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Abstract: We study a system of M particles in contact with a large but finite reservoir
of N � M particles within the framework of the Kac master equation modeling random
collisions. The reservoir is initially in equilibrium at temperature T = β−1. We show
that for large N , this evolution can be approximated by an effective equation in which the
reservoir is described by aMaxwellian thermostat at temperature T . This approximation
is proven for a suitable L2 norm as well as for the Gabetta–Toscani–Wennberg (GTW)
distance and is uniform in time.

1. Introduction

In [6], Kac studied a spatially homogeneous gas of M particles moving in one dimension
and interacting through random collisions. After certain exponentially distributed time
intervals, a pair of particles is randomly and uniformly selected and they undergo a
random collision, i.e., their pre-collisional velocities are replaced by new velocities that
are randomly and uniformly selected in such a way that the total energy is preserved.
The intensity of the collision process is chosen so that the average time λ−1 between
two successive collisions of a given particle, i.e., the mean free time, is independent of
the number of particles. Thus, the M → ∞ limit of the model can be thought of as a
realization of the classical Grad–Boltzmann limit.

To keep the presentation simple we describe the Kac model first for the system of M
particles only and deal with the full model afterwards. The sub- and superscript S refers
to this system of M particles. For a spatially homogeneous gas the state of the system is
given by a function f (�v), the probability density of finding the particles in the system
with velocities �v = (v1, . . . , vM ). The infinitesimal generator of this evolution is given
by (see [2,6])

LS[ f ] = λS

M − 1

∑

i< j

(RS
i, j − I )[ f ], (1)
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where I is the identity operator and RS
i, j describes the result of a collision between

particle i and particle j , that is

RS
i, j [ f ](�v) := −

∫
f (�vi, j (θ))dθ (2)

with

�vi, j (θ) := (v1, . . . , v
∗
i (θ), . . . , v∗

j (θ), . . . , vM )

v∗
i (θ) := vi cos θ + v j sin θ v∗

j (θ) := −vi sin θ + v j cos θ, (3)

and

−
∫

f (θ)dθ := 1

2π

∫ 2π

0
f (θ)dθ.

The gain term λS
M−1 RS

i, j in (1) implies that, in an interval of length dt , there is a

probability λS
M−1dt that particles i and j will collide with resulting velocities vi and

v j . Because every particle label appears exactly M − 1 times in (1), particle i has a
probability λSdt of being involved in a collision during the time interval dt . Thus, on
average, the time between two collisions involving particle i is λ−1

S . Since the above
evolution is completely independent of the positions of the particles, and hence of their
density, the mean free time is the only number of physical significance.

In [1] a Kac-type model was introduced with the additional feature that, besides the
pair collisions, each particle in the system can interact with a thermostat. The interaction
of particle j with the Maxwellian thermostat is given by

B j [ f ](�v) :=
∫

dw−
∫

dθ

√
β

2π
e− β

2 w∗2
j (θ) f (�v j (θ, w)), (4)

where

�v j (θ, w) = (v1, . . . , v j cos (θ)+w sin θ, . . . , vM ), w∗
j (θ) = −v j sin θ+w cos θ. (5)

As before, the interaction timeswith the thermostat are described by a Poisson process
whose intensityμ is chosen so that the average time between two successive interactions
of a given particle with the thermostat is independent of the number of particles in the
system S. Thus, the time evolution for this model is given by

ḟ = L̃ [ f ] = LS[ f ] + L̃T [ f ], (6)

where

L̃T [ f ] = μ

M∑

j=1

(B j − I )[ f ]. (7)

In order to facilitate the discussion, we will call this model the Thermostated System
or T-system in short. The unique equilibrium distribution of this thermostated system
is given by a Gaussian with inverse temperature β. In [1] it is shown that the evolution
approaches this equilibrium exponentially fast in L2 as well as in entropy uniformly in
M . Moreover, propagation of chaos [7] holds for this system as well and, as M → ∞,
the evolution of the single particle marginal is given by a Boltzmann-type equation.
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These results have been extended to a system where only a subgroup of the particles
interact with the thermostat in [8].

The thermostat can be thought of as an infinite reservoir of particles at a fixed inverse
temperature T = β−1 in which every particle in the reservoir collides at most once
with a particle in the system. Thus, B j [ f ](�v) describes a collision between a system
particle and a reservoir particle that is randomly drawn from a Maxwellian distribution
with temperature β−1. The reservoir is not affected by the collisions with the particles
from the system S. If the system S interacts, instead, with a large but finite reservoir, the
reservoir does not remain in equilibrium. Particles in the reservoir can re-collide with
system particles and with other reservoir particles, pushing more reservoir particles out
of equilibrium.

In the present paper we compare, in appropriate metrics, the evolution (6) with the
evolution arising from the interaction of the system S with a large but finite reservoir
R containing N � M particles. This model is explained in Sect. 2. In Sect. 3 we
state the main results of the paper, namely, that for N large this evolution stays close
uniformly in time to the one with an infinite reservoir. Section 4 contains the proofs
of our results. Section 5 further addresses the relevance of our results together with
possible extensions. Finally, in the Appendices, we report some technical computations
and discuss the optimality of our bounds.

2. A Model for a Finite Heat Reservoir

The evolution inside the reservoir R is also given by a standard Kac model. As above,
we assume that the average time between two collisions between two particles in the
reservoir R is fixed independently of N . We denote this time by λ−1

R . Thus, the generator
of the evolution of the reservoir is

LR[ f ] = λR

N − 1

∑

1≤i< j≤N

(RR
i, j − I )[ f ]. (8)

Again, the quantities that refer to the reservoir have a sub- or superscript R. The evolution
of the system S and the reservoir R without interaction between the two is determined
by the generator

LK [ f ] = LS[ f ] +LR[ f ] (9)

where LS[ f ] is given by (1). The velocities of the particles in the system S are, as
before, denoted by v1, . . . , vM and the velocities of the particles in the reservoir by
w1, . . . , wN . Similar to what we wrote before, RS

i, j describes a collision in the system
S between particle i and j , and is given by (see (3))

RS
i, j [ f ](�v, �w) := −

∫
f (�vi, j (θ), �w)dθ

and RR
i, j describing a collision in the reservoir between particle i and j is written as

R R
i, j [ f ](�v, �w) := −

∫
f (�v, �wi, j (θ))dθ

with �vi, j (θ) defined in (3) and �wi, j (θ) analogously defined.
Some thought has to be given to the modeling of the interaction between the system

S and the reservoir R. Naturally, we want that the average time between two successive
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collisions of a given particle in the system S with any particle in the reservoir R to be
fixed independently of N and M . This is achieved by defining the interaction generator
as

LI [ f ] = μ

N

M∑

i=1

N∑

j=1

(RI
i, j − I )[ f ] (10)

where

RI
i, j [ f ](�v, �w) := −

∫
f (�vi (θ), �w j (θ))dθ,

with

�vi (θ) := (v1, . . . , v
∗
i (θ), . . . , vM ) �w j (θ) := (w1, . . . , w

∗
j (θ), . . . , wN )

v∗
i (θ) := vi cos θ + w j sin θ w∗

j (θ) := −vi sin θ + w j cos θ. (11)

Thus, the evolution equation for the combined system S and reservoir R is given by

ḟ = L [ f ] = LK [ f ] +LI [ f ], (12)

where f is a probability distribution in L1(RM × R
N ). It is elementary so see that

this property is preserved under the evolution (12). We will call this model the Finite
Reservoir System or FR-system in short.

It is plain that for an arbitrary initial distribution f0(�v, �w) the evolutions given by
(12) and (6) need not be similar. The latter tends to an equilibrium given by a Gaussian at
temperature β−1 whereas the former, as can be easily seen, tends to an equilibriumwhich
is given by averaging f0(�v, �w) over all rotations in R

M+N . Clearly, there is no reason
why these two equilibria are close in any sense. The choice of initial conditions plays a
key role. We shall assume that initially the reservoir is in the canonical equilibrium at
temperature T = β−1, that is, the state of the reservoir is given by

�β,N ( �w) =
N∏

i=1

�β,1(wi ) where �β,1(w) =
√

β

2π
e− β

2 w2
.

Weassume that the system S is initially in a generic initial state l0(�v)with
∫

l0(�v)d �v = 1.
It is easy to see that if the totalmomentum is initially zero, it remains zero for all times.

Hence, we set it equal to zero. Moreover, we assume that the average kinetic energy per
particle in the system is finite. The particles are assumed to be indistinguishable so that
l0(�v) is invariant under permutation of its variables. This implies that

∫
vi l0(�v)d �v = 0

∫
|vi |2l0(�v)d �v = E2 < ∞ ∀i.

Finally, by a simple rescaling of the velocities, we can assume without loss of generality
that β = 2π . Thus, the initial distribution of the system plus reservoir, is given by

f0(�v, �w) = l0(�v)�N ( �w). (13)

where �N ( �w) = �2π,N ( �w).
The evolution given by L̃ , defined in (6), does not act on the �w variables and with a

slight abuse of notationwewill consider L̃ as an operator acting on functions f (�v, �w) of
both �v and �w, leaving the dependence on �w unchanged. It will be sometimes convenient
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to replace the generator L̃ by L̃ +LR . This substitute is legitimate, since the operator
LR leaves the reservoir at equilibrium.

The similarity of the two evolutions, the one given by (12) with the one in (6) acting
on the same initial state (13), can be heuristically understood as follows. The form of the
interaction term implies that, in contrast to the collisions between system particles, the
mean time between two successive collisions of a given particle in the reservoir R with
any particle in the system S is μ−1N/M and thus it diverges with N . This implies that
for a finite time t and for N very large, with respect to t , we can indeed assume that each
particle in the reservoir collides at most once with a particle in the system. This idea is
implemented through the choice of (4). Thus, it is not difficult to prove a convergence
result for any fixed time t , as N → ∞. The interesting point, however, is that over longer
times re-collisions will occur. Moreover the interaction LR , the collisions among the
particles in the reservoir, spreads the modification of the distribution of one particle to
all the reservoir particles. Thus, after a time approaching N , we can no more think that
a randomly selected particle from the reservoir has a Maxwellian distribution. Thus, the
real issue is to understand these competing effects in order to obtain a result uniformly in
time. From a physical point of view such a result can be expected, because the thermostat
is introduced to drive the system as t → ∞ to a particular equilibrium state.

3. Results

We will always assume that the initial state f0 for the FR-system is of the form (13),
that is, the system S is in a generic initial state while the reservoir R is in equilibrium at
inverse temperature β = 2π . The state at time t of the FR-system is given by

ft = eL t f0.

As noted above, ft reaches a steady state f∞ when t → ∞ and that we get:

f∞(�v, �w) = lim
t→∞ ft (�v, �w) =

∫

SM+N−1(r)

l0(�v′)�N ( �w′)dσr (�v′, �w′) (14)

where r = √|�v|2 + | �w|2 and σr (�v, �w) is the normalized uniform measure on the sphere
of radius r in RM+N .

We want to compare the evolution generated by L with the evolution generated by
L̃ , the generator for the T-system (see (6)). In order for them to be comparable, we think
of L̃ as acting on functions of M + N variables. Given an initial state f0 of the form
(13), let

f̃t = eL̃ t f0

be the state of the T-system at time t , where clearly we have f̃t (�v, �w) = lt (�v)�N ( �w).
Any comparison between ft and f̃t will naturally yield an estimate on how much the
reservoir deviates from its initial equilibrium state. Because LR�N = 0, for an initial
state f0 of the form (13), we can write (see (9))

L̃ = L̃T +LK .

This modification clearly does not change the evolution of f0, but simplifies some of the
computations below. As t → ∞, f̃t approaches a steady state f̃∞ given by

f̃∞(�v, �w) = lim
t→∞ f̃t (�v, �w) = �M+N (�v, �w). (15)
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It is worth observing that (14) and (15) remain valid even when λR = λS = 0.
As a first attempt given in Sect. 3.1, we will compare the above evolutions in the

space L2(RM × R
N , �M+N ). Since f0 is a probability distribution, such an L2 norm

is not very natural, however, the computations are relatively simple. After discussing
the limitations of the results in L2 , we will, in Sect. 3.2, compare the evolutions in the
Gabetta–Toscani–Wennberg (GTW) metric (see [5]). This metric is more natural but the
computations are quite difficult.

3.1. Evolution in L2(RM+N , �M+N ). As discussed in [1], it is natural to look at the
evolution in the ground state representation by defining

ft (�v, �w) = ht (�v, �w)�M+N (�v, �w)

where

f0(�v, �w) = h0(�v)�M+N (�v, �w)

with
∫

h0(�v)�N (�v)d �v = 1 while
∫

vi h0(�v)�N (�v)d �v = 0 and
∫ |vi |2h0(�v)�N (�v)d �v =

E2, for every i .
Observe thatLK (see (9)) has the same formwhen acting on f or on h.More precisely

we have that

LK [�M+N h] = �M+NLK [h].
This easily follows from the fact that �M+N is a rotationally invariant function. On the
other hand, in the case of the thermostat we have to note that

Bi [�M+N h] = �M+N Ti [h]
where Bi is given by (4) while

Ti [ f ] =
∫

dwe−πw2−
∫

f (�vi (θ, w))dθ. (16)

This means that the evolution of the initial state h0 under the thermostated evolution can
be written has

h̃t = eL t h0

where

L [h] = LK [h] +LT [h]
with

LT [h] = μ

M∑

i=1

(Ti − I )[h].

Recall thatLS +LT acts only on the �v variables whileLR acts only on the �w variables.

Thus, if h0 depends only on �v then eL t h0 will depend only on �v too. It follows that
the term LR is identically zero along the evolution of the chosen initial state. We keep
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it for future comparison with L . Note that L [h�M+N ] = L [h]�M+N and hence the
generator of the evolution for the FR-system requires no modifications.

It is easy to see thatL andL are bounded self-adjoint operators on L2(RM+N , �M+N )

with the scalar product

〈 f, g〉 =
∫

f (�v, �w)g(�v, �w)�M+N (�v, �w)d �vd �w. (17)

Thus, it is natural to assume thath0 ∈ L2(RM+N , �M+N (�v, �w)) and to study the evolution

of ‖eL t h0 − eL t h0‖2.
As a first step we estimate the behavior of the difference of the steady states. We

clearly have

f∞(�v, �w) = �M+N (�v, �w)h∞(�v)

with

h∞(�v, �w) =
∫

SM+N−1(r)

h(�v)dσr (�v, �w)

whereas h̃∞ ≡ 1. In Appendix A.1, we show that

‖h∞ − h̃∞‖22 =
∫

RM+N
[h∞(�v, �w)−1]2�M+N (�v, �w)d �vd �w ≤ M

N − 2
‖h0−1‖22 (18)

Thus, the distance between the steady states is controlled by the distance between the
initial state and the canonical equilibrium state and it vanishes as 1/

√
N as N → ∞.

This estimate, in a slightly weaker form, remains true for all t .

Theorem 1. Let f0 be the initial distribution for the system with reservoir and assume
that it has the form

f0(�v, �w) = h0(�v)�M+N (�v, �w) (19)

with h0 ∈ L2(RM+N , �(�v, �w)). Then for every t > 0 we have

‖eL t h0 − eL t h0‖2 ≤ M√
N

(1 − e− μ
2 t )‖h0 − 1‖2. (20)

This statement is proved in Sect. 4.1.
We close this section with some remarks about the meaning of Theorem 1. In view

of the estimate on the steady states, we see that the dependence on N in (20) is optimal.
Observe that the particles in the reservoir of the FR-model are at thermal equilibrium
at time 0 and then evolve to a radially symmetric state for large time. Hence it is not
surprising that the final state is close to a canonical distribution. Thus, the fact the their
state remains close to a canonical distribution uniformly in time is the main point of the
above theorem.

Observe that the dependence of the estimate on M during the evolution is not the
same as in the steady state. It is not clear to us whether this is an artifact of our proof.
The main ingredient in the proof is the estimate (32). In Appendix B, we show that this
estimate is optimal in its M behavior. This implies that the time derivative at t = 0 of

‖eL t h0 − eL t h0‖ can actually be M/
√

N . But this may only be true for a very small
time.
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A disturbing aspect of the theorem is that it behaves very poorlywhen applied to some
very reasonable initial distributions. Assume that the system is initially in equilibrium
at a temperature TS = β−1

S �= β−1, that is f0(�v) = �βS ,M (�v)�β,M ( �w). It follows that
h0(�v) = �βS ,M (�v)/�β,M (�v). If 2βS ≥ β then ‖h0‖2 = C(βS)M where C(βS)2 =
βS/

√
β(2βs − β) > 1. Thus, if the right hand side of (20) is to be small for such an

initial state, we need a reservoir with a number of particles N exponentially large in
M . In a sense, this makes the behavior in M discussed above rather unimportant. Also,
if the initial temperature is sufficiently large, that is if 2βS ≤ β, then C(βS) = ∞,
h0 �∈ L2(RM , �M (�v)) and our theorem does not apply in this situation. These are,
perhaps, the main reasons why the Gabetta–Toscani–Wennberg metric is better suited
for our purposes, although it is quite a bit more difficult to handle.

3.2. The Gabetta–Toscani–Wennberg metric. The Gabetta–Toscani–Wennberg (GTW)
metric is a distance between probability densities. Let f, g ∈ L1(RM+N ) be two possible
distributions for the FR-system where

∫
vi f (�v, �w)d �vd �w =

∫
w j f (�v, �w)d �vd �w = 0

∫
v2i f (�v, �w)d �vd �w,

∫
w2

j f (�v, �w)d �vd �w < ∞ (21)

and analogously for g. We can define then

d2( f, g) := sup
�ξ �=0,�η �=0

| f̂ (�ξ, �η) − ĝ(�ξ, �η)|
|�ξ |2 + |�η|2 . (22)

Here, and in the following, we use the convention that f̂ , the Fourier transform of f , is
given by

f̂ (�ξ, �η) =
∫

RM+N
e−2π i(�ξ,�v)e−2π i(�η, �w) f (�v, �w)d �vd �w,

where �ξ = (ξ1, . . . , ξM ) are the Fourier variables associated with the particles in the
system S, while �η = (η1, . . . , ηN ) are the Fourier variables associated with the particles
in the reservoir R. It is easily seen that under the stated conditions,d2( f, g) is defined.The
metric d2 in (22) is the more interesting member of a family of metrics {dα} introduced
in [5].

Again we imagine that our system starts at time 0 in a state of the form

f0(�v, �w) = l0(�v)�N ( �w)

and we want to estimate the d2 distance between ft = eL t f0 and f̃t = eL̃ t f0. To see
what kind of behavior to expect, we start from the distance between the steady states.
Because the Fourier transform commutes with rotations we find

f̂∞(�ξ, �η) =
∫

SM+N−1(r)

l̂0(�ξ)�N (�η)dσr (�ξ, �η)

and

̂̃f ∞(�ξ, �η) = �M+N (�ξ, �η)
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where we have used that �1 is invariant under the Fourier transform. In Appendix A.2,
we show that

d2( f∞, f̃∞) ≤ M

M + N
d2(l0, �M ). (23)

Again we want to obtain an estimate that remains true uniformly in time. In Sect.
4.2, we prove the following.

Theorem 2. Let f0(�v, �w) be the initial distribution for the system plus reservoir of the
form

f0(�v, �w) = l0(�v)�N ( �w).

with l0 symmetric and satisfying (21). Assume moreover that the fourth moment

∫
v4i l0(�v)d �v = E4 < ∞. (24)

Then for every t > 0 we have

d2
(

eL̃ t f0, eL t f0
)

≤ K M

N

(
1 − e− μ

4 t
)√

d2(l0, �M )(F4 + d2(l0, �M )) . (25)

with F4 = 48π4(E4 + 1) and K = 16
√
2.

The basic strategy of the proof of this theorem is similar to the one used for the proof
of Theorem 1. Having said this, estimating the difference between L̃T andLI in the d2
metric turns out to be considerably more difficult than the one in the L2 norm. Most of
the work in the proof of Theorem 2 in Sect. 4.2 is devoted to carrying out these estimates
which are summarized in Proposition 5. It is really in the proof of Proposition 5 that the
extra condition (24) on the fourth order moment of the initial distribution is needed. In
Appendix B we show that such a condition is indeed necessary for our proof.

We observe that d2(l0, �M ) is well defined for any l0 satisfying (21). Moreover, if l0
is a product state, that is if

l0(�v) =
M∏

i=1

�(vi )

then, calling �ξ<i = (ξ1, . . . , ξi−1), �ξ>i = (ξi+1, . . . , ξM ) and l̂>i
0 (�ξ>i ) = ∏

j>i �̂(v j ),
we get

|�M (�ξ) − l̂0(�ξ)|
|�ξ |2 ≤

∑
i �i−1(�ξ<i )

∣∣�1(ξi ) − �̂(ξi )
∣∣ l̂>i

0 (�ξ>i )
∑

i ξ2i
≤ sup

i

|�1(ξi ) − �̂(ξi )|
ξ2i

so that

d2(l0, �M ) = d2(�, �1).

These observations address both problems found in the L2 estimate.
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4. Proof of Theorems 1 and 2

Both proofs are based on an expansion of the difference between two exponentials that
we discuss here in the form needed for the L2 estimates. A very similar expansion can
be obtained for the d2 case.

Observe that we can write

L =QS + Q R + QI − �I

L =QS + Q R + QT − �I (26)

where

� = λS

2
M +

λR

2
N + μM

while

QS = λS

M − 1

∑

1≤i< j≤M

RS
i, j , Q R = λR

N − 1

∑

1≤i< j≤M

RR
i, j .

Finally,

QI = μ

N

M∑

i=1

N∑

j=1

RI
i, j , QT = μ

M∑

i=1

Ti .

We can thus write

eL t − eL t = e−�t
∞∑

n=1

tn

n!
[
(QS + Q R + QI )

n − (QS + Q R + QT )n] .

We further expand each term in the above sum as

(QS + Q R + QI )
n − (QS + Q R + QT )n

=
n−1∑

k=0

(QS + Q R + QI )
n−1−k(QI − QT )(QS + Q R + QT )k

so that we get

eL t −eL t = e−�t
∞∑

n=1

tn

n!
n−1∑

k=0

(QS+Q R+QI )
n−1−k(QI −QT )(QS+Q R+QT )k . (27)

The above expansion has three major advantages:
1. Isolating the factor e−�t avoids expanding a negative exponential as a power series.
2. As discussed in the previous section, we expect the difference between QI and QT

to be small when they act on a function that depends only on �v. It is easy to see that
hk(�v) := (QS + Q R + QT )kh0(�v) still depends only on �v so that we expect to gain
from the term (QI − QT )hk .

3. Finally� is the largest eigenvalue of QS +Q R +QT corresponding to the eigenvector
1. But (QI − QT )1 = 0 so that, writing hk = 1 + uk , we expect that ‖uk‖2 < �k . A
uniform version of this estimate, see (28) below, allows us to perform the sum over
k in (27) without paying a factor of n. This is crucial in obtaining a bound uniform
in t .

The following proofs consist, to a large extent, in a quantitative implementation of the
above three observations.
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4.1. Proof of Theorem 1. Observe that (eL t −eL t )1 ≡ 0 because the constant function
1 is a steady state for both evolutions. For this reason, we will write

h0(�v) = 1 + u0(�v) with 〈u0, 1〉M = 0

where 〈·, ·〉M is the scalar product in L2(RM , �M (�v)), that is

〈u, h〉M =
∫

u(�v)h(�v)�M (�v)d �v.

From now on we will identify L2(RM , �M (�v)) with a subspace of L2(RM+N , �M+N
(�v, �w)). We thus need to estimate the norm of

(QS + Q R + QI )
n−k−1(QI − QT )(QS + Q R + QT )ku0(�v).

To this end, observe that RS
i, j is the orthogonal projector on the subspace of functions

that are invariant under rotations of vi and v j so that

‖Rα
i, j‖2 = 1 for α = S, R or I,

while

‖QT u‖2 ≤ μ

(
M − 1

2

)
‖u‖2 if 〈u, 1〉 = 0.

Observe indeed that QT is a sum of operators acting independently on each variable vi .
Thus, its eigenvectors are tensor products of the eigenvectors of each of the Ti , while its
eigenvalues are sumsof their eigenvalues. It is possible to see that theHermite polynomial
H2n(vi ) of degree 2n and weight e−πv2i is an eigenvector of Ti with eigenvalue a(n).
The last inequality then follows from the fact that a(0) = 1 is the largest eigenvalue
of Ti with eigenvector H0(vi ) = 1(vi ), while a(n) ≤ 1/2 for n > 0. It follows that
‖Ti l‖2 ≤ (1/2)‖l‖ when 〈l, 1〉 = 0. With this, we get that

〈(QS + Q R + QT )u, 1〉 = 0 if 〈u, 1〉 = 0

and

‖uk‖2 ≤
(
� − μ

2

)k ‖u0‖2, (28)

where

uk := (QS + Q R + QT )ku0,

while
‖QS + Q R + QI ‖2 ≤ �. (29)

We thus have to estimate ‖(QI − QT )u‖2 where u depends only on �v.
Lemma 3. Let u(�v) be any function in L2(RM , �M (�v)). Then

∥∥∥∥∥∥
1

N

N∑

j=1

RI
i, j u − Ti u

∥∥∥∥∥∥

2

2

= 1

N
(〈Ti u, u〉 − 〈Ti u, Ti u〉)
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Proof. Consider for simplicity i = 1. We get

∥∥∥∥∥∥
1

N

N∑

j=1

RI
1, j u − T1u

∥∥∥∥∥∥

2

2

= 1

N 2

N∑

j,k=1

∫

RM+N
RI
1, j u RI

1,kudμ(�v, �w)

− 2

N

N∑

j=1

∫

RM+N
RI
1, j uT1udμ(�v, �w)

+
∫

RM+N
|T1u(v)|2dμ(�v, �w),

where dμ(�v, �w) = �M+N (�v, �w)d �vd �w. Calling �v1 = (v2, . . . , vM ), we note that
∫

RM+N
RI
1,1uT1udμ(�v, �w) =

∫

RM−1

∫

R2
−
∫

u(sin θv1 + cos θw1, �v1)
× dθT1u(�v)�1(v1)�1(w1)dv1dw1�M−1(�v1)d �v1

=
∫

RM
|T1u(�v)|2�M (�v)d �v. (30)

Moreover,
∫

RM+N
RI
1,1u RI

1,2udμ(�v, �w)

=
∫

RM−1

∫

R3
−
∫

u(sin θv1 + cos θw1, �v1)dθ−
∫

u(sin θv1 + cos θw2, �v1)dθ

· �1(v1)�1(w1)�1(w2)dv1dw1dw2�M−1(�v1)d �v1

=
∫

R

|T1(u)(�v)|2dμ(�v, �w).

Finally, we observe that RI
i, j is a projection, so that

∫

RM+N
RI
1,1u RI

1,1udμ(�v, �w) =
∫

RM+N
u RI

1,1udμ(�v, �w) =
∫

RM+N
uT1udμ(�v, �w)

where the last equality follows as in (30). Collecting all terms proves the lemma. ��
It thus follows that

‖(QI − QT )uk‖22 = μ

∥∥∥∥∥∥

M∑

i=1

⎛

⎝ 1

N

N∑

j=1

RI
i, j − Ti

⎞

⎠ uk

∥∥∥∥∥∥

2

2

≤ μM
M∑

i=1

∥∥∥∥∥∥

⎛

⎝ 1

N

N∑

j=1

RI
i, j − Ti

⎞

⎠ uk

∥∥∥∥∥∥

2

2

≤ μM

N

M∑

i=1

(uk, Ti uk) − (Ti uk, Ti uk). (31)
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Observe that if 〈u, 1〉 = 0, we can write u = ū + ũ where ū does not depend on v1 while
∫

ũ(�v)�1(v1)dv1 = 0 ∀�v1.

It follows that

〈T1u, u〉 − 〈T1u, T1u〉 = 〈T1ũ, ũ〉 − 〈T1ũ, T1ũ〉 ≤ sup
k

(ρk − ρ2
k )‖ũ‖2

where ρk are the eigenvalues of Ti different from 1. Since ρk ≤ 1/2 (see [1]) and x2 − x
is increasing on [0, 1/2], we get

‖(QI − QT )uk‖2 ≤ μ

2

M√
N

‖uk‖2. (32)

Combining (32), (28) and (29), we get

‖(QS + Q R + QI )
n−k−1(QI − QT )(QS + Q R + QT )kh0(�v)‖2

≤ μ

2

M√
N

�n−k−1
(
� − μ

2

)k ‖h0 − 1‖2.

Adding up, we obtain
∥∥(QS + Q R + QI )

nh0 − (QS + Q R + QT )nh0
∥∥
2

≤ μ

2

M√
N

�n−1‖h0 − 1‖2
n−1∑

k=0

(
1 − μ

2�

)k

= M√
N

�n
[
1 −

(
1 − μ

2�

)n] ‖h0 − 1‖2

Thus, finally,

‖(eL t − eL t )h0‖2 ≤ ‖h0 − 1‖2 M√
N

e−�t
∞∑

n=0

tn

n!�
n
[
1 −

(
1 − μ

2�

)n]

= ‖h0 − 1‖2 M√
N

(
1 − e− μ

2 t
)

. (33)

This concludes the proof of Theorem 1.

4.2. Proof of Theorem 2. We can proceed as in Eq. (27) to obtain

eL t −eL̃ t = e−�t
∞∑

n=1

tn

n!
n−1∑

k=0

(QS+Q R+QI )
n−1−k(QI −Q B)(QS+Q R+Q B)k . (34)

where we set as before

L̃ = QS + Q R + Q B − �I
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with

Q B = μ

M∑

i=1

Bi .

Using this expansion in the definition (22) we get

d2
(

eL t f0, eL̃ t f0
)

≤ e−�t
∞∑

n=1

tn

n!
n−1∑

k=0

�kd2
(
(QS + Q R + QI )

n−1−k QI [lk�N ], (QS + Q R + QI )
n−1−k Q B [lk�N ]

)

(35)

where

lk�N = �−k(QS + Q R + Q B)k[l0�N ] that is lk = �−k
(

QS + Q B +
λR N

2
I

)k

[l0]
(36)

because Q R acts as a multiple of the identity on �N and Q B as well as QS act only
on l0. We have introduced the factor �−k to maintain the normalization of lk , that is∫

lk(�v)d �v = 1.
We thus need estimates for d2 that can play an analogous role as Eqs. (28), (29) and

(32) played in the proof of Theorem 1 in Sect. 4.1.
As a first thing, we need representations of the Fourier transform of the collision and

thermostat operators. Let f (�v, �w) be a function of (�v, �w). Since the Fourier transform
commutes with rotations, we get

̂RS
i, j [ f ](�ξ, �η) = −

∫
dθ f̂ (ξi, j (θ), �η) := R̂S

i, j [ f̂ ](�ξ, �η)

where ξi, j (θ) is defined as in (3). An analogous formula holds for RI
i, j and RR

i, j . More-
over, we get

B̂i [ f ](�ξ, �η) = −
∫

dθ f̂ (ξi (θ, 0), �η) := B̂i [ f̂ ](�ξ, �η).

The behavior of these two operators under the d2 metric is contained in the following
Lemma.

Lemma 4. Let f (�v, �w) and g(�v, �w) be two distributions, with 0 first moment and finite
second moment. We have

d2
(
�−1(QS + Q R + QI ) f,�−1(QS + Q R + QI )g

)
≤ d2 ( f, g) . (37)

Assume moreover that f (�v, �w) = l(�v)�N ( �w) then

d2
(
�−1(QS + Q R + Q B) f, �M+N

)
≤

(
1 − μ

2�

)
d2 ( f, �M+N )

=
(
1 − μ

2�

)
d2 (l, �M ) (38)
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Proof. It is easy to see that d2( f, g) is jointly convex in f and g, that is for everyα, β > 0
with α + β = 1, we have

d2(α f1 + β f2, αg1 + βg2) ≤ αd2( f1, g1) + βd2( f2, g2). (39)

We have

R̂S
i, j [ f ](�ξ, �η) − R̂S

i, j [g](�ξ, �η) = −
∫

dθ
(

f̂ (�ξi, j (θ), �η) − ĝ(�ξi, j (θ), �η)
)

and, because |�ξi, j (θ)| = |�ξ |, we get

d2
(

RS
i, j f, RS

i, j g
)

≤ sup
�ξ,�η �=0

−
∫

dθ

∣∣∣ f̂ (�ξi, j (θ), �η) − ĝ(�ξi, j (θ), �η)

∣∣∣

|�ξi, j (θ)|2 + |�η|2 ≤

≤ sup
�ξ,�η �=0,θ

∣∣∣ f̂ (�ξi, j (θ), �η) − ĝ(�ξi, j (θ), �η)

∣∣∣

|�ξi, j (θ)|2 + |�η|2 = d2 ( f, g) (40)

Clearly, an identical argument holds for RI
i, j and RR

i, j . Equation (37) follows from the
convexity property (39).

Because Bi�M = �M we get

d2

(
1

M

M∑

i=1

Bi l0, �M

)
≤ 1

M
sup
�ξ �=0

M∑

i=1

−
∫

∣∣∣l̂(�ξi (θ, 0)) − �M (�ξi (θ, 0))
∣∣∣�1(ζi sin θ)

|�ξi (θ, 0)|2

∣∣∣�ξi (θ, 0)
∣∣∣
2

|�ξ |2 dθ

≤ d2 (l, �M )
1

M
−
∫

dθ

M∑

i=1

|�ξ |2 − ξ2i sin2 θ

|�ξ2| =
(
1 − −

∫
dθ sin2 θ

M

)
d2 (l, �M ) .

(41)

Again (38) follows from (39). ��
Combining (35) and (37) we get

d2
(

eL t f0, eL̃ t f0
)

≤ e−�t
∞∑

n=1

tn�n−1

n!
n−1∑

k=0

d2 (QI [lk�N ], Q B[lk�N ]) (42)

Thus we want to estimate

1

M
d2(QI [lk�N ], Q B[lk�N ])

= μ

M N
sup

�ξ,�η �=0

1

|�ξ |2 + |�η|2

∣∣∣∣∣∣

M∑

i=1

N∑

j=1

(
R̂ I

i, j [̂lk�N ](�ξ, �η) − B̂i [̂lk�N ](�ξ, �η)
)
∣∣∣∣∣∣
, (43)

where lk is defined in (36). Setting

F̂k,i (�ξ, η j ) = −
∫

dθ l̂k(ξ1, . . . , ξi cos θ + η j sin θ, . . . , ξ M )�1(−ξi sin θ + η j cos θ)
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we can write

R̂ I
i, j [̂lk�N ] = �N−1(�η j )F̂k,i (�ξ, η j )

where �η j = (η1, . . . , η j−1, η j+1, . . . , ηN ). Likewise,

B̂i [̂lk�N ] = �N (η)−
∫

dθ l̂k(ξ1, . . . , ξi cos θ, . . . , ξ M )�1(−ξi sin θ)

= F̂k,i (�ξ, 0)�1(η j )�N−1(η
j ).

Thus calling

Ĝk(�ξ, η) = 1

M

M∑

i=1

(
F̂k,i (�ξ, η) − F̂k,i (�ξ, 0)�1(η)

)
(44)

we can rewrite (43) in a more compact form

1

M
d2(QI [lk�N ], Q B[lk�N ]) = μ

N
sup

�ξ,�η �=0

1

|�ξ |2 + |�η|2
N∑

j=1

Ĝk(�ξ, η j )�N−1(�η j ). (45)

Moreover, we have that

Fk,i (�v, w) = −
∫

dθ l̂k(v1, . . . , vi cos θ + w sin θ, . . . , vM )�1(−vi sin θ + w cos θ)

= −
∫

dθ l̂k(v1, . . . , vi cos(−θ) − w sin(−θ), . . . , vM )�1(vi sin(−θ) − w cos(−θ))

= Fk,i (�v,−w)

where we have used that �1 is an even function. Thus F̂k,i (�ξ, η) is even in η which
makes Ĝk(�ξ, η) even in η. We also have Ĝk(�ξ, 0) = 0.

Our goal is to bound d2(QI [lk�N ], Q B[lk�N ]) in terms of d2(lk, �M ). Thus, we
focus on the supremum over the �η variables of the reservoirs R, that is we look at

DN

(
Ĝk(�ξ, ·), |�ξ |

)
= sup

�η �=0

1

|�ξ |2 + |�η|2
N∑

j=1

Ĝk(�ξ, η j )�N−1(�η j ). (46)

In Proposition 5 we show that we can bound (46) in terms of D1

(
Ĝk(�ξ, ·), |�ξ |

)
and

of |∂ p
η Gk(�ξ, η)| for p ≤ 4, (see (47) and (48) below). Observe that D1

(
Ĝk(�ξ, ·), |�ξ |

)

refers to the situation where there is only one particle in the reservoir R, and thus, the
supremum is over η ∈ R instead of �η ∈ R

N .
Proposition 8 then shows that |∂4η Gk(�ξ, η)| can be bounded in terms of the fourth mo-

ment E4 of the initial distribution, (see (24)). We thus get a bound for d2(QI [lk�N ], Q B
[lk�N ]) in terms of d2(QI [lk�1], Q B[lk�1]) and E4. Together with (64) below, this will
give us the desired estimate on d2(QI [lk�N ], Q B[lk�N ]) in terms of d2(lk, �M ). The
conclusion of the proof of Theorem 2 will then be very similar to the final steps of the
proof of Theorem 1.
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Proposition 5. Let H(η) be a bounded C4 function of η. Assume that

H(0) = 0 H(η) = H(−η)

and

C4 = ‖H(·)‖C4 := max
p≤4

sup
η

∣∣∣∣
d p

dηp
H(η)

∣∣∣∣ < ∞. (47)

Calling

DN (H, a) = sup
�η �=0

1

a2 + |�η|2

∣∣∣∣∣∣

N∑

j=1

H(η j )�N−1(�η j )

∣∣∣∣∣∣
(48)

we have
DN (H, a) ≤ [(8C4 +D1(H, a))D1(H, a)]

1
2 (49)

One may hope that DN (H, a) ≤ KD1(H, a) be true for some K independent of N .
We will show in Appendix C that no such K exists. Observe that DN (H, a) is of order
1 uniformly in N since we have

DN (H, a) ≤ sup
�η �=0

∑N
j=1

∣∣H(η j )
∣∣

∑N
j=1 η2j

≤ sup
η �=0

|H(η)|
η2

= D1(H, 0). (50)

We were not able to use (50) directly. Indeed (50) and (45) give

1

M
d2(QI [lk�N ], Q B[lk�N ]) = μ

N
sup

�ξ,η �=0

1

|�η|2
N∑

j=1

Ĝk(�ξ, η)

and it is not clear how to relate the right side of the above equation to d2(lk, �M ).
We can try to improve the above estimate observing that

|H(η)| ≤ D1(H, 0)η2 (51)

so that

∑N
j=1

∣∣H(η j )
∣∣�N (�η j )

a2 + |�η|2 ≤ D1(H, 0)�N (�η)

∑N
j=1 η2j e

πη2j

a2 + |�η|2 .

Since xeπx is an increasing function for x > 0 we have that

N∑

j=1

η2j e
πη2j ≤ |�η|2eπ |�η|2

that is, the supremum of
∑N

j=1 η2j e
πη2j on the set |�η| = N is reached when η1 = N and

�η1 = 0. This observation will be useful in the following. Thus we get

∑N
j=1

∣∣H(η j )
∣∣�N (�η j )

a2 + |�η|2 ≤ D1(H, 0)
|�η|2

a2 + |�η|2 . (52)
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Alas, this is not yet enough since after taking the supremum on �η we are back to (50).
Observe though that, if η̄ is such that |H(η̄)| = supη |H(η)|, then

sup
�η �=0

1

a2 + |�η|2

∣∣∣∣∣∣

N∑

j=1

H(η j )�N−1(�η j )

∣∣∣∣∣∣
= sup

�η �=0,|ηi |≤η̄

1

a2 + |�η|2

∣∣∣∣∣∣

N∑

j=1

H(η j )�N−1(�η j )

∣∣∣∣∣∣

that is, we can limit the seprumum in (48) to the region where ηi ≤ η̄, for every i . But
again we have no control on η̄. In the first part of the proof of Proposition 5 we will use
an improved version of the above argument to show that DN (H, a) can be bounded in
terms of D1(H, 0)/(1 + a2).

While it is obvious that D1(H, a) ≤ D1(H, 0), the inverse inequality is generically
far from true. In the second part of the proof, we find a lower bound on D1(H, a) in
terms of D1(H, 0) under the hypothesis that the fourth derivative of H(η) is bounded.
Observe indeed that, if H(η) is of the form H(η) = H ′′(0)

2 η2 − Cη4 for some C , at

least near η = 0, then D1(H, a) ≥ H ′′(0)2
2a2C+H ′′(0) . In Lemma 7 we will show that a similar

estimate holds for a generic H once we replace H ′′(0) by D1(H, 0).
From these, Proposition 5 will easily follow.

Proof of Proposition 5. From (48) it follows that

|H(η)| ≤ D1(H, a)(η2 + a2).

Define

H̃(η, a) = min{D1(H, 0)η2,D1(H, a)(a2 + η2)}

=
{
D1(H, 0)η2 if η2 ≤ η20(a)

D1(H, a)(a2 + η2) if η2 ≥ η20(a)
,

where

η20(a) = D1(H, a)a2

D1(H, 0) − D1(H, a)
(53)

is chosen to make H̃ continuous. We get H(η) ≤ H̃(η, a) and thus DN (H, a) ≤
DN (H̃ , a). The following Lemma contains our main improvement of (50) and (52).

Lemma 6. Under the hypotheses of Proposition 5 we have

DN (H̃ , a) = D1(H, 0) sup
k≤N ,|η|≤η0(a)

kη0(a)2e−π((k−1)η0(a)2+η2) + η2e−πkη0(a)2

a2 + kη0(a)2 + η2
(54)

that is, the supremum in (48) for H̃ is attained for �η of the form �η = (η0(a), . . . , η0(a), η,

0, . . . , 0) for some η with |η| ≤ η0(a).

Proof. Let

H̃N (a, �η) =
∑N

i=1 H̃(ηi )�N−1(�ηi )

a2 + |�η|2



Uniform Approximation of a Maxwellian Thermostat 329

and suppose �η has |ηi | > η0(a) for some i . By differentiating we get

∂ηi H̃N (a, �η) = ∂ηi

(
H̃(a, ηi )e

πη2i

) �N (�η)

a2 + �η2 − 2ηi

(
π +

1

a2 + �η2
)
H̃N (a, �η)

where we used

∂η

(
H̃(a, η)eπη2

)
= 2η

(
π H̃(a, η) +D1(H, a)

)
eπη2

whenever η ≥ η0(a). Because

H̃(a, ηi )�N−1(�ηi )

a2 + �η2 ≤ H̃N (a, �η) and
D1(H̃ , a)�N−1(�ηi )

a2 + �η2 ≤ DN (H̃ , a)

a2 + �η2 ,

with equality holding only if �ηi = 0, we have

∂ηi H̃N (a, �η) < 0.

This implies that

sup
�η �=0

H̃N (a, �η) = sup
�η �=0,|ηi |≤η0

H̃N (a, �η) .

Now we show that there can be at most 1 coordinate i such that 0 < |ηi | < η0(a).
Consider

L(x, y) := x2eπx2 + y2eπy2

and observe that L(r cos θ, r sin θ) is maximal for θ = n π
2 and minimal for θ = π

4 +n π
2 .

Moreover, it is strictly increasing for π
4 + n π

2 < θ < (n + 1)π
2 and strictly decreasing

for n π
2 < θ < n π

2 + π
4 . For |ηi | ≤ η0(a) we have

H̃N (a, �η) = D1(H, a)L(η1, η2)�N−2(η3 . . . , ηN ) +
∑N

i=3 H̃(a, ηi )�N−1(�ηi )

a2 + |�η2| ,

so that there can be no maximum for H̃N (a, �η) for which both 0 < η1 < η0(a) and
0 < η2 < η0(a). Repeating this argument for each pair ηi , η j with 1 ≤ i, j ≤ N we get
that for all but possibly one i , we must have ηi = 0 or ηi = η0(a). ��

To complete the proof of the first part of Proposition 5 we will simplify the right hand
side of Eq. (54). Observe first that

kη0(a)2e−π((k−1)η20(a)+η2) + η2e−πkη0(a)2

a2 + kη0(a)2 + η2

≤ max

{
η20(a)

a2
2 + η0(a)2

,
(k − 1)η0(a)2e−π((k−1)η20(a)+η2) + η2e−πkη0(a)2

a2
2 + (k − 1)η0(a)2 + η2

}
.

From (53) we have

η20(a)

a2
2 + η0(a)2

≤ 2
D1(H, a)

D1(H, 0)
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while

sup
k≤N ,|η|≤η0(a)

(k − 1)η0(a)2e−π((k−1)η20(a)+η2) + η2e−πkη0(a)2

a2
2 + (k − 1)η0(a)2 + η2

≤ sup
k≤N ,|η|≤η0(a)

((k − 1)η0(a)2 + η2)e−π((k−1)η20(a)+η2)

a2
2 + (k − 1)η0(a)2 + η2

≤ 2 sup
y>0

ye−πy

a2
2 + y

(55)

Clearly we have

ye−πy

a2
2 + y

≤ y

( a2
2 + y)(1 + πy)

≤ 1
πa2
2 + 1

so that

DN (H, a) ≤ max

{
D1(H, a), 2

D1(H, 0)

1 + π
2 a2

}
. (56)

This concludes the first part of the proof.We start the second part with a couple of simple
observations.

From the hypotheses of Proposition 5, it follows that

|H ′′(0)|η2
2

− C4η
4

4! ≤ |H(η)| ≤ |H ′′(0)|η2
2

+
C4η

4

4! . (57)

Let now M = supη |H(η)| and observe that there exists a finite η̃ such that |H(η̃)| >

M/2. Moreover η̃ �= 0 since H(0) = 0. Thus D1(H, 0) ≥ M/(2η̃2) while

|H(η)|
η2

<
M

2η̃2
if η2 > 2η̃2

Thus there exists ηm such that η2m ≤ η̃2 and |H(ηm)| = D1(H, 0)η2m . We also know
from (51) that

|H ′′(0)| ≤ 2D1(H, 0),

with equality if and only if η2m = 0.

Lemma 7. Under the hypotheses of Proposition 5 we have

D1(H, a) ≥ D1(H, 0)2

3
2C4a2 + 4D1(H, 0)

Proof. From (57) it follows that

|H(a, η)|
a2 + η2

≥
|H ′′(0)|η2

2 − C4η
4

4!
a2 + η2

and, choosing η2 to be 6|H ′′(0)|
C4

, we get that

sup
η

|H(a, η)|
a2 + η2

≥ |H ′′(0)|2
4|H ′′(0)| + 3

2C4a2
. (58)
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Since, there is no positive lower bound for |H ′′(0)|, we complement this inequality
using the second inequality in (57). We find that for all η

|H(η)| − D1(H, 0)η2 ≤ (|H ′′(0)| − 2D1(H, 0))η2

2
+

C4η
4

4!
Since |H ′′(0)| − 2D1(H, 0) ≤ 0 we get

η2m ≥ 12(2D1(H, 0) − |H ′′(0)|)
C4

.

This implies that

sup
η

|H(η)|
a2 + η2

≥ |H(ηm)|
a2 + η2m

≥ lim inf
ε→0

|H(ηm)|
η2m + ε

η2m

a2 + η2m

≥ 12D1(H, 0)(2D1(H, 0) − |H ′′(0)|)
C4a2 + 12(2D1(H, 0) − |H ′′(0)|) . (59)

Observe now that the right hand side of (58) is an increasing function of |H ′′(0)|
while the right hand side of (59) is decreasing. Thus, we have

D1(H, a) ≥ min
0≤h≤2D1(H,0)

max

{
h2

4h + 3
2C4a2

,
12D1(H, 0)(2D1(H, 0) − h)

C4a2 + 12(2D1(H, 0) − h)

}

Moreover

12D1(H, 0)(2D1(H, 0) − h)

C4a2 + 12(2D1(H, 0) − h)
≥ 12D1(H, 0)2

12D1(H, 0)2 + C4a2 for h ≤ D1(H, 0)

h2

4h + 3
2C4a2

≥ D1(H, 0)2

3
2C4a2 + 4D1(H, 0)

for h ≥ D1(H, 0).

The above, together with the observation

D1(H, 0)2

3
2C4a2 + 4D1(H, 0)

≤ 12D1(H, 0)2

12D1(H, 0)2 + C4a2

concludes the proof. ��
Observe finally that from 2|H(η)|/η2 ≤ supη |H ′′(η)| it follows that 2D1(H, 0) ≤

supη |H ′′(η)| ≤ C4. Thus we can write

D1(H, a) ≥ 2D1(H, 0)2

C4

1

3a2 + 4
. (60)

Putting together (56) and (60) establishes the claim of Proposition 5. ��
To apply Proposition 5 to (46), we need to estimate ‖Ĝk(�ξ, ·)‖C4 , where Ĝk(�ξ, η) is

defined in (44). Observe that for p ≤ 4 we have by Jensen’s inequality
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∣∣∣∂ p
η j

R̂ I
i, j [̂lk�N ](�ξ, �η)

∣∣∣ ≤ (2π)4
∫

|w j |p RI
i, j [lk�N ](�v, �w)d �vd �w

≤ (2π)4
(∫

|w j |4RI
i, j [lk�N ](�v, �w)d �vd �w

) p
4

= (2π)4
(∫

(w2
j + v2i )2lk(�v)�N ( �w)d �vd �w

) p
4

= (2π)4
(

E4,k + 2
E2,k√
2π

+
3

2π

) p
4 ≤ 32π4(E4,k + 1)

where

En,k =
∫

vn
i lk(�v)d �v =

∫
vn

i

(
QS + Q B +

λR N

2
I

)k

[l0](�v)d �v.

Using (44) we get
‖Ĝk(�ξ, ·)‖C4 ≤ 32π4 (E4,k + 1

)
. (61)

To estimate E4,k we need to study the action of QS and Q∗
B on v4i , where Q∗

B is the
adjoint of Q B . This is done in the following Lemma.

Proposition 8. Given a symmetric distribution l0 on R
M such that

∫
v4i l0(�v)d �v = E4 < ∞

we have

E4,k =
∫

v4i lk(�v)d �v ≤ 2(E4 + 1)

where lk = �−k
(

QS + Q B + λR N
2 I

)k
l0.

Proof. First we observe that, due to symmetry,

E4,k =
∫

1

M

M∑

i=1

v4i lk(�v)d �v.

Calling

QS := 1
(M
2

)
∑

i< j

RS
i, j = 2

λS M
QS, Q B := 1

M

M∑

i=1

Bi = 1

μM
Q B

we have that
∫

v4i QS[l](�v)d �v =
∫

QS[v4i ]l(�v)d �v
∫

v4i Q B[l](�v)d �v =
∫

QT [v4i ]l(�v)d

where

QT := 1

M

M∑

i=1

Ti
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with Ti defined in (16). It is easy to see that QS and QT leave the space V of even
polynomials of degree at most 4 in the vi invariant. Calling Hn(v) the monic Hermite
polynomial of degree n (with weight �1(v) = e−πv2 ), a natural basis in V is given by

H4(�v) = 1

M

M∑

i=1

H4(vi ), H3(�v) = 2

M(M − 1)

∑

i< j

H2(vi )H2(v j )

H2(�v) = 1

M

M∑

i=1

H2(vi ), H0(�v) = 1

and we have

1

M

M∑

i=1

v4i = a4H4(�v) + a3H3(�v) + a2H2(�v) + a0H0(�v),

where �a = (a4, a3, .a2, a0) = (1, 0, 3
π
, 3
4π2 ) and |�a| ≤ √

2. From [1] we know that

the action of QS and QT on V with the basis Hi is given by two positive definite
matrices L S and LT with spectral (and thus L2) norm 1. Thus, also the action of

�−k
(

QS + QT + λR N
2 I

)
is given by a positive definite matrix L with norm 1. We

get

�−k
(

QS + QT +
λR N

2
I

)(
1

M

M∑

i=1

v4i

)

= a4,kH4(�v) + a3,kH3(�v) + a2,kH2(�v) + a0,kH0(�v)

where �ak = Lk �a. Clearly we have |�ak | ≤ |�a| ≤ √
2. We integrate both sides against

l0(�v) to obtain

E4,k = a4,k

(
E4 − 3

π
E2 +

3

4π2

)
+a3,k

(
E3 − 1

π
E2 +

1

4π2

)
+a2,k

(
E2 − 1

2π

)
+ a0,k

where

E2 =
∫

v2i l0(�v)d �v ≤ 1

2
(1 + E4) E3 =

∫
v2i v2j l0(�v)d �v ≤ E4.

After some rearranging and neglecting terms with negative coefficients, we obtain

E4,k ≤ E4

((
1 − 3

2π

)
a4,k +

(
1 − 1

2π

)
a3,k +

1

2
a2,k

)
+

(
a0.k +

(
1

2
− 1

2π

)
a2,k

)

≤ |�a|
⎛

⎝E4

√(
1 − 3

2π

)2

+

(
1 − 1

2π

)2

+
1

4
+

√

1 +

(
1

2
− 1

2π

)2
⎞

⎠

proving the result. Here we applied Cauchy–Schwarz inequality twice in the last step.
��
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It thus follows from (61) that

‖Gk(�ξ, ·)‖C4 ≤ 96π4(E4 + 1) := 2F4. (62)

Applying Proposition 8 and Proposition 5 to (45), (46) and using (62) we get that

d2(QI [lk�N ], Q B [lk�N ])
≤ μM

N

√(
2K F4 + (μM)−1d2(Q B [lk�1], QI [lk�1])

)
(μM)−1d2(Q B [lk�1], QI [lk�1]),

(63)

where K is defined in Theorem 2. It is easy to see that

1

M
d2(QI [lk�1], Q B [lk�1]) ≤ d2(M−1QI [lk�1], μ�M+1) + d2(M−1Q B [lk�1], μ�M+1)

≤ 2μd2(lk, �M ). (64)

Combining (63) and (64) gives

d2(QI [lk�N ], Q B[lk�N ]) ≤ 2
μM

N

√
(8F4 + d2(lk, �M ))d2(lk, �M ). (65)

We can now conclude our proof. Indeed, going back to Eq. (42), we can write

d2
(

eL t f0, eL̃ t f0
)

≤ 2
μM

N
e−�t

∞∑

n=1

tn

n!
n−1∑

k=0

�n−1
√

(8F4 + d2(lk, �M ))d2(lk, �M )

≤ 2
μM

N
e−�t

∞∑

n=1

tn�n−1

n!
n−1∑

k=0

(
1 − μ

2�

) k
2 √

(8F4 + d2(l0, �M ))d2(l0, �M )

= 8
M

N

(
1 − e− μ

4 t
)√

(8F4 + d2(l0, �M ))d2(l0, �M )

where we have used (38) in Lemma 4 together with
(
1 − μ

2�

) 1
2 ≤ 1 − μ

4� .

5. Conclusions and Outlooks

We have shown that a small system out of equilibrium interacting with a large system
initially in equilibrium (the reservoir) can be well approximated in certain norms by
the same small system interacting with a thermostat. This approximation moreover is
uniform in time. Our proof is not based on a projection or conditioning method. Indeed,
it is hard to see how one can apply such an argument to the d2 metric. In particular, we
obtain that also the reservoir remains uniformly close to the equilibrium state.

We can also think of our system as describing a local perturbation in a large system
initially in equilibrium at a given temperature. In this spirit we see our results as an initial
attempt to understand the return to equilibrium from an initial state that is locally close
to equilibrium. We hope to come back to this problem in forthcoming research.

In the case of the L2 norm introduced in Sect. 3.1, the derivation of the above ap-
proximation is rather direct. We believe that this is at least in part due to the fact that the
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generators L (see (12)) and L (see (6)) both have a spectral gap uniform in N . This
implies that both systems approach exponentially fast their respective steady states f∞
and f̃∞, (14) and (15). Notwithstanding this, such a norm behaves poorly with the size
of the system and it excludes altogether perfectly reasonable initial states.

Partly for this reason we have studied the d2 metric defined in (22). Such a metric is
well defined for all reasonable initial states and behaves much better as a function of the
size of the system. The control of this norm is harder. The main ingredient is contained
in Proposition 5 in Sect. 4.2. It requires an extra fourth moment assumption on the initial
state and some substantial analysis of an associated functional inequality.

It is not hard to show that eL̃ t f0 approaches f̃∞ exponentially fast in the d2 metric
(see [3,4]). On the other hand, it is an open question whether eL t f0 approaches f∞
exponentially fast in the d2 metric at a rate uniform in N . Our result is not enough to
give an answer but it makes such a question rather natural.

Finally in [3], the authors consider a system interactingwithmore thanone thermostat.
They start at the level of the Boltzmann equation but it would be interesting to see in
which sense one can approximate such a system with a system interacting with several
large but finite reservoirs at different temperatures. Observe that in such a case, if the
reservoirs are kept finite, they will reach a steady state in which they all have the same
temperature (or better, average kinetic energy). This will create a more complex and
interesting interplay between the large N and large t limit, with more than one time
scale involved.

Acknowledgements. Michael Loss and Hagop Tossounian acknowledge partial support from the NSF Grant
DMS-1301555. Michael Loss also acknowledges partial support from the NSF Grant DMS- 1600560 and the
Humboldt Foundation.

A. Estimates on the Steady States

In this Appendix we derive (18) and (23).

A.1. Derivation of (18). Because h∞ depends only on r = √|�v|2 + | �w|2 we can set

H(r) = h∞(�v, �w)

Moreover, setting

w j = w̃ j

√
r2 − |�v|2

we get r2 − | �w|2 = (r2 − |�v|2)(1 − | �̃w|2) and

H(r) = 2

|SM+N−1|r M+N−1

∫

|�v|2≤r2
h0(�v)r

(
r2 − |�v|2

) N−2
2

d �v

×
∫
∑

i≤N−1 w2
i ≤1

1√
1 − ∑N−1

j=1 w̃2
j

dw̃1 · · · dw̃N−1

so that we have

H(r) = |SN−1|
|SM+N−1|r M

∫

RM
h0(�v)

(
1 − |�v|2

r2

)(N−2)/2

+
d �v
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where (x)+ = x if x ≥ 0 and (x)+ = 0 otherwise. Because
∫

�N (�v)h0(�v)d �v = 1 and

|SN−1|
|SM+N−1|r M

∫

RM

(
1 − |�v|2

r2

)(N−2)/2

+
d �v = 1

we may write

H(r) − 1 =
∫

RM

[
|SN−1|

|SM+N−1|r M

(
1 − |�v|2

r2

)(N−2)/2

+
− �N (�v)

]
(h0(�v) − 1)d �v

=
∫

RM

[
|SN−1|

|SM+N−1|r M

(
1 − |�v|2

r2

)(N−2)/2

+
eπ |�v|2/2 − e−π |�v|2/2

]
e−π |�v|2/2(h0(�v) − 1)d �v

and using Cauchy–Schwarz’s inequality we find that

|H(r) − 1|2 ≤
∫

RM
�N (�v)(h0(�v) − 1)2d �v

∫

RM

×
[

|SN−1|
|SM+N−1|r M

(
1 − |�v|2

r2

)(N−2)/2

+
eπ |�v|2/2 − e−π |�v|2/2

]2

d �v.

Thus, we get

‖h∞ − 1‖2 = |SM+N−1|
∫

r M+N−1e−πr2 |H(r) − 1|dr ≤ C‖h‖22
where

C = |SM+N−1|
∫ ∞

0
drr M+N−1e−πr2

∫

RM

×
[

|SN−1|
|SM+N−1|r M

(
1 − |�v|2

r2

)(N−2)/2

+
eπ |�v|2/2 − e−π |�v|2/2

]2

d �v

By expanding the square, we can write the above integral as a sum of three integrals that
can be computed explicitly as

∫ ∞

0
drr M+N−1e−πr2

∫

RM

|SN−1|2
|SM+N−1|r2M

(
1 − |�v|2

r2

)(N−2)

+
eπ |�v|2d �v

= �( M+N
2 )

�( N
2 )�( M

2 )

�( N−2
2 )�( M

2 )

�( M+N−2
2 )

= M + N − 2

N − 2
,

∫ ∞

0
drr M+N−1e−πr2

∫

RM

|SN−1|
r M

(
1 − |�v|2

r2

)(N−2)/2

+
d �v = 1,

|SM+N−1|
∫ ∞

0
drr M+N−1e−πr2

∫

RM
e−π |�v|2d �v = 1. (66)

We thus get

C = M

N − 2
.
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A.2. Derivation of (23). Calling r2 = |�ξ |2 + |�η|2, we have

d2( f∞, �M+N ) = sup
r �=0

∫

SM+N−1(r)

[̂l0(�ξ) − �M (�ξ)]
r2

�N (�η)dσr (�ξ, �η)

≤
(
sup
r �=0

∫

SM+N−1(r)

|�ξ |2
r2

�N (�η)dσr (�ξ, �η)

)
d2(l0, �M )

Observe now that
∫

SM+N−1(r)

|�ξ |2
r2

�N (�η)dσr (�ξ, �η) =
∫

SM+N−1(1)
|�ξ |2γ

(
r2(1 − |�ξ |2)

)
dσ1(�ξ, �η)

≤ |SN−1|
|SM+N−1|

∫

|�ξ |2≤1
|�ξ |2

(
1 − |�ξ |2

) N−2
2

d�ξ

≤ |SN−1||SM−1|
|SM+N−1|

∫ 1

0
ρM+1

(
1 − ρ2

) N−2
2

dρ

= 1

2

|SN−1||SM−1|
|SM+N−1|

∫ 1

0
s

M
2 (1 − s)

N
2 −1ds

= 1

2

2π
M
2 2π

N
2 �

( M+N
2

)

�
( M
2

)
�

( N
2

)
2π

M+N
2

�
( M
2 + 1

)
�

( N
2

)

�
( M+N

2 + 1
) = M

M + N
.

B. Optimality of the Estimate (32)

In this appendix we show that there exists an initial state u0 for which we have

‖(QI − QT )u0‖2 ≥ C
M√
N

‖u0‖2.

thus saturating the bound in Lemma 3. We first observe that, by a similar analysis as
Lemma 3, we get

∥∥∥∥∥∥

M∑

i=1

⎛

⎝ 1

N

N∑

j=1

RI
i, j u − Ti u

⎞

⎠

∥∥∥∥∥∥

2

2

= M

N
(〈T1u, u〉 − 〈T1u, T1u〉)

+
M(M − 1)

N

(
〈RI

1,1u, RI
2,1u〉 − 〈T1u, T2u〉

)
.

We thus need symmetric initial states such that 〈RI
1,1u, RI

2,1u〉 − 〈T1u, T2u〉 = O(1) in
M and N . To this end we set

uM,P (�v) =
∑

p1+p2+···+pM =P

M∏

i=1

H2pi (vi )

where Hp(v) is the normalized Hermite polynomial of degree p with weight γ (v) =
e−πv2 . We get

RI
1,1uM,P (�v) =

∑

p1+p2≤P

H̃2p1(v1, w1)H2p2(v2)uM−2,P−p1−p2(�v1,2).
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where H̃2p(v,w) is the only radially symmetric Hermite polynomial of degree 2p. It
follows that

〈RI
1,1uM,P , RI

2,1uM,P 〉 − 〈T1uM,P , T2uM,P 〉
≥

(
〈RI

1,1ū, RI
2,1ū〉 − 〈T1ū, T2ū〉

)
‖u P−2,M−2‖2

where ū(v1, v2) = H4(v1) + H2(v1)H2(v2) + H4(v2). Observe now that ‖u P,M‖2 =(M+P
P−1

)
while 〈RI

1,1ū, RI
2,1ū〉 − 〈T1ū, T2ū〉 = 11

8 so that

〈RI
1,1uM,P , RI

2,1uM,P 〉 − 〈T1uM,P , T2uM,P 〉
≥ 11

8

(P − 1)(P − 2)(M + 1)M

(M + P)(M + P − 1)(M + P − 2)(M + P − 3)
‖uM,P‖2.

By choosing P = M we get

〈RI
1,1uM,M , RI

2,1uM,M 〉 − 〈T1uM,M , T2uM,M 〉 ≥ C‖uM,M‖2
with C = 3/128.
We can thus consider an initial state given by

h0(�v) = 1 + auM,M (�v).

Observe that uM,M is an even polynomial in all its variables with positive coefficients
for the terms of maximal degree. Thus infRn uM,M (�v) > −∞ and choosing a small
enough we get h0 ≥ 0.
Going back to (33) we can write

‖(eL t − eL t )h0‖2 ≥ ‖h0 − 1‖2 M√
N

e−�t

(
Ct −

∞∑

n=2

tn

n!�
n
[
1 −

(
1 − μ

2�

)n]
)

≥ ‖h0 − 1‖2 M√
N

t
(
(C + 1)e−�t − 1

)

where we have used that
[
1 − (1 − x)n] ≤ nx . Thus for this particular h0 our estimate

is saturated at least for a time order �−1. Since � > (λS/2 +μ)M we cannot claim that

for this example ‖(eL t − eL t )h0‖2 actually grows to order M/
√

N .

C. Violation of DN (H, a) ≤ KD1(H, a)

In this appendix we show that there cannot be a constant K < N for whichDN (H, a) ≤
KD1(H, a) holds for every H and a. Consider the family of function, parametrized by
r , given by

Hr (x) = η4 exp(−rη2).

Then

D1(Hr , a) = sup
Hr (η)

a2 + η2
= Hr (η(r))

a2 + η(r)2
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for some η(r) with η(r)2 ≤ 2
r , since Hr (η)/(a2 + η2) is decreasing on η2 > 2

r . On the
other hand, we get

DN (Hr , a) ≥ Nη(r)4 exp(−rη(r)2) exp(−π(N − 1)η(r)2)

a2 + Nη(r)2

so that

lim inf
r→∞

DN (Hr , a)

D1(Hr , a)
≥ lim inf

r→∞ N
a2 + η(r)

a2 + Nη(r)2
exp(−π(N − 1)η(r)2) = N .

This bound is optimal since for any H and a we have

DN (H, a) ≤ sup
η

∑N
i=1D1(H, a)(a2 + η2)

a2 + Nη2
≤ ND1(H, a). (67)
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