for every p > 1. Then we estimate ‖Y (1)‖β for β > 0 by the following
Steps 2 and 3.

Lemma 3.4. Suppose that Y is the solution to (3.1) with x = x0. For every even p > 1,
there exist constants C(p), C(‖Z‖L1 , ‖x0‖α) > 0, γ (p) > 1 independent of ω, t such
that for every t ≥ 1 and ω ∈ �0

‖Y (t)‖p
L p +

∫ t

1
‖Y (s)‖p

L p ds +
∫ t

1
‖Y p−2|∇Y |2(s)‖L1ds

≤ C(‖Z‖L1 , ‖x0‖α) + C(p)

∫ t

1
(1 + ‖x0‖γ (p)

α + ‖Z‖γ (p)
α +

3∑

n=2

‖ : Zn : ‖γ (p)
α )ds.

Here C(‖Z‖L1 , ‖x0‖α) means a constant depending on ‖Z‖L1 , ‖x0‖α .
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Proof. We write the proof for Y and Z directly which is a bit informal, but it can be
made rigorous by replacing Z by Zε and taking the limit as in the proof of [RZZ15,
Theorem 6.5].

Step 1 We first prove that for every even p > 1, t ≥ 1 there exists γ (p) > 2 such
that

‖Y (t)‖p
L p +

∫ t

1
‖Y p−2|∇Y |2‖p

L1ds +
∫ t

1
‖Y (s)‖p

L p ds ≤ ‖Y (1)‖p
L p

+C(p)

∫ t

1
(1 + ‖x0‖γ (p)

α + ‖Z‖γ (p)
α +

3∑

n=2

‖ : Zn : ‖γ (p)
α )ds. (3.5)

Testing against Y p−1, we have that for t ≥ 1, even p > 1,

1

p
‖Y (t)‖p

L p +
∫ t

1
[(p − 1)〈∇Y (s), Y (s)p−2∇Y (s)〉 + a1‖Y (s)p+2‖L1 ]ds

= −
∫ t

1
[‖Y (s)‖p

L p + 〈�(Y (s), Z̄x0(s)), Y (s)p−1〉]ds +
1

p
‖Y (1)‖p

L p .

Now we have 〈∇Y (s), Y (s)p−2∇Y (s)〉 and ‖Y (s)p+2‖L1 on the left hand side of the
equality, which can be used to control the right hand side of the above equation. By
similar calculations as in the proof of [MW15, Theorem 6.4] and [RZZ15, Theorem
3.10] we deduce that there exists γ0 > 1 such that

|〈�(Y (s), Z̄x0(s)), Y (s)p−1〉|

≤ C(p)(1 + ‖Z̄x0‖γ0
α +

3∑

n=2

‖ : Z̄ n
x0 : ‖p+2

α ) +
1

2
(a1‖Y‖p+2

L p+2 + ‖Y p−2|∇Y |2‖L1),

which implies that

1

p
‖Y (t)‖p

L p +
1

2

∫ t

1
[(p − 1)〈∇Y (s), Y (s)p−2∇Y (s)〉 + a1‖Y (s)p+2‖L1 ]ds

≤ C(p)

∫ t

1
(1 + ‖Z̄x0‖γ0

α +
3∑

n=2

‖ : Z̄ n
x0 : ‖p+2

α )ds +
1

p
‖Y (1)‖p

L p

≤ C(p)

∫ t

1
(1 + ‖x0‖γ (p)

α + ‖Z‖γ (p)
α +

3∑

n=2

‖ : Zn : ‖γ (p)
α )ds +

1

p
‖Y (1)‖p

L p .

(3.6)

Here γ (p) = 3(p + 2) ∨ γ0 and we used Lemma 2.7 in the last inequality. Now (3.5)
follows.

Step 2 We prove that for even p > 1, with −2α(p + 2) < 1,

sup
0≤t≤1

‖Y (t)‖p
L p +

∫ 1

0
‖Y p−2|∇Y |2‖L1ds ≤ C(p, ‖Z‖L1 , ‖x0‖α). (3.7)
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By similar arguments as in Step 1 we have for 0 ≤ t ≤ 1

1

p
‖Y (t)‖p

L p +
1

2

∫ t

0
[(p − 1)〈∇Y (s), Y (s)p−2∇Y (s)〉 + a1‖Y (s)p+2‖L1 ]ds

≤ C(p)

∫ t

0
(1 + ‖Z̄x0‖γ0

α +
3∑

n=2

‖ : Z̄ n
x0 : ‖p+2

α )ds

≤ C(p, ‖Z‖L1 , ‖x0‖α).

Here we used Lemma 2.7 and −2α(p + 2) < 1 in the last inequality. Now (3.7) follows.
Step 3 We prove that for 0 < β < 1

2 + α

‖Y (1)‖β ≤ C(‖Z‖L1 , ‖x0‖α). (3.8)

Since Y satisfies the mild equation, we have

‖Y (1)‖β ≤ C
∫ 1

0
(1 − s)−

β
2 − 1

2 ‖Y 3‖L2ds

+ C
∫ 1

0
(1 − s)−

β+1/2−α
2 [‖Y 2 Z̄x0‖Bα

4,∞ + ‖Y : Z̄2
x0 : ‖Bα

4,∞]ds

+ C
∫ 1

0
(1 − s)−(β−α)/2‖ : Z̄3

x0 : ‖αds,

where we used Lemmas 2.1, 2.2 to deduce ‖et Ax‖β ≤ Ct−
β
2 − 1

2 ‖x‖L2 and ‖ · ‖α− 1
2

≤
C‖ · ‖Bα

4,∞ . For the first term on the right hand side, we can use (3.7) for p = 6 to
control it by C(‖Z‖L1 , ‖x0‖α). Using Lemma 2.7 we can control the third term by
C(‖Z‖L1 , ‖x0‖α). Now we come to the second term:

∫ 1

0
(1 − s)−

β+1/2−α
2 [‖Y 2 Z̄x0‖Bα

4,∞ + ‖Y : Z̄2
x0 : ‖Bα

4,∞]ds

≤ C
∫ 1

0
(1 − s)−

β+1/2−α
2 [‖Y 2‖

Bβ
4,∞

‖Z̄x0‖α + ‖Y‖
Bβ
4,∞

‖ : Z̄2
x0 : ‖α]ds

≤ C
∫ 1

0
(1 − s)−

β+1/2−α
2 [‖Y 2‖

Bβ+1/2
2,∞

‖Z̄x0‖α + ‖Y‖
Bβ+1/2
2,∞

‖ : Z̄2
x0 : ‖α]ds

≤ C(‖Z‖L1 , ‖x0‖α)

∫ 1

0
(1 − s)−

β+1/2−α
2 [(‖∇Y 2‖β+1/2+ε

L2 ‖Y 2‖1/2−β−ε

L2 + ‖Y 2‖L2)

+ s−β−α(‖∇Y‖β+1/2+ε

L2 ‖Y‖1/2−β−ε

L2 + ‖∇Y‖L2)]ds

≤ C(‖Z‖L1 , ‖x0‖α) + C(‖Z‖L1 , ‖x0‖α)

∫ 1

0
(‖∇Y 2‖2L2 + ‖Y 2‖L2)ds

≤ C(‖Z‖L1 , ‖x0‖α),

where 0 < ε < 1
2 −β and we used Lemma 2.3 in the first inequality, we used Lemma 2.1

in the second inequality, and the fact that

‖ · ‖
B

β+ 1
2

2,∞
≤ C‖ · ‖

B
β+ 1

2
2,1

≤ C‖ · ‖
H

β+ 1
2 +ε

2

,
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and Lemma 2.4 in the third inequality, and we used (3.7) for p = 2 and 4 in the last two
inequalities. Combining the above estimates (3.8) follows.

Combining (3.5) and (3.8) and using ‖Y (1)‖L p ≤ C‖Y (1)‖β , the result follows. ��

The proof of Lemma 3.5 is similar to that of Lemma 3.4. But we should pay attention
to how each term depends on λ, as Ỹ depends on λ.

Lemma 3.5. For every even p > 1, λ > 1, there exist constants C(p), C(p, λ, ‖Z‖L1 ,‖x0‖α, ‖x1‖α) > 0, γ (p) > 1 independent of ω, t such that for every t ≥ 1 and ω ∈ �0

∫ t

1
‖Ỹ (s)‖p

L p ds ≤ C(p)

∫ t

1
(1 +

1∑

i=0

‖xi‖γ (p)
α + ‖Z‖γ (p)

α

+
3∑

n=2

‖ : Zn : ‖γ (p)
α )ds

+C(p, λ, ‖Z‖L1 , ‖x0‖α, ‖x1‖α).

∫ t

1
‖∇Ỹ (s)‖2L2ds + ‖Ỹ (t)‖p

L p ≤ C(p)λ

∫ t

1
(1 +

1∑

i=0

‖xi‖γ (p)
α + ‖Z‖γ (p)

α

+
3∑

n=2

‖ : Zn : ‖γ (p)
α )ds

+C(p, λ, ‖Z‖L1 , ‖x0‖α, ‖x1‖α).

Proof. Step 1 We first prove that for every even p > 1 there exists γ (p) > 1 such that

∫ t

1
‖Ỹ (s)‖p

L p ds ≤ ‖Ỹ (1)‖p
L p + C(p)

∫ t

1
(1 +

1∑

i=0

‖xi‖γ (p)
α + ‖Z‖γ (p)

α

+
3∑

n=2

‖ : Zn : ‖γ (p)
α )ds + C(‖Z‖L1 , ‖x0‖α) (3.9)

Similarly as in the proof of Lemma 3.4 we have that for t ≥ 1 and even p > 1

1

p
‖Ỹ (t)‖p

L p + λ

∫ t

1
‖Ỹ (s)‖p

L p ds

+
∫ t

1
[(p − 1)〈∇Ỹ (s), Ỹ (s)p−2∇Ỹ (s)〉 + a1‖Ỹ (s)p+2‖L1 ]ds

= −
∫ t

1
[‖Ỹ (s)‖p

L p + 〈�(Ỹ (s), Z̄x1(s)), Ỹ (s)p−1〉]ds + λ

∫ t

1
〈Y (s), Ỹ (s)p−1〉ds

−λ

∫ t

1
〈es A(x1 − x0), Ỹ (s)p−1〉ds +

1

p
‖Ỹ (1)‖p

L p . (3.10)
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Now by similar calculations as in the proof of Lemma 3.4 and using (3.7) we deduce
that there exist γ (p) > 1 such that

‖Ỹ (t)‖p
L p + λ

∫ t

1
‖Ỹ (s)‖p

L p ds +
p − 1

2

∫ t

1
‖|∇Ỹ (s)|2Ỹ p−2(s)‖L1ds

≤ C(p)

∫ t

1
(1 + ‖Z̄x1‖γ0

α +
3∑

n=2

‖ : Z̄ n
x1 : ‖p+2

α )ds + λp
∫ t

1
‖Y (s)‖L p ‖Ỹ (s)‖p−1

L p ds

+Cλp
∫ t

1
s− β−α

2 ‖x0 − x1‖α‖Ỹ (s)‖p−1
L p ds + ‖Ỹ (1)‖p

L p

≤ C(p)

∫ t

1
(1 + ‖Z‖γ (p)

α +
3∑

n=2

‖ : Zn : ‖γ (p)
α + ‖x1‖γ (p)

α )ds

+λC(p)

∫ t

1
‖Y (s)‖p

L p ds +
λ

2

∫ t

1
‖Ỹ (s)‖p

L p ds

+C(p)λ

∫ t

1
‖x0 − x1‖p

αds + ‖Ỹ (1)‖p
L p , (3.11)

where we used Hölder’s inequality and Lemma 2.2 to control ‖es A(x0 − x1)‖Cβ by

Cs− β−α
2 ‖x0 − x1‖Cα for β > −α in the first inequality and we used Young’s inequality

in the second inequality. By Lemma 3.4 and the fact that λ > 1, (3.9) follows.
Step 2 We prove that for even p > 1 with (−2α + δ)(p + 2) < 1

sup
0≤t≤1

‖Ỹ (t)‖p
L p +

∫ 1

0
‖Ỹ p−2|∇Ỹ |2‖L1ds ≤ λC(p, ‖Z‖L1 , ‖x0‖α, ‖x1‖α). (3.12)

By similar arguments as inStep1wehave for 0 ≤ t ≤ 1, even p > 1with−2α(p+2) < 1
and ε > 0 small enough

‖Ỹ (t)‖p
L p + λ

∫ t

0
‖Ỹ (s)‖p

L p ds +
p − 1

2

∫ t

0
‖|∇Ỹ (s)|2Ỹ p−2(s)‖L1ds

≤ C(p)

∫ t

0
(1 + ‖Z̄x1‖γ0

α +
3∑

n=2

‖ : Z̄ n
x1 : ‖p+2

α )ds + λ

∫ t

0
‖Y (s)‖L p ‖Ỹ (s)‖p−1

L p ds

+ Cλp
∫ t

0
s2α‖x0 − x1‖α‖Ỹ (s)‖p−1

L p ds

≤ C(p, ‖Z‖L1)

∫ t

0
s(2α−ε)(p+2)(1 + ‖x1‖γ (p)

α )ds

+ λC(p)

∫ t

0
‖Y (s)‖p

L p ds +
λ

2

∫ t

0
‖Ỹ (s)‖p

L p ds

+ C(p)λ

∫ t

0
s2αp‖x0 − x1‖p

αds,

where we used Lemma 2.7 in the last inequality. By Lemma 3.4, (3.7) and the fact that
λ > 1, (3.12) follows.
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Step 3 We prove that for 0 < β < 1
2 + α

‖Ỹ (1)‖β ≤ C(λ, ‖Z‖L1 , ‖x0‖α, ‖x1‖α). (3.13)

Since Ỹ satisfies the mild equation, by similar arguments as in Step 3 in the proof of
Lemma 3.4 we have

‖Ỹ (1)‖β ≤ C
∫ 1

0
(1 − s)−

β
2 − 1

2 [‖Ỹ 3‖L2 + λ(‖Ỹ‖L2 + ‖Y‖L2)]ds

+ C
∫ 1

0
(1 − s)−

β+1/2−α
2 [‖Ỹ 2 Z̄x1‖Bα

4,∞

+ ‖Ỹ : Z̄2
x1 : ‖Bα

4,∞]ds

+ C
∫ 1

0
(1 − s)−(β−α)/2(‖ : Z̄3

x1 : ‖α + λ‖x0‖α + λ‖x1‖α)ds

≤ C(p, λ, ‖Z‖L1 , ‖x0‖α),

where for the term in the first integral we used (3.12) and for the term in the second
and third integral we used similar arguments as in Step 3 in the proof of Lemma 3.4.
Combining (3.9) and (3.13) the first result follows.

The second follows from (3.11), (3.12) and Lemma 3.4.

In the following we give an estimate of the Wick power : Zk :, which is required in
the proof of the main results.

For γ > 0 and K > 0 we introduce the following notations:

EK ,γ := {‖Z̄‖L1 ≤ K ,

∫ t

1
[‖Z‖γ

α + ‖ : Z2 : ‖γ
α + ‖ : Z3 : ‖γ

α ]ds ≤ K (1 + t),∀t ≥ 1}.
(3.14)

Lemma 3.6. For every γ > 0, ε > 0 there exists K > 0 such that P(EK ,γ ) ≥ 1 − ε.

Proof. To prove this result, we first introduce the following stationary Markov process.
Define Z1(t) = ∫ t

−∞ e(t−s)AdW (s). We also define

: Z2
1 ::= lim

ε→0
[(Z1 ∗ ρε)

2 − cε] in L p(�, C([0,∞), Cα)),

: Z3
1 ::= lim

ε→0
[(Z1 ∗ ρε)

3 − 3cε Z1 ∗ ρε] in L p(�, C([0,∞), Cα)),

for p > 1 as in [RZZ15, Lemma 3.3]. (Z1, : Z2
1 :, : Z3

1 :) are also stationary Markov
processes. Here ρε and cε are introduced in Sect. 2.2. By [DZ96, Theorem 3.3.1] we
know that for every q > 1 there exists η ∈ L2(�, P) such that

ZT := 1

T

∫ T

0
[‖Z1‖q

α +
3∑

n=2

‖ : Zn
1 : ‖q

α]ds → η, as T → ∞, P − a.s.,

which implies that for every ε > 0, there exists �1 ⊂ � such that P(�1) < ε/4 and

sup
ω∈�c

1

|ZT (ω) − η(ω)| → 0, as T → ∞.
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From this we can deduce that there exists T0 independent of ω such that for T ≥ T0

ZT (ω) ≤ η(ω) + 1,∀ω ∈ �c
1,

which combined with η ∈ L2(�; P) yields that there exists K1 > 0 such that

P{
∫ T

0
[‖Z1‖2γα +

3∑

n=2

‖ : Zn
1 : ‖2γα ]ds ≤ K1T,∀T ≥ T0} > 1 − ε/3.

Thus, there exists K2 > 0 such that

P{
∫ T

0
[‖Z1‖2γα +

3∑

n=2

‖ : Zn
1 : ‖2γα ]ds ≤ K2(T + 1),∀T ≥ 0} > 1 − ε/3.

Now we give the relations of Z and Z1. By (2.2) and similar arguments as in the proof
of [RZZ15, Lemma 3.6] we have that

Z(t) = Z1(t) − et A Z1(0),

: Z2(t) : =: Z2
1(t) : −2et A Z1(0)Z1(t) + (et A Z1(0))

2,

: Z3(t) : =: Z3
1(t) : +3(et A Z1(0))

2Z1(t) − 3et A Z1(0) : Z1(t)
2 : −(et A Z1(0))

3,

which combined with Lemma 2.3 implies that for β > −α > 0

‖Z(t)‖α ≤ ‖Z1(t)‖α + ‖Z1(0)‖α,

‖ : Z2(t) : ‖α ≤ C[‖ : Z2
1(t) : ‖α + ‖et A Z1(0)‖β‖Z1(t)‖α + ‖et A Z1(0)‖2β ],

‖ : Z3(t) : ‖α ≤ C[‖ : Z3
1(t) : ‖α + ‖et A Z1(0)‖2β‖Z1(t)‖α

+ ‖et A Z1(0)‖β‖ : Z2
1(t) : ‖α + ‖et A Z1(0)‖3β ].

Now using Lemma 2.2 we have
∫ T

1
[‖Z‖γ

α + ‖ : Z2 : ‖γ
α + ‖ : Z3 : ‖γ

α ]ds

≤ C
∫ T

1
[‖Z1(0)‖4γα + 1 + ‖Z1(s)‖2γα + ‖ : Z2

1(s) : ‖2γα + ‖ : Z3
1(s) : ‖γ

α ]ds,

which implies that there exists K3 > 0 such that

P{
∫ T

1
[‖Z‖γ

α +
3∑

n=2

‖ : Zn : ‖γ
α ]ds ≤ K3(T + 1),∀T ≥ 0} > 1 − ε/2.

On the other hand, by Lemma 2.6 we have E‖Z‖2
L1 < ∞, which implies that there exist

K4 > 0 such that

P(‖Z‖L1 ≤ K4) > 1 − ε/2.

Combining the above results we obtain that there exists K > 0 such that

P(EK ,γ ) ≥ 1 − ε.

��
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4. Uniqueness of the Invariant Measure

In this sectionwewill prove ourmain result: uniqueness of the invariantmeasure.Wewill
use an asymptotic coupling argument to prove it. We first present an abstract result based
on asymptotic coupling from [HMS11]: LetP be aMarkov transition function on aPolish
space (X, ρ) and letX∞ = X

N be the space of all sequences inXwith product topology.
Denote the collection of all Borel probability measures on X by M(X) and M(X∞)

is defined correspondingly. Take P∞ : X → M(X∞) to be the probability kernel
defined by stepping with the Markov kernel P . For μ0 ∈ M(X), let μ0P∞ ∈ M(X∞)

be the measure defined by
∫
X
P∞(x, ·)dμ0(x). Given μ1, μ2 ∈ M(X), consider the

generalized coupling given by

C̃(μ1P∞, μ2P∞) := {� ∈ M(X∞ × X∞) : � ◦ �−1
i � μiP∞ for each i ∈ {1, 2}},

where�i is the projection onto the ith coordinate.We also denote the diagonal at infinity
by

D := {(x, y) ∈ X∞ × X∞ : lim
n→∞ ρ(xn, yn) = 0}.

Now we recall the following asymptotic coupling argument from [HMS11].

Theorem 4.1. [HMS11, Corollary 2.2] Suppose that there exists a Borel measurable set
B ⊂ X such that

(i) for any P-invariant Borel probability measure μ, μ(B) > 0,
(ii) there exists a measurable map B × B � (x, y) �→ �x,y ∈ M(X∞ × X∞) such

that, for all x, y ∈ B, �x,y ∈ C̃(δxP∞, δyP∞) and �x,y(D) > 0.

Then there exists at most one invariant probability measure for P .

Now we prove our main result by using Theorem 4.1.

Proof of Theorem 1.1. For a given stochastic basis (�,F , (Ft )t≥0, P) and a cylindrical
Wiener process W as in Sect. 3, we use X (x0) to denote the solution of Eq. (3.2) obtained
in Sect. 3 starting from x0 ∈ Cα . Now we apply Theorem 4.1 to B = X = Cα and
P = P1(x, dy) and P∞ : Cα �→ M(Cα∞) is defined as above, where P1(x, ·) denotes
the marginal of X (x) at time t = 1 for x ∈ Cα .

We also use X̃(x1) to denote the solutions of Eq. (3.4) obtained in Sect. 3 starting
from x1 ∈ Cα , which is used to construct the generalized coupling.

Girsanov transform
Set v = λ(X̃(x1) − X (x0)) and let W̃ (t) = W (t) − ∫ t∧τR

0
v(s)ds, where

τR := inf{t > 0,
∫ t

0
‖X (x0, s) − X̃(x1, s)‖2L2ds ≥ R}.

Since

E exp

(
1

2

∫ τR

0
‖v(s)‖2L2ds

)

≤ e
1
2 Rλ2 ,

by the Girsanov theorem there is a probability measure Q on (�,F , (Ft )t≥0) such
that under Q, W̃ is a standard Wiener process. Moreover, it holds that P ∼ Q on
F∞ = σ(∪t≥0Ft ).
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Construction of the coupling
Let Ẑ be the solution to the following linear equation

d Ẑ(t) = AẐ(t)dt + dW̃ (t), Ẑ(0) = 0,

and : Ẑ k : can be defined similarly as : Zk : as in Sect. 2. Moreover, we use similar

notations as in Sect. 2: ¯̂Zx1 := Ẑ + et Ax1, and for n = 2, 3,

: ¯̂Zn
x1(t) ::=

n∑

k=0

Ck
n (et Ax1)

n−k : Ẑ k(t) : .

Furthermore, we derive the relation between different Wick powers under P and Q
respectively. Since Ẑ = Z + a with a(t) = − ∫ t

0 e(t−s)A1s≤τR v(s)ds ∈ C([0,∞); Cβ)

for some β > −α, we have that there exists �′
0 ⊂ �0 such that P(�′

0) = 1 and the
following hold for ω ∈ �′

0 in C((0,∞); Cα)

: Ẑ2 :=: Z2 : +2Za + a2, (4.1)

and

: Ẑ3 :=: Z3 : +3Za2 + 3 : Z2 : a + a3. (4.2)

We will prove (4.1) and (4.2) at the end of the proof.
Forω ∈ �′

0, by (4.1), (4.2) anda ∈ C([0,∞); Cβ)weknow that forn = 2, 3, T ∈ R
+

Ẑ ∈ C([0, T ]; Cα), : Ẑ n :∈ C((0, T ]; Cα), ‖Ẑ‖LT < ∞,

which by Theorem 3.1 implies that for ω ∈ �′
0 there exists a unique mild solution

Ŷ (ω) ∈ C([0,∞), Cβ) to the following equation

dŶ

dt
= AŶ − a1Ŷ 3 + �(Ŷ ,

¯̂Zx1), Ŷ (0) = 0. (4.3)

Define

X̂(x1, ω) =
{ [Ŷ + et Ax1 + Ẑ ](ω), if ω ∈ �′

0
0 otherwise.

Then we conclude that under Q, X̂(x1) is also a mild solution to the Eq. (3.2) with
x = x1 and with W replaced by W̃ , which combined with Theorem 3.1 and the Yamada-
Watanabe Theorem in [Kurz07] implies that under Q, X̂(x1) has the same law as the
solution X (x1) to the Eq. (3.2) starting from x1. Since P ∼ Q, we have that under P
the law of the pair (X (x0), X̂(x1)) has marginals which are equivalent to the marginals
of the solutions to (3.2) starting respectively from x0 and x1. Set �x0,x1 := law of
(X (x0), X̂(x1)) for x0, x1 ∈ Cα . It follows that �x0,x1 ∈ C̃(δx0P∞, δx1P∞). It remains
to show that �x0,x1(D) > 0.

We have that X̂(x1) satisfies the following equation in the mild sense P-a.s.:

d X̂ = [AX̂ − a1(X̂ − ¯̂Zx1)
3 + �(X̂ − ¯̂Zx1 ,

¯̂Zx1)]dt + dW̃ .
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By (4.1), (4.2) we have that there exists �2 ⊂ �′
0 such that P(�2) = 1 and for ω ∈ �2,

X̂(x1, ω) also satisfies the following equation in the mild sense :

d X̂ = [AX̂ − a1(X̂ − Z̄x1)
3 + �(X̂ − Z̄x1 , Z̄x1)]dt + dW − v1t≤τR dt.

Then on {τR = ∞} ∩ �2, X̂ − Z̄x1 also satisfies (3.3). By Theorem 3.3 we obtain that
X̂ − Z̄x1 = Ỹ on {τR = ∞} ∩ �2, which implies that X̂ = X̃ on {τR = ∞} ∩ �2. Here
Ỹ is the solution to (3.3) and X̃(x1) = Ỹ + et Ax1 + Z . Now to prove �x0,x1(D) > 0, it
suffices to estimate X (x0) − X̃(x1).

Estimate of X (x0) − X̃(x1)
In the followingwe estimate X (x0)− X̃(x1) andwe do all the calculations informally,

but all the calculations below can bemade rigorous by approximation as done in the proof
of [RZZ15,Theorem3.10]. SetY1 = Y+et Ax0, Ỹ1 = Ỹ+et Ax1 andu = X−X̃ = Y1−Ỹ1.
By the binomial formula (2.2) we have that P-a.s. Y1 and Ỹ1 are the mild solutions to
the following equations

d

dt
Y1 = AY1 − [a1Y 3

1 + �(Y1, Z)], Y1(0) = x0,

and

d

dt
Ỹ1 = AỸ1 + λ(Y1 − Ỹ1) − [a1Ỹ 3

1 + �(Ỹ1, Z)], Y1(0) = x1

respectively. It is obvious that P-a.s. u is the mild solution to the following equation:

d

dt
u = Au − λu − [a1Y 3

1 − a1Ỹ 3
1 + �(Y1, Z) − �(Ỹ1, Z)], u(0) = x0 − x1.

Standard energy estimates yield

1

2

d

dt
‖u‖2L2 + ‖∇u‖2L2 + λ‖u‖2L2 ≤ −〈(�(Y1, Z) − �(Ỹ1, Z)), u〉, (4.4)

where we used that

−〈Y 3
1 − Ỹ 3

1 , u〉 ≤ 0.

Now we calculate each term in 〈(�(Y1, Z) − �(Ỹ1, Z)), u〉: For the first term we have

3a1|〈(Y 2
1 − Ỹ 2

1 )Z , u〉| = 3a1|〈u2, (Y1 + Ỹ1)Z〉|
≤ CS‖u2‖B−α

4
3 ,1

(‖Y1Z‖Bα
4,∞ + ‖Ỹ1Z‖Bα

4,∞)

≤ CS‖� 1
2 u‖2L2(‖Y1Z‖Bα

4,∞ + ‖Ỹ1Z‖Bα
4,∞)

≤ CS‖u‖L2(‖∇u‖L2 + ‖u‖L2)(‖Y1Z‖Bα
4,∞ + ‖Ỹ1Z‖Bα

4,∞)

≤ CS‖u‖2L2(‖Y1Z‖2Bα
4,∞

+ ‖Ỹ1Z‖2Bα
4,∞

+ 1) +
1

4
‖∇u‖2L2 ,

(4.5)

where CS is a constant changing from line to line and we used Lemma 2.3 in the first
inequality and Lemmas 2.1 and 2.4 to deduce that

‖u2‖B−α
4
3 ,1

≤ CS‖�su2‖
L

4
3

≤ CS‖�su‖L2‖u‖L4 ≤ CS‖� 1
2 u‖2L2 , (4.6)
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for 1
2 > s > −α in the second inequality and we used Lemma 2.4 in the third inequality

and Young’s inequality in the last inequality. For the second term we have

3a1|〈Y1 : Z2 : −Ỹ1 : Z2 :, u〉| ≤ CS‖u2‖B−α
1,1

‖ : Z2 : ‖α

≤ CS‖u‖L2(‖∇u‖L2 + ‖u‖L2)‖ : Z2 : ‖α

≤ CS‖u‖2L2(‖ : Z2 : ‖2α + 1) +
1

4
‖∇u‖2L2 ,

(4.7)

where we used Lemma 2.4 in the first inequality, Lemma 2.1 and (4.6) to deduce that

‖u2‖B−α
1,1

≤ ‖u2‖B−α
4
3 ,1

≤ CS‖� 1
2 u‖2L2 ,

for 1
2 > s > −α, q > 1, 1

q = 1
q1

+ 1
q2

, q2 < 4, 2
q1

− s > 1
2 in the second inequality and

we used Young’s inequality in the last inequality.
For the last term we have

|a2〈Y1 − Ỹ1, u〉| ≤ C‖u‖2L2 . (4.8)

Combining (4.4)-(4.8) we obtain

1

2

d

dt
‖u‖2L2 + λ‖u‖2L2

≤ ‖u‖2L2CS[‖Y1Z‖2Bα
4,∞

+ ‖Ỹ1Z‖2Bα
4,∞

+ ‖ : Z2 : ‖2α + 1] := ‖u‖2L2 L .

Then Gronwall’s inequality yields that

‖u(t)‖2L2 ≤ ‖u(1)‖2L2 exp
∫ t

1
2(−λ + L(s))ds.

Here we use Gronwall’s inequality starting from t = 1 instead of t = 0 since u(0) is not
in L2.

Recall that for γ, K > 0, EK ,γ has been defined in (3.14). By Lemma 3.6 we know
that for every γ > 0 there exists K > 0, such that P(EK ,γ ) > 0. In the following we
estimate each term in L on EK ,γ with γ > 0 to be determined later: We have that on
EK ,γ

∫ t

1
‖Y1Z‖2Bα

4,∞
ds

≤ CS

∫ t

1
‖Y1‖2Bβ

4,∞
‖Z‖2αds

≤ CS

∫ t

1
(‖∇Y1‖2β0L2 ‖Y1‖2(1−β0)

L2 + ‖Y1‖2L2)‖Z‖2αds

≤ CS[(
∫ t

1
‖∇Y1‖2β0 p1

L2 ds)
1
p1

(∫ t

1
‖Y1‖2(1−β0)p2

L2 ds

) 1
p2

(∫ t

1
‖Z‖2p3

α ds

) 1
p3

+ (

∫ t

1
‖Y1‖4L2ds)

1
2

(∫ t

1
‖Z‖4αds

) 1
2 ], (4.9)
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where 1
p1
+ 1

p2
+ 1

p3
= 1, pi > 1, i = 1, 2, 3, β > −α, β0 = β+ 1

2 +ε, ε > 0, 2β0 p1 ≤ 2,
and we used Lemma 2.3 in the first inequality, Lemma 2.1 to deduce that

‖Y1‖Bβ
4,∞

≤ CS‖Y1‖Bβ+1/2
2,∞

≤ CS‖Y1‖Bβ+1/2
2,1

≤ CS‖Y1‖H
β0
2

in the second inequality and Hölder’s inequality in the last inequality. In the following
we estimate each term on the right hand side of (4.9): by Lemma 3.4 we know that for
any even p > 1 we have on EK ,γ with γ ≥ γ (p)

∫ t

1
‖Y1(s)‖p

L p ds ≤ C(p)[
∫ t

1
‖Y (s)‖p

L p ds +
∫ t

1
‖es Ax0‖p

L p ds]

≤ C(p)

∫ t

1
[1 + ‖Z‖γ (p)

α + ‖ : Z2 : ‖γ (p)
α + ‖ : Z3 : ‖γ (p)

α ]ds

+ C(‖x0‖α)(1 + t) + C(‖Z‖L1 , ‖x0‖α)

≤ C(p, ‖x0‖α, K )(1 + t),

where we used Lemma 2.2 to control ‖es Ax0‖L p ≤ CSsα‖x0‖α in the second inequality.
Similarly, by Lemma 3.4 we have that on EK ,γ for γ ≥ γ (2)

∫ t

1
‖∇Y1(s)‖2β0 p1

L2 ds ≤ C(p1)[
∫ t

1
‖∇Y (s)‖2L2ds + t +

∫ t

1
‖∇es Ax0‖2β0 p1

L2 ds]

≤ C(p1)
∫ t

1
[1 + ‖x0‖γ (2)

α + ‖Z‖γ (2)
α + ‖ : Z2 : ‖γ (2)

α

+ ‖ : Z3 : ‖γ (2)
α ]ds + t

+ C
∫ t

1
s−(1+ε−α)β0 p1‖x0‖2β0 p1

α ds + C(‖Z‖L1 , ‖x0‖α)

≤C(p1, ‖x0‖α, K )(1 + t),

where we used Young’s inequality and 2β0 p1 ≤ 2 in the first inequality and Lem-
mas 2.1, 2.2 to deduce that ‖∇es Ax0‖L2 ≤ CSs−(1+ε−α)/2‖x0‖α in the second inequality.
Choose

γ ≥ γ (2(1 − β0)p2) ∨ 2p3 ∨ γ (2) ∨ γ (4) ∨ 4 ∨ γ (2(p0 − 1))

for some p0 satisfying p0 > − 2
α
, which will be used later. Combining the above esti-

mates we obtain that on EK ,γ

∫ t

1
‖Y1Z‖2Bα

4,∞
ds ≤ C(p1, p2, ‖x0‖α, K )(1 + t).

Similarly by Lemma 3.5 we have for even p > 1 with γ ≥ γ (p) that on EK ,γ

∫ t

1
‖Ỹ1(s)‖p

L p ds

≤ C(p)[
∫ t

1
‖Ỹ (s)‖p

L p ds +
∫ t

1
‖es Ax1‖p

L p ds]

≤ C(p, ‖x0‖α, ‖x1‖α)

∫ t

1
[1 + ‖Z‖γ (p)

α + ‖ : Z2 : ‖γ (p)
α + ‖ : Z3 : ‖γ (p)

α ]ds

+ C(‖x1‖α)(1 + t) + C(p, λ, ‖Z‖L1 , ‖x0‖α, ‖x1‖α)

≤ C(p, ‖x0‖α, ‖x1‖α, K )t + C(p, λ, K , ‖x0‖α, ‖x1‖α),
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and

∫ t

1
‖∇Ỹ1(s)‖2β0 p1

L2 ds

≤ C(p1, ‖x0‖α, ‖x1‖α)λ

∫ t

1
[1 + ‖Z‖γ (2)

α + ‖ : Z2 : ‖γ (2)
α + ‖ : Z3 : ‖γ (2)

α ]ds

+ C(‖x1‖α)(1 + t) + C(p1, λ, ‖Z‖L1 , ‖x0‖α, ‖x1‖α)

≤ C(p1, ‖x0‖α, ‖x1‖α, K )tλ + C(p1, λ, K , ‖x0‖α, ‖x1‖α).

Then we have on EK ,γ ,

‖u(t)‖2L2 ≤ ‖u(1)‖2L2 exp[
∫ t

1
2(−λ + L(s))ds]

≤ ‖u(1)‖2L2 exp[−λt + C(p1, p2, ‖x0‖α, ‖x1‖α, K )tλ
1
p1

+ C(p1, p2, λ, ‖x0‖α, ‖x1‖α, K )].

By (3.7) and (3.12) we have ‖u(1)‖2
L2 ≤ C(λ, ‖x0‖α, ‖x1‖α, K ) on EK ,γ . Then we

choose λ large enough so that there exist constants C0, C1 > 0 such that

‖u(t)‖2L2 ≤ C0e−C1t → 0 on EK ,γ , as t → ∞.

On the other hand by Lemmas 3.4 and 3.5 we know that for p0 > − 2
α
on EK ,γ and

t > 1

‖Y 2p0−2
1 (t)‖L1 + ‖Ỹ 2p0−2

1 (t)‖L1 ≤ C(p0, ‖x0‖α, ‖x1‖α, K , λ)(1 + t),

which by Hölder’s inequality implies that

‖u(t)‖L p0 ≤ ‖u(t)‖L2(‖Y 2p0−2
1 (t)‖

1
2
L1 + ‖Ỹ 2p0−2

1 (t)‖
1
2
L1) → 0 on EK ,γ , as t → ∞,

Thus Lemma 2.1 yields that

‖u(t)‖α → 0 on EK ,γ , as t → ∞.

From the above we also obtain that for fixed K > 0, there exists R > 0 such that
τR = ∞ on EK ,γ . It follows that

�x0,x1(D) ≥ P(EK ,γ ) > 0.

Now by Theorem 4.1 the first result of Theorem 1.1 follows.
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4.0.3. Proof of weak convergence In the following we prove that for fixed x ∈ Cα ,
Pt (x, dy) converges to ν weakly, where Pt (x, dy) denote the distribution of the X (t)
starting from x . We use similar arguments as the proof of [KS16, Theorem 2.7].

By similar argument as the proof of [RZZ15, Theorem 3.10] we have that the solution
X to the Eq. (3.2) is continuous with respect to initial value in Cα , which implies the
Feller property of the semigroup easily.

Now for x ∈ Cα we prove the tightness of {Pn(x, dy), n ≥ 1}. By Lemma 3.6 for
every ε > 0, y ∈ Cα , α < α′ < − 2

p0
for p0 above, we can find a generalized coupling

�ε
x,y ∈ C̃(δxP∞, δyP∞) as above such that

�ε
x,y(D) ≥ 1 − ε/2, �ε

x,y( limn→∞ ‖xn − yn‖α′ = 0) ≥ 1 − ε/2,

and �ε
x,y ◦ �−1

1 = δxP∞, where δxP∞ denote the law of the sequence {X (n)} on Cα∞
starting from x . In fact, �ε

x,y is the law of (X (x), X̂(y)) as before and we choose Eγ,K (ε)

such that P(Eγ,K (ε)) ≥ 1 − ε/2 and λ depends on K (ε), which makes the coupling
dependent on ε.

Define a measure on Cα∞ × Cα∞

�ε(A) =
∫

�ε
x,y(A)ν(dy), A ∈ M(Cα∞) × M(Cα∞).

We have
�ε(D) ≥ 1 − ε/2, �ε( lim

n→∞ ‖xn − yn‖α′ = 0) ≥ 1 − ε/2. (4.10)

Since �ε ◦ �−1
1 = δxP∞, �ε ◦ �−1

2 � νP∞, we deduce that �ε ∈ C̃(δxP∞, νP∞).
Moreover we have for ε > 0 there exists δ > 0 such that

�ε(yn ∈ K c
0) ≤ ε/3, n ≥ 1, (4.11)

if a compact set K0 ⊂ Cα is chosen such that ν(K0) ≥ 1 − δ.

Since the embedding Cα′ ⊂ Cα is compact and by [RZZ15, Lemma 3.1] we have
that for every k ∈ N,

∫ ‖φ‖k
Cα′ ν(dφ) < ∞, we can choose C large enough such that for

compact sets K1 := {‖ · ‖α′ ≤ C}, K2 := {‖ · ‖α′ ≤ C + 1}
ν(K2) ≥ ν(K1) ≥ 1 − δ.

By (4.10)we know that there exists D1 such that�ε(Dc
1) ≤ 2ε

3 and ‖xn−yn‖α′ converges
to 0 uniformly on D1. For n large enough, we have

�ε(xn ∈ K c
2) ≤ �ε({xn ∈ K c

2} ∩ D1) + �ε(Dc
1) ≤ �ε(yn ∈ K c

1) + �ε(Dc
1) ≤ ε,

where we used (4.10), (4.11) in the last inequality. Since �ε ◦ �−1
1 = δxP∞ we deduce

the tightness of {Pn(x, ·), n ≥ 1}.
In the following we prove the weak convergence: If we assume that Pn(x, ·) does not

weakly converge to ν, there exists some probability measure ν0 �= ν and a subsequence
Pmk (x, ·) converges to ν0 weakly. Fix a bounded Lipschitz continuous function f :
Cα → R such that

∫
f dν0 �= ∫

f dν and set Un = 1
n

∑n
k=1 f (xmk ). Now we want to

prove that Un converges to
∫

f dν in probability with respect to δxP∞. For every ε > 0
as above and construct corresponding �ε such that (4.10) holds.
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By [KS16, Corollary 2.6] we have that Un converges to
∫

f dν in probability with
respect to νP∞, which implies that Un converges to

∫
f dν in probability with respect

to �ε ◦ �−1
2 . In fact, for every subsequence {nr } there exists another subsequence {nrl }

such that Unrl
converges to

∫
f dν νP∞-a.s. Since �ε ◦ �−1

2 � νP∞, Unrl
converges

to
∫

f dν �ε ◦ �−1
2 -a.s.

Since f is bounded and Lipschitz continuous, by (4.10) we have

�ε( lim
n→∞ |1

n

n∑

k=1

f (xmk ) − 1

n

n∑

k=1

f (ymk )| = 0) ≥ 1 − ε/2. (4.12)

We have for every ε0 > 0

δxP∞(|Un −
∫

f dν| < ε0)

= �ε(|Un −
∫

f dν| < ε0)

≥ 1 − �ε(|1
n

n∑

k=1

f (xmk ) − 1

n

n∑

k=1

f (ymk )| + |1
n

n∑

k=1

f (ymk ) −
∫

f dν| ≥ ε0)

≥ 1 − �ε(|1
n

n∑

k=1

f (xmk ) − 1

n

n∑

k=1

f (ymk )| ≥ ε0

2
)

− �ε(|1
n

n∑

k=1

f (ymk ) −
∫

f dν| ≥ ε0

2
),

which combined with (4.12) and the fact that Un converges to
∫

f dν in probability with
respect to �ε ◦ �−1

2 implies that

lim
n→∞ δxP∞(|Un −

∫
f dν| < ε0) ≥ 1 − ε.

Since ε is arbitrary we deduce that Un converges to
∫

f dν in probability with respect
to δxP∞.

Moreover, f is bounded, we have that

∫
UndδxP∞ →

∫
f dν.

On the other hand Pmk (x, ·) converges to ν0 weakly, we have

∫
UndδxP∞ = 1

n

n∑

k=1

∫
f (y)Pmk (x, dy) →

∫
f dν0 �=

∫
f dν,

which is a contradiction finishing the proof of the second result.
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Proof of (4.1) and (4.2)
In the following we only have to prove (4.1), (4.2). Let aε = a ∗ ρε. By a similar

argument as in the proof of [RZZ15, Lemma 3.4] we have for p > 1

: Ẑ2 := lim
ε→0

(Ẑ2
ε − cε) in L p(�, C((0,∞); Cα), Q),

: Z2 : +2Za + a2 = lim
ε→0

(Z2
ε + 2Zεaε + a2

ε − cε) in L p(�, C((0,∞); Cα), P).

Since

Z2
ε + 2Zεaε + a2

ε − cε = Ẑ2
ε − cε,

and P ∼ Q, we obtain that (4.1) holds P-a.s. (4.2) can also be proved by taking the
limit as ε → 0 for the following equation

Ẑ3
ε − 3cε Ẑε = Z3

ε + 3Zεa2
ε + 3(Z2

ε − cε)aε + a3
ε − 3cε Zε.

��
In the following we will prove Theorem 1.4. First we introduce a spaceFC∞

b , which
will be used in the proof of Theorem 1.4.

Let E = H−1−ε
2 , E∗ = H1+ε

2 for some ε > 0. We denote their Borel σ -algebras by
B(E),B(E∗) respectively. Define

FC∞
b = {u : u(z) = f (E∗〈l1, z〉E , E∗〈l2, z〉E , . . . , E∗〈lm, z〉E ),

z ∈ E, l1, l2, . . . , lm ∈ E∗, m ∈ N, f ∈ C∞
b (Rm)},

and for u ∈ FC∞
b and l ∈ L2(T2),

∂u

∂l
(z) := d

ds
u(z + sl)|s=0, z ∈ E,

Let Du denote the L2-derivative of u ∈ FC∞
b , i.e. the map from E to L2(T2) such that

〈Du(z), l〉 = ∂u

∂l
(z) for all l ∈ L2(T2), z ∈ E .

Proof of Theorem 1.4. First we prove that ν satisfies (i) and (ii) in Theorem 1.4. (i) is
obvious from [GlJ86, Sect. 8.6]. By [AR91, Theorem 7.11] the logarithmic derivative
of ν along k is

βk = 2〈z, Ak〉 − 2〈a1 : z3 : −a2z, k〉,
for z ∈ E , k ∈ C∞(T2), which implies (ii) by using [AR90, Corollary 4.8].

Let ν0 be the measure satisfying (i), (ii) in Theorem 1.4. From (ii) we calculate the
logarithmic derivative of ν0: For u ∈ FC∞

b , k ∈ C∞(T2)

∫
∂u

∂k
dν0 =

∫
lim
t→0

u(z + tk) − u(z)

t
dν0

= lim
t→0

∫
u(z + tk) − u(z)

t
dν0

= lim
t→0

∫
(a−tk(z) − 1)u(z)

t
dν0

=
∫

lim
t→0

a−tk(z) − 1

t
u(z)dν0,



1088 M. Röckner, R. Zhu, X. Zhu

where in the second equality we used that u ∈ FC∞
b and the dominated convergence

theorem, and in the last equality we used (i) and [GlJ86, Section 8.6] to deduce the
uniform integrability of atk . This implies the logarithmic derivative of ν0 is the same as
that of ν. Hence by [AR91] the diffusion process Xν0 obtained from the Dirichlet form
E0

ν0
also satisfies (1.1) and ν0 is an invariant measure for Xν0 . Here E0

ν0
is the closure of

the pre-Dirichlet form

Eν0(u, v) := 1

2

∫

E
〈Du, Dv〉L2dν0,

defined for u, v ∈ FC∞
b (see [AR91]). Moreover, by (i) we know that Lemma 3.6 in

[RZZ15] also holds for ν0. Furthermore, the same argument as in the proof of [RZZ15,
Theorems 3.9] implies that Xν0 also satisfies the shifted equation (3.2). By the uniqueness
of the solution to (3.2) (see Theorem 3.1), we know that ν0 is also an invariant measure
for the solution to (3.2). By Theorem 1.1 the result follows. ��
Proof of Theorem 1.5.. First we prove that ν satisfies (i) and (ii) in Theorem 1.5. As
mentioned in the proof of Theorem 1.4, (i) is obvious and the logarithmic derivative of
ν along k is

βk = 2〈z, Ak〉 − 2〈a1 : z3 : −a2z, k〉,
for z ∈ E , k ∈ C∞(T2), which implies (ii) by direct calculations.

Let ν0 be the measure satisfying (i), (ii) in Theorem 1.5. From (ii) we calculate the
logarithmic derivative of ν0: We follow the proof of [BR95, Theorem 3.10]: By (ii) we
have

∫
Ludν0 = 0 for u ∈ FC∞

b . Hence for all u, v ∈ FC∞
b

0 =
∫

L(uv)dν0 = 2
∫

uLvdν0 +
∫

〈Du, Dv〉L2dν0,

i.e.,

−
∫

uLvdν0 = 1

2

∫
〈Du, Dv〉L2dν0. (4.13)

Let gn ∈ C∞
b (R), n ∈ N, such that gn(t) = t on [−n, n] and sup{|g′

n(t)| + |g′′
n (t)| : n ∈

N, t ∈ R} < ∞. Let k ∈ C∞(T2). Applying (4.10) to v := gn(k) we can take n → ∞
according to the dominated convergence theorem, and since

L(gn(k)) = g′′
n (k)‖k‖2L2 + g′

n(k)(〈z, Ak〉 − 〈a1 : z3 : −a2z, k〉),
we obtain that

∫
∂u

∂k
dν0 = −

∫
βkudν0.

Then we can conclude that the logarithmic derivative of ν0 along k is the same as that
of ν. Hence by the same proof as that for Theorem 1.4, the result follows. ��
In the following we only prove Corollary 1.7. Corollary 1.8 can be obtained similarly.

Proof of Corollary 1.7. Assume that ν can be written as a convex combination of two
probability measuresμ1 andμ2 inMa . Thenμ1 andμ2 are absolutely continuous w.r.t.
to ν with bounded densities and hence are also absolutely continuous w.r.t. the Gaussian
measure μ with p-integrable densities for some p > 1. By Theorem 1.4 μ1 = μ2 = ν.
So, ν is extreme in the set Ma . ��
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