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Abstract: The Euler–Korteweg equations are a modification of the Euler equations that
take into account capillary effects. In the general case they form a quasi-linear system
that can be recast as a degenerate Schrödinger type equation. Local well-posedness (in
subcritical Sobolev spaces) was obtained by Benzoni–Danchin–Descombes in any space
dimension, however, except in some special case (semi-linearwith particular pressure) no
global well-posedness is known.We prove here that under a natural stability condition on
the pressure, globalwell-posedness holds in dimension d ≥ 3 for small irrotational initial
data. The proof is based on a modified energy estimate, standard dispersive properties
if d ≥ 5, and a careful study of the structure of quadratic nonlinearities in dimension 3
and 4, involving the method of space time resonances.

Résumé Les équations d’Euler–Korteweg sont une modification des équations d’Euler
prenant en compte l’effet de la capillarité. Dans le cas général elles forment un système
quasi-linéaire qui peut se reformuler comme une équation de Schrödinger dégénérée.
L’existence locale de solutions fortes a été obtenue par Benzoni–Danchin–Descombes
en toute dimension, mais sauf cas très particuliers il n’existe pas de résultat d’existence
globale. En dimension au moins 3, et sous une condition naturelle de stabilité sur la pres-
sion on prouve que pour toute donnée initiale irrotationnelle petite, la solution est globale.
La preuve s’appuie sur une estimation d’énergie modifiée. En dimension au moins 5 les
propriétés standard de dispersion suffisent pour conclure tandis que les dimensions 3 et
4 requièrent une étude précise de la structure des nonlinéarités quadratiques pour utiliser
la méthode des résonances temps espaces.
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1. Introduction

The compressible Euler–Korteweg equations read
⎧
⎪⎪⎨

⎪⎪⎩

∂tρ + div(ρu) = 0, (x, t) ∈ R
d × I,

∂t u + u · ∇u + ∇g(ρ) = ∇
(

K (ρ)�ρ + 1
2K

′(ρ)|∇ρ|2
)

, (x, t) ∈ R
d × I,

(ρ, u)|t=0 = (ρ0, u0), x ∈ R
d .

(1.1)

Here ρ is the density of the fluid, u the velocity, g the bulk chemical potential, related to
the pressure by p′(ρ) = ρg′(ρ). K (ρ) > 0 corresponds to the capillary coefficient. On
the left hand side we recover the Euler equations, while the right hand side of the second
equation contains the so called Korteweg tensor, which is intended to take into account
capillary effects and models, in particular the behavior at the interfaces of a liquid-vapor
mixture. The system arises in various settings: the case K (ρ) = κ/ρ corresponds to the
so-called equations of quantum hydrodynamics (which are formally equivalent to the
Gross–Pitaevskii equation through the Madelung transform; on this topic see the survey
of Carles et al. [10]).

As wewill see, in the irrotational case the system can be reformulated as a quasilinear
Schrödinger equation; this is in sharp contrast with the non homogeneous incompressible
case where the system is hyperbolic (see [9]). For a general K (ρ), local well-posedness
was proved in [6]. Moreover, (1.1) has a rich structure with special solutions such as
planar traveling waves, namely solutions that only depend on y = t − x · ξ , ξ ∈ R

d ,
with possibly lim∞ ρ(y) �= lim−∞ ρ(y). The orbital stability and instability of such
solutions has been largely studied over the last ten years (see [7] and the review article
of Benzoni-Gavage [8]). The existence and non uniqueness of global non dissipative
weak solutions,1 in the spirit of De Lellis–Szekelehidi [12], was tackled by Donatelli
et al. [13], while weak-strong uniqueness has been very recently studied by Giesselman
et al. [18].

1 These global weak solutions do not verify the energy inequality.
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Our article deals with a complementary issue, namely the global well-posedness
and asymptotically linear behaviour of small smooth solutions near the constant state
(ρ, u) = (ρ, 0). To our knowledge, we obtain here the first global well-posedness result
for (1.1) in the case of a general pressure and capillary coefficient. This is in strong
contrast with the existence of infinitely many weak solutions from [13].

A precise statement of our results is provided in Theorems 2.1, 2.2 of Sect. 2, but first
we will briefly discuss the state of well-posedness theory, the structure of the equation,
and the tools available to tackle the problem. Let us start with the local well-posedness
result from [6].

Theorem 1.1. For d ≥ 1, let (ρ, u) be a smooth solution whose derivatives decay
rapidly at infinity, and s > 1 + d/2. Then for (ρ0, u0) ∈ (ρ, u) + Hs+1(Rd)× Hs(Rd),
ρ0 bounded away from 0, there exists T > 0 and a unique solution (ρ, u) of (1.1) such
that (ρ − ρ, u − u) belongs to C([0, T ], Hs+1 × Hs) ∩C1([0, T ], Hs−1 × Hs−2) and
ρ remains bounded away from 0 on [0, T ] × R

d .

We point out that [6] includes local well-posedness results for initial data that are not
perturbations of constants (see theorem 6.1 in [6]). The authors also obtained several
blow-up criterion. In the irrotational case it reads:

Blow-up criterion: for s > 1+d/2, (ρ, u) solution on [0, T )×R
d of (1.1), the solution

can be continued beyond T provided

1. ρ([0, T )× R
d) ⊂ J ⊂ R

+∗, J compact and K is smooth on a neighbourhood of J .
2.

∫ T
0 (‖�ρ(t)‖∞ + ‖divu(t)‖∞)dt < ∞.

These results relied on energy estimates for an extended system that we write now.
If L is a primitive of

√
K/ρ, setting L = L(ρ), w = √

K/ρ∇ρ = ∇L , a = √
ρK (ρ),

from basic computations we verify (see [6]) that the equations on (L , u, w) are
⎧
⎨

⎩

∂t L + u · ∇L + adivu = 0,
∂t u + u · ∇u − w · ∇w − ∇(adivw) = −∇g,
∂tw + ∇(u · w) + ∇(adivw) = 0,

or equivalently for z = u + iw
{

∂t L + u · ∇L + adivu = 0,
∂t z + u · ∇z + i(∇z) · w + i∇(adivz) = ∇ g̃(L).

(1.2)

Here we set ã(L) = a ◦ L−1(L), g̃(L) = g ◦ L−1(L) which are well-defined since√
K/ρ > 0 thus L is invertible.
This change of unknown clarifies the underlying dispersive structure of the mod-

el as the second equation is a quasi-linear degenerate Schrödinger equation. It should
be pointed out however that the local existence results of [6] relied on Hs energy es-
timates rather than dispersive estimates. On the other hand, we constructed recently
in [4] global small solutions to (1.1) for d ≥ 3 when the underlying system is semi-
linear, that is K (ρ) = κ/ρ with κ a positive constant and for g(ρ) = ρ − 1. This case
corresponds to the equations of quantum hydrodynamics. The construction relied on
the so-called Madelung transform, which establishes a formal correspondence between
these equations and the Gross–Pitaevskii equation, and recent results on scattering for
the Gross–Pitaevskii equation [20,22]. Let us recall for completeness that 1 + ψ is a
solution of the Gross–Pitaevskii equation if ψ satisfies

i∂tψ + �ψ − 2Re(ψ) = ψ2 + 2|ψ |2 + |ψ |2ψ. (1.3)
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For the construction of global weak solutions (no uniqueness, but no smallness assump-
tions) we refer also to the work of Antonelli–Marcati [1,2].

In this article we consider perturbations of the constant state ρ = ρc, u = 0 for
a general capillary coefficient K (ρ) that we only suppose smooth and positive on an
interval containing ρc. In order to exploit the dispersive nature of the equation we need to
work with irrotational data u = ∇φ so that (1.2) reduces to the following system (where
Lc = L(ρc) which has obviously similarities with (1.3) (more details are provided in
Sects. 3 and 4):

{
∂tφ − �(L − Lc) + g̃′(Lc)(L − Lc) = N1(φ, L),

∂t (L − Lc) + �φ = N2(φ, L).
(1.4)

The system satisfies the dispersion relation τ 2 = |ξ |2(g̃′(Lc) + |ξ |2), and the N j are
at least quadratic nonlinearities that depend on L , φ and their derivatives (the system is
thus quasi-linear). We also point out that the stability condition g̃′(Lc) ≥ 0 is necessary
in order to ensure that the solutions in τ of the dispersion relation are real.

The existence of global small solutions for nonlinear dispersive equations is a rather
classical topic that is impossible by far to describe exhaustively in this introduction. We
shall restrict the discussion to the main ideas that are important for our work here.

Dispersive estimates. For the Schrödinger equation, two key tools are the dispersive
estimate

‖eit�ψ0‖Lq (Rd ) �
‖ψ0‖Lq′

td(1/2−1/q)
, (1.5)

and the Strichartz estimates

‖eit�ψ0‖L p(R,Lq (Rd )) � ‖ψ0‖L2 ,
2

p
+
d

q
= d

2
, (1.6)

‖
∫ t

0
ei(t−s)� f (s)ds‖L p(R,Lq (Rd )) � ‖ f ‖

L p′1 (R,Lq′1 (Rd ))
,

2

p1
+

d

q1
= d

2
. (1.7)

Both indicate decay of the solution for long time in L p(Lq) spaces, it is of course of
interest when we wish to prove the existence of global strong solution since it generally
requires some damping behavior for long time. Due to the pressure term the linear
structure of our system is actually closer to the one of the Gross–Pitaevskii equation
(see (1.3)), but the estimates are essentially the same as for the Schrödinger equation.
Local smoothing is also an interesting feature of Schrödinger equations, in particular
for the study of quasilinear systems. A result in this direction was obtained by the first
author in [3] but we will not need it here. The main task of our proof will consist in
proving dispersive estimates of the type (1.5) for long time, it is related to the notion of
scattering for solutions of dispersive equations. Let us recall now some classical result
on the theory of the scattering for the Schrödinger equations and the Gross Pitaevskii
equation.

Scattering. Let us consider the following nonlinear Schrödinger equation

i∂tψ + �ψ = N (ψ).

Due to the dispersion, when the nonlinearity vanishes at a sufficient order at 0 and the
initial data is sufficiently small and localized, it is possible to prove that the solution
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is global and the integral
∫
e−is�N (ψ(s))ds converges in L2(Rd), so that there exists

ψ+ ∈ L2(Rd) such that

‖ψ(t)− eit�ψ+‖L2 −→t→∞ 0.

In this case, it is said that the solution is asymptotically linear, or scatters to ψ+.
In the case where N is a general power-like non-linearity, we can cite the seminal

work of Strauss [27]. More precisely if N (a) = O0(|a|p), global well-posedness for
small data in H1 is merely a consequence of Strichartz estimates provided p is larger
than the so-called Strauss exponent

pS(d) =
√
d2 + 12d + 4 + d + 2

2d
. (1.8)

For example scattering for quadratic nonlinearities (independently of their structure φ2,

φ
2
, |φ|2...) can be obtained for d ≥ 4, indeed pS(3) = 2. The case p ≤ pS is much

harder and is discussed later.

Mixing energy estimates and dispersive estimates. If N depends on derivatives of φ,
due to the loss of derivatives the situation is quite different and it is important to take
more precisely into account the structure of the system. In particular it is possible in
some cases to exhibit energy estimates which often lead after a Gronwall lemma to the
following situation:

∀ N ∈ N, ‖ψ(t)‖HN ≤ ‖ψ0‖HN exp

(

CN

∫ t

0
‖ψ(s)‖p−1

Wk,∞ds

)

,

k “small” and independent on N .

A natural idea consists in mixing energy estimates in the HN norm, N “large”, with
dispersive estimates: if one obtains

∥
∥
∥
∥

∫ t

0
ei(t−s)�Nds

∥
∥
∥
∥
Wk,∞

�
sup[0,t](‖ψ(s)‖p

HN + sα‖ψ(s)‖p
Wk,∞)

tα
, α(p − 1) > 1,

then setting ‖ψ‖XT = sup[0,T ]
(‖ψ(t)‖HN +tα‖ψ(t)‖Wk,∞

)
and if ‖eit�ψ0‖XT ≤ ε <<

1 uniformly in T , the energy estimate and Duhamel formula yields

‖ψ‖XT ≤ ‖ψ0‖HN exp(C‖ψ‖p−1
XT

) + C‖ψ‖pXT
+ ε.

Therefore ‖ψ‖XT must remain small uniformly in T . This strategy seems to have been
initiated independently by Klainerman and Ponce [24] and Shatah [25]. If the energy
estimate is true, this method works “straightforwardly” and gives global well-posedness
for small initial data (this is the approach from Sect. 4) if

p > p̃(d) =
√
2d + 1 + d + 1

d
> pS(d). (1.9)

Again, there is a critical dimension: p̃(4) = 2, thus any quadratic nonlinearity can be
handled with this method if d ≥ 5.
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Normal forms, space-time resonances. When p ≤ pS (semi-linear case) or p̃ (quasi-
linear case), the strategies above cannot be directly applied, and one has to look more
closely at the structure of the nonlinearity. For the Schrödinger equation, one of the
earliest results in this direction was due to Cohn [11] who proved (extending Shatah’s
method of normal forms [26]) the global well-posedness in dimension 2 of

i∂tψ + �ψ = i∇ψ · ∇ψ. (1.10)

The by now standard strategy of proof was to use a normal form that transformed the
quadratic nonlinearity into a cubic one, and since 3 > p̃(2) � 2.6 the new equation
could be treated with the arguments from [24]. In dimension 3, similar results (with very
different proofs using vector fields method and time non resonance) were then obtained

for the nonlinearities ψ2 and ψ
2
by Hayashi, Nakao and Naumkin [23] (it is important

to observe that the quadratic nonlinearity is critical in terms of Strauss exponent for the
semi-linear case when d = 3). The existence of global solutions for the nonlinearity
|ψ |2 is however still open (indeed it corresponds to a nonlinearity where the set of time
and space non resonance is not empty; we will give more explanations below on this
phenomenon).

More recently, Germain–Masmoudi–Shatah [14–16] and Gustafson–Nakanishi–Tsai
[21,22] shed a new light on such issues with the concept of space-time resonances. To
describe it, let us rewrite theDuhamel formula for the profile of the solution f = e−i t�ψ ,
in the case (1.10):

f = ψ0 +
∫ t

0
e−is�N (eis� f

i
)ds

⇔ f̂ = ψ̂0 −
∫ t

0

∫

Rd
eis(|ξ |2+|η|2+|ξ−η|2)η · (ξ − η) f̂ (η) f̂ (ξ − η)dηds. (1.11)

In order to take advantage of the non cancellation of �(ξ, η) = |ξ |2 + |η|2 + |ξ − η|2
one might integrate by part in time, and from the identity ∂t f = −ie−i t�N (ψ), we see
that this procedure effectively replaces the quadratic nonlinearity by a cubic one, ie acts
as a normal form.

On the other hand, ifN (ψ) = ψ2 the phase becomes�(ξ, η) = |ξ |2−|η|2−|ξ−η|2,
which cancels on a large set, namely the “time resonant set”

T = {(ξ, η) : �(ξ, η) = 0} = {η ⊥ ξ − η}. (1.12)

The remedy is to use an integrationbypart in theη variable using eis� = ∇η�

is|∇η�|2∇η(eis�),

it does not improve the nonlinearity, however the factor 1/s is a gain in time decay. This
justifies to define the “space resonant set” as

S = {(ξ, η) : ∇η�(ξ, η) = 0} = {η = −ξ − η}, (1.13)

as well as the space-time resonant set

R = S ∩ T = {(ξ, η) : �(ξ, η) = 0, ∇η�(ξ, η) = 0}. (1.14)

For N (ψ) = ψ2, we simply have R = {ξ = η = 0}; using the previous strategy Ger-
main et al. [16] obtained global well-posedness for the quadratic Schrödinger equation.

Finally, for N (ψ) = |ψ |2 similar computations lead to R = {ξ = 0}, the “large”
size of this set might explain why this nonlinearity is particularly difficult to handle.
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Smooth and non smooth multipliers. The method of space-time resonances in the case
(∇φ)2 is particularly simple because after the time integration by part, the Fourier
transform of the nonlinearity simply becomes

η · (ξ − η)

|ξ |2 + |η|2 + |ξ − η|2 ∂s f̂ (η) f̂ (ξ − η),

where the multiplier η·(ξ−η)

|ξ |2+|η|2+|ξ−η|2 is of Coifman-Meyer type, thus in term of product
laws it is just a cubic nonlinearity.Wemight naively observe that this is due to the fact that
η·(ξ−η) cancels on the resonant set ξ = η = 0. Thus onemightwonderwhat happens in
the general case if the nonlinearity writes as a bilinear Fourier multiplier whose symbol
cancels onR. In [14], the authors treated the nonlinear Schrödinger equation for d = 2 by
assuming that the nonlinearity is of type B[ψ,ψ] or B[ψ,ψ], with B a bilinear Fourier
multiplier whose symbol is linear at |(ξ, η)| ≤ 1 (and thus cancels on R). Concerning
the Gross–Pitaevskii equation (1.3), the nonlinear terms include the worst one |ψ |2 but
Gustafson et al. [22] managed to prove global existence and scattering in dimension 3;
one of the important ideas of their proof was a change of unknown ψ �→ Z (or normal
form) that replaced the nonlinearity |ψ |2 by√−�/(2−�)|Z |2 which compensates the
resonances at ξ = 0. To some extent, this is also a strategy that we will follow here.

Finally, let us point out that the method of space-time resonances proved to be re-
markably efficient for the water wave equation [15] partially because the group velocity
|ξ |−1/2/2 is large near ξ = 0, while it might not be the most suited for the Schrödinger
equation whose group velocity 2ξ cancels at ξ = 0. The method of vector fields is an
interesting alternative, and this approach was later chosen by Germain et al. [17] to study
the capillary water waves (in this case the group velocity is 3|ξ |1/2/2). Nevertheless, in
our case the term g̃(Lc) in (1.4) induces a lack of symmetry which seems to limit the
effectiveness of this approach.

Plan of the article. In Sect. 2, we introduce the notations and state our main results.
Section 3 is devoted to the reformulation of (1.1) as a non degenerate Schrödinger
equation, andwederive the energy estimates in “high”Sobolev spaces.Weuse amodified
energy compared with [6] in order to avoid some time growth of the norms. In Sect. 4 we
prove our main result in dimension at least 5. Section 5 begins the analysis of dimensions
3 and 4, which is the heart of the paper. We only detail the case d = 3 since d = 4
follows the same ideas with simpler computations. We first introduce the functional
settings, a normal form and check that it defines an invertible change of variable in
these settings, then we bound the high order terms (at least cubic). In Sect. 6 we use
the method of space-time resonances (similarly to [22]) to bound quadratic terms and
close the proof of global well-posedness in dimension 3. The “Appendix” provides some
technical multipliers estimates required for Sect. 6.

2. Main Results, Tools and Notations

The results. As pointed out in the introduction, we need a condition on the pressure.

Assumption 2.1. Throughout all the paper, we work near a constant state ρ = ρc >

0, u = 0, with g′(ρc) > 0.
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In the case of the Euler equation, this standard condition implies that the linearized
system

{
∂tρ + ρcdivu = 0,
∂t u + g′(ρc)∇ρ = 0.

is hyperbolic, with eigenvalues (sound speed) ±√
ρcg′(ρc).

Theorem 2.1. Let d ≥ 5, ρc ∈ R
+∗, u0 = ∇φ0 be irrotational. For (n, k) ∈ N, k >

2 + d/4, 2n + 1 ≥ k + 2 + d/2, there exists δ > 0, such that if

‖u0‖H2n∩Wk−1,4/3 + ‖ρ0 − ρc‖H2n+1∩Wk,4/3 ≤ δ,

then the unique local solution to (1.1) of Theorem 1.1 is global, and ρ(t) is bounded
away from 0 uniformly in t . Moreover we have

sup
t≥0

(

‖ρ(t)− ρ0‖H2n+1 + ‖u(t)‖H2n + td/4(‖ρ(t)− ρ0‖Wk,4 + ‖u(t)‖Wk−1,4

)
)

� δ.

(2.1)

In the other main theorem, we denote L2/〈x〉 = {u ∈ L2 : 〈x〉u ∈ L2}, 〈x〉 = √
x2 + 1.

Theorem 2.2. Let d = 3 or 4, u0 = ∇φ0 irrotational, k > 2 + d/4, there exists δ > 0,

n ∈ N large, ε > 0 small, such that for
1

p
= 1

2
− 1

d
− ε, p′ = p/(p − 1), if

‖u0‖H2n + ‖ρ0 − ρc‖H2n+1 + ‖xu0‖L2 + ‖x(ρ0 − ρc)‖L2

+ ‖u0‖Wk−1,p′ + ‖ρ0 − ρc‖Wk,p′ ≤ δ,

then the unique local solution to (1.1) from Theorem 1.1 is global and ρ(t) is bounded
away from 0 uniformly in t . Moreover, for t ≥ 0, (u, ρ − ρ0)(t) ∈ (L2/〈x〉)2 and we
have

sup
t≥0

(

‖ρ(t) − ρ0‖H2n+1 + ‖u(t)‖H2n + t1+dε
(‖ρ(t) − ρ0‖Wk,p + ‖u(t)‖Wk−1,p

)
)

� δ.

Remark 2.1. Smallness in weighted spaces for the profile of the solution holds too, for
simplicity in the statement we chose not to write it. As for the Schrödinger equation, the
Wk,p′ regularity is not propagated, it is only used for the decay of the linear evolution
eit Hψ0 (see formula (4.3)). On the other hand, our continuation argument requires a
priori estimates for (u, ρ − ρ0)(t) in Wk,p ∩ L2/〈x〉), but it is not stated in [6] that
the solution does belong to Wk,p or in weighted spaces. The fact that (on the time of
existence) u(t) ∈ Wk,p is a consequence of the Sobolev embedding H2n ↪→ Wk,p for
n large enough, but the ‖xu‖L2 bound requires to go back to the existence result in [6].
Let us sketch it shortly: as mentioned in the introduction, it is more convenient to solve

{
∂t L + u · ∇L + adivu = 0,
∂t z + u · ∇z + i(∇z) · w + i∇(adivz) = −∇ g̃(L).

(2.2)

In [6], the authors study the regularized equation

∂t z + u · ∇z + i(∇z) · w + i∇(adivz) + g̃′w + ε�2z = f. (2.3)
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For ε > 0 fixed, the local well-posedness in Hs , s large enough, follows from a fixed
point argument, the propagation of the property ‖xz‖L2 < ∞ can be done simply by
including this norm in the fixed point procedure. The main issue is the existence of
estimates uniform in ε. Denoting Aε(t) := ε‖�L(t)‖∞ + 1 + ‖∇z(t)‖∞, the authors
prove the following estimate (corollary 4.2 in [6])

‖z‖L∞T Hs + ε‖�z‖L2
T H

s ≤ Ce
∫ T
0 Aεdt (1 + ‖w‖max(1,s)

L∞T L∞x
)
(‖z0‖Hs + ‖ f ‖L1

T H
s

)
. (2.4)

Now for any 1 ≤ i ≤ d, if z solves (2.2), xi z satisfies the equation

∂t (xi z) + u · ∇(xi z) + i∇(xi z) · w + i∇(adiv(xi z)) + xi g̃
′w + ε�2(xi z) = R,

where R obviously does not contain any xi factor. Estimate (2.4) with s = 0 gives

‖xi z‖L∞T L2 + ε‖�(xi z)‖L2
T L

2 ≤ Ce
∫ T
0 Aεdt (1 + ‖w‖L∞T L∞x )

(‖xi z0‖L2 + ‖R‖L1
T L

2

)
.

R contains third order derivatives of z, which is not an issue since the (non weighted)
energy estimate ensures a priori bounds in Hs for s as large as needed. Similar compu-
tations are true for xρ, and one can then follow the local existence procedure from [6]
to construct local solutions such that xu, xρ ∈ L∞T L2.

Finally, let us point out that rather than xz ∈ L∞T L2 our proof requires xe−i t H z ∈
L∞T L2,where H = √−�(2− �). This is also true, as can be seen from the commutation
identity

x(e−i t H z) = e−i t H
(

xz − 2i t (1− �)

H
∇z

)

,

and the boundedness of (1−�)∇
H : H1 → L2.

Remark 2.2. While the proof implies to work with the velocity potential, we only need
assumptions on the physical variables velocity and density.

Remark 2.3. Actually the proof gives a stronger result: in the appropriate variables the
solution scatters. The precise statement is different in dimension 3, 4 and ≥ 5. Let L
be the primitive of

√
K/ρ such that L(ρc) = 1, L = L(ρ), H = √−�(g̃′(1) −�),

U = √−�/(g̃′(1) −�) , f = e−i tH(Uφ + i L), then if d = 3, 4 there exists f∞ such
that

∀ s < 2n + 1, ‖ f (t)− f∞‖Hs∩(L2/〈x〉) −→t→∞ 0.

By f ∈ L2/〈x〉, we mean that 〈x〉 f ∈ L2, and ‖ f ‖L2/〈x〉 := ‖〈x〉 f ‖L2 . If d ≥ 5
the convergence rate ‖ f (t) − f∞‖2 � t−d/2+1 holds. See Sect. 6.4 for a discussion in
dimension 3.

By a careful inspection of the proof, it is also possible to quantify how large n should
be in dimension 3 (at least of order 20, see Remark 6.5), and how small ε should be (at
least smaller than 1/24).

In both theorems, the size of k and n can be slightly decreased by working in frac-
tional Sobolev spaces, but since it would remain quite large we chose to avoid these
technicalities.
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Some tools and notations. Most of our tools are standard analysis, except a singular
multiplier estimate.

Functional spaces The usual Lebesgue spaces are L p with norm ‖ · ‖p, the Lorentz
spaces are L p,q . If R

+ corresponds to the time variable, and for B a Banach space, we
write for short L p(R+, B) = L p

t B, similarly L p([0, T ], B) = L p
T B.

For k ∈ N, the Sobolev spaces are Wk,p = {u ∈ L p : ∀ |α| ≤ k, Dαu ∈ L p}.
For kp < d, the homogeneous spaces Ẇ k,p is the closure of S(Rd) for the norm∑

|α|=k ‖Dαu‖L p . We recall the Sobolev embeddings

∀ kp < d, Ẇ k,p(Rd) ↪→ Lq,p ↪→ Lq , q = dp

d − kq
, ∀ kp > d, Wk,p(Rd) ↪→ L∞.

If p = 2, as usual Wk,2 = Hk , for which we have equivalent norm (
∫

Rd (1 + |ξ |2)k |
û|2dξ)1/2, we define similarly Hs for s ∈ R and Ḣ s for which the embeddings remain
true. TheBessel potential spaces Hs,p are defined by ‖u‖Hs,p := ‖(1−�)s/2u‖L p < ∞.
For s a positive integer they coincide with the usual Sobolev spaces. They satisfy the
Sobolev embedding Hs,p ↪→ Hs′,q , 1/q = 1/p − (s − s′)/d. The following dual
estimate will be of particular use

∀ d ≥ 3, ‖u‖Ḣ−1 � ‖u‖L2d/(d+2) .

We will use the following Gagliardo-Nirenberg type inequality (see for example [28])

∀ l ≤ p ≤ k − 1 integers, ‖Dlu‖L2k/p � ‖u‖(k−p)/(k+l−p)
L2k/(p−l) ‖Dk+l−pu‖l/(k+l−p)

L2 , (2.5)

and its consequence

∀ |α| + |β| = k, ‖Dα f Dβg‖L2 � ‖ f ‖∞‖g‖Ḣ k + ‖ f ‖Ḣ k‖g‖∞. (2.6)

Finally, we have the basic composition estimate (see [5]): for F smooth, F(0) = 0,
u ∈ L∞ ∩Wk,p then2

‖F(u)‖Wk,p � C(k, ‖u‖∞))‖u‖Wk,p . (2.7)

Non standard notations Since we will often estimate indistinctly z or z, we follow the
notations introduced in [22]: z+ = z, z− = z, and z± is a placeholder for z or z. The
Fourier transform of z is indistinctly ẑ or F(z), however we also need to consider the
profile e−i t H z, whose Fourier transform will be denoted z̃± := e∓i t H(ξ) ẑ±.

When there is no ambiguity, we write Wk, 1p (or L
1
p ) instead of Wk,p (or L p) since

it is convenient to use Hölder’s inequality.

Multiplier theorems The Riesz multiplier Ri := ∇/|∇| is bounded on L p, 1 < p < ∞.
A bilinear Fourier multiplier is defined by its symbol B(η, ξ), it acts on ( f, g) ∈ S(Rd)

B̂[ f, g](ξ) =
∫

Rd
B(η, ξ − η) f̂ (η)ĝ(ξ − η)dη.

2 k ∈ R
+ is allowed, but not needed.
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Theorem 2.3 (Coifman-Meyer). If ∂α
ξ ∂

β
η B(ξ, η) � (|ξ | + |η|)−|α|−|β|, for sufficiently

many α, β then for any 1 < r, p, q < ∞, 1/r = 1/p + 1/q,

‖B( f, g)‖r � ‖ f ‖p‖g‖q .
If moreover supp(B(η, ξ − η)) ⊂ {|η| � |ξ − η|}, (p, q, r) are finite and k ∈ N then

‖∇k B( f, g)‖r � ‖∇k f ‖p‖g‖q .
Mixing this result with the Sobolev embedding, we get for 2 < p, q < ∞, 1

p + 1
q = 1

2

‖ f g‖Hs � ‖ f ‖L p‖g‖Hs,q + ‖g‖L p‖ f ‖Hs,q � ‖ f ‖L p‖g‖Hs+d/p + ‖g‖L p‖ f ‖Hs+d/p .

(2.8)

Due to the limited regularity of ourmultipliers, wewill need amultiplier theoremwith
loss from [19] (inspired by corollary 10.3 from [22]). Let us first describe the norm on
symbols: forχ j a smoothdyadic partition of the space, supp(χ j ) ⊂ {2 j−2 ≤ |x | ≤ 2 j+2},
we set

‖B(η, ξ − η)‖L̃∞ξ Ḃs
2,1,η

:= ‖2 jsχ j (∇η)B(η, ξ − η)‖l1(Z,L∞ξ L2
η),

‖B(ξ − ζ, ζ )‖L̃∞ξ Ḃs
2,1,ζ

:= ‖2 jsχ j (∇ζ )B(ξ − ζ, ζ )‖l1(Z,L∞ξ L2
ζ ).

The second norm is motivated by the equivalent formula for the action of a bilinear
multiplier B̂[ f, g] = ∫

Rd B(ξ − ζ, ζ ) f̂ (ξ − ζ )ĝ(ζ )dζ . The relevant norm for rough
multiplier estimates is

‖B‖[Bs ] = min
(‖B(η, ξ − η)‖L̃∞ξ Ḃs

2,1,η
, ‖B(ξ − ζ, ζ )‖L̃∞ξ Ḃs

2,1,ζ

)
.

Theorem 2.4 [19]. Let 0 ≤ s ≤ d/2, q1, q2 such that
1

q2
+
1

2
= 1

q1
+

(
1

2
− s

d

)

,3 and

2 ≤ q ′1, q2 ≤
2d

d − 2s
, then

‖B( f, g)‖Lq1 � ‖B‖[Bs ]‖ f ‖Lq2 ‖g‖L2 .

Furthermore for
1

q2
+

1

q3
= 1

q1
+

(
1

2
− s

d

)

, 2 ≤ qi ≤ 2d
d−2s with i = 2, 3,

‖B( f, g)‖Lq1 � ‖B‖[Bs ]‖ f ‖Lq2 ‖g‖Lq3 .

In practice, it is simpler to estimate ‖B‖L∞ξ Ḣ s and use the interpolation estimate (see

[22])

‖B‖L̃∞ξ Ḃs
2,1,η

� ‖B‖θ

L∞ξ Ḣ s1
‖B‖1−θ

L∞ξ Ḣ s2
, s = θs1 + (1− θ)s2.

Dispersion for the group e−i t H According to (1.4), the linear part of the equation
reads ∂t z − iHz = 0, with H = √−�(g̃′(Lc) −�) (see also Sect. 4). With a change
of variable it reduces to g̃′(Lc) = 2, set H = √−�(2−�), and use the dispersive
estimate from [20], the version in Lorentz spaces follows from real interpolation as
pointed out in [22].

3 We write the relation between (q1, q2) in a rather odd way in order to emphasize the similarity with the
standard Hölder’s inequality.
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Theorem 2.5 [20,22]. For 2 ≤ p ≤ ∞, s ∈ R, U = √−�/(2−�), we have

‖eit Hϕ‖Ḃs
p,2

�
‖U (d−2)(1/2−1/p)ϕ‖Ḃs

p′,2
td(1/2−1/p)

,

and for 2 ≤ p < ∞

‖eit Hϕ‖L p,2 �
‖U (d−2)(1/2−1/p)ϕ‖L p′,2

td(1/2−1/p)
.

Remark 2.4. The slight low frequency gainU (d−2)(1/2−1/p) is due to the fact that H(ξ) =
|ξ |√2 + |ξ |2 behaves like |ξ | at low frequencies, which has a strong angular curvature
and no radial curvature.

Remark 2.5. Combining the dispersion estimate and the celebrated T T ∗ argument,
Strichartz estimates follow

‖eit Hϕ‖L pLq � ‖U d−2
2 (1/2−1/p)ϕ‖L2 ,

2

p
+
d

q
= d

2
, 2 ≤ p ≤ ∞,

however the dispersion estimates are sufficient for our purpose.

3. Reformulation of the Equations and Energy Estimate

As observed in [6], setting w = √
K/ρ∇ρ, L the primitive of

√
K/ρ such that L(ρc) =

1, L = L(ρ), z = u + iw the Euler–Korteweg system rewrites

∂t L + u · ∇L + a(L)divu = 0,

∂t u + u · ∇u − w · ∇w − ∇(a(L)divw) = −g̃′(L)w,

∂tw + ∇(u · w) + ∇(a(L)divu) = 0,

where the third equation is just the gradient of the first one. Setting � = L − 1, in the
potential case u = ∇φ, the system on φ, � then reads

{

∂tφ +
1

2

(|∇φ|2 − |∇�|2)− a(1 + �)�� = −g̃(1 + �),

∂t� + ∇φ · ∇� + a(1 + �)�φ = 0,
(3.1)

with g̃(1) = 0 since we look for integrable functions. As a consequence of the stability
condition (2.1), up to a change of variables we can and will assume through the rest of
the paper that

g̃′(1) = 2. (3.2)

The number 2 has no significance except that this choice gives the same linear part as
for the Gross–Pitaevskii equation linearized near the constant state 1.

Proposition 3.1. Let n > d/4 + 1/2, under the following assumptions

• (∇φ0, �0) ∈ H2n × H2n+1,
• Normalized (2.1): g̃′(1) = 2,
• L(x, t) = 1 + �(x, t) ≥ m > 0 for (x, t) ∈ R

d × [0, T ],
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there exists a continuous function C and a constant c depending only on m such that the
solution of (3.1) satisfies the following estimate

‖∇φ(t)‖H2n + ‖�(t)‖H2n+1

≤ c
(‖∇φ0‖H2n + ‖�0‖H2n+1

)
exp

(∫ t

0
C
(‖�‖L∞ ,

∥
∥
∥
∥

1

� + 1

∥
∥
∥
∥
L∞

, ‖z‖L∞
)

× (‖∇φ(s)‖W 1,∞ + ‖�(s)‖W 2,∞)ds

)

,

where z(s) = ∇φ(s) + i∇�(s).

This is almost the same estimate as in [6] but for an essential point: in the integrand
of the right hand side there is no constant added to ‖∇φ(s)‖W 1,∞ +‖�(s)‖W 2,∞ , the price
to pay is that we cannot control φ but its gradient (this is natural since the difficulty is
related to the low frequencies). Before going into the detail of the computations, let us
underline on a very simple example the idea behind it. We consider the linearized system

∂tφ −�� + 2� = 0, (3.3)

∂t l + �φ = 0. (3.4)

Multiplying (3.3) by φ, (3.4) by �, integrating and using Young’s inequality leads to the
“bad” estimate

d

dt

(‖φ‖2L2 + ‖�‖2L2

)
� 2(‖φ‖2L2 + ‖�‖2L2),

on the other hand if we multiply (3.3) by −�φ, (3.4) by (−� + 2)� we get

d

dt

∫

Rd
(
|∇�|2 + |∇φ|2

2
+ �2)dx = 0,

the proof that follows simply mixes this observation with the gauge method from [6].

Proof. Let us start with the equation on z = ∇φ+i∇� = u+iw, we recall that g̃′(1) = 2,
so that we write it

∂t z + z · ∇z + i∇(adivz) = −2w + (2− g̃′(1 + �))w. (3.5)

We shortly recall the method from [6] that we will slightly simplify since we do not
need to work in fractional Sobolev spaces. Due to the quasi-linear nature of the system
(and in particular the bad “non transport term” iw · ∇z), it is not possible to directly
estimate ‖z‖H2n by energy estimates, instead one uses a gauge functionϕn(ρ) and control
‖ϕn�

nz‖L2 . When we take the product of (3.5) with ϕn real, a number of commutators
appear:

ϕn�
n∂t z = ∂t (ϕn�

nz) − (∂tϕn)�
nz = ∂t (ϕn�

nz) + C1, (3.6)

ϕn�
n(u · ∇z) = u · ∇(ϕn�

nz) + [ϕn�
n, u · ∇]z := u · ∇(ϕn�

nz) + C2, (3.7)

iϕn�
n(w · ∇z) = iw · ∇(ϕn�

nz) + [ϕn�
n, w · ∇]z := iw · ∇(ϕn�

nz) + C3. (3.8)

The term ∇(adivz) requires a bit more computations:

iϕn�
n∇(adivz) = i∇(ϕn�

n(adivz))− i(∇ϕn)�
n(adivz),
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then using recursively �( f g) = 2∇ f · ∇g + f �g + (� f )g we get

�n(adivz) = adiv�nz + 2n(∇a) ·�nz + C,

where C contains derivatives of z of order at most 2n − 1, so that

iϕn�
n∇(adivz) = i∇

(

ϕn
(
adiv�nz + 2n(∇a) ·�nz

)
)

− i∇ϕnadiv�
nz + i∇(ϕnC)

= i∇(
adiv(ϕn�

nz)
)
+ 2in∇a · ϕn∇�nz − ia(∇ + Iddiv)�

nz · ∇ϕn

+C4, (3.9)

whereC4 contains derivatives of z of order at most 2n (in particular∇(ϕnC) is included)
and by notation Iddiv�nz ·∇ϕn = div(�nz)∇ϕn . Finally, we defineC5 = −ϕn�

n
(
(2−

g̃′(1 + �))w
)
. The equation on ϕn�

nz thus reads

∂t (ϕn�
nz) + u · ∇(ϕn�

nz) + i∇(
adiv(ϕn�

nz)
)
+ 2ϕn�

nw + iw · ∇(ϕn�
nz)

= −
5∑

1

Ck − 2inϕn∇�nz · ∇a + ia(∇ + Iddiv)�
nz · ∇ϕn . (3.10)

Taking the (complex) scalar product with ϕn�
nz, integrating and taking the real part

gives for the first four terms

1

2

d

dt

∫

Rd
(ϕn�

nz)2dx − 1

2

∫

Rd
divu|ϕn�

nz|2dx +
∫

Rd
2ϕ2

n�
nw�nu dx . (3.11)

And we are left to control the remainder terms from (3.8, 3.9). Using w = a
ρ
∇ρ,

ϕn = ϕn(ρ), we rewrite

iϕnw · ∇(�nz) + 2niϕn∇(�nz) · ∇a − ia∇(�nz) · ∇ϕn − ia∇ϕn div�
nz

= iϕn

(

w · ∇ − a∇ϕn

ϕn
· ∇ − a∇ϕn

ϕn
div + 2n∇a · ∇

)

�nz

= iϕn

[(
a

ρ
− a

ϕ′
n

ϕn

)

∇ρ · ∇ − aϕ′
n

ϕn
∇ρ div + 2na′∇ρ · ∇

]

�nz. (3.12)

If the div operator was a gradient, the most natural choice for ϕn would be

a

ρ
− 2aϕ′

n

ϕn
+ 2na′ = 0 ⇔ ϕ′

n

ϕn
= 1

2ρ
+
na′

a
⇐ ϕn(ρ) = an(ρ)

√
ρ.

We make this choice, the remainder (3.12) rewrites

[(
a

ρ
− a

ϕ′
n

ϕn

)

∇ρ · ∇ − aϕ′
n

ϕn
∇ρdiv + 2na′∇ρ · ∇

]

�nz

=
(

a

2ρ
+ na′

)

∇ρ · (∇ − Iddiv)�
nz.
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Using the fact that ϕn(a/(2ρ) + na′)(ρ)∇ρ is a real valued gradient, say ∇G(ρ), the
fact that z is irrotationnal and setting zn = �nz, we have the following identity (with
the Hessian Hess(G)):

Im
∫

Rd
zn · (∇ − Iddiv)zn · ∇G(ρ)dx = Im

∑

i, j

∫

Rd
zi,n∂ j zi,n∂ j G − zi,n∂ j z j,n∂i G

= Im
∑

i, j

∫

Rd
znHess(G)zn − �G|zn|2

−∂ j Gzi,n(∂ j zi,n − ∂i z j,n)dx

= 0,

so that the contribution of (3.12) in the energy estimate is actually 0. Finally, we have
obtained

1

2

d

dt

∫

‖ϕn�
nz‖2L2dx − 1

2

∫

Rd
(divu)|ϕn�

nz|2 + 2
∫

ϕ2
n�

nw�nu dx

= −
∫ 5∑

k=1

Ckϕn�
nzdx . (3.13)

Note that the terms Ckϕn�
nz are cubic while ϕn�

nw�nu is only quadratic, thus we
will simply bound the first ones while we will need to cancel the later.

Control of the Ck: From their definition, it is easily seen that the (Ck)2≤i≤4 only contain
terms of the kind ∂α f ∂βg with f, g = u or w, |α| + |β| ≤ 2n, thus

∀ 2 ≤ k ≤ 4,

∣
∣
∣
∣

∫

Ckϕn�
nzdx

∣
∣
∣
∣ �

∑

|α|+|β|≤2n, f,g=u or w

‖∂α f ∂βg‖L2‖z‖H2n .

When |α| = 0, |β| = 2n, we have obviously ‖ f ∂βg‖L2 � ‖ f ‖∞‖g‖H2n , while the
general case ‖∂α f ∂βg‖2 � ‖ f ‖∞‖g‖H2n + ‖g‖∞‖ f ‖H2n is Gagliardo-Nirenberg’s
interpolation inequality (2.6). We deduce

∀ 2 ≤ k ≤ 4,

∣
∣
∣
∣

∫

Ckϕn�
nzdx

∣
∣
∣
∣ � ‖z‖∞‖z‖2H2n .

Let us deal now with C1 = −∂tϕn�
nz, since ∂tϕn = −ϕ′

ndiv(ρu) we have
∣
∣
∣
∣

∫

Rd
C1ϕn�

nzdx

∣
∣
∣
∣ � F

(‖�‖L∞ , ‖ 1

� + 1
‖L∞

)
(‖u‖W 1,∞ + ‖z‖2L∞)‖z‖2H2n ,

with F a continuous function.
We now estimate the contribution ofC5 = −ϕn�

n
(
(2−g̃′(1+�))w

)
: since g̃′(1) = 2,

from the composition rule (2.7)wehave‖g̃′(1+�)−2‖H2n �F1(‖�‖L∞ , ‖ 1
�+1‖L∞)‖�‖H2n

with F1 a continuous function so that
∣
∣
∣
∣

∫

Rd
C5ϕn�

nzdx

∣
∣
∣
∣ � ‖(2− g̃′)w‖H2n‖z‖H2n

� (‖(2− g̃′(1 + �))‖L∞‖z‖H2n

+ F1
(‖�‖L∞ , ‖ 1

� + 1
‖L∞

)‖�‖H2n‖w‖∞‖z‖H2n .
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To summarize, for any 1 ≤ k ≤ 5, we have

∣
∣
∣
∣

∫

Rd
Ckϕn�

nzdx

∣
∣
∣
∣

� F2(‖�‖L∞ , ‖ 1

� + 1
‖L∞)(‖�‖∞+‖z‖W 1,∞+‖z‖2L∞)(‖�‖2H2n +‖z‖2H2n ), (3.14)

with F2 a continuous function.

Cancellation of the quadratic term. We start with the equation on � to which we apply
ϕn�

n , multiply by ϕn(�
n�)/a and integrate in space

∫

Rd

ϕ2
n

a
�nl∂t�

nl +
ϕ2
n

a
(�n�)�n(∇φ · ∇�) + ϕ2

n�
n�

�n(a�φ)

a
= 0.

Commuting �n and a, and using an integration by part, this rewrites

1

2

d

dt

∫

Rd

ϕ2
n

a
(�n�)2dx −

∫

Rd
∂t

(
ϕ2
n

2a

)

|�n�|2dx +
∫

Rd

ϕ2
n

a
(�n�)�n(∇φ · ∇�)

+
∫

Rd
ϕ2
n�

n���nφdx +
ϕ2
n

a
�n�[�n, a]�φdx

= 1

2

d

dt

∫

Rd

ϕ2
n

a
(�n�)2dx −

∫

Rd
∂t

(
ϕ2
n

2a

)

|�n�|2dx +
∫

Rd

ϕ2
n

a
(�n�)�n(∇φ · ∇�)

−
∫

Rd
ϕ2
n ∇�n� · ∇�nφ dx −

∫

Rd
�n�∇ϕ2

n · ∇�nφ dx +
ϕ2
n

a
�n�[�n, a]�φdx .

We remark here that the integrand only depends on �,∇φ and their derivatives, therefore
using the same commutator arguments as previously, we get the bound

1

2

d

dt

∫

Rd

ϕ2
n

a
(�n�)2dx −

∫

Rd
ϕ2
n(�

n∇φ) ·�n∇�dx

� F3(‖�‖L∞ , ‖ 1

� + 1
‖L∞)(‖�‖∞ + ‖z‖W 1,∞ + ‖z‖2L∞)(‖�‖2H2n + ‖z‖2H2n ), (3.15)

with F3 a continuous function. Now if we add (3.13) to 2× (3.15) and use the estimates
on (Ck) we obtain

1

2

d

dt

(‖ϕn�
nz‖2L2 + 2‖ϕn�

n�‖2L2

)

� F4(‖�‖L∞ , ‖ 1

� + 1
‖L∞)(‖�‖∞ + ‖z‖W 1,∞ + ‖z‖2L∞)(‖�‖2H2n + ‖z‖2H2n ),

with F4 a continuous function. The conclusion then follows from Gronwall’s lemma.
��
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4. Global Well-Posedness in Dimension Larger than 4

We first make a further reduction of the equations that will be also used for the cases
d = 3, 4, namely we rewrite it as a linear Schrödinger equation with some remainder.
In addition to g̃′(1) = 2, we can also assume a(1) = 1, so that (3.1) rewrites4

{

∂tφ − �� + 2� = (a(1 + �) − 1)��− 1

2

(|∇φ|2 − |∇�|2) + (2�− g̃(1 + �)),

∂t l + �φ = −∇φ · ∇� + (1− a(1 + �))�φ.
(4.1)

The linear part precisely corresponds to the linear part of the Gross–Pitaevskii equation.
In order to diagonalize it, following [20] we set

U =
√ −�

2−�
, H = √−�(2−�), φ1 = Uφ, �1 = �.

The equation writes in the new variables
⎧
⎨

⎩

∂tφ1 + H�1 = U

(

(a(1 + �1)− 1)��1 − 1

2

(|∇U−1φ1|2 − |∇�1|2
)
+ (2�1 − g̃(1 + �1))

)

,

∂t�1 − Hφ1 = −∇U−1φ1 · ∇�1 − (1− a(1 + �1))Hφ1.

(4.2)

In a more compact notation if we set ψ = φ1 + i�1, ψ0 = (Uφ + il)|t=0, the Duhamel
formula gives

ψ(t) = eit Hψ0 +
∫ t

0
ei(t−s)HN (ψ(s))ds, (4.3)

with N (ψ) = U
(
(a(1 + �1)− 1)��1 − 1

2

(|∇U−1φ1|2 − |∇�1|2
)
+ (2�1 − g̃(1 + �1))

)

+ i
(− ∇U−1φ1 · ∇�1 −

(
1− a(1 + �1)

)
Hφ1

)
. (4.4)

We underline that for low frequencies the situation is more favorable than for the Gross–
Pitaevskii equation, as all the terms where U−1 appears already contain derivatives that
compensate this singular multiplier. Note however that the Gross–Pitaevskii equations
are formally equivalent to this system in the special case K (ρ) = κ/ρ via the Madelung
transform, so our computations are a new way of seeing that these singularities can be
removed in appropriate variables. Let us now state the key estimate:

Proposition 4.1. Let d ≥ 5, T > 0, k ≥ 2, N ≥ k + 2 + d/2, we set ‖ψ‖XT =
‖ψ‖L∞([0,T ],HN ) + sup

t∈[0,T ]
(1 + t)d/4‖ψ(t)‖Wk,4 , then the solution of (4.3) satisfies

∀ t ∈ [0, T ], ‖ψ(t)‖Wk,4 �
‖ψ0‖Wk,4/3 +‖ψ0‖HN +G(‖ψ‖XT , ‖ 1

1+�1
‖L∞T (L∞))‖ψ‖2XT

(1 + t)d/4 ,

with G a continuous function.

4 The assumption a(1) = 1 should add some constants in factor of the nonlinear terms, we will neglect it
as it will be clear in the proof that multiplicative constants do not matter.
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Proof. We start with (4.3). From the dispersion estimate of Theorem 2.5 and the Sobolev
embedding, we have for any t ≥ 0

(1 + t)d/4‖eit Hψ0‖Wk,4 � (1 + t)d/4 min

(‖U (d−2)/4ψ0‖Wk,4/3

td/4 , ‖ψ0‖HN

)

� ‖ψ0‖Wk,4/3 + ‖ψ0‖HN .

The only issue is thus to bound the nonlinear part. Let f, g be a placeholder for �1 or
U−1φ1, there are several kind of terms : ∇ f · ∇g, (a(1 + �1)− 1)� f , 2�1 − g̃(1 + �1),
|∇ f |2, ∇ f · ∇g. The estimates for 0 ≤ t ≤ 1 are easy (it corresponds to the existence
of strong solution in finite time), so we assume 1 ≤ t ≤ T and we split the integral from
(4.3) between [0, t − 1] and [t − 1, t]. For the first integral we have from the dispersion
estimate and (2.8):

∥
∥
∥
∥

∫ t−1

0
ei(t−s)H∇ f · ∇g ds

∥
∥
∥
∥
Wk,4

�
∫ t−1

0

‖∇ f · ∇g‖Wk,4/3

(t − s)d/4 ds

�
∫ t−1

0

‖∇ f ‖Hk‖∇g‖Wk−1,4

(t − s)d/4 ds,

� ‖ψ‖2XT

∫ t−1

0

1

(t − s)d/4(1 + s)d/4 ds

�
‖ψ‖2XT

td/4 .

We have used the fact that ∇U−1 is bounded W 1,p → L p, 1 < p < ∞ so that
‖∇ f (s)‖Hk � ‖ f ‖XT for s ∈ [0, t], (1 + s)d/4‖∇g‖Wk−1,4 � ‖g‖XT .

For the second part on [t − 1, t] we use the Sobolev embedding Hd/4 ↪→ L4 and
(2.8):
∥
∥
∥
∥

∫ t

t−1
ei(t−s)H (∇ f · ∇g)ds

∥
∥
∥
∥
Wk,4

�
∫ t

t−1

∥
∥∇ f · ∇g

∥
∥
Hk+d/4ds

�
∫ t

t−1
‖∇ f ‖L4‖∇g‖Hk+d/2 + ‖∇g‖L4‖∇ f ‖Hk+d/2ds

� ‖ψ‖2XT

∫ t

t−1

1

(1 + s)
d
4

ds �
‖ψ‖2XT

(1 + t)d/4 .

The terms of the kind (a(1 + �1) − 1)� f are estimated similarly: splitting the integral
over [0, t − 1] and [t − 1, t],
∥
∥
∥
∥

∫ t−1

0
ei(t−s)H (a(1 + �1)− 1)� f ds

∥
∥
∥
∥
Wk,4

�
∫ t−1

0

‖a(1 + �1) − 1‖Wk,4‖� f ‖Hk

(t − s)d/4 ds

�
∫ t−1

0

‖a(1 + �1) − 1‖Wk,4‖∇ f ‖Hk+1

(t − s)d/4 ds.

As for the first kind terms, from the composition estimate we deduce that:

‖a(1 + �1) − 1‖Wk,4 � F(‖�1‖L∞T (L∞), ‖ 1

1 + �1
‖L∞T (L∞))‖�1‖Wk,4 ,



Global Well-Posedness of the Euler–Korteweg System 219

with F continuous,wecanbound the integral aboveby F(‖ψ‖XT , ‖ 1
1+�1

‖L∞T (L∞))‖ψ‖2XT

/td/4. For the integral over [t − 1, t] we can do again the same computations using
the composition estimates ‖a(1 + �1) − 1‖Hk+d/2 � F1(‖�1‖L∞T (L∞), ‖ 1

1+�1
‖L∞T (L∞))

‖�1‖Hk+d/2 with F1 continuous. The restriction N ≥ k + 2 + d/2 comes from the fact
that we need ‖� f ‖Hk+d/2 � ‖ f ‖XT .

Writing 2�1− g̃(1+�1) = �1(2− g̃(�1)/�1)we see that the estimate for the last term
is the same as for (a(1 + �1)− 1)� f but simpler so we omit it. ��

End of the proof of theorem (2.1). We fix k > 2 + d/4, n such that 2n + 1 ≥ k + 2+ d/2,
and use these values for XT = L∞([0, T ], H2n+1 ∩ (1 + t)−d/4Wk,4). First note that
since L is a smooth diffeomorphism near 1 and u0 = ∇φ0, we have

‖u0‖H2n∩Wk−1,4/3 + ‖ρ0 − ρc‖H2n+1∩Wk,4/3 ∼ ‖(Uφ0,L−1(1 + �0)− 1)‖(H2n+1∩Wk,4/3)2

∼ ‖ψ0‖H2n+1∩Wk,4/3 ,

if ‖�0‖∞ is small enough. In particular we will simply write the smallness condition in
termofψ0.Nowusing the embeddingWk,4 ↪→ W 2,∞, the energy estimate of proposition
(3.1) implies

‖ψ(t)‖H2n+1 � ‖ψ0‖H2n+1exp

(

C(‖ψ‖XT )

∫ t

0
‖ψ‖Wk,4ds

)

,

with C continuous. Combining it with the decay estimate of proposition (4.1) we get
with G continuous

‖ψ‖XT ≤ C1

(

‖ψ0‖Wk,4/3 + ‖ψ0‖H2n+1 + ‖ψ‖2XT
G(‖ψ‖XT , ‖ 1

1 + �
‖L∞T (L∞))

+‖ψ0‖H2n+1exp

(

C(‖ψ‖XT , ‖ 1

1 + �
‖L∞T (L∞))

∫ T

0
‖ψ‖Wk,4ds

)

≤ C1

(

‖ψ0‖Wk,4/3 + ‖ψ0‖H2n+1 + ‖ψ‖2XT
G(‖ψ‖XT , ‖ 1

1 + �
‖L∞T (L∞))

+‖ψ0‖H2n+1exp
(
C
(‖ψ‖XT , ‖ 1

� + 1
‖L∞T (L∞))‖ψ‖XT

)
)

.

For ‖ψ‖XT small enough, we have ‖1/(1 + �1)‖∞ � 1 + ‖ψ‖XT , so that from the usual
bootstrap argument we find that for ‖ψ0‖Wk,4/3 + ‖ψ0‖HN ≤ ε small enough then for
any T > 0, ‖ψ‖XT ≤ 3C1ε (it suffices to note that for ε small enough, the application
m �→ C1(ε + εeC

′m + m2) is smaller than m on some interval [a, b] ⊂]0,∞[ with
a � 2C1ε).

In particular ‖�‖∞ � ε and up to diminishing ε, we have

‖ρ − ρc‖L∞([0,T ]×Rd ) = ‖L−1(1 + �) − ρc‖∞ ≤ ρc/2.

This estimate and the H2n+1 bound allow to apply the blow-up criterion (see p.3) of [6]
to get global well-posedness.
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5. The Case of Dimension d = 3, 4: Normal Form, Bounds for Cubic and Quartic
Terms

In dimension d = 4 the approach of Sect. 4 fails, and d = 3 is even worse. Thus
we need to study more carefully the structure of the nonlinearity. We recall H =√−�(2− �), U = √−�/(2− �), and start with (4.2), that we rewrite in complex
form

∂tψ − i Hψ = U
[
(a(1 + �) − 1)�� − 1

2

(|∇φ|2 − |∇�|2) + (2l − g̃(1 + �))
]

+ i
[−∇φ · ∇� +

(
1− a(1 + �)

)
�φ)

]

= UN1(φ, �) + iN2(φ, �) = N (ψ). (5.1)

As explained in the introduction (see (1.11)), we can rewrite the Duhamel formula in
term of the profile e−i t Hψ . In particular, (the Fourier transform of) quadratic terms read

Iquad = eit H(ξ)

∫ t

0
e−is

(
H(ξ)∓H(η)∓H(ξ−η)

)

B(η, ξ − η)ψ̃±(η)ψ̃±(ξ − η)dηds, (5.2)

wherewe recall the notation ψ̃± = e∓i t H ψ̂±, andB is the symbol of a bilinearmultiplier.
For some ε > 0 to choose later, let 1/p = 1/6− ε, T > 0, N = 2n + 1 and set:

⎧
⎪⎨

⎪⎩

‖ψ‖YT = ‖xe−i t Hψ‖L∞T L2 + ‖〈t〉1+3εψ‖L∞T Wk,p ,

‖ψ‖X (t) = ‖ψ(t)‖HN + ‖xe−i t Hψ(t)‖L2 + ‖〈t〉1+3εψ(t)‖Wk,p ,

‖ψ‖XT = sup
[0,T ]

‖ψ‖X (t).
(5.3)

The linear part of the evolution is controlled thanks to theorem (2.5): uniformly in T

‖eit Hψ0‖XT � ‖ψ0‖HN∩Wk,p′ ∩(L2/〈x〉).

From the embedding W 3,p ⊂ W 2,∞, Proposition 3.1 implies

‖ψ‖L∞T H2n+1 � ‖ψ0‖H2n+1exp
(
C(‖�‖L∞T L∞ , ‖ 1

� + 1
‖L∞T L∞ , ‖∇ψ‖XT )‖ψ‖XT

)
. (5.4)

with C a continuous function. Thus the main difficulty of this section will be to prove
‖Iquad‖YT � ‖ψ‖2XT

, uniformly in T . Combined with the energy estimate (5.4) and
similar (easier) bounds for higher order terms, this provides global bounds for ψ which
imply global well-posedness.

In order to perform such estimates we can use integration by part in (5.2) either in s or
η (for the relevance of this procedure, see the discussion on space time resonances in the
introduction). It is thus essential to studywhere and atwhich orderwe have a cancellation
of �±,±(ξ, η) = H(ξ) ± H(η) ± H(ξ − η) or ∇η�±±. We will denote abusively

H ′(ξ) = 2+2|ξ |2√
2+|ξ |2 the radial derivative of H and note that ∇H(ξ) = H ′(ξ)ξ/|ξ |, we

also point out that H ′(r) = 2+2r2√
2+r2

is strictly increasing.

There are several cases that have some similarities with the situation for the Schröd-
inger equation, see (1.12), (1.13) and (1.14) for the definition of the resonant sets
T , S, R.
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• �++ = H(ξ) + H(η) + H(ξ − η) � (|ξ | + |η| + |ξ − η|)(1 + |ξ | + |η| + |ξ − η|), the
time resonant set is reduced to T = {ξ = η = 0},

• �−− = H(ξ)− H(η)− H(ξ − η), we have ∇η�−− = H ′(η)
η
|η| + H ′(ξ − η)

η−ξ
|η−ξ | .

From basic computations

∇η�−− = 0 ⇒
{
H ′(η) = H ′(ξ − η)
ξ−η
|η−ξ | = η

|η|
⇒

{ |η| = |ξ − η|
ξ = 2η .

On the other hand �−−(2η, η) = H(2η) − 2H(η) = 0 ⇔ η = 0, thus R = {ξ =
η = 0}.

• �−+ = H(ξ) − H(η) + H(ξ − η), from similar computations we find that the
space-time resonant set is R = S = {ξ = 0}. The case �+− is symmetric.

The fact that the space-time resonant set for �+− is not trivial explains why it is quite
intricate to bound quadratic terms. An other issue pointed out in [22] for their study
of the Gross–Pitaevskii equation is that the small frequency “parallel” resonances are
worse than for the nonlinear Schrödinger equation. Namely near ξ = εη, η << 1 we
have

H(εη) − H(η) + H((ε − 1)η) ∼ −3ε|η|3
2
√
2

= −3|ξ | |η|2
2
√
2

,

while |εη|2 − |η|2 + |(1− ε)η|2 ∼ −2|η| |ξ |,
we see that integrating by parts in time causes twice more loss of derivatives than
prescribed by Coifman-Meyer’s theorem, and there is no hope even for ξ/� to belong
to any standard class ofmultipliers. Thus it seems unavoidable to use the roughmultiplier
Theorem 2.4.

5.1. Normal form. Let us recall that the nonlinearity reads as UN1 + iN2. After an
integration by part in (5.2), it is necessary to divide the symbols of quadratic terms by �

or |∇η�|, and we pointed out that both quantities cancel at ξ = 0. For the real quadratic
terms, thanks to the factor U (ξ) ∼0 |ξ | there is some hope that the symbols U/|�| and
U/|∇η�| keep some boundedness properties, while on the imaginary part some terms
appear that are unavoidably singular at ξ = 0.

In the spirit of [22] we will use a normal form such that the new variables satisfy a
Schrödinger type equation where all quadratic terms have the same good structure as
the real ones (essentially of the form |∇| ◦ B[z, z] with B a smooth bilinear multipler).

Proposition 5.1. For B(η, ξ − η) := (a′(1)−1)η·(ξ−η)

2(2+|η|2+|ξ−η|2) , �1 = � − B[φ, φ] + B[�, �], then
�1 satisfies

∂t�1 + �φ = −αdiv(�∇φ) + R, (5.5)

where R contains cubic and higher order terms in ∇φ, �.

Proof. From now on, we will use the notation R as a placeholder for remainder terms
that should be at least cubic. In order to write the nonlinearity as essentially quadratic
we set a′(1) = α, and rewrite

Im(N )(ψ) = −α��φ −∇φ · ∇� +
[(
1 + α� − a(1 + �)

)
�φ

]

= −α��φ −∇φ · ∇� + R. (5.6)
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At the Fourier level, the quadratic terms −α��φ − ∇φ · ∇� can be written as follows:

− α��φ −∇φ · ∇� = −αdiv(�∇φ) + (α − 1)∇φ · ∇�. (5.7)

We define the change of variables as �1 = � − B[φ, φ] + B[�, �], without assumption
on B yet. We have

∂t
(− B[φ, φ] + B[�, �])

= 2B[φ, (−� + 2)�] + 2B[−�φ, �] + 2B
[
φ,N1(φ, �)

]
+ 2B

[
N2(φ, �), �

]

= 2B[φ, (−� + 2)�] + 2B[−�φ, �] + R, (5.8)

where the quadratic terms amount to a bilinear Fourier multiplier B ′[φ, �], with symbol
B ′(η, ξ − η) = 2B(η, ξ − η)

(|η|2 + 2 + |ξ − η|2). Using (5.7), (5.8) we see that the
evolution equation on �1 = �− B[φ, φ] + B[�, �] is

∂t�1 + �φ = B ′′(φ, �) − αdiv(l∇φ) + R,

B ′′(η, ξ − η) = 2B(η, ξ − η)(2 + |η|2 + |ξ − η|2) + (1− α)η · (ξ − η).

and we see that in order to cancel B ′′ we should set

B(η, ξ − η) = (α − 1)η · (ξ − η)

2(2 + |η|2 + |ξ − η|2) . (5.9)

For this choice, we have indeed:

∂t�1 + �φ = −αdiv(�∇φ) + R, (5.10)

which is the expected identity. ��

In addition we get from (4.1):

∂tφ −��1 + 2�1 = −�b(φ, �) + 2b(φ, �) + (a(1 + �) − 1)��− 1

2

(|∇φ|2 − |∇�|2)

+ (2� − g̃(1 + �)), (5.11)

with �1 = �− B[φ, φ] + B[�, �] = � + b(φ, �). Setting φ1 = Uφ the system becomes:

∂tφ1 + H�1 = U

(

α ���− 1

2

(|∇U−1φ1|2 − |∇�|2)

+(−� + 2)b(φ, �) − g̃′′(1)�2
)

+ R,

∂t�1 − Hφ1 = −αdiv(�∇φ) + R.
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Final form of the equation. Finally, if we replace in the quadratic terms � = �1−b(φ, �)
and set z = φ1 + i�1 we obtain

∂t z − i Hz = U
[
α �1��1 − 1

2

(|∇U−1φ1|2 − |∇�1|2 − g̃′′(1)�21
)
+ (−� + 2)b(φ, �1)

]− iαdiv(�1∇φ)

+U
[
α
(− b(φ, �)��1 − �1�b(φ, �) + b(φ, �)�b(φ, �)

)− 2∇b(φ, �) · ∇� + |∇b(φ, �)|2
+ (−� + 2)(−2B[�1, b(φ, �)] + B[b(φ, �), b(φ, �)])− g̃′′(1)(b(φ, �))2 + 2g̃′′(1)�1b(φ, �)

]

+ iαdiv(b(φ, �)∇φ) + R

:= Q(z) + R := Nz , (5.12)

where Q(z) contains the quadratic terms (the first line), R the cubic and quartic terms.

Remark 5.2. R contains a large amount of terms and we chose not to describe it in great
detail here. Its detailed analysis is provided in Sect. 5.2.

Remark 5.3. It is noticeable that this change of unknown is not singular in termof the new
variable φ1 = Uφ, indeed B(φ, φ) = B̃(∇φ,∇φ) where B̃(η, ξ − η) = α−1

(2+|η|2+|ξ−η|2)
is smooth, so that B(φ, φ) = B̃(∇U−1φ1,∇U−1φ1) acts on φ1 as a composition of
smooth bilinear and linear multipliers.

It remains to check that the normal form is well defined in our functional framework.
We shall also prove that is cancels asymptotically.

Proposition 5.4. We recall b(φ, l) = −B[φ, φ]+ B[l, ], B the bilinear multiplier given
in (5.9). For N > 4, k ≥ 2, the map φ1 + il �→ z := φ1 + i(�+b(φ, �)) is bi-Lipschitz on
the neighbourhood of 0 in X∞, Moreover, ψ = φ1 + i� and z have the same asymptotic
as t →∞:

‖ψ − z‖X (t) = O(t−1/2).

Proof. The terms B[φ, φ] and B[�, �] are handled in a similar way, we only treat the
first case which is a bit more involved as we have the singular relation φ = U−1φ1. Note
that B[φ, φ] = B̃(∇φ,∇φ), with B̃[η, ξ − η] = (α − 1) 1

2+|η|2+|ξ−η|2 , and ∇U−1 =
〈∇〉 ◦ Ri (we recall Ri = ∇/|∇|) so there is no real issue as long as we avoid the L∞
space. Also, we split B = Bχ|η|�|ξ−η| + B(1 − χ|η|�|ξ−η|) where χ is smooth outside

η = ξ = 0, homogeneous of degree 0, equal to 1 near {|ξ − η| = 0} ∩ S
2d−1 and 0 near

{|η| = 0} ∩ S
2d−1. As can be seen from the change of variables ζ = ξ − η, these terms

are symmetric so we can simply consider the first case.
First note that by interpolation,

∀ 2 ≤ q ≤ p, ‖ψ‖Wk,q � ‖ψ‖X (t)/〈t〉3(1/2−1/q). (5.13)

For the HN estimate we have from the Coifman-Meyer theorem (since the symbol B̃
has the form 1

2+|η|2+|ξ−η|2 ), the embedding H1 �→ L3 and the boundedness of the Riesz
multiplier,

‖B[U−1φ1,U
−1φ1]‖HN �

∥
∥∇U−1φ1

∥
∥
WN−2,3

∥
∥∇U−1φ1

∥
∥
L6 � ‖φ1‖2X (t)/〈t〉.
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For the weighted estimate ‖xe−i t H B[φ, φ]‖L2 , since φ = U−1(ψ + ψ)/2, we have a
collection of terms that read in the Fourier variable:

F
(
xe−i t H (χ|η|�|ξ−η|B)[U−1ψ±,U−1ψ±])

= ∇ξ

∫

e−i t�±±B1(η, ξ − η)ψ̃±(η)ψ̃±(ξ − η)dη,

where B1 = ηU−1(η) · (ξ − η)U−1(ξ − η)

2 + |η|2 + |ξ − η|2 χ|η|�|ξ−η|,

�±± = H(ξ)∓ H(η)∓ H(ξ − η).

If the derivative hits B1, in the worst case it adds a singular term U−1(ξ − η), so that
from the embedding Ḣ1 ↪→ L6

∥
∥
∥
∥

∫

e−i t�±±(∇ξ B1)ψ̃±(η)ψ̃±(ξ − η)dη

∥
∥
∥
∥
L2

= ∥
∥∇ξ B1[ψ±, ψ±]∥∥L2 � ‖U−1ψ‖W 1,6‖ψ‖W 1,3

� ‖ψ‖2X (t)/〈t〉1/2.

If the derivative hits ψ̃±(ξ − η) we use the fact that the symbol
〈ξ−η〉2χ|η|�|ξ−η|
2+|η|2+|ξ−η|2 is of

Coifman-Meyer type
∥
∥
∥
∥

∫

e−i t�±±B1(η, ξ − η)ψ̃±(η)∇ξ ψ̃±(ξ − η)dη

∥
∥
∥
∥
L2

� ‖〈∇〉ψ‖L6‖〈∇〉−2〈∇〉eit H xe−i t Hψ‖L3

� ‖ψ‖2X (t)/〈t〉.
Finally, if the derivative hits e−i t�±± we note that ∇ξ�±± = ∇ξ H(ξ) ∓ ∇ξ H(ξ − η),
where both term are multipliers of order 1 so

∥
∥
∥
∥

∫

e−i t�±± i t (∇ξ�±±)B1ψ̃±(η)ψ̃±(ξ − η)dη

∥
∥
∥
∥
L2

� t‖ψ‖W 1,3‖ψ‖W 1,6

� ‖ψ‖2X (t)/〈t〉1/2.
TheWk,p norm is also estimated using theCoifman-Meyer theoremand the boundedness
of the Riesz multipliers:

‖B1[ψ±(t), ψ±(t)]‖Wk,p � ‖ψ‖2Wk−1,1/12−ε/2 � ‖ψ‖2Wk,1/6−ε �
‖ψ‖2X (t)

〈t〉2+6ε .

Gluing all the estimates we have proved

‖B[U−1ψ,U−1ψ]‖2X (t) � ‖ψ‖2X (t)/〈t〉1/2, ‖B[U−1ψ,U−1ψ]‖2X∞ � ‖ψ‖2X∞ ,

thus using the second estimate we obtain from a fixed point argument that the map
φ1 + il �→ φ1 + i(�− B[φ, φ] + B[�, �]) defines a diffeomorphism on a neighbourhood
of 0 in X∞. The first estimate proves the second part of the proposition. ��

With similar arguments, we can also obtain the following:

Proposition 5.5. Let z0 = Uφ0 + i(�0− B[φ0, φ0]+ B[�0, �0]), the smallness condition
of theorem (2.2) is equivalent to the smallness of ‖z0‖H2n+1 + ‖xz0‖L2 + ‖z0‖Wk,p′ .
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5.2. Bounds for cubic and quartic nonlinearities. Let us first collect the list of terms in
R (see (5.6), (5.8), (5.12) with b = b(φ, �) ):

(1 + α� − (a(1 + �))�φ, B[φ,N1(φ, �)], B[N2(φ, �), �], iαdiv(b∇φ),

U
(
α(−b��1 − �1�b + b�b − 2∇b · ∇� + |∇b|2(−� + 2)b(φ,−b)

− 2B[�1, b] + B[b, b]).

We note that they are all either cubic (for example B[φ, |∇φ|2]) or quartic (for example
B[b, b]). B is a smooth bilinear multiplier and φ always appears with a gradient, so we
can replace everywhere φ by φ1 = Uφ up to the addition of Riesz multipliers.

Since the estimates are relatively straightforward, we only detail the case of the cubic
term B[φ, |∇φ|2] which comes from B[φ,N1(φ)] (quartic terms are simpler). Since
φ = U−1(ψ + ψ)/2 we are reduced to bound in YT (see 5.3) terms of the form

I (t) =
∫ t

0
ei(t−s)H B[U−1ψ±, |U−1∇ψ±|2]ds.

Proposition 5.6. For any T > 0, we have the a priori estimate

sup
[0,T ]

‖I (t)‖YT � ‖ψ‖3XT
.

Proof. The weighted bound

First let us write

xe−i t H I (t) =
∫ t

0
e−isH

(

(−is∇ξ H B[U−1ψ±, (U−1∇ψ±)2]
+ B[U−1ψ±, x(U−1∇ψ±)2]
+ ∇ξ B[U−1ψ±, (U−1∇ψ±)2]

)

ds

= I1(t) + I2(t) + I3(t).

Taking the L2 norm and using the Strichartz estimate with (p′, q ′) = (2, 6/5) we get

‖I1‖L∞T L2 � ‖(s∇ξ H)B[U−1ψ±, (U−1∇ψ±)2]‖L2(L6/5)

� ‖sB[U−1ψ±, (U−1∇ψ±)2]‖L2(W 1,6/5),

‖I2‖L∞T L2 � ‖B[U−1ψ±, x(U−1∇ψ±)2]‖L2(L6/5).

We have then from Coifman-Meyer’s theorem, Hölder’s inequality, continuity of the
Riesz operator and (5.13)

‖sB[U−1ψ±, (U−1∇ψ±)2]‖L2
T (W 1,6/5) �

∥
∥s‖ψ‖2W 2,6‖ψ‖H2

∥
∥
L2
T

� ‖ψ‖3XT
,

‖I2‖L∞T (L2) �
∥
∥‖ψ‖W 1,6‖x(∇U−1ψ±)2‖

L
3
2

∥
∥
L2
T
.

(5.14)
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The loss of derivatives in I2 can be controlled thanks to a paraproduct: let (χ j ) j≥0 with∑
χ j (ξ) = 1, supp(χ0) ⊂ B(0, 2), supp(χ j ) ⊂ {2 j−1 ≤ ξ ≤ 2 j+1}, j ≥ 1, and set

�̂ jψ := χ j ψ̂ , S jψ = ∑ j
0 �kψ . Then

(U−1∇ψ±)2=
∑

j≥0
(∇U−1S jψ

±)(∇U−1� jψ
±)+

∑

j≥1
(∇U−1S j−1ψ

±)(∇U−1� jψ
±).

For any term of the first scalar product we have

x
(
(∂kU

−1S jψ
±)(∂kU

−1� jψ
±)

) = (∂kU
−1S j xψ

±)(∂kU
−1� jψ

±)

+ ([x, ∂kU−1S j ]ψ±)(∂kU
−1� jψ

±).

FromHölder’s inequality, standard commutator estimates, theBesov embeddingW 3,6 ↪→
B2
6,1 and (6.1) we get

∑

j

‖(∂kU−1S j xψ
±)(∂kU

−1� jψ
±)‖L3/2 �

∑

j

2 j‖xψ‖L22 j‖� jψ‖L6

� ‖xψ‖L2‖ψ‖W 3,6 , (5.15)
∑

j

‖([x, ∂kU−1S j ]ψ±)(∂kU
−1� jψ

±)‖L3/2 � ‖U−1ψ‖H1‖ψ‖W 1,6

� ‖ψ‖2XT
/〈t〉. (5.16)

Moreover, xψ = xeit H e−i t Hψ = eit H xe−i t Hψ + i t∇ξ Hψ so that :

‖xψ(t)‖L2 � 〈t〉‖ψ‖XT .

Similar computations can be done for
∑

j≥1(∇U−1S j−1ψ
±)(∇U−1� jψ

±), finally
(5.15), (5.16) and (5.13) imply

‖x(U−1∇ψ±)2‖L3/2 � ‖ψ‖2XT
.

Plugging the last inequality in (5.14) we can conclude

‖I2‖L∞T L2 �
∥
∥‖ψ‖3XT

/〈t〉‖L2
T

� ‖ψ‖3XT
.

The Wk,p decay We split [0, t] = [0, t − 1] ∪ [t − 1, t]. On [0, t − 1] we apply the
dispersion estimate as in section 4:

∥
∥
∥
∥

∫ t−1

0
ei(t−s)H B[U−1ψ±, (U−1∇ψ±)2]ds

∥
∥
∥
∥
Wk,p

�
∫ t−1

0

‖B[U−1ψ±, (U−1∇ψ±)2]‖Wk,p′

(t − s)1+3ε
ds

�
∫ t−1

0

‖∇U−1ψ‖3
Wk,3p′

(t − s)1+3ε
ds

�
∫ t−1

0

‖ψ‖3
Wk+1,3p′

(t − s)1+3ε
ds. (5.17)
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We then use interpolation and the estimate (5.13) with q = 3p′ :

‖ψ‖Wk+1,3p′ � ‖ψ‖(J−1)/J
Wk,3p′ ‖ψ‖1/J

Wk+J,3p′ , ‖ψ(t)‖Wk,3p′ � ‖ψ(s)‖XT

〈s〉2/3−ε
.

Since 3p′ < 6, we have ‖ψ‖Wk+J,3p′ � ‖ψ‖Hk+J+1 by Sobolev embedding, so that for ε

small enough, J large enough such that (2− 3ε)(1− 1
J ) ≥ 1 + 3ε (but J ≤ N − k − 1)

we observe that:

‖ψ(s)‖3
Wk+1,3p′ �

‖ψ‖3XT

〈s〉1+3ε

Plugging this inequality in (5.17) we conclude :

∫ t−1

0

‖ψ‖3
Wk+1,3p′

(t − s)1+3ε
�

‖ψ‖3XT

〈t〉1+3ε .

For the integral on [t−1, t] it suffices to bound ‖ ∫ t
t−1 e

i(t−s)H B[U−1ψ±, (U−1∇ψ±)2]
ds‖Wk,p � ‖ ∫ t

t−1 ‖B[U−1ψ±, (U−1∇ψ±)2]ds‖Hk+2 and follow the argument of the
proof of Proposition 4.1. ��

6. Bounds for Quadratic Nonlinearities in Dimension 3, End of Proof

The following proposition will be repeatedly used (see proposition 4.6 [4] or [22]).

Proposition 6.1. Let χ ∈ C∞
c (R+) such that supp(χ) ⊂ [0, 2], χ |[0,1] = 1. We have the

following estimates with 0 ≤ θ ≤ 1:

‖ψ(t)‖Ḣ−1 � ‖ψ(t)‖X (t), (6.1)

‖U−2ψ‖L6 � ‖ψ(t)‖X (t), (6.2)

‖|∇|−2+ 5θ
3 χ(|∇|)ψ(t)‖L6 � min(1, t−θ )‖ψ(t)‖X (t),

‖|∇|θ (1− χ)(|∇|)ψ(t)‖L6 � min(t−θ , t−1)‖ψ(t)‖X (t),
(6.3)

‖U−1ψ(t)‖L6 � 〈t〉− 3
5 ‖ψ(t)‖X (t). (6.4)

In this section, we will assume ‖ψ‖XT << 1, in order to have that

∀m ≥ 2, ‖ψ‖2XT
+ ‖ψ‖mXT

≤ 2‖ψ‖2XT
.

All computations that follow can be done without any smallness assumption, but they
would require to always add in the end some ‖ψ‖mXT

, that we avoid for conciseness.
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6.1. The L p decay. We now prove decay for the quadratic terms in (5.12), namely

〈t〉1+3ε∥∥
∫ t

0
ei(t−s)H Q(z)(s)ds

∥
∥
Wk,p � ‖z‖2XT

.

For t ≤ 1, the estimate is a simple consequence of the product estimate5 ‖Q(z)‖Hk+2 �
‖z‖2

HN , and the boundedness of e
it H : Hs �→ Hs . Thus we focus on the case t ≥ 1 and

note that it is sufficient to bound t1+3ε‖ ∫ t
0 e

i(t−s)H Q(z)(s)ds‖Wk,p .
We recall that the quadratic terms have the following structure (see (5.12))

Q(z) = U
(
α �1��1 − 1

2

(|∇U−1φ1|2 − |∇�1|2 − g̃′′(1)�21
)
+ (−� + 2)b(φ, �1)

)

−iαdiv(�1∇U−1φ1), (6.5)

where b = −B[φ, φ] + B[�1, �1], B(η, ξ − η) = (α−1)η·(ξ−η)

2+|η|2+|ξ−η|2 so that any term in

Q is of the form (U ◦ Bj )[z±, z±], j = 1 . . . 5 where Bj satisfies Bj (η, ξ − η) �
2 + |η|2 + |ξ − η|2. From now on, we focus on the estimate

sup
0≤t≤T

〈t〉1+3ε∥∥
∫ t

0
ei(t−s)HU ◦ Bj [z±, z±](s)ds∥∥Wk,p � ‖z‖2XT

. (6.6)

6.1.1. Splitting of the phase space. Let (χa)a∈2Z be a standard dyadic partition of unity:
χa ≥ 0, supp(χa) ⊂ {|ξ | ∼ a}, ∀ ξ ∈ R

3\{0}, ∑
a χa(ξ) = 1.We define the frequency

localized symbol

Ba,b,c
j = χa(ξ)χb(η)χc(ζ )Bj (η, ξ − η), where ζ = ξ − η.

While there are actually only two variables (η, ξ), in order to fully exploit Theorem 2.4
it is convenient to consider B both as a function of η, ξ and of ζ, ξ . Note that due to the
relation ξ = η + ζ , we have only to consider Ba,b,c

j when a � b ∼ c, b � c ∼ a or
c � a ∼ b.

Consider the Fourier transform of the frequency localized term

F
(∫ t

0
ei(t−s)H (U ◦ Ba,b,c

j )[z±, z±](s)ds
)

= eit H(ξ)

∫ t

0

∫

Rd
e−is�U (ξ)Ba,b,c

j (η, ξ − η)z̃±(s, η)z̃±(s, ξ − η)dη ds,

where � = −i(H(ξ) ∓ H(η) ∓ H(ξ − η)), z̃± = F
(
(e−i t H z)±

)
. The main strategy

to obtain estimate (6.6) follows the idea described in the introduction paragraph 206.
Namely we perform an integration by part in the s or η variable, and use Theorem 2.4. In
order to do so, we need estimates on the bilinear symbols that appear after integration by
parts. The multiplier estimates are stated in Lemmas 6.1 and 6.2, however they require
a further localization. In the “Appendix” we construct a function �(ξ, η) such that

5 Q contains only derivatives of order at most 2, so N ≥ k + 5 suffices.
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� + (1−�) splits the phase space in non time resonant and non space resonant parts in
the following sense:

∀ a, b, c

{
�UBa,b,c

j := UBa,b,c,T
j satisfies the estimates of Lemma 6.1,

(1−�)UBa,b,c
j := UBa,b,c,X

j satisfies the estimates of Lemma 6.2.
(6.7)

Finally, we define

I a,b,c,T =
∫ t

0
ei(t−s)HU Ba,b,c,T

j ds, I a,b,c,X =
∫ t

0
ei(t−s)HU Ba,b,c,X

j ds.

Using integration by parts in time (resp. in the “space” variable η), we will prove

sup
[0,T ]

t1+3ε‖
∑

a,b,c

I a,b,c,T ‖Wk,p � ‖z‖2XT
, resp. sup

[0,T ]
t1+3ε‖

∑

a,b,c

I a,b,c,X‖Wk,p � ‖z‖2XT
.

The estimates of I a,b,c,T are made in Sect. 6.1.2, the estimates of I a,b,c,X are made in
Sect. 6.1.3.

Remark 6.2. The estimate
∑

a,b,c

sup
[0,T ]

t1+3ε‖I a,b,c,T ‖Wk,p � ‖z‖2XT
does not seem to be

true. We will see later that it is the summation in a which causes an issue, but this can be
overcome thanks to the fact that Theorem 2.4 only requires L∞ξ bounds for the symbols,
so that (crudely) we can replace the sum in a by an l∞a bound.

Remark 6.3. While this is hidden by our notations, the function� depends on the various
± cases, the phase space partition to treat a z2 type nonlinearity is not the same as for a
|z|2 type nonlinearity.

6.1.2. Control of non time resonant terms. The generic frequency localized quadratic
term is

eit H(ξ)

∫ t

0

∫

Rd
e−is(H(ξ)∓H(η)∓H(ξ−η)U (ξ)Ba,b,c,T

j

×(η, ξ − η)z̃±(s, η)z̃±(s, ξ − η)dη ds. (6.8)

Regardless of the ±, we set � = H(ξ) ∓ H(η) ∓ H(ξ − η). An integration by part

in s gives using the fact that e−is� = −1
i� ∂s(eis�) and ∂s z̃±(η) = e∓isH(η)(̂Nz)±(η),

∂s z̃±(ξ − η) = e∓isH(ξ−η)(̂Nz)±(ξ − η):

I a,b,c,T = F−1
(

eit H(ξ)
∫ t

0

∫

RN

1

i�
e−is�U (ξ)Ba,b,c,T

j (η, ξ − η)∂s
(
z̃±(η, s)z̃±(ξ − η, s)

)
dηds

)

−
[

F−1
(

eit H(ξ)
∫

RN

1

i�
e−is�(ξ,η)U (ξ)Ba,b,c,T

j (η, ξ − η)
(
z̃±(η, s)z̃±(ξ − η, s)

)
dηds

)]t

0

=
∫ t

0
ei(t−s)H

(

Ba,b,c,T
3 [(Nz)

±(s), z±(s)] + Ba,b,c,T
3 [z±(s), (Nz)

±(s)]
)

ds

− [
ei(t−s)HBa,b,c,T

3 [z±(s), z±(s)]]t0,
(6.9)
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with Ba,b,c,T
3 (η, ξ − η) = U (ξ)

i�
Ba,b,c,T
j (η, ξ − η) (we drop the dependency in j as all

estimates will not depend on it).
In order to use the rough multiplier estimate from Theorem 2.4, we need to control

Ba,b,c,T
3 . The following lemma extends to our settings the crucial multiplier estimates

from [22].

Lemma 6.1. Let m = min(a, b, c), M = max(a, b, c), l = min(b, c). For 0 < s < 2,
we have

if M � 1, ‖Ba,b,c,T
3 ‖[Bs ] � 〈M〉l 32−s

〈a〉 , if M << 1, ‖Ba,b,c,T
3 ‖[Bs ] � l1/2−sM−s .

(6.10)

We postpone the proof to the “Appendix”.

Remark 6.4. We treat differently M small and M large since we have a loss of derivative
on the symbol in low frequencies. Let us mention that the estimate (6.10) can be written
simply as follows:

‖Ba,b,c,T
3 ‖[Bs ] � 〈M〉〈l〉l 12−sU (M)−s

〈a〉 .

Lets us start by estimating the first term in (6.9): we split the time integral between
[0, t−1] and [t−1, t]. The sum over a, b, c involves three cases: b � a ∼ c, c � a ∼ b
and a � b ∼ c.

The case b � a ∼ c: for k1 ∈ [0, k] we have from Theorem 2.4 with σ = 1 + 3ε:

∥
∥∇k1

∫ t−1

0
ei(t−s)H

∑

b�a∼c

Ba,b,c,T
3 [N±

z , z±]ds∥∥L p

�
∫ t−1

0

1

(t − s)1+3ε
∑

b�a∼c

〈a〉k1‖Ba,b,c,T
3 [N±

z , z±]‖L p′ ds,

�
∫ t−1

0

1

(t − s)1+3ε

( ∑

b�a∼c�1

ab‖Ba,b,c,T
3 ‖[Bσ ]‖U−1Q(z)‖L2‖U−1z‖L2

+
∑

b�a∼c,1�a

〈c〉−N+kU (b)‖Ba,b,c,T
3 ‖[Bσ ]‖U−1Q(z)‖L2‖〈∇〉N z‖L2

)

ds +R,

(6.11)

where R =
∫ t−1

0

1

(t − s)1+3ε
∑

b�a∼c

〈a〉k1‖Ba,b,c,T
3 [R±, z±]‖L p′ ds. Using Lemma 6.1

we have, provided ε < 1
12 and N − k − 1

2 + 3ε > 0:
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∑

b�a∼c�1

ab‖Ba,b,c,T
3 ‖[Bσ ] �

∑

a�1

∑

b�a

abb1/2−1−3εa−1−3ε �
∑

a�1

a1/2−6ε � 1,

∑

b�a∼c, a�1

U (b)〈c〉−N+k‖Ba,b,c,T
3 ‖[Bσ ]�

∑

a�1

∑

b�a

U (b)
b

1
2−3ε

aN−k
�

∑

a�1

1

aN−k− 1
2 +3ε

�1.

Using the gradient structure of Q(z) (see 5.12) and by interpolation :

‖U−1Q(z)‖L2 � ‖z‖2W 2,4 � ‖z‖
3
2
W 2,6‖z‖

1
2
H2 , (6.12)

so that if we combine these estimates with (6.1), we get

‖∇k1

∫ t−1

0
ei(s−t)H

∑

b�a∼c

Ba,b,c,T
3 [Q(z)±, z]ds‖L p �‖z‖3XT

∫ t−1

0

1

(t − s)1+3ε
1

〈s〉 32
ds

�
‖z‖3XT

t1+3ε
.

We bound nowR from (6.11): contrary to the quadratic terms, cubic terms have no gra-
dient structure, however the nonlinearity is so strong that we can simply use ‖1|η|�1U

−1

R‖2 � ‖R‖L6/5 . Using the same computations as for quadratic terms we get

‖∇k1

∫ t−1

0
ei(t−s)H

∑

b�a∼c

Ba,b,c,T
3 [R, z±]ds‖L p

�
∫ t−1

0

1

(t − s)1+3ε

(

‖1|η|�1U
−1R‖L2‖U−1z‖L2 + ‖U−1R‖L2‖〈∇〉N z‖L2

)

ds.

According to (5.12) the cubic terms involve only smooth multipliers and do not contain
derivatives of order larger than 2, thus we can generically treat them like (〈∇〉2z)3 using
the Proposition 5.4; we have then:

‖R‖L6/5 � ‖z‖H2‖z‖2W 2,6 �
‖z‖3XT

〈t〉2 , ‖R‖L2 � ‖z‖3W 2,6 �
‖z‖3XT

〈t〉2 .

This closes the estimate as
∫ t−1

0

1

(t − s)1+3ε〈s〉2 ds � 1

t1+3ε
. Similar computations can

be done for the quartic terms.
It remains to deal with the term

∫ t
t−1, using the Sobolev embedding we have:

‖∇k1

∫ t

t−1
ei(t−s)H

∑

b�a∼c

Ba,b,c,T
3 [N±

z , z±]ds‖L p �
∫ t

t−1
‖(· · · )‖Hk2 ds,
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with k2 = k + 1 + 3ε. Again, with σ = 1 + 3ε we get using Theorem 2.4 and Sobolev
embedding:

‖∇k1

∫ t

t−1
ei(t−s)H

∑

b�a∼c

Ba,b,c,T
3 [N±

z , z±]ds‖L p �
∫ t

t−1
‖

∑

b�a∼c

Ba,b,c,T
3 [N±

z , z±]‖Hk2 ds

�
∫ t

t−1

( ∑

b�a∼c�1

ab‖Ba,b,c,T
3 ‖[Bσ ]‖U−1Q‖L2‖U−1z‖L p

+
∑

b�a∼c,1�a

U (b)ak2−(N−1−3ε)‖Ba,b,c,T
3 ‖[Bσ ]‖U−1Q‖L2‖〈∇〉N z‖L2

)
ds +R,

where R contains higher order terms that are easily controlled. Using ‖U−1z‖L p �
‖z‖H2 and the same estimates as previously, we can conclude for N sufficiently large:

‖∇k1

∫ t

t−1
ei(t−s)H

∑

b�a∼c

Ba,b,c,T
3 [N±

z , z±]ds‖L p � ‖u‖3XT

∫ t

t−1

1

〈s〉3/2 ds �
‖z‖3XT

t1+3ε
.

The case c � a ∼ b As for b � a ∼ c we use σ = 1 + 3ε and start with

∥
∥∇k1

∫ t−1

1
ei(t−s)H

∑

c�a∼b

Ba,b,c,T
3 [N±

z , z±]ds∥∥L p

�
∫ t−1

1

1

(t − s)1+3ε

( ∑

c�a∼b�1

bc‖Ba,b,c,T
3 ‖[Bσ ]‖U−1Q(z)‖L2‖U−1z‖L2

+
∑

c�a∼b,1�a

〈b〉−1‖Ba,b,c,T
3 ‖[Bσ ]‖〈∇〉k+1Q(z)‖L2‖z‖L2

)

ds +R.

R contains the higher order nonlinear terms which, again, we will not detail. This case
is symmetric from b � a ∼ c except for the term ‖〈∇〉k+1Q(z)‖L2 , which is estimated
as follows. Let 1/q = 1/3 + ε, k3 = 1

2 − 3ε. If k + 2 + k3 ≤ N then using the structure
of Q (see (6.5)) and Gagliardo Nirenberg inequalities we get:

‖〈∇〉k+1Q(z)‖L2 � ‖z‖W 2,p‖z‖Wk+3,q � ‖z‖W 2,p‖z‖Hk+3+k3 � ‖z‖2X/〈t〉1+3ε.

Using the multiplier bounds as for the case b � a ∼ c, we obtain via the Lemma 6.1:

∥
∥∇k1

∫ t−1

0
ei(t−s)H

∑

c�a∼b

Ba,b,c,T
3 [N±

z , z±]ds∥∥L p �‖z‖3X
∫ t−1

0

1

(t−s)1+3ε
1

〈s〉(1+3ε) ds

�
‖z‖3X
〈t〉1+3ε .

The bound for the integral on [t − 1, t] is obtained by similar arguments.
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The case a � b ∼ c We have using Theorem 2.4 and the fact that the support of
F(

∑
a�b a

k1Ba,b,c,T
3 [N±

z , z±]) is localized in a ball B(0, b) :

‖∇k1

∫ t−1

0
ei(t−s)H

∑

a�b∼c

Ba,b,c,T
3 [N±

z , z±]ds‖L p

�
∫ t−1

0

1

(t − s)1+3ε
‖

∑

a�b∼c

ak1Ba,b,c,T
3 [N±

z , z±]‖L p′ ds

�
∫ t−1

0

1

(t − s)1+3ε
∑

b∼c

1

〈b〉N−2U (b)U (c)

∥
∥
∥
∥
∥
∥

∑

a�b

〈a〉kBa,b,c,T
3

∥
∥[Bσ ]

∥
∥U−1Q(z)

∥
∥
∥
∥
∥
∥
L2

∥
∥
∥U−1〈∇〉N z

∥
∥
∥
L2

ds +R,

where as previously, R is a remainder of higher order terms that are not difficult to
bound. We observe that for any symbols (Ba(ξ, η)) such that

∀ η, |a1 − a2| ≥ 2 ⇒ supp(Ba1(·, η)) ∩ supp(Ba2(·, η)) = ∅,

then

‖
∑

a

Ba‖[Bσ ] � sup
a
‖Ba‖[Bσ ]. (6.13)

This implies using Lemma 6.1 and provided that N is large enough:
∑

b∼c

1

〈b〉N−2U (b)U (c)‖
∑

a�b

〈a〉kBa,b,c,T
3 ‖[Bσ ]

�
∑

b

1

〈b〉N−2U (b)2 sup
a�b

〈a〉k b
1
2−σU (M)−σ 〈b〉〈M〉

〈a〉

�
∑

b

U (b)5/2−2σ

〈b〉N+σ−k−7/2 � 1.

We have finally using (6.12):

‖∇k1

∫ t−1

0
ei(t−s)H

∑

a�b∼c

Ba,b,c,T
3 [N±

z , z±]ds‖L p � ‖z‖3X
∫ t−1

0

1

(t − s)1+3ε
1

〈s〉3/2 ds

�
‖u‖3X
t1+3ε

.

We proceed in a similar way to deal with the integral on [t − 1, t]. This end the estimate
for the first term in (6.9).

The second term is symmetric from the first, it remains to deal with the boundary term:
‖∇k1

[
ei(t−s)HBa,b,c,T

3 [z±, z±]]t0‖L p . We have:

‖[∇k1ei(t−s)HBa,b,c,T
3 [z±, z±]]t0‖L p ≤ ‖∇k1e−i t HBa,b,c,T

3 [z±0 , z±0 ]‖L p

+‖∇k1Ba,b,c,T
3 [z±(t), z±(t)]‖L p . (6.14)
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The first term on the right hand-side of (6.14) is easy to deal with using the dispersive
estimates of the Theorem 2.5. For the second term we focus on the case b � a ∼ c, the
other areas can be treated in a similar way. Using Proposition 6.1, Sobolev embedding
and the rough multiplier Theorem 2.4 with σ = 1 + 3ε, q1 = q2 = q3 = p we have
with χ as in prop 6.1:

∑

b�a∼c�1

‖∇k1Ba,b,c,T
3 [z±(t), z±(t)]‖L p

�
∑

b�a∼c

b−
1
2−3εa−1−3εU (b)U (c)‖χ(|∇|)U−1z‖2L p

�
∑

b�a∼c

b−
1
2−3εa−1−3εU (b)U (c)‖U−1+3εz‖2L6 �

‖z‖2XT

〈t〉 65 +6ε
,

∑

b�a∼c, a�1

‖∇k1Ba,b,c,T
3 [z±(t), z±(t)]‖L p �

∑

b�a∼c, a�1

〈a〉k1b1/2−3ε

〈a〉k1+1 ‖z‖L p‖z‖Wk+1,p

�
‖z‖2XT

〈t〉 32 (1+3ε)
.

where in the last inequalitywealsoused‖z‖2
Wk+1,6 �‖z‖Wk,p‖z‖Wk+2,p � ‖z‖Wk,p‖z‖HN .

6.1.3. Non space resonance. In this section we treat the term
∑

a,b,c I
a,b,c,X . Since

control for t small just follows from the HN bounds, we focus on t ≥ 1, and first note
that the integral over [0, 1] ∪ [t − 1, t] is easy to estimate.

Bounds for (
∫ 1
0 +

∫ t
t−1)e

i(t−s)H Q(z)ds

In order to estimate ‖∇k1

∫ t

t−1
ei(t−s)H Q(z)ds‖L p , with k1 ∈ [0, k] we can simply use

Sobolev’s embeddings Hk+2 ↪→ Wk,p, HN ↪→ Wk+4,q , 1
2 = 1

q + 1
p and a Gagliardo-

Nirenberg type inequality (2.8) :

‖
∫ t

t−1
∇k1ei(t−s)H Q(z)ds‖L p �

∫ t

t−1
‖Q(z)‖Hk+2ds

�
∫ t

t−1
‖z‖Wk+4,q‖z‖Wk,pds

� ‖z‖2X
∫ t

t−1

1

〈s〉1+3ε ds �
‖z‖2X
〈t〉1+3ε .

The estimate on [0, 1] follows from similar computations using Minkowski’s inequality
and the dispersion estimate from Theorem 2.5.

Frequency splitting
Since we only control xe−i t H z in L∞L2, in order to handle the loss of derivatives we
follow the idea from [15]which corresponds to distinguish low and high frequencieswith
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a threshold frequency depending on t . Let θ ∈ C∞
c (R+), θ |[0,1] = 1, supp(θ) ⊂ [0, 2],

�(t) = θ(
|∇|
tδ

), for any quadratic term Bj [z±, z±], we write

B j [z±, z±] =
high frequencies

︷ ︸︸ ︷

B j [(1−�(t))z±, z±] + B j [�(t)z±, (1−�)(t)z±]+
low frequencies

︷ ︸︸ ︷

B j [�(t)z±, �(t)z±] .
(6.15)

The main idea here is that thanks to the relation |ξ |θ(|ξ |/tδ) � tδ , loss of derivatives is
“paid” with some growth in t , but since the decay is slightly stronger than needed we
can absorb this growth.

High frequencies. Using the dispersion Theorem 2.5, Gagliardo-Nirenberg estimate
(2.8) and Sobolev embedding we have for 1

p1
= 1

3 + ε and for any quadratic term of Q

written under the form UBj [z±, z±]:
∥
∥
∥
∥

∫ t−1

1
ei(t−s)H (

UBj [(1− �(s))z±, z±] +UBj [�(t)z, (1−�)(s)z±])ds
∥
∥
∥
∥
Wk,p

≤
∫ t−1

1

1

(t − s)1+3ε
‖z‖Wk+2,p1 ‖(1−�(s))z‖Hk+2ds

≤
∫ t−1

1

1

(t − s)1+3ε
‖z‖2HN

1

sδ(N−2−k)
ds, (6.16)

choosing N large enough so that δ(N − 2− k) ≥ 1 + 3ε, we obtain the expected decay.

Low frequencies. The low frequency part of quadratic terms reads in the Duhamel
formula

F I a,b,c,X
3 = eit H(ξ)

∫ t−1

1

∫

RN
e−is�UBa,b,c,X

j (η, ξ − η)�̃z±(s, η)�̃z±(s, ξ−η)dηds,

with � = H(ξ)∓ H(η)∓ H(ξ − η). Using e−is� = i∇η�

s|∇η�|2 · ∇ηe
−is� and denoting

Ri = ∇
|∇| the Riesz operator, �

′(t) := θ ′( |∇|
tδ

), J = eit H xe−i t H , an integration by part
in η gives:

I a,b,c,X
3 = −F−1

(

eit H(ξ)
∫ t−1

1

1

s

∫

RN
e−is�(ξ,η)

(Ba,b,c,X
1 (η, ξ − η) · ∇η[�z̃±(η)�z̃±(ξ − η)]

+Ba,b,c,X
2 (η, ξ − η)�̃z±(η)�̃z±(ξ − η)dη

)
ds

)

= −
∫ t−1

1

1

s
ei(t−s)H

(

Ba,b,c,X
1 [�(s)(J z)±, �(s)z±] − Ba,b,c,X

1 [�(s)z±, �(s)(J z)±]

+Ba,b,c,X
2 [�(s)z±,�(s)z±]

)

ds

−
∫ t−1

1

1

s
ei(t−s)H

(

Ba,b,c,X
1 [ 1

sδ
Ri �′(s)z±, �(s)z±]

−Ba,b,c,X
1 [�(s)z±,

1

sδ
Ri�′(s)z±]

)

ds. (6.17)
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As previously, we drop the j index since all multipliers satisfy the same estimates:

Ba,b,c,X
1 = U (ξ)∇η�

|∇η�|2 Ba,b,c,X
j , Ba,b,c,X

2 = ∇ηB
a,b,c,X
j .

The following counterpart of Lemma 6.1 slightly improves the estimates from [22].

Lemma 6.2. Denoting M = max(a, b, c), m = min(a, b, c) and l = min(b, c) we
have:

• If M << 1 then for 0 ≤ s ≤ 2:

‖Ba,b,c,X
1 ‖[Bs ] � l

3
2−sM1−s, ‖Ba,b,c,X

2 ‖[Bs ] � l
1
2−sM−s, (6.18)

• If M � 1 then for 0 ≤ s ≤ 2:

‖Ba,b,c,X
1 ‖[Bs ] � 〈M〉2l3/2−s〈a〉−1, ‖Ba,b,c,X

2 ‖[Bs ] � 〈M〉2l1/2−s〈a〉−1.

(6.19)

We now use these estimates to bound the first term of (6.17). As in 6.1.2, there are three
cases to consider: b � c ∼ a, c � c � a ∼ b, a � b ∼ c.

Estimates for quadratic terms involving Ba,b,c
1 In the case c � a ∼ b, let ε1 > 0 to be

fixed later. Using Minkowski’s inequality, dispersion and the rough multiplier Theorem
2.4 with s = 1 + ε1, 1

q = 1/2 + ε − ε1
3 for a � 1, s = 4/3, 1

q1
= 7/18 + ε for a � 1 we

obtain

∥
∥∇k1

∫ t−1

1

1

s
ei(t−s)H

∑

c�a∼b

Ba,b,c,X
1 [�(s)(J z)±,�(s)z±]ds∥∥L p

�
∫ t−1

1

1

s(t − s)1+3ε
∑

c�a∼b�1

‖Ba,b,c,X
1 ‖[B1+ε1 ]‖�(s)J z‖L2‖�(s)z]‖Lq

+
∑

c�a∼b, 1�a�sδ

ak‖Ba,b,c,X
1 ‖[B4/3]‖�(s)J z‖L2‖�(s)z]‖Lq1

)
ds

�
∫ t−1

1

1

s(t − s)1+3ε

(∑

a�1

∑

c�a∼b

‖Ba,b,c,X
1 ‖[B1+ε1 ]‖�(s)J z‖L2‖�(s)z]‖Lq

+
∑

1�a�sδ

ak
∑

c�a∼b

‖Ba,b,c,X
1 ‖[B4/3]‖�(s)J z‖L2‖�(s)z]‖Lq1

)

ds.

Using Lemma 6.2 and interpolation we have for ε1 < 1/4 and ε1 − 3ε > 0,

∑

a�1

∑

c�a∼b

‖Ba,b,c,X
1 ‖[B1+ε1 ] �

∑

a�1

a1−(1+ε1)
∑

c�a

c
3
2−(1+ε1) � 1,

‖ψ(s)‖Lq � ‖ψ(s)‖
ε1−3ε
1+3ε
L p ‖ψ(s)‖1−

ε1−3ε
1+3ε

L2 � ‖ψ‖X
sε1−3ε .
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In high frequencies we have:

∑

1�a�sδ

ak
∑

c�a∼b

〈M〉2c3/2−4/3

〈a〉 � sδ(k+7/6), ‖ψ(s)‖Lq1 � ‖ψ‖XT

s1/3−3ε .

Finally we conclude that if min
(
ε1 − 3ε, 1/3 − 3ε − δ(k + 7/6)

) ≥ 3ε (this choice is
possible provided ε and δ are small enough):

‖∇k1

∫ t−1

1

1

s
ei(t−s)H

∑

a,b,c

Ba,b,c,X
1 [�(s)(J z)±,�(s)z±]ds‖L p

�
∫ t−1

1

‖z‖2X
s1+3ε(t − s)1+3ε

ds

�
‖z‖2XT

t1+3ε
.

We do not detail the case b � c ∼ a which is very similar. The case a � b ∼ c
involves an infinite sum over a which can be handled as in the non time resonant case

with observation (6.13). The term∇k1

∫ t−1

1

1

s
ei(t−s)HBa,b,c,X

1 [�(s)z±,�(s)(J z)±]ds
is symmetric while the terms

∥
∥∇k1

∫ t−1

1

1

s
ei(t−s)H (

Ba,b,c,X
1 [ 1

sδ
Ri�′(s)z±,�(s)z±]

−Ba,b,c,X
1 [�(s)z±,

1

sδ
Ri�′(s)z±])ds∥∥L p ,

are simpler since there is no weighted term J z involved.

Estimates for quadratic terms involving Ba,b,c
2 The last term to consider is

∥
∥∇k1

∫ t−1

1

1

s
ei(t−s)H

∑

a,b,c

Ba,b,c,X
2 [�(s)z±,�(s)z±]ds∥∥L p .

Let us start with the zone b � a ∼ c. We use the same indices as for Ba,b,c
1 : s = 1 + ε1,

1
q = 1/2 + ε − ε1/3, s1 = 4/3, 1

q1
= 7/18 + ε,

∥
∥∇k1

∫ t−1

1

1

s
ei(t−s)H

∑

b�a

Ba,b,c,X
2 [�(s)z±,�(s)z±]ds∥∥L p

�
∫ t−1

1

1

s(t − s)1+3ε

( ∑

a�1

∑

b�a∼c

U (b)U (c)‖Ba,b,c,X
2 ‖[B1+ε1 ]‖U−1�(s)z‖L2‖U−1�(s)z]‖Lq

+
∑

1�a�sδ

ak
∑

b�a∼c

U (b)

〈c〉k ‖Ba,b,c,X
2 ‖[B4/3]‖U−1�(s)z‖L2‖〈∇〉k�(s)z]‖Lq1

)

ds

(6.20)

For M � 1 we have if ε1 < 1/4:
∑

a�1

∑

b�c∼a

U (b)U (c)‖Ba,b,c,X
2 ‖[B1+ε1 ] �

∑

a�1

∑

b�c∼a

b1/2−ε1a−ε1 � 1.
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Furthermore we have from Proposition 6.1:

‖U−1ψ(s)‖L2 � ‖ψ‖X , ‖U−1ψ(s)‖Lq � ‖U−1ψ‖1−ε1+3ε
L2 ‖U−1ψ‖ε1−3ε

L6 � ‖ψ‖XT

s
3(ε1−3ε)

5

.

Now for M � 1

∑

1�a�sδ

ak
∑

b�c∼a

U (b)〈M〉2b1/2−4/3

〈a〉〈c〉k �
∑

1�a�sδ

a1/6 � sδ/6,

‖〈∇〉k�(s)z‖Lq1 � ‖z‖XT

s1/3−3ε .

If min
(
3(ε1 − 3ε)/5, 1/3− 3ε − δ/6

)
� 3ε, injecting these estimates in (6.20) gives

∥
∥∇k1

∫ t−1

1

1

s
ei(t−s)H

∑

b�c∼a

Ba,b,c,X
2 [�(s)J z,�(s)z]ds∥∥L p

�
∫ t−1

1

‖z‖2X
(t − s)1+3εs1+3ε

ds �
‖z‖2XT

t1+3ε
.

The two other cases c � a ∼ b and a � b ∼ c can be treated in a similar way, we refer
again to the observation (6.13) in the case a � b ∼ c.

Conclusion. The estimates from Sects. 6.1.2 and 6.1.3 imply

∀ t ∈ [0, T ],
∥
∥
∥
∥

∫ t

0
ei(t−s)H Q(z(s))ds

∥
∥
∥
∥
Wk,p

�
‖z‖2XT

+ ‖z‖3XT

〈t〉1+3ε .

Remark 6.5. From the energy estimate, we recall that we need k ≥ 3 (see (5.3)). The
strongest condition on N seems to be (N − 2 − k)δ > 1. In the limit ε → 0, we must
have at least 1/3 − δ(k + 7/6) > 0, so that N ≥ 18. On the other hand, the strongest
condition on ε seems to be 3(ε1 − 3ε)/5 ≥ 3ε, with ε1 < 1/4, so that ε < 1/32.

6.2. Bounds for the weighted norm. The estimate for ‖x ∫ t
0 e

−isH B j [z, z]ds‖L2 can be
done with almost the same computations as in section 10 from [22]. The only difference
is that Gustafson et al. deal with nonlinearities without loss of derivatives. As we have
seen in Sect. 6.1.3, the remedy is to use an appropriate frequency truncation, so we will
only give a sketch of proof for the bound in this paragraph.

First reduction. Applying xe−i t H to the generic bilinear termU ◦ Bj [z±, z±], we have
for the Fourier transform:

F
(
xe−i t H

∫ t

0
ei(t−s)HU Bj [z±, z±])

=
∫ t

0

∫

Rd
∇ξ

(

e−is�UBj (η, ξ − η)z̃±(s, η)z̃±(s, ξ − η)

)

dη ds. (6.21)

As the XT norm only controls ‖J z‖L2 , we have to deal with the loss of derivative in
the nonlinearities. It is then convenient that |ξ − η| � |η| in order to absorb the loss
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of derivatives; to do this we use a cut-off function θ(ξ, η) which is valued in [0, 1],
homogeneous of degree 0, smooth outside of (0, 0) and such that θ(ξ, η) = 0 in a
neighborhood of {η = 0} and θ(ξ, η) = 1 in a neighborhood of {ξ − η = 0} on the
sphere. Using this splitting we get two terms

∫ t

0

∫

Rd
∇ξ

(

e−is�UBj (η, ξ − η)θ(ξ, η)z̃±(s, η)z̃±(s, ξ − η)

)

dη ds,

∫ t

0

∫

Rd
∇ξ

(

e−is�(1− θ(ξ, η))UBj (η, ξ − η)z̃±(s, η)z̃±(s, ξ − η)

)

dη ds.

(6.22)

By symmetry it suffices to consider the first one which corresponds to a region where
|η| � |ξ |, |ξ − η| so that we avoid loss of derivatives for ∇ξ z̃±(s, ξ − η).

An estimate in a different space and high frequency losses. Depending on which term
∇ξ lands on, the following integrals arise:

F I1 =
∫ t

0

∫

RN
e−is�∇ξ (θ(ξ, η)UBj (η, ξ − η))z̃±(s, η)z̃±(s, ξ − η)dηds,

F I2 =
∫ t

0

∫

RN
e−is�θ(ξ, η)UBj (η, ξ − η)z̃±(s, η)∇(η)

ξ z̃±(s, ξ − η)dηds,

F I3 =
∫ t

0

∫

RN
e−is�(is∇ξ�)θ(ξ, η)UBj (η, ξ − η)z̃±(s, η)z̃±(s, ξ − η)dηds

:= F
(∫ t

0
e−isH sB j [z±, z±]ds

)

,

with:

B j (η, ξ − η) = (i∇ξ�)θ(ξ, η)UBj (η, ξ − η).

The control of the L2 normof I1 and I2 is not a serious issue: basicallywedeal herewith s-
mooth multipliers, and from the estimate ‖z xe−i t H z‖L1

T L
2 � ‖z‖L1

T L
∞‖xe−i t H z‖L∞T L2

� ‖z‖2XT
it is apparent that we can conclude. The only point is that we can control the

loss of derivative on J z via the truncation function θ1 and it suffices to absorb the loss of
derivatives by z. Due to the s factor, the case of I3 is much more intricate and requires
to use again the method of space-time resonances.

Let us set

‖z‖ST = ‖z‖L∞T H1 + ‖U−1/6z‖L2
T W

1,6 ,

‖z‖WT = ‖xe−i t H z‖L∞T H1 .

Gustafson et al. prove in [22] the key estimate

∥
∥
∫ t

0
e−isH sB[z±, z±]ds∥∥L∞T L2 � ‖z‖2ST∩WT

,

where B is a class of multipliers very similar to our B j , the only difference being that
they are associated to semilinear nonlinearities, and thus cause no loss of derivatives at
high frequencies. We point out that the ST norm is weaker than the XT norm, indeed
‖U−1/6z‖L2

T W
1,6 � ‖z‖L2

T W
2,9/2 � ‖z‖XT ‖1/〈t〉5/6‖L2

T
� ‖z‖XT . Moreover we have
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already seen how to deal with high frequency loss of derivatives with the low/high
frequency splitting (as for (6.15))

B j [z±, z±] = B j [1−�(t)z±, z±] + B j [�(t)z±, z±]. (6.23)

Let 1/q = 1/3+ ε, the first term is estimated using Sobolev embedding and the fact that
N is large enough compared to δ:

∥
∥
∫ t

0

∫

RN
e−isH sB j [z±, z±]ds∥∥L2 �

∫ t

0
s‖(1− �(s))z‖W 3,q‖z‖W 3,pds

�
∫ t

0

‖z‖HN ‖z‖XT

〈s〉(N−4)δ
ds

� ‖z‖2XT
.

The estimate of the second term of (6.23) follows from the (non trivial) computations
in [22], section 10. They are very similar to the analysis of the previous section (based
on the method of space-time resonances), for the sake of completeness we reproduce
hereafter a small excerpt from their computations.

As in Sect. 6.1, one starts by splitting the phase space

∫ t

0
ei(t−s)HsB j [�(s)z±, z±]ds=

∑

a,b,c

∫ t

0
ei(t−s)Hs

(
Ba,b,c,T

j +Ba,b,c,X
j

)[�(s)z±, z±]ds.

For the time non-resonant terms, an integration by parts in s implies:

∫ t

0
ei(t−s)HsBa,b,c,T

j [�(s)z±, z±]ds

= −
∫ t

0
ei(t−s)H

(

(B′
j )
a,b,c,T [�(s)z±, z±]ds + (B′

j )
a,b,c,T [s�(s)N±

z , z±]

+ (B′
j )
a,b,c,T [�(s)z±, sN±

z ] + (B′
j )
a,b,c,T [−δs−δ�(s)|∇|z±, z±]

)

ds

+
[
eisH (B′

j )
a,b,c,T [s�(s)z±, z±]]t0, (6.24)

with:

(B′
j )
a,b,c,T = 1

�
Ba,b,c,T

j = i∇ξ�

�
Ba,b,c,T
j θ(ξ, η),

We only consider the second term in the right hand side of (6.24), in the case c � b ∼ a.
All the other terms can be treated in a similar way. The analog of Lemma 6.1 in these
settings is the following:

Lemma 6.3. Denoting M = max(a, b, c), m = min(a, b, c) and l = min(b, c) we
have:

‖(B′
j )
a,b,c,T ‖[Hs ] � 〈M〉2

( 〈M〉
M

)s

l
3
2−s〈a〉−1. (6.25)
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We have then by applying Theorem 2.4:

∥
∥
∫ T

0
e−isH

∑

c�a∼b

(B′
j )
a,b,c,T [s�(s)N z±, z±]ds∥∥L2

�
∥
∥
∥
∥

∑

c�a∼b

U (c)

〈b〉2 ‖(B
′
j )
a,b,c,T ‖[B1+ε]‖s〈∇〉2Nz‖L2‖U−1z‖L6

∥
∥
∥
∥
L1
T

. (6.26)

From Lemma 6.3 we find

∑

c�a∼b

U (c)‖(B′
3)

a,b,c,T ‖[B1] �
∑

c�a

U (c)

〈a〉2 〈a〉
2a−1c

1
2 ,

�
∑

a≤1
a1/2 +

∑

a≥1
a−1/2 � 1. (6.27)

Next we have (as previously forgetting cubic and quartic nonlinearities)

‖〈∇〉2Nz‖L2 � ‖z‖2W 4,4 � ‖z‖2XT
/〈s〉3/4,

and from (6.4) ‖U−1z(s)‖L6 � ‖z‖XT 〈s〉−3/5 so that

∥
∥
∫ T

0
e−isH

∑

c�a∼b

(B′
j )
a,b,c,T [sN z±, z±]ds∥∥L2 �

∥
∥‖z‖3XT

〈s〉−27/20
∥
∥
L1
T

� ‖z‖3XT
.

6.3. Existence and uniqueness. Combining the energy estimate (Proposition 3.1), the a
priori estimates for cubic, quartic (Sect. 5.2) and quadratic nonlinearities (Sect. 6) and
Proposition 5.4 we have uniformly in T

‖ψ‖XT ≤C1

(

‖ψ0‖Wk,4/3 +‖ψ0‖H2n+1 +‖xψ0‖L2 +‖ψ‖2XT
G(‖ψ‖XT , ‖ 1

1 + �
‖L∞T (L∞))

+ ‖ψ0‖H2n+1exp
(
C ′‖ψ‖XT H(‖ψ‖XT , ‖ 1

� + 1
‖L∞T (L∞))

)
)

.

with G and H continuous functions. We can now use the same bootstrap argument as
in Sect. 4 which ensures that ‖ψ‖XT remains small independently of T . Combined with
the blow up criterion page 203 this ensures that the solution is global.

6.4. Scattering. It remains to prove that e−i t Hψ(t) converges in Hs(R3), s < 2n + 1.
This is a consequence of the following lemma:

Lemma 6.4. For any 0 ≤ t1 ≤ t2, we have

‖
∫ t2

t1
e−isHNψds‖L2 �

‖ψ‖2X∞
(t1 + 1)1/2

. (6.28)
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Proof. We focus on the quadratic terms since the cubic and quartic terms give even
stronger decay. FromMinkowski andHölder’s inequality and the dispersion ‖ψ(t)‖L p ≤

‖ψ‖X
〈t〉3(1/2−1/p) :

‖
∫ t2

t1
e−isHNψds‖L2 �

∫ t2

t1
‖〈∇〉2ψ〈∇〉2ψ‖L2ds, �

∫ t2

t1
‖〈∇〉2ψ‖2L4ds,

� ‖ψ‖2X∞

∫ t2

t1

1

〈s〉3/2 ds.

��
Interpolating between the uniform bound in H2n+1 and the decay in L2 we get

‖e−i t1Hψ(t1)− e−i t2Hψ(t2)‖Hs � 1/〈t1〉(2n+1−s)/(4n+2),

thus e−i t Hψ(t) converges in Hs for any s < 2n + 1. For d = 3, the convergence
of xe−i t Hψ in L2 follows from an elementary but cumbersome inspection of the

proof of boundedness of xe−i t Hψ . If one replaces everywhere
∫ t

0
xe−isHNzds by

∫ t2

t1
xe−isHNzds, every estimates ends up with ‖ψ‖2X

∫ t2
t1

/(1 + s)1+ε′ds, k = 2, 3, 4,

for some small ε′ > 0, so that xe−i t Hψ(t) is a Cauchy sequence in L2.
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A. The Multiplier Estimates

The aim of this section is to provide a brief sketch of proof of Lemmas 6.2 and 6.1, let
us recall that B1, B2 and B3 depend on the phase � = H(ξ)∓ H(η)∓ H(ξ − η) in the
following way

Ba,b,c,T
3 = Bj

�
U (ξ)χa(ξ)χb(η)χc(ξ − η),

Ba,b,c,X
1 = Bj∇η�

|∇η�|2 U (ξ)χa(ξ)χb(η)χc(ξ − η),

Ba,b,c,X
2 = ∇ηBa,b,c,X

1 .

(A.1)

Recall the notations:

|ξ | ∼ a, |η| ∼ b, |ζ | ∼ c,

M = max(a, b, c), m = min(a, b, c), l = min(b, c).
(A.2)

The function χa , resp. χb, χc, are smooth cut-off functions that localize near |ξ | ∼ a ∈
2Z (resp |η| ∼ b, |ζ | ∼ c). We set as in [22] for any ξ ∈ R

3 \ {0}, ξ̂ = ξ/|ξ |, and :

α = |ζ̂ − ξ̂ |, β = |ζ̂ + η̂|, η⊥ = ξ̂ × η. (A.3)
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As a first reduction, we point out that the Bj ’s satisfy the pointwise estimate

|∇k B j (η, ξ − η)| � 〈M〉2l−k . (A.4)

with ∇ the derivative with respect to η or ζ . We will see that the term l−k causes less
loss of derivatives than if ∇η hits 1/� and |∇η�|, so that it will be sufficient to derive
pointwise estimates for∇k(U/�),∇k(U∇η�/|∇η�|2, and thenmultiply them by 〈M2〉
to obtain pointwise estimates for the full multiplier.

A.1. The case � = H(ξ) + H(η) − H(ξ − η). Gustafson et al. [22] decompose the
(ξ, η, ζ ) region (with ζ = ξ − η) into the following five cases where each later case
excludes the previous ones:

1. {c << b ∼ a} defines a non time resonant set S1
2. Sc

1 ∩ {α >
√
3} defines a non time resonant set S2.

3. (S2 ∪ S1)
c ∩ {c � 1} defines a non space resonant set S3.

4. (S3 ∪ S2 ∪ S1)
c ∩ {|η⊥| << M |η|} defines a non time resonant set S4.

5. The rest defines S5, a non space resonant set.

The non time resonant set is thusS1∪S2∪S4. The function� of (6.7) will be constructed
as a partition of unity associated to (S1∪S2∪S4)� (S3∪S5). The estimates of Lemmas
6.2 and 6.1 are essentially a consequence of the pointwise estimates6 in [22], section
11, except in the fifth case where the pointwise estimate on ∇η� must be modified. We
sketch all five cases for completeness.

1. If a ∼ b >> c, we have

|�| = � = H(ξ) + H(η)− H(ζ ) ≥ H(M) ∼ M〈M〉, (A.5)

|∇ζ �| � |∇H(η)| � 〈M〉, |∇2
ζ �| � 〈m〉

m
. (A.6)

From these estimates, the Bj estimate (A.4), the volume bound |{|ζ | ∼ m}| ∼ m3

and an interpolation argument we obtain
∥
∥
U (ξ)Bj

�
χaχbχc

∥
∥
L∞ξ (Ḣ s

ζ )
� m

3
2−s , which

is better than (6.10).
2. In the second case α >

√
3 so that |ζ | ∼ |η| � |ξ |.

We cut-off the multipliers by: χ[α] = �(ξ̂ − ζ̂ ), for a fixed � ∈ C∞(R3) satisfying
�(x) = 1 for |x | ≥ √

3 and �(x) = 0 for |x | ≤ 3
2 , morover |∇k

η�| � M−k . In this
region,

|�| ≥ 〈M〉|ξ | ∼ 〈M〉m, |∇η�| � Mm

〈M〉 +
〈M〉m
M

� |�|
M

, (A.7)

|∇2
η�| = |∇2H(η) −∇2H(ζ )| = |∇2H(η) −∇2H(−ζ )| � 〈M〉m

M2 � |�|
M2 .

(A.8)

6 Note that these estimates must also take into account the partition function �, which turns out to be quite
singular in some areas.
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As a consequence:

‖U (ξ)

�
χ[α|χaχbχc‖L∞ξ (Ḣ s

η ) � 〈M〉2
m〈M〉

M
3
2

Ms

m

〈m〉 =
〈M〉M 3

2−s

〈m〉 ∼ 〈M〉l 32−s

〈a〉 .

(A.9)

Remark A.1. The use of the normal form is essential here as for general Ba,b,c
j we

would obtain in equation (A.9):

‖U (ξ)

�
χ[α|χaχbχc‖L∞ξ (Ḣ s

η ) � b3/2

m〈M〉Ms〈m〉 , (A.10)

and the term 1
m could not be controlled. The same observation applies for the next

areas.

3. The case M ∼ c � 1 and α <
√
3. We are in a non space resonant area, the symbols

to estimate are Ba,b,c,X
1 , Ba,b,c,X

2 defined in (A.1). According to [22], the pointwise
estimates in this region are

|∇η�| ∼ ||ζ | − |η|| + 〈η〉β � |ξ |, |∇k
η�| � 〈ζ 〉

|ζ | |ξ | |η|
1−k � |ξ | |η|1−k . (A.11)

Differentiating causes the same growth near |η| = 0 as in (A.4), we deduce for
s ∈ [0, 2], using the rough volume bound b3/2

∥
∥Bj

∇η�

|∇η�|2 χC[α]U (ξ)χa(ξ)χb(η)χc(ξ − η)
∥
∥
Ḣ s

η
� 〈M〉2b 3

2

abs
U (a) = 〈M〉2l 32−s〈a〉−1,

∥
∥∇η ·

( ∇η�

|∇η�|2 · Bjχ
C[α]U (ξ)χa(ξ)χb(η)χc(ξ − η)

)∥
∥
Ḣ s

η
� l

1
2−s〈a〉−1.

(A.12)

4. The case |η⊥| << M |η|: it corresponds to a low frequency region, where the symbol
has the bad “wave-like” behaviour. In this region

1 >> M ∼ |ζ |, α <
√
3, |η⊥| = |η|| sin((̂η, ξ))| << M |η|, (A.13)

The localization uses the (singular) cut-off multiplier χ[⊥] = χ

( |η⊥|
100Mb

)

with

χ ∈ C∞
0 (R) satisfying χ(u) = 1 for |u| ≤ 1 and χ(u) = 0 for |u| ≥ 2. In particular

|∇k
ηχ[⊥]| �

( 1

Mb

)k
, for all k ≥ 1. The worst case is M = |ζ |, in this case � does

not cancel thanks to the slight radial convexity of H :

� = H(ξ + η)− H(ξ)− H(η) ∼ |ξ ||η|(|ξ | + |η|)
〈ξ 〉 + 〈η〉 ∼ M2m, |∇η�| << |ξ |.

(A.14)

For higher derivatives we have:

|∇1+k
η �| = |∇k+1H(η)− ∇k+1H(ζ )| � |ξ |

M |η|k , |∇k
ηBj | � l−k . (A.15)
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For |η| ∼ b, |η⊥| << Mb, the region has for volume bound b(Mb)2 = M2b3, we
get by integration (for s integer) and interpolation

∥
∥
∥
∥
U (ξ)

�
χ[⊥]χC[α]χaχbχc

∥
∥
∥
∥
L2

η

� U (a)(M2b3)1/2

M2m(Mb)s
� l

1
2−sM−s . (A.16)

5. In the last case we need a slight refinement of the symbol estimates from [22]: in the
fifth area, |η⊥| � Mb ∼ |ζ ||η|, M ∼ |ζ | << 1, α = |̂ζ − ξ̂ | ≤ √

3. We have

|∇η�| = |H ′(|η|)̂η + H ′(|ζ |)̂ζ | ∼ H ′(|η|)− H ′(|ζ |) + |̂η + ζ̂ | ≥ |̂η + ζ̂ |,

and for ∧ the vector product

|̂η + ζ̂ | ≥ |η ∧ ζ |
|η||ζ | = |η ∧ (ξ − η)|

|η||ζ | = |η ∧ ξ |
|η||ζ | = |η⊥||ξ |

|η||ζ | .

indeed, if η, ζ form an angle θ , |η ∧ ζ | = |η||ζ || sin θ | and |̂η + ζ̂ | ≥ | sin θ)|. Thus
|∇η�| � |ξ ||η⊥|/(|η||ζ |) � |ξ |.
For the higher derivatives, we combine (A.15) with |∇η�| � |ξ ||η⊥|/|η||ζ | to get

∀ k ≥ 2,
|∇k

η�|
|∇η�| � |ξ |

M |η|k−1β
� 1

|η|k−2|η⊥| . (A.17)

so that we have the pointwise estimate

∣
∣
∣
∣∇k

η

∇η�

|∇η�|2
∣
∣
∣
∣ ∼

1

|∇�|
( |∇2

η�|
|∇η�|

)k

� 1

|ξ ||η⊥|k .

Following [22], we then use an angular dyadic decomposition |η⊥| ∼ μ ∈ 2 j
Z,

Mb � μ � b. For each μ integrating gives a volume bound μb1/2 and using
interpolation we get for s > 1

‖U (ξ)/|∇η�|‖Ḣ s
η

�
∑

Mb�μ�b

U (a)μb1/2

aμs
∼ l3/2−sM1−s .

A.2. The other cases.

The case � = H(ξ) − H(η) + H(ξ − η). This case is clearly symmetric from the +−
case.
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The−− case. The decomposition follows the same line as in [22]. Note however that the
analysis is simpler at least forM ≥ 1. Indeed in this area |∇η�| ∼ |H ′(η)−H ′(ζ )|+ |̂η−
ζ̂ | �

∣
∣|η|− |ζ |∣∣+ |̂η− ζ̂ | ∼ |η− ζ | so that we might split it as {|η− ζ | � max(|η|, |ζ |)}

and {|η − ζ | << max(|η|, |ζ |)}. The first region is obviously space non resonant.
The second region is time non resonant, indeed since M � 1 we have in this region
|ξ | ∼ |η| ∼ |ζ | � 1. Using a Taylor development gives

H(ξ)− H(η)− H(ζ ) = H(2η + ζ − η) − H(η) − H(η + ζ − η)

= H(2η)− 2H(η) + O(〈a〉|ζ − η|),
this last quantity is bounded from below by |η|2 for |η| � 1, |ζ − η| small enough.

ForM < 1,we can follow the same line as for Z Z by inverting the role of ξ and ζ .Note
that the improved estimate in the last area relied on |∇η�+−| � |̂η+ ζ̂ | ≥ |η⊥|ξ |/(|η||ζ |)
and can just be replaced by |∇η�−−| � |̂η − ζ̂ | ≥ |η⊥|ξ |/(|η||ζ |).

The ++ case. We have � = H(ξ) + H(η) + H(ζ ) � (|ξ | + |η| + |ζ |)(1 + |ξ | + |η| + |ζ |),
the area is time non resonant.
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