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Abstract: We show that the Kontsevich integral on n × n matrices (n < ∞) is the
isomonodromic tau function associated to a 2 × 2 Riemann–Hilbert Problem. The ap-
proach allows us to gain control of the analysis of the convergence as n → ∞. By an
appropriate choice of the external source matrix in Kontsevich’s integral, we show that
the limit produces the isomonodromic tau function of a special tronquée solution of the
first Painlevé hierarchy, and we identify the solution in terms of the Stokes’ data of the
associated linear problem. We also show that there are several tau functions that are
analytic in appropriate sectors of the space of parameters and that the formal Witten–
Kontsevich tau function is the asymptotic expansion of each of them in their respective
sectors, thus providing an analytic tool to analyze its nonlinear Stokes’ phenomenon.
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1. Introduction and Results

The Kontsevich matrix integral has been introduced in [18] as a tool to prove the Witten
conjecture, which relates the intersection numbers of the Deligne–Mumford moduli
space to a specific solution of the Korteweg–de Vries hierarchy. This integral is given
by the following expression1

Zn(x; Y ) :=

∫
Hn

dMe
Tr

(
i M

3
3 −YM2+i xM

)

∫
Hn

dMe−Tr (YM2)
, (1.1)

where the integral is over the space Hn of (n × n) Hermitian matrices and Y is a diag-
onal matrix whose entries yk, k = 1, . . . , n satisfy the condition Re yk > 0 (to ensure
convergence); the parameter x was absent in the original formulation and it is added
here for later convenience. Kontsevich proved that the function Zn(0; Y ) is a ratio of the
Wronskian of Airy functions and the Vandermonde determinant of the eigenvalues of Y :

Zn(x; Y ) = 2nπ
n
2 e

2
3 Tr Y

3+xTr Y
det

[
Ai( j−1)(y2k + x)

]
k, j≤n

∏n
j=1(y j )

1
2∏

j<k(y j − yk)
, Re y j > 0.

(1.2)

(See Appendix B for a simple proof). A closely related model is the external source
matrix model, with a probability measure of the form

dμ(M) ∝ eTr (V (M)+�M)dM, (1.3)

where � = diag(λ1, . . . , λn), where, in this context, the function V (x) is a real–valued
scalar function. If one considers it as a random matrix model for the eigenvalues of
M then the usual approach of orthogonal polynomials [10] needs to be generalized to
multi-orthogonal polynomials. Then the familiar 2×2 Riemann–Hilbert Problem for the
orthogonal polynomials trades places with a different Riemann Hilbert Problem of size
r×r , where r is the number of distinct eigenvalues of the matrix Y and the orthogonality
is replaced by multiple orthogonality [2]. In general (except for special cases [8]), the
case with n distinct eigenvalues leads naturally to a Riemann–Hilbert Problem of size
n + 1. Our goals are however different: we are interested in the integral (1.1) itself and
to study rigorously its limit as n → ∞ and its convergence to particular tau functions
of the first Painlevé hierarchy.

The Eq. (1.2) is the key step to prove that the Kontsevich integral is a tau function
(in the formal sense of Sato [22]) for the KdV hierarchy, where the eigenvalues yk plays
the role of Miwa variables (see Eq. (1.32)). The first goal of this paper is to identify the
Kontsevich integral with another type of tau function, of the type introduced by Jimbo,
Miwa and Ueno [16,17] in the study of isomonodromic deformations of linear ODEs;
the so called isomonodromic tau function.

1 We normalize the variables of integration differently from [18]. See Remark 2.2 for the precise compar-
ison.
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Our approach is conceptually equivalent to the following: consider the “bare system”

d

dλ
�0(λ; x) =

[
0 −i

i(λ + x) 0

]
�0(λ; x)

d

dx
�0(λ; x) =

[
0 −i

i(λ + x) 0

]
�0(λ; x). (1.4)

A fundamental matrix joint solution of (1.4) (up to right multiplication by an invert-
ible matrix) can be written explicitly in terms of Airy functions (Sect. 3.1). We then
proceed with a “dressing”, namely, a sequence of n discrete Schlesinger transformations
(in the sense of [16]) in which the monodromy data (Stokes’ matrices) are preserved but
we allow�n to have n poles at the points {λ1, . . . , λn} := �λwith λk = y2k , k = 1, . . . , n.
The result of this operation is a system of partial differential equations for the unknown
matrix valued function �n of the form

∂

∂λ
�n(λ; x, �λ) = A(λ; x, �λ)�n(λ; x, �λ) (1.5)

∂

∂x
�n(λ; x, �λ) = U (λ; x, �λ)�n(λ; x, �λ) (1.6)

∂

∂λk
�n(λ; x, �λ) = − Ak(x, �λ)

λ − λk
�n(λ; x, �λ) (1.7)

where the matrices A,U have the form

A(λ; x, �λ) = iσ+ − i

(
λ +

x

2
− da(n)(x; �λ)

dx

)
σ− +

n∑
j=1

A j (x; �λ)

λ − λ j
, (1.8)

U (λ; x, �λ) = iσ+ − i

(
λ − 2

da(n)(x; �λ)

dx

)
σ−. (1.9)

The isomonodromic approach of [16,17] proceeds as follows; one imposes the com-
patibility of the Eqs. (1.5) (1.6) (1.7), namely, that there exists a simultaneous solution
�n(λ; x, �λ) of them. This requirement implies differential equations that determine the
dependence on x, λ1, . . . , λn of the matrices A,U, Ak appearing in the equations. The
ensuing equations are usually referred to as “zero curvature equations” and take the
following form

∂x A − ∂λU + [A,U ] ≡ 0 ,
∂λk A j

λ − λ j
− ∂λ j Ak

λ − λ j
+

[
A j

λ − λ j
,

Ak

λ − λk

]
≡ 0

∂λ

Ak

λ − λk
− ∂λk A +

[
Ak

λ − λk
, A

]
≡ 0,

∂x Ak

λ − λk
− ∂λkU +

[
Ak

λ − λk
,U

]
≡ 0. (1.10)

Vice versa, for any collection of matrices A,U, Ak satisfying (1.10) there exists a joint
solution�n of Eqs. (1.5, 1.6, 1.7). Since the dependence on λ of A is rational, the funda-
mental solution�n of (1.5) (normalized in someway that is not essential to specify now)
is not necessarily single-valued: the analytic continuation of�n along a non-contractible
contour γ in C\{λ1, . . . , λn} yields a new matrix that solves the same ODE and hence
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it is related as �n �→ �nMγ . The matrix Mγ depends only on the homotopy class
and is called “monodromy matrix” associated to γ : the collection of these matrices,
for all homotopy classes, provides an (anti)-representation of the fundamental group of
C\{λ1, . . . , λn}. In addition to these matrices one needs to compute the matrix Stokes’
multipliers (we refer to the introduction of [17] for a recall of this notion for the inter-
ested reader) and the collection of monodromy matrices and Stokes’ multiplier is the
“generalized” monodromy data: it is important to recall that these monodromy data are
independent of x, λ1, . . . , λn precisely as a consequence of (1.10), so that they should
be regarded as integrals of the motions.

In [17] the notion of isomonodromic tau function was then defined as follows; for
any solution of (1.10) (and associated �–function) we can define the “isomonodromic
tau function” τn(x; �λ) by means of

∂λk ln τn(x; �λ) = res
λ=λk

Tr A2dλ ; ∂x ln τn(x; �λ) = a(n)(x; �λ). (1.11)

The results of [17] showed (in a much more general setting) that the Eq. (1.11) form
a compatible set of equations provided that the Eq. (1.10) hold, and hence they can be
integrated to define τn(x; �λ) (which is, however, defined only up to multiplication by
a scalar independent of x, �λ). The τ function depends parametrically on the general-
ized monodromy data (Stokes matrices and monodromy matrices) which replace the
initial value conditions: the case that shall be of interest for us is when the monodromy
representation is trivial and there is only the Stokes’ phenomenon at λ = ∞.

1.1. Results. At this point we can advertise the gist of our first result in the form of the
following Theorem.

Theorem 1.1. Let τn(x; �λ) be the isomonodromic tau function for the isomonodromic
system (1.5, 1.6, 1.7). Then the Kontsevich integral (1.1) is equal to

Zn(x; Y ) = e
x3
12 τn(x; �λ). (1.12)

after the identification yk = √
λk, k = 1, . . . , n.

The formulation of the result in terms of isomonodromic deformation may be more
widely recognizable by the readership, but it is not thewaywewant to set up its proof; the
keen reader may also observe that the isomonodromic problem that we have indicated is
still largely ambiguous because we did not, for example, specify the precise generalized
monodromy data. Moreover, the isomonodromic formulation makes it hard to analyze
the situation when the size of the matrix integral in (1.1) (the number of poles in (1.5))
tends to infinity, which is our second main motivation to be discussed later on.

To remove all these ambiguities we will now reformulate the isomonodromic system
(1.5, 1.6, 1.7) directly in terms of a suitable Riemann–Hilbert Problem, thus displaying
explicitly its monodromy data. This reformulation allows us to handle rigorously a limit
as n → ∞. For technical reasons that should become clear later on, we shall formulate a
slightly more general situation where the set λ of n points is partitioned in two (�λ, �μ) =
(λ1, . . . , λn1, μ1, . . . , μn2) (n = n1 +n2). Associated to this data we define the function

dn(λ) :=
n1∏
j=1

√
μ j +

√
λ

√
μ j − √

λ

n2∏
j=1

√
λ j − √

λ√
λ j +

√
λ

. (1.13)
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Riemann-Hilbert Problem 1.2. Let 
 be the union of oriented rays shown in Fig. 3.
Find a 2 × 2 matrix valued analytic function �n = �n(λ; �λ, �μ) such that:

– �n is locally bounded everywhere in C, and analytic in C\
.
– It admits continuous boundary values �n,± on each ray and they satisfy the jump

conditions

�n(λ)+ = �n(λ)−Mn(λ) , λ ∈ 
, (1.14)

where the matrix Mn is piecewise defined by

Mn(λ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + dn(λ)e− 4
3λ

3
2 −2xλ

1
2
σ+ λ ∈ �0 := eiθ0R+

1 + 1
dn(λ)

e
4
3λ

3
2 +2xλ

1
2
σ− λ ∈ �± := eiθ±R+

iσ2 λ ∈ R−.

(1.15)

– Near λ = ∞, in each sector, it satisfies the following asymptotic expansion

�n(λ) = λ− σ3
4

1 + iσ1√
2

(
1 +

a(n)(x; �λ, �μ)√
λ

σ3 +O(λ−1)

)
. (1.16)

It is implied that the rays can be slightly deformed with respect to Fig. 3 so that none
of the poles of dn(λ) lie on �0 and none of the poles of d−1

n (λ) lie on �±. As a matter
of fact the problem can be posed on arbitrary (non-intersecting) contours issuing from
the origin and extending to infinity as long as the asymptotic directions at infinity are
the ones indicated.

Remark 1.3 (Gauge arbitrariness). The asymptotic condition (1.16) implies a gauge fix-
ing; indeed we couldmultiply�n on the left by a constantmatrix of the form 1+cσ−, and
this would not change the jump conditions. However that coefficient matrix of λ− 1

2 in the
expansion (1.16) would be changed by the addition of a term proportional to σ1. In other

words the requirement that theO(λ− 1
2 ) term is proportional toσ3 is part of the normaliza-

tion condition at infinity (otherwise there would be a one–parameter family of solutions).
It is not hard to prove that the solution, if it exists, is unique under this normalization.

We now explain how the Riemann–Hilbert Problem 1.2 provides the precise (gener-
alized) monodromy data for the isomonodromic approach. The matrix

�n = �n(λ; x, �λ, �μ) := �n(λ)e−ϑ(λ;x)σ3D−1(λ),

ϑ(λ; x) :=
(
2

3
λ

3
2 + x

√
λ

)
(1.17)

D(λ) = D(λ; �λ, �μ)

:=

⎡
⎢⎢⎢⎢⎣

n2∏
j=1

(
√

λ j +
√

λ)

n1∏
j=1

(
√

μ j − √
λ) 0

0
n2∏
j=1

(
√

λ j − √
λ)

n1∏
j=1

(
√

μ j +
√

λ)

⎤
⎥⎥⎥⎥⎦ (1.18)
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satisfies a jump condition on 
 with matrices independent of λ, x, �λ, �μ. It then follows
by standard arguments that it satisfies an overdetermined system of PDEs generalizing
Eqs. (1.5), (1.6), (1.7), namely

∂

∂λ
�n(λ; x, �λ, �μ) = A(λ; x, �λ, �μ)�n(λ; x, �λ, �μ) (1.19)

∂

∂x
�n(λ; x, �λ, �μ) = U (λ; x, �λ, �μ)�n(λ; x, �λ, �μ) (1.20)

∂

∂λk
�n(λ; x, �λ, �μ) = − Ak(x, �λ, �μ)

λ − λk
�n(λ; x, �λ, �μ), k = 1, . . . , n1 (1.21)

∂

∂μk
�n(λ; x, �λ, �μ) = − Bk(x, �λ, �μ)

λ − μk
�n(λ; x, �λ, �μ), k = 1, . . . , n2, (1.22)

where the matrices A,U now have the form

A(λ; x, �λ, �μ) = iσ+ − i

(
λ +

x

2
− da(n)(x; �λ, �μ)

dx

)
σ−

+
n1∑
j=1

A j (x; �λ, �μ)

λ − λ j
+

n2∑
j=1

Bj (x; �λ, �μ)

λ − μ j
, (1.23)

U (λ; x, �λ, �μ) = iσ+ − i

(
λ − 2

da(n)(x; �λ, �μ)

dx

)
σ−. (1.24)

and the function a(n)(x; �λ, �μ) is defined (implicitly) above by the Eq. (1.16).
These equations, together, represent a system of “monodromy preserving” deforma-

tion of the rational ODE (1.19), in the sense of [17].

Remark 1.4. While a general rational connection ∂λ−Awith A as in (1.19) has nontrivial
monodromy around the Fuchsian singularities of (1.5), our particular case corresponds
to a situation where the monodromy is trivial; more specifically, the residue matrices
A j (x; �λ, �μ) and Bk(x; �λ, �μ) have all eigenvalues 0 and ±1, since they were produced
adding zeros and poles of order one in the first or the second column of the jump matrix
Mn in (1.15). Thus the Fuchsian ODE is “resonant” [23]. The no-monodromy condition
is a special constraint that determines the particular solution relevant to our problem.

In this extended case the Jimbo–Miwa–Ueno definition of tau function translates to the
following set of first order differential equations

∂λk ln τn(x; �λ, �μ) = res
λ=λk

Tr A2dλ ∂μk ln τn(x; �λ, �μ) = res
λ=μk

Tr A2dλ

∂x ln τn(x; �λ, �μ) = res
λ=∞Tr (�−1

n ∂λ�n
√

λσ3) = a(n)(x; �λ, �μ) (1.25)

generalizing straightforwardly the formulæ (1.11). Equation (1.25), as it is customary
in the Jimbo–Miwa–Ueno setting, determine the τ function up to a multiplicative factor
that may depend on the monodromy data of the problem. To address this ambiguity, the
definition was generalized in [3] (with a correction in [5]) to one that applies also to
general Riemann–Hilbert Problems:

∂ ln τJMU =
∫




Tr
(
�−1
n �′

n∂MnM
−1
n

) dλ

2iπ
, (1.26)
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where
 = R−∪�0∪�+∪�−. Since the jumponR− in theRiemann–Hilbert Problem is
independent of parameters, the integration in (1.26) extends only on the three rays�0,±.

In this case the two definitions are completely equivalent but we will continue using
the second one. Note that, however, the function τ is only defined up to multiplicative
constants. In the cases where explicit integration of the above equation is possible, the
integration constant will be tacitly set to zero, without further comment.

Extension of the Kontsevich matrix integral to arbitrary sectors. The right side of
(1.2), can be extended to an analytic function in the left planes of the variables because,

up to the factor
∏

(y j )
1
2 , the Airy functions are entire functions and the ratio in (1.2)

is well defined on the “diagonal” sets {y j = yk, j, k = 1, . . . , n}; however we now
contend that we need to define it differently. To explain the rationale we remind the
reader that the interpretation of Zn(x; Y ) as a generating function requires that it ad-
mits a regular2 asymptotic expansion as y j → ∞. Using the well-known asymptotic
expansion of the Airy function (Ai) in the sector | arg λ| < π we see that

Ai(λ) = e− 2
3λ

3
2

2
√

πλ
1
4

(1 +O(λ− 3
2 )) ⇒ e

2
3 y

3+xyAi(y2 + x)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e
4
3 y

3+2xy

2
√

π
√
y
(1 +O(y−3)) arg y ∈ (

π
2 , 3π

2

)

1

2
√

π
√
y
(1 +O(y−3)) arg y ∈ (−π

2 , π
2

)

where we have used that (y2)
3
2 = −y3 if Re y ≤ 0 (and we use the principal roots).

Therefore (1.2), as written, cannot possibly admit a regular asymptotic expansion if
y j → ∞ in the sector Re y j ≤ 0 for some j .

The reader familiar with the Stokes’ phenomenon of the Airy function will see that
the way to recover a regular expansion in the left half plane is to use either Ai(ω±1y2)
instead. To this end we introduce the following notation

Aiν(λ) := Ai(ωνλ) , ω := e
2iπ
3 , ν = 0, 1, 2. (1.27)

The functions Aiν are solutions of the Airy equation and satisfy Ai0 +ωAi1 +ω2Ai2 ≡ 0

and the functions
√
ye

2
3 y

3
Aiν(y2) admit a regular expansion in inverse integer powers

(without exponential terms) as |y| → ∞ within the following sectors:

S0=
{
arg(y)∈(−π

2 , π
2

)} ; S1=
{
arg(y)∈(π

6 , 7π
6

)} ; S2=
{
arg(y)∈

(
5π
6 , 11π

6

)}

.
(1.28)

Definition 1.5. For any partition of the set Y of the eigenvalues of Y into three disjoint
setsY(s), s = 0, 1, 2 of respective cardinality n0, n1, n2 (n = n0 +n1 +n2), we consider
the following determinant which we call generalized Kontsevich integral

2 Here “regular” means that it is a (formal) series in inverse powers of the y′
j s, without exponential factors.
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Zn(x;Y(0),Y(1),Y(2))

= (−ω)n1−n2(2
√

π)n
e
2
3 Tr Y

3+xTr Y ∏n
j=1(y j )

1
2∏

j<k(y j − yk)

det

⎡
⎢⎢⎢⎢⎢⎣

[
Ai(k−1)

0 (y2j + x)
]

y j∈Y(0)

1≤k≤n[
Ai(k−1)

1 (y2j + x)
]

y j∈Y(1)

1≤k≤n[
Ai(k−1)

2 (y2j + x)
]

y j∈Y(2)

1≤k≤n

⎤
⎥⎥⎥⎥⎥⎦

. (1.29)

The generalized Kontsevich integrals (1.29) reduce to (1.2) if Y(0) = Y,Y(1) = ∅ =
Y(2) and hence Theorem 1.1 is a special case of the theorem below.

Theorem 1.6. [1] The function Zn(x;Y(0),Y(1),Y(2)) (1.29) and the isomon-
odromic tau function τn defined by (1.25) and associated to the Riemann–Hilbert
Problem 1.2 are related by

Zn(x;Y(0),Y(1),Y(2)) = e
x3
12 τn(x;Y(0),Y(1),Y(2)), (1.30)

with the identification yi = √
λi if Re(yi ) > 0 and y j = −√

μ j if Re(y j ) ≤ 0,
all roots principal.

[2] The expression (1.29) admits a regular asymptotic expansion if the variables
y j ’s tend to infinity provided that Y(ν) ⊂ Sν with the sectors Sν defined in (1.28)

[3] This asymptotic expansion is independent of the assignment of the variables to
the different groups Y(ν) or Y (̃ν) if they belong to the overlap of the sectors Sν ∩Sν̃ .

The points [2], [3] of Theorem 1.6 follow simply from the fact that e
2
3 y

3+xyAiν,̃ν(y2 +
x) have the same regular asymptotic expansion if |y| → ∞ and y ∈ Sν ∩ Sν̃ . Indeed,
the analysis of the asymptotic behaviour for y → ∞ for the Airy function shows that

e
2
3 y

3
Aiν(y2) admits the same regular (nontrivial) expansion in integer inverse powers of

y’s if and only if y tends to infinity in the corresponding sectors Sν (see [1], 10.4.59).
In particular, if all y j ’s tend to infinity in the right half-plane and we assign them all

to S0, then we get (1.1) and hence this expansion is the formal expansion that generates
the intersection numbers of tautological classes as explained in [18].

Using the alternative but equivalent formula (1.26) we can restate the Theorem 1.6
in the form

Theorem 1.7. The Kontsevich integral Zn(x;Y(0),Y(1),Y(2)) in (1.29) satisfies

∂ ln Zn(x; �λ, �μ) = ∂
x3

12
+ 2

∫
�0

(
�−1
n (λ)�′

n(λ)
)
21

∂dn(λ)e− 4
3λ

3
2 −2xλ

1
2 dλ

2iπ
+

+ 2
∑
±

∫
�±

(
�−1
n (λ)�′

n(λ)
)
12

∂d−1
n (λ)e

4
3λ

3
2 +2xλ

1
2 dλ

2iπ
(1.31)
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where ∂ is the derivative with respect to any parameter x, �λ, �μ. The relationship
between the parameters {y j } and {�λ, �μ} is yi = √

λi if Re(yi ) > 0 and y j = −√
μ j

if Re(y j ) ≤ 0.

For the proof see Sec. 3.3.1.

The limit n → ∞: first Painlevé hierarchy. It was one of the main points of Kont-
sevich’s original work [18] that the integral (1.1) is formally a KdV tau function in the
Miwa variables3

Tk(Y ) := − 2− 2k+1
3

(2k + 1)!!Tr Y
−2k−1. (1.32)

More precisely, in these variables, the function U (x; T ) := ∂2

∂T02
log Zn(x; Y ) satisfies

the KdV hierarchy with the normalization adopted in [24]. This particular solution of
the KdV hierarchy was known by physicists even before the formulation of Witten’s
conjecture and its proof by Kontsevich [18]. In the physics literature, this is referred to
as the partition function of 2D topological gravity (see the references in [12]). It can be
defined as the solution satisfying the initial value condition U (x, 0) = x . As originally
discovered by Douglas [13] using the so–called string equation (see Sect. 2 below, keep-
ing in mind that there the normalization is different fromWitten’s, see Remark 2.2), the
Witten–Kontsevich solution of the KdV hierarchy satisfies an infinite number of ODE’s
in T0 (or x , which is the same) known as the Painlevé I hierarchy, and where the higher
Ti ’s play the role of parameters. Indeed this is very close to the procedure of Flaschka
and Newell [14] who deduce the Painlevé II hierarchy as a self–similar reduction of the
modified KdV one. To see briefly how it works, recall that, in theWitten’s normalization,
the equations of the KdV hierarchy are written as

∂U

∂Ti
= ∂Ri+1

∂T0
, i ≥ 0, (1.33)

where the Ri are differential polynomials in U (T0) defined by the recursion

∂Rk+1

∂T0
= 1

2k + 1

(
∂U

∂T0
+ 2U

∂

∂T0
+
1

4

∂3

∂T 3
0

)
Rk; R1(U ) = U. (1.34)

Besides these equations, the function F(x; T ) := log Zn(x; Y ) satisfies also the first
Virasoro constraint (which can be deduced as a consequence of the fact that Zn(x; Y )

is a matrix integral)

∂F

∂T0
= T 2

0

2
+

∞∑
i=0

Ti+1
∂F

∂Ti
. (1.35)

Differentiating once (1.35) with respect to T0 and substituting the integrated version of
(1.33) (integration constants are seen to be equal to zero) one obtains the set of ODE’s
in T0, depending on the parameters {Ti },

T0 + (T1 − 1)U +
∑
i≥1

Ti+1Ri+1 = 0. (1.36)

3 The factor 2− 2k+1
3 stems from our normalization, see Remark 2.2.
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More precisely the N -th member of the Painlevé I hierarchy is obtained by putting
Tj = 0 when j ≥ N + 1 and it is an ODE in x = T0 depending parametrically on
T1, . . . , TN (more details are recalled in Sect. 2). Making sense of the formal statement
“the Kontsevich matrix model Zn(x; Y ) satisfies the Painlevé I hierarchy”, requires a
limit n → ∞ because, for fixed n, the variables Tj are not even independent. This leaves
open the question as to what kind of convergence we should expect. Also, Zn(x; Y ) is
usually treated as a formal series, while it would be interesting to analyze the analytic
properties of these solutions of the hierarchy. Thus the issue becomes:

Question 1.8. How to choose a sequence Y = Yn of variables Yn =
{
y(n)
1 , . . . , y(n)

n

}
and an appropriate partition into three subsets in such a way that generalized Kontse-
vich integral (1.29) converges to a tau function of the N-th member of the first Painlevé
hierarchy? Which particular solution does it converge to and in which domain of the
parameters?

To address the question, let r ∈ N and Pr be the r -th Padé approximant to e−z (see
(3.34)), which is a polynomial of degree r . Denote by a1, . . . , ar its zeroes. It is known
[21] that they are all in the region Re z > 0 (see Fig. 7). Fix N ∈ N and set

Y = {y1, . . . , yn} =
{
y : Pr (2t y

2N+1) = 0
}

, n = r(2N + 1). (1.37)

The setY is naturally partitioned into subsets of cardinality r as follows (see Figs. 1 and 2)

Yκ :=
{
e

iπκ
2N+1

(a j

2t

) 1
2N+1

, 1 ≤ j ≤ r

}
; argYk ⊂

(
− π

4N + 2
,

π

4N + 2

)

− arg t

2N + 1
(1.38)

κ = −N , . . . , N − 1, N , (1.39)

where arg(Yk), denotes the set of the arguments of the elements in Yk .
We then address Question 1.8 for the subsequence n = r(2N + 1) and let r → ∞

while keeping N fixed. For a brief review of the first Painlevé hierarchy, its Riemann–
Hilbert formulation and associated tau function we refer the reader to Sect. 2.

Fig. 1. Example with N = 3: the assignment of theYκ ’s to the disjoint subsetsY(0,1,2) indicated in the figure
corresponds to k+ = 1, k0 = 0, k− = −1
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Fig. 2. Example with N = 4; the assignment of theYκ ’s to the disjoint subsetsY(0,1,2) indicated in the figure
corresponds to k+ = 1, k0 = 0, k− = −1

Theorem 1.9. Fix N ∈ N. Partition the set of indices κ (with−N ≤ κ ≤ N modulo
2N + 1) into three consecutive disjoint groups such that the corresponding subsets
Yκ ’s (1.38) belong to the sectorsS0,1,2 (1.28); letY(0,1,2) be their respective unions,
correspondingly. Define k+ ≥ k0 ≥ k−, k+ > k− as follows

• k0 = (number of Yκ ’s in the second quadrant that we assign to Y(2)) - (number
of Yκ ’s in the third quadrant that we assign to Y(1))

• k− = − ⌊ N
2

⌋
+ ( number of Yκ ’s in the first quadrant that we assign to Y(1) );

• k+ = ⌊ N
2

⌋
- ( number of Yκ ’s in the fourth quadrant that we assign to Y(2) );

Then

1. the formula (1.29) converges, with rate of convergenceO(n−∞) as n → ∞, to
the tau function τ(x; t)of the special tronquée solutionof the N-thmemberof the
P I hierarchy defined by the formula (2.6) in terms of the solution of the RHP
3.5 with the chosen (k+, k0, k−). Then the function u(x, t) := 2∂2x ln τ(x; t)
satisfies the nonlinear ODE

(2N + 1)tLN [u(x; t)] + u(x; t) + x = 0. (1.40)

2. All these particular solutions u(x; t) have no poles for |t | sufficiently small
within an open sector of width at least π that contains arg(t) = 0. Within the
common sector where they have no poles they differ, as |t | → 0, by O(|t |∞)

terms. If k0 = 0, then the width of this sector is at least π on either sides of
arg t = 0.

3. The limit at t = 0, fromwithin this common sector, of the derivatives of arbitrary
order equal those of the formal topological solution.

For the proof see Sec. 3.4. Here LN [u] is the Lenard differential polynomial in u(x)
whose definition will be reviewed below in (2.9).

The idea behind the binning of the groups Yκ into the three disjoint subsets Y(0,1,2)

of Theorems 1.6 and 1.9 is as follows; referring to the Figs. 1, 2 we see that some groups
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can only be assigned to one Y(ν) because they belong to only one Sν , while others fall in
the intersection between two different sectors S0,1,2 and can be assigned to either. The
different choices are reflected in the choices of the parameters k+, k0, k− that character-
ize the particular tronquée solution in the Riemann–Hilbert Problem 3.5. The Theorem
1.9 is therefore a first foray in the study of the nonlinear Stokes’ phenomenon for the
Witten–Kontsevich tau function.

Remark 1.10. From the recurrence relation (2.9) we can see that the Lenard polynomials
LN [u] are homogeneous of degree 2N under the rescalingU (X) = α2u(α−1X). Setting

U (X, t) := t
2

2N+1 u(t− 1
2N+1 X, t), we obtain the equation

(2N + 1)LN [U (X; t)] + t−
3

2N+1U (X; t) + X = 0 (1.41)

and this shows that u(x, t) is single-valued on the Riemann surface of t
1

2N+1 . This ex-
plains how it is possible to have no poles in a sector of amplitude 2π or even bigger.

Example 1.11. For N = 2, 3 the Eq. (1.40) reads

N = 2; 5
8
t
(
u′′ + 3u2

)
+ u + x = 0 (1.42)

N = 3; 7

32
t
(
u(4) + 10uu′′ + 5(u′)2 + 10u3

)
+ u + x = 0. (1.43)

The case N = 2 above is, up to the map u(x) = ( 8
5t

) 2
5 U (X)− 4

15t , x = − ( t
8

) 1
5 X− 2

15t
the standard first Painlevé 1 equationU ′′ + 3U 2 = X ; in this case the particular solution
is precisely a tritronquée solution [15].

InTheorem1.9we restrictedourselves to the subsequencen = r(2N+1)onlybecause

of thewaywe constructed the rational approximation of e2tλ
2N+1
2 ; to extend the statement

to the whole sequence one would have to consider the Padé approximants to e2t z
2N+1

directly (of which, the polynomials Pr (2t z2N+1) are a subsequence). More generally, the
full fledged member of the Painlevé hierarchy as in (1.36) would require the analog of
the estimate (3.39) for the location of the zeroes and the estimate of the remainder term

of the general exponential e
∑N

j=1 t2 j+1z
2 j+1

. We regard this issue as a technical one; we
expect that the general phenomenon will be the same we observe in this restricted case.

2. The Riemann–Hilbert Problem for the First Painlevé Hierarchy
and Associated τ function

In order to discuss the various solutions of the first Painlevé hierarchy, we need to review
the relevant Riemann–Hilbert Problem ([7] , page 365). The Riemann–Hilbert Problem
of the N -th member of the first Painlevé hierarchy is constructed as follows; define the
phase function

ϑ(λ) := t2N+1λ
2N+1
2 +

N−1∑
j=0

t2 j+1λ
2 j+1
2 , t1 := x . (2.1)

and let �ν be the rays arg(λ) − 2 arg(t)
2N+1 = 2πν

2N+1 ,−N ≤ ν ≤ N .
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Riemann-Hilbert Problem 2.1. (First Painlevé hierarchy) Find a 2 × 2 matrix �(λ),
locally bounded everywhere in C, analytic away from the rays �ν (oriented towards
infinity) and R− (oriented towards the origin) and such that

– it admits non-tangential boundary values at the points of the rays and they satisfy

�+(λ) = �−e−ϑ(λ)σ3 Sνe
ϑ(λ)σ3 , λ ∈ �ν , �+(λ) = �−(λ)iσ2, λ ∈ R−

(2.2)

with

Sν =

⎧⎪⎪⎨
⎪⎪⎩
S2 j =

[
1 s2 j
0 1

]
ν = 2 j

S2 j+1 =
[

1 0
s2 j+1 1

]
ν = 2 j + 1.

, ν = −N . . . , N , (2.3)

and such that the 2N +2 parameters s−N , . . . sN are subject only to the nomonodromy
condition

S−N · · · S0 · · · SN = iσ2. (2.4)

– Near λ = ∞ the solution has the same sectorial asymptotic expansion in each sector,
normalized by

�(λ; t) = λ− σ3
4

1 + iσ1√
2

(
1 + a(t)

σ3√
λ
+O(λ−1)

)
. (2.5)

The connection with the equations of the hierarchy arises as follows. The tau function
of a solution corresponding to the above data is defined in [17] as

∂t j ln τP1N (t) = − res
λ=∞Tr

(
λ

2 j+1
2 �−1(λ; t)�′(λ; t)σ3

)
dλ, (2.6)

where the residue is to be intended as a formal one (the formal series in the residue turns
out to have only integer powers of λ and the residue is the coefficient of the power λ−1

of the expression in the bracket). The function

u(x, t3, t5, . . . , t2N+1) := 2∂xa(x, t3, t5, . . . , t2N+1)

= 2∂2x ln τP1N ((x, t3, t5, . . . , t2N+1) (2.7)

satisfies the following ODE in x = t1, depending parametrically on t3, . . . , t2N+1:

N∑
k=1

(2k + 1)t2k+1Lk[u] + x = 0. (2.8)

Here Lk[u] are the Lenard-Magri differential polynomials defined [11] by the recursion
relations:

∂

∂x
Ln+1[u] =

(
1

4

∂3

∂x3
+ u(x)

∂

∂x
+
1

2
ux (x)

)
Ln[u], L0[u] = 1, Ln[0] = 0 (2.9)

The Stokes’ parameters �s = (s−N , . . . , sN ) (subject to (2.4)) parametrize the solution
space of (2.8).

In addition to the ODE (2.8) above, u satisfies also

∂u

∂t2 j+1
= 2

∂

∂x
L j+1[u], j ≤ N ; u = u(t), t = (t1, t3, t5, . . .). (2.10)
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Remark 2.2. The Eqs. (2.8), (2.9) and (2.10), up to a rescaling and a shift of T1 = t3,
correspond to (1.36), (1.34), (1.33). The source of the difference comes from the nor-
malization we have used for the matrix integration variable in (1.1); indeed Kontsevich
writes the integrand as exp

[ i
6Tr X

3 − 1
2Tr X�X

]
, from which we conclude that the

relationship between our M,Y and his X,� is

M = 2− 1
3 X, Y = 2− 1

3 �. (2.11)

This translates to the following scaling relationship for the times (comparing our phase
function (2.1) with the phase function in [6], Eq. (1.9), which yields the correct normal-
izations)

t2 j+1 = −2
2 j+1
3 (Tj − δ j,1)

(2 j + 1)!! . (2.12)

In particular our t1 = x corresponds to −2
1
3 T0.

Remark 2.3. The Eq. (2.8) is the statement that the tau function of the solution to RHP
(2.1) is the reduction of a Korteweg–de Vries (KdV) tau function satisfying the string
equation [P, L] = 1,where L := ∂2

∂x2
+2u(x, t1, . . . , tk) is the Lax operator for the KdV

hierarchy and P := ∑N
k=1(2k + 1)t2k+1L

2k+1
2

+ , see for instance [19]. The formulation of
the Painlevé I hierarchy in terms of the string equation is originally due to Douglas [13].

Example 2.4. The case N = 2 corresponds to the first Painlevé equation and the special
solution is the famous tri-tronquée solution [15]. Also, for all even N these are the so-
lutions (conjecturally) relevant to the study of the “higher order” critical behavior of the
largest eigenvalue in certain random matrix models [7].

We shall need also the formula for the higher derivatives of ln τP1N (t); this formula is
explained in [6] in the more general context of the KdV hierarchy (of which the Painlevé
I hierarchy is a reduction).

∂k

∂t2 j1+1 . . . ∂t2 jk+1
ln τP1N (t) =

k∏
j=1

res
λ�=∞ λ

j�
� Fk(λ1, . . . , λk) (2.13)

Fk(λ1, . . . , λk) = −1

k

∑
ρ∈Sk

Tr
(
�(λr1) · · · �(λρk )

)
∏k

j=1(λρ j − λρ j+1)

− δk,2
λ1 + λ2

(λ1 − λ2)2
, k ≥ 2. (2.14)

�(λ) = �(λ; t) = �(λ; t)σ3�−1(λ; t). (2.15)

where Sk is the permutation group of k elements and in the formula we convene that
ρk+1 ≡ ρ1.

3. Kontsevich’s Integral as Isomonodromic Tau Function

This section contains the proof of the main Theorems 1.6 and 1.9, presented respectively
in the Sects. 3.3 and 3.4.
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Fig. 3. The jumps of the Airy Riemann-Hilbert Problem

3.1. The bare solution: Airy RHP. The RHP (1.2) for d0 ≡ 1 corresponds to an explic-
itly solvable problem involving Airy functions: we call it the bare solution. This is also
the solution of the Painlevé hierarchy (2.1) with N = 1 and t3 = 2

3 .

Definition 3.1. Let ω := e2iπ/3 and A(ζ ) be the matrix satisfying the jumps indicated
in Fig. 3 and such that

A(ζ ) = √
2πe− π i

12 ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
Ai(ζ ) Ai(ω2ζ )

Ai′(ζ ) ω2Ai′(ω2ζ )

]
e

−iπ
6 σ3 , for ζ ∈ I ,

[ −ωAi(ωζ ) Ai(ω2ζ )

−ω2Ai′(ωζ ) ω2Ai′(ω2ζ )

]
e

−iπ
6 σ3 , for ζ ∈ I I ,

[−ω2Ai(ω2ζ ) −ω2Ai(ωζ )

−ωAi′(ω2ζ ) −Ai′(ωζ )

]
e

−iπ
6 σ3 , for ζ ∈ I I I ,

[
Ai(ζ ) −ω2Ai(ωζ )

Ai′(ζ ) −Ai′(ωζ )

]
e

−iπ
6 σ3 , for ζ ∈ I V ,

(3.1)

where the four regions are separated by the rays eiθ0,±R+ and R− with the angles θ0,±
in the ranges

θ0 ∈
(
−π

3
,
π

3

)
, θ1 ∈

(π

3
, π

)
, θ−1 ∈

(
−π,−π

3

)
. (3.2)

The matrix M has the same asymptotic expansion in each of the sectors I–IV (see,
e.g. [9]);

A(ζ )∼ e−
iπ
4 σ3ζ

− σ3
4

1 + iσ1√
2

⎡
⎣1 +

∞∑
k=1

1

2

(
2

3
ζ 3/2

)−k[
(−1)k (uk + rk ) i(uk − rk )

−i(−1)k (uk − rk ) uk + rk

]⎤
⎦ e−

2
3 ζ3/2σ3 ,

(3.3)

uk = �(3k + 1/2)

54kk!�(k + 1/2)
, rk = − 6k + 1

6k − 1
uk, for k ≥ 1. (3.4)
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The matrix A solves the Airy equation (in matrix form)

d

dζ
A(ζ ) =

[
0 1
ζ 0

]
A(ζ ). (3.5)

Now we define

�0(λ; x) := e− iπ
4 σ3A(λ + x)e

(
2
3λ

3
2 +x

√
λ

)
σ3

, (3.6)

�0(λ; x) =: e− iπ
4 σ3A(λ + x) = �0(λ; x)e−

(
2
3λ

3
2 +x

√
λ

)
σ3

. (3.7)

The matrix �0 provides the explicit solution of the Riemann–Hilbert Problem 1.2 for
n = 0. Using the property (3.3) one can verify directly that

�0(λ; x) = λ
−σ3
4

1 + iσ1√
2

(
1 − x2

4

σ3√
λ

− x

4λ
σ2 +O(λ− 3

2 )

)
as λ → ∞.

(3.8)

By construction, A(ζ ) solves a Riemann–Hilbert Problem with jumps indicated in
the left pane of Fig. 3. Consequently one can check that �0(λ; x) solves the Riemann–
Hilbert Problem 1.2 for n = 0. The only point worth remarking is that the jump contours
of A should be preemptively translated by x so that the jump contours of �0 coincide
exactly with rays issuing from the origin.

The initial tau function. The isomonodromic tau function of the RHP for n = 0 (which
is a function solely of x) is computed directly from the formula (1.11) (using (3.8))
which yields directly

∂x ln τ0(x) = − x2

4
⇒ τ0(x) = e− x3

12 . (3.9)

It is worth remarking that τ0(x) is nowhere vanishing: this is a signal that the RHP (1.2)
for n = 0 is always solvable.

3.2. The dressing: discrete Schlesinger transformations. The goal of this section is to
determine the change of the following one form on the deformation space t;

�(∂; [M(t)]) :=
∫




Tr
(
�−1
0−(λ; t)�′

0−(λ; t)∂M(λ; t)M−1(λ; t)
) dλ

2iπ
(3.10)

when M(λ; t) is replaced by Mn(λ; t, �λ, �μ) := D−1− (λ)M(λ; t)D+(λ) and D given in
(1.18). Now, in our setting the one form (3.10) is the total differential of the logarithm
of the tau function (see also Eq. (1.26)).
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Theorem 3.2. The effect of the dressing of the jump matrices Mn(λ; t, �λ, �μ) :=
D−1(λ)M(λ; t)D(λ) on the one-form (3.10) is given by

�(∂; [Mn(t)]) − �(∂; [M(t)]) = ∂ ln
(
�(�λ, �μ) detG

)
(3.11)

where �(�λ, �μ) and the n × n matrix G(n = n1 + n2) are given by

�(�λ, �μ) :=
∏n2

j=1 λ
1
4
j

∏n1
j=1 μ

1
4
j∏

j<k≤n2

(
√

λ j − √
λk)

∏
j<k≤n1

(
√

μ j − √
μk)

∏
j≤n2,k≤n1

(
√

λ j +
√

μk)
(3.12)

Gk,� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

res
λ=∞

λ� �−1
2 �eT2�−1

0 (λk)G∞(λ)e((�−1)mod 2)+1

(λ − λk)
1 ≤ k ≤ n2

res
λ=∞

λ� �−1
2 �eT1�−1

0 (μk−n2)G∞(λ)e((�−1)mod 2)+1

(λ − μk−n2)
n2 + 1 ≤ k ≤ n1 + n2

(3.13)

G∞(λ) := �0(λ)D(λ)
1 − iσ1√

2
λ

σ3
4

⎧⎨
⎩

λ−k n = 2k[
λ−k−1 0

0 λ−k

]
n = 2k + 1.

(3.14)

Here ∂ denotes any derivatives with respect to t together with the variables �λ, �μ.

A proof by induction can be extracted from [16] but we will provide a different one
which relies upon prior work in [4] in Appendix A. We point out that the setting of
Theorem 3.2 is precisely the one relevant to the Riemann–Hilbert Problem 1.2, where
M(λ; t) is the jump matrix of the Airy Riemann–Hilbert Problem for (3.6).

3.3. Proof of the main theorems. We now return to the original setting and �0 as given
in (3.6); in this case we can further simplify detG and see that it provides the main
ingredient for the Witten–Kontsevich tau integral (1.1) and extensions (1.29).

Proposition 3.3. The following formula holds

detG ∝ e
2
3

(∑
λ
3
2
j −∑

μ
3
2
k

)
+x

(∑
j λ

1
2
j −∑

μ
1
2
k

)

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
Ai(k−1)

0 (λ j + x)
]

1≤k≤n
λ j∈I∪I V[

Ai(k−1)
1 (λ j + x)

]
1≤k≤n
λ j∈II[

Ai(k−1)
1 (μ j + x)

]
1≤k≤n

μ j∈III∪IV[
Ai(k−1)

2 (λ j + x)
]
1≤k≤n
λ j∈III[

Ai(k−1)
2 (μ j + x)

]
1≤k≤n

μ j∈I∪II

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.15)
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where Ais(λ) = Ai(ωsλ), ω = e
2iπ
3 , and I, II, III, IV denote the regions depicted in

Fig. 3 and the proportionality is up to a constant independent of �λ, �μ.
The proof is an elementary but somewhat lengthy manipulation using the form (3.13)

of the entries of G, the explicit form of the matrix �0 (3.6), column operations and the
differential equation satisfied by the Airy functions. We postpone it to the Appendix C.

3.3.1. Proof of Theorems 1.6, 1.7, 1.1 . We denote λk = y2k , ∀yk ∈ {Re y > 0} and
μ� = y2� , ∀y� ∈ {Re y < 0}. Since the roots we use are all principal, we have

e
2
3λ

3
2
k +xλ

1
2
k = e

2
3 y

3
k +xyk , e− 2

3μ
3
2
� −xμ

1
2
� = e

2
3 y

3
�+xy� . (3.16)

Then the determinant in (3.15) becomes precisely the same as the determinant in (1.29)
when written in terms of the y j ’s, while �(�λ, �μ) reduces to

�(�λ, �μ)
(3.12)= ±

∏n
j=1

√
y j∏

j<k(y j − yk)
(3.17)

up to an inessential sign. We want to apply Theorem 3.2; in this case the jump matrix
Mn depends on �λ, �μ and x only, and �(∂; [Mn]) = ∂ ln τn(x; �λ, �μ),�(∂x ; [M]) =
∂x ln τ0(x) = − x2

4 (see (3.9)). From Theorem 3.2 we obtain

∂ ln
τn(x; �λ, �μ)

τ0(x)
= ∂ ln((detG)�(�λ; �μ))

(1.29)= ∂ ln Zn(x; �λ, �μ). (3.18)

The isomonodromic tau function τn is defined up to a multiplicative constant and there-
fore we can claim (using the expression for τ0(x) in (3.9))

τn(x; �λ, �μ) = e− x3
12 Zn(x; �λ, �μ). (3.19)

The proof is now complete. ��
Remark 3.4. The variables τn depend on, can be denoted as �λ, �μ or by y j = √

λ j , yk =
−√

μk (in the right/left half-planes of the y–plane). Furthermore, since the determinant
in (3.15) is split into blocks depending on the index ν in Aiν , we can equivalently de-
note the dependence as τn(x;Y(0),Y(1),Y(2)). This is the way it was presented in the
statement of Theorem 1.6.

3.4. Approximation of tau functions of the first Painlevé hierarchy: Proof of Theorem
1.9. We start with the following specializations of Riemann–Hilbert Problem 2.1 as
indicated below.

Riemann-Hilbert Problem 3.5. Choose three integers k+, k0, k− ∈ {− ⌊ N−1
2

⌋
, . . . ,⌊ N−1

2

⌋}
with k+ > k−, k+ ≥ k0 ≥ k− and specialize the Riemann–Hilbert Problem
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Fig. 4. The jumps of the Riemann–Hilbert Problem 3.5. In the example N = 11 and the width of each darker
sector is 2π/23. The rays �± must extend to infinity within the sector shaded in both hues, while �0 within
the white sectors. In this example there are five choices for the ray �0 and four for each �±. Each choice
determines a particular solution of the Eq. (1.40) of the P1N hierarchy. In the example above (which is relevant
to the setting of Theorem 1.9), shifting arg t by ±π one of the two dark sectors adjacent to R− disappears
on the second sheet of

√
λ and one of the rays �± is pinched. If we choose �0 as indicated by the lighter

shade, then we can rotate arg t up to a smaller angle than −π because the ray �0 will be forced to move in
the sector S1, but we can still rotate up to π . In general, the reader can convince oneself that the minimum
amplitude of rotation of arg t is indeed π in the positive and/or negative direction, and thus all these solutions
of the hierarchy converge to the Airy parametrix exponentially fast as |t | → 0 and arg(t) in a sector of width
at least π that contains the positive real t-axis

2.1 to the case s2k0 = 1, s2k±±1 = −1. Furthermore set t1 = x, t3 = 2
3 , t2N+1 = t and

all other t j = 0. Explicitly, the jump matrices read (with the rays oriented as in Fig. 4)

M(λ) =

⎧⎪⎪⎨
⎪⎪⎩

1 + e−2ϑ(λ;t,x)σ+ λ ∈ �0 := eiθ0R+

1 + e2ϑ(λ;t,x)σ− λ ∈ �± := eiθ±R+

iσ2 λ ∈ R−

(3.20)

ϑ(λ; t, x) = tλ
2N+1
2 +

2

3
λ

3
2 + xλ

1
2 (3.21)

where the ray �0 = eiθ0R+ is such that Re λ
3
2 > 0 < Re tλ

2N+1
2 , and the two rays

�± = eiθ±R+ are such that Re λ
3
2 < 0 > Re tλ

2N+1
2 (Fig. 4 for example). Namely we

must have (3.2) and

θ0 ∈ J0(k0, t) :=
(
− π

2N + 1
,

π

2N + 1

)
+

4k0π

2N + 1
− 2 arg(t)

2N + 1
, k0 ∈ Z

θ± ∈ J±(k±, t) :=
(
− π

2N + 1
,

π

2N + 1

)
+

(4k± ± 2)π

2N + 1

−2 arg(t)

2N + 1
, k± ∈ Z (3.22)
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Fig. 5. The points μk (red) and λ j (black). N = 6 (left) and N = 5 (right)

Proposition 3.6 [1]. Let�(λ; t, x) be the solution of the Riemann–Hilbert Problem (3.5)
with a choice of integers �k = (k0, k+, k−) such that

J0(k0, 1) ∩
(−π

3
,
π

3

)
�= ∅ J+(k+, 1) ∩

(π

3
, π

)
�= ∅

J−(k−, 1) ∩
(
−π,−π

3

)
�= ∅. (3.23)

Then for x ranging in a compact set the solution � is analytic for t in a sector {|t | <

r, arg(t) ∈ (a, b)} containing arg t = 0, that depends on the choice of �k and has width
at least π . For the case k0 = 0 the sector contains the sector arg(t) ∈ (−π, π).

[2] This solution, for t → 0, converges to the Airy parametrix (3.6) and also its tau func-
tion τP1N (t) defined by (2.6) (with t1 = x, t2N+1 = t and all other t j = 0), converges

to e
x3
12 .

[3] The derivatives of arbitrary order with respect to t2N+1 = t, t1 = x of τP1N (x, t)
also converge as |t | → 0 in the same sector to the derivatives of the topological solution.

Proof. [1] The matrix �0 in Definition 3.1 solves the RHP (1.2) with d0 ≡ 1. The three
rays ωR+ can be rotated to rays � j = eiθ jR+, j = 0,±1 within the range (3.2).

Indeed,within these ranges the jumpmatrices in Fig. 3 are of the form 1+O(|λ|−∞) as

|λ| → ∞ since the function e− 2
3λ

3
2 is decaying along�0 and e

2
3λ

3
2 is decaying along�±.

On the other hand the well-posedness of the Riemann–Hilbert Problem 1.2 for �

requires that the rays satisfy (3.22) so that e−tλ
2N+1
2 is decaying along �0 and etλ

2N+1
2

is decaying along �±, see Fig. 4.
In general there are several possible choices of k0, k± in (3.22) that satisfy both ranges

(3.2), (3.22); for a given choice of rays, the conditions will remain satisfied within a cer-
tain maximal open sector in the t-plane; it should be noted that different choices of
k0,± lead to inequivalent Riemann–Hilbert Problems and solutions of the first Painlevé
hierarchy (see below); in particular the poles of the corresponding Painlevé transcendent
depend on this choice.

Let us assume now that we make one such choice of sector and consider the RHP for
the matrix E with jumps on �0,±1 as follows
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E+(λ; t, x) = E−(λ; t, x)
(

1 + e− 2
3λ

3
2 −x

√
λ

(
e−tλ

2N+1
2 − 1

)
�0(λ; x)σ+�−1

0 (λ; x)
)

,

λ ∈ �0 (3.24)

E+(λ; t, x) = E−(λ; t, x)
(

1 + e
2
3λ

3
2 +x

√
λ

(
etλ

2N+1
2 − 1

)
�0(λ; x)σ−�−1

0 (λ; x)
)

,

λ ∈ �± (3.25)

E(λ; t, x) = 1 +O(λ−1) , λ → ∞. (3.26)

Along the rays in the chosen sector, the matrices �0, �
−1
0 (Airy parametrix) in (3.24),

(3.25) remain bounded, uniformly with respect to x ranging in a compact set. Fur-
thermore, within the chosen sector, we can send |t | → 0 and the jump matrices will
converge to the identity matrix in all L p norms, 1 ≤ p ≤ ∞, uniformly with respect to

x in compact sets: for example on �+ the function e
2
3λ

3
2 +x

√
λ

(
etλ

2N+1
2 − 1

)
belongs to

all L p(�+, |dλ|) because e 2
3λ

3
2 +x

√
λ does, and

(
etλ

2N+1
2 − 1

)
is bounded. Consequently

the matrix E converges to the identity as |t | → 0 in the given sector and has an expansion
near λ = ∞ of the form

E(λ; t, x) = 1 +
1

λ
E1(t, x) +O(λ−2). (3.27)

Most importantly, for |t | sufficiently small, the existence of the solution E (and its
analyticity with respect to the parameters t, x) is guaranteed by standard arguments. By
construction of the jump relations (3.24), (3.25), the matrix E(λ; t, x)�0(λ; x) solves a
Riemann–Hilbert Problemwith the same jumps as�(λ; t, x) but in a different gauge (see
Remark 1.3). By a left multiplication with λ-independent matrix and by the uniqueness
of the solution of the Riemann–Hilbert Problem 1.2, we deduce that

�(λ; t, x) = (1 − (E1(t, x))12σ−) E(λ; t, x)�0(λ; x). (3.28)

The left multiplier is crafted so as to guarantee the same gauge as � at infinity (see
Remark 1.3). We conclude that �(λ; t, x) is analytic in the specified domain. The width
of the sectors is explained by way of example in the caption of Fig. 4.

[2] Since E → 1, we deduce that the tau function for �(λ; t, x) defined by (2.6)
converges to that of �0 as given in (3.9).

[3] By the same argument, using (2.13) we conclude that all derivatives of ln τP1N
converge as |t | → 0 within the common sector, to the same expression (2.13) evaluated
using the Airy parametrix �0. These are [6] precisely the derivatives of the topological
solution of KdV (note that we are using a different normalization of the time t from loc.
cit. but this is inconsequential to our discussion). ��

3.4.1. Equivalence to all orders of different solutions: proof of Theorem 1.9[3]. Propo-
sition 3.6 has already established Theorem 1.9[2] and part of Theorem 1.9[3]. It remains
to show that two solutions of the Riemann–Hilbert Problem 3.5 (and the corresponding
tau functions) with different choices of �k = (k0, k+, k−) differ by exponentially small
terms as |t | → 0 as long as the corresponding sectors appearing in the Proposition 3.6
have non-empty overlap. See Fig. 6 illustrating a typical such setup.
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Fig. 6. Left the jump contours �0,± and �̃0,± (marked in different colors) of two solutions �, �̃ of the RHP
3.5 with different choices of the integers (k0, k+, k−) (specifically, N = 7 and (k+ = 3, k0 = 0, k− = −3)
while (̃k+ = 2, k̃0 = −1, k̃− = −2)). Right the jumps of their ratio E = ��̃−1 after the contour deformation.
On the dashed arcs the jumps cancel each other and hence E is continuous across them

The proof is a simple application of perturbation analysis of Riemann–Hilbert Prob-
lems; the ratio of two solutionswith different choices �k1, �k2 has a jumpwhich approaches
the identity in any L p (1 ≤ p ≤ ∞) at an exponential rate in 1

|t |� , with a power law that
we are going to compute.

We need to analyze the signs of the real part of the phase function ϑ (3.21) as |t | → 0.
Treating the term with t in ϑ as a perturbation, it is clear that for |t | sufficiently small

the signs of Re ϑ(λ; t, x) are dominated by those of f0 = Re ( 23λ
2
3 + x

√
λ) in any fixed

compact set in the λ–plane. Let us fix a bounded domain for x : |x | < K .
We are free to deform the jump contours of the RHP 3.5 as we wish as long as the

asymptotic directions at infinity satisfy the appropriate conditions, we shall deform them
in a way that we explain below.

Contour deformation. We consider t ∈ R+ for simplicity because the steps are valid
in a small sector. For definiteness we only treat �+, with similar considerations in the

remaining cases. Let θ1 := (2k++1)2π
2N+1 , θ2 := (2̃k++1)2π

2N+1 be the bisecants of the sectors
visited by the jumps of the two solutions (refer to Fig. 6) and recall that by assumption
we must have θ1,2 ∈ (π

3 , π). Along the two rays arg λ = θ1,2 we have (here r = |λ|)

Reϑ = −|t | r 2N+1
2 +

2

3
r

3
2 cos

(
3

2
θ j

)
+ Re x

√
λ <

√
r

[
−|t |r N − Q

2

3
r + K

]
(3.29)

where Q = min | cos( 32θ j )| is a positive number because of the condition θ j ∈ (π
3 , π).

Consider the rays γ j given by arg λ = θ j r ≥ r0 = (Q/2)
1

N−1 |t | −1
N−1 ; along these

rays the function eϑ belongs to any L p (1 ≤ p ≤ ∞) and the corresponding norm
decays exponentially as |t | → 0; in fact from (3.29)

sup
λ∈γ

Reϑ(λ) ≤ t
−3

2N−2
Q

N+1/2
N−1

2
1

N−1

(
−1

2
− 2

3
+

K |t | 1
N−1

Q
N

N−1 2
3

2N−2

)

= t
−3

2N−2
Q

N+1/2
N−1

2
1

N−1

(
−7

6
+

K |t | 1
N−1

Q
N

N−1 2
3

2N−2

)
(3.30)
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which clearly tends to −∞ as |t | → 0. Consider now the arc of circle �, joining the
two points r0eiθ1 to r0eiθ2 ; along this arc we have (with ϕ = arg λ);

Re ϑ = −|t | r 2N+1
2 cos

(
2N + 1

2
ϕ

)
+
2

3
r

3
2 cos

(
3

2
ϕ

)
+ Re (x

√
λ)

≤ t
−3

2N−2
Q

N+1/2
N−1

2
1

N−1

(
−1

6
+

K |t | 1
N−1

Q
N

N−1 2
3

2N−2

)
(3.31)

where we have used that cos( 32ϕ) ≤ −Q along the arc. Once more the L p norm of eϑ

along this arc is easily estimated to tend to zero exponentially.

Exponential rate of convergence. Now, referring to Fig. 6 we deform the rays �+, �̃+
as indicated and consider the RHP for the matrix E with jumps only on the union of
the rays γ1,2 and the arc � as shown in the figure and with the jump matrix given
by 1 + eϑ(λ;t,x)�̃(λ; t, x)σ−�̃−1(λ; t, x). We know from Proposition 3.6 that �̃(λ; t, x)
tends to the Airy parametrix as |t | → 0 in a small sector around R+ uniformly with
respect to λ on the Riemann sphere and hence it remains bounded as |t | → 0. The L p

norms of eϑ on the two rays are O
(
e−C̃ |t |− 3

2N−2

)
while the L p norms on the arc �

(whose length grows like |t |− 1
N−1 ), are all bounded byO

(
|t |− 1

N−1 e−C|t |− 3
2N−2

)
, where

C, C̃ are positive constants that follow from the estimates (3.29), (3.31). In total the L p

norm of eϑ along the whole contour are bounded by

∥∥eϑ
∥∥
L p(γ1∪γ2∪�,|dλ|) = O

(
t

−1
N−1 e−C|t |− 3

2N−2

)
, (3.32)

uniformly with respect to 1 ≤ p ≤ ∞. By standard arguments [10] on small norm
Riemann Hilbert Problems, we conclude that E converges to the identity on the Rie-
mann sphere, at the same exponential rate (3.32) Then, by the same argument used in
Proposition 3.6, we conclude that

�(λ; t, x) = (1 − (E1(t, x))12σ−) E(λ; t, x)�̃(λ; x)
(with E1(t, x) similar as in (3.27)) and hence �̃(λ; t, x), �(λ, t, x) differ from each other
by exponentially small terms as |t | → 0 in a small sector around R+. In particular, the
ratio of the corresponding tau functions defined via (2.6) will also tend to unity ex-
ponentially fast as |t | → 0; therefore, the asymptotic expansion of the logarithms of
the two tau functions in powers of t will be identical in the overlapping sector. Since
the estimates are uniform with respect to x in a compact set (we used |x | < K in the
estimates (3.29), (3.31)), the coefficients of these expansions must also be analytic in x
at least in the same domain.

3.4.2. Padé approximation: Proof of Theorem 1.9[1] . The exponential function admits
a Padé approximation of the form

e−z =
r∏
j=1

a j − z

a j + z
+O(z2r+1) = Pr (z)

Pr (−z)
+O(z2r+1). (3.33)
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Fig. 7. The zeroes of Pn(2nz) for n = 70

Fig. 8. The poles of the Padé approximation are within the shaded sectorial annulus

The polynomial Pn is explicitly known4 ([20], p. 433)

Pr (z) =
r∑

k=0

(2r − k)!(−z)k

k!(r − k)! . (3.34)

The location of the zeros Zr := {a j , j = 1, . . . , r}, of Pr (z) (plotted in Fig. 7 by way
of example) is known to belong to the annular sector [21]

2rμ < |a j | < 2r +
4

3
, μ > 0, μe1+μ = 1 (μ � 0.278465...) (3.35)

| arg(a j )| ≤ cos−1(1/r) Re (a j ) > 2μ >
1

2
. (3.36)

Estimate for the remainder. The remainder of the approximation is also known exactly

e−z − Pr (z)

Pr (−z)
= (−1)r+1z2r+1

r !Pr (−z)

∫ 1

0
e−t z(1 − t)r trdt. (3.37)

The estimate (3.35) on the position of zeroes implies that for Re (z) ≥ 0, the minimum
distance from the poles−Zr for | arg(z)| ≤ π

2 −θ0 for some small fixed θ0, is (see Fig. 8)

4 We have normalized the polynomial to be monic.
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dist(z,−Zr ) ≥ 1√
(|z| − 2rμ cos θ0)2 + (2rμ sin θ0)2

≥ 2

|z| + 2rμ sin θ0
. (3.38)

Then we can estimate∣∣∣∣e−z − Pr (z)

Pr (−z)

∣∣∣∣ ≤ 2|z|r
r !(sin θ0)r (2rμ sin θ0 + |z|)r

∫ Re z

0
e−t trdt

≤ 2|z|r
(sin θ0)r (2nμ sin θ0 + |z|)r . (3.39)

Let N ∈ N be fixed. We want to obtain an approximation of e−2tλ
2N+1
2 in a suitable

sector; of course we will use (3.33) replacing z �→ 2tλ
2N+1
2 .

Proof of Theorem 1.9[1]. From (3.39) we have (we set t = t2N+1, n = r(2N + 1) for
brevity)

Pr (2tλ
2N+1
2 )

Pr (−2tλ
2N+1
2 )

− e−tλ
2N+1
2 = O

(
|t |r |λ| r(2N+1)

2

(sin θ0)r ((2nμ sin(θ0))r + |t |r |λ| r(2N+1)
2 )

)
,

arg λ ∈ J0(k, t) :=
(
− π

2N + 1
,

π

2N + 1

)
+
4πk0 − 2 arg(t)

2N + 1
. (3.40)

The estimate above shows that inside the growing disk
∣∣∣tλ 2N+1

2

∣∣∣ ≤ Kr
1
2 (with K =

(4N + 2)(sin2 θ0)) the expression is bounded as follows:
∣∣∣∣∣
Pr (2tλ

2N+1
2 )

Pr (−2tλ
2N+1
2 )

− e−tλ
2N+1
2

∣∣∣∣∣ ≤
{
r− r

2 |λ| ≤ K
2

2N+1 |t | −2
2N+1 r

1
2N+1 , arg(λ) ∈ J0

1 |λ| ≥ K
2

2N+1 |t | −2
2N+1 r

1
2N+1 , arg(λ) ∈ J0.

(3.41)

Let �n(λ; t, x) (n = r(2N + 1)) be the solution of the RHP (1.2) with dn =
Pr (tλ

2N+1
2 )

Pr (−tλ
2N+1
2 )

and let �(λ; t, x) be the solution discussed in Proposition 3.6. Similar esti-

mates hold for Pr (−2tλ
2N+1
2 )

Pr (2tλ
2N+1
2 )

−etλ
2N+1
2 in the sectorsJ± (3.22).We now choose k+, k0, k−

and the corresponding ways �0,±; the tau function τn(z; �λ, �μ) is then given by (1.29)
according to Theorem 1.6[1]. The relationship between the positioning of the jump rays
�0,± and the integers k0,± follows from the formula (3.15) and careful inspection.

It only remains to show that the solution of the Riemann–Hilbert Problem 1.2 con-
verges to the solution of the Painlevé auxiliary Riemann–Hilbert Problem 2.1, which we
now accomplish.

Following the same idea as in Proposition 3.6, let E = E(λ; t, x, n) be the solution
of the Riemann–Hilbert Problem with jumps on �0,±1 of the form

E+ = E−�

(
1 + e− 2

3λ
3
2 −x

√
λ

:=F0(λ)︷ ︸︸ ︷(
Pr (tλ

2N+1
2 )

Pr (−tλ
2N+1
2 )

− e−tλ
2N+1
2

)
σ+

)
�−1 , λ ∈ �0

(3.42)
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E+ = E−�

(
1 + e

2
3λ

3
2 +x

√
λ

(
Pr (−tλ

2N+1
2 )

Pr (tλ
2N+1
2 )

− etλ
2N+1
2

)

︸ ︷︷ ︸
:=F±(λ)

σ−
)

�−1 , λ ∈ �±

(3.43)

E(λ; t, x, n) = 1 +
1

λ
E1(t, x, n) +O(λ−2), λ → ∞. (3.44)

Consider (3.42), with similar considerations for (3.43): given the estimate (3.41) we
have that, uniformly for x in compact sets,

∣∣∣∣e− 2
3λ

3
2 −x

√
λF0(λ)

∣∣∣∣ =
{

O(r− r
2 ) |λ| ≤ |t | −2

2N+1 r
1

2N+1 , λ ∈ �0

O
(
exp

(
−C |t | −3

2N+1 r
3

4N+2

))
|λ| ≥ |t | −2

2N+1 r
1

2N+1 , λ ∈ �0.

(3.45)

According to Proposition 3.6 for |t | sufficiently small and x in a compact set, the function
�(λ; t, x) remains uniformly bounded and therefore it is easy to see, using (3.45), that
the jump matrices (3.42), (3.43) converge to the identity in all L p norms (1 ≤ p ≤ ∞)
as r → ∞, and hence so does E ; the rate of convergence is the same as in (3.45) and
it is faster than any inverse power of r and thus on n. Note that the angle of the ray �0
ranges in a sector where there are zeroes of the numerator in F0(λ) and since the zeroes
and poles of the numerator/denominator are contained in disjoint sectors, the function
F0(λ) is bounded and analytic along the ray �0. Similarly for the other two rays.

Then, by the same token used in Proposition 3.6 we must have

�n(λ; t, x) =
(

1 − E1(t, x, n)21σ−
)
E(λ; t, x, n)�(λ; t, x) (3.46)

and we conclude that the tau function for the problem �n (i.e. Zn) converges to the tau
function of �. ��
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A. Proof of Theorem 3.2

Let �n = �n(λ; t, �λ, �μ) denote the solution of the Riemann–Hilbert Problem with the
jumpmatrices Mn(λ; t, �λ, �μ). It can be written as�n(λ) = R(λ)�0(λ)D(λ)where R(λ)

is a suitable rational matrix and D(λ) as in (1.18). Indeed the matrix ratio

R(λ) := �n(λ)D(λ)−1�0(λ)−1 (A.1)

is seen to have no jumps on 
. It clearly has at most simple poles at λ = λk, μk and
decays algebraically at infinity. By Liouville’s theorem R(λ) is a rational function.
We now seek a set of characterizing conditions for the matrix R as a solution of a given
Riemann–Hilbert Problem. To this end let r > 0 be sufficiently small so that all the
disks below are disjoint and define:
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D1

D2

Dk
Dn

D∞D−

D+ := D∞ ∪
n⊔

k=1

Dk ,

Dk := {|λ − λk | < r} , k ≤ n2,

Dk+n2 := {|λ − μk | < r} , k ≤ n1

D∞ :=
{∣∣∣∣1λ

∣∣∣∣ > r

}

D− := C\D+. (A.2)

Riemann-Hilbert Problem A.1. Find a 2 × 2 piecewise analytic function R(λ) on D+
and D−, admitting continuous boundary values and satisfying the following conditions

R+(λ) = R−(λ)J(λ) , R(λ) = 1 +O(λ−1) , λ → ∞ (A.3)

where J(λ) is the matrix that on each component of ∂D+ restricts to

J(λ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Jk(λ) = �0(λ)(λk − λ)E22 , |λ − λk | = r, k ≤ n2

Jn2+k(λ) = �0(λ)(μk − λ)E11 , |λ − μk | = r, k ≤ n1

J∞(λ) = �0(λ)D(λ)
1 − iσ1√

2
λ

σ3
4 |λ|−1 = r.

(A.4)

We shall use interchangeably R±(λ) for the boundary values or the restriction of the
solution R(λ) to D±, respectively. We prove the following:

Proposition A.2. The matrix R(λ) in (A.1) is a rational matrix–valued function with
simple poles at λ = λk, μk . Restricted to D− it coincides with R−(λ) in the Riemann–
Hilbert ProblemA.1, up to a left constantmultiplier of the form 1−ia(n)σ−. In particular,
the matrix R−(λ) extends to a rational function of λ.

Proof. We already proved that R(λ) is a rational function. Moreover near λk, μk we
have, from (A.1),

R(λ) = O(1)(λ − λk)
−E22�−1

0 (λ), R(λ) = O(1)(λ − μk)
−E11�−1

0 (λ) (A.5)

and thus R(λ) must have simple poles at λk, μk (here O(1) stands for a locally ana-
lytic matrix function, with analytic inverse). Now in order to establish the connection
between R and R we have to study the behaviour at λ = ∞. We multiply both sides of
�n = R�0D (D defined in (1.18)) as follows

�n(λ)

(
λ− σ3

4
1 + iσ1√

2

)−1

= R(λ) �0(λ)D(λ)
1 − iσ1√

2
λ

σ3
4

︸ ︷︷ ︸
J∞(λ)

. (A.6)

Because of the asymptotic behavior (1.16) the left side admits a regular expansion at
λ = ∞ with leading coefficient of the form C0 = 1 + ia(n)σ−.
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Hence we define R(λ) as

R(λ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 − ia(n)σ−

)
�n(λ)D−1(λ)(λ − λk)

E22 λ ∈ Dk, k = 1, . . . , n2,(
1 − ia(n)σ−

)
�n(λ)D−1(λ)(λ − μk)

E11 λ ∈ Dn2+k, k = 1, . . . , n1,(
1 − ia(n)σ−

)
�n(λ) 1−iσ1√

2
λ

σ3
4 λ ∈ D∞,(

1 − ia(n)σ−
)
�n(λ)D−1(λ)�−1

0 (λ) λ ∈ D−.

(A.7)

It is easy to check that R, defined in this way, satisfies the jump conditions in (A.3) and,
moreover, also the asymptotic condition at infinity. The identification (up to a normal-
ization constant) between R− and R is read off directly from the last line of (A.7). ��
The jump matrix J(λ) admits (formal) meromorphic extension in the interior of D (by
construction) and moreover the total index of det J(λ) around ∂D is zero. Under these
conditions, the analysis in Appendix B of [4] applies. We briefly remind it with notation
adapted to the current use.
Let H± denote the vector space of (formally) analytic valued row-vectors in D± (re-
spectively) and C± the Cauchy projection operator; consider the following two (finite
dimensional, see B.14 in loc. cit.) subspaces of H−

V := C−[H+J−1(λ)] , W := C−[H+J(λ)] (A.8)

Proposition A.3 (Proptition B.3 in [4]). The solution of the Riemann–Hilbert Problem
A.1 exists, and is unique, if and only if the linear map

G : V −→ W
v �−→ C−[vJ]. (A.9)

is invertible. In this case, the inverse is

G−1 : W −→ V
w �−→ C−

[
wJ−1R−1

]
R.

(A.10)

Remark A.4. Even if R and R differ by the multiplication of a constant left multiplier of
the form 1 + �σ−, the expression of the inverse (A.10) is unaffected by such multiplier.

Now, following [4], we choose properly two bases for V and W in such a way that the
determinant G of G gives the variation of the one form � as in (3.11).
The jump on the large circle given by J∞ (A.4) has an asymptotic expansion in integer
powers of λ of the form (the � symbol means a constant of no interest to us, which turns
out to be − x2

4 )

n = 2k ≡ 0 mod 2 J∞(λ) = (−1)n1λk
(

1 + �σ− +O(λ−1)
)

=: G∞(λ)λk1, (A.11)

n = 2k + 1 ≡ 1 mod 2 J∞(λ) = (−1)n1λk
(
iλσ− − iσ+ + �1 +O(λ−1)

)
=

= (−1)n1
(
σ2 + �E22 +O(λ−1)

)
λ(k+1)E11+kE22

=: G∞(λ)λ(k+1)E11+kE22 , (A.12)
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where G∞(λ) (as in (3.14)) has been introduced for convenience.
Following [4], Appendix B, we choose the bases

V =
n2+n1⊕
k=1

C{vk};
v j = C−

[
eT2 J−1(λ)

] = eT2�−1
0 (λ j )

λ−λ j
, 1 ≤ j ≤ n2

v j+n2 = C−
[
eT1 J−1(λ)

] = eT1�−1
0 (μ j )

λ−μ j
, 1 ≤ j ≤ n1,

(A.13)

W =
n2+n1⊕
�=1

C{w�}; wn−�+1 = eT(�−1mod2)+1λ
�(�−1)/2�, 1 ≤ � ≤ n. (A.14)

The basis of W = C−[H+J] is obtained by noticing the vector space is the same as
C−[H+G−1∞ J] (because G∞ is (formally) analytic at λ = ∞) and hence it is the same as
C−[H+λ

�(n+1)/2�E11+�n/2�E22 ]. The matrix Gk,� representing G (A.9) for k ≤ n2 is then
given by a direct computation as

Gk,� = res
λ=∞ res

ζ=λk

eT2�−1
0 (λk)

(ζ − λk)(λ − ζ )
G∞(λ)λ� n+1

2 �E11+� n
2 �E22

e(�−1mod 2)+1

λ�(�−1)/2�+1 (A.15)

= res
λ=∞

eT2�−1
0 (λk)

(λ − λk)
G∞(λ)λ� n+1

2 �E11+� n
2 �E22

e(�−1mod 2)+1

λ�(�−1)/2�+1 (A.16)

A similar computation yields the rest of formula (3.13). Since we are interested in the
determinant ofG (up to multiplicative constants), we rearrange the basis in W ; then the
matrix can be written more transparently as

Gk,� = res
λ=∞

λ� �−1
2 �eT{

2
1

}�−1
0

({
λk

μk−n2

})
G∞(λ)e(�−1mod 2)+1

(
λ −

{
λk

μk−n2

}) (A.17)

where for brevity the notation {} denotes two choices, according to the cases k ≤ n2
(top) or k ≥ n2 + 1 (bottom).

Variations of detG. It was shown in Appendix B of [4], Theorem B.1, that (translating
to the current setting)

∂ ln detG =
∮

∂D

Tr
(

R−1R′∂JJ−1
) dλ

2iπ
+

+
n2∑
k=1

∮
∂Dk

Tr
(
�−1
0 �′

0∂(λk − λ)E22(λk − λ)−E22
) dλ

2iπ

+
n1∑
k=1

∮
∂Dn2+k

Tr
(
�−1
0 �′

0∂(μk − λ)E11(μk − λ)−E11
) dλ

2iπ

=
∮

∂D

Tr
(

R−1R′∂JJ−1
) dλ

2iπ
+

∑
ζ∈�λ, �μ

res
λ=ζ

Tr
(
�−1
0 �′

0∂DD−1
)

, (A.18)

where ∂ means any derivative of the λk’s, μk’s or x and in the last step we have used the
fact that

∂
√

λk√
λk − √

λ
= ∂λk

λk − λ
+O(1), λ → λk, (A.19)

and similarly for μk .
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Proof of Theorem 3.2. We use the trivial algebra below with �n = R�0D and Mn =
D−1MD:

�−1
n �′

n = D−1�−1
0 R−1R′�0D + D−1�−1

0 �′
0D + D−1D′,

∂(D−1MD)D−1M−1D = D−1∂MM−1D − ∂DD−1 + D−1MD−1∂DM−1D,

�n,−∂MnM
−1
n �−1

n,− = ∂�n,+�
−1
n,+ − ∂�n,−�−1

n,−. (A.20)

Plugging into the integrand of (3.10) and simplifying, using the cyclicity of the trace
several times and (A.20), we find (below� denotes the jump operator�( f ) = f+− f−):

Tr

[
�−1
n,−�′

n,−∂(D−1MD)D−1M−1D

]
=

= Tr

[
�−1
0,−�′

0,−∂MM−1 + R−1R′�
(
∂(�0D)D−1�−1

0

)
+ �

(
�−1
0 �′

0∂DD−1
)
+

−M−1M ′∂DD−1 + D−1D′ (∂MM−1 − ∂DD−1 + MD−1∂DM−1
) ]

. (A.21)

Given the particular triangularity of the jump matrices M , all terms on the last line of
(A.21) are traceless and thus drop out.
Now, if we have

∫



�F dz
2iπ and F has some poles outside of 
 then this reduces, by the

Cauchy theorem, to the sum of the residues of F . We are thus left with

�(∂; [Mn]) − �(∂; [M])
=
∫




Tr
(
�−1
n �′

n∂MnM
−1
n

) dλ

2iπ

−
∫




Tr
(
�−1
0 �′

0∂MM−1
) dλ

2iπ
(A.22)

=
∮

∂D

Tr
(
R−1R′∂(�0D)D−1�−1

0

) dλ

2iπ

+
∑

ζ∈�λ, �μ
res
λ=ζ

Tr
(
�−1
0 �′

0∂DD−1
)

(A.23)

=
∮

∂D

Tr
(

R−1R′∂ J̃̃J−1
) dλ

2iπ

+
∑

ζ∈�λ, �μ
res
λ=ζ

Tr
(
�−1
0 (λ)�′

0(λ)∂D(λ)D−1(λ)
)

(A.24)

(A.18)= ∂ ln detG +
∮

∂D

Tr
(

R−1R′(∂ J̃̃J−1 − ∂JJ−1)
) dλ

2iπ
. (A.25)

Note that we can substitute R with R in (A.24), because these two matrices differ by a
left multiplication with a λ–independent matrix, and the expression (A.24) is invariant
under this operation. The matrix J̃(λ) is read off the above formula and is given by

J̃(λ) =
{

�0(λ)D(λ) λ ∈ ∂Dk

�0(λ)D(λ) 1−iσ1√
2

λ
σ3
4 λ ∈ ∂D∞.

(A.26)
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Therefore the matrix J̃ differs from J (A.4) only on the boundaries of the finite disks
Dk, k = 1, . . . , n by the factor T (λ) given by the diagonal matrix below

J̃(λ) = J(λ)T (λ), T (λ) = D(λ)

n2∏
k=1

(λk − λ)
−E22χDk

n1∏
k=1

(μk − λ)
−E11χDn2+k ,

(A.27)

where χX denotes the indicator function of the set X . Note that T (λ) belongs toH+(Dk),

∀ k.
We now follow the exact same steps as in the proof of Theorem B.2 of [4] and have

∮
∂D

Tr
(

R−1R′(∂ J̃̃J−1 − ∂JJ−1)
) dλ

2iπ

= −
n2∑
k=1

res
λ=λk

Tr

(
E22

λ − λk
∂T T−1

)
−

n1∑
k=1

res
λ=μk

Tr

(
E11

λ − μk
∂T T−1

)

=
n2∑
k=1

⎛
⎝∂λk

4λk
−
∑
j �=k

∂
√

λ j√
λ j − √

λk

⎞
⎠ +

n1∑
k=1

⎛
⎝∂μk

4μk
−
∑
j �=k

∂
√

μ j√
μ j − √

μk

⎞
⎠

−
n2∑
k=1

n1∑
j=1

∂(
√

μ j +
√

λk)√
μ j +

√
λk

= ∂ ln

n2∏
j=1

λ j
1
4

n1∏
j=1

μ j
1
4

∏
j<k≤n2

(
√

λ j − √
λk)

∏
j<k≤n1

(
√

μ j − √
μk)

n1∏
j=1

n2∏
k=1

(
√

μ j +
√

λk)

=: ∂ ln�(�λ, �μ). (A.28)

Combining (A.28) with (A.25) we obtain

�(∂; [Mn]) − �(∂; [M]) (A.25)= ∂ ln detG

+
∮

∂D

Tr
(

R−1R′(∂ J̃̃J−1 − ∂JJ−1)
) dλ

2iπ
(A.18)= ∂ ln

(
detG �(�λ, �μ)

)
(A.29)

The proof is complete. ��

B. Explicit Computation of Zn

For the benefit of the reader we derive (1.2) (in a way that is slightly different from [18])
as follows. Let dU be the Haar measure on U (n), S = diag(s1, . . . , sn) and the s j ’s the
eigenvalues of M , and �(S) = ∏

j<k(s j − sk). Considering the numerator of (1.1), and

setting � = Y 2 we have
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∫
Hn

dMe
Tr

(
i M

3
3 −YM2+i xM

)
�= e

2
3 Tr Y

3+xTr Y
∫
Hn

dMe
iTr

(
M3
3 +(Y 2+x)M

)

Weyl integration formula= Cne
2
3 Tr Y

3+xTr Y
∫
Rn

�2(S)

n∏
j=1

e
is3j
3 +is j xds j

∫
U (n)

dUeiTr (�USU†)

(Harish-Chandra)= C̃ne
2
3 Tr Y

3+xTr Y
∫
Rn

�(S) det
[
eis jλk

]
j,k≤n

�(�)

n∏
j=1

e
is3j
3 +is j xds j

Andreief= C̃nn!e 2
3 Tr Y

3+xTr Y

�(�)
det

[∫
R

s j−1e
is3
3 +is(λk+x)ds

]
j,k≤n

= C̃nn!(2π)ne
2
3 Tr Y

3+xTr Y
det

[
Ai( j−1)(λk + x)

]
j,k≤n

�(�)
(B.1)

where Cn, C̃n are proportionality constants (depending only on n) of no present interest

(it turns out that C̃n = π
n
2 (n−1)

n! ). In the step marked with � we have performed a shift
M �→ M − iY and an analytic continuation; the integral is now only conditionally con-
vergent and it can be understood as absolutely convergent integration on Hn+iε1, ε > 0.
Recall now that

∫
Hn

dMe−Tr
(
YM2

)
= π

n
2 +

n
2 (n−1)∏n

j=1
√
y j
∏n

j<k(y j + yk)
= π

n2
2

∏n
j=1 λ

1
4
j

∏n
j<k=1

√
λ j +

√
λk

.

(B.2)

Thus, in total

Zn(Y ) = 2nπ
n
2 e

2
3 Tr�

3
2 +xTr

√
�
det

[
Ai( j−1)(λk + x)

]
j,k≤n

∏n
j=1(λ j )

1
4
∏

j<k (
√

λ j +
√

λk )

�(�)
.

(B.3)

The overall proportionality constant is determined by observing that Zn as defined
in (1.1) tends to 1 as the eigenvalues of Y tend all to +∞. The Airy function has the
asymptotic behavior

Ai(λ) = e− 2
3λ

3
2

2
√

πλ
1
4

(1 +O(λ− 3
2 )) , | arg(λ)| < π, (B.4)

and hence

det
[
Ai( j−1)(y2k + x)

]
j,k≤n

� e
−∑n

j=1

(
2
3 y

3
j +xy j

)

2nπ
n
2
∏n

j=1 y
1
2
j

∏
j<k

(y j − yk) as x → ∞

(B.5)

from which the proportionality constant is deduced. The expression (1.2) follows from
(B.1) by substituting � = Y 2 and simplifying.
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Remark B.1. The above computation is carried out under the assumption that Re y j > 0;
to see what happens when Re y < 0, consider the simplest case n = 1 and Y = y < 0;
then (set x = 0 for simplicity)

∫
�
dMei

M3
3 −YM2

∫
�
dMe−YM2 = e

2
3 y

3
∫

�

ei
s3
3 +isy2ds (B.6)

In order to be able to interpret (B.6) as an average of ei
M3
3 with respect to a Gaussian

measure, we must choose the path of integration � in both numerator/denominator so as

to have a convergent integral and also so that the term ei
M3
3 is oscillatory. The choice

arg(s) = e±i π
3 is possible. But this means that the integral gives now Ai(ω±1y2) rather

than Ai(y2). This is the underlying reason for the definition (1.29)

C. Proof of Proptition 3.3

Denote the column vectors G∞(λ)e1,2 (with G∞ as in (3.14)) by H1,2(λ) (respectively)
and the row vectors

Ak :=
{

eT2�−1
0 (λk) k ≤ n2

eT1�−1
0 (μk−n2) n2 + 1 ≤ k ≤ n1 + n2.

(C.1)

The explicit expression depends on which sector λk’s, μ j ’s belong to, and can be read
off from (3.1). Consider the wedge of the first two columns of G;

[
Ak res

λ=∞
H1

(λ − λk)

]n
k=1

∧
[

Ak res
λ=∞

H2

(λ − λk)

]n
k=1

. (C.2)

Here and below, [...]nk=1 denotes column vectors indexed by k. Depending on the parity
of n and using (A.11), (A.12), we have (the symbol � denotes a constant that eventually
drops out of the computation, hence irrelevant)

res
λ=∞

H1

λ − λk
= res

λ=∞
H1

λ
=
{

e1 + �e2 n ≡ 0 mod 2,
−ie2 n ≡ 1 mod 2,

res
λ=∞

H2

λ − λk
= res

λ=∞
H2

λ
=
{

e2 n ≡ 0 mod 2,
ie1 + �e2 n ≡ 1 mod 2. (C.3)

Therefore, for any parity of n (up to an inessential sign), we have
[

Ak res
λ=∞

H1

(λ − λk)

]n
k=1

∧
[

Ak res
λ=∞

H2

(λ − λk)

]n
k=1

= ± [(Ak)1]
n
k=1 ∧ [(Ak)2]

n
k=1 .

(C.4)

Consider now the third and fourth columns: for the third one we have[
Ak res

λ=∞
λH1

(λ − λk)

]n
k=1

=
[
λkAk res

λ=∞
H1

(λ − λk)

]n
k=1

+

[
Ak res

λ=∞
(λ − λk)H1

(λ − λk)

]n
k=1

=
[
λkAk res

λ=∞
H1

λ

]n
k=1

+

[
Ak res

λ=∞ H1

]n
k=1

(C.5)
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and similarly for the fourth
[

Ak res
λ=∞

λH2

(λ − λk)

]n
k=1

=
[
λkAk res

λ=∞
H2

λ

]n
k=1

+

[
Ak res

λ=∞ H2

]n
k=1

. (C.6)

The last terms in (C.5), (C.6), respectively, are in the span on the first two columns
appearing in (C.4) and hence can be dropped. The first two term are in the span of

[λk(Ak)1]
n
k=1 ∧ [λk(Ak)2]

n
k=1 . (C.7)

Proceeding this way by induction we arrive at

detG =
n∧

r=1

[
λ

⌊
r−1
2

⌋
k Ak res

λ=∞
H2−(r mod 2)

λ

]n

k=1

. (C.8)

To have more compact formuæ we denote fk := Aisk (λk + x) and gk := Aisk (μk + x),
where sk is the sector to which λk (or μk) belongs as indicated in the statement of the
proposition and which follows from (3.1) and (C.1). Then, depending on the parity of
n, we have explicitly, for even n:

detG = (−2iπ)
n
2 e

(∑n2
j=1

(
2
3λ

3
2
j +xλ

1
2
j

)
−∑n1

�=1

(
2
3μ

3
2
� +xμ

1
2
�

))

det

⎡
⎢⎢⎢⎣

[
fk

∣∣∣∣ f ′
k

∣∣∣∣ · · ·
∣∣∣∣λ

n
2
k fk

∣∣∣∣λ
n
2
k f ′

k

]n2
k=1[

gk

∣∣∣∣g′
k

∣∣∣∣ · · ·
∣∣∣∣μ

n
2
k gk

∣∣∣∣μ
n
2
k g

′
k

]n1
k=1

⎤
⎥⎥⎥⎦

and, for odd n,

detG = (−2iπ)
n
2 e

(∑n2
j=1

(
2
3λ

3
2
j +xλ

1
2
j

)
−∑n1

�=1

(
2
3μ

3
2
� +xμ

1
2
�

))

det

⎡
⎢⎢⎢⎣

[
fk

∣∣∣∣ f ′
k

∣∣∣∣ · · ·
∣∣∣∣λ

n−1
2

k fk

∣∣∣∣λ
n−1
2

k f ′
k

∣∣∣∣λ
n+1
2

k fk

]n2
k=1[

gk

∣∣∣∣g′
k

∣∣∣∣ · · ·
∣∣∣∣μ

n−1
2

k gk

∣∣∣∣μ
n−1
2

k g′
k

∣∣∣∣μ
n+1
2

k gk

]n2
k=1

⎤
⎥⎥⎥⎦ .

Using the differential equation for the Airy functions repeatedly (all fk, gk’s solve the
same Airy ODE), and further elementary (triangular) column operations, we see easily
that in all cases (up to an inessential sign) we obtain the formula (3.15). ��
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