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Abstract: We study complexity of several problems related to the Transverse field
IsingModel (TIM). First, we consider the problem of estimating the ground state energy
known as the Local Hamiltonian Problem (LHP). It is shown that the LHP for TIM
on degree-3 graphs is equivalent modulo polynomial reductions to the LHP for general
k-local ‘stoquastic’ Hamiltonians with any constant k ≥ 2. This result implies that es-
timating the ground state energy of TIM on degree-3 graphs is a complete problem for
the complexity class StoqMA—an extension of the classical class MA. As a corollary,
we complete the complexity classification of 2-local Hamiltonians with a fixed set of
interactions proposed recently by Cubitt and Montanaro. Secondly, we study quantum
annealing algorithms for finding ground states of classical spin Hamiltonians associ-
ated with hard optimization problems. We prove that the quantum annealing with TIM
Hamiltonians is equivalent modulo polynomial reductions to the quantum annealing
with a certain subclass of k-local stoquastic Hamiltonians. This subclass includes all
Hamiltonians representable as a sum of a k-local diagonal Hamiltonian and a 2-local
stoquastic Hamiltonian.
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1. Introduction and Summary of Results

Numerical simulation of quantum many-body systems is a notoriously hard problem. A
particularly strong form of hardness known asQMA-completeness [1] has been recently
established for many natural problems in this category. Among them is the problem
of estimating the ground state energy for certain physically-motivated quantum models
such as Hamiltonians with nearest-neighbor interactions on the two-dimensional [2]
and one-dimensional [3,4] lattices, the Hubbard model [5,6], and the Heisenberg model
[5,7]. In contrast, a broad class of Hamiltonians known as sign-free or stoquastic [8] has
been identified for which certain simulation tasks become more tractable. By definition,
stoquastic Hamiltonians must have real matrix elements with respect to some fixed basis
and all off-diagonal matrix elements must be non-positive. Ground states of stoquastic
Hamiltonians are known to have real non-negative amplitudes in the chosen basis. Thus,
for many purposes, the ground state can be viewed as a classical probability distribution,
which often enables efficient simulation by quantum Monte Carlo algorithms [9–12]. A
notable example of a model in this category is the transverse field Ising model (TIM). It
has a Hamiltonian

H =
∑

1≤u≤n

hu Xu + gu Zu +
∑

1≤u<v≤n

gu,vZu Zv. (1)

Here n denotes the number of qubits (spins), hu, gu, gu,v are real coefficients, and Xu, Zu
are the Pauli operators acting on a qubit u. Note that H is a stoquastic Hamiltonian in
the standard Z -basis iff hu ≤ 0 for all u. This can always be achieved by conjugating
H with Zu . It is known that the ground state energy and the free energy of the TIM
can be approximated with an additive error ε in time poly(n, ε−1) using Monte Carlo
algorithms [13] in the special case when the Ising interactions are ferromagnetic, that
is, gu,v ≤ 0 for all u, v. Another important special case is the TIM defined on the one-
dimensional lattice with gu = 0. In this case the Hamiltonian Eq. (1) is exactly solvable
by the Jordan–Wigner transformation and its eigenvalues can be computed analytically
[14]. The ground state and the thermal equilibrium properties of the TIM have been
studied in many different contexts including quantum phase transitions [15], quantum
spin glasses [16,17] and quantum annealing algorithms [18–21]. In the present paper
we address two open questions related to the TIM. First, we consider the problem of
estimating the ground state energy of the TIM and fully characterize its hardness in terms
of the known complexity classes. Secondly, we study quantum annealing algorithms
with TIM Hamiltonians and show that such algorithms can efficiently simulate a much
broader class of quantum annealing algorithms associated with many important classical
optimization problems.

To state our main results let us define two classes of stoquastic Hamiltonians. Let
TIM(n, J ) be the set of all n-qubit transverse field Ising Hamiltonians defined in Eq. (1)
such that the coefficients hu, gu, gu,v have magnitude at most J for all u, v. A TIM
Hamiltonian is said to have interactions of degree d iff each qubit is coupled to at most d
other qubits with Z Z interactions. Such Hamiltonian can be embedded into a degree-d
graph such that only nearest-neighbor qubits interact.
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Let StoqLH(n, J ) be the set of stoquastic 2-local Hamiltonians H on n qubits with
the maximum interaction strength J . By definition, H ∈ StoqLH(n, J ) iff

H =
∑

1≤u<v≤n

Hu,v,

where Hu,v is a hermitian operator acting on the qubits u, v such that ‖Hu,v‖ ≤ J and
all off-diagonal matrix elements of Hu,v in the standard basis are real and non-positive.
One can choose different operators Hu,v for each pair of qubits. We shall provide a
more explicit characterization of 2-local stoquastic Hamiltonians in terms of their Pauli
expansion in Sect. 11, see Lemma 9.

Our first theorem asserts that any 2-local stoquastic Hamiltonian can appear as an
effective low-energy theory emerging from the TIM on a degree-3 graph.

Theorem 1. Consider any Hamiltonian H ∈ StoqLH(n, J ) and a precision parameter
ε > 0. There exist n′ ≤ poly(n), J ′ ≤ poly(n, J, ε−1), and a Hamiltonian H ′ ∈
TIM(n′, J ′) such that

(1) The i-th smallest eigenvalues of H and H ′ differ at most by ε for all 1 ≤ i ≤ 2n.
(2) One can compute H ′ in time poly(n).
(3) H ′ has interactions of degree 3.

Here themaximumdegree of all polynomial functions is somefixed constant that does
not depend on any parameters (although we expect this constant to be quite large). The
theorem has important implications for classifying complexity of the Local Hamiltonian
Problem (LHP) [1,22]. Recall that the LHP is a decision problem where one has to
decide whether the ground state energy E0 of a given Hamiltonian H acting on n qubits
is sufficiently small, E0 ≤ Eyes , or sufficiently large, E0 ≥ Eno. Here Eyes < Eno are
some specified thresholds such that Eno − Eyes ≥ poly(n−1). The Hamiltonian must
be representable as a sum of hermitian operators acting on at most k qubits each, where
k = O(1) is a small constant. Each k-qubit operator must have norm at most poly(n).
Such Hamiltonians are known as k-local. Theorem 1 implies that the LHP for 2-local
stoquastic Hamiltonians has the same complexity as the LHP for TIM. Indeed, consider
an instance of the LHP for some Hamiltonian H ∈ StoqLH(n, J ) where J ≤ poly(n).
Choose a precision ε = (Eno−Eyes)/3 and let H ′ be theTIMHamiltonian constructed in
Theorem 1. Note that H ′ acts on poly(n) qubits and has the interaction strength poly(n).
Let E ′

0 be the ground state energy of H
′. Then E0 ≤ Eyes implies E ′

0 ≤ Eyes +ε ≡ E ′
yes

and E0 ≥ Eno implies E ′
0 ≥ Eno − ε ≡ E ′

no. Since E ′
no − E ′

yes = (Eno − Eyes)/3 ≥
poly(n−1), the LHP for a 2-local stoquastic Hamiltonian has been reduced to the LHP
for TIM. The converse reduction is trivial since any TIM Hamiltonian can be made
stoquastic by a local change of basis. Thus we obtain

Corollary 1. The LHP for 2-local stoquastic Hamiltonians has the same complexity as
the LHP for TIM with interactions of degree 3, modulo polynomial reductions.

It is known that the LHPs for 2-local and k-local stoquastic Hamiltonians have the
same complexity for any constant k ≥ 2, modulo polynomial reductions [8]. Thus
estimating the ground state energy of TIM on a degree-3 graph is as hard as estimating
the ground state energy of a general k-local stoquastic Hamiltonian for k = O(1).
Furthermore, the LHP for 6-local stoquastic Hamiltonians is known to be a complete
problem for the complexity class StoqMA [8,23]. This is an extension of the classical
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classMA where the verifier can accept quantum states as a proof. To examine the proof
the verifier is allowed to apply classical reversible gates in a coherent fashion and,
finally, measure some fixed qubit in the X -basis. The verifier accepts the proof if the
measurement outcome is ‘+’. Let Pacc(x) be the acceptance probability of the verifier
for a given problem instance x maximized over all possible proofs. A decision problem
belongs to StoqMA if there exists a polynomial-size verifier as above and threshold
probabilities Pyes ≥ Pno + poly(n−1) such that Pacc(x) ≥ Pyes for any yes-instance x
and Pacc(x) ≤ Pno for any no-instance x . Here n is the length of the problem instance
x , see [23] for a formal definition. Combining these known results and Corollary 1 we
obtain

Corollary 2. The Local Hamiltonian Problem for TIM with interactions of degree 3 is
complete for the complexity class StoqMA.

Finally, Theorem 1 completes the complexity classification of 2-local Hamiltonians with
a fixed set of interactions proposed recently by Cubitt and Montanaro [7]. The problem
studied in [7] is defined as follows. Let S be a fixed set of two-qubit hermitian operators.
Consider a special case of the 2-local LHP such that Hamiltonians are required to have
a form H = ∑

a xaVa , where xa is a real coefficient and Va is an operator from S
applied to some pair of qubits. For brevity, let us call the above problem S-LHP. The
main result of Ref. [7] is that depending on the choice of S, the problem S-LHP is either
complete for one of the complexity classes NP, QMA, or can be solved in polynomial
time on a classical computer, or can be reduced in polynomial time to the LHP for TIM.
In addition, one can efficiently determine which case is realized for a given choice of S.
Combining this result and Corollary 2 one obtains

Corollary 3. LetS be any fixed set of two-qubit hermitian operators. Then depending on
S, the problem S-LHP is either complete for one of the complexity classesNP,StoqMA,
QMA, or can be solved in polynomial time on a classical computer.

We also prove an analogue of Theorem 1 which gives new insights on the power
of quantum annealing (QA) algorithms [18,24] with TIM Hamiltonians which received
a significant attention recently [19–21]. Recall that quantum annealing (QA) [18,24]
attempts to find a global minimum of a real-valued function f (x1, . . . , xn) that de-
pends on n binary variables by encoding f into a diagonal problem Hamiltonian HP =∑

x f (x)|x〉〈x | acting on n qubits. To find the ground state of HP one chooses an adi-
abatic path H(τ ) = (1 − τ)H(0) + τHP , 0 ≤ τ ≤ 1, where H(0) is some simple
Hamiltonian usually chosen as the transverse magnetic field, H(0) = −∑n

u=1 Xu . Ini-
tializing the system in the ground state of H(0) and traversing the adiabatic path slowly
enough one can approximately prepare the ground state of HP . The running time of
QA algorithms scales as poly(n, δ−1), where δ is the minimum spectral gap of H(τ ),
see [18,24,25]. We focus on the special case of QA such that the objective function
f (x1, . . . , xn) is a sum of terms that depend on at most k variables each. Here k = O(1)
is some small constant. This includes well-known optimization problems such as k-
SAT, MAX-k-SAT and many variations thereof. We show that any quantum annealing
algorithm as above can be efficiently simulated by the quantum annealing with TIM
Hamiltonians. The simulation has a slowdown at most poly(n, δ−1).

Fix some integer k ≥ 2. We will say that H is a (2, k)-local stoquastic Hamiltonian
iff H is a sum of a 2-local stoquastic Hamiltonian and a k-local diagonal Hamiltonian.
Let StoqLH∗(n, J ) be the set of all (2, k)-local stoquastic Hamiltonians on n-qubits
with the maximum interaction strength J .
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Theorem 2. Consider any Hamiltonian H ∈ StoqLH∗(n, J ) with a non-degenerate
ground state |g〉 and a spectral gap δ. There exist n′ ≤ poly(n), J ′ ≤ poly(n, J, δ−1),
a Hamiltonian H ′ ∈ TIM(n′, J ′), and an isometry E : (C2)⊗n → (C2)⊗n′

such that

(1) H ′ has a non-degenerate ground state |g′〉 and a spectral gap at least δ/3.
(2) ‖|g′〉 − E |g〉‖ ≤ 1/100.
(3) The isometry E maps basis vectors to basis vectors.
(4) One can compute H ′ and the action of E, E† on any basis vector in time poly(n).

Here the maximum degree of all polynomial functions depends only on the locality
parameter k. We note that one can replace the constant 1/100 in condition (2) by an
arbitrary precision parameter η > 0. Then the same theorem holds with a scaling J ′ ≤
poly(n, J, δ−1, η−1). One can also impose a restriction that the Hamiltonian H ′ has
interactions of degree-3. Then a similar theorem holds, but the isometry E has slightly
more complicated properties, see Sect. 12 for details.

Let us discuss implications of the theorem. Suppose H(τ ) ∈ StoqLH∗(n, J ) is
an adiabatic path such that H(1) = HP is the problem Hamiltonian and H(0) =
−∑n

u=1 Xu . We assume that H(τ ) has a non-degenerate ground state |g(τ )〉 and a
spectral gap at least δ for all τ . Also we assume that J ≤ poly(n). Since Xu can
be adiabatically rotated to Zu without closing the gap, we can modify the path such
that H(0) = −∑n

u=1 Zu . Then the initial ground state is |g(0)〉 = |0⊗n〉. Applying
Theorem 2 to each Hamiltonian H(τ ) one obtains a family of TIM Hamiltonians H ′(τ )

such that H ′(τ ) has a non-degenerate ground state |g′(τ )〉 ≈ E |g(τ )〉, the spectral gap
at least δ/3, and the interaction strength at most poly(n, δ−1). We will show that the
map H → H ′ is sufficiently smooth, so that the family H ′(τ ), 0 ≤ τ ≤ 1, defines an
adiabatic path and the time it takes to traverse the paths H(τ ) and H ′(τ ) differ at most by
a factor poly(n, δ−1), see Sect. 12 for details. Therefore one can (approximately) prepare
the final state |g′(1)〉 by initializing the system in the basis state E |0⊗n〉 ≈ |g′(0)〉 and
traversing the path H ′(τ ). Measuring every qubit of the final state |g′(1)〉 in the Z -
basis one obtains a string of outcomes x ∈ {0, 1}n′

such that E |g(1)〉 ≈ |x〉. Then
|g(1)〉 ≈ E†|x〉, that is, the ground state of HP can be efficiently computed from x . Thus
we obtain

Corollary 4. Any quantum annealing algorithm with (2, k)-local stoquastic Hamiltoni-
ans can be simulated by a quantum annealing algorithm with TIM Hamiltonians. The
simulation has overhead at most poly(n, δ−1), where n is the number of qubits and δ is
the minimum spectral gap of the adiabatic path.

In the rest of this section we informally sketch the proof of the main theorems, discuss
several open problems, and outline the organization of the paper.

Sketch of the proof. The proof of Theorems 1, 2 relies on perturbative reductions [2,22]
and the Schrieffer–Wolff transformation [26–28]. At each step of the proof we work
with two quantum models: a simulator Hamiltonian Hsim acting on some Hilbert space
H and a target Hamiltonian Htarget acting on a certain subspace1 H− ⊆ H. We represent
H− as the low-energy subspace of a suitable Hamiltonian H0 which has a large energy
gap � for all eigenvectors orthogonal to H−. We choose Hsim = H0 + V , where V is
a weak perturbation such that ‖V ‖ � �. We show that Htarget can be approximated by

1 We identify Htarget with a Hamiltonian acting on the subspace H− using a suitable encoding.
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Table 1. Perturbative reductions used in the proof of Theorem 1

TIM, degree-3 graph
TIM, general graph
Hard-core dimers, triangle-free graph
Hard-core bosons, range-2
Hard-core bosons, range-1
Hard-core bosons, range-1, controlled hopping
2-local stoquastic Hamiltonians

Each model is obtained as an effective low-energy Hamiltonian for the model located one row above. The
hard-core bosons (HCB) model describes a multi-particle quantum walk on a graph. The Hamiltonian consists
of a hopping term, on-site chemical potential, and arbitrary two-particle interactions. Different particles must
be separated from each other by a certain minimum distance that we call a range of the model. HCB is closely
related to the Bose–Hubbard model. The hard-core dimers model is analogous to HCB except that admissible
particle configuration must consist of nearest-neighbor pairs of particles that we call dimers. Different dimers
must be separated from each other by a certain minimum distance. A rigorous definition of the models is given
in Sect. 2

an effective low-energy Hamiltonian Heff acting on H− which is obtained from Hsim
using a few lowest orders of the perturbation theory,

Heff = V−− − V−+H
−1
0 V+− + V−+H

−1
0 V++H

−1
0 V+− + · · · .

Here V is considered as a 2 × 2 block matrix with the blocks labeled by ‘−’ and ‘+’
corresponding to the low-energy subspaceH− and the high-energy subspaceH+ ≡ H⊥−.
More precisely, Heff ≈ P−U (H0 + V )U †P−, where P− is the projector onto H− and
U is a unitary operator onH known as the Schrieffer–Wolff transformation, see Sect. 4.
The latter brings H0 + V into a block-diagonal form such that U (H0 + V )U † preserves
the subspace H−. We show that the low-lying eigenvalues and eigenvectors of Hsim
approximate the respective eigenvalues and eigenvectors of Htarget with an error that can
made arbitrarily small by choosing large enough �.

We apply the above step recursively several times such that the target Hamiltonian
at the t-th step becomes the simulator Hamiltonian at the (t + 1)-th step. The recursion
starts from the TIM with interactions of degree-3 at the highest energy scale, goes
through several intermediate models listed in Table 1, and arrives at a given 2-local or
(2, k)-stoquastic Hamiltonian at the lowest energy scale. Overall, the proof requires nine
different reductions.2

To simplify the analysis of recursive reductions we introduce a general definition of a
simulation that quantifies how close are two different models in terms of their low-lying
eigenvalues and eigenvectors. Our definition is shown to be stable under the composition
of simulations.

Let us informally sketch a reduction from TIM to hard-core dimer models. This
reduction provides an intuitive picture of how local stoquastic interactions can be gen-
erated perturbatively by a global transverse field and allows us to highlight the role of
other models from Table 1. We shall identify basis states of n qubits with configurations
of particles distributed over nodes (vertices) of some graph of size n. Each node can
be either empty (state 0) or occupied (state 1). Let nu = 0, 1 be the occupation num-
ber of a node u and Wu,v be the hopping operator |10〉〈01| + |01〉〈10| applied to nodes
u, v. The Hilbert space of the hard-core dimers (HCD) model is spanned by m-dimer

2 Some of our reductions are ‘trivial’ in the sense that they simply restrict a Hamiltonian to a certain
subspace. The proof contains only six ‘non-trivial’ reductions that actually change the Hamiltonian.
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Fig. 1. Examples of 2-dimer states on the square grid. Hopping operatorWu,v maps a 2-dimer state to another
2-dimer state

Fig. 2. Hopping term Wu,v generated perturbatively by a global transverse field V ∼ ∑n
i=1 Xi

states—configurations of 2m particles that consist of m well-separated particle pairs,
or dimers. Each dimer must occupy an adjacent pair of nodes. For technical reasons,
we require different dimers to be separated by at least three graph edges. Examples of
2-dimer states are shown on Fig. 1.

The HCD model has a Hamiltonian

H = Hdiag −
∑

1≤u<v≤n

Wu,v,

where Hdiag includes only diagonal terms nu and nunv . It is understood that H is
projected onto the subspace spanned by m-dimer states. Although H includes hopping
terms Wu,v between any pair of nodes, only local (next-to-nearest neighbor) hopping
terms may have a non-zero projection onto the m-dimer subspace, see Fig. 1. We shall
represent H as an effective low-energy Hamiltonian emerging from a TIM simulator
Hsim = H0 + V acting on n qubits, where H0 is a diagonal Hamiltonian chosen such
that its low-energy subspace H− is spanned by m-dimers. Such Hamiltonian can be
composed from terms nu and nunv , see Sect. 6. We choose the perturbation as V =
Hdiag+h

∑n
u=1 Xu . Then the first-order effectiveHamiltonian is Heff,1 = V−− = Hdiag

since Xu maps any dimer state to a non-dimer state which implies P−Xu P− = 0.
Consider now the second-order effective Hamiltonian Heff,2 = −V−+H

−1
0 V+−. The

term V+− can map a dimer {s, u} to a single particle, say {s}, by annihilating the particle
at u. In order to return to the m-dimer subspace, V−+ has to create a particle at some
node v which is a nearest-neighbor of s, see Fig. 2.

Thus Heff,2 maps a dimer {s, u} to a dimer {s, v} which is equivalent to applying the
hopping operator Wu,v . Note that the intermediate state created by V+− ”remembers”
location of the dimer {s, u} since one half of the dimer is still present in the intermediate
state. This is why a local hopping of dimers can emerge from the global transverse field
and this is the main reason why the chain of reductions in Table 1 starts from dimers
(rather than single particles hopping on a graph). We note that Heff,2 also contains some
unwanted diagonal terms. For example, an unwanted two-particle interaction nsnu would
be generated in the above example if V−+ creates a particle at u rather than at v. Such
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unwanted terms can be easily cancelled by properly modifying V since our simulator
Hamiltonian (TIM) can include two-particle interactions like nsnu . The main technical
difficulty in this and other reductions is ensuring that Heff does not include unwanted
interactions among three ormore particles such as nsnunt (such terms cannot be canceled
within the class TIM). For example, suppose V+− creates a particle at some node i
which does not belong to any dimer. In order to return to the m-dimer subspace, V−+
has to annihilate the particle at i . Such a process is capable of generating multi-particle
interactions through the intermediate state acted upon by H−1

0 . To avoid this problem,
we modify H0 such that configurations with 2m + 1 particles have much higher energy
than those with 2m − 1 particles. This ensures that V+− can only annihilate particles.

Hard-core bosons (HCB)models fromTable 1 describe particles hopping along edges
of a graph such that the total number of particles is fixed. Loosely speaking, each particle
of the HCB model is simulated by one dimer within the HCD model. Since the dimers
can only move locally, it should not be too surprising that HCD allows us to simulate
local hopping of particles on an arbitrary graph. HCB Hamiltonians may also contain
diagonal terms nu and nunv . In order to avoid multi-particle interactions generated
perturbatively, we have to consider several variations of HCB that differ by a range—
the minimum distance two particles can approach each other. Our reductions only use
HCBmodels with range r = 1 and r = 2. We also need an ”enhanced” HCBmodel that
includes controlled hopping terms such as nsWu,v .

To construct an HCB-simulator for a 2-local stoquastic Hamiltonian we use the dual-
rail encoding of each qubit such that logical states |0〉 and |1〉 are encoded by HCB
states |10〉 and |01〉 respectively. We construct simple gadgets that allow us to simulate
elementary stoquastic interactions such as

−X ⊗ |0〉〈 0|, −X ⊗ |1〉〈1|, −X ⊗ X ± Y ⊗ Y

by HCB Hamiltonians. For example, −X ⊗ |0〉〈0| has an HCB-simulator −W1,2 ⊗ n3,
where particles {1, 2} encode the first qubit and particles {3, 4} encode the second qubit.
We then show how to decompose any 2-local stoquastic Hamiltonian into the elementary
interactions and combine the corresponding gadgets into a single HCB simulator. The
main technical difficulty here is avoiding ”cross-talk” between different gadgets.

For almost all of our reductions the Hamiltonian H0 is diagonal in the standard
basis, so that all eigenvalues and eigenvectors of H0 can be easily computed. The only
exception is the reduction from TIM with interactions of degree-3 to a general TIM. For
this reduction we encode each qubit of the target model into the approximately two-fold
degenerate ground subspace of the one-dimensional TIM on a chain of a suitable length.
Accordingly, the Hamiltonian H0 describes a collection of one-dimensional TIMs. We
simulate the logical Ising interaction Zu Zv between some pair of logical qubits u, v by
applying the physical interaction Zi Z j to a properly chosen pair of qubits i ∈ Lu and
j ∈ Lv , where Lu is the chain encoding a logical qubit u. The logical transverse field
Xu is automatically generated due to the energy splitting between the ground states of
Lu . The analysis of this reduction exploits recent exact results on the form-factors of the
one-dimensional TIM [29].

We emphasize that the word “reduction” is used in two distinct senses. In the present
paper we speak of a perturbative reduction from a Hamiltonian Hsim to a Hamiltonian
Htarget when Htarget is the effective low-energy Hamiltonian derived from Hsim, fol-
lowing terminology in physics. However, if Htarget belongs to some particular class of
Hamiltonians T and Hsim belongs to some subclass S ⊆ T , this is a reduction from the
class T to the class S, according to terminology in computer science.
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Open problems. Our work raises several questions. First, we expect that Theorems 1
and 2 can be extended in a number of ways. For example, one may ask whether the
analogue of Theorem 1 holds for TIM Hamiltonians restricted to particular families of
graphs, such as planar graphs or regular lattices. We note that a simple modification of
our degree reduction method based on the one-dimensional TIM produces a simulator
Hamiltonian that can be embedded into the 3D lattice of dimensions n × n × 2 with
periodic boundary conditions.We expect that applying additional perturbative reductions
such as those described in Ref. [2] can further simplify the lattice. Likewise, we expect
that Theorem 2 can be extended to the case when H is a general k-local stoquastic
Hamiltonian by applying perturbative reductions of Ref. [8].

A challenging open question is whether TIM Hamiltonians defined on a 2D lattice
can realize the topological quantum order. It has been recently shown that the hard-core
bosons model defined on the kagome lattice has a topologically ordered ground state for
a certain range of parameters [30,31]. A preliminary analysis shows that the chain of
reductions from TIM to hard-core bosons described in the present paper can be modified
such that all intermediate Hamiltonians have geometrically local interactions. Assuming
that the unphysical polynomial scaling of interactions in the simulator Hamiltonian
can be avoided [27,32], this points towards existence of topologically ordered phases
described by TIM Hamiltonians.

Finally, a big open question is whether QA algorithms with TIM Hamiltonians can
be efficiently simulated classically. It has been recently shown that the general purpose
quantum Monte Carlo algorithms fail to simulate certain instances of the QA with TIM
efficiently [33], even though these instances have a non-negligible minimum spectral
gap. This leaves a possibility that some more specialized algorithms taking advantage of
the special structure of TIM Hamiltonians can succeed even though the general purpose
algorithm fails. Our results demonstrate that this is unlikely, since simulating the QA
with TIM is as hard as simulating the QAwith muchmore general (2, k)-local stoquastic
Hamiltonians.

The paper is organized as follows. Section 2 contains a rigorous definition of the
models listed in Table 1. Our main technical tools are introduced in Sects. 3 and 4 which
present a general definition of a simulation, describe perturbative reductions based on
the Schrieffer–Wolff transformation, and prove several technical lemmas used in the rest
of the paper. Section 5 shows how to simulate a general TIMHamiltonian using a special
case of TIMwith interactions of degree-3. Sections 6–11 describe a chain of perturbative
reductions between the models listed in Table 1. These reductions are combined together
in Sect. 12, which contains the proof of Theorems 1 and 2. Finally, Appendix A proves
certain bounds on eigenvalues and form-factors of the one-dimensional TIM, which are
used in Sect. 5.

2. Hard-core Bosons and Dimers

Consider a graph G = (U, E) with a set of n nodes U and a set of edges E . Define
a Hilbert space B ∼= (C2)⊗n with an orthonormal basis {|S〉 : S ⊆ U } such that
basis vectors are labeled by subsets of nodes S. We shall identify subsets of nodes with
configurations of particles that live at nodes of the graph. Each node can be either empty
or occupied by a single particle. For any node u ∈ U define a particle number operator
nu such that nu |S〉 = |S〉 if u ∈ S and nu |S〉 = 0 otherwise. We shall often consider
diagonal Hamiltonians of the following form:
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Hdiag =
∑

u∈U
μunu +

∑

{u,v}⊆U

ωu,vnunv. (2)

Here the second sum runs over all two-node subsets (not only nearest neighbors). The
coefficients μu and ωu,v can be viewed as a chemical potential and a two-particle inter-
action potential respectively.

Let us now define a hopping operator Wu,v . Here u, v ∈ U are arbitrary nodes such
that u �= v. By definition, Wu,v annihilates any state |S〉 in which both nodes u, v are
occupied or both nodes are empty. If one of the nodes u, v is occupied and the other
node is empty, Wu,v transfers a particle from u to v or vice verse. Matrix elements of
Wu,v in the chosen basis are

〈S′|Wu,v|S〉 =
⎧
⎨

⎩

1 if u ∈ S, v /∈ S, and S′ = (S \ u) ∪ v.

1 if v ∈ S, u /∈ S, and S′ = (S \ v) ∪ u,

0 otherwise.
(3)

Let m, r ≥ 1 be fixed integers. Define a subspace Bm ⊂ B spanned by all subsets
S ⊆ U with exactly m nodes. We shall refer to Bm as an m-particle sector. Obviously,
the operatorsWu,v and nu preserve Bm . A subset of nodes S is said to be r-sparse iff the
graph distance between any distinct pair of nodes u, v ∈ S is at least r . Define a subspace
Bm,r ⊆ Bm spanned by all r -sparse subsets S ⊆ U with exactly m nodes. By definition,
any subset of nodes is 1-sparse, so that Bm,1 = Bm . Note that the operators Wu,v

generally do not preserve Bm,r . Below we consider hopping operators Wu,v projected
onto the subspace Bm,r . Matrix elements of a projected hopping operator are defined by
Eq. (3), where S and S′ run over all r -sparse subsets of m nodes.

Our first model is called hard-core bosons (HCB). It is defined on the Hilbert space
Bm,r , where m and r are fixed parameters. We shall refer to r as the range of the model.
The Hamiltonian is

H = −
∑

(u,v)∈E
tu,vWu,v + Hdiag. (4)

Here Hdiag is defined by Eq. (2) and all operators are projected onto the subspace Bm,r .
Thus Wu,v moves a particle only if this does not violate the r -sparsity condition. Oth-
erwise Wu,v annihilates a state. The coefficients tu,v are hopping amplitudes. We shall
always assume that

tu,v ≥ 0

for all u, v. The coefficients μu and ωu,v in Hdiag may have arbitrary signs. Note that H
is a stoquastic Hamiltonian. Let HCBr (n,m, J ) be the set of Hamiltonians describing
the m-particle sector of range-r hard-core bosons on a graph with n nodes such that all
the coefficients μu, ωu,v, tu,v have magnitude at most J . Here the Hamiltonian can be
defined on any graph with n nodes. Our proof will only use HCB models with the range
r = 1, 2. Later on we shall define certain enhanced versions of the HCB which have
multi-particle interactions, see Sect. 8, and/or controlled hopping terms, see Sect. 10.
We note that the HCB model with non-positive hopping amplitudes tu,v ≤ 0 has been
recently studied by Childs, Gosset, and Webb [6] who showed that the corresponding
LHP is QMA-complete.

Our second model is called hard-core dimers. This model also depends on a graph
G = (U, E). We shall only consider triangle-free graphsG. Letm ≥ 1 be a fixed integer
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Table 2. Classes of Hamiltonians used in the proof of Theorem 1

TIM(n, J ) Transverse field Ising Model
HCD(n,m, J ) m-dimer sector of Hard-Core Dimers model
HCBr (n,m, J ) m-particle sector of Hard-Core Bosons with range r
HCB(n,m, J ) Same as HCB1(n,m, J )

HCB∗(n,m, J ) HCB(n,m, J ) with controlled hopping terms
StoqLH(n, J ) Stoquastic 2-Local Hamiltonians

Here J denotes the maximum interaction strength and n denotes the number of nodes in the graph (the number
of qubits). For those models that depend on a graph, the corresponding class is defined by taking the union
over all graphs with a fixed number of nodes n (all triangle-free graphs in the case of HCD). The class HCB∗
is formally defined in Sect. 10

parameter. A subset of nodes S ⊆ U is said to be a dimer iff S = {u, v} for some pair
of nodes u �= v such that (u, v) ∈ E . Define an m-dimer as a subset of nodes S ⊆ U
that can be represented as a disjoint union of m dimers S1, . . . , Sm such that the graph
distance between Si and S j is at least three for all i �= j . This particular choice of the
distance guarantees thatm-dimers can be represented as ground states of a suitable Ising
Hamiltonian provided that the graph is triangle-free, see Lemma 8 in Sect. 6.

Let Dm ⊆ B2m be the subspace spanned by all basis vectors |S〉 such that S ⊆ U
is an m-dimer. Note that the operators Wu,v generally do not preserve Dm . Below we
consider hopping operators Wu,v projected onto the subspace Dm . Matrix elements of a
projected hopping operator are defined by Eq. (3), where S and S′ run over allm-dimers.
The hard-core dimers (HCD) model has a Hilbert space Dm and a Hamiltonian

H = −t
∑

{u,v}⊆U

Wu,v + Hdiag (5)

where Hdiag is defined by Eq. (2) and all operators are projected onto the subspace Dm .
The sum in Eq. (5) runs over all pairs of nodes (not only nearest neighbors). Although the
Hamiltonian does not explicitly depend on the graph structure, the underlying Hilbert
space Dm does depends on the graph since the latter determines which subsets of nodes
are m-dimers. A hopping process induced by Wu,v can change a dimer {s, u} to some
other dimer {s, v} with u �= v, see Fig. 1. The coefficient t is a hopping amplitude. We
shall assume that t ≥ 0. Then H is a stoquastic Hamiltonian. Let HCD(n,m, J ) be
the set of Hamiltonians describing the m-dimer sector of hard-core dimers model on a
graph with n nodes such that all coefficients in H have magnitude at most J . Here the
Hamiltonian can be defined on any triangle-free graph with n nodes.

Some perturbative reductions described below will alter the underlying graph G.
Whenever the choice of G is not clear from the context, we shall use more detailed
notations Bm(G), Bm,r (G), andDm(G) instead of Bm , Bm,r , andDm . Our notations for
various classes of Hamiltonians are summarized in Table 2.

Finally, substituting Zu = I − 2nu into Eq. (1) one gets

H =
∑

u∈U
μunu +

∑

{u,v}⊆U

ωu,vnunv + hu Xu = Hdiag +
∑

u∈U
hu Xu, (6)

where U ≡ {1, . . . , n}, ωu,v = 4gu,v and μu = −2gu − 2
∑

v �=u gu,v . Here we ignore
the overall energy shift. Clearly, the coefficients ωu,v and μu have magnitude at most
O(nJ ). Below we shall work with TIM Hamiltonians as defined in Eq. (6).
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3. Simulation of Eigenvalues and Eigenvectors

In this section we give a formal definition of a simulation. It quantifies how close are two
differentmodels in terms of their low-energy properties such as the low-lying eigenvalues
and eigenvectors. We consider a target model described by a Hamiltonian H acting on
some N -dimensional Hilbert spaceH and a simulatormodel described by aHamiltonian
Hsim acting on some Hilbert space Hsim of dimension at least N . Our definition of a
simulation depends on a particular encoding transformationE : H → Hsim that embeds
H into some N -dimensional subspace ofHsim. We assume that E is an isometry, that is,
E†E = I . The encoding enables a comparison between eigenvectors of the two models.
We envision a situationwhen the spectrum of Hsim consists of twowell-separated groups
of eigenvalues such that the N smallest eigenvalues of Hsim are separated from the rest of
its spectrum by a large gap. Let LN (Hsim) ⊆ Hsim be the low-energy subspace spanned
by the eigenvectors of Hsim associated with its N smallest eigenvalues.

Definition 1. Let H be a Hamiltonian acting on a Hilbert space H of dimension N . A
Hamiltonian Hsim and an isometry (encoding) E : H → Hsim are said to simulate H
with an error (η, ε) if there exists an isometry Ẽ : H → Hsim such that

S1. The image of Ẽ coincides with the low-energy subspace LN (Hsim).
S2. ‖H − Ẽ†HsimẼ‖ ≤ ε.
S3. ‖E − Ẽ‖ ≤ η.

For example, supposeH = C
2 andHsim = C

2 ⊗C
2. Consider a target Hamiltonian

H = X and a simulator Hsim = X ⊗ X + �(Z ⊗ Z + I ), where � � 1. Assuming
that N = 2, the low-energy subspace of Hsim is spanned by |01〉 and |10〉. Consider a
dual-rail encoding of a qubit, E |0〉 = |10〉 and E |1〉 = |01〉. Then (Hsim, E) simulates
H with an error (0, 0). Indeed, choosing Ẽ = E one gets H = E†HsimE .

Although we do not impose any restrictions on the encoding, in practice it must be
sufficiently simple. For all our reductions (except for the one of Sect. 5) the encoding E
maps basis vectors to basis vectors. Whenever the choice of E is clear from the context,
we shall just say that Hsim simulates H with an error (η, ε). If one is interested only in
reproducing eigenvalues of the target Hamiltonian, the encoding and condition (S3) can
be ignored.

In the case of a zero error, ε = η = 0, the target Hamiltonian H coincides with
the restriction of Hsim onto the low-energy subspace of Hsim, up to a change of basis
described by E . Clearly, any Hamiltonian simulates itself with a zero error since one
can choose E = Ẽ = I . We shall always assume that ε ≤ ‖H‖ since otherwise the
definition is meaningless (one can choose Hsim = 0 regardless of H ). Note that ε has
the dimension of energy while η is dimensionless. Loosely speaking, ε and η quantify
simulation error for eigenvalues and eigenvectors respectively. Let us establish some
basic properties of simulations.

Lemma 1 (Eigenvalue simulation). Suppose (Hsim, E) simulates H with an error (η, ε).
Then the i-th smallest eigenvalues of Hsim and H differ at most by ε for all 1 ≤ i ≤ N.

Proof. Property (S1) implies that the spectrum of Ẽ†HsimẼ coincides with N small-
est eigenvalues of Hsim. The lemma now follows from (S2) and the standard Weyl’s
inequality. ��
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Lemma 2 (Ground state simulation). Suppose H has a non-degenerate ground state |g〉
separated from excited states by a spectral gap δ. Suppose (Hsim, E) simulates H with
an error (η, ε) such that 2ε < δ. Then Hsim has a non-degenerate ground state |gsim〉
and

‖E |g〉 − |gsim〉‖ ≤ η + O(δ−1ε). (7)

Proof. Let |gsim〉 be the ground state of Hsim. Note that |gsim〉 is non-degenerate due
to Lemma 1 and the assumption 2ε < δ. Consider an unperturbed Hamiltonian H and
a perturbation V = Ẽ†HsimẼ − H . The perturbed Hamiltonian H + V = Ẽ†HsimẼ
has a non-degenerate ground state Ẽ†|gsim〉. Using the first-order perturbation theory
for eigenvectors one gets ‖|g〉 − Ẽ†|gsim〉‖ ≤ O(δ−1ε) and thus ‖Ẽ |g〉 − |gsim〉‖ =
‖Ẽ |g〉 − Ẽ Ẽ†|gsim〉‖ ≤ O(δ−1ε). Here we used the fact that Ẽ is an isometry and
|gsim〉 ∈ LN (Hsim) = Im(Ẽ). Property (S3) then leads to Eq. (7). ��
Importantly, our definition of a simulation is stable under compositions: if one is given
some Hamiltonians H, H1, H2 such that H1 simulates H with a small error and H2
simulates H1 with a small error, this implies that H2 simulates H with a small error.

Lemma 3 (Composition). Suppose (H1, E1) simulates H with an error (η1, ε1) and
(H2, E2) simulates H1 with an error (η2, ε2). Let �1 be the spectral gap separating
N smallest eigenvalues of H1 from the rest of the spectrum. Suppose 2ε2 < �1 and
ε1, ε2 ≤ ‖H‖. Then (H2, E2E1) simulates H with an error (η, ε), where

η = η1 + η2 + O(ε2�
−1
1 ) and ε = ε1 + ε2 + O(ε2�

−1
1 ‖H‖). (8)

We shall always choose the simulator such that �1 � ‖H‖ in which case ε ≈ ε1 + ε2.

Proof. Suppose H, H1, H2 act on Hilbert spaces H,H1,H2 respectively. Let N =
dim (H) and N1 = dim (H1). By Lemma 1, the N smallest eigenvalues of H2 are
separated from the rest of the spectrum by a spectral gap at least �1 − 2ε2 > 0. Thus
the low-energy subspace LN (H2) is well defined. Let Ẽ2 : H1 → H2 be an isometry
satisfying properties (S1–S3) for a simulator (H2, E2) and a target Hamiltonian H1 with
an error (η2, ε2). By definition, Ẽ2 mapsH1 to the low-energy subspace LN1(H2). First,
let us show that Ẽ2 approximately maps LN (H1) to LN (H2). More precisely, we claim
that there exists a unitary operator U : LN1(H2) → LN1(H2) such that

LN (H2) = U Ẽ2 · LN (H1) and ‖U − I‖ ≤ 2
√
2�−1

1 ε2. (9)

Indeed, let PN (Hi ) be the projector onto the low-energy subspace LN (Hi ), where i =
1, 2. Consider a perturbation V = Ẽ†

2H2Ẽ2−H1. Note thatLN (H1 +V ) = Ẽ†
2 ·LN (H2).

ApplyingLemma3.1 ofRef. [28]with anunperturbedHamiltonian H1 and a perturbation
V one gets

‖PN (H1) − Ẽ†
2 PN (H2)Ẽ2‖ ≤ 2‖Ẽ†

2H2Ẽ2 − H1‖
�1

≤ 2ε2
�1

. (10)

Taking into account that LN (H2) ⊆ LN1(H2) = Im(Ẽ2) one gets

‖Ẽ2PN (H1)Ẽ†
2 − PN (H2)‖ = ‖PN (H1) − Ẽ†

2 PN (H2)Ẽ2‖
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and thus

‖Ẽ2PN (H1)Ẽ†
2 − PN (H2)‖ ≤ 2ε2

�1
. (11)

For brevity denote

P ≡ Ẽ2PN (H1)Ẽ†
2 and Q ≡ PN (H2).

By Jordan’s lemma, there exists an orthonormal basis such that the projectors P and Q
are block-diagonal in this basis with all blocks being either 1 × 1 or 2 × 2 projectors.
Assuming that 2�−1

1 ε2 < 1 one has ‖P − Q‖ < 1 which implies that all 1 × 1 blocks
of P and Q are the same. Consider some 2 × 2 block. Without loss of generality, the
restrictions of P and Q onto this block have a form

P =
[
1 0
0 0

]
and Q =

[
c2 cs
cs s2

]

for some 0 ≤ c, s ≤ 1 such that c2 + s2 = 1. Then P − Q = s2Z − csX and thus
‖P − Q‖ = s. We conclude that s ≤ 2�−1

1 ε2 for any 2 × 2 block. Define a unitary

U =
[
c −s
s c

]
= cI − isY

such thatU PU † = Q. Note that ‖U − I‖ = |c−1+ is| ≤ √
2s. ExtendingU to the full

spaceLN1(H2)we obtain Im(Q) = U · Im(P) and ‖U − I‖ ≤ √
2s which is equivalent

to Eq. (9).
Now we are ready to prove that (H2, E2E1) simulates H with a small error. Define

an isometry

Ẽ = U Ẽ2Ẽ1.

Using the first part of Eq. (9) and the fact that Ẽ1 maps H to the low-energy subspace
LN (H1)we conclude that Ẽ mapsH to the low-energy subspaceLN (H2). Thus Ẽ obeys
property (S1) for the target Hamiltonian H and the simulator (H2, E2E1). Furthermore,
the second part of Eq. (9) implies that

η ≡ ‖Ẽ − E2E1‖ ≤ ‖U − I‖ + ‖Ẽ2 − E2‖ + ‖Ẽ1 − E1‖ ≤ 2
√
2�−1

1 ε2 + η2 + η1.

Finally, let H (N )
i = Hi PN (Hi ) be the restriction of Hi onto the low-energy subspace

LN (Hi ). Note that H1Ẽ1 = H (N )
1 Ẽ1 and H2U Ẽ2Ẽ1 = H (N )

2 U Ẽ2Ẽ1. Thus

‖H − Ẽ†H2Ẽ‖ ≤ ‖H − Ẽ†
1H1Ẽ1‖ + ‖Ẽ†

1 (H (N )
1 − Ẽ†

2U
†H (N )

2 U Ẽ2)Ẽ1‖.
The first term is upper bounded by ε1. Thus

‖H − Ẽ†H2Ẽ‖ ≤ ε1 + ‖U Ẽ2H (N )
1 − H (N )

2 U Ẽ2‖.
To bound the second term we write U = I + M and note that

U Ẽ2H (N )
1 − H (N )

2 U Ẽ2 = PN (H2)(U Ẽ2H1 − H2U Ẽ2)PN (H1)

= PN (H2)(Ẽ2H1 − H2Ẽ2)PN (H1) + PN (H2)M Ẽ2H (N )
1

−H (N )
2 M Ẽ2PN (H1).
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The norm of the first term is upper bounded by

‖Ẽ2H1 − H2Ẽ2‖ ≤ ‖H1 − Ẽ†
2H2Ẽ2‖ ≤ ε2.

Thus

‖H − Ẽ†H2Ẽ‖ ≤ ε1 + ε2 + ‖U − I‖ · ‖H (N )
1 ‖ + ‖U − I‖ · ‖H (N )

2 ‖.

Lemma 1 implies that ‖H (N )
2 ‖ ≤ ‖H (N )

1 ‖ + ε2 and ‖H (N )
1 ‖ ≤ ‖H‖ + ε1. Combining

this and the second part of Eq. (9) one arrives at

‖H − Ẽ†H2Ẽ‖ ≤ ε1 + ε2 + O(�−1
1 ε2‖H‖) + O(�−1

1 (ε22 + ε1ε2)).

Since we assumed that ε1, ε2 ≤ ‖H‖, the last term is at most O(�−1
1 ε2‖H‖). ��

4. Schrieffer–Wolff Transformation and Perturbative Reductions

Let H be a target Hamiltonian chosen from some particular class of Hamiltonians C.
Suppose our goal is to simulate H with a small error according to Definition 1 using
a simulator Hamiltonian Hsim which is required to be a member of some smaller class
C′ ⊂ C. Perturbative reductions [2,22] provide a general method of accomplishing such
simulation. Here we describe perturbative reductions based on the Schrieffer–Wolff
transformation [26], see for instance [28] and the references therein. Also we provide
sufficient conditions under which a k-th order reduction achieves the desired simulation
error for k = 1, 2, 3, see Lemmas 4–7.

Consider a finite-dimensional Hilbert space Hsim decomposed into a direct sum

Hsim = H− ⊕ H+. (12)

Let N± = dim (H±) and P± be the projector onto H± such that P− + P+ = I . Let O
be any linear operator on Hsim. We shall write

O−− = P−OP−, O−+ = P−OP+, O+− = P+OP−, O++ = P+OP+.

The operator is said to be block diagonal if O−+ = 0 and O+− = 0. The operator is said
to be block off-diagonal if O−− = 0 and O++ = 0.

Let H0 and V be hermitian operators on Hsim such that H0 is block-diagonal,
(H0)−− = 0, and such that (H0)++ has all eigenvalues greater or equal to one. Consider
a perturbed Hamiltonian

Hsim = �H0 + V, (13)

where � is a large parameter. We shall always assume that

‖V ‖ < �/2. (14)

The Schrieffer–Wolff transformation is a unitary operator onHsim defined as eS , where
S is an anti-hermitian operator satisfying

(eSHsime
−S)−+ = 0, (eSHsime

−S)+− = 0, S−− = 0, S++ = 0, ‖S‖ < π/2.

(15)
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In otherwords,we require that the transformedHamiltonian eSHsime−S is block diagonal
whereas S itself is block off-diagonal. It is known that Eq. (15) has a unique solution
S, see Lemma 2.3 and Lemma 3.1 in [28]. In particular, S = 0 if V = 0. The effective
low-energy Hamiltonian Heff is a hermitian operator acting on H− defined as

Heff = (eSHsime
−S)−−.

Note that Heff = 0 if V = 0. Since the operator eS is unitary and the transformed
Hamiltonian eSHsime−s is block-diagonal, each eigenvalue of Heff must be an eigenvalue
of Hsim. It is known that the i-th smallest eigenvalues of Heff and Hsim coincide for all
1 ≤ i ≤ N−, see [28] for details.

Consider now the Taylor series S = ∑∞
j=1 S j and Heff = ∑∞

j=1 Heff, j , where S j
and Heff, j are the Taylor coefficients proportional to the j-th power of V . We shall only
need the Taylor coefficients

Heff,1 = V−−, (16)

Heff,2 = −�−1 V−+H
−1
0 V+− (17)

and

Heff,3 = �−2 V−+H
−1
0 V++H

−1
0 V+− − �−2

2

(
V−+H

−2
0 V+−V−− + h.c.

)
, (18)

see Section 3.2 of [28] for the derivation. Note that the restriction of H−1
0 to the subspace

H+ is well-defined since all eigenvalues of (H0)++ are at least one. It is known that
the series for S and Heff converge absolutely for ‖V ‖ < �/16 and the j-th Taylor
coefficients are bounded as

‖S j‖ ≤ (b�)− j‖V ‖ j and ‖Heff, j‖ ≤ (c�)1− j‖V ‖ j (19)

for some constant coefficients b, c > 0, see Lemma 3.4 in [28]. Define the k-th order
effective Hamiltonian as the truncated series

Heff(k) =
k∑

j=1

Heff, j . (20)

The above implies that for any k = O(1) and ‖V ‖ < � · min {b, c} one has

‖S‖ ≤
∞∑

j=1

(b�)− j‖V ‖ j = O(�−1‖V ‖) (21)

and

‖Heff − Heff(k)‖ ≤
∞∑

j=k+1

(c�)1− j‖V ‖ j = O(�−k‖V ‖k+1). (22)

Suppose now that Htarget is a fixed target Hamiltonian acting on some Hilbert space
Htarget and E : Htarget → Hsim is some fixed isometry (encoding) such that Im(E) =
H−. Define a logical target Hamiltonian acting on H− as

H target = EHtargetE†. (23)
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The goal of perturbative reductions is to approximate H target by the effective low-energy
Hamiltonian Heff(k) emerging from the simulator Hamiltonian Hsim defined in Eq. (13),
where the parameter � controls the approximation error. Below we outline a general
strategy for constructing the simulator Hamiltonian proposed by Oliveira and Terhal [2].
The strategy depends on the order k of a reduction.

For first-order reductions one just needs to choose V such that H target = (V )−−, see
Eq. (16). For second-order reductions the perturbation V will be chosen as

V = �1/2 Vmain + Vextra, (24)

where (Vmain)−− = 0 and Vextra is block-diagonal. Both operators Vmain and Vextra are
independent of �. Substituting V into Eqs. (16, 17) gives

Heff,1 = (Vextra)−− and Heff,2 = −(Vmain)−+H
−1
0 (Vmain)+−. (25)

We shall choose Vmain such that Heff,2 generates the desired logical target Hamiltonian
and, may be, some unwanted terms. The purpose of Vextra is to cancel the unwanted
terms. In addition, Vextra may include all the terms of the target Hamiltonian that are
members of the simulator class, such as two-qubit diagonal interactions. Note that the
latter belong to all the classes listed in Table 2. Most of the second-order reductions
described below will achieve an exact equality Heff,2 = H target.

For third-order reductions the perturbation V will be chosen as

V = �2/3Vmain + �1/3Ṽextra + Vextra, (26)

where (Vmain)−− = 0, and Vextra, Ṽextra are block-diagonal. All operators Vmain, Vextra,
and Ṽextra are independent of �. Substituting V into Eqs. (16–18) gives

Heff,1 = �1/3(Ṽextra)−− + (Vextra)−−, Heff,2 = −�1/3(Vmain)−+H
−1
0 (Vmain)+−,

(27)

and

Heff,3 = (Vmain)−+H
−1
0 (Vmain)++H

−1
0 (Vmain)+− + O(�−1/3‖Ṽextra‖ · ‖Vmain‖2).

(28)

We shall choose � large enough so that the last term in Eq. (28) can be neglected. We
shall chose Vmain such that Heff,3 generates the desired logical target Hamiltonian and,
may be, some unwanted terms. The purpose of Vextra is to cancel the unwanted terms.
In addition, Vextra may include all the terms of the target Hamiltonian that are members
of the simulator class. Finally, the purpose of Ṽextra is to cancel the second-order term
Heff,2. Accordingly, we shall always choose Ṽextra such that

(Ṽextra)−− = (Vmain)−+H
−1
0 (Vmain)+−. (29)

Our proofwill onlyuse reductions of theorder k = 1, 2, 3.The following lemmasprovide
sufficient conditions under which a k-th order reduction achieves a desired simulation
error. Recall that our definition of a simulation depends on a particular encoding E , see
Definition 1. The lemmas stated below apply to any fixed encoding E and the logical
target Hamiltonian defined by Eq. (23). In Lemmas 4–6 we assume that H0 is block-
diagonal, (H0)−− = 0, and (H0)++ has all eigenvalues greater or equal to 1.
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Lemma 4 (First-order reduction). Suppose one can choose H0, V such that

‖H target − (V )−−‖ ≤ ε/2. (30)

Then Hsim = �H0 + V simulates Htarget with an error (η, ε), provided that � ≥
O(ε−1‖V ‖2 + η−1‖V ‖).
Proof. Let E : Htarget → Hsim be the chosen encoding. Recall that Im(E) = H−.
Let us check that Ẽ = e−SE satisfies conditions (S1–S3) of Definition 1. By definition
of the Schrieffer–Wolff transformation, e−S maps H− to the low-energy subspace of
Hsim. Thus Ẽ mapsHtarget to the low-energy subspace of Hsim which proves (S1). From
Eq. (22) one infers that ‖Heff − Heff,1‖ ≤ O(�−1‖V ‖2) ≤ ε/2. Combining this and
Eq. (30) gives ‖H target − Heff‖ ≤ ε and thus ‖Htarget − E†HeffE‖ ≤ ε. Substituting
Heff = (eSHsime−S)−− one gets ‖Htarget− Ẽ†HsimẼ‖ ≤ ε which proves condition (S2).
Finally, Eq. (21) leads to ‖E − Ẽ‖ = ‖I − e−S‖ = O(‖S‖) = O(�−1‖V ‖) ≤ η. This
proves condition (S3). ��
Lemma 5 (Second-order reduction). Suppose one can choose H0, Vmain, Vextra such that
Vextra is block-diagonal, (Vmain)−− = 0, and

‖H target − (Vextra)−− + (Vmain)−+H
−1
0 (Vmain)+−‖ ≤ ε/2. (31)

Suppose the norm of Vmain, Vextra is at most 	. Then Hsim = �H0 +�1/2Vmain + Vextra
simulates Htarget with an error (η, ε) provided that � ≥ O(ε−2	6 + η−2	2).

Proof. Let V = �1/2Vmain+Vextra. By assumption, V has norm O(�1/2	). Substituting
this into Eq. (22) gives ‖Heff − Heff(2)‖ ≤ O(�−2‖V ‖3) = O(�−1/2	3) ≤ ε/2.
From Eqs. (25, 31) one gets ‖H target − Heff(2)‖ ≤ ε/2 which gives ‖Heff − H target‖ ≤
ε. Finally, Eq. (21) leads to ‖E − Ẽ‖ = ‖I − e−S‖ = O(‖S‖) = O(�−1‖V ‖) =
O(�−1/2	) ≤ η. The rest of the proof is identical to the one of Lemma 4. ��
Lemma 6 (Third-order reduction). Suppose one can choose H0, Vmain, Vextra, Ṽextra
such that Vextra, Ṽextra are block-diagonal, (Vmain)−− = 0,

‖H target − (Vextra)−− − (Vmain)−+H
−1
0 (Vmain)++H

−1
0 (Vmain)+−‖ ≤ ε/2, (32)

and

(Ṽextra)−− = (Vmain)−+H
−1
0 (Vmain)+−. (33)

Suppose the norm of Vmain, Vextra, Ṽextra is at most 	. Then Hsim = �H0 +�2/3Vmain +
�1/3Ṽextra +Vextra simulates Htarget with an error (η, ε) provided that � ≥ O(ε−3	12 +
η−3	3).

Proof. Let V = �2/3Vmain+�1/3Ṽextra +Vextra. By assumption, V has norm O(�2/3	).
Substituting this intoEq. (22) gives‖Heff−Heff(3)‖ ≤ O(�−3‖V ‖4) = O(�−1/3	4) ≤
ε/4. Combining Eqs. (27, 28) and Eqs. (32, 33) one gets

‖H target − Heff (3)‖ ≤ ε/4 + O(�−1/3‖Ṽextra‖ · ‖Vmain‖2) = ε/4 + O(�−1/3	3) ≤ ε/2.

This gives ‖Heff − H target‖ ≤ ε. Finally, Eq. (21) leads to ‖E − Ẽ‖ = ‖I − e−S‖ =
O(‖S‖) = O(�−1‖V ‖) = O(�−1/3	) ≤ η. The rest of the proof is identical to the
one of Lemma 4. ��
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The above framework covers all our reductions except for the one described in Sect. 5,
namely, the reduction from TIM on degree-3 graphs to TIM on general graphs. The latter
is a first-order reduction where the Hamiltonian H0 is chosen as the one-dimensional
TIM. In this case H0 has only approximately degenerate ground subspace, (H0)−− �= 0,
and the rules Eqs. (16–18) for computing the effective Hamiltonian no longer apply. The
following is a simple generalization of Lemma 4.

Lemma 7 (Generalized first-order reduction). Suppose one can choose H0, V such that
H0 is block-diagonal, (H0)++ has all eigenvalues at least �, and (H0)−− has all eigen-
values in the interval [−�/2,�/2]. Suppose also that

‖H target − (H0)−− − (V )−−‖ ≤ ε/2. (34)

Then Hsim = H0+V simulates Htarget withan error (η, ε)provided that� ≥ O(ε−1‖V ‖2+
η−1‖V ‖).
Proof. We can use the same arguments as in the proof of Lemma 4 except that now Heff
has a 0-th order term Heff,0 = (H0)−−. By assumption, the unperturbed Hamiltonian
H0 has an energy gap at least �/2 separating H− and H+. Lemma 3.4 of Ref. [28]
implies that the series for S and Heff converges absolutely for ‖V ‖ < �/32 and the
Taylor coefficients S j and Heff, j are bounded as in Eqs. (21, 22). Therefore ‖Heff −
Heff,0 − Heff,1‖ ≤ O(�−1‖V ‖2) and ‖S‖ ≤ O(�−1‖V ‖). The rest of the proof is the
same as in Lemma 4. ��

5. Reduction from Degree-3 Graphs to General Graphs

Consider a target Hamiltonian Htarget describing the TIM on n qubits. We assume that
each qubit can be coupled to any other qubit with Z Z interactions. Below we show how
to simulate Htarget using TIMwith interactions of degree 3. Let us first informally sketch
the main idea.We shall encode each qubit u of the target model into the ground subspace
of a TIM Hamiltonian on a one-dimensional chain Lu of some length m. The chain will
be in the ferromagnetic phase such that the ground statesψ0 andψ1 originating from the
two different Z2-symmetry sectors are approximately degenerate forming one logical
qubit. The basis states of the logical qubit will be defined as |0〉 ∼ |ψ0〉 + |ψ1〉 and
|1〉 ∼ |ψ0〉 − |ψ1〉. Important parameters of the logical qubit are the energy splitting
δ between ψ0 and ψ1 and the energy gap � separating ψ0, ψ1 from excited states. We
shall work in the regime δ ≥ poly(1/m) and �/δ ≥ poly(m) which can be achieved if
the chain is sufficiently close to the quantum phase transition point. The logical Pauli
operator Xu will be simulated by the energy splitting between ψ0 and ψ1. The logical
Pauli operator Zu will be simulated by applying a magnetic field hZi to an arbitrarily
chosen qubit i ∈ Lu . The strength of the field h will be much smaller than the gap �

to enable a perturbative analysis. We shall only need the first-order perturbation theory.
Since the one-dimensional TIM is exactly solvable, all parameters of the logical qubit
will be efficiently computable. Assuming that the targetmodel has n qubits, the simulator
model will be composed of n chains L1, . . . , Ln of length m each. We can simulate a
logical interaction Zu Zv by choosing an arbitrary pair of qubits i ∈ Lu , j ∈ Lv and
applying the Ising interaction Zi Z j . Since each logical qubit Lu is coupled to at most
n−1 other logical qubits, choosingm ≥ n−1 guarantees that each qubit of Lu is coupled
to at most one qubit from a different chain. In addition, each qubit of Lu must be coupled
to its left and right neighbors in Lu . Thus the simulator model has interactions of degree
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3. A logical transverse field Xu is automatically simulated due to the ground state energy
splitting of Lu . Thereby, we shall be able to simulate any logical TIM Hamiltonian.

Let us now describe the reduction formally. For the sake of clarity, we begin by
constructing a single logical qubit. Consider a chain ofm qubits with periodic boundary
conditions. Qubits will be labeled by elements of the cyclic group j ∈ Zm . Consider a
TIM Hamiltonian

Hchain = −g
∑

j∈Zm

Z j Z j+1 −
∑

j∈Zm

X j , (35)

where

g = 1 +
c log (m)

m
(36)

for some parameter c � 1 to be chosen later. The Hamiltonian Hchain can be diagonal-
ized via the Jordan–Wigner transformation and all its eigenvalues have been explicitly
computed [14]. Let the three smallest eigenvalues of Hchain be E0 ≤ E1 ≤ E2. We shall
use the following well-known fact [29,34].

Fact 1. Let ωm = e2π i/m be the m-th root of unity. For any g > 1 one has

E0 = −
∑

j∈Zm

|g − ω
j+1/2
m |, E1 = −

∑

j∈Zm

|g − ω
j
m |, E2 = E0 + 4|g − ω

1/2
m |.

(37)

Furthermore, the eigenvalues E0, E1 have multiplicity one and the corresponding eigen-
vectors ψ0, ψ1 satisfy X⊗mψ0 = ψ0 and X⊗mψ1 = −ψ1.

LetH = (C2)⊗m be the full Hilbert space of n qubits. Define an encoding E : C
2 → H

as

E |0〉 ≡ |0〉 = (|ψ0〉 + |ψ1〉)/
√
2 and E |1〉 ≡ |1〉 = (|ψ0〉 − |ψ1〉)/

√
2.

(38)

Thus we identify the states ψ0 and ψ1 with the states |+〉 and |−〉 of the logical qubit.
Decompose H = H− ⊕ H+, where H− is the logical subspace spanned by ψ0, ψ1 and
H+ is the orthogonal complement ofH−. Then Hchain is block-diagonal. Performing the
overall energy shift by (E0 + E1)/2 we arrive at

(Hchain)−− = −δX and (Hchain)++ ≥ �I, (39)

where X = EXE† = |ψ0〉〈ψ0| − |ψ1〉〈ψ1| is the logical Pauli X operator,

δ = (E1 − E0)/2 and � = 4|g − ω
1/2
m | − δ.

Note that δ and � can be computed in time poly(m) using Eq. (37). In Appendix A we
prove that

�(m−c−3/2) ≤ δ ≤ O(m−c−1/2) (40)

in the limit m → ∞. Therefore

� ≥ 4c log (m)

m
− O(m−1) − O(m−c−1/2) ≥ �(m−1). (41)
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By choosing the constant c sufficiently large we can make the ratio �/δ bigger than any
fixed polynomial of m and, at the same time, keep δ at least polynomial in 1/m.

Consider now a perturbation V = hZ j , where |h| � � and j ∈ Zm is an arbi-
trarily chosen qubit. The first-order effective Hamiltonian acting on H− is h(Z j )−−.
To compute (Z j )−− we need to know matrix elements 〈ψα|Z j |ψβ〉 for α, β = 0, 1.
Note that Z j anti-commutes with X⊗m . Using Fact 1 we infer that 〈ψ0|Z j |ψ0〉 = 0 and
〈ψ1|Z j |ψ1〉 = 0. Therefore (Z j )−− must be a linear combination of the logical Pauli
operators Z and Y . Since Hchain has real matrix elements in the standard basis, the same
is true for the restrictions of Hchain onto the sectors X⊗m = ±1. Therefore ψ0 and ψ1
must have real amplitudes in the standard basis. This shows that 〈ψ0|Z j |ψ1〉 must be
real and thus

(Z j )−− = ξ Z , where ξ ≡ 〈ψ1|Z j |ψ0〉 (42)

and Z = EZE† = |ψ0〉〈ψ1| + |ψ1〉〈ψ0| is the logical Pauli Z operator. It can be easily
shown that ξ does not depend on the choice of j . We shall need the following expression
for ξ computed in Ref. [29], see Eq. (77) therein.

Fact 2. Suppose g > 1. Let εp ≡ |g − ω
p
m |, where p is either integer or half-integer.

Then

|ξ | = (1 − g−2)1/8
∏

p∈Zm

∏
q∈Zm+1/2(εp + εq)

1/4

∏
p,p′∈Zm

(εp + εp′)1/8
∏

q,q ′∈Zm+1/2(εq + εq ′)1/8
(43)

Furthermore, in Appendix A we prove that ξ is positive and

ξ ≥ (1 − g−2)1/8 ≥ �(m−1/8) (44)

for all m ≥ 2 and for all g > 1. Note that ξ can be computed in time poly(m) using
Eq. (43). We can now simulate any target Hamiltonian on a single qubit which has a
form

Htarget = −hx X + hz Z , hx ≥ 0. (45)

Let J = max (|hz|, hx ) be the interaction strength of Htarget. Choose the simulator
Hamiltonian as

Hsim = H0 + V, H0 = hxδ−1Hchain, V = hzξ−1Z j . (46)

Here j ∈ Zm is an arbitrary qubit. From Eqs. (39, 42) we infer that the first-order
effective Hamiltonian acting on H− is

Heff(1) = (Hsim)−− = hxδ−1(Hchain)−− + hzξ−1(Z j )−− = −hx X + hz Z = H target.

Note that H0 has an energy gap �′ = hx�δ−1 separating H− and H+. By Lemma 7,
the Hamiltonian Hsim and the encoding E simulate Htarget with an error (η, ε) provided
that �′ ≥ poly(hzξ−1, ε−1, η−1) for some constant degree polynomial. We can assume
without loss of generality that hx ≥ ε/2 since we only need to approximate the target
Hamiltonian with an error ε/2, see Lemma 7. Then �′ ≥ �(εm−1δ−1). Here we used
the bound � = �(m−1), see Eq. (41). Since |hz | ≤ J , we have to satisfy δ−1 ≥
poly(m, J, ξ−1, ε−1, η−1). Since ξ−1 = O(m1/8), see Eq. (44), this is equivalent to
δ−1 ≥ poly(m, J, ε−1, η−1). This can always be achieved by choosing a large enough
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constant c in Eq. (36) since δ−1 = �(mc+3/2), see Eq. (40). Finally, we express δ−1

in terms of the interaction strength J ′ of the simulator Hamiltonian. From Eq. (46) one
gets J ′ = O(hxδ−1) and thus we can achieve a simulation error (η, ε) by choosing
J ′ = poly(m, J, ε−1, η−1).

Consider now a target Hamiltonian on n qubits which has a form

Htarget =
∑

0≤u<v≤n−1

ωu,vZu Zv +
n−1∑

u=0

hzu Zu − hxu Xu . (47)

Without loss of generality hxu ≥ 0 (otherwise, conjugate the Hamiltonian by Zu). We

shall encode each qubit u into a chain Lu of length m = n as defined above. Let H (u)
chain

be the Hamiltonian Eq. (35) describing the chain Lu . We shall arrange the chains into
a square grid of size n × n such that a cell (u, i) of the grid represents the i-th qubit of
the chain Lu . Here 0 ≤ u, i ≤ n − 1. All chains use the same parameter g. Choose the
simulator Hamiltonian as

Hsim = H0 + V, H0 = δ−1
n−1∑

u=0

hxu H
(u)
chain, (48)

V = ξ−2
∑

0≤u<v≤n−1

ωu,vZ(u,v)Z(v,u) + ξ−1
n−1∑

u=0

hzu Z(u,0). (49)

Note that Hsim is a TIM Hamiltonian acting on n2 qubits and such that each qubit is
coupled to at most three other qubits with Z Z interactions. Namely, a qubit (u, v) is
coupled only to the qubits (u, v ± 1) and (v, u). LetH− be the n-fold tensor product of
the two-dimensional logical subspaces describing each chain Lu . The above analysis for
a single logical qubit shows that (H (u)

chain)−− = −δXu and (Z(u,v))−− = ξ Zu for any
qubit v in the chain Lu . Therefore the first-order effective Hamiltonian acting onH− is

Heff(1) = (Hsim)−− =
∑

0≤u<v≤n−1

ωu,vZu Zv +
n−1∑

u=0

hzu Zu − hxu Xu = H target, (50)

where the encoding E is the n-fold tensor product of single qubit encodings defined in
Eq. (38).

Let (η, ε) be the desired simulation error and J be the maximum magnitude of the
coefficients in Htarget. We can assume without loss of generality that hxu ≥ ε/2n for all
u. Then the energy gap of H0 separating H− from excited states is �′ ≥ εδ−1�/2n,
where � is the energy gap of a single chain, see Eq. (39). By Lemma 7, the Hamil-
tonian Hsim and the encoding E simulate Htarget with an error (η, ε) provided that
�′ ≥ poly(n, J, ε−1, η−1). This is equivalent to δ−1 ≥ poly(n, J, ε−1, η−1) (use the
same bounds as above), which can always be satisfied by choosing a large enough
constant c in Eq. (36). Then the simulator Hamiltonian has interaction strength J ′ =
O(δ−1 J ) = poly(n, J, ε−1, η−1).

To conclude, we have shown that any Hamiltonian Htarget ∈ TIM(n, J ) can be
simulated with an error (η, ε) by a Hamiltonian Hsim ∈ TIM(n2, J ′) such that J ′ =
poly(n, J, ε−1, η−1) and Hsim has interaction degree 3. The simulation uses the encod-
ing E defined in Eq. (38). Furthermore, the coefficients of Hsim can be computed in time
poly(n).
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6. Reduction from TIM to Dimers

In this section we construct a TIM simulator for the hard-core dimer model. It involves a
composition of a first-order and a second-order reduction. First let us construct a classical
Ising Hamiltonian H0 composed of terms proportional to nu and nunv such that ground
states of H0 arem-dimers. Consider a graph G = (U, E)with n nodes. Define operators

NU =
∑

u∈U
nu and NE =

∑

(u,v)∈E
nunv. (51)

These operators act on the full Hilbert space B ∼= (C2)⊗n . Define

H0 = NU − 2NE + �
∑

D(u,v)=2

nunv, � > 2|E |. (52)

Here D(u, v) denotes the graph distance between nodes u, v. Note that H0 is a TIM
Hamiltonian (with a zero transverse field).

Lemma 8. The Hamiltonian H0 has zero ground state energy and its ground subspace is
spanned by m-dimers with 0 ≤ m ≤ n/2. Furthermore, if S is an m-dimer and T = S\u
for some u ∈ S then 〈T |H0|T 〉 = 1.

Proof. Suppose S ⊆ U is anm-dimer. By definition, any pair of dimers in S is separated
by distance at least three. Thus 〈S|nunv|S〉 = 0 whenever D(u, v) = 2. Therefore

〈S|H0|S〉 = 〈S|NU |S〉 − 2〈S|NE |S〉 = 2m − 2m = 0.

Next consider any subset of nodes S such that 〈S|H0|S〉 ≤ 0. It suffices to show that S is
an m-dimer for some integer m. Indeed, the negative term in H0 cannot be smaller than
−2|E |. Since � > 2|E |, the energy of S can be non-positive only if

〈S|nunv|S〉 = 0 whenever D(u, v) = 2. (53)

Let S = C1 ∪· · ·∪Cm be the decomposition of S into connected components. Since the
graph has no triangles, Eq. (53) implies that each connected component of S is either a
single node or a dimer. Therefore

0 ≥ 〈S|H0|S〉 =
m∑

α=1

〈Cα|NU − 2NE |Cα〉. (54)

Clearly, 〈Cα|NU − 2NE |Cα〉 = 1 if Cα is a single node and 〈Cα|NU − 2NE |Cα〉 = 0
if Cα is a dimer. Thus Eq. (54) is possible only if all Cα are dimers. From Eq. (53) one
infers that the distance between different dimers Cα is at least three. This shows that S
is an m-dimer for some m.

Finally, removing any single node u from an m-dimer S transforms one of the con-
nected components Cα into a single node. The above shows that T = S \ u has energy
〈T |H0|T 〉 = 1. ��
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Fix any integer 1 ≤ m ≤ n/2. Consider a targetHamiltonian Htarget ∈ HCD(n,m, J )

describing them-dimer sector of the hard-core dimersmodel on some triangle-free graph
G = (U, E) with n nodes, see Eq. (5).

Our first reduction has a simulator Hamiltonian

H̃sim = �̃H̃0 + Ṽ , H̃0 = (NU − 2m)(NU − 2m + 1), Ṽ ∈ TIM(n, J̃ ). (55)

All above operators act on the full Hilbert space B. The perturbation Ṽ will be chosen
at the next reduction. Note that H̃sim is a TIM Hamiltonian. Since eigenvalues of NU

are integers, the ground subspace of H̃0 is spanned by subsets of nodes of cardinality
2m or 2m − 1. By Lemma 4, the Hamiltonian H̃sim can simulate the restriction of any
TIM Hamiltonian Ṽ onto the subspaceH ≡ B2m ⊕B2m−1. In the rest of this section we
assume that our full Hilbert space isH.

Our second reduction has a simulator Hamiltonian

Hsim = �H0 + V, V = �1/2Vmain + Vextra, (56)

where H0 is the Hamiltonian constructed in Lemma 8,

Vmain = t1/2
∑

u∈U
Xu and Vextra = Hdiag + t NU . (57)

Here t and Hdiag are defined by the target HCD Hamiltonian Eq. (5) and all operators
are restricted to the subspace H with 2m or 2m − 1 particles. Note that Hsim is a TIM
Hamiltonian. Lemma 8 implies that the ground subspace of H0 is spanned bym-dimers,
that is,H− = Dm .

Let us check that the perturbation has all the properties stated in Lemma 5. First, we
note that (Vmain)−− = 0 since any pair of m-dimers either coincide or differ on at least
two nodes. Obviously, Vextra is block-diagonal. It remains to check Eq. (31). Let S and
S′ be arbitrary m-dimers. Then

〈S′|(Vmain)−+H
−1
0 (Vmain)+−|S〉 = t

∑

u,v∈U
〈S′|XvP+H

−1
0 P+Xu |S〉. (58)

Recall that all operators in Eq. (56) are restricted to the subspace with 2m or 2m − 1
particles. Thus Xu |S〉 = 0 whenever u /∈ S since in this case Xu |S〉 contains 2m + 1
particles. In the remaining case, u ∈ S, Lemma 8 implies that Xu |S〉 is an eigenvector
of H0 with the eigenvalue 1, so that H

−1
0 Xu |S〉 = Xu |S〉. Thus

〈S′|(Vmain)−+H
−1
0 (Vmain)+−|S〉 = t

∑

u∈S, v∈S′
〈S′|XvXu |S〉. (59)

The sum over u = v gives a contribution t |S|δS,S′ = 〈S|t NU |S′〉. The sum over u �= v

is non-zero only if S and S′ can be obtained from each other by moving one particle
from some node u to another node v, in which case 〈S′|XvXu |S〉 = 〈S′|Wu,v|S〉. Thus

(Vmain)−+H
−1
0 (Vmain)+− = t NU + t

∑

{u,v}∈U
Wu,v (60)

and

(Vextra)−− − (Vmain)−+H
−1
0 (Vmain)+− = −t

∑

{u,v}∈U
Wu,v + Hdiag = Htarget. (61)

Thus all conditions of Lemma 5 are satisfied.
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To compose the two reductions we extend Hsim defined in Eq. (56) to the full Hilbert
space B and substitute Ṽ = Hsim into Eq. (55). Combining Lemmas 3, 4, 5 we conclude
that any Hamiltonian Htarget ∈ HCD(n,m, J ) can be simulated with an error (ε, η) by a
Hamiltonian H̃sim ∈ TIM(n, J ′) where J ′ = poly(n, J, ε−1, η−1). The simulation uses
the trivial encoding E : Dm → B, that is, E |S〉 = |S〉 for any m-dimer S.

7. Reduction from Dimers to Range-2 Bosons

In this section we construct an HCD simulator for range-2 hard-core bosons. It involves
a third-order reduction. Consider a target Hamiltonian Htarget ∈ HCB2(n,m, J ) de-
scribing the m-particle sector of range-2 hard-core bosons on some graph G = (U, E)

with n nodes. For the sake of clarity, let us first consider a special case of homogeneous
hopping amplitudes, that is,

Htarget = −t
∑

(u,v)∈E
Wu,v + Hdiag, t ≥ 0. (62)

Recall that Htarget acts on the Hilbert space Bm,2(G) spanned by 2-sparse subsets of m
nodes.

The HCD simulator will be defined on an extended graph G ′ = (U ′, E ′) obtained
from G by placing an extra node at the center of every edge of G and attaching an extra
hanging edge to every node of G, see Fig. 3 for an example. The extra node located at
the center of an edge (u, v) ∈ E will be denoted3 u + v. The extra node attached to a
node u ∈ U by a hanging edge will be denoted u∗. Thus the extended graph G ′ has a
set of nodes

U ′ = U ∪U∗ ∪U+, U∗ = {u∗ : u ∈ U }, U+ = {u + v : u, v ∈ U and (u, v) ∈ E}.
(63)

We shall represent a boson located at a node u ∈ U by a dimer occupying the subset
{u, u∗} ⊆ U ′.

Fig. 3. Construction of the extended graph G′ = (U ′, E ′) for hard-core dimers starting from the graph
G = (U, E) of the hard-core bosons model. The subsets of nodes U∗ and U+ are highlighted in red and blue
respectively. A boson located at a node u ∈ U is represented by a dimer occupying the subset {u, u∗} ⊆ U ′

3 Here the addition is merely a symbol; it has no algebraic meaning.
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A simulator HCD Hamiltonian acting on the Hilbert space of m-dimers Dm(G ′) is
defined as Hsim = �H0 + V , where

H0 =
∑

w∈U+

�wnw (64)

penalizes m-dimers occupying the extra nodes located at the centers of edges of G. For
now we set �w = 1 for all w ∈ U+. We shall need a more general expression for �w

in the case of non-homogeneous hopping amplitudes. Clearly, H0 has zero ground state
energy and its ground subspace is spanned by m-dimers S ⊆ U ′ such that S ∩U+ = ∅.
The perturbation is defined as V = �2/3Vmain + �1/3Ṽextra + Vextra, where

Vmain = −t1/3
∑

{u,v}∈U ′
Wu,v, (65)

Ṽextra = t2/3
∑

u∈U
d(u) nu . (66)

Vextra = Hdiag + t
∑

u∈U
d2(u) nu, (67)

For now we define d(u) as the degree of a node u in the original graph G and d2(u) ≡
d(u)(d(u) − 1). We shall need a more general expression for d(u) and d2(u) in the case
of non-homogeneous hopping amplitudes.

Let us check that the perturbation has all the properties stated in Lemma 6. First, we
claim that (Vmain)−− = 0. Indeed, suppose |S〉 is a ground state of H0. Then S must be
a union of dimers {u, u∗} with u ∈ U . Since (u, u∗) is the only edge of G ′ attached to
u∗, the only hopping terms that can map S to some m-dimer S′ are those that replace
some dimer {u, u∗} ⊆ S with a dimer {u, u + v} for some (u, v) ∈ E , see Fig. 4. This
requires a single hopping from u∗ to u + v. Then S′ has a particle at some node u + v

and thus |S′〉 is an excited state of H0. Thus (Vmain)−− = 0. The operators Vextra and
Ṽextra are block-diagonal simply because they are diagonal.

Let us now describe the encoding E : Bm,2(G) → Dm(G ′). Recall thatBm,2(G) and
Dm(G ′) are the Hilbert spaces of the target and the simulator models. Given a 2-sparse
subset of nodes S ⊆ U in the graph G let E(S) ⊆ U ∪ U∗ be the subset of nodes in
the graph G ′ that includes all nodes u ∈ S and all nodes u∗ such that u ∈ S. Define
E |S〉 = |E(S)〉. Obviously, E is an isometry. Let us check that Im(E) coincides with the
ground subspace of H0. Indeed, suppose S ⊆ U ′ is a ground state of H0, that is, S is an
m-dimer in G ′ such that S ⊆ U ∪U∗. Then all dimers in S must have a form {u, u∗} for
some u ∈ U . Consider any distinct nodes u, v ∈ S ∩ U . By definition of an m-dimer,
any dimers in S are separated by at least three edges in the graph G ′. Then the nodes
u and v are separated by at least two edges in the graph G, that is, S ∩ U is a 2-sparse
subset of m nodes in the graph G. Since S = E(S ∩U ), this shows that S belongs to the
image of E . Conversely, if S ⊆ U is any 2-sparse subset of m nodes in G then E(S) is
an m-dimer in G such that E(S) ⊆ U ∪ U∗. This proves that Im(E) coincides with the
ground subspace of H0.

Let us now check condition Eq. (32) of Lemma 6. Consider any m-dimer S ⊆ U ′
such that S ∩U+ = ∅. We have already shown that Vmain|S〉 is a superposition of states
|S′〉, where S′ is obtained from S by replacing a dimer {u, u∗}with a dimer {u, u +v} for
some u ∈ S∩U and v ∈ U such that (u, v) ∈ E , see Fig. 4. By definition of anm-dimer,
{u, u∗} is separated from all other dimers of S by at least three edges of the graph G ′.
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Fig. 4. A third-order process transfers a dimer from {u, u∗} to {v, v∗}. Here V ≡ Vmain. Since each dimer in
G′ encodes one particle in G, this process simulates the logical hopping operator Wu,v

However, since S ∩ U+ = ∅, this is possible only if {u, u∗} is separated from all other
dimers of S by at least four edges of G ′. Then the dimer {u, u + v} is separated from
all other dimers of S′ by at least three edges of G ′, that is, S′ is an m-dimer. Note also
that S′ occupies exactly one node ofU+, that is, H0|S′〉 = |S′〉 and thus H−1

0 |S′〉 = |S′〉
(recall that we set �w = 1 in the case of homogeneous hopping amplitudes). The above
arguments show that

(Vmain)+−|S〉 = −t1/3
∑

u∈S∩U

∑

v : (u,v)∈E
Wu∗,u+v|S〉. (68)

Using the above equation one can easily get

〈S′|(Vmain)−+H
−1
0 (Vmain)++H

−1
0 (Vmain)+−|S〉

= −t
∑

(u,v)∈E
〈S′|Wu+v,v∗Wu,vWu∗,u+v|S〉

−t
∑

(u,v) �=(u,w)∈E
〈S′|Wu+w,u∗Wu+v,u+wWu∗,u+v|S〉 (69)

Here S′ is some m-dimer S′ ⊆ U ′ such that S′ ∩U+ = ∅. The terms in the first and the
second line in the righthand side of Eq. (69) describe triple-hopping processes shown on
Figs. 4 and 5 respectively. The former implements a logical hopping operator Wu,v =
EWu,vE†, while the latter generates unwanted terms proportional to nud(u)(d(u) − 1),
where d(u) is the degree of u in the graph G. Thus

(Vmain)−+H
−1
0 (Vmain)++H

−1
0 (Vmain)+− = −t

∑

(u,v)∈E
Wu,v − t

∑

u∈U
d2(u)nu . (70)

Note that the last term is canceled by (Vextra)−−, so that

(Vextra)−− + (Vmain)−+H
−1
0 (Vmain)++H

−1
0 (Vmain)+− = Hdiag − t

∑

(u,v)∈E
Wu,v = H target
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Fig. 5. An unwanted third-order process transfers a dimer from {u, u∗} back to {u, u∗}

which proves condition Eq. (32) of Lemma 6. It remains to check condition Eq. (33).
Using Eq. (68) again one gets

〈S′|(Vmain)−+H
−1
0 (Vmain)+−|S〉 = t2/3

∑

u∈S
d(u)δS,S′ = 〈S′|t2/3

∑

u∈U
d(u)nu |S〉

= 〈S′|Ṽextra|S〉. (71)

Here (Vmain)+− moves a particle from u∗ to u +v and (Vmain)−+ returns the particle back
from u + v to u∗. Thus all conditions of Lemma 6 are satisfied.

Suppose now that Htarget ∈ HCB2(n,m, J ) has non-homogeneous hopping ampli-
tudes, that is,

Htarget = −
∑

(u,v)∈E
tu,vWu,v + Hdiag, 0 ≤ tu,v ≤ t. (72)

By definition, t ≤ J . Let (η, ε) be the desired simulation error, see Definition 1. Since
we only need to approximate Htarget with an error ε/2, see Lemma 6, we can assume
that

ε

2|E | ≤ tu,v ≤ t for all (u, v) ∈ E .

For each node w = u + v ∈ U+ define

�w =
√

t

tu,v

.

Note that 1 ≤ �w ≤ √
2Jε−1|E | ≤ poly(n, J, ε−1). Given a node u ∈ U , let N (u) ⊆

U be the set of all nearest neighbors of u in the graph G. Define

d(u) = t−1/2
∑

v∈N (u)

√
tu,v and d2(u) = t−1

∑

v �=v′∈N (u)

√
tu,vtu,v′ .
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Let Hsim be the HCD simulator defined by Eqs. (64–67). Exactly the same arguments
as above show that Hsim satisfies conditions of Lemma 6 with the target Hamiltonian
Eq. (72).

We conclude that any Hamiltonian Htarget ∈ HCB2(n,m, J ) can be simulated with
an error (η, ε) by a Hamiltonian Hsim ∈ HCD(n′,m, J ′) where n′ = O(n2) and J ′ =
poly(n, J, ε−1, η−1). The simulation uses an encoding E that represents each particle of
the target model by a dimer in the simulator model. In particular, E maps basis vectors to
basis vectors. Note that the extended graph G ′ is triangle-free regardless of the original
graph G, so the reduction from TIM to HCD described in Sect. 6 and the reduction from
HCD to range-2 HCB can be composed.

8. Range-2 Bosons with Multi-particle Interactions

In this sectionwe describe a second-order reduction that uses range-2HCBas a simulator
and generates the same range-2 HCB Hamiltonian but with certain additional multi-
particle interactions. This reduction is only needed for the proof of Theorem 2.

Consider a graph G = (U, E). For any subset of nodes S ⊆ U define a diagonal
operator

D(S) =
∏

u∈S
(I − nu).

Let d ≤ poly(n) be any integer and S1, . . . , Sd ⊆ U be arbitrary subsets of nodes.
Suppose our target Hamiltonian is

Htarget = Hbos −
d∑

α=1

pαD(Sα). (73)

Here Hbos ∈ HCB2(n,m, J )describes the range-2HCBon the graphG and0 ≤ pα ≤ J
are arbitrary coefficients. The Hamiltonian Htarget acts on the m-particle sector Bm(G).
Let us showhow to simulate Htarget using the standard range-2HCBmodel. The simulator
will be defined on an extended graph G ′ = (U ′, E ′) obtained from G by adding extra
nodes and extra edges. For each interaction D(Sα) in Eq. (73) let us add two extra nodes
denoted a(α) and b(α). We connect the node b(α) by an edge with every node u ∈ Sα .
In addition, we connect the nodes a(α) and b(α)with each other, see Fig. 6. The number
of particles in the simulator model is m′ = m + d, where d is the number of extra terms
in Eq. (73). Define a simulator Hamiltonian as

Hsim = �H0 + V, H0 =
d∑

α=1

I − na(α), V = �1/2Vmain + Vextra, (74)

Vmain = −
d∑

α=1

√
pα Wa(α),b(α) and Vextra = Hbos . (75)

Clearly, H0 has zero ground state energy and the ground subspace of H0 is spanned
by all 2-sparse configurations of particles in G ′ such that the node a(α) is occupied
for each α. Note that the node b(α) must be empty due to the 2-sparsity constraint.
Define an encoding E : Bm(G) → Bm+d(G ′) as follows. If S ⊆ U is a 2-sparse subset,
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Fig. 6. Simulation of multi-particle interactions D(Sα). We choose H0 = I − na(α) such that the node a(α)

is occupied for any ground state of H0. Then the node b(α) must be empty due to the 2-sparsity constraint.
The perturbation V moves the particle from a(α) to b(α) or vice verse

define E(S) = S ∪ {a(1), . . . , a(d)} ⊆ U ′. Note that E(S) is a 2-sparse subset since
a node a(α) has only one neighbor b(α) and the latter never belongs to E(S). Define
E |S〉 = |E(S)〉. The above shows that E is an isometry and the image of E coincides
with the ground subspace of H0. Let us check that the perturbation V satisfies conditions
of Lemma 5. Obviously, (Vmain)−− = 0 since any term in Vmain moves a particle from
a(α) to b(α) or vice verse. The operator Vextra is block-diagonal since it acts trivially
on the extra nodes a(α), b(α). Let us check condition Eq. (31) of Lemma 5. Note that
no hopping in the original graph G is prohibited due to the presence of extra particles at
a(α) since these particles are separated from any node of G by at least two edges. Thus
(Vextra)−− = Hbos , where Hbos = EHbosE† is the encoded version of Hbos . Let us
compute (Vmain)−+H

−1
0 (Vmain)+−. Suppose |S〉 is a ground state of H0. The 2-sparsity

condition implies that a node b(α) cannot be occupied if Sα contains at least one particle.
This shows that (Wa(α),b(α))+−|S〉 = 0 if S ∩ Sα �= ∅, Otherwise, (Wa(α),b(α))+− moves
the particle from a(α) to b(α). Thus

(Wa(α),b(α))+−|S〉 = D(Sα)|(S\a(α)) ∪ b(α)〉.

Note that the state in the righthand side is an eigenvector of H0 with an eigenvalue 1.
Note also that if (Vmain)+− moves a particle from some node a(α) to b(α) then (Vmain)−+
must return the particle from b(α) to a(α). Thus

(Vmain)−+H
−1
0 (Vmain)+− =

r∑

α=1

pα(Wa(α),b(α))−+(Wa(α),b(α))+− =
r∑

α=1

pαD(Sα).

Here we noted that D(Sα)2 = D(Sα) = D(Sα). Thus

(Vextra)−− − (Vmain)−+H
−1
0 (Vmain)+− = Hbos −

r∑

α=1

pαD(Sα) = H target,

that is, all conditions of Lemma 5 are satisfied.
We have proved that anyHamiltonian Htarget ∈ HCB2(n,m, J )with d extra diagonal

terms −pαD(Sα) such that 0 ≤ pα ≤ J can be simulated with an error (η, ε) by
the Hamiltonian Hsim ∈ HCB2(n′,m′, J ′), where n′ = n + 2d, m′ = m + d, and
J ′ = poly(n, J, ε−1, η−1). The simulation uses an encoding E that maps basis vectors
to basis vectors. We shall absorb the extra diagonal terms into the Hamiltonian Hdiag in
all subsequent reductions.
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+

Fig. 7. Construction of the extended graph G′ = (U ′, E ′) for the range-2 HCB simulator starting from the
graph G = (U, E) for the target range-1 HCB

9. Reduction from Range-2 Bosons to Range-1 Bosons

In this section we construct a range-2 HCB simulator for a range-1 HCB model. It in-
volves a second-order reduction. Consider a target Hamiltonian Htarget ∈ HCB(n,m, J )

describing them-particle sector of range-1 hard-core bosons on some graphG = (U, E)

with n nodes,

Htarget = −
∑

(u,v)∈E
tu,vWu,v + Hdiag. (76)

The range-2HCBsimulatorwill be defined on an extended graphG ′ = (U ′, E ′) obtained
fromG byplacing an extra node at the center of every edgeofG, seeFig. 7 for an example.
The extra node located at the center of an edge (u, v) ∈ E will be denoted u + v. Then
the extended graph G ′ has a set of nodes

U ′ = U ∪U+, U+ = {u + v : (u, v) ∈ E}. (77)

The simulator and the target models have the same number of particles m. Thus the
simulator has Hilbert space Bm,2(G ′) spanned by 2-sparse m-node subsets in the graph
G ′. Define a simulator Hamiltonian as Hsim = �H0 + V , where

H0 =
∑

w∈U+

nw (78)

penalizes particles that occupy nodes located at the centers of edges of G. We choose
the perturbation as V = �1/2Vmain + Vextra, where

Vmain = −
∑

(u,v)∈E ′
t1/2u,v Wu,v, (79)

Vextra = Hdiag +
∑

(u,v)∈E
tu,v(nu − nv)

2. (80)

The sum in Vextra runs over pairs of nodes u, v ∈ U considered as nodes of G ′. Clearly,
H0 has zero ground state energy and its ground subspace is spanned by subsets of
nodes S ⊆ U ′ such that S ∩ U+ = ∅ and |S| = m. Note that any distinct nodes
of S are automatically separated by at least two edges of G ′, that is, S is a 2-sparse
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subset. Given any subset of nodes S ⊆ U in the graph G such that |S| = m, let
E(S) be the corresponding subset of nodes in the graph G ′. We define the encoding
E : Bm(G) → Bm,2(G ′) such that E |S〉 = |E(S)〉. The above shows that Im(E)

coincides with the ground subspace of H0.
Let us check that the perturbationV satisfies the conditions of Lemma5. First, we note

that (Vmain)−− = 0. Indeed, suppose S ⊆ U ′ is a ground state of H0. Then S∩U+ = ∅.
Thus Vmain can only move a particle from some node u ∈ U to some node v ∈ U+

which produces an excited state of H0. The operator Vextra is block diagonal because it
is diagonal.

Let us now check condition Eq. (31) of Lemma 5. Consider any ground state of H0,
that is, m-node subset S ⊆ U ′ such that S ∩U+ = ∅. We claim that

(Vmain)+−|S〉 = −
∑

u∈S

∑

(u,v)∈E
t1/2u,v (1 − nv)Wu,u+v|S〉. (81)

Indeed, the hopping terms in Vmain can only move a particle from some node u ∈ S
to some node u + v such that (u, v) ∈ E and such that the resulting configuration of
particles is 2-sparse. The latter condition is satisfied iff nv = 0. Taking into account that
Wu,u+v|S〉 is an eigenvector of H−1

0 with an eigenvalue one, we get

(Vmain)−+H
−1
0 (Vmain)+− =

∑

(u,v)∈E
tu,vWu,v +

∑

u∈U

∑

(u,v)∈E
tu,vnu(1 − nv). (82)

Here the last term accounts for double-hopping processes where (Vmain)+− moves a
particle from u to u + v and (Vmain)−+ returns the particle back to u. Using the identity
nu(1 − nv) + nv(1 − nu) = (nu − nv)

2 one gets

(Vmain)−+H
−1
0 (Vmain)+− =

∑

(u,v)∈E
tu,vWu,v +

∑

(u,v)∈E
tu,v(nu − nv)

2. (83)

The last term is exactly cancelled by Vextra which proves condition Eq. (31) of Lemma 5.
Note that in this case the logical operatorsWu,v and nu coincide withWu,v and nu since
we encode each particle of the target model by a single particle in the simulator model.

To conclude, we have proved that any Hamiltonian Htarget ∈ HCB(n,m, J ) can
be simulated with an error (η, ε) by the Hamiltonian Hsim ∈ HCB2(n′,m, J ′), where
n′ = O(n2) and J ′ = poly(n, J, ε−1, η−1). The simulation uses an encoding E that
maps basis vectors to basis vectors.

10. Range-1 Bosons with a Controlled Hopping

Consider a graph G = (U, E) with n nodes and a Hamiltonian Hbos ∈ HCB(n,m, J )

describing them-particle sector of the range-1 HCBmodel on the graph G. Suppose our
target Hamiltonian is

Htarget = Hbos −
∑

(c;u,v)

tc;u,v ncWu,v, (84)

where the sum runs over all triples of nodes (c; u, v) such that c ∈ U , (u, v) ∈ E , and
c /∈ {u, v}. The term ncWu,v describes a controlled hopping process where the presence
of particle at the node c controls whether the hopping between nodes u, v is turned on
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or off. The coefficients tc;u,v are the controlled hopping amplitudes. We shall always
assume that tc;u,v ≥ 0. The Hamiltonian Htarget acts on them-particle sectorBm(G). Let
HCB∗(n,m, J ) be the set of Hamiltonians Htarget defined above where 0 ≤ tc;u,v ≤ J .
In this section we show how to simulate Htarget by the standard range-1 HCB. The
simulation involves a composition of a first-order and a second-order reduction.

The simulator model will be defined on a graph G ′ = (U ′, E ′) obtained from G by
adding certain extra nodes and extra edges. Namely, for each triple (c; u, v) that appears
in Eq. (84) we add an extra node a(c; u, v) and a pair of extra edges connecting a(c; u, v)

to u and v. Let n′ = |U ′| be the number of nodes in the extended graph andU+ ⊆ U ′ be
the set of all extra nodes a(c; u, v). The simulator and the target models have the same
number of particles m.

Our first reduction has a simulator Hamiltonian

H̃sim = �̃H̃0 + Ṽ , H̃0 =
∑

(c;u,v)

(I − nc)na(c;u,v), (85)

where Ṽ ∈ HCB(n′,m, J̃ ) will be chosen at the next reduction. The Hamiltonian H̃sim
acts on the Hilbert space Bm(G′). Let H̃− be the ground subspace of H̃0. Obviously, H̃−
is spanned by configurations of particles such that a node a(c; u, v) can be occupied
only if c is occupied. This property must hold for each extra node a(c; u, v). Lemma 4
shows that H̃sim can simulate the restriction of any Hamiltonian from HCB(n′,m, J̃ )

onto the subspace H̃−. In the rest of this section we assume that our full Hilbert space is
H = H̃−. The above simulation uses the trivial encoding, that is, E |S〉 = |S〉 if S ⊆ U ′
is a ground state of H̃0 and E |S〉 = 0 otherwise.

Our second reduction has a simulator Hamiltonian

Hsim = �H0 + V, H0 = �
∑

a∈U+

na, V = �1/2Vmain + Vextra, (86)

where

Vmain = −
∑

(c;u,v)

(tc;u,v)
1/2(Wu,a(c;u,v) +Wv,a(c;u,v)), (87)

Vextra = Hbos +
∑

(c;u,v)

tc;u,vnc(nu + nv). (88)

Here all operators are restricted to the subspaceH defined above.We choose an encoding
E : Bm(G) → H that maps subsets of nodes in the graphG to the corresponding subsets
of nodes in the extended graphG ′. Obviously, S ⊆ U ′ is a ground state of H0 iff |S| = m
and S ∩U+ = ∅, that is, all the extra nodes a(c; u, v) are empty. Thus Im(E) coincides
with the ground subspace of H0.

Let us check that the perturbation V satisfies all conditions of Lemma 5. We note
that (Vmain)−− = 0 since Vmain can only move a particle from (to) some ancillary node
a(c; u, v) which must be empty in any ground state of H0. The Hamiltonian Vextra is
block-diagonal since Hbos acts trivially on all ancillary nodes whereas the second term
in Vextra is diagonal. It remains to check condition Eq. (31) of Lemma 5. Let S ⊆ U ′
be any ground state of H0. Then S ∩ U+ = ∅. We claim that Wu,a(c;u,v)|S〉 = 0 unless
nc = 1. Indeed, if nc = 0 and nu = 0 then both nodes u and a(c; u, v) are empty. If
nc = 0 and nu = 1 then Wu,a(c;u,v) moves a particle from u to a(c; u, v). However, a
state in which the node a(c; u, v) is occupied and the node c is empty is orthogonal to the
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subspace H. Since the simulator model is restricted to H, we have Wu,a(c;u,v)|S〉 = 0
in both cases. In the remaining case, nc = 1, one has Wu,a(c;u,v)|S〉 = |S′〉, where
S′ = (S \ u) ∪ a(c; u, v). The above shows that

(Vmain)−+H
−1
0 (Vmain)+− =

∑

(c;u,v)

tc;u,vnc(Wu,v + nu + nv). (89)

Here the first term describes processes where (Vmain)+− moves a particle from u to
a(c; u, v) and (Vmain)−+ moves the particle from a(c; u, v) to v. The last two terms
describe processes where (Vmain)+− moves a particle from u to a(c; u, v) and (Vmain)−+
returns the particle back to u. The last two terms in Eq. (89) are canceled by Vextra. This
proves condition Eq. (31) of Lemma 5. Note that in this case the logical operators Wu,v

and nu coincide with Wu,v and nu since we encode each particle of the target model by
a single particle in the simulator model.

Combining Lemmas 3, 4 and 5 we conclude that any Hamiltonian Htarget ∈
HCB∗(n,m, J ) can be simulated with an error (η, ε) by the Hamiltonian H̃sim ∈
HCB(n′,m, J ′) where n′ = O(n3) and J ′ = poly(n, J, ε−1, η−1). The simulation
uses an encoding E that maps basis vectors to basis vectors.

11. From Range-1 Bosons to 2-Local Stoquastic Hamiltonians

Let us start from a simple classification of two-qubit stoquastic interactions. In this
section we use the standard |0〉, |1〉 basis for a single qubit and the corresponding product
basis for n qubits.

Lemma 9. Let H be a two-qubit hermitian operator such that H has realmatrix elements
in the standard basis and all off-diagonal matrix elements of H are non-positive. Then
H can be written as a sum of some diagonal two-qubit Hamiltonian Hdiag and a convex
linear combination of operators

1. −X ⊗ |0〉〈0| and −X ⊗ |1〉〈1|
2. −|0〉〈0| ⊗ X and −|1〉〈1| ⊗ X
3. −X ⊗ X − Y ⊗ Y
4. −X ⊗ X + Y ⊗ Y

Proof. Let G ≡ −H . Since G has real matrix elements, the expansion of G in the basis
of Pauli operators contains only the terms with even number of Y ’s. Thus

G = −Hdiag + hX I X ⊗ I + hI X I ⊗ X + hXX X ⊗ X + hXZ X ⊗ Z

+ hZX Z ⊗ X + hYY Y ⊗ Y, (90)

where Hdiag is some diagonal Hamiltonian. From

〈0, 0|G|1, 1〉 = hXX − hYY ≥ 0 and 〈0, 1|G|1, 0〉 = hXX + hYY ≥ 0

one gets

hXX X ⊗ X + hYY Y ⊗ Y = p(X ⊗ X + Y ⊗ Y ) + q(X ⊗ X − Y ⊗ Y ), (91)

where p = (hXX +hYY )/2 and q = (hXX −hYY )/2 are non-negative coefficients. From

〈0, 0|G|1, 0〉 = hX I + hXZ ≥ 0 and 〈0, 1|G|1, 1〉 = hX I − hXZ ≥ 0
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one gets

hX I X ⊗ I + hXZ X ⊗ Z = pX ⊗ |0〉〈0| + qX ⊗ |1〉〈1|, (92)

where p = hX I + hXZ and q = hX I − hXZ are non-negative coefficients. Similar
calculation shows that

hI X I ⊗ X + hZX Z ⊗ X = p|0〉〈0| ⊗ X + q|1〉〈1| ⊗ X, (93)

where p = hI X + hZX and q = hI X − hZX are non-negative coefficients. The lemma
now follows from Eqs. (90–93). ��

Let Htarget ∈ StoqLH(n, J ) be some fixed 2-local stoquastic Hamiltonian on n
qubits. Our goal is to simulate Htarget by some Hamiltonian Hsim ∈ HCB∗(n′,m, J ′).
Recall that the latter describes the m-particle sector of range-1 hard-core bosons with
a controlled hopping on some graph G = (U, E) with n′ nodes, see Sect. 10. We shall
represent the j-th qubit of the target model by a pair of nodes {2 j−1, 2 j} ⊆ U . The two
basis states |0〉 and |1〉 of the j-th qubit are represented by a particle located at the node
2 j − 1 and 2 j respectively (the dual rail representation). Thus the number of particles
in the simulator model is m = n.

For the sake of clarity we shall first explain how to construct an HCB∗ simulator
individually for each two-qubit stoquastic interaction listed in Lemma 9. Thus we shall
first consider the case n = m = 2.We shall simulate interactions (1) and (2) using a first-
order reduction. Interactions (3) and (4) will require a composition of a first-order and
a third-order reductions. Then we shall explain how to combine the simulators together.
To avoid interference between simulators we shall introduce some ancillary nodes such
that a simulator is activated only if the corresponding ancillary node is occupied by a
particle.

Consider first the case Htarget = −pX ⊗ |0〉〈0| with p > 0. The HCB∗ simulator
is defined on a graph G = (U, E), where U = {1, 2, 3, 4} and E = {1, 2}. The total
number of particles ism = 2, so that the simulator Hilbert space isB2(G). The simulator
Hamiltonian is chosen as

Hsim = �H0 + V, H0 = n1n2 + n3n4, (94)

V = −pn3W1,2. (95)

Ground states of H0 are subsets of nodes {i, j} ⊆ U , where i ∈ {1, 2} and j ∈ {3, 4}.
The ground subspace of H0 encodes two logical qubits as follows:

|0, 0〉 = |1, 3〉, |0, 1〉 = |1, 4〉, |1, 0〉 = |2, 3〉, |1, 1〉 = |2, 4〉. (96)

This is analogous to applying the dual-rail representation to each qubit. Obviously, V
commutes with H0. Note that W1,2 implements the logical X on the first qubit and n3
implements the logical operator |0〉〈0| on the second qubit. Lemma 4 implies that Hsim
can simulate the restriction of V onto the logical subspace, that is, V−− = −pX⊗|0〉〈0|.
This is the desired target Hamiltonian. Using the same method one can simulate all
elementary interactions (1) and (2) in Lemma 9.

Next consider the case

Htarget = −(p/2)(X ⊗ X + Y ⊗ Y ) = −p(|1, 0〉〈0, 1| + |0, 1〉〈1, 0|), p > 0.

(97)
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Fig. 8. Graph G = (U, E) of the HCB∗ simulator for the target Hamiltonian −X ⊗ X − Y ⊗ Y . The total
number of particles is m = 2

The HCB∗ simulator will be defined on a graph G = (U, E) where U = {1, 2, 3, 4, a},
see Fig. 8. We choose the total number of particles m = 2. The simulation involves a
composition of a first-order and a second-order reductions.

Our first reduction has a simulator Hamiltonian

H̃sim = �̃H̃0 + Ṽ , H̃0 = n1n2 + n3n4, Ṽ ∈ HCB∗(5, 2, J̃ ). (98)

All above operators act on the Hilbert spaceB2(G). The perturbation Ṽ will be chosen at
the next reduction. LetH be the ground subspace of H̃0. It is spanned by configurations
of particles such that each qubit {1, 2} and {3, 4} contains at most one particle. Lemma 4
implies that H̃sim can simulate the restriction of any HCB∗ Hamiltonian Ṽ onto the
subspace H. Below we assume that our full Hilbert space isH.

Our second reduction has a simulator Hamiltonian

Hsim = �H0 + V, H0 = na, V = �2/3Vmain + �1/3Ṽextra, (99)

where

Vmain = −p1/3(W1,a +W3,a + naW2,4), (100)

Ṽextra = p2/3(2n1n3 + n1n4 + n2n3). (101)

Here all operators are restricted to the subspace H with at most one particle per qubit.
Note that Hsim is anHCB∗ Hamiltonian. The ground subspace of H0 encodes two logical
qubits according to Eq. (96). Let us check that the perturbation satisfies all conditions of
Lemma 6. Note that (Vmain)−− = 0 since Vmain can only move a particle from (to) the
ancillary node a. The last term in Vmain does not contribute to (Vmain)−− since na = 0
for any ground state of H0. Obviously, Ṽextra is block-diagonal.

Let us check condition Eq. (32) of Lemma 6. Informally, it says that the third-
order hopping process generated by Vmain must implement the logical hopping operator
between the two logical qubits. For example, suppose the initial state is |0, 1〉 = |1, 4〉.
Then (Vmain)+− moves a particle from 1 to a by applying W1,a , then (Vmain)++ moves a
particle from 4 to 2 by applying naW2,4, and then (Vmain)−+ moves a particle from a to
3 by applying W3,a . This produces the correct final state |1, 0〉 = |2, 3〉. More formally,
one can easily check that

(Vmain)+−|1, 1〉 = (Vmain)+−|2, 4〉 = 0,

(Vmain)+−|0, 0〉 = (Vmain)+−|1, 3〉 = −p1/3 (|3, a〉 + |1, a〉) ,

(Vmain)+−|0, 1〉 = (Vmain)+−|1, 4〉 = −p1/3 |4, a〉,
(Vmain)+−|1, 0〉 = (Vmain)+−|2, 3〉 = −p1/3 |2, a〉.
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From this one easily gets

(Vmain)−+H
−1
0 (Vmain)++H

−1
0 (Vmain)+− = −p|0, 1〉〈1, 0| − p|1, 0〉〈0, 1| = H target.

(102)

This proves condition Eq. (32). A similar calculation shows that

(Vmain)−+H
−1
0 (Vmain)+− = p2/3

(
2|0, 0〉〈0, 0| + |0, 1〉〈0, 1| + |1, 0〉〈1, 0|)

= p2/3(2n1n3 + n1n4 + n2n3) (103)

which proves condition Eq. (33).
To compose the two reductions we extend Hsim defined in Eq. (99) to the full Hilbert

space B2(G) and substitute Ṽ = Hsim into Eq. (98). Combining Lemmas 3, 4 and 6 we
conclude that Htarget can be simulated with an error (η, ε) by H̃sim ∈ HCB∗(5, 2, J ′)
where J ′ = poly(p, η−1, ε−1). The simulation uses the dual rail encoding E defined in
Eq. (96).

Finally, consider the case Htarget = −pX ⊗ X + pY ⊗ Y , where p > 0. This
Hamiltonian can be obtained from Htarget = −p(X ⊗ X + Y ⊗ Y ) by conjugating the
second qubit with X . This is equivalent to exchanging nodes 3 and 4 in the reduction
described above. Hence we have constructed an HCB∗ simulator for all elementary
stoquastic interactions.

Suppose now that Htarget ∈ StoqLH(n, J ) is a general 2-local stoquasticHamiltonian
on n qubits. By Lemma 9,

Htarget = Hdiag +
m∑

α=1

pαHα, (104)

where Hdiag is a diagonal 2-local Hamiltonian with terms proportional to nu and nunv ,
where pα > 0 are some coefficients, and each term Hα is one of the four elementary
stoquastic interactions applied to some pair of qubits. Obviously, the number of terms
is m ≤ poly(n). The corresponding HCB∗ simulator Hsim will be defined on a graph
G = (U, E) with 2n + m′ nodes, where m′ ≤ m is the number of interactions of type
(3) or (4) in Htarget, see Lemma 9. Without loss of generality, the first m′ interactions
Hα are of type (3) or (4). The total number of particles in the HCB∗ simulator will be
m = n, so that the Hilbert space of the simulator is Bn(G). We shall need a composition
of a first-order and a third-order reductions.

Let us first define the set of nodes of G. Each qubit i gives rise to a pair of nodes
t (i) and b(i) which form the dual-rail representation of the qubit. We encode the basis
states |0〉 and |1〉 by a single particle located at the node t (i) and b(i) respectively. Each
interaction Hα of type (3) or (4) gives rise to an extra node a(α) inG. This is the ancillary
node used in the graph shown on Fig. 8.

The set of edges of G is defined as follows. For each interaction Hα of type (3)
coupling qubits i, j we add an edge connecting nodes t (i) and a(α), an edge connect-
ing nodes a(α) and t ( j), and an edge connecting nodes b(i) and b( j). The last edge
represents a controlled hopping with a control node a(α). For each interaction Hβ of
type (4) coupling qubits i, j we add an edge connecting nodes t (i) and a(β), an edge
connecting nodes a(β) and b( j), and an edge connecting nodes b(i) and t ( j). The last
edge represents a controlled hopping with a control node a(β). The resulting subgraph
ofG is shown on Fig. 9. This completes definition of the graphG for the HCB simulator.
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Fig. 9. Construction of the graph G for the HCB simulator. Each qubit i is represented by a pair of nodes
t (i), b(i) using the dual-rail representation. The ancillary node a(α) controls hopping between b(i) and b( j).
The ancillary node a(β) controls hopping between b(i) and t ( j)

Our first reduction has a simulator Hamiltonian

H̃sim = �̃H̃0 + Ṽ , H̃0 =
n∑

i=1

nt (i)nb(i), Ṽ ∈ HCB∗(2n + m′, n, J̃ ). (105)

All above operators act on the Hilbert spaceBn(G). The perturbation Ṽ will be chosen at
the next reduction. LetH be the ground subspace of H̃0. It is spanned by configurations
of particles such that each qubit {t (i), b(i)} contains at most one particle. Lemma 4
implies that H̃sim can simulate the restriction of any HCB∗ Hamiltonian Ṽ onto the
subspace H. Below we assume that our full Hilbert space isH.

Our second reduction has a simulator Hamiltonian

Hsim = �H0 + V, H0 =
m′∑

α=1

na(α), V = �2/3Vmain + �1/3Ṽextra + Vextra.

(106)

Since the total number of particles is n and each qubit may contain at most one particle,
the ground subspace of H0 is spanned by states with exactly one particle per qubit. It
encodes n logical qubits under the dual rail representation. The perturbation operators are
defined as the sums of respective perturbation operators over all individual simulators.
More formally,

Vmain =
m′∑

α=1

V α
main, Ṽextra =

m′∑

α=1

Ṽ α
extra, Vextra = Hdiag +

m∑

α=m′+1
V α, (107)

where the perturbation operators carrying an index α are defined by Eqs. (95, 100, 101),
depending on the type of the interaction Hα , with p replaced by pα , with the nodes {1, 2}
replaced by the nodes of the first logical qubit acted upon by Hα , and with the nodes
{3, 4} replaced by the nodes of the second logical qubit acted upon by Hα .

Let us check that the perturbation V satisfies all conditions of Lemma6. By definition,
Vextra and Ṽextra act trivially on the ancillary nodes a(α) and thus they are block diagonal.
Any term in Vmain moves a particle to (from) some ancillary node a(α). Since all these
nodes must be empty in the ground subspace of H0, one has (Vmain)−− = 0.
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Let us now check condition Eq. (33). We claim that

(Vmain)−+H
−1
0 (Vmain)+− =

m′∑

α=1

(V α
main)−+H

−1
0 (V α

main)+−. (108)

Indeed, any term in (Vmain)+− mustmove a particle fromsomequbit nodeu ∈ {t (i), b(i)}
to some ancillary node a(α). In order to return the system to the ground subspace
of H0, the factor (Vmain)−+ must move the particle from a(α) to u. Thus (V α

main)−+

H−1
0 (V β

main)+− = 0 for α �= β. This implies Eq. (108). Since V α
main and Ṽ α

extra satisfy
condition Eq. (33) for each individual simulator, Eq. (108) implies that Vmain and Ṽextra
also satisfy condition Eq. (33).

Next let us check condition Eq. (32) of Lemma 6. We claim that

(Vmain)−+H
−1
0 (Vmain)++H

−1
0 (Vmain)+− =

m∑

α=1

(V α
main)−+H

−1
0 (V α

main)++H
−1
0 (V α

main)+−

(109)

Indeed, suppose (Vmain)+− moves a particle from a qubit node u ∈ {t (i), b(i)} to some
ancillary node a(α). For concreteness, assume that Hα is an interaction of type (3)
coupling qubits i, j and u = t (i). The factor (Vmain)++ can either apply the controlled
hopping term proportional to na(α)Wb(i),b( j) or move a particle from some other qubit
node v ∈ {t (i ′), b(i ′)} to some ancillary node a(β) with α �= β. In the latter case,
however, we create two excited ancillary nodes so that (Vmain)−+ will not be able to
return the system back to the ground subspace of H0. In the former case (Vmain)−+ can
return the system to the ground subspace of H0 only by moving the particle from a(α) to
some node of qubit i or j . This proves Eq. (109). Since V α

main satisfies condition Eq. (32)
for each individual simulator with V α

extra = 0, Eq. (109) implies that

(Vmain)−+H
−1
0 (Vmain)++H

−1
0 (Vmain)+− =

m′∑

α=1

pαHα. (110)

Furthermore, one has (V α)−− = pαHα for interactions of type (1) and (2), that is, for
m′ < α ≤ m. Therefore

(Vextra)−− = Hdiag +
m∑

α=m′+1
pαHα. (111)

Combining this and Eq. (110) one arrives at

(Vextra)−− + (Vmain)−+H
−1
0 (Vmain)++H

−1
0 (Vmain)+− = H target. (112)

Thus all conditions of Lemma 6 are satisfied.
To compose the two reductions we extend Hsim defined in Eq. (106) to the full Hilbert

space Bn(G) and substitute Ṽ = Hsim into Eq. (105). Combining Lemmas 3, 4, 6 we
conclude that any Hamiltonian Htarget ∈ StoqLH(n, J ) can be simulated with an error
(η, ε) by the Hamiltonian H̃sim ∈ HCB∗(n′, n, J ′) where n′ = 2n + m′ = O(n2) and
J ′ = poly(n, J, ε−1, η−1). The simulation uses the dual rail encoding E that maps basis
vectors to basis vectors.
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Finally, let us extend the above reduction to (2, k)-local stoquastic Hamiltonians. We
have to modify the simulator model by adding multi-particle interactions as described
in Sect. 8. More precisely, consider the target Hamiltonian defined in Eq. (104) and
suppose the term Hdiag contains k-qubit diagonal interactions with strength at most J .
Such Hamiltonian can be written as

Hdiag = −
∑

x∈{0,1}k

∑

M⊆[n]
p(x, M)|x〉〈x |M , (113)

where p(x, M) are some real coefficients such that |p(x, M)| ≤ poly(J, n), and |x〉〈x |M
is the k-qubit projector |x〉〈x | acting on a subset of qubits M . Performing an overall
energy shift one can achieve p(x, M) ≥ 0 for all x and M . Consider any fixed projector
|x〉〈x |M . Recall that the basis states |0〉 and |1〉 of the i-th qubit of the target model are
encoded by a particle located at the node t (i) and b(i) respectively. It follows that the
encoded version of a projector |0〉〈0|i can be written as I −nb(i). Likewise, the encoded
version of a projector |1〉〈1|i can be written as I − nt (i). Thus the encoded version of
the projector |x〉〈x |M is

|x〉〈x |M =
∏

i∈M : x(i)=0

(I − nb(i))
∏

i∈M : x(i)=1

(I − nt (i)).

Here x(i) denotes the bit of the string x associated with the i-th qubit. Let S(x, M) ⊆ U
be the union of all nodes b(i) with i ∈ M and x(i) = 0 and all nodes t (i) with i ∈ M
and x(i) = 1. We conclude that the encoded version of Hdiag is

Hdiag = −
∑

x∈{0,1}k

∑

M⊆[n]
p(x, M)

∏

u∈S(x,M)

(I − nu). (114)

As we have shown in Sect. 8 any such Hamiltonian can be included into the range-2
HCB model by adding one extra second-order reduction. Thus all our results obtained
for 2-local stoquastic Hamiltonians hold for (2, k)-local stoquastic Hamiltonians.

12. Proof of the Main Theorems

Nowwe have all ingredients needed for the proof of Theorems 1 and 2. Consider a target
Hamiltonian H ∈ StoqLH(n, J ) or H ∈ StoqLH∗(n, J ). Let us prove that H can be
simulated with an arbitrarily small error (η, ε), by a TIMHamiltonian H ′ ∈ TIM(n′, J ′)
such that n′ ≤ poly(n) and J ′ ≤ poly(n, J, ε−1, η−1). Here we use the definition of
simulation given in Sect. 3. The parameters η, ε will be specified later. Indeed, consider
the sequence of perturbative reductions constructed in Sects. 5–11. It can be described
by a sequence of Hamiltonians H1, H2, . . . , HR and encodings E1, E2, . . . , ER−1 such
that the Hamiltonian Ht and the encoding Et simulate Ht+1 with a small error (ηt , εt ) for
each t = 1, . . . , R − 1. Here HR = H is the desired target Hamiltonian and H1 = H ′
is a TIM Hamiltonian. Choose a simulation error ηt = η/2R and εt = ε/2R for each
individual reduction. Since R = O(1), this implies ηt = �(η) and εt = �(ε). By
construction, each Hamiltonian Ht belongs to one of the classes defined in Table 2 with
some number of nodes (qubits) nt and some interaction strength Jt . In addition, each
Hamiltonian Ht (except for HR) is a sum of a strong unperturbed part (Ht )0 with a
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spectral gap �t � ‖Ht+1‖ and a weak perturbation. We have shown that each reduction
satisfies

nt ≤ poly(nt+1) and Jt ≤ poly(nt+1, Jt+1, ε−1, η−1) (115)

where t = 1, . . . , R − 1. Using the initial conditions nR = n, JR = J , and taking
into account that R = O(1), we conclude that n′ ≡ n1 ≤ poly(n) and J ′ ≡ J1 ≤
poly(n, J, ε−1, η−1).

Let E = E1E2 · · · ER−1 be the composition of all individual encodings. Applying
Lemma 3 one infers that the Hamiltonian H1 and the encoding E simulate HR with an
error (η̃, ε̃), where

η̃ ≤ η

2
+ O(ε)max

t
�−1

t and ε̃ ≤ ε

2
+ O(ε)max

t

‖Ht+1‖
�t

(116)

Increasing, if necessary, the spectral gaps �t by a factor poly(η−1) one can achieve
η̃ ≤ η and ε̃ ≤ ε.

To prove Theorem 1 we choose ε as the precision specified in the statement of the
theorem. The parameter η does not play any role here. We have to use all reductions
described in Sects. 5–11 except for the one of Sect. 8 (the latter generates multi-particle
interactions that are only needed for the proof of Theorem 2). Then H1 is a TIM Hamil-
tonian with interactions of degree-3. Lemma 1 implies that the i-th smallest eigenvalues
of H1 and HR differ at most by ε for all i = 1, . . . , 2n . This proves Theorem 1 with
H ′ = H1.

To prove Theorem 2 we shall choose ε ≤ δ/3, where δ is the spectral gap of H .
We have to use all reductions described in Sects. 6–11. By construction, the encodings
Et used in all these reductions map basis vectors to basis vectors. In addition, one can
efficiently compute the action of Et and E†

t on any basis vector. Thus the same properties
hold for the full encoding E = E1E2 · · · ER−1. Lemma 1 implies that the Hamiltonian
H1 has a non-degenerate ground state and a spectral gap at least δ − 2ε ≥ δ/3. Let |g〉
and |g′〉 be the ground states of H and H1. By Lemma 2,

‖ |g′〉 − E |g〉 ‖ ≤ η + Cδ−1ε

for some constant coefficient C . Choosing ε = min (δ/3, ηδC−1) one can achieve
‖|g′〉 − E |g〉‖ ≤ 2η. Since η can be arbitrarily small, this proves Theorem 2 with
H ′ = H1.

Let us remark that the map H → H ′ in Theorem 2 can be made sufficiently smooth.
More precisely, suppose H smoothly depends on some parameter τ such that the j-th
derivative of H with respect to τ has norm at most poly(n) for any constant j . Then we
claim that the j-th derivative of H ′ with respect to τ has norm at most poly(n, δ−1).
Indeed, suppose Htarget = Ht+1 and Hsim = Ht are the target and the simulator Hamil-
tonians used in some individual reduction and (ηt , εt ) is the desired simulation error.
For concreteness, consider the reduction of Sect. 11. Note that the derivative of Hsim
becomes infinite if some of the coefficients pα in Eq. (104) becomes zero since Hsim

contains terms proportional to p1/3α and p2/3α . To avoid such singularities, let us choose

a sufficiently small cutoff value pmin and replace pα by p̃α =
√
p2α + p2min in Eq. (104)

(recall that the coefficients pα must be non-negative). This gives a new target Hamil-
tonian H̃target such that ‖Htarget− H̃target‖ ≤ pminpoly(n).We choose pmin small enough
so that ‖Htarget − H̃target‖ � εt . Let H̃sim be the simulator Hamiltonian constructed for
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H̃target. Then H̃sim simulates Htarget with the error approximately (ηt , εt ) and the j-th
derivative of H̃sim has norm at most poly(n, t−1

min) = poly(n, ε−1
t ) = poly(n, δ−1). By

introducing a similar cutoff in all remaining reductions one can easily check that the
j-th derivative of H ′ with respect to τ has norm at most poly(n, δ−1). It is known that
an adiabatic path with the minimum spectral gap δ such that the j-th derivative has norm
at most C j can be traversed in time T = O(C1δ

−2 + C2δ
−2 + C2

1δ
−3), see [25]. This

implies Corollary 4.
Finally, let us remark that Theorem 2 can be extended to TIM Hamiltonians with

interactions of degree-3, although the corresponding encoding E would no longer map
basis vectors to basis vectors. Indeed, let us modify the above proof of Theorem 2 by
including the reduction of Sect. 5. Then the final TIMHamiltonian H ′ has interactions of
degree-3. Let E1 be the encoding used in the reduction of Sect. 5. Recall that E1 encodes
each qubit u of the target model into a one-dimensional chain Lu with a Hamiltonian
Hchain = −∑

j∈Zm
gZ j Z j+1 + X j , where m ≤ poly(n) and g ≈ 1, see Sect. 5. Basis

states of the logical qubit are |0〉 ∼ |ψ0〉 + |ψ1〉 and |1〉 ∼ |ψ0〉 − |ψ1〉, where ψ0 and
ψ1 are the ground states of Hchain satisfying X⊗mψ0,1 = ±ψ0,1. Accordingly, the full
encoding E = E1E2 · · · ER−1 maps any basis vector to a tensor product of the states |0〉
and |1〉. Let us argue that the logical qubits can be efficiently initialized and measured.
Choose any physical qubit i ∈ Lu . Using Eqs. (42, 43, 44) one gets 〈 0|Zi |0〉 = ξ and
〈 1|Zi |1〉 = −ξ , where ξ ≥ poly(n−1). Thus one can measure the logical qubit u in the
Z -basis bymeasuring any physical qubit of Lu in the Z -basis.However, themeasurement
has to be repeated poly(n) times to get a reliable statistics. One can measure the logical
qubit in the X -basis in a single shot by measuring every qubit of Lu in the X -basis.
Computing the product of the measured outcomes gives the eigenvalue of X⊗m which
differentiates between ψ0 and ψ1. Finally, the state |+〉 = |ψ0〉 can be prepared by the
adiabatic evolution starting from the product state |+⊗m〉 and adiabatically turning on the
parameter g in the Hamiltonian Hchain. It is well-known that the minimum spectral gap
of Hchain is �(m−1), so that the initialization can be done in time poly(n). The logical
state |0〉 can be obtained from |+〉 by adiabatically changing the logical Hamiltonian
from −X to −Z .
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A. Bounds on the Energy Splitting and Matrix Elements for the Ising Chain

In this section we prove Eqs. (40, 44).
Let us first prove Eq. (40). Choose any g−1 < R < 1 and consider contours

C = {z ∈ C
2 : |z| = R} and C−1 = {z ∈ C

2 : |z| = R−1}

We orient C and C−1 clockwise and counter-clockwise respectively. Denote E+ ≡ E0
and E− ≡ E1, see Fact 1. Using Eq. (37) one can easily check that

E± = m

2π i

∮

C∪C−1

dz
√
g2 + 1 − g(z + z−1)

z(zm ∓ 1)
. (117)
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Since the contours C and C−1 can be mapped to each other via a change of variable
z → z−1, one gets

E± = − m

2π i

∮

C

dz(1 ± zm)
√
g2 + 1 − g(z + z−1)

z(zm ∓ 1)
. (118)

Therefore

δ = E− − E+ = −2m

π i

∮

C

dzzm−1
√
g2 + 1 − g(z + z−1)

1 − z2m
. (119)

The function
√
g2 + 1 − g(z + z−1) is analytic in the complex plane with cuts along the

intervals [0, g−1] and [g,∞]. Deforming the contour C such that it goes from 0 to g−1

in the upper half-plane and then returns to 0 in the lower half-plane one gets

δ = 4m
√
g

π

∫ g−1

0

xm−1
√
x + x−1 − g − g−1dx

1 − x2m
. (120)

Using a bound

x + x−1 − g − g−1 = x−1(g − x)(g−1 − x) ≥ (g − g−1)x−1(g−1 − x) (121)

we obtain

δ ≥ 4m
√
g2 − 1

π

∫ g−1

0
xm−3/2

√
g−1 − xdx . (122)

Making a change of variables x = g−1y one gets

δ ≥ 4mg−m
√
g2 − 1

π

∫ 1

0
dyym−3/2

√
1 − y ≥ �(1)g−mm−1

√
g2 − 1. (123)

Here we noted that the integral over y is equal to the beta function B(m − 1/2, 3/2) =
�(m−2). Finally, since

√
g2 − 1 = �(m−1/2), one gets δ ≥ �(m−c−3/2). To get an

upper bound in Eq. (40) we note that

x−1(g − x)(g−1 − x) ≤ gx−1(g−1 − x) and (1 − x2m)−1 ≤ (1 − g−2m)−1 ≤ O(1).

Performing the same change of variable as above one gets

δ ≤ O(mg−m+1)

∫ 1

0
dyym−3/2

√
1 − y = O(mg−m+1)B(m − 1/2, 3/2)

= O(m−c−1/2). (124)

Let us now prove Eq. (44). We shall use the notations of Fact 2. In the limit g → ∞ the
Hamiltonian Eq. (35) has ground states |0⊗m〉 and |1⊗m〉, that is,

|ψ0〉 = 1√
2
(|0⊗m〉 + |1⊗m〉) and |ψ1〉 = 1√

2
(|0⊗m〉 − |1⊗m〉).

Thus ξ = 〈ψ1|Z j |ψ0〉 = 1. Since ξ is a real continuous function of g, it suffices to show
that |ξ | ≥ (1 − g−2)1/8 for all g > 1. Let us write |ξ | = (1 − g−2)1/8η. Then we have
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to prove that η ≥ 1. Since we already know that η = 1 in the limit g → ∞, it suffices to
show that η is a monotone decreasing function of g for all g > 1. Below we prove that

η−1 ∂η

∂g
≤ 0 for all g > 1. (125)

Computing the derivative over g one gets

ε̇p = 1

2

(
g

εp
+

εp

g
− 1

gεp

)

and thus

∂

∂g

∑

p

∑

q

log (εp + εq) = m2

2g
+
1

2
(g − g−1)

(
∑

p

ε−1
p

) (
∑

q

ε−1
q

)
. (126)

Here the sums over p and q can range over either Zm or Zm + 1/2. Using Eq. (126) one
gets

η−1 ∂η

∂g
= 1

16
(g−1 − g)(Z+ − Z−)2, (127)

where

Z+ ≡
∑

p∈Zm

ε−1
p and Z− ≡

∑

q∈Zm+1/2

ε−1
q (128)

This implies Eq. (125) and proves that η ≥ 1 for all g > 1.
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