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Abstract: We study determinantal point processes on C induced by the reproducing
kernels of generalized Fock spaces as well as those on the unit disc D induced by the
reproducing kernels of generalized Bergman spaces. In the first case, we show that
all reduced Palm measures of the same order are equivalent. The Radon—Nikodym
derivatives are computed explicitly using regularized multiplicative functionals. We also
show that these determinantal point processes are rigid in the sense of Ghosh and Peres,
hence reduced Palm measures of different orders are singular. In the second case, we
show that all reduced Palm measures, of all orders, are equivalent. The Radon—Nikodym
derivatives are computed using regularized multiplicative functionals associated with
certain Blaschke products. The quasi-invariance of these determinantal point processes
under the group of diffeomorphisms with compact supports follows as a corollary.
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1. Introduction

1.1. Main results.

1.1.1. The case of C. Lety : C — R be a C2-smooth function and equip the complex
plane C with the measure e’z‘/’(Z)d)»(z), where dA is the Lebesgue measure. Assume
that there exist positive constants m, M > 0 so that

m<Ay <M, (D

where A is the Euclidean Laplacian.

Denote by %, the generalized Fock space with respect to the weight e~V and
let By, be the reproducing kernel of .%,, whose definition is recalled in Definition 3.1.
The condition (1) implies in particular the useful Christ [8] pointwise estimate for the
reproducing kernel By, see Theorem 3.1 below.

By a theorem due to Macchi [19] and Soshnikov [27] and Shirai—Takahashi [25], the
kernel By, induces a determinantal point process, denoted by P, , on the complex plane
C (with the background measure e @ g (z)). For more background on determinantal
point processes, see, e.g. [15,18,19,27] and Sect. 2 below.

Let p € C! and q € CK be two tuples of distinct points in C. Denote by P%w and
}P’qu the reduced Palm measures of Pg, conditioned at p and q respectively. For the
definition, see, e.g. [16], here, we follow the notation and conventions of [1].

Our first main result is that, under the assumption (1), Palm measures P%w and P%w
of the same order are equivalent.

Theorem 1.1 (Palm measures of the same order). Let ¥ satisfy (1) and let p, q € C* be
any two tuples of distinct points in C. Then
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(1) The limit

(z—=p1)...(2— po)
(z—q1)...(z—qe)

Zp.q(Z) = Jim_ { Z

z€Z:|z|<R

_E]qu’ Z

z€Z:|z|<R

(z—p1)...(2— pe)
(z—q1)...(z—q0)

|

exists for PqBW -almost every configuration Z and the function Z — e**».a(%) g
integrable with respect to P%w.

(2) The Palm measures P%w and ]P’%W are equivalent. Moreover, for Pqu -almost every
configuration Z, we have

dPy, ¢2%p.a(2)
7 )= — o5, 2
dIP)Bw ]P??‘/, (e *q)

Definition 1.1 (Ghosh[12], Ghosh—Peres [13]). A point process P on C is said to be rigid
if for any bounded open set D C C with Lebesgue-negligible boundary 9 D, there exists a
function F'p defined on the set of configurations, measurable with respect to the o -algebra
generated by the family of random variables {#4 : A C C\D bounded and Borel},
where #4 is defined by

#4(Z) = the cardinality of the finite set Z N A,
such that
#p(2) = Fp(Z\D), for P-almost every configuration Z over C.

Proposition 1.2 (Rigidity). Under the assumption (1), the determinantal point process
Pp, is rigid in the sense of Ghosh and Peres.

Proposition 8.1 in the Appendix now implies

Corollary 1.3 (Palm measures of different orders). Under the assumption (1), if £ # k,
then the reduced Palm measures ]P’gw and P%w are mutually singular.

Remark 1.1 In the particular case ¥ (z) = %|z|2 (Ginibre point process), the results of
Theorem 1.1 and Corollary 1.3 were obtained in [22] with a different approach, where
the authors used finite dimensional approximation by orthogonal polynomial ensembles.
The rigidity in the case ¥ (z) = %|z|2 is due to Ghosh and Peres [13], their original
approach will be followed in our proof of Proposition 1.2.

1.1.2. The case of D. In the case of Bergman spaces on the unit disc D, the situation
becomes quite different and the corresponding determinantal point processes in this case
are not rigid.

Consider a weight function @ : D — R* and equip D with the measure w(z)dA(z).
Denote by 4, the generalized Bergman space on D with respect to the weight w, and by
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B,, its reproducing kernel, the definition is recalled in Definition 3.2. Assume moreover
that w satisfies

/(1 —121)?By(z, 2w (2)dA(z) < 0. 3)
D

In Sect. 6.1, we will see that the condition (3) is satisfied for large class of weight function
w on D, including most of the natural Bergman weights.

Again, by the theorem due to Macchi [19], Soshnikov [27] and Shirai—Takahashi
[25], the reproducing kernel B,, induces a determinantal point process on D (with the
background measure w(z)dA(z)), which we denote by Pp, .

Let p € D be an ¢-tuple of distinct points in I and denote by ]P’%w the reduced Palm
measures of Pg_ atp.

Under the assumption (3), we show, for any p € D¢ of distinct points in ID, the reduced
Palm measure IP"; is equivalent to Pp . In particular, any two reduced Palm measures
are equivalent. For the weight w = 1, this result is due to Holroyd and Soo [14].

We now proceed to the statement of our main result in the case of D. For an ¢-tuple

p = (p1, ..., pe) of distinct points in D, set
¢
Z—pj
by(@)=||—=— 4)
P jli[l 1—pjz

Theorem 1.4 Let w be a weight such that (3) holds. Let p € D be an £-tuple of distinct
points in D. Then

(1) The limit

Sp(2):= lim [ > loglbp(2)| —Ep,, Y loglby(2)l (5)

r=ln zeZ:|z|<r z€Ziz|<r
exists for Pp_-almost every configuration Z and the function Z — e*52) s inte-
grable with respect to Pp .

(2) The Radon—Nikodym derivative dIF";w /dPp, is given by the formula:

dPh, 25 (2)
Py, (2) = _IP’Bw (@5)
Theorem 1.4 will be obtained from

Proposition 1.5 Let w be a weight such that (3) holds. Let p € D' and q € D* be two
tuples of distinct points in D. Then the Radon—Nikodym derivative d[P’%m / dIP’qu is given
by

for P, -almost every configuration Z. (6)

dP% ¢25p.q(2)

dIE”q (%) = ]EPqu(ezsp‘q)’

for lP’qu-almost every configuration Z, @)

where Sy q(2) is defined for IPqu—almost every configuration Z, given by

Sp.q(2) = lim Y loglbp(bg( ' —Epy Y loglbp(2)be(2) 7|
~ ze€Z:|z|<r ¢ z€Z:|z|<r

®)
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Remark 1.2 If  (resp. w) is aradial function, then the monomials (z"),,>0 are orthogonal
in the corresponding Hilbert space, hence the determinantal point process Pp, (resp.
Pp,,) can be naturally approximated by orthogonal polynomial ensembles. In particular,
if ¥(z) = %|z|2 for all z € C, then Pp, is the Ginibre point process, see chapter 15
of Mehta’s book [20]; if w(z) = 1 for all z € D, then P, is the determinantal point
process describing the zero set of a Gaussian analytic function on the hyperbolic disc
D, see [23]. Our study, however, goes beyond the radial setting and our methods work
for more general phase spaces as well.

Remark 1.3 The regularized multiplicative functionals are necessary in Theorem 1.1,
Theorem 1.4 and Proposition 1.5: indeed, when w = 1, for P -almost every configu-
ration Z on I, the points in the configuration Z violate the Blaschke condition:

D=zl = o, ©)
€%
whence for any p € D, we have,
1_[ |bp(z)| =0, for Pp, -almost every configuration Z, (10)

z€Z

so the simple multiplicative functional is identically 0. To see (9), we use the Kolmogorov
three-series theorem and the fact (Peres and Virdg [23]) that, for P -distributed random
configurations Z, the set of moduli {|z| : z € Z} has the same law as the set of random
variables {U kl / Qk)}, where Uy, Us, ... are independent identically distributed random
variables such that U; has a uniform distribution in [0, 1]. A direct computation shows

that
Eey, > (=12 =Y (1-E(1}/*)) = 0.
k

zeZ

The determinantal point process Pg, in the case @ = 1 describes the zero set of a
Gaussian analytic function on D:

o
Fp@) =) gn?",
n=0

where (g,)n>0 is a sequence of independent identically distributed standard complex
Gaussian random variables. Direct computation shows that

ElFpll3,, = o0 and E|Fpll, = oo,

hence the random holomorphic function almost surely belongs neither to the Hardy space
H? nor to the Bergman space, thus it is not surprising that the zero set of Fpy almost
surely violates Blaschke condition.

1.2. Quasi-invariance. Let U = C or D. Let F : U — U be a diffeomorphism.
Its support, denoted by supp(F), is defined as the relative closure in U of the subset
{z € U : F(2) # z}. The totality of diffeomorphisms with compact supports is a group
denoted by Diff.(U), i.e.,
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Diff.(U) := {F U — U‘F is a diffeomorphism and supp(F’) is compact} .

The group Diff.(U) naturally acts on the set of configurations on U: given any diffeo-
morphism F € Diff.(U) and any configuration Z on U,

(F,2) > F(2):={F(z) : z € Z}.
Recall that the Jacobian JF of the function F : U — U is defined by
Jr(z) = |det DF(2)].

Corollary 1.6 Let Px be a determinantal point process on U, which is either the de-
terminantal point process Pp, on C or the determinantal point process Pg, on D.
Then under Assumption (1) in the case of C or, in the case of D Assumption (3), Pg is
quasi-invariant under the induced action of the group Diff .(U).

More precisely, let F' € Diff.(U) and let V. C U be any precompact subset con-
taining supp(F). For Pk -almost every configuration Z the following holds: if Z(V =
{q1,....q¢}, then

dPyoF . dellK(Fg) Fg))i;- dPy

dPx © det[K (g, 61,1‘)],{]:1 U

4
@) - [ 7r .
i=1

where q = (q1, ..., qe) and p = (F(q1), ..., F(qe)).

Proof This is an immediate consequence of Theorem 1.1, Proposition 1.5 and [1, Prop.
2.19]. O

Remark 1.4 Grigori Olshanski in [21] has shown that the determinantal point process on
Z governed by the Gamma kernel is quasi-invariant under the group of finite permutations
of Z and has expressed the Radon—Nikodym derivative as a generalized multiplicative
functional. In [1] quasi-invariance under the infinite symmetric group is established for
a large class of determinantal measures on Z and it is also shown that a large class
of determinantal measures on R is quasi-invariant under the group of diffeomorphisms
with compact support. Quasi-invariance under local deformations of the phase space can
be seen as a weak form of exchangeability and, thus, a measure of chaos of our pro-
cesses. For example, Gibbs measures are quasi-invariant under local perturbations, and
the Radon—Nikodym derivative is a multiplicative functional. As Ghosh—Peres rigidity
shows, particles of a determinantal process interact much more strongly than those in a
Gibbs field. The quasi-invariance can nonetheless be seen as the analogue, in our situ-
ation, of the Gibbs property. In the sequel [6] to this paper, quasi-invariance is used in
order to compute, for determinantal point processes corresponding to generalized Fock
spaces, the conditional measure in a bounded domain with respect to the configuration
in the complement. This conditional measure is proved to be an orthogonal polynomial
ensemble whose weight is found explicitly.

1.3. Unified approach for obtaining Radon—Nikodym derivatives. In this section, let us
describe briefly the main idea of our unified approach for obtaining the Radon-Nikodym
derivatives in Theorem 1.1, Theorem 1.4 and Proposition 1.5.
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1.3.1. Relations between Palm subspaces. If p € C' is an £-tuple of distinct points of
C, we define the Palm subspace:

Ty ) =o€ Fy:p(p1)=--=p(p) =0}. (11)

Let Bf; denote the reproducing kernel of .7y, (p).
Similarly, if p € D is an £-tuple of distinct points of I, we define the Palm subspace

Bo®) ={p € By :@o(p1) = =¢(pe) =0}, (12)

and denote its reproducing kernel by BJ.
By Shirai-Takahashi’s theorem, which motivates our terminology, see Theorem 2.1
below, these Palm subspaces are related to the reduced Palm measures: B:Z (resp. BE)

is the correlation kernel of ]P";w (resp. PZ&))’ i.e., we have
]P’%w = PBS (resp. ]P’Zw = ]P)Bf,)'

In what follows, for a measured space (E, ), a Borel function g : E — C and a
certain subspace L C L?(E, 1), we denote by gL the space defined by

gL :={gf|f €L} (13)

Note that in the above definition, even if L is closed and gL C LZ(E , ), in general,
we do not require gL to be closed in L2(E, p).

Proposition 1.7 For any pair of £-tuples p, q € Ct of distinct points in C, we have

(z—=p1)---(2— pe)
z—q1)--(z2—qe)

Ty (p) = - Ty (@), (14)

the equality is understood as in the definition (13).

Proposition 1.8 Let k, ¢ € N U {0} and let p € D', q € DX be two tuples of distinct
points in D. Then

—1

L k
Z—Dj 249
By(p) = - = - By(q). 15
® =177 ,-Elll—qu @ (15)

j=1

In particular, we have

£
Z—Ppj
j1:[1 1—-pjz

Comments o The proofs of Propositions 1.7 and 1.8 are immediate from the defini-
tions (11) and (12) and basic properties of holomorphic functions. For instance, by
symmetry, for proving (14), it suffices to prove that

Z—p)---(z2—po)
Z—q1)--(z—qe)

Fy (@) C Fy(p). 16)
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But if f € Z(q), then, by definition, f is holomorphic on C and vanishes at

41, - - - qe, hence the function % - f is holomorphic on C and vanishes

at py, ..., pe. For finishing the proof of (16), it remains to prove that

J

But this follows immediately from the following inequality

J

(z—p1)---(z—pe)

2

—2v(z)

e di(z) < 0.
(z—q1) - (z—qe)

- f(@)

(z—=p1)--- (2= po)
(z—q1)-(2—qe)

2
. f(Z)‘ 6_2w(Z)d)»(Z)

2
: / e N e
tz<ry | @—q1) - (2 —qe)
+Kg / f @R e Odng),
{lz|>R}
2

(z—p1)-(z—pe)

(z—q1)--(z—q¢) < 0o. The

where R = 1 + maxj<j<¢|gi| and Kgr = supp,.g

equality (15) can be proved similarly.
e A common feature, naturally, needed later, of Propositions 1.7 and 1.8, is shown by
the following relations

(z—py)--(@—po) _1 : S z-p; _
=1 and lim ]—[—_1. a17)

lzZl>o00 | (z —q1) -+ (2 — qe) lz]—>1— izl I—-pjz

The rate of convergence in (17) also plays an important réle for defining the regu-
larized multiplicative functionals, see Sects. 5.2 and 6.2.

1.3.2. Radon—Nikodym derivatives as regularized multiplicative functionals. For ob-
taining the Radon—Nikodym derivatives in question, we develop in Theorem 4.1 a gen-
eral result on regularized multiplicative functionals. This most technical result of the
paper, an extension of [1, Prop. 4.2] (cf. Proposition 4.2 below), is, we hope, interesting
in its own right; the stronger statement is also necessary for our argument in the case of C,
in which the main result in [1] is not applicable. The difference is that instead of Hilbert—
Schmidt operators used in [1], here we must work with the von Neumann—Schatten class
of order three; see Sect. 4 below for details.

By Theorem 4.1, under the assumption (1) on ¥, we can show that the regularized
multiplicative functional, i.e., the formula (7), is well-defined. This regularized multi-
plicative functional is then shown to be exactly the Radon—-Nikodym derivative between
the desired reduced Palm measures of the same order for the determinantal point process
Pp,.

The regularized multiplicative functionals in the case of ) are technically simpler
and the full force of Theorem 4.1 is not needed.
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1.4. Organization of the paper. The paper is organized as follows. The basic material
in the theory of determinantal point processes is recalled in Sect. 2. The definitions
concerning generalized Fock spaces and generalized Bergman spaces are given in Sect.
3. In Sect. 4 we define regularized multiplicative functionals, which play the main
role in the proof and state the technical Theorem 4.1. Theorem 4.1 is then applied to
determinantal point processes associated with generalized Fock spaces in Sect. 5 and
to those associated with generalized Bergman spaces in Sect. 6. The subsequent Sect.
7 is devoted to the proof of Theorem 4.1. A general proposition showing that if a point
process is rigid in the sense of Ghosh and Peres, then its Palm measures of different
orders are singular is proved in the Appendix (Sect. 7.5).

Remark 1.5 Part of our main results in this paper were announced in [7].

2. Spaces of Configurations and Determinantal Point Processes

Let E be alocally compact complete separable metric space equipped with a sigma-finite
Borel measure . The space E will be later referred to as phase space. The measure
w is referred to as reference measure or background measure. By a configuration X on
the phase space E, we mean a locally finite subset of X C E. Identify a configuration
X € Conf(E) with the Radon measure

my = Z Oy s

xeX

where §, is the Dirac mass on the point x. The space of configurations Conf (E) is then
identified with a subset of the space 91(E) of Radon measures on E and becomes itself
a complete separable metric space. The space Conf(E) is naturally equipped with its
Borel sigma algebra.

Points in a configuration will also be called particles. In this paper, the italicized
letters as X, Y, Z always denote configurations.

2.1. Additive functionals and multiplicative functionals. We recall the definitions of
additive and multiplicative functionals on the space of configurations.

If ¢ : E — C is a measurable function on E, then the additive functional (which is
also called linear statistic) S, : Conf(E) — C corresponding to ¢ is defined by

Sp(X) = g(x)

xeX

provided the sum ) o @(x) converges absolutely. If the sum ) - ¢(x) fails to
converge absolutely, then the additive functional is not defined at X.

Similarly, the multiplicative functional W, : Conf(E) — [0, oo] associated with a
non-negative measurable function g : E — R*, is defined as the function

W (X) =[] e,

xeX

provided the product [] g(x) absolutely converges to a value in [0, oo]. If the product
xeX
[T g(x) fails to converge absolutely, then the multiplicative functional is not defined at
xeX
the configuration X.
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2.2. Locally trace class operators and their kernels. Let L>(E, i) denote the complex
Hilbert space of C-valued square integrable functions on E. Let .77 (E, u) be the space
of trace class operators on L2(E, ) equipped with the trace class norm || - || & . Let
A 1oc(E, 1) be the space of locally trace class operators, that is, the space of bounded
operators K : L*(E, n) — L*(E, w) such that for any bounded subset B C E, we have

xpKxp € A(E, w).

A locally trace class operator K admits a kernel, for which we use the same symbol
K . In this paper, we are especially interested in locally trace class orthogonal projection
operators. Let, therefore, [1 € .77 1o be an operator of orthogonal projection onto a
closed subspace L C L*(E, u). All kernels considered in this paper are supposed to
satisfy the following

Assumption 1 There exists a subset ECE, satisfying u(E \E ) = 0 such that

e Forany g € E, the function h,(-) = TI(-, g) lies in L*(E, w) and for any f €
L2(E, i), we have

(M) = {fohg) 12k, )

In particular, if f is a function in L, then by letting f(q) = (f, hg)12(g .- for any
q € E, the function f is defined everywhere on E (which is slightly stronger than
almost everywhere defined on E). _

e The diagonal values I1(q, q) of the kernel IT are defined for all ¢ € E and we have
(g, q) = (hy, hq)Lz(E,u)' Moreover, for any bounded Borel subset B C E,

tr(sTlxs) = / M, x)dp(x).
B

2.3. Definition of determinantal point processes. A Borel probability P on Conf(E)
will be called a point process on E. Recall that the point process P is said to admit
k-th correlation measure p; on EX if for any continuous compactly supported function
QO E* — C, we have

*
Z P(x1, .., x)PEX) = /(p(ql’""‘lk)dpk(ql,...,qk),
Conf(E) *lses xpeX 2

*
where Y denotes the sum over all ordered k-tuples of distinct points (xi, . .., xg) € Xk,

Given a bounded measurable subset A C E, we define #4 : Conf(E) — N U {0} by
#4(X) = the number of particles in XX N A.

Then the point process P is determined by the joint distributions of #4,, ..., #4,, if
A1, ..., A, range over the family of bounded measurable subsets of E.

A Borel probability measure P on Conf (E) is called determinantal if there exists an
operator K € .7 1oc(E, 1) such that for any bounded measurable function g, for which
g — 1 is supported in a bounded set B, we have

EpW, =det(1+(g —1DKxp). (18)
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The Fredholm determinant is well-defined since (g — 1)K xp € %1 (E, n). The equation
(18) determines the measure P uniquely and we will denote it by Px and the kernel K
is said to be a correlation kernel of the determinantal point process Px . Note that Pg is
uniquely determined by K, but different kernels may yield the same point process.

By a theorem due to Macchi [19] and Soshnikov [27] and Shirai—Takahashi [25], any
Hermitian positive contraction in .7 joc(E, ) defines a determinantal point process.
In particular, the projection operator on a reproducing kernel Hilbert space induces a
determinantal point process.

Remark 2.1 If « : E — C is a Borel function such that |« (x)| = 1 for u-almost every
x € E,andif I1 € .7 10 i8 the operator of orthogonal projection onto a closed subspace
L C LZ(E , 0), then IT and oTTe define the same determinantal point process, i.e.,

Pyng = Pn.

Note that oI is the orthogonal projection onto the subspace o (x)L.

2.4. Palm measures and Palm subspaces. In this paper, by Palm measures, we always
mean reduced Palm measures. We refer to [9,16] for more details on Palm measures of
general point processes.

Let IP be a point process on Conf (E). Assume that P admits k-th correlation measure
Pk On E*. Then for pr-almost every q = (g1, ..., qk) € E* of distinct points in E, one
can define a point process on E, denoted by P9 and is called (reduced) Palm measure of
P conditioned at g, by the following disintegration formula: for any non-negative Borel
test function u : Conf(E) x EF — R,

> utar@0 = [pdn [ e@Uian .. ad 9P,

Conf(E) q1--ak€X EX Conf(E)
19)
*
where ) denotes the sum over all mutually distinct points g1, . . ., gk € X.
Informally, P9 is the conditional distribution of X\{g1, ..., gx} on Conf(E) condi-
tioned to the event that all particles ¢y, . . ., gx are in the configuration X, provided that

X has distribution P.
Now let P be a determinantal point process on Conf (£) induced by the projection

operator IT. Let q = (g1, ..., qk) € E*bea k-tuple of distinct points in E C E, where
E is as in Assumption 1. Set
L) ={peL:p(q)="=¢pgr =0} (20)

The space L(q) will be called the Palm subspace of L%(E, ) corresponding to . Both
the operator of orthogonal projection from L?(E, 1) onto the subspace L(q) and the
reproducing kernel of L(q) will be denoted by I19.

Explicit formulae for IT% in terms of the kernel IT are known, see Shirai—Takahashi
[26]. Here we recall that for a single point ¢ € E, we have

_ Tix, ¢)I(g, y)

M7 (x, y) = H(x, y) M. q)

2



12 A. 1. Bufetov, Y. Qiu

If (g, q) = 0, we set [17 = I1. In general, we have the iteration
M9 = (.- (M99 . . . )%k,
Note that the order of the points g1, g2, . . . gx has no effect in the above iteration.

Theorem 2.1 (Shirai and Takahashi [26]). For any k € N and for pi-almost every k-
tuple q € E* of distinct points in E, the Palm measure ]P’l‘ll is induced by the kernel
In9:

]qu-[ = Pra.

2.5. Rigidity. Let P be a point process over C. We will use the following result on the
rigidity of point processes (see Definition 1.1).

Theorem 2.2 (Ghosh [12], Ghosh and Peres [13]). Let P be a point process on C whose
first correlation measure p1 is absolutely continuous with respect to the Lebesgue mea-
sure. Suppose that for any R > 0 and 0 < ¢ < 1, there exists a Cf—smooth function
&, g such that & g(z) = 1 on {z € C: |z| < R} and Varp(So, ;) < &. Then the point
process P is rigid.

The reader is referred also to [4,5] for more results on rigidity of point processes.

3. Generalized Fock Spaces and Bergman Spaces

Let 0(C) and &' (D) denote the space of holomorphic functions on the whole plane C
and on the unit disk I respectively.
Let ¥ : C — R be a function satisfying the assumption (1) and denote

dvy (2) = e ¥ Ddir(2),
where d is the Lebesgue measure on C.
Definition 3.1 If the linear subspace
Fy = L*(C, dvy) N O(C)

is closed in L2(C, d vy ), then it will called generalized Fock space with respect to the
measure dvy . The orthogonal projection P : L*(d vy) — Fy is given by integration
against a reproducing kernel By (z, w) (analytic in z and anti-analytic in w):

(Pf)(z) = / f(w)By (z, wye W dr(w). (22)
C

Definition 3.2 Let D C C be the open unit disc. A weight function @ : D — R* is
called a Bergman weight, if it is integrable with respect to the Lebesgue measure and
the generalized Bergman space

B, = L*(D, wdr) N O(D)

is closed in L2(ID, wd ) and the evaluation functionals f — f(z) on %4, are uniformly
bounded on any compact subset of . In such situation, the space %,, is a reproducing
kernel Hilbert space, its reproducing kernel will be denoted as B,,.
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We shall need Christ’s pointwise estimate (cf. [8,10,24]) of the reproducing kernel
By (z, w). Theorem 3.2 in [24] gives the estimate in the form most convenient for us.

Theorem 3.1 (Christ). Let v € C?*(C) be a real-valued function satisfying (1). Then
there are contants §, C > 0 such that for all z, w € C,

|By (z, w)|Pe™ V@72V W) < comdlemml, (23)

In particular, for all z € C,
By(z,20e V@ < C. (24)
Remark 3.1 For the Gaussian case ¥ (z) = %|z|2, we have the following explicit formula

|By (z, w)|2e—21//(z)—21ﬁ(w) = 7T_2e_|z—w|2.

4. Regularized Multiplicative Functionals

4.1. Statement of the main result. As (10) shows, simple multiplicative functionals can-
not be used in our situation. Following [1], we use regularized multiplicative functionals
whose definitions we now recall.

Let f : E — C be a Borel function. Set

1
Var(Tl, f) = 5 / /E N7 = FOPING, y)Pdp@)dpy). (25)

Introduce the Hilbert space V(IT) in the following way: the elements of V(IT) are func-
tions f on E satisfying Var(I1, f) < oo; functions that differ by a constant are identified.
The square of the norm of an element f € V(II) is precisely Var(I1, f).

Let Sy : Conf(E) — C be the corresponding additive functional, such that Sy €
L' (Conf(E), Pr). Set

Sr=S8r—Ep,Sy. (26)
If, moreover, Sy € L%(Conf(E), Ppy), then it is easy to see that
Epy |§f|2 = Varpy (Sy) = Var(Il, f). 27)

Definition 4.1 Let V((IT) be the subset of functions f € V(IT), such that there exists
an exhausting sequence of bounded subsets (E,),>1, depending on f, so that

V(1)

fxe, — [

n— oo

The identity (27) implies that there exists a unique isometric embedding (as metric
spaces)

S : Vo(IT) — L*(Conf(E), Pry)

extending the definition (26), so that we have

Sp=1lim Y f)-E o f@). (28)

xeXNE, xeXNE,
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Definition 4.2 For a non-negative function g : E — R such that log g € Vo (IT) we set
“Nyg = exp(glogg)-
If, moreover, \’flg elL! (Conf(E), Pr), then we set

2

The function Eg is called the regularized multiplicative functional associated to g and

Pry. For specifying the dependence on Pry, the notation ng will also be used. By defi-
nition, for Prj-almost every configuration X, the following identity holds:

—I1 .
log W, (X) = lim > logg(x) —Ep, | Y loggx)|. (29)
xeXNE, xeXNE,

Clearly, W; is a probability density for Pr, since Ep,, (W;) =1.

Theorem 4.1 Let g be a nonnegative Borel function on E such that it is positive up to
a pu-negligible set and for any ¢ > 0 the subset {x € E : |g(x) — 1| > ¢} is bounded.
Assume moreover that there exists an increasing sequence of bounded subsets (Ep)n>1
exhausting the whole phase space E and such that

/ lg(x) — 1T (x, x)dp(x) < o0; (30)
E,
/|g(x> — 1P, x)dp(x) < oo; (31)
E(‘
f lg(x) — g (x, ) Pdp(x)dp(y) < oo; (32)
Efle;;
Tim_tr(xg, Mg — 117 ¢ MxE,) = 0. (33)

Then \Tlg € L'(Conf(E), Pn). If the subspace /&L is closed and the corresponding
operator of orthogonal projection 18 is locally of trace class and satisfies, for sufficiently
large R > 0, the condition

tr(X{g>R}Hg)({g>R}) <0 (34)
then we also have Prjig = G? - Ppy.

Remark 4.1 Note that

tr(xg, Mg — 1 xecNxg,) = /

E,

dp(y) /E 12(x) = 1PII, Y)Pdp).

Theorem 4.1 is a strengthening of and will be derived from [1, Prop. 4.2] which we
reformulate here in the form convenient for us.
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Proposition 4.2 (Proposition 4.2 in [1], particular case). Let g be a nonnegative Borel
function on E satisfying g|g, = 0, gIEé > 0 and such that for any ¢ > 0 the subset
A ={x € E :|g(x) — 1| > &} is bounded and

/Ig(X) — IIT(x, x)du(x) < oo; (35)
Ae
/ lg(x) — 1P (x, x)dp(x) < oo. (36)
Ag

Then \T'g e L'(Conf(E), Ppy). If the subspace /gL is closed and the corresponding
operator of orthogonal projection T18 satisfies, for sufficiently large R > 0, the condition

tr(x(g>Rr 18 X{g>R)) < 0O, then we also have Pris = 32 - Pr.

Remark 4.2 Proposition 4.2 in [1] is formulated in slightly greater generality: namely,
it still holds if g is allowed to take O values on a set Eg C E of positive measure ,
provided that the subset E satisfies tr(xg,I1xg,) < oo and that a function ¢ € L such
that x g\ gy = 0 must be the zero function. This more general formulation is needed in
[1] in order to cover the case of the discrete phase space when even a finite set of zeros
of our function g has positive measure and the requirement states, informally speaking,
that no function from L may be supported on a finite set. In the continuous case, there is
no need for the set Eg. At the same time, Theorem 4.1 also admits a similar more general
version: Theorem 4.1 still holds if g is allowed to take zero values on a set £y C E
of positive measure, provided that the subset Ey satisfis tr(xg,I1xg,) < oo and that a
function ¢ € L such that xg\g,¢ = 0 must be the zero function.

Assumptions of Theorem 4.1 are indeed weaker than that of Proposition 4.2: under
the assumption of Proposition 4.2, the subsets E,, = {x € E : |[g(x) — 1| > 1/n} verify
all the assumptions of Theorem 4.1. Indeed, we have

1
/|g(x)— 1P (x, x)dp(x) < ;/|g(x)— 1P (x, x)dp(x) < 00;
ES ES

/ lg(x) — g P (x, ) Pdp(x)du(y)

ESXES
52/ (g(x) — 12 +11 — g (x, y)[Pdu(x)dpu(y)
ESxES
< 4/ lg(x) — 1T (x, x)dpu(x) < oo,

E}
while, by Remark 4.1,

(e, Mg — 1P e Txe,) = /

E,

du(y) /E g0 = 1P (x, y)Pdpux)

5/|8(X)—1|2H(x,x)du(x) =2 ).

Ly
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4.2. Outline of the proof of Theorem 4.1. The results in [2] and [3] state that if K €
A.10c(E, 1) defines a determinantal measure Px on Conf(E) and g is a non-negative
bounded measurable function on E such that /|g — 1|K+/|g — 1] € A (E, u) and
1 + (g — 1)K is invertible, then the operator

K& := /gK(l+(g—DK) '/g

induces a determinantal measure Pgs on Conf(E) that coincides with

\IlgIP’K

/ W,dPg
Conf(E)

In other words, a product of a determinantal measure and a multiplicative functional is
again a determinantal measure given by an explicitly found kernel. In particular, if K
is an orthogonal projection onto a subspace L C L*(E, 1), then K¢ is the orthogonal
projection onto the closure of the subspace ,/gL.

Establishing the equivalence of Palm measures is, however, reduced to proving the
equivalence of determinantal point processes Px and Px¢ when the multiplicative func-
tional Wy is either not convergent at all or not integrable with respect to P . We therefore
need the formalism of regularized multiplicative functionals in order to establish the de-
sired equivalence.

Proposition 4.2 in [1] uses the Hilbert—Carleman regularization of the Fredholm deter-
minant defined for all Hilbert—Schmidt operators: dety (1+A) = det(1+A) exp(—tr(A)).
Assumption (36) precisely ensures that the operator «/|g — 1|K+/]g — 1] is Hilbert—
Schmidt. Unfortunately, this assumption does not hold for reproducing kernels of Hilbert
spaces of holomorphic functions, and instead of Hilbert—Schmidt operators we must
work with the von Neumann—Schatten class .#3. Assumption (31) in Theorem 4.1 en-
sures the relation «/|g — 1|K+/|g — 1| € -#3. The main step in the proof of Theorem 4.1
is the extension of the definition of regularized multiplicative functional to this larger
class of functions g. The main technical step in the proof is Proposition 7.2.

5. Case of C

5.1. Examples. In this section, we assume that ¥ : C — R is a measurable function
on C, the condition (1) is not necessarily satisfied. Recall that we denote dvy (z) =

e 2@ d)(z) and denote Fy =1f:C—> (C‘f holomorphic, [ |f|2dv¢ <ooy¢.If
C

the evaluation functionals ev (f) := f(z) defined on .%, are uniformly bounded on
compact subsets, then .%y, is a closed subspace of L*(C,d vy ). In this case, denote by
By, the reproducing kernel of .%y,, we have

o0
By(z,w) =) [;(@)fjw), (37)
j=1
where (f j)‘j?‘;l is any orthonormal basis of .F.

Assumption 2 The measure dvy, satisfies
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(1) the evaluation functionals ev, defined on .#, are uniformly bounded on compact
subsets;
(2) the polynomials are dense in Fy;

3) /

cl+]z)?

By (2, 2)dvy (z) < oo.

Example 5.1 (A radial case).Leta > 0, and set ¥, (z) = %|z|°‘. The measure dvy, (z) =
e 1 I"dx(z) satisfies Assumption 2 if and only if 0 < « < 2. Indeed, the first two
conditions in Assumption 2 are satisfied by dvy, by all @ > 0. Now one can see that
the third condtion is equivalent to

oo |z 2
L2(d
il R RIS

A direct computation shows that

” n ”2 2 r <2n + 2) d ”21171 ”iz(de) 1 (39)
Z 2 = — an ~ .
Ldw) o 12y,

The series (38) converges if and only if 0 < o < 2.

Remark 5.2 As shown in Example 5.1, the third condition in Assumption 2 is too strict:
indeed, it fails already for the Ginibre point process (corresponding to ¥ (z) = %|z|2).

Let Pp, be the determinantal point process induced by the operator By. For any
¢-tuple g = (q1, . .., q¢) € C* of distinct points, set

Fy@ = {f e Fy|rar == ra =0}

and let BIZ denote the operator of orthogonal projection onto .%y (q). Recall that the
Palm distribution ]P’qu of P By conditioned at q is induced by Bg, ie.,

q _
P By = P B
Given a positive integer £ € N, introduce the closed subspace
70 ={rem|ro=ro=" =10 =0} (40)

Denote Bff ) the operator of orthogonal projection onto ?ée). Let IP’%; be the determi-
nantal point process induced by Bl(f ),

Remark 5.3 In general, we do not have (Z/(f) = ZA%/,. Indeed, let ¥ (z) = %|z|2, we have
2%y ¢ Fy. This can be seen from the closed graph theorem: otherwise, the operator
M, : Fy — Fy of multiplication by the function z is bounded, which contradicts the
explicit computation (39):

Iz 2

Fy .

”Mz ”3@,—&?@ > sup n = ’
n 2.z,

see also the related discussion after Theorem 2 in [11].
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Proposition 5.1 If i satisfies Assumption 2, then for any £ € N and any £-tuple q =
(q1s - ., qu) € C of distinct points, we have equivalence of measures:
a ~mp®
P B, = P By
Moreover, if one sets

| @=q1)...(2—q0) :
gq(Z)— ZZ ’

then the Radon—Nikodym derivative is given by the regularized multiplicative functional

dPy, g
€ — T8 -
dP B,
In particular, given any two L-tuples q and q' of distinct points, the corresponding Palm

’
measures P, and P}, are equivalent.
By By

Proof Firstnote that, under Assumption 2, forany £ € Nand any ¢-tupleq = (q1, ..., q¢)
€ C* of distinct points,

Fo(q) = (z—q1) -Z-Z (z CIE)gZé/Z)

Indeed, if f € fl(f), then the function A(z) = M £(2) is holomorphic on C
and vanishes at g1, .. ., g¢. Moreover, '

/|h|2de =/ |h|2a’v¢+/ |h|*dvy
2 D C\D

vy (D) - sup [h(2)]* + sup
zeD zeC\D

(z—q1)...z—q0|*

7t

IA

f |f2dvy < oo.
C\D

Hence we get h € %y (q). Conversely, if i € %y (q), then similar proof as above shows

that f(z) := mh(z) is a function in 3315/6).
By the elementary fact from Remark 2.1, the operator of orthogonal projections from
L%(C, vy,) onto the following two subspaces

Z—q1)...(z—qe)
-0

(z—q1)...(z qg)y(@

0 _ 0
s ¥ y =V y

induce the same determinantal point process. Consequently, for finishing the proof of
Proposition 5.1, it suffices to verify that the pair (Bf; ), gq) satisfies all the assumptions
of Proposition 4.2. Note that by representing Bff ) in similar form as (37), we have
Bl(/f)(z, 2) = 0(|z]?Y) for |z| — 0. Hence there exists C > 0, such that

/ 189(2) — 11BY (2. 2)dvy (2) < C - sup (Igq(z) — 1] - [21*") - /dvu,(z)<oo.

lz|<1
[z[=1 lz|=1
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On the other hand, |gq(z) — 1?’=0 (1/|z|2) as |z| — oo. Recalling that Bg)(z, 7) <
By (z, z), we have

1

¢

/ 189(2) = 112BY (2, 2)dvy (2) < sup (|zIgq(z) — 11%) - / B vy ).
>1

j2f21 . jei21

By the third condition in Assumption 2, we may conclude that the above integral is

finite. Since .7y, (q) is a closed subspace in L%(C, Vy),801s /8¢~ gﬂ(f). Moreover, there

exists a function o : C — C such that |e(z)| = 1 and the orthogonal projection from
L*(C, vy) onto the subspace ,/gq - QZ/(/Z) is given by

[Bg)]gq =a- B} @

It follows that, for sufficiently large R > 0, since the set {z € C : gq(z) > R} is
bounded, we have

¢ _
tr(X{gq>R}[Bl(/,)]gqX{gq>R}) = 0 (X{gy>R)¥ - By, - TX(gq=R})

= / Bg(z, 2)dvy (z) < oco.
{gq>R}

The proof of Proposition 5.1 is complete. O

5.2. Proof of Theorem 1.1. We now derive Theorem 1.1 from Theorem 4.1. From now
on, the function v is assumed to satisfy the condition (1) until the end of this paper.

Let¢ > landletp = (p1,..., pe),q = (q1, ..., q¢) € C’be any two fixed ¢-tuples
of distinct points; let g be the function defined by the formula

2(2) = Igp.q(@ = =py-G=pof (41)
' (z—q1) - (z2—qe)

Let 0 < ¢ < 1 be a small fixed number. Choose

Re > max{|pil, gkl :k=1,...,¢}
large enough, such that outside the following subset
={zeC:z] = R},
we have |g(z) — 1| < ¢. Finally, forn € N, let
E, ={z € C:|z] <max(Rg,n)}.

We start with a simple but very useful observation that conditions (31), (32), (33) and
(34) in Theorem 4.1 are preserved under taking finite rank perturbation.

Remark 5.4 Assume that the pair (g, IT) satisfies the conditions (31), (32), (33) and (34)
in Theorem 4.1. If =TI+ IT’, where IT has finite rank and Ran(IT) L Ran(I1’), or
I=r1- IT’, where IT has finite rank and Ran(H ) C Ran(IT), then conditions (31),
(32), (33) and (34) hold for the new pair (g, H) If g is unbounded, then the condition
(30) for the pair (g, IT) does not imply the condition for the pair (g, H) The condition
(30) is on the other hand usually easy to check directly.
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Lemma 5.2 Let g be the function defined by the formula (41) and let E,,. We have

/ lg(z) — 1|B,?, (z, 2)e 2V Ddi(z) < o0;
E)l

f lg(z) — 1P B} (z, 2)e >V DdA(z) < oo.
L,

Proof We first note that for any n € N, here exists C,, > 0 such that

4
B)(2,2) < Cy- [ [lz—aqul’, for anyz e E,. (42)
k=1

Indeed, Bg is the reproducing kernel of the subspace %y, (q), holomorphic in the first

coordinate and anti-holomorphic in the second coordinate. Hence for any w € C, the

function z > B (z, w) belongs to Fy(q), that is, it is holomorphic and vanishes at
4 .

qi, - - -, qe. Consequently, we may write

¢
B:Z(z, w) = H(z —qr) - h(z, w).

k=1

where h(z, w) is holomorphic in the first coordinate and anti-holomorphic in the second
coordinate. Since Bg (z, w) is a Hermitian kernel, we may write further

4
Bl zw) = [ — a0 — di) - 1z w), (43)
k=1

where #(z, w) is a continuous function, holomorphic in the first coordinate and anti-
holomorphic in the second coordinate. Taking C;, = sup, g, 1(z, z), we get the desired
inequality (42). Now we have

sup |g(2) — 1] - B} (z. 2)

zeE,

< Cysup [[z—p1)---(z—po)l =1z —q1) - (z—qol?| < o0,

z€E,

and the first inequality in the lemma follows immediately.
By Theorem 3.1, there exists a constant C > 0, such that

Bj(z,20¢”Y® < By(z,0¢7V® < C.

Since |g(z) — 1° = 0(1/|z|3) as |z| — oo, there exists C’ > 0, such that

1
/|g(z) — 1B} (z, 2)e V' Wdr(z) < c’/ M@ < oo
j2lzR 12
Ef
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Remark 5.5 An alternative proof of the inequality (42) is as follows. From the theory of
reproducing kernel Hilbert spaces, we have

Bx?/ (z,2) = sup If (). (44)
fe-»%p(q),HfHLz(va):l

By Closed Graph Theorem, the map f +— induces a bounded linear operator

l_[k 1 (Z qr)
from %y (q) to C(E,), where C (E,) is the space of continuous functions on the compact

set E,. Consequently, by denoting C,, the operator norm of the above bounded linear
operator, that is,

f @)

C, = sup sup | ————
Hk 1z —qx)

feFy @0/l 2, ”W_l z€E,

and using (44), we get the desired inequality (42).

Lemma 5.3 Let g be the function defined by the formula (41). We have

/ / 18(2) — W) BY (2. w)dvy (2)dvy (w) < oo, (45)

ACXAS

Proof Since B:}/ is a finite rank perturbation of By, and since g is bounded on Ag, it
suffices to show that

I = / /| . 1g(z) — g(w)[*|By (z, w)|[*dvy (2)dvy (w) < 00.  (46)

By the definition (41) of g, there exist ¢y, ..., oy € C, such that

¢
Ok
>
k=1 © 9k

2

g =

Hence for any z, w € A¢, we have

l 4
12() — gl < sup (\H i O D )‘Z =
k= k=1

Z,WEAS 1 Z—(qk Z— 6]k W — gk

Note also that

sup
zZ,weAf

It follows that there exists C, > 0, such that for any z, w € C with |z| > R, |w| > R,,
we have

lg(z) — gw)| < C;
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Now Christ’s pointwise estimate, (23) in Theorem 3.1, implies that for proving (46), it
suffices to prove

1 17
L= // — — —| e ¥gr(z)dr(w) < oo. (47)
2[=Re,lw|=Re |2 W
To this end, we write
_ [
L= di(w) ——— e ldn()
lw|>Re lc+w|=R, [W(w + )]
= dr(w) X{jw|>2 e eldn ()
/MZRS crwizr, R 2

4"
+ dr(w) X — = Wlan(o).
v/|w|st crwizr, U w2

The first integral is controlled by

2
4/ d,\(w)/ M—'4e—5'f‘d)\(;) < o0,
lw|>Re c lwl

while the second integral is controlled by
/ dk(w)f X{lwl<2lz1} 1 se 1)
|w|=Re C |Rew|

2|§|> 21?2 s
=27'[/ lo < —_elgn(r) < o0.
20¢|=Rs £ Rs ) |R:|?

The proof of the lemma is complete. O

Lemma 5.4 Let g be the function defined by the formula (41). We have

lim tr(xz, By lg — 11° xeg By xE,) = 0. (48)
n—od

Proof Since B;'/ is a finite rank perturbation of By, by Remark 5.4, it suffices to check
the same condition (48) for the new pair (g, By). Applying again Christ’s pointwise
estimate (23), we have

L(n) :==tr(xg, Bylg — 1P xee By xE,) = I, Bylg — xeelFs
= f f lg(w) — 11| By (z, w)|Pe 2V O~ W g3 (2)dw(w)
|z|<n |w|=n

§C/ /|g(w)—1|2e*5'Z*wldA(z)d,\(w)

lzl<n [wlzn

o [ [ aseraonm=c [ ED [ g

lwl|?
|z|<n |w|=n lwi=n [w+g|<n
d)\ d s+n
<C’ / (uz)) / e lan() = an*C’ @ / re % dr.
|w] s>n S Js—n

[w=n [wl=n=[¢]|<|w[+n



Determinantal Processes and Holomorphic Function Spaces 23

Now since there exists C” > 0, such that re %" < C”e¢=%/2 for all r > 0, we have

o—8(s—n)/2 00 ,—8n(t—1)/2
In) <C"” f —ds = C”’/ fdt.
s 1

s>n
By dominated convergence theorem, we have lim,_, o, I3(n) = 0. O

Proof of Theorem 1.1. By Lemma 5.2, Lemma 5.3 and Lemma 5.4, the conditions (30),
(31), (32), (33) are satisfied by the pair (g, B;). Moreover, let

_ 120.0@)

a(z) @

then by Proposition 1.7, we have

V8@ Fy (@) = a(z)gp.q(2)-Fy (q) = a(2).Fy (p).

Hence /g(2)-%y (9) is a closed subspace of L2(dv1/,). And (B:}/)g = anZ& is locally
of trace class, this implies the condition (34). Now the formula (2) of Radon—Nikodym
derivative dIP’%w /dIP’qu follows from Theorem 4.1 and Remark 2.1. 0O

Remark 5.6 Under the condition (1), we also have the same result as in Proposition 5.1.

5.3. Proof of Proposition 1.2.

Lemma 5.5 There exists a constant C > 0, depending only on \, such that for any
C2-smooth compactly supported Sfunction ¢ : C — R, we have

Varey, (5,) = € [ 1Vpt)dicu. (49)

Proof Let ¢ : C — R be a C%-smooth compactly supported function. Our convention
for the Fourier transform of ¢ will be

&) = / e(w)e 2T WE) g (w), where (z, w) = R()NR(w) + I(@)IJ(w).
C
By definition, we have

1
Varey, (50 = 3 [ [ 1060 = )P 1By e, w e 2020 @yda)

By Theorem 3.1 and Plancherel identity for Fourier transform, we obtain
Varg,, (Sy) < C f / 9@ = p(w)Pe T dA2)da(w)
(CZ
=C / f lo(¢ +w) — p(w)|*e?1Elda(w)dAr(¢)
((:2

= [[[ 10 < 1P P dr @),
C
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Now since |¢/27&8) — 1| = 2|sin(n (€, £))| < 27|€]|¢]|, we have
Vargy, (Sy) < C' / [C EPBEPIE e Fldr@)dr @)

<c’ [E §P19E)1PdrE) = " fc 19w 5 w).
O

Proof of Proposition 1.2. We will follow the argument of Ghosh and Peres [13]. By
Theorem 2.2, it suffices, for any fixed R > 0 and any ¢ > 0, to construct a function
D, r € CCZ((C) such that &, gr(z) = 1 whenever |z] < R and Varpgw (So, ) <.

Let ro = 2R. By Lemma 5.5, it suffices to construct a radial function

(Da,R(Z) = ¢£,R(|Z|)v

with ¢, g a function in C CZ(R+) such that ¢, rlj0,r,/2] = 1 and

o0
/ ¢ g ()Prdr <e.
0

To this end, first we take ¢~5£,R(r) = (1—¢log*(r/ro))+, where log*(x) = max(log x, 0).
Note that ¢¢ [y exp(1/¢),00) = 0 and qbéﬁR(r) = —¢/r on the interval (rg, ro exp(1/¢)).

Next we smooth the function ¢~)& g at the points rg and rg exp(1/¢) to obtain a function
Pe R € CC2 (R+) such that ¢ g identically equals to 1 on [0, ro/2] and qbé g is supported
on [ro/2, 2rg exp(1/€)] such that |¢é r()| < e/r forall r > 0. Hence we have

00 2roexp(l/e) 82
/ ¢, g () |Prdr < / —dr = ¢+ ¢’ log4.
0 ’ ro/2 r

This completes the proof of the proposition. 0O

6. Case of D

6.1. Analysis of the conditions on the weight w. Letw : D — R* be a Bergman weight.
We collect some known results from the literature on the sufficient conditions on the
Bergman weight w, so that the inequality (3):

/(1 —12)?Bo(z, D)@ (2)dA(z) < 00
D

holds.

Example 6.1 (Classical weights). Assume w(z) = (1 — |z|%)%, « > —1. Then

a+1 1

By(z, w) = a- Zu—})(x+2 ’

hence (1 — |z|)sz(z, Z)w(z) is bounded and the inequality (3) holds.

Example 6.2 (A class of logarithmatically superharmonic weights). Let w(z) = e~ 2#®),
Assume that
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(1) ¢ € C*(D) and Agp > 0;
(2) the function (A(p(z))_l/ Zis Lipschitz on D;
(3) there exist C;,a > 0and 0 < ¢t < 1, such that

(Ap(2) V2 <11 — Iz]);
(Ap@) 2 < (Apw)) 2 4tz —w| for |z —w| > a(Ap(w)) /2.

By [17, Lemma 3.5], the weight w is a Bergman weight and

sup(1 — |2))? By (2, 2)w(z) < 0.
zeD

Hence the inequality (3) holds. Some concrete such examples are

o w(z)=(1—|z/%)% exp(h(z)) with o > 0 and A (z) any real harmonic function on D
o w(@) =(0—|z)%exp(—p —|z1)77 +h(z)) witha > 0,8 > 0,y > 0and h(z)
any real harmonic function on D.

Proposition 6.1 Let wy, wy be two Bergman weights on D such that

/(1 — 121)? Bwy (2, 2)@2(2)dA(2) < 0.
D

Let w be a Bergman weight on D and assume that there exist ¢, C > 0 such that
cw1(2) = w(2) = Cwn(2).
Then w satisfies the condition (3).

Proof Since B, (z,2) = SUP| £l <1 | £(2)|?, we have By (z,z) < cszl (z,z). By the
assumption, we have

/(1 —12D)?Bu(z, D) (2)dA(z) < CZC/(I —12D)%Bo, (2, 2)@n(2)dA(z) < 0.
D D

O

Example 6.3 Let o be a Bergman weight. Assume that there exist ¢, C > 0 and «,
satisfying either the inequality 0 > o > > —1 orthe inequalitya > 8 > o —1 > —1
and such that

c(1 -1z < w(z) < C(1 - [z1HF.

Then w satisfies the condition (3).
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6.2. Proof of Theorem 1.4 and Proposition 1.5. Let k, £ € N U {0}, let p € D’ be an
(-tuple of distinct points and q € ¥ a k-tuple of distinct points. Set

1

j=1

2 2

Z—pj
l1—-pjz

l—q_jZ
Z—4qj

4
2(2) = lbp(Dbg( P =[]

j=1

By virtue of Proposition 1.8, to prove Proposition 1.5 and hence Theorem 1.4, it
suffices to prove that the pair (g, By) satisfies the assumption of Proposition 4.2. This
is done in the following

Lemma 6.2 Take ¢ > 0 small enough and let D, = Uf-;l U:(qi), where Ug(q;) is a
disc centred at point q; with radius € in D. Then we have

f lg(z) — 1|Bd(z, 2)w(2)dA(z) +/

1g(2) — 11*BI(z, D)w(2)di(z) < o0. (50)
D, De

Proof By similar arguments as those in the proof of Lemma 5.2 or Remark 5.5, for
& > 0 small enough, there exists C > 0 such that for any z € D, we have

k
Bz, ) <C[]le—ail
i=1

whence |g(z) — 1|B3(z, z) is bounded on Dy, and the first integral in (50) is bounded.
For the second integral, the identities

e—pi [P _ A=l = 1)
l—pjz 11— pjzl? '
together with the same identities for ¢; : j = 1, ..., k, imply that there exists C’ > 0

such that
lg(z) = 1] < C'(1 — [z]) for z € Dg.

Note also that since Ran(Bg) C Ran(B,,), we have Ba(z, z) < B,(z, 2), hence by our
assumption (3), we have

/ lg(z) — 1|2Bg(z, 2w (z)dA(z) < C’/ (1 = 12D)?Bu(z, 2)w(z)dA(z) < 0.
D¢ D¢

Lemma 6.3 The subspace /g - Ran(Bg) is closed in L*(D, wd).). Moreover, for suffi-
ciently large R > 0, we have tr(x{g>R}[Bf,]gx{g>R}) < 0.

Proof Note that by Proposition 1.8 and by defining a function o with |a(z)| = 1, given
by

_ |bp(@bq(2) |

= D
YO = b1

we have

Vg -Ran(BY) = a(2)bp(2)bq(2) "' Bu(q) = a(2) B (p). (51)
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Since %, (p) is a closed subspace in L2, wd)), so is Ve Ran(BJ). By (51), we have
also

[BJ]® =« - B -@.

It follows that, for sufficiently large R > 0, since the set {z € D : g(z) > R}is contained
in a centered disk {z € D : |z| < r}, with radius r < 1, we have

r(X(g=r}[BI® X(o=Rr)) =t (X(g>R)¥ - BY - Wx(g=r}) < / B (z, 2)w(2)dA(2) < 00.

lzl=r

O

7. Proof of Theorem 4.1

We start with an outline of our argument.

(1) Our first step is to define the regularized multiplicative functionals for functions g
such that the operator /|g — 1|I14/|g — 1] belongs to the von Neumann—Schatten
class .73. In Definition 7.1, we therefore introduce a class .e/3(IT) of functions
on E. We will see later in Proposition 7.5 and Proposition 7.6 that if g € 7/3(I1),
then the regularized multiplicative functional W, (cf. Definition 4.2) is well-defined

and integrable, the normalized multiplicative functional Wgn is consequently well-
defined.

(ii) We prove in Proposition 7.2 that if g € 2 (I1) satisfies supg |g(x) — 1| < 1, then
the normalized generalized multiplicative functional Eg (see Definition 4.2) is
well-defined and the orthogonal projection onto the closed subspace ,/gL induces

a determinantal point process which coincides with EgHIP’n. The key step is the
continuity, proved later in Proposition 7.13, of the mapping that sends a function

—TI

ge Ao V,.
(iii)) We derive Theorem 4.1 from Proposition 7.2 by introducing a decomposition
g = 818283 with g1 € @A(I1) that satisfies supy |g1(x)—1| < 1 and g acompactly
supported bounded function, g3 a compactly supported function satisfying g3 > 1.

The normalized regularized multiplicative functional W? and the usual multiplica-

tive functionals W,,, W,, are all well-defined. We then write W? = CW,, \Ilgzag
and conclude the proof of Theorem 4.1.

7.1. The class <73 (I1). Recall that we denote by IT an orthogonal projection on L (E, 1)
which is locally in trace class. In [1], a class of Borel functions on E, denoted there by
% (IT), plays a central role in the proof of the main result. By definition, .o (I1) is the
set of positive Borel functions g on E satisfying

(1) O<infg <supg < oc;
E E

@) [glg() = 1P (x, x)dp(x) < 0.

If ¢ € @/ (I1), then the subspace /gL, where L is the range of the orthogonal projection
I1, is automatically closed; we set I1¢ to be the corresponding operator of orthogonal
projection. The main property of .o (IT) that will be used later is stated in the following
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Proposition 7.1 (Cor. 4.2 of [1]). If g € 2/ (I1) satisfies supg |g(x) — 1| < 1, then the
operator T18 is locally of trace class and the generalized multiplicative functional Wgn
are well-defined. Moreover, we have Prig = Wgn - Pr.

Let g : E — R be a Borel function, set
L(g) = /E 18(0) = 1PTI(x, )dpu(x) € [0, o] (52)

and
V@ = [[ 1600 = e0PINe ) Pdudnt) < 10,00l 63

And then, we introduce a new class of Borel functions on E as follows.
Definition 7.1 Let 24 (IT) be the set of positive Borel functions g on E satisfying
(1)0 <inf g <supg < o0;

E E

(2) L(g) <ocoand V(g) < o0;
(3) there exists an exhausting sequence (E,),>1 of bounded subsets of E, possibly
depending on g, such that

Jim r(xe, Mg — 1 xeg Mxe,) = 0. (54)
Moreover, we introduce a topology .7 on 2#3(I1) generated by the open sets
Ule,g) =th € o5(I) : L(h/g) <&, V(h/g) <&},

In other words, a sequence g, converges to g in .o/3(IT) with respect to the topology .7
if and only if

L(gn/g) — 0 and V(g,/g) — 0. (55)

Note that (54) can equivalently be rewritten as

n— 00

lim / /E i xEe () xE, (M)1g(x) — 1 TI(x, )P dpu(x)du(y) = 0. (56)

Remark 7.1 The sequence (E,),>1 in the definition of 27 (IT) is an analogue of the
sequence of the subsets ({z € C : |z| < n}),>1 in the proof of Lemma 5.4.

Remark 7.2 Note that the condition (54) holds automatically for any g € .o (I1), hence
we have % (IT) C @4 (I1).

Remark 7.3 Denote [g, IT] := gIT — Ilg, then we have
V(g) = lllg, Mlis, (57)
where || - || gs stands for the Hilbert—Schmidt norm.
The main technical result in this section is the following

Proposition 7.2 If g € a3(I1) satisfies supg |g(x) — 1| < 1, then the operator T18 is

locally of trace class and the generalized multiplicative functional Egn is well-defined.

—I1
Moreover, we have P = v, - Pr.
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7.2. Derivation of Theorem 4.1 from Proposition 7.2. We now derive Theorem 4.1 from
Proposition 7.2. The proofis similar to the proof of Proposition 4.2 givenin [1]. However,

to prove the statement for <73 (IT) instead of .@% (IT) requires extra effort.

By our assumption, we may choose 0 < &1 < ¢ < 1 and a bounded subset Epig C

E, such that
xeE:|gx) = 1]z e} C Emia C{x € E:[gx) — 1] z &1},
and the operator norm of X{ye£:|g(x)—1|<e,) I1 is strictly less than 1:

IXixeE:g()—11<exy T < 1.

Decompose Enig = Eq U E_i4 by setting

Erig={x€E:g(x)>1}NEpg and E_;={x € E:gx) < 1}N Epi.

Note that

EfgC{xeE:gx)>1+¢} and E_ C{xeE:gx) <1—e}

Then we can decompose g as g = g18283 with

g1=(8—Dxge, +1,
g =(g- l)XEr;id +1,
g =(8— Dxg:, +1.

Claim g € o3(I0).

Indeed, the first two and the last conditions in the definition of .53 (IT) are immediate for

g1. We now check the third condition. We have

lg(x) — g (x,y) € ESq x ESy

- e -1 (oY) € By x Emig
81D =&I=1 )~ 1] (.)€ Emig x ES,y°
0 (x,y) X Emid X Emid

whence
Vign = / /E 1) = @M, ) Pdpodpy)

:f/E . lg(x) — g(y)|2|n(x’)’)|2du(x)dp,(y)

C
mid X Emid

2 f du(y) / g(r) — 1PITICx, ) Pdp(e).
Emid Efd

By (32), (33) and Remark 4.1, we have V(g1) < oo.
By Proposition 7.2, we have

—I1
Pher = \I’gl - Ppy.

(58)
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The rest of the proof of Theorem 4.1 follows the scheme of the proof of Proposition
4.2 in [1]. First, we have

18182 —= (Hgl)gz and TI8 = 1818283 — (Hgng)gz. (59)

Since g7 is bounded and g — 1 is compactly supported, the usual multiplicative functional

Wy, (X0) = [ ] &200),

xeX
is well-defined and an application of the main result in [2] yields that
Prsiss = C1We,Prsi. (60)
The function g3 — 1, although not necessarily bounded, is compactly supported and
positive. The usual multiplicative functional W, is also well-defined for Prsis2 -almost

every configuration. Indeed, since g1g> is bounded and by [1, Prop. 4.4], there exists
C > 0 such that

[18182(x, x) < CII(x, x).

Consequently, we have

/E |g3(x) — LTI (x, x)dp(x) < C/+ |83 (x) — 1[I (x, x)dpu(x) < oo. (61)

E mid

In the relation (61), we used the fact that g3 — 1 is supported on E; ., and our assumption
(30). It follows that /g3 — 1118182 is Hilbert—Schmidt. By definitinon

Vg3 - Ran(T181%2) = /s /g182L = /gL,

hence by assumption of Theorem 4.1, ,/g3 - Ran(I18182) is closed. Moreover, by (59),
we have (I18182)83 = TI8, which is locally of trace class by assumption. For R large
enough, g3 > R implies g > R, hence by assumption (34), we have

tr(x(gs> Ry (TT8182)83 X103 R)) = tr(X(g3> R)TT® X{g3>R)) < tr(X(g>R}TI® X(g>R)) < OO.
By [1, Prop. 4.10], we have

Pre = C'W,, Prsica. (62)
Combining (58), (60) and (62), we get

Prie = C'Wg,Prisies = C'CWe, Wy, - Prisy = C'CW, W, Uy -Pri,  (63)

whence Prjs = W?Pn and Theorem 4.1 is completely proved.
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Remark 7.4 The following elementary observation is used in the equality (63): if g, h are
two non-negative functions such that for # — 1 is compactly supported and G? is defined.
Then the usual multiplicative functional W is well-defined: W, (X) = [[,cx h(x).

. e . —II . .
Moreover, the regularized multiplicative functional W, is well-defined and there exists
a unique C > 0, such that

Egh =CVYy 'Wg.

Indeed, we have

log Uy (X) = lim (Y logg(x)h(x) — Egy Y log g(0)h(x))

xek, xek,
hm ( Z log g(x) — Epy Z logg(x))
xek, xeE,
+ Tim ( 3 logh(x) —Epy . logh(x))
xekE, xek,
=log ¥, (X) + Z log h(x) +log C1 = log(C W (X)W, (X)).
xeX

That is, \Flvlgh = Cllflg\lfh. It follows that

_ v U, W Ep, [¥ ] _
U, = gh _ 8 h _ Pn£ <l ) 8 W, = CW, W,
Ep, [V gh] Epy[VeWr]  Epp[WeW,] Epp[Wel
where ¢ = —rnl¥el o uniquely determined.

]E]Pn [lI’g Wy

7.3. Convergence in o73(I1). We need the following convergence properties of functions
in 253 (I1).

Lemma 7.3 Let g € o3(I1) and let (E,)n>1 be the exhausting sequence of bounded
subsets of E such that condition (54) holds. Denote g, = 1+(g—1) xE,, then g, i) g.
n— o0

Proof Assume that g € @73 (I1). First, by definition, we have

1
lgn/g =11 =11/8 = llxEg < - lg = 1I.
infrp g

It follows that L(g,/g) — O.
Next, setting

Vo (x, ¥) = lgn(x)/g(x) — g2 (3) /g PITL(x, )12,

V(gn/g) = // vn+// vn+// V. (64)

E,xE§ ESxXEy, ESXES

we have
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The first and second terms in (64) are equal and

// v, = // 11— 1/ PIT (. y)Pdp)du(y)

E, xE§ E, xES

1
< — / lg(y) = 12T Cx, ) Pdpx)d ply)
infr g

E,xES

1
- —1lxrell2 = 0.
nfg 82 Ixe, Mg — 1xegllz

The third term in (64) converges to 0 since

1

// Vo< - 2/ 1200 — gWPIT(x, »IPdp(0duy),
infp g

ESXES ESxES

and the latter integral tends to 0 as n — oo. Thus V(g,/g) — 0, and Lemma 7.3 is
completely proved. 0O

Lemma 7.4 Let g, € </3(I11),n > 1, g € @A (I1), and assume that the sequence (g,) is
uniformly bounded. If g, L g, then L(g,) — L(g) and V(gn) — V(g).
n—oo

Proof By definition, we have L(g,/g) — Oand V(g,/g) — O.
The relation L(g,/g) — 0 together with the inequality

/ 180 (x) — g()PTLCx, X)dpu(x) < Supg - / |gn(x)/8(x) — 1P TI(x, x)dpu(x)
implies that
dim [1(gn — D = (¢ = DllssE:ne ey = 0,
whence
i llgn = s neoduc = 18 = s neodee-

This is equivalent to L(g,) — L(g) asn — oo.

We turn to the proof of the convergence V(g,) — V(g). It suffices to prove any
convergent subsequence (in [0, oo]) of the sequence (V (g,))n>1 converges to V (g). We
have already shown that

/ lgn () = g P (x, x)dpu(x) — 0.

E
Passing perhaps to a subsequence, we may assume that g, — g almost everywhere with
respect to TT(x, x)du(x). Set

Fo(x,y) = gn(x) = gn(y) and F(x,y) = g(x) —g(y).

The desired relation V (g,) — V(g) is equivalent to the relation

Jim lEnll 2 s 100w PRapoduen = W lL2Ex e iney pdeeduo)



Determinantal Processes and Holomorphic Function Spaces 33

To simplify notation, write dM>(x,y) = |T1(x, y)|2d w(x)du(y). It suffices to prove
that

nlingo IFn — FllL2(ExE; amy) = 0- (65)

A direct computation shows that

Folr,y) = F(x.y) _ 8n(¥) _ 8n(y)  Fx,)(gn(y) —8(¥)
g(x) gx) gy g(x)g(y)

Hence we have

n n 1

Fa(roy) = Fr, ) <supg - |80 _ 8O 0 L pi o160 = g0l
E g(x) g(y)| infpg

and

gn(x) . gn(y)
gx) g

| F — F||L2(E><E;dM2) =supg- ‘
E L2(ExE; dM>y)

+ F(x,y)- — .
inng” (x, ¥) - 1gn(y) g(y)|||L2(E><E,dM2)

The limit relation V (g, /g) — 0 implies that

gn(x)  gn(y)
gx) g

=0.

n—00 ‘ L2(EXE; dM>)

By definition, F € L?*(E x E; dM>). Since the sequence (g, ) is uniformly bounded and
gn — g almost everywhere with respect to I1(x, x)du(x), the dominated convergence
theorem yields

Jm [[F Qe y) - 18n(9) = 82 xE; amy) = 0-

This completes the proof of (65). Lemma 7.4 is proved completely. 0O

7.4. Existence of generalized multiplicative functionals. Recall that, in Definition 4.1
and Definition 4.2, we introduced the subset Vo (IT) C V(IT) and the functional ¥, for
functions g such that log g € Vo (IT). Recall also that we introduced in (25) the notation
Var(I1, f) for any Borel function f : E — C.

Proposition 7.5 If ¢ € «/3(I1), then Var(I1, log g) < oo and log g € Vo(I1). In partic-
ular, for any function g € </3(I1), the functional Yy is well-defined.

Proof By the third condition in the definition of 2/3(I1), if g € < (I1), then
Var(IT,g — 1) < oo.
Define a function

log(1+t)—t .
Fay=) 7 Tr#E0
-3 if t=0
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Then F is continuous on (—1, 0o). It follows that forany 0 < & < 1 and M > 1, there
exists Cg p > 0, such thatif € [-1+ ¢, —1 + M], then

llog(1 +1) —t]| < Cept>. (66)

By the first condition in the definition of <3 (IT), we can apply the above inequality to
g — 1. A simple computation yields

llog g(x) — log g(»)|* < 20M?|g(x) — g(»)I*
8MC2,(1g(x) — 1P +1g(n) — 1), (67)

where ¢ = min(l, infg g) and M = max(1, supg g). Inequality (67), combined with
the reproducing property of the kernel IT:

M(x, x) =/E|n(x,y>|2du<y>

and the second and third conditions on g in the definition of 273 (1), yields the desired
inequality Var(IT, log g) < oo.

We turn to the proof of the relation log g € Vo(IT). By definition, there exists a
sequence (E,) of exhausting bounded subsets of E, such that the relation (56) holds. It
suffices to show that

lim | xg, logg —log gllvan = lim |xgeloggllvay = 0. (68)
n— oo n—oQ

We have
1
”XE,Cl logg||%7(n) = 3 //E . |log g(x) — 10gg(y)|2|H(x, }’)|2du(x)d,u(y)
WX Ep
1
"2 //EZ xEe () xE, ()] log g()[FITT(x, y)[*dp(x)du(y)

1
+ 5//1;2 XEﬁ(Y)XEn(XN10gg(y)|2|n(x’ Y)|2dM(X)dpL(y)_

Since Var(IT, log g) < oo, the first integral in the above identity tends to O when n tends
to infinity follows. The second and the third integrals are equal, and since ¢ < g < M,
we may use |log g(x)| < C¢ p|g(x) — 1] and we get

/ fE X () xE, ) og g PITI(x, y)Pdp(x)dp(y)

<c2, / /E X 1800 — 1PN, YPdR@dR().  (69)

The assumption (56) implies that the last integral in (69) tends to O as n tends to infinity.
This completes the proof of the desired relation (68). O

Definition 7.2 Let %E’M(H) C @73 (I1) be the subset of functions such that

e<infg <supg <M. (70)
E E
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Proposition 7.6 For any e, M : 0 < ¢ < 1, M > 1, there exists a constant C¢ py > 0
such thatif g € %E’M(H), then

log EW, < Cepr(L(g) + V(). (71)

In particular, the normalized generalized multiplicative functional Egn is well-defined.
Denote g* = 1+ x(g>1}(g—1) and g~ = I+ x(4<1}(¢ —1). Then g = g* g~ with
g" > 1,g~ < 1. Our aim here is to reduce Proposition 7.6 for g to the same statement
forg*, g”.
Lemma 7.7 Both g* and g~ are in the class ,Q%S’M(H), moreover, we have
L(g®) < L(g) and V(g¥) = V(9. (72)
Proof Inequalities (72) follow from the elementary inequalities

gt —1<lg—1] and |g¥(x) — gF ()| <lg(x) — g (73)

Now let (E,),>1 be the exhausting sequence of bounded subsets such that (54) holds.
The first inequality in (73) yields the following inequalities for self-adjoint operators:

xe g™ — 1P xeeMxe, < xg, Mg — 1 xexE, .

Hence (54) holds for g* with respect to the sequence (E,),=1. Consequently, g* are
both in <7 (1M). o

Denote by ng;’M (ID)* the subclass of functions in sz;‘M (TT) such that
ge€oia(l) and g > 1.
Similarly, denote by %E’M(H)_ the subclass of functions in beff’M (IT) such that
gedPMI) and g <1.
Let
%S,M(H):I: _ %s,M(l—[)+ U %S,M(H)—.

We reduce the statement of Proposition 7.6 for general g € d;*M (IT) to the particular
case g € %E’M(H)i. Indeed, assume that we have established (71) in the case of
Jz%;‘M (IT)*, then by multiplicativity, for general g in %S’M (IT), we have

T I T T2 T2 \1/2 T T 1/2
EV, = B(Up ) < (BUL, -ET] ) 2= By - BY(oy2)!/

1~ ~
< E(E‘I’(g+)2 + ]E\P(g_)z).
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Now we may apply (71) for functions (g*)? € 42{3€’M(H)+ and (g7)% € %E’M(I'I)_
respectively and use the relations (89) together with Lemma 7.7 , to obtain that
ET, < LA + VD) + L)) + V()]
= C'[L@)+VEH + L)+ V)]
< C"(L(®)+V(9).
We now proceed to the proof of (71) for functions g in %S’M (IT)* and, consequently,

Proposition 7.6. By definition, if g € %S’M(H)i, then the sequences (g,)n>1 defined

in the proof of Lemma 7.3 all stay in the set %S’M (IT)*. Note that by the computation
in (68), we have

IStog 5, — Stogll3 = Var(I1, log(ga/g))

Consequently, passing perhaps to a subsequence, we may assume that

s a.e. s
N — S
loggn 7 7 Plogg

and hence
lign = exp(Elogg,,) %) \ig = exp(glogg)

By Fatou’s Lemma and Lemma 7.4 , it suffices to establish (71) for a function g €

%E’M(H)i such that the subset {x € E : g(x) # 1} is bounded. We will assume the
boundedness of {x € E : g(x) # 1} until the end of the proof of Proposition 7.6.

For any 0 < ¢ < 1 and any M > 1, there exists C, py > O such that if r €
[—1+e¢&,—1+ M], then

1
log(1+1) — 1+ §t2 < Ceom -t (74)

Recall that for any bounded linear operator A acting on a Hilbert space, we set
|A| = ~/ A*A. The inequality (74) applied to the eigenvalues of trace class operator with
spectrum contained in [—1 + &, —1 + M] yields the following

Lemma 7.8 Let ¢, M, C, p be as in the inequality (74). For any self-adjoint trace class
operator A whose spectrum o (A) satisfies 0 (A) C [—1 +¢&, —1 + M], we have

1
logdet(1 + A) < tr(A) — Etr(Az) + Cemtr(JA]%). (75)

Proof The lemma is an immediate consequence of the inequality (74) and the identity

logdet(1+ A) = ) "log(1 + i (A)),

i=1

where (A; (A))?i | is the sequence of the eigenvalues of A. O
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In order to simplify notation, for g € 4273€’M(H)+, set
h=g—1>0 and T; = Vhllvh > 0; (76)
and for g € %E’M(H)’, set
h=g—-1<0 and Tg_zl'IhI"IﬁO. 77)
Applying the relation (75), for g € ,53738’M(1'I)i, we have
log EW, = logdet(1 + (g — 1)IT) = logdet(1 + Tgi)
< () — %tr((T;)z) + Cemtr(IT{ ). (78)

Clearly, the traces tr(TgJr ) and tr(Tg_) are given by the formula:

tr(Tgi) = fh(x)l'[(x,x)du(x). (79)
E

Recall that the inner product on the space of Hilbert—Schmidt operators is defined by
the formula

(a.b)gs = tr(ab®).
Lemma 7.9 For any g € </ (I)*, we have
r(T;)?) = / h(x)*T(x, x)dpu(x) — %V(g)- (80)
E
Proof 1f g € ™ (T)*, then
tr((T;)?) = tr(VhTIATIVR) = tr(TThTTh) = (TTh, hTT) gs. 81

Note that

ITTA|%,g = IIATT])3 g = /h(x>2n<x, X)d (). (82)
E

By (57), we have
V(g) = lllg. Mlll3s = lIlh, TII7;5 = IIATT — TTA| 3
= ||hT1||3;g + IT1A||3; g — 2(hT1, T1A). (83)

Combining (81), (82) and (83), we complete the proof of the desired identity (80) for
g e oM.
The argument for g € ,%S’M(l'[)’ is the same, since we have

w((T;)%) = (M TIfTT) = tr(TLfTIf).
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Lemma 7.10 Forany g € %E’M(H)i, we have

(T, P) < L(g) = / lg(x) = 1PTI(x, x)dpu(x). (84)
E

Proof First, let g € 42{35’M (IT)*. Recall the definition of 4 and TgJr in (76). By the
elementary operator inequality

VRTIATATIVE < VhTTR* TV,
we get
(T} 1%) = r(VATIATTATIV ) < (VAT TIVR) = |[VhTTR| s, (85)
Since
IVRTIA| % = r(VATTR* TIVR) = (A3 2R 2 TTh) = (TTR3/2, hTTRY/?) s
< I0R2 || gs|hTR s = T || gslIVATTR s,
we also have
IWATIR|Gg < T35 = tr(TRTT) = (R’ TT) = L(g). (86)
Combining inequalities (85) and (86), we obtain the desired inequality (84) for g €
M ()t
The inequality (84) for g € 427'38’}” (IT)™ is proved by noting that in this case, T,” =
I[ThIl = —II|A|IT and
tr(|T, 1*) = tr(T1|R[TT|A|TTA|TT) = tr(y/|A[ T || TT| A T1y/|A])

< tr(y/|A[ 11211/ 1))
O

Conclusion of the Proof of Proposition 7.6. It suffices to establish (71) when g €
%8’M(H)i. An application of (74) yields that

h(x)?
/(10gg(x)—h(x)+ 5 )H(x,x)du(x) < Ce.mL(g). 87)
E

It follows that
log E\Tlg =logEWV, — ESjog
1
= () = ST + Cemtr(ITE) = ESiog

1 1
< /h(X)H(x,X)d/L(X)— E/h(X)ZH(x,X)dM(XHZV(g)
E E

+CemL(8) — / log g (X)TT(x, x)d u(x)
E

1
= 2CemL(®)+ 7 V(g) = Cp y(L(g) + V(2)- O
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7.5. Continuity and convergence of regularized multiplicative functionals.

Proposition 7.11 Forany e, M : 0 < ¢ <1, M > 1, there exists a constant C¢ py > 0
such thatif g € %‘E’M(H), then

log B[, |* < Com(L(g) + V(9)) (88)
Proof By definition |Wy|?> = ¥ 2. If g € 7" (IT), then

L(g*) <8M’L(g) and V(g% <4M*V(g). (89)

Consequently, Lemma follows immediately from the estimate (71) in Proposition 7.6.
O

Proposition 7.12 Given 0 < ¢ < 1 and M > 1, there exists a constant C¢ py > 0 such
that if g1, g2 € %S’M(H), then

(BT, — Tpal)” < BN, - [exp (Cem(Ligi/en +Vigi/82)) - 1] (90)

Proof Let g1, 82 € %S’M(H). Set g := (g1/g2)>. Applying Proposition 7.11 to the
function g yields

BT, < exp (Com (L@ +V(©)) = exp (Clu (Lis1/2) + Vigi/e2) ).

By multiplicativity, we have

=

2

BTy, — Tl = BT/ — N Tgsl) = (BTeP) " (B1T0 - 112)
By Jensen’s inequality
EWy, /g, = Exp(Siog(g1 /g2)) = XPLE(Siog(g/g2)] = 1.
It follows that
E[Wy /e — 117 <E[Ug 0|* — 1 = EW, — 1.
Combining the above inequalities, we obtain Proposition 7.12. O

Slightly abusing notation, we keep the notation .7 for the induced topology defined
by (55) on ,Qf;’M (IT). As an immediate consequence of Proposition 7.12, we have

Proposition 7.13 The two mappings from %E’M (IT) to L' (Conf(E), Pry) defined by

g—>VY,, g—> VY,

are continuous with respect to the topology 7 on JZ%E’M(H).
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Proof of Proposition 7.2. The proof follows the proof of Corollary 4.8 in [1]. Indeed,
let g be a function such that supg |g(x) — 1| < 1. Taking g, as in Lemma 7.3, we obtain
the convergence of 18 to I1¢ in the space of locally trace class operators and hence the
weak convergence of Prys» to Prye in the space of probability measures on Conf(E). By
assumption, g, — 1 is compactly supported, so by Proposition 2.1 of [3], we have

I[D]'[gn - Egn . P]‘[.
By Proposition 7.13, W, — W, in L!(Conf(E), Pp), so we have
ng ‘Pn — Eg -PH

weakly in the space of probability measures on Conf(E), whence Pz = Eg - Pp. The
proof Proposition 7.2 is complete. O
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Appendix

Our aim here is to show that Palm measures of different orders are mutually singular for
a point process rigid in the sense of Ghosh [12], Ghosh—Peres [13].

Let E be a complete metric space, and let P be a probability measure on Conf(E)
admitting correlation measures of all orders; the k-th correlation measure of P is denoted
by px. Given B C E abounded Borel subset, let §(E\ B) be the sigma-algebra generated
by all events of the form {#c = n} with C C E\ B bounded and Borel, n € N, and let
&P(E\B) be the completion of F(E\B) with respect to P. We can canonically identify
Conf(E) with Conf(B) x Conf (E\ B). Then in this identification, the events in §(E\ B)
have the form

Conf(B) x A,
where A C Conf(E\B) is a measurable subset. By definition, assume that .2~ €
F(E\B), and let (p1, ..., px) € B¥ be any k-tuple of distinct points, then X € 2
ifand only if X U {p1, ..., px} € 2. Recall that a point process with distribution P on

Conf(E) is said to be rigid if for any bounded Borel subset B C E, the function #p is
3% (E\B)-measurable.

Proposition 8.1 Let B C E be a bounded Borel subset. Assume that the function #p
is §° (E\B)-measurable. Then, for any k,l € N, k # 1, for px-almost any k-tuple
(p1s.--, Pr) € B* and pi-almost any [-tuple (q1,...,q) € B!, the reduced Palm
measures PP Pk and P9'>-91 are mutually singular.
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Remark 8.1 After our preprint had appeared, S. Ghosh studied the connection between
rigidity and Palm measures of point processes in his preprint Palm measures and rigidity
phenomena in point processes, arxiv:1509.00898, and, in particular, proved that rigidity
implies singularity of Palm measures of different orders. Furthermore, under additional
assumptions on the conditional measures with respect to fixed configuration outside a
bounded set, Ghosh proved the mutual absolute continuity between Palm measures of
the same order, in particular, treating the case of zero sets of Gaussian Analytic Functions
on the plane and other non-determinantal point processes. In our situation, however, we
do not see how to check the assumptions that Ghosh needs without going through our
argument.

Proof of Proposition 8.1. For a nonnegative integer n, let
%, = {X € Conf(E) : #p(X) = n}.

By assumption, the function #p is ' (E\ B)-measurable. Take a sequence 2;, of disjoint
$(E\ B)-measurable subsets of Conf (£) such that for any nonnegative integer n we have

P(Z,A%,) = 0.
Set

7 =J 2 0%

n>k
7 =20
n>l
The sets #'and Z are disjoint by construction.

Claim. For pi-almost any k-tuple (p1, ..., px) and p;-almost any [-tuple (g1, ..., q1)
we have

PPLs- Pk(g)zl’ Pats-- q’(f):l.

Indeed, by definition of reduced Palm measures (19), for any non-negative Borel function
u : Conf(E) x E¥ — R, we have

*

S @iz, ... 2P@E2)

Conf(E) 1+ %k€Z

=/pk(dp1.--dpk) / u(XU{p1,...,pi} p1,..., p)PPLPE(dX),
Ek Conf(E)
N

k
where ) denotes the sum over k-tuples of distinct points z, . . ., zx in Z.

For any n > k, substituting the function

un(Z5 21, s 2) = Ly ng, (2) - Lgr(z1, o5 2k)
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into (91), we get

*

/ Long,(2) Y lp(, ..., 2)P@2)

Conf(E) 21,2k €Z
= /pk(dpl ...dpy) / 1%0%(xu{pl’ ,Pk})]P)pl ,,,,, PEAX). (92)
Bk Conf(E)

Recall that by construction, 2, € §(E\B), hence for all py, ..., pr € B, we have

12,0, (XU{pt,....pe}) =12, (XU{p1,.... pk}) - Ly, (X U {p1,..., pi})
=19,X) - -1g,_, (X)) =1g,ns, (0.

Substituting the above equality into (92), we get

*

/ Log, 2 Y. LpGi.....z0P@2)

Conf(E) 205002k €L

_ / PP Pk (2 0 Gos) P (AP - - dpr). 93)

Bk
Summing up the terms on the left hand side of (93) for n > k, we obtain the expression

o0 *

Z / L2, () Z Tge(z1, ..., 20)PAZ)
n=kConf(E) 21y k€2
0 *
= Z / ]l%n(z’) Z 1pi(z1y ..., z)P(A2)
n=kConf(E) 20y k€2
0 *
=) / lg,(2) > Az, ... 2)PWA2)
n=0Cont (E) 2Tk €D

= / Z 1Bk(zl, ,Zk)P(dZ’)

Conf(E) 1o ez

= f Tgk(p1, .-, p)ok(dpr ...dpr) = pr(B"), (94)
Ek
where we used the fact thatifn =0, ...,k — 1, then

*

VY2 € €. Z Tge(z1,..r2x) = 0.

2142k €L
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Similarly, summing up the terms on the right hand side of (93) for n > k, we obtain the

expression
o0
Z/Pp"""pk(% NG pr(dp1 ...dpi)
”:kBk
= [ | U 20 | am dp)
Bk n>k
_ / PP P () py(dpy . dpr). 95)
Bk
By (93),
pu(BY) = / PP (@) pe(dpy .. dpp). (96)

Bk

The equality (96) immediately implies that

PPL-Pk(%y =1, for pg-almost any k-tuple (py, ..., px) € BF.

The same argument yields that

Pa-l () =1, for pr-almost any [-tuple (q1,...,q1) € B'.

The claim is proved, and Proposition 8.1 is proved completely. O
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