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Abstract: We study complexity of several problems related to the Transverse field
Ising Model (TIM). First, we consider the problem of estimating the ground state energy
known as the Local Hamiltonian Problem (LHP). It is shown that the LHP for TIM
on degree-3 graphs is equivalent modulo polynomial reductions to the LHP for general
k-local ‘stoquastic’ Hamiltonians with any constant k > 2. This result implies that es-
timating the ground state energy of TIM on degree-3 graphs is a complete problem for
the complexity class StogMA—an extension of the classical class MA. As a corollary,
we complete the complexity classification of 2-local Hamiltonians with a fixed set of
interactions proposed recently by Cubitt and Montanaro. Secondly, we study quantum
annealing algorithms for finding ground states of classical spin Hamiltonians associ-
ated with hard optimization problems. We prove that the quantum annealing with TIM
Hamiltonians is equivalent modulo polynomial reductions to the quantum annealing
with a certain subclass of k-local stoquastic Hamiltonians. This subclass includes all
Hamiltonians representable as a sum of a k-local diagonal Hamiltonian and a 2-local
stoquastic Hamiltonian.
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1. Introduction and Summary of Results

Numerical simulation of quantum many-body systems is a notoriously hard problem. A
particularly strong form of hardness known as QMA-completeness [1] has been recently
established for many natural problems in this category. Among them is the problem
of estimating the ground state energy for certain physically-motivated quantum models
such as Hamiltonians with nearest-neighbor interactions on the two-dimensional [2]
and one-dimensional [3,4] lattices, the Hubbard model [5,6], and the Heisenberg model
[5,7]. In contrast, a broad class of Hamiltonians known as sign-free or stoquastic [8] has
been identified for which certain simulation tasks become more tractable. By definition,
stoquastic Hamiltonians must have real matrix elements with respect to some fixed basis
and all off-diagonal matrix elements must be non-positive. Ground states of stoquastic
Hamiltonians are known to have real non-negative amplitudes in the chosen basis. Thus,
for many purposes, the ground state can be viewed as a classical probability distribution,
which often enables efficient simulation by quantum Monte Carlo algorithms [9-12]. A
notable example of a model in this category is the transverse field Ising model (TIM). It
has a Hamiltonian

H = Z hyXy+8uZy+ Z 8uvluly. (D

1<u<n 1<u<v<n

Here n denotes the number of qubits (spins), i, g, gu.v arereal coefficients, and X, Z,
are the Pauli operators acting on a qubit «. Note that H is a stoquastic Hamiltonian in
the standard Z-basis iff i, < O for all . This can always be achieved by conjugating
H with Z,,. It is known that the ground state energy and the free energy of the TIM
can be approximated with an additive error € in time poly(n, e ') using Monte Carlo
algorithms [13] in the special case when the Ising interactions are ferromagnetic, that
is, gu,v < 0 for all u, v. Another important special case is the TIM defined on the one-
dimensional lattice with g, = 0. In this case the Hamiltonian Eq. (1) is exactly solvable
by the Jordan—Wigner transformation and its eigenvalues can be computed analytically
[14]. The ground state and the thermal equilibrium properties of the TIM have been
studied in many different contexts including quantum phase transitions [15], quantum
spin glasses [16,17] and quantum annealing algorithms [18-21]. In the present paper
we address two open questions related to the TIM. First, we consider the problem of
estimating the ground state energy of the TIM and fully characterize its hardness in terms
of the known complexity classes. Secondly, we study quantum annealing algorithms
with TIM Hamiltonians and show that such algorithms can efficiently simulate a much
broader class of quantum annealing algorithms associated with many important classical
optimization problems.

To state our main results let us define two classes of stoquastic Hamiltonians. Let
TIM(n, J) be the set of all n-qubit transverse field Ising Hamiltonians defined in Eq. (1)
such that the coefficients &, g, gu,» have magnitude at most J for all u, v. A TIM
Hamiltonian is said to have interactions of degree d iff each qubit is coupled to at most d
other qubits with ZZ interactions. Such Hamiltonian can be embedded into a degree-d
graph such that only nearest-neighbor qubits interact.



On Complexity of the Quantum Ising Model 3

Let StogLH(n, J) be the set of stoquastic 2-local Hamiltonians H on n qubits with
the maximum interaction strength J. By definition, H € StogLH(n, J) iff

H = ZE: fﬂuv

1<u<v<n

where H, , is a hermitian operator acting on the qubits «, v such that | H, || < J and
all off-diagonal matrix elements of H, , in the standard basis are real and non-positive.
One can choose different operators H,, , for each pair of qubits. We shall provide a
more explicit characterization of 2-local stoquastic Hamiltonians in terms of their Pauli
expansion in Sect. 11, see Lemma 9.

Our first theorem asserts that any 2-local stoquastic Hamiltonian can appear as an
effective low-energy theory emerging from the TIM on a degree-3 graph.

Theorem 1. Consider any Hamiltonian H € StoqLH(n, J) and a precision parameter
€ > 0. There exist n’ < poly(n), J' < poly(n, J, e~ "), and a Hamiltonian H' &
TIM®@®', J') such that

(1) The i-th smallest eigenvalues of H and H' differ at most by € forall 1 <i < 2".
(2) One can compute H' in time poly(n).
(3) H' has interactions of degree 3.

Here the maximum degree of all polynomial functions is some fixed constant that does
not depend on any parameters (although we expect this constant to be quite large). The
theorem has important implications for classifying complexity of the Local Hamiltonian
Problem (LHP) [1,22]. Recall that the LHP is a decision problem where one has to
decide whether the ground state energy E( of a given Hamiltonian H acting on n qubits
is sufficiently small, Eg < E.q, or sufficiently large, Eg > E,,. Here Eyes < Ej;, are
some specified thresholds such that E,, — Eyes > poly(n’]). The Hamiltonian must
be representable as a sum of hermitian operators acting on at most k qubits each, where
k = O(1) is a small constant. Each k-qubit operator must have norm at most poly(n).
Such Hamiltonians are known as k-local. Theorem 1 implies that the LHP for 2-local
stoquastic Hamiltonians has the same complexity as the LHP for TIM. Indeed, consider
an instance of the LHP for some Hamiltonian H € StoqLH(n, J) where J < poly(n).
Choose aprecisione = (Ep,—Eyes)/3 andlet H " be the TIM Hamiltonian constructed in
Theorem 1. Note that H’ acts on poly (n) qubits and has the interaction strength poly(n).

yes

Let E{ be the ground state energy of H'. Then Ey < Ey, implies E{) < Eye5+€ = E

and Eg > E,, implies E| > E,, — € = E,,,. Since E,,, — E;es = (Eno — Eyes)/3 >
poly(n~"), the LHP for a 2-local stoquastic Hamiltonian has been reduced to the LHP
for TIM. The converse reduction is trivial since any TIM Hamiltonian can be made

stoquastic by a local change of basis. Thus we obtain

Corollary 1. The LHP for 2-local stoquastic Hamiltonians has the same complexity as
the LHP for TIM with interactions of degree 3, modulo polynomial reductions.

It is known that the LHPs for 2-local and k-local stoquastic Hamiltonians have the
same complexity for any constant k > 2, modulo polynomial reductions [8]. Thus
estimating the ground state energy of TIM on a degree-3 graph is as hard as estimating
the ground state energy of a general k-local stoquastic Hamiltonian for k = O(1).
Furthermore, the LHP for 6-local stoquastic Hamiltonians is known to be a complete
problem for the complexity class StogMA [8,23]. This is an extension of the classical
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class MA where the verifier can accept quantum states as a proof. To examine the proof
the verifier is allowed to apply classical reversible gates in a coherent fashion and,
finally, measure some fixed qubit in the X-basis. The verifier accepts the proof if the
measurement outcome is ‘+’. Let P,..(x) be the acceptance probability of the verifier
for a given problem instance x maximized over all possible proofs. A decision problem
belongs to StogMA if there exists a polynomial-size verifier as above and threshold
probabilities Pyeg > Py, + poly(n—l) such that Pycc(x) > Py for any yes-instance x
and P,..(x) < Py, for any no-instance x. Here n is the length of the problem instance
x, see [23] for a formal definition. Combining these known results and Corollary 1 we
obtain

Corollary 2. The Local Hamiltonian Problem for TIM with interactions of degree 3 is
complete for the complexity class StogMA.

Finally, Theorem 1 completes the complexity classification of 2-local Hamiltonians with
a fixed set of interactions proposed recently by Cubitt and Montanaro [7]. The problem
studied in [7] is defined as follows. Let S be a fixed set of two-qubit hermitian operators.
Consider a special case of the 2-local LHP such that Hamiltonians are required to have
aform H = . 2 Xa Va, where x, is a real coefficient and V, is an operator from S
applied to some pair of qubits. For brevity, let us call the above problem S-LHP. The
main result of Ref. [7] is that depending on the choice of S, the problem S-LHP is either
complete for one of the complexity classes NP, QMA, or can be solved in polynomial
time on a classical computer, or can be reduced in polynomial time to the LHP for TIM.
In addition, one can efficiently determine which case is realized for a given choice of S.
Combining this result and Corollary 2 one obtains

Corollary 3. Let S be any fixed set of two-qubit hermitian operators. Then depending on
S, the problem S-LHP is either complete for one of the complexity classes NP, StogMA,
QMA, or can be solved in polynomial time on a classical computer.

We also prove an analogue of Theorem 1 which gives new insights on the power
of quantum annealing (QA) algorithms [18,24] with TIM Hamiltonians which received
a significant attention recently [19-21]. Recall that quantum annealing (QA) [18,24]
attempts to find a global minimum of a real-valued function f(xy,...,x,) that de-
pends on n binary variables by encoding f into a diagonal problem Hamiltonian Hp =
> . f(x)|x){x] acting on n qubits. To find the ground state of Hp one chooses an adi-
abatic path H(t) = (1 — 1)H(0) + tHp, 0 < t < 1, where H(0) is some simple
Hamiltonian usually chosen as the transverse magnetic field, H(0) = — >/, X,,. Ini-
tializing the system in the ground state of H (0) and traversing the adiabatic path slowly
enough one can approximately prepare the ground state of Hp. The running time of
QA algorithms scales as poly(n, §~1), where 8 is the minimum spectral gap of H(7),
see [18,24,25]. We focus on the special case of QA such that the objective function
f(x1, ..., x,)1s asum of terms that depend on at most k variables each. Here k = O(1)
is some small constant. This includes well-known optimization problems such as k-
SAT, MAX-k-SAT and many variations thereof. We show that any quantum annealing
algorithm as above can be efficiently simulated by the quantum annealing with TIM
Hamiltonians. The simulation has a slowdown at most poly(n, ).

Fix some integer k > 2. We will say that H is a (2, k)-local stoquastic Hamiltonian
iff H is a sum of a 2-local stoquastic Hamiltonian and a k-local diagonal Hamiltonian.
Let StogLH*(n, J) be the set of all (2, k)-local stoquastic Hamiltonians on n-qubits
with the maximum interaction strength J.
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Theorem 2. Consider any Hamiltonian H € StoqLH*(n, J) with a non-degenerate
ground state |g) and a spectral gap 8. There exist n’ < poly(n), J' < poly(n, J, §—h,
a Hamiltonian H' € TIM(n', J), and an isometry € : (C2)®" — (C)®" such that

(1) H' has a non-degenerate ground state |g') and a spectral gap at least §/3.

2 lllg") = €lg)ll < 1/100.

(3) The isometry & maps basis vectors to basis vectors.

(4) One can compute H' and the action of £, E' on any basis vector in time poly(n).

Here the maximum degree of all polynomial functions depends only on the locality
parameter k. We note that one can replace the constant 1/100 in condition (2) by an
arbitrary precision parameter 7 > 0. Then the same theorem holds with a scaling J’ <
poly(n, J, s~ 17_1). One can also impose a restriction that the Hamiltonian H’ has
interactions of degree-3. Then a similar theorem holds, but the isometry £ has slightly
more complicated properties, see Sect. 12 for details.

Let us discuss implications of the theorem. Suppose H(t) € StoqLH*(n, J) is
an adiabatic path such that H(1) = Hp is the problem Hamiltonian and H(0) =
— > w1 Xu. We assume that H () has a non-degenerate ground state |g(7)) and a
spectral gap at least § for all . Also we assume that J < poly(n). Since X, can
be adiabatically rotated to Z, without closing the gap, we can modify the path such
that H(0) = — >, Z,. Then the initial ground state is |g(0)) = |0®"). Applying
Theorem 2 to each Hamiltonian H () one obtains a family of TIM Hamiltonians H'(t)
such that H’(t) has a non-degenerate ground state |g'(t)) ~ £|g(t)), the spectral gap
at least §/3, and the interaction strength at most poly(n, §~'). We will show that the
map H — H’ is sufficiently smooth, so that the family H'(t), 0 < t < 1, defines an
adiabatic path and the time it takes to traverse the paths H (t) and H' () differ at most by
afactor poly(n, §~1), see Sect. 12 for details. Therefore one can (approximately) prepare
the final state |g’(1)) by initializing the system in the basis state £]/0%") ~ |g’(0)) and
traversing the path H’'(t). Measuring every qubit of the final state |g’(1)) in the Z-
basis one obtains a string of outcomes x € {0, 1}”/ such that £|g(1)) ~ |x). Then
1g(1)) =~ E|x), that is, the ground state of Hp can be efficiently computed from x. Thus
we obtain

Corollary 4. Any quantum annealing algorithm with (2, k)-local stoquastic Hamiltoni-
ans can be simulated by a quantum annealing algorithm with TIM Hamiltonians. The
simulation has overhead at most poly (n, § _1), where n is the number of qubits and § is
the minimum spectral gap of the adiabatic path.

In the rest of this section we informally sketch the proof of the main theorems, discuss
several open problems, and outline the organization of the paper.

Sketch of the proof. The proof of Theorems 1, 2 relies on perturbative reductions [2,22]
and the Schrieffer—Wolff transformation [26-28]. At each step of the proof we work
with two quantum models: a simulator Hamiltonian Hg;p, acting on some Hilbert space
'H and a target Hamiltonian Hy,get acting on a certain subspace1 H_ < 'H. We represent
‘H_ as the low-energy subspace of a suitable Hamiltonian Hy which has a large energy
gap A for all eigenvectors orthogonal to H_. We choose Hsim = Hp + V, where V is
a weak perturbation such that || V|| <« A. We show that Hiyger can be approximated by

1 we identify Hiarger with a Hamiltonian acting on the subspace H— using a suitable encoding.
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Table 1. Perturbative reductions used in the proof of Theorem 1

TIM, degree-3 graph

TIM, general graph

Hard-core dimers, triangle-free graph
Hard-core bosons, range-2

Hard-core bosons, range-1

Hard-core bosons, range-1, controlled hopping
2-local stoquastic Hamiltonians

Each model is obtained as an effective low-energy Hamiltonian for the model located one row above. The
hard-core bosons (HCB) model describes a multi-particle quantum walk on a graph. The Hamiltonian consists
of a hopping term, on-site chemical potential, and arbitrary two-particle interactions. Different particles must
be separated from each other by a certain minimum distance that we call a range of the model. HCB is closely
related to the Bose—Hubbard model. The hard-core dimers model is analogous to HCB except that admissible
particle configuration must consist of nearest-neighbor pairs of particles that we call dimers. Different dimers
must be separated from each other by a certain minimum distance. A rigorous definition of the models is given
in Sect. 2

an effective low-energy Hamiltonian Hegr acting on 7{_ which is obtained from Hgjy
using a few lowest orders of the perturbation theory,

Hetr = Vo — Voo Hy "Vl + Voo Hy "WV Hy 'V 4

Here V is considered as a 2 x 2 block matrix with the blocks labeled by ‘-’ and ‘+’
corresponding to the low-energy subspace H_ and the high-energy subspace H, = H=.
More precisely, Heit ~ P_U(Hy + V)UT P_, where P_ is the projector onto _ and
U is a unitary operator on ‘H known as the Schrieffer—Wolff transformation, see Sect. 4.
The latter brings Hp + V into a block-diagonal form such that U (Hy + V)U f preserves
the subspace H_. We show that the low-lying eigenvalues and eigenvectors of Hgjm
approximate the respective eigenvalues and eigenvectors of Hyarger With an error that can
made arbitrarily small by choosing large enough A.

We apply the above step recursively several times such that the target Hamiltonian
at the 7-th step becomes the simulator Hamiltonian at the (¢ + 1)-th step. The recursion
starts from the TIM with interactions of degree-3 at the highest energy scale, goes
through several intermediate models listed in Table 1, and arrives at a given 2-local or
(2, k)-stoquastic Hamiltonian at the lowest energy scale. Overall, the proof requires nine
different reductions.?

To simplify the analysis of recursive reductions we introduce a general definition of a
simulation that quantifies how close are two different models in terms of their low-lying
eigenvalues and eigenvectors. Our definition is shown to be stable under the composition
of simulations.

Let us informally sketch a reduction from TIM to hard-core dimer models. This
reduction provides an intuitive picture of how local stoquastic interactions can be gen-
erated perturbatively by a global transverse field and allows us to highlight the role of
other models from Table 1. We shall identify basis states of n qubits with configurations
of particles distributed over nodes (vertices) of some graph of size n. Each node can
be either empty (state 0) or occupied (state 1). Let n, = 0, 1 be the occupation num-
ber of a node u and W, ,, be the hopping operator [10)(01] + |01) (10| applied to nodes
u, v. The Hilbert space of the hard-core dimers (HCD) model is spanned by m-dimer

2 Some of our reductions are ‘trivial’ in the sense that they simply restrict a Hamiltonian to a certain
subspace. The proof contains only six ‘non-trivial’ reductions that actually change the Hamiltonian.
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Fig. 1. Examples of 2-dimer states on the square grid. Hopping operator W, ;, maps a 2-dimer state to another
2-dimer state

s u S S
U U

@ V+_. Vo

v —> —> U

L an L an —0—9@

Fig. 2. Hopping term W, , generated perturbatively by a global transverse field V ~ Zl’-’:] X;

states—configurations of 2m particles that consist of m well-separated particle pairs,
or dimers. Each dimer must occupy an adjacent pair of nodes. For technical reasons,
we require different dimers to be separated by at least three graph edges. Examples of
2-dimer states are shown on Fig. 1.

The HCD model has a Hamiltonian

H = Hdiag - Z Wu,v,

1<u<v<n

where Hyjqe includes only diagonal terms n, and nyn,. It is understood that H is
projected onto the subspace spanned by m-dimer states. Although H includes hopping
terms W, , between any pair of nodes, only local (next-to-nearest neighbor) hopping
terms may have a non-zero projection onto the m-dimer subspace, see Fig. 1. We shall
represent H as an effective low-energy Hamiltonian emerging from a TIM simulator
Hgim = Hy + V acting on n qubits, where Hj is a diagonal Hamiltonian chosen such
that its low-energy subspace H_ is spanned by m-dimers. Such Hamiltonian can be
composed from terms n, and n,n,, see Sect. 6. We choose the perturbation as V =

Hyiag+h ZZ: 1 Xu. Then the first-order effective Hamiltonian is Hegr,1 = V__ = Hyjqg
since X, maps any dimer state to a non-dimer state which implies P_X,P— = 0.
Consider now the second-order effective Hamiltonian Hefr» = —V_4Hy 1V+_. The

term V,_ can map a dimer {s, u} to a single particle, say {s}, by annihilating the particle
at u. In order to return to the m-dimer subspace, V_, has to create a particle at some
node v which is a nearest-neighbor of s, see Fig. 2.

Thus Hefr» maps a dimer {s, u} to a dimer {s, v} which is equivalent to applying the
hopping operator W, ,,. Note that the intermediate state created by V,_ “remembers”
location of the dimer {s, u} since one half of the dimer is still present in the intermediate
state. This is why a local hopping of dimers can emerge from the global transverse field
and this is the main reason why the chain of reductions in Table 1 starts from dimers
(rather than single particles hopping on a graph). We note that Hefr 2 also contains some
unwanted diagonal terms. For example, an unwanted two-particle interaction nyn, would
be generated in the above example if V_, creates a particle at u rather than at v. Such
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unwanted terms can be easily cancelled by properly modifying V since our simulator
Hamiltonian (TIM) can include two-particle interactions like n3n,. The main technical
difficulty in this and other reductions is ensuring that Heg does not include unwanted
interactions among three or more particles such as ngn,n; (such terms cannot be canceled
within the class TIM). For example, suppose V,_ creates a particle at some node i
which does not belong to any dimer. In order to return to the m-dimer subspace, V_.
has to annihilate the particle at i. Such a process is capable of generating multi-particle
interactions through the intermediate state acted upon by H,, ! To avoid this problem,
we modify Hy such that configurations with 2m + 1 particles have much higher energy
than those with 2m — 1 particles. This ensures that V,_ can only annihilate particles.

Hard-core bosons (HCB) models from Table 1 describe particles hopping along edges
of a graph such that the total number of particles is fixed. Loosely speaking, each particle
of the HCB model is simulated by one dimer within the HCD model. Since the dimers
can only move locally, it should not be too surprising that HCD allows us to simulate
local hopping of particles on an arbitrary graph. HCB Hamiltonians may also contain
diagonal terms n, and nyn,. In order to avoid multi-particle interactions generated
perturbatively, we have to consider several variations of HCB that differ by a range—
the minimum distance two particles can approach each other. Our reductions only use
HCB models with range r = 1 and r = 2. We also need an “enhanced” HCB model that
includes controlled hopping terms such as ng W, ,

To construct an HCB-simulator for a 2-local stoquastic Hamiltonian we use the dual-
rail encoding of each qubit such that logical states |0) and |1) are encoded by HCB
states |10) and |01) respectively. We construct simple gadgets that allow us to simulate
elementary stoquastic interactions such as

—X®I[0)(0], —XQ|I)(1], - X®X£YQY

by HCB Hamiltonians. For example, —X ® |0)(0| has an HCB-simulator —Wj 7 ® n3,
where particles {1, 2} encode the first qubit and particles {3, 4} encode the second qubit.
We then show how to decompose any 2-local stoquastic Hamiltonian into the elementary
interactions and combine the corresponding gadgets into a single HCB simulator. The
main technical difficulty here is avoiding cross-talk” between different gadgets.

For almost all of our reductions the Hamiltonian Hj is diagonal in the standard
basis, so that all eigenvalues and eigenvectors of Hp can be easily computed. The only
exception is the reduction from TIM with interactions of degree-3 to a general TIM. For
this reduction we encode each qubit of the target model into the approximately two-fold
degenerate ground subspace of the one-dimensional TIM on a chain of a suitable length.
Accordingly, the Hamiltonian Hy describes a collection of one-dimensional TIMs. We
simulate the logical Ising interaction Z, Z, between some pair of logical qubits u, v by
applying the physical interaction Z; Z; to a properly chosen pair of qubits i € L, and
j € L,, where L, is the chain encoding a logical qubit u. The logical transverse field
X, is automatically generated due to the energy splitting between the ground states of
L,. The analysis of this reduction exploits recent exact results on the form-factors of the
one-dimensional TIM [29].

We emphasize that the word “reduction” is used in two distinct senses. In the present
paper we speak of a perturbative reduction from a Hamiltonian Hgjy, to a Hamiltonian
Hiarger When Higpgey is the effective low-energy Hamiltonian derived from Hgp,, fol-
lowing terminology in physics. However, if Hiager belongs to some particular class of
Hamiltonians 7 and Hgjy, belongs to some subclass S € 7, this is a reduction from the
class 7 to the class S, according to terminology in computer science.



On Complexity of the Quantum Ising Model 9

Open problems. Our work raises several questions. First, we expect that Theorems 1
and 2 can be extended in a number of ways. For example, one may ask whether the
analogue of Theorem 1 holds for TIM Hamiltonians restricted to particular families of
graphs, such as planar graphs or regular lattices. We note that a simple modification of
our degree reduction method based on the one-dimensional TIM produces a simulator
Hamiltonian that can be embedded into the 3D lattice of dimensions n x n x 2 with
periodic boundary conditions. We expect that applying additional perturbative reductions
such as those described in Ref. [2] can further simplify the lattice. Likewise, we expect
that Theorem 2 can be extended to the case when H is a general k-local stoquastic
Hamiltonian by applying perturbative reductions of Ref. [8].

A challenging open question is whether TIM Hamiltonians defined on a 2D lattice
can realize the topological quantum order. It has been recently shown that the hard-core
bosons model defined on the kagome lattice has a topologically ordered ground state for
a certain range of parameters [30,31]. A preliminary analysis shows that the chain of
reductions from TIM to hard-core bosons described in the present paper can be modified
such that all intermediate Hamiltonians have geometrically local interactions. Assuming
that the unphysical polynomial scaling of interactions in the simulator Hamiltonian
can be avoided [27,32], this points towards existence of topologically ordered phases
described by TIM Hamiltonians.

Finally, a big open question is whether QA algorithms with TIM Hamiltonians can
be efficiently simulated classically. It has been recently shown that the general purpose
quantum Monte Carlo algorithms fail to simulate certain instances of the QA with TIM
efficiently [33], even though these instances have a non-negligible minimum spectral
gap. This leaves a possibility that some more specialized algorithms taking advantage of
the special structure of TIM Hamiltonians can succeed even though the general purpose
algorithm fails. Our results demonstrate that this is unlikely, since simulating the QA
with TIM is as hard as simulating the QA with much more general (2, k)-local stoquastic
Hamiltonians.

The paper is organized as follows. Section 2 contains a rigorous definition of the
models listed in Table 1. Our main technical tools are introduced in Sects. 3 and 4 which
present a general definition of a simulation, describe perturbative reductions based on
the Schrieffer—Wolff transformation, and prove several technical lemmas used in the rest
of the paper. Section 5 shows how to simulate a general TIM Hamiltonian using a special
case of TIM with interactions of degree-3. Sections 6—11 describe a chain of perturbative
reductions between the models listed in Table 1. These reductions are combined together
in Sect. 12, which contains the proof of Theorems 1 and 2. Finally, Appendix A proves
certain bounds on eigenvalues and form-factors of the one-dimensional TIM, which are
used in Sect. 5.

2. Hard-core Bosons and Dimers

Consider a graph G = (U, E) with a set of n nodes U and a set of edges E. Define
a Hilbert space B = (C?)®" with an orthonormal basis {|S) : § C U} such that
basis vectors are labeled by subsets of nodes S. We shall identify subsets of nodes with
configurations of particles that live at nodes of the graph. Each node can be either empty
or occupied by a single particle. For any node u € U define a particle number operator
n, such that n,|S) = |S) if u € § and n,|S) = 0 otherwise. We shall often consider
diagonal Hamiltonians of the following form:
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Hdiag = Z Multy + Z Wy, plyMNy. 2)

uelU {u,v}CU

Here the second sum runs over all two-node subsets (not only nearest neighbors). The
coefficients , and w, , can be viewed as a chemical potential and a two-particle inter-
action potential respectively.

Let us now define a hopping operator W, ,,. Here u, v € U are arbitrary nodes such
that u # v. By definition, W, , annihilates any state |.S) in which both nodes u, v are
occupied or both nodes are empty. If one of the nodes u, v is occupied and the other
node is empty, W, , transfers a particle from u to v or vice verse. Matrix elements of
W,.» in the chosen basis are

1 if ueS,v¢ S,andS = (S\u)Uv.
(S'\WyplS)y =11 if veS,u¢S,andS = (S\v)Uu, 3)
0 otherwise.

Let m,r > 1 be fixed integers. Define a subspace B,, C B spanned by all subsets
S C U with exactly m nodes. We shall refer to B, as an m-particle sector. Obviously,
the operators W, ,, and n,, preserve 53,,. A subset of nodes S is said to be r-sparse ift the
graph distance between any distinct pair of nodes u, v € S is atleast r. Define a subspace
Bin.r C By, spanned by all r-sparse subsets S C U with exactly m nodes. By definition,
any subset of nodes is 1-sparse, so that B,, 1 = B,. Note that the operators W, ,
generally do not preserve 53, . Below we consider hopping operators W, , projected
onto the subspace B,, .. Matrix elements of a projected hopping operator are defined by
Eq. (3), where S and S’ run over all r-sparse subsets of m nodes.

Our first model is called hard-core bosons (HCB). It is defined on the Hilbert space
Bin.r» where m and r are fixed parameters. We shall refer to r as the range of the model.
The Hamiltonian is

H=- z oWy +Hdiag- 4)
(u,v)eE

Here Hyi,g is defined by Eq. (2) and all operators are projected onto the subspace B, .
Thus W, , moves a particle only if this does not violate the r-sparsity condition. Oth-
erwise W, , annihilates a state. The coefficients ¢, ,, are hopping amplitudes. We shall
always assume that

fyy = 0

for all u, v. The coefficients 1, and w, , in Hgiag may have arbitrary signs. Note that H
is a stoquastic Hamiltonian. Let HCB,. (1, m, J) be the set of Hamiltonians describing
the m-particle sector of range-r hard-core bosons on a graph with n nodes such that all
the coefficients w,, @, v, t,,», have magnitude at most J. Here the Hamiltonian can be
defined on any graph with n nodes. Our proof will only use HCB models with the range
r = 1, 2. Later on we shall define certain enhanced versions of the HCB which have
multi-particle interactions, see Sect. 8, and/or controlled hopping terms, see Sect. 10.
We note that the HCB model with non-positive hopping amplitudes 7, , < 0 has been
recently studied by Childs, Gosset, and Webb [6] who showed that the corresponding
LHP is QMA-complete.

Our second model is called hard-core dimers. This model also depends on a graph
G = (U, E). We shall only consider triangle-free graphs G. Let m > 1 be a fixed integer
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Table 2. Classes of Hamiltonians used in the proof of Theorem 1

TIM(n, J) Transverse field Ising Model

HCDn,m, J) m-dimer sector of Hard-Core Dimers model

HCB, (n,m, J) m-particle sector of Hard-Core Bosons with range r
HCB(n, m, J) Same as HCB (n, m, J)

HCB*(n, m, J) HCB(n, m, J) with controlled hopping terms
StogLH(n, J) Stoquastic 2-Local Hamiltonians

Here J denotes the maximum interaction strength and n denotes the number of nodes in the graph (the number
of qubits). For those models that depend on a graph, the corresponding class is defined by taking the union
over all graphs with a fixed number of nodes 7 (all triangle-free graphs in the case of HCD). The class HCB*
is formally defined in Sect. 10

parameter. A subset of nodes S C U is said to be a dimer iff S = {u, v} for some pair
of nodes u # v such that (u, v) € E. Define an m-dimer as a subset of nodes § C U
that can be represented as a disjoint union of m dimers S, ..., S, such that the graph
distance between S; and §; is at least three for all i # j. This particular choice of the
distance guarantees that m-dimers can be represented as ground states of a suitable Ising
Hamiltonian provided that the graph is triangle-free, see Lemma 8 in Sect. 6.

Let D,, C By, be the subspace spanned by all basis vectors |S) such that § € U
is an m-dimer. Note that the operators W, , generally do not preserve D,,. Below we
consider hopping operators W, , projected onto the subspace D,,. Matrix elements of a
projected hopping operator are defined by Eq. (3), where S and S’ run over all m-dimers.
The hard-core dimers (HCD) model has a Hilbert space D,, and a Hamiltonian

H=—t ) Wuy+ Haiig 5)
{u,v}CU

where Hyiyg is defined by Eq. (2) and all operators are projected onto the subspace Dy, .
The sum in Eq. (5) runs over all pairs of nodes (not only nearest neighbors). Although the
Hamiltonian does not explicitly depend on the graph structure, the underlying Hilbert
space D,, does depends on the graph since the latter determines which subsets of nodes
are m-dimers. A hopping process induced by W, , can change a dimer {s, u} to some
other dimer {s, v} with u # v, see Fig. 1. The coefficient ¢ is a hopping amplitude. We
shall assume that ¢+ > 0. Then H is a stoquastic Hamiltonian. Let HCD (1, m, J) be
the set of Hamiltonians describing the m-dimer sector of hard-core dimers model on a
graph with n nodes such that all coefficients in H have magnitude at most J. Here the
Hamiltonian can be defined on any triangle-free graph with n nodes.

Some perturbative reductions described below will alter the underlying graph G.
Whenever the choice of G is not clear from the context, we shall use more detailed
notations B,,(G), By, - (G), and D,, (G) instead of B,,, B, », and D,,. Our notations for
various classes of Hamiltonians are summarized in Table 2.

Finally, substituting Z, = I — 2n, into Eq. (1) one gets

H = Z Huhy + Z Wy Ny Ny + hy X, = Hdiag + z hy Xy, (6)
uel {u,v}CU uel

where U = {1, ...,n}, o,y =484 and p, = —2g, — ZZU « 8u,v- Here we ignore
the overall energy shift. Clearly, the coefficients w, , and ﬁave magnitude at most
O (nJ). Below we shall work with TIM Hamiltonians as defined in Eq. (6).
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3. Simulation of Eigenvalues and Eigenvectors

In this section we give a formal definition of a simulation. It quantifies how close are two
different models in terms of their low-energy properties such as the low-lying eigenvalues
and eigenvectors. We consider a target model described by a Hamiltonian H acting on
some N-dimensional Hilbert space H and a simulator model described by a Hamiltonian
Hgim acting on some Hilbert space Hgiy, of dimension at least N. Our definition of a
simulation depends on a particular encoding transformation £ : 'H — Him that embeds
‘H into some N-dimensional subspace of Hgip,. We assume that £ is an isometry, that is,
£Y& = I. The encoding enables a comparison between eigenvectors of the two models.
We envision a situation when the spectrum of Hgin, consists of two well-separated groups
of eigenvalues such that the N smallest eigenvalues of Hg;y, are separated from the rest of
its spectrum by a large gap. Let Ly (Hsim) € Hsim be the low-energy subspace spanned
by the eigenvectors of Hijy, associated with its N smallest eigenvalues.

Definition 1. Let H be a Hamiltonian acting on a Hilbert space H of dimension N. A
Hamiltonian Hgjy, and an isometry (encoding) £ : H — Hgim are said to simulate H
with an error (7, €) if there exists an isometry £ : H — Hgim such that

S1. The image of & coincides with the low-energy subspace £y (Hsim).-
S2. |H — £ Hynf < c.
S3. 1€ =€l =n.

For example, suppose H = C? and Hyjm = C?> ® C?. Consider a target Hamiltonian
H = X and a simulator Hgpy, = X @ X + A(Z ® Z + I), where A > 1. Assuming
that N = 2, the low-energy subspace of Hgjy, is spanned by |01) and [10). Consider a
dual-rail encoding of a qubit, £]0) = |10) and £|1) = |01). Then (Hgjm, £€) simulates
H with an error (0, 0). Indeed, choosing E =& one gets H=¢E "HgmE.

Although we do not impose any restrictions on the encoding, in practice it must be
sufficiently simple. For all our reductions (except for the one of Sect. 5) the encoding £
maps basis vectors to basis vectors. Whenever the choice of £ is clear from the context,
we shall just say that Hgiy, simulates H with an error (1, €). If one is interested only in
reproducing eigenvalues of the target Hamiltonian, the encoding and condition (S3) can
be ignored.

In the case of a zero error, ¢ = n = 0, the target Hamiltonian H coincides with
the restriction of Hgjy, onto the low-energy subspace of Hgim, up to a change of basis
described by &£. Clearly, any Hamiltonian simulates itself with a zero error since one
can choose & = & = I. We shall always assume that € < ||H|| since otherwise the
definition is meaningless (one can choose Hgj, = 0 regardless of H). Note that € has
the dimension of energy while 7 is dimensionless. Loosely speaking, € and n quantify
simulation error for eigenvalues and eigenvectors respectively. Let us establish some
basic properties of simulations.

Lemma 1 (Eigenvalue simulation). Suppose (Hsim, £) simulates H with an error (1, €).
Then the i-th smallest eigenvalues of Hgim and H differ at most by € forall 1 <i < N.

Proof. Property (S1) implies that the spectrum of E"Hgm& coincides with N small-
est eigenvalues of Hgjp,. The lemma now follows from (S2) and the standard Weyl’s
inequality. O
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Lemma 2 (Ground state simulation). Suppose H has a non-degenerate ground state |g)
separated from excited states by a spectral gap 8. Suppose (Hgim, £) simulates H with
an error (n, €) such that 2¢ < §. Then Hgny has a non-degenerate ground state |ggim)
and

I€lg) — lgsim)|l < n+ 0B ). (7)

Proof. Let |gsim) be the ground state of Hjp,. Note that |ggim) is non-degenerate due
to Lemma 1 and the assumption 2¢ < §. Consider an unperturbed Hamiltonian A and
a perturbation V = é:Jstimé'~ — H. The perturbed Hamiltonian H + V = S*Hsimg
has a non-degenerate ground state E\gsim)- Using the first-order perturbation theory
for eigenvectors one gets [[1g) — &£ gsim)|| < O(5~'€) and thus [[€]g) — [gsim)Il =
||£'|g) — 55T|gsim)|| < 0(5 '€). Here we used the fact that € is an isometry and
|gsim) € LN (Hsim) = Im(f). Property (S3) then leads to Eq. (7). O

Importantly, our definition of a simulation is stable under compositions: if one is given
some Hamiltonians H, Hy, H, such that H; simulates H with a small error and H»
simulates Hj with a small error, this implies that H, simulates H with a small error.

Lemma 3 (Composition). Suppose (Hy, £1) simulates H with an error (n1, €1) and
(Hy, &) simulates Hy with an error (2, €2). Let Ay be the spectral gap separating
N smallest eigenvalues of Hy from the rest of the spectrum. Suppose 2€; < Ay and
€1,€ < ||H|. Then (H>, &) simulates H with an error (1, €), where

n=m+m+0@A;") and € =€ +e+ 0 ATH]). (8)
We shall always choose the simulator such that A; > || H|| in which case € & €] + €.

Proof. Suppose H, Hi, H> act on Hilbert spaces H, H1, Ha respectively. Let N =
dim (H) and N; = dim (H;). By Lemma 1, the N smallest eigenvalues of H; are
separated from the rest of the spectrum by a spectral gap at least A; — 2¢» > 0. Thus

the low-energy subspace Ly (H;) is well defined. Let & : H; — H, be an isometry
satisfying properties (S1-S3) for a simulator (H», &) and a target Hamiltonian H; with
an error (12, €2). By definition, £ maps H; to the low-energy subspace Ly, (H>). First,

let us show that 52 approximately maps Ly (H;) to Ly (H>). More precisely, we claim
that there exists a unitary operator U : Ly, (H2) — L, (H2) such that

Ly(Hy) =U& - Ly(H) and U — 1] <2v2A7 ey, ©)

Indeed, let Py (H;) be the projector onto the low-energy subspace Ly (H;), where i =
1, 2. Consider a perturbation V = é:ZT H>&, — H;. Note that Ly(Hi+V) = 5; -Ln(Hp).
Applying Lemma 3.1 of Ref. [28] with an unperturbed Hamiltonian H; and a perturbation
V one gets

21& Har — Hill _ 22

g :
| Pn(Hy) — & Py (H2)E ]l < Al = A

(10)

Taking into account that Ly (H>) € Ly, (H2) = Im(éz) one gets

1EPx (HNDES — Py (Ha)|| = I Py (H1) — &) Py (H)& |
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and thus

- - 2e
1E2 Py (HNDE] — Py(Hy)|| < A—f (11)

For brevity denote
P=&Py(H)E and Q= Py(Hy).

By Jordan’s lemma, there exists an orthonormal basis such that the projectors P and Q
are block-diagonal in this basis with all blocks being either 1 x 1 or 2 x 2 projectors.
Assuming that 2A1_1€2 < lone has ||P — Q] < I which implies that all 1 x 1 blocks
of P and Q are the same. Consider some 2 x 2 block. Without loss of generality, the
restrictions of P and Q onto this block have a form

1 0 2 cs
P_[O 0:| and Q_|:cs s2]
for some 0 < ¢, s < 1 such that ¢2 + s2 = 1. Then P — 0 = s27 — csX and thus
[|P — Q] = s. We conclude that s < 2A1_1€2 for any 2 x 2 block. Define a unitary

U=|:C _si|=c1—isY
S Cc

suchthat UPUT = Q.Notethat |U —I|| = |c—1+is| < V2s. Extending U to the full
space Ly, (H2) we obtain Im(Q) = U -Im(P) and ||U —I|| < V/2s which is equivalent
to Eq. (9).

Now we are ready to prove that (H», £,€) simulates H with a small error. Define
an isometry

E=U 5251.
Using the first part of Eq. (9) and the fact that & maps H to the low-energy subspace
Ly (Hp) we conclude that £ maps H to the low-energy subspace Ly (H2). Thus £ obeys

property (S1) for the target Hamiltonian H and the simulator (H;, £ &1). Furthermore,
the second part of Eq. (9) implies that

n=€ - EEI U =11 +1& - &l +1E - &ll <2V2A7 e+ + 1.
Finally, let Hi(N) = H; Py (H;) be the restriction of H; onto the low-energy subspace
Ly (H;). Note that Hi & = HI(N)ffl and HoUEE| = HZ(N)nggl. Thus

1H — ETHEN < |H = ETHiEnll + 18] (H™ — EJUTH UENE ).
The first term is upper bounded by €. Thus
IH = ETmE| < e + UEHY — HNVUE).
To bound the second term we write U = I + M and note that
UEHHN — HNUE = Py (H)(UEHy — HaU &) Py (Hy)
= Py (H2)(ExHy — Haéy) Py (Hy) + Py (H)ME H{Y)
—HMN ME Py (H)).
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The norm of the first term is upper bounded by
IExHy — Habo|l < | Hy — E bl < 2.

Thus
IH—ET e <er+e+ U1 1HM |+ 10 =11 - 1 5.

Lemma 1 implies that || H{"|| < [|H|| + €2 and [|H{"™|| < | H|| + €;. Combining
this and the second part of Eq. (9) one arrives at

IH - ETHE|| < e1+ea+ O(AT el H) + O(AT' (€3 + €1€2)).

Since we assumed that €1, €2 < || H ||, the last term is at most O(Al_162||H||). O

4. Schrieffer—Wolff Transformation and Perturbative Reductions

Let H be a target Hamiltonian chosen from some particular class of Hamiltonians C.
Suppose our goal is to simulate H with a small error according to Definition 1 using
a simulator Hamiltonian Hgjy, which is required to be a member of some smaller class
C’ C C. Perturbative reductions [2,22] provide a general method of accomplishing such
simulation. Here we describe perturbative reductions based on the Schrieffer—Wolff
transformation [26], see for instance [28] and the references therein. Also we provide
sufficient conditions under which a k-th order reduction achieves the desired simulation
error fork =1, 2, 3, see Lemmas 4-7.
Consider a finite-dimensional Hilbert space Him decomposed into a direct sum

Hsim = H- ® Hy. (12)

Let Ni = dim (H+) and P4 be the projector onto H such that P_ + P, = I. Let O
be any linear operator on Hjny,. We shall write

077=P70P7, 07+=P70P+, 0+7=P+0P7, 0++=P+0P+.

The operator is said to be block diagonal if O_, = 0 and O,_ = 0. The operator is said
to be block off-diagonal if O__ = 0 and O44 = 0.

Let Hy and V be hermitian operators on Hgy such that Hy is block-diagonal,
(Hp)—— = 0, and such that (Hp).+ has all eigenvalues greater or equal to one. Consider
a perturbed Hamiltonian

Hgm = AHy+V, (13)
where A is a large parameter. We shall always assume that
VI < A/2. (14)

The Schrieffer—Wolff transformation is a unitary operator on Hgin, defined as ¢S, where
S is an anti-hermitian operator satisfying

(€S Hgme™®)_+ =0, (eSHgme™S5)s- =0, S__ =0, S, =0, S| <m/2.
(15)
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In other words, we require that the transformed Hamiltonian &S Hsime_s is block diagonal
whereas S itself is block off-diagonal. It is known that Eq. (15) has a unique solution
S, see Lemma 2.3 and Lemma 3.1 in [28]. In particular, S = 0 if V = 0. The effective
low-energy Hamiltonian H.f is a hermitian operator acting on H_ defined as

Hegr = (¢35 Hgme ™ 5)__.

Note that Hegr = 0 if V = 0. Since the operator ¢ is unitary and the transformed
Hamiltonian 5 Hgme ™ is block-diagonal, each eigenvalue of H.ff must be an eigenvalue
of Hgip,. It is known that the i-th smallest eigenvalues of Hefr and Hgjp, coincide for all
1 <i < N_, see [28] for details.

Consider now the Taylor series S = Z;’i] Sj and Hefr = z;’;l Her, j, where S
and Hegr, ; are the Taylor coefficients proportional to the j-th power of V. We shall only
need the Taylor coefficients

Hefr1 = V-, (16)
Hern = —A"'V_ Hy 'V, (17)
and

A—Z
Hers = A2 V_ Hy Vi Hy 'V, — - (v,+H0—2v+, v +h.c.) C18)

see Section 3.2 of [28] for the derivation. Note that the restriction of H,” !'to the subspace
‘H 4 is well-defined since all eigenvalues of (Hy)++ are at least one. It is known that
the series for S and Hegr converge absolutely for |[V| < A/16 and the j-th Taylor
coefficients are bounded as

IS;Il < A VIV and || Hefr, j1| < (A V| (19)

for some constant coefficients b, ¢ > 0, see Lemma 3.4 in [28]. Define the k-th order
effective Hamiltonian as the truncated series

k
Heii (k) = ) Hefr,j. (20)
j=1
The above implies that for any k = O(1) and || V|| < A - min {b, ¢} one has
o
IS < > Ga) VI = o™ v 1)
j=1
and
0 . .
| Hett — Her ()] < D (e AV = oA~ v . (22)
Jj=k+1

Suppose now that Hieer is a fixed target Hamiltonian acting on some Hilbert space
Hiarget and € : Hiarget — Hisim is some fixed isometry (encoding) such that Im(&) =
‘H_. Define a logical target Hamiltonian acting on H_ as

ﬁtarget = gHtargeth~ (23)
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The goal of perturbative reductions is to approximate ﬁtarget by the effective low-energy
Hamiltonian He¢r (k) emerging from the simulator Hamiltonian Hgir, defined in Eq. (13),
where the parameter A controls the approximation error. Below we outline a general
strategy for constructing the simulator Hamiltonian proposed by Oliveira and Terhal [2].
The strategy depends on the order k of a reduction. o

For first-order reductions one just needs to choose V such that H ey = (V)——, see
Eq. (16). For second-order reductions the perturbation V' will be chosen as

V = Al/z Vmain + Vextra» (24)

where (Viain)—— = 0 and Veyqa 18 block-diagonal. Both operators Viain and Vexya are
independent of A. Substituting V into Egs. (16, 17) gives

Heff,l = (Vextra)—— and Heff,2 = _(Vmain)—+H0_l(Vmain)+—- (25)

We shall choose Viain such that Hegr » generates the desired logical target Hamiltonian
and, may be, some unwanted terms. The purpose of Vexya 1s to cancel the unwanted
terms. In addition, Vexya may include all the terms of the target Hamiltonian that are
members of the simulator class, such as two-qubit diagonal interactions. Note that the
latter belong to all the classes listed in Table 2. Most of the second-order reductions
described below will achieve an exact equality Hefr 2 = H target-

For third-order reductions the perturbation V will be chosen as

V= A2/3 Vimain + A1/3 Vextra + Vextra, (26)

where (Viain)—— = 0, and Vexira, Vema are block-diagonal. All operators Viain, Vextras
and Vexira are independent of A. Substituting V into Eqgs. (16-18) gives

Heff,l = A1/3(‘7«:xtra)—— + (Vextra)——a Heff,2 = _A1/3(Vmain)—+H0_1(Vmain)+—,
(27)

and

Hegr 3 = (Vmain)—+Ho_l(Vmain)++H0_1(Vmain)+— + O(A_I/SH‘;extra” : ||Vmain||2)-
(28)

We shall choose A large enough so that the last term in Eq. (28) can be neglected. We
shall chose Viain such that Hegr 3 generates the desired logical target Hamiltonian and,
may be, some unwanted terms. The purpose of Vexira 1S to cancel the unwanted terms.
In addition, Vexira may include all the terms of the target Hamiltonian that are members
of the simulator class. Finally, the purpose of Vem is to cancel the second-order term
Hes 2. Accordingly, we shall always choose Vextm such that

(Vextra)ff = (Vmain)7+H()_](Vmain)+f~ (29)

Our proof will only use reductions of the order k = 1, 2, 3. The following lemmas provide
sufficient conditions under which a k-th order reduction achieves a desired simulation
error. Recall that our definition of a simulation depends on a particular encoding &, see
Definition 1. The lemmas stated below apply to any fixed encoding £ and the logical
target Hamiltonian defined by Eq. (23). In Lemmas 4-6 we assume that Hy is block-
diagonal, (Hy)—— = 0, and (Hp)++ has all eigenvalues greater or equal to 1.
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Lemma 4 (First-order reduction). Suppose one can choose Hy, V such that
I H targer — (V)| < €/2. (30)

Then Hgm = AHy + V simulates Hyger with an error (n, €), provided that A >
OE VP +n V.

Proof. Let £ : Hiarget — Hsim be the chosen encoding. Recall that Im(€) = H_.
Let us check that £ = eS¢ satisfies conditions (S1-S3) of Definition 1. By definition
of the Schrieffer—Wolff transformation, ¢~5 maps H_ to the low-energy subspace of
Hgn,. Thus E maps Hiarget to the low-energy subspace of Hgim which proves (S1). From
Eq. (22) one infers that || Hegr — Hegr.1]] < O(A™!|V||?) < €/2. Combining this and
Eq. (30) gives ||Harget — Herll < € and thus || Hreer — €' HerE]| < €. Substituting
Hegr = (€5 Hgme™S)__ one gets || Hiarget —STHsimgH < € which proves condition (S2).
Finally, Eq. (21) leads to ||E — &|| = ||[I — eS| = O(||S|) = O(A~Y||V]) < . This
proves condition (S3). O

Lemma 5 (Second-order reduction). Suppose one can choose Hy, Vimain, Vextra Such that
Vextra 18 block-diagonal, (Vinain)—— = 0, and

||ﬁtarget — (Vextra)—— + (Vmain)—+H0_l(Vmain)+— | <e/2. 3D

Suppose the norm of Vmain, Vextra IS at most A. Then Hgm = AHy + A2 Vimain + Vextra
simulates Hyger with an error (1), €) provided that A > 0(6_2A6 + n_zAz).

Proof. LetV = AV2V o+ Vexira.- By assumption, V has norm O(A27). Substituting
this into Eq. (22) gives |Hett — Heir(2)|| < O(AT2|V3) = 0(A712A%) < €/2.
From EqS. (25, 31) one gets ”Htarget — Her (2)]| < 6/2 which giVCS | Hetr — Htarget” =
€. Finally, Eq. (21) leads to ||€ — E:’|| = |l —e S| = o(SI) = oA~ V| =
O(A~VZA) < n. The rest of the proof is identical to the one of Lemma 4. O

Lemma 6 (Third:order reduction). Suppose one can choose Hy, Vinain, Vextra, Vextra
such that Vexua, Vextra are block-diagonal, (Vinain) —— = 0,

||ﬁta:get — (Vextra)—— — (Vmain)—+H0_1(Vmain)++H()_1(Vmain)+— I < 6/27 (32)

and
(Vextra)ff = (Vmain)7+H07] (Vmain)+— - (33)

Suppose the norm of Vimain, Vextras Vetra is at most A. Then Hgm = AHy + A% Vipain +
A3 Vextra + Vextra Simulates Hiargey with an error (1, €) provided that A > 0(6_3A12 +
77_3 A3).

Proof. LetV = A2V i+ A3 Vextra + Vextra- By assumption, V has norm O(A2/3A).
Substituting this into Eq. (22) gives || Hett— Hetr (3)]| < O(AT3|V[[*) = O(A™13A%) <
€/4. Combining Eqgs. (27, 28) and Egs. (32, 33) one gets

I Harget — Hefr (3| < €/4+ O(A™Y3 | Vextrall - | Vinain I12) = €/4 + 0(A™13A3) < ¢2.

This gives || Heft — Huarget | < €. Finally, Eq. (21) leads to |€ — &|| = |1 — eS| =
OIS = O(A™Y V) = O(A™Y3A) < n. The rest of the proof is identical to the
one of Lemma4. 0O
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The above framework covers all our reductions except for the one described in Sect. 5,
namely, the reduction from TIM on degree-3 graphs to TIM on general graphs. The latter
is a first-order reduction where the Hamiltonian Hy is chosen as the one-dimensional
TIM. In this case Hyp has only approximately degenerate ground subspace, (Hy)—— # 0,
and the rules Eqs. (16—18) for computing the effective Hamiltonian no longer apply. The
following is a simple generalization of Lemma 4.

Lemma 7 (Generalized first-order reduction). Suppose one can choose Hy, V such that
Hy is block-diagonal, (Hy)++ has all eigenvalues at least A, and (Hy)—— has all eigen-
values in the interval [—A /2, A /2]. Suppose also that

”ﬁtarget —(Hp)—— = (V)——|l < €/2. (34)

Then Hgm = Ho+V simulates Hyyoet withan error (1), €) provided that A > O (e~ v ||2+
-1
nIviID.

Proof. We can use the same arguments as in the proof of Lemma 4 except that now Hegr
has a 0-th order term Hefr o = (Hp)——. By assumption, the unperturbed Hamiltonian
Hp has an energy gap at least A /2 separating H_ and H,. Lemma 3.4 of Ref. [28]
implies that the series for S and Heg converges absolutely for | V| < A /32 and the
Taylor coefficients S; and Hegr,; are bounded as in Eqgs. (21, 22). Therefore || Hetr —
Hefr0 — Hetr,1 | < O(A™Y|V?) and ||S]| < O(A™[|[V]). The rest of the proof is the
same as in Lemma 4. O

5. Reduction from Degree-3 Graphs to General Graphs

Consider a target Hamiltonian Hieer describing the TIM on n qubits. We assume that
each qubit can be coupled to any other qubit with ZZ interactions. Below we show how
to simulate Hyyree using TIM with interactions of degree 3. Let us first informally sketch
the main idea. We shall encode each qubit u of the target model into the ground subspace
of a TIM Hamiltonian on a one-dimensional chain L, of some length m. The chain will
be in the ferromagnetic phase such that the ground states 1 and v originating from the
two different Z-symmetry sectors are approximately degenerate forming one logical
qubit. The basis states of the logical qubit will be defined as |[0) ~ |¥g) + |¥1) and
1) ~ |¥0) — |¥1). Important parameters of the logical qubit are the energy splitting
8 between 1o and v and the energy gap A separating v, ¥ from excited states. We
shall work in the regime § > poly(1/m) and A /§ > poly(m) which can be achieved if
the chain is sufficiently close to the quantum phase transition point. The logical Pauli
operator X, will be simulated by the energy splitting between o and V1. The logical
Pauli operator Z, will be simulated by applying a magnetic field #Z; to an arbitrarily
chosen qubit i € L,. The strength of the field 2 will be much smaller than the gap A
to enable a perturbative analysis. We shall only need the first-order perturbation theory.
Since the one-dimensional TIM is exactly solvable, all parameters of the logical qubit
will be efficiently computable. Assuming that the target model has n qubits, the simulator
model will be composed of n chains Ly, ..., L, of length m each. We can simulate a
logical interaction Z,Z, by choosing an arbitrary pair of qubits i € L,, j € L, and
applying the Ising interaction Z; Z ;. Since each logical qubit L, is coupled to at most
n— 1 other logical qubits, choosing m > n— 1 guarantees that each qubit of L,, is coupled
to at most one qubit from a different chain. In addition, each qubit of L, must be coupled
to its left and right neighbors in L,. Thus the simulator model has interactions of degree
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3. Alogical transverse field X, is automatically simulated due to the ground state energy
splitting of L,,. Thereby, we shall be able to simulate any logical TIM Hamiltonian.

Let us now describe the reduction formally. For the sake of clarity, we begin by
constructing a single logical qubit. Consider a chain of m qubits with periodic boundary
conditions. Qubits will be labeled by elements of the cyclic group j € Z,,. Consider a
TIM Hamiltonian

Henain = —¢ > ZjZjs1— > X, (35)
jEZm ]EZm
where
1
=1+ M (36)
m

for some parameter ¢ > 1 to be chosen later. The Hamiltonian Hpain can be diagonal-
ized via the Jordan—Wigner transformation and all its eigenvalues have been explicitly
computed [14]. Let the three smallest eigenvalues of Hpain be Eg < E; < E,. We shall
use the following well-known fact [29,34].

Fact 1. Let w,, = e*™/™ be the m-th root of unity. For any g > 1 one has

j+1/2 j 1/2
Eo=— > lg—aon' I, Ei== > |g—wnl. Ey=Eo+4lg— |-
= J€Lm
(37)

Furthermore, the eigenvalues Eo, E| have multiplicity one and the corresponding eigen-
vectors Y, Y1 satisfy X©™ g = Yo and X"y = —y.

Let H = (C?)®™ be the full Hilbert space of n qubits. Define an encoding £ : C? — H
as
£10) = [0) = (1o} +[¥1))/v2 and E|1) = [T) = (1) — [y1))/V2.
(38)
Thus we identify the states v and yr; with the states |+) and |—) of the logical qubit.
Decompose H = ‘H_ @ H., where H_ is the logical subspace spanned by v, ¥ and

"H+ is the orthogonal complement of H_. Then Hcpaiy is block-diagonal. Performing the
overall energy shift by (Eg + E1)/2 we arrive at

(Hchain)—— = —8X and  (Hchain)++ > Al (39)

where X = EXET = |y0) (Yol — |¥1) (1] is the logical Pauli X operator,

8= (E1 —Ep)/2 and A =4|g —wl/*| - 6.

Note that § and A can be computed in time poly(m) using Eq. (37). In Appendix A we
prove that

Qm=3?) <s < om1? (40)

in the limit m — oo. Therefore

A B ooy o1 5 g @
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By choosing the constant ¢ sufficiently large we can make the ratio A /é bigger than any
fixed polynomial of m and, at the same time, keep § at least polynomial in 1/m.

Consider now a perturbation V = hZ;, where |[h| < A and j € Z, is an arbi-
trarily chosen qubit. The first-order effective Hamiltonian acting on H_ is h(Z;)__.
To compute (Z;)__ we need to know matrix elements (Vy|Z;|¥g) for a, B = 0, 1.
Note that Z; anti-commutes with X ®m Using Fact 1 we infer that (| Z jlYo) = 0and
(Y11Zj1yr1) = 0. Therefore (Z ;) must be a linear combination of the logical Pauli
operators Z and Y. Since Henin has real matrix elements in the standard basis, the same
is true for the restrictions of Hchain onto the sectors X®" = £1. Therefore v/ and v,
must have real amplitudes in the standard basis. This shows that (y|Z;|y1) must be
real and thus

(Zj)-— =§€Z, where &= (y1|Z;lv0) (42)

and Z = EZET = |Yo) (Y| + |¥1) (Yol is the logical Pauli Z operator. It can be easily
shown that & does not depend on the choice of j. We shall need the following expression
for & computed in Ref. [29], see Eq. (77) therein.

Fact 2. Suppose g > 1. Let €, = |g — wh |, where p is either integer or half-integer.
Then

(1—g™/3 ez, [yez,r1/20€p + e

&l = (43)
Hp,p’eZm (61’ + 6P/)l/8 Hq,q’eZm+1/2(€f1 + Efl/)l/S
Furthermore, in Appendix A we prove that & is positive and
Fz(-g )"z am™' (44)

for all m > 2 and for all g > 1. Note that & can be computed in time poly(m) using
Eq. (43). We can now simulate any target Hamiltonian on a single qubit which has a
form

Higet = —h*X +h°Z, 1" > 0. (45)

Let J = max (|h%], h*) be the interaction strength of Hiager. Choose the simulator
Hamiltonian as

Hgm = Ho+V, Ho=h"8"Hepain, V =h€""'2;. (46)

Here j € Z, is an arbitrary qubit. From Eqgs. (39, 42) we infer that the first-order
effective Hamiltonian acting on H_ is

Hepr (1) = (Hsim)—— = hx(S_I(Hchain)—— + hzg_l (Zj)—— =—h"X+h'Z = Htargeb

Note that Hy has an energy gap A’ = h* A8~! separating H_ and H,. By Lemma 7,
the Hamiltonian Hgj and the encoding € simulate Hiareer With an error (1, €) provided
that A’ > poly(h?€~", =1, 1) for some constant degree polynomial. We can assume
without loss of generality that 4* > €/2 since we only need to approximate the target
Hamiltonian with an error €/2, see Lemma 7. Then A’ > Q (em~18~1). Here we used
the bound A = Q(m~"'), see Eq. (41). Since |h?| < J, we have to satisfy =1 >
poly(m, J, €', e~ n~1). Since £~! = O(m'/?), see Eq. (44), this is equivalent to
8§~V > poly(m, J, e, n~1). This can always be achieved by choosing a large enough
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constant ¢ in Eq. (36) since 8§71 = Q(m3/?), see Eq. (40). Finally, we express §1
in terms of the interaction strength J” of the simulator Hamiltonian. From Eq. (46) one
gets J/ = O(h*8~1) and thus we can achieve a simulation error (1, €) by choosing
J =poly(m, J,e 1, n~1).

Consider now a target Hamiltonian on n qubits which has a form

n—1
Htarget = Z wuvZyZy + Zhizu - hﬁxu- (47)

O<u<v<n-—1 u=0

Without loss of generality 4], > 0 (otherwise, conjugate the Hamiltonian by Z,). We

shall encode each qubit u into a chain L, of length m = n as defined above. Let Hc(}'fzin
be the Hamiltonian Eq. (35) describing the chain L,. We shall arrange the chains into
a square grid of size n x n such that a cell (u, i) of the grid represents the i-th qubit of
the chain L,. Here O < u,i < n — 1. All chains use the same parameter g. Choose the

simulator Hamiltonian as

n—1

Hgm = Ho+V, Hy=65" ZhiHc(}lgin’ (48)
u=0
n—1
V=£:7 > ounZuwZow+E D e Zwo). (49)
O<u<v<n-—1 u=0

Note that Hgp, is a TIM Hamiltonian acting on n? qubits and such that each qubit is
coupled to at most three other qubits with ZZ interactions. Namely, a qubit (u, v) is
coupled only to the qubits (u#, v &= 1) and (v, u). Let H_ be the n-fold tensor product of
the two-dimensional logical subspaces describing each chain L,,. The above analysis for
a single logical qubit shows that (Hc(l'f;in)__ = —§X, and Zwwy))— = 57,4 for any
qubit v in the chain L,. Therefore the first-order effective Hamiltonian acting on H_ is

Het (1) = (Hgim) —— = Z wu,viuiv + hiiu - hﬁyu = ﬁtargeh (50)

O<u<v<n—1 u=0

where the encoding £ is the n-fold tensor product of single qubit encodings defined in
Eq. (38).

Let (7, €) be the desired simulation error and J be the maximum magnitude of the
coefficients in Hyyger. We can assume without loss of generality that h;, > €/2n for all
u. Then the energy gap of Hy separating H_ from excited states is A’ > €571 A /2n,
where A is the energy gap of a single chain, see Eq. (39). By Lemma 7, the Hamil-
tonian Hgjy, and the encoding £ simulate Hiager With an error (1), €) provided that
A > poly(n, J, e L 77_1). This is equivalent to 51 > poly(n, J, e 1 77_1) (use the
same bounds as above), which can always be satisfied by choosing a large enough
constant ¢ in Eq. (36). Then the simulator Hamiltonian has interaction strength J' =
06~ ') =poly(n, J, e, =,

To conclude, we have shown that any Hamiltonian Hyyeer € TIM(n, J) can be
simulated with an error (1, €) by a Hamiltonian Hgy, € TIM(n2, J') such that J' =
poly(n, J, el r;_l) and Hgip, has interaction degree 3. The simulation uses the encod-
ing £ defined in Eq. (38). Furthermore, the coefficients of Him can be computed in time

poly(n).
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6. Reduction from TIM to Dimers

In this section we construct a TIM simulator for the hard-core dimer model. It involves a
composition of a first-order and a second-order reduction. First let us construct a classical
Ising Hamiltonian Hy composed of terms proportional to n,, and n,n, such that ground
states of Hy are m-dimers. Consider a graph G = (U, E) with n nodes. Define operators

NU:ZnM and Ng = Z NyNy. (&29)

uelU (u,v)eE
These operators act on the full Hilbert space B = (C?)®”". Define

Hy= Ny —2Ng +T Z nuny, I >2|E|. (52)
D(u,v)=2

Here D(u, v) denotes the graph distance between nodes u, v. Note that Hy is a TIM
Hamiltonian (with a zero transverse field).

Lemma 8. The Hamiltonian Hy has zero ground state energy and its ground subspace is
spanned by m-dimers with0 < m < n/2. Furthermore, if S is an m-dimerand T = S\u
for some u € S then (T|Hy|T) = 1.

Proof. Suppose S C U is an m-dimer. By definition, any pair of dimers in S is separated
by distance at least three. Thus (S|n,n,|S) = 0 whenever D (u, v) = 2. Therefore

(S|HolS) = (SINy|S) — 2(S|NE|S) = 2m — 2m = 0.

Next consider any subset of nodes S such that (S|Hp|S) < 0. It suffices to show that S is
an m-dimer for some integer m. Indeed, the negative term in Hp cannot be smaller than
—2|E|. Since I' > 2|E|, the energy of S can be non-positive only if

(S|nyny|S) =0 whenever D(u, v) = 2. (53)

LetS = Cy1U---UC,, be the decomposition of S into connected components. Since the
graph has no triangles, Eq. (53) implies that each connected component of S is either a
single node or a dimer. Therefore

0> (S|HolS) = D (Cul Ny — 2NE|Cq). (54)

a=l1

Clearly, (Cy|Ny — 2NE|Cy) = 1if Cy is a single node and (Cy|Ny — 2Ng|Cy) =0
if Cy is a dimer. Thus Eq. (54) is possible only if all C, are dimers. From Eq. (53) one
infers that the distance between different dimers Cy, is at least three. This shows that S
is an m-dimer for some m.

Finally, removing any single node « from an m-dimer S transforms one of the con-
nected components C, into a single node. The above shows that 7 = § \ u has energy
(T|HolT)=1. O
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Fix any integer 1 < m < n/2.Consider a target Hamiltonian Hyreee € HCD(n2, m, J)
describing the m-dimer sector of the hard-core dimers model on some triangle-free graph
G = (U, E) with n nodes, see Eq. (5).

Our first reduction has a simulator Hamiltonian

Him = AHy+V, Hy= (Ny —2m)(Ny —2m+1), V eTIM®,J). (55)

All above operators act on the full Hilbert space B. The perturbation V will be chosen
at the next reduction. Note that Flsim is a TIM Hamiltonian. Since eigenvalues of Ny
are integers, the ground subspace of Hy is spanned by subsets of nodes of cardinality
2m or 2m — 1. By Lemma 4, the Hamiltonian I:ISim can simulate the restriction of any
TIM Hamiltonian V onto the subspace H = Ba,;, @ Bay—1.- In the rest of this section we
assume that our full Hilbert space is H.

Our second reduction has a simulator Hamiltonian

Hsim = AI"IO + V’ V= AI/Z Vmain + Vextra’ (56)
where Hj is the Hamiltonian constructed in Lemma 8,
Vinain = tl/z Z Xy and Vexya = Hdiag +tNy. (57)
uelU

Here ¢ and Hyisg are defined by the target HCD Hamiltonian Eq. (5) and all operators
are restricted to the subspace H with 2m or 2m — 1 particles. Note that Hgjy, is a TIM
Hamiltonian. Lemma 8 implies that the ground subspace of Hy is spanned by m-dimers,
thatis, H_ = D,,.

Let us check that the perturbation has all the properties stated in Lemma 5. First, we
note that (Vinain)—— = 0 since any pair of m-dimers either coincide or differ on at least
two nodes. Obviously, Vexira 1S block-diagonal. It remains to check Eq. (31). Let S and
S’ be arbitrary m-dimers. Then

(S/|(Vmain)—+H()_l(Vmain)+—|S> =1 z <S/|XUP+H()_1P+XM|S>- (58)

u,vel

Recall that all operators in Eq. (56) are restricted to the subspace with 2m or 2m — 1
particles. Thus X, |S) = 0 whenever u ¢ S since in this case X,|S) contains 2m + 1
particles. In the remaining case, # € S, Lemma 8 implies that X, |S) is an eigenvector
of Hp with the eigenvalue 1, so that HO_IX,, |S) = X,|S). Thus

('l (Vinain)—+ Hy ' (Vinain)+—18) =1 D~ (8] X, X, |S). (59)
uesS,ves’

The sum over u = v gives a contribution |S|8g ¢ = (S|t Ny|S’). The sum over u # v
is non-zero only if S and S’ can be obtained from each other by moving one particle
from some node u to another node v, in which case (S| X, X,|S) = (S'|W, 4|S). Thus

(Vinain)—+ Hy ' (Vinain)+— = tNy +1 > Wiy (60)
{u,v}elU
and
(Vextra)—— — (Vmain)7+H071(Vmain)+7 = —1 Z Wu,v + Hdiag = Htarget- (61)
{u,v}eU

Thus all conditions of Lemma 5 are satisfied.
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To compose the two reductions we extend Hgin, defined in Eq. (56) to the full Hilbert
space 3 and substitute V = Hgp into Eq. (55). Combining Lemmas 3, 4, 5 we conclude
that any Hamiltonian Hyarger € HCD(n, m, J) can be simulated with an error (¢, 1) by a
Hamiltonian Hgm € TIM(n, J') where J' = poly(n, J, e~', n~1). The simulation uses
the trivial encoding £ : D,, — B, thatis, £|S) = |S) for any m-dimer S.

7. Reduction from Dimers to Range-2 Bosons

In this section we construct an HCD simulator for range-2 hard-core bosons. It involves
a third-order reduction. Consider a target Hamiltonian Hiyeee € HCBa(n,m, J) de-
scribing the m-particle sector of range-2 hard-core bosons on some graph G = (U, E)
with n nodes. For the sake of clarity, let us first consider a special case of homogeneous
hopping amplitudes, that is,

Hiarger = —t Z Wuv + Hiag, t>0. (62)
(u,v)eE

Recall that Hyage acts on the Hilbert space B, 2(G) spanned by 2-sparse subsets of m
nodes.

The HCD simulator will be defined on an extended graph G’ = (U’, E’) obtained
from G by placing an extra node at the center of every edge of G and attaching an extra
hanging edge to every node of G, see Fig. 3 for an example. The extra node located at
the center of an edge (u, v) € E will be denoted® u + v. The extra node attached to a
node u € U by a hanging edge will be denoted u*. Thus the extended graph G’ has a
set of nodes

U=v0uU*uUY, U*={w* :ueclU), U'={u+v:uvelUand(u,v)ecE}
(63)

We shall represent a boson located at a node u € U by a dimer occupying the subset
{u,u*y C U’

G G’
Fig. 3. Construction of the extended graph G’ = (U’, E’) for hard-core dimers starting from the graph

G = (U, E) of the hard-core bosons model. The subsets of nodes U* and U* are highlighted in red and blue
respectively. A boson located at a node u € U is represented by a dimer occupying the subset {u, u*} € U’

3 Here the addition is merely a symbol; it has no algebraic meaning.



26 S. Bravyi, M. Hastings

A simulator HCD Hamiltonian acting on the Hilbert space of m-dimers D,,(G’) is
defined as Hgj, = AHy + V, where

Hy=> Aun, (64)

weU+

penalizes m-dimers occupying the extra nodes located at the centers of edges of G. For
now we set A,, = 1 for all w € U*. We shall need a more general expression for A,
in the case of non-homogeneous hopping amplitudes. Clearly, Hy has zero ground state
energy and its ground subspace is spanned by m-dimers § € U’ such that SNU™* = .
The perturbation is defined as V = A%/3Vyain + A1/3 Vetra + Vextra, Where

Vinain = _t1/3 Z Wu,va (65)
{u,v}elU’
Vextra = 127 > d(u) n. (66)
uelU
Vextra = Haiag +1 Y da(u) ny, (67)
uel

For now we define d(u) as the degree of a node u in the original graph G and d>(u) =
d(u)(d(u) — 1). We shall need a more general expression for d(u) and d (1) in the case
of non-homogeneous hopping amplitudes.

Let us check that the perturbation has all the properties stated in Lemma 6. First, we
claim that (Vipain)—— = 0. Indeed, suppose |S) is a ground state of Hy. Then S must be
a union of dimers {u, u*} with u € U. Since (u, u*) is the only edge of G’ attached to
u*, the only hopping terms that can map S to some m-dimer S’ are those that replace
some dimer {u, u*} € S with a dimer {u, u + v} for some (u, v) € E, see Fig. 4. This
requires a single hopping from u* to u + v. Then S’ has a particle at some node u + v
and thus |S’) is an excited state of Hy. Thus (Viain)—— = 0. The operators Vexya and
Vextra are block-diagonal simply because they are diagonal.

Let us now describe the encoding € : B, 2(G) — Dy, (G’). Recall that 5, 2(G) and
D, (G') are the Hilbert spaces of the target and the simulator models. Given a 2-sparse
subset of nodes S € U in the graph G let £(S) € U U U* be the subset of nodes in
the graph G’ that includes all nodes u € S and all nodes u* such that u € S. Define
E|8) = |€(S)). Obviously, £ is an isometry. Let us check that Im(€) coincides with the
ground subspace of Hy. Indeed, suppose S C U’ is a ground state of Hy, that is, S is an
m-dimer in G’ such that § € U U U*. Then all dimers in S must have a form {u, u*} for
some u € U. Consider any distinct nodes u, v € S N U. By definition of an m-dimer,
any dimers in S are separated by at least three edges in the graph G’. Then the nodes
u and v are separated by at least two edges in the graph G, thatis, S N U is a 2-sparse
subset of m nodes in the graph G. Since S = £(S N U), this shows that S belongs to the
image of £. Conversely, if S C U is any 2-sparse subset of m nodes in G then £(S) is
an m-dimer in G such that £(S) € U U U*. This proves that Im(£) coincides with the
ground subspace of Hy.

Let us now check condition Eq. (32) of Lemma 6. Consider any m-dimer S C U’
such that § N U* = @. We have already shown that Viy.in|S) is a superposition of states
|S’), where S’ is obtained from S by replacing a dimer {u, u*} with a dimer {u, u + v} for
someu € SNU and v € U suchthat (u, v) € E, see Fig. 4. By definition of an m-dimer,
{u, u*} is separated from all other dimers of S by at least three edges of the graph G.
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u+v v

324h

V_y f
-

Fig. 4. A third-order process transfers a dimer from {u, u*} to {v, v*}. Here V = Viyain. Since each dimer in
G’ encodes one particle in G, this process simulates the logical hoppmg operator Wy y

However, since S N U* = @, this is possible only if {u, u*} is separated from all other
dimers of S by at least four edges of G’. Then the dimer {u, u + v} is separated from
all other dimers of S’ by at least three edges of G’, that is, S’ is an m-dimer. Note also
that S” occupies exactly one node of U™, that is, Hy|S’) = |S’) and thus HO_1 |S") = |S")
(recall that we set Ay, = 1 in the case of homogeneous hopping amplitudes). The above
arguments show that

Vimain)+— 1Sy = =11 > " Wi sl S). (68)

ueSNU  v:(u,v)eE

Using the above equation one can easily get

(S (Vinain)—+ Hy ' (Viain)++ Hy ' (Vinain)+—1S)

==t D (S Wasvwr Wao War s |S)
(u,v)eE

—t z <S/|Wu+w,u* Wu+v,u+w Wu*,u+v|S) (69)
(u,v)#u,w)ek

Here S’ is some m-dimer S’ € U’ such that S’ N U™ = (. The terms in the first and the
second line in the righthand side of Eq. (69) describe triple-hopping processes shown on
Figs. 4 and 5 respectively. The former implements a logical hopping operator W, ,, =
EWy W€ T, while the latter generates unwanted terms proportional to 7,,d (u)(d (u) — 1),
where d(u) is the degree of u in the graph G. Thus

(Vinain)—+ Hy ' (Vinain) s+ Hy ' (Vinain)+— = =t > Wup =t D o). (70)
(u,v)eE uelU

Note that the last term is canceled by (Vexira)——, so that

(Vextra)—— + (Vmain)f+l'l()71 (Vmain)++l'](;1 (Vmain)+— = ﬁdiag —1 Z Wu,v = ﬁtarget
(u,v)eE
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Fig. 5. An unwanted third-order process transfers a dimer from {u, u™*} back to {u, u*

which proves condition Eq. (32) of Lemma 6. It remains to check condition Eq. (33).
Using Eq. (68) again one gets

("1 (Vinain) —+ Hy ' (Vinain)+—18) = 177 D" d()8s s = (S'11*7 " dwin]S)

ues uel

= (S| Vextra| S). (71)

Here (Viain)+— moves a particle from u™ to u +v and (Viain) —+ returns the particle back
from u + v to u™. Thus all conditions of Lemma 6 are satisfied.

Suppose now that Hiyeer € HCBy (1, m, J) has non-homogeneous hopping ampli-
tudes, that is,

Htarget = Z Ty Wu,v + Hdiagv 0= Iyv =1L (72)
(u,v)eE

By definition, ¢ < J. Let (7, €) be the desired simulation error, see Definition 1. Since
we only need to approximate Higer With an error €/2, see Lemma 6, we can assume
that

€
m <ty, <t forall (u,v)€E.

For each node w = u + v € U™ define

t
Ay = [—.

Tyv

Note that 1 < A, < /2Je~!|E| < poly(n, J,e~!). Givenanode u € U, let N'(u) C
U be the set of all nearest neighbors of u in the graph G. Define

dwy=1""7">" fty and @ =t""" D b

veN (1) v£V eN (1)
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Let Hgim be the HCD simulator defined by Eqgs. (64—67). Exactly the same arguments
as above show that Hgjn, satisfies conditions of Lemma 6 with the target Hamiltonian
Eq. (72).

We conclude that any Hamiltonian Hiyrger € HCB,(n, m, J) can be simulated with
an error (17, €) by a Hamiltonian Hg,, € HCD(n', m, J') where n’ = O(n?) and J' =
poly(n, J, e~', n~!). The simulation uses an encoding € that represents each particle of
the target model by a dimer in the simulator model. In particular, £ maps basis vectors to
basis vectors. Note that the extended graph G’ is triangle-free regardless of the original
graph G, so the reduction from TIM to HCD described in Sect. 6 and the reduction from
HCD to range-2 HCB can be composed.

8. Range-2 Bosons with Multi-particle Interactions

In this section we describe a second-order reduction that uses range-2 HCB as a simulator
and generates the same range-2 HCB Hamiltonian but with certain additional multi-
particle interactions. This reduction is only needed for the proof of Theorem 2.

Consider a graph G = (U, E). For any subset of nodes § C U define a diagonal
operator

D(S) =[] —nw.

ues
Let d < poly(n) be any integer and Sy, ..., S; € U be arbitrary subsets of nodes.
Suppose our target Hamiltonian is
d
Hiarget = Hpos — ZP&D(SOJ)- (73)
a=1

Here Hpos € HCB;(n, m, J) describes the range-2 HCB on the graph G and0 < p, < J
are arbitrary coefficients. The Hamiltonian Hyyge; acts on the m-particle sector B,, (G).
Letus show how to simulate Hyargeq using the standard range-2 HCB model. The simulator
will be defined on an extended graph G’ = (U’, E’) obtained from G by adding extra
nodes and extra edges. For each interaction D(S,) in Eq. (73) let us add two extra nodes
denoted a(«) and b(«). We connect the node b(«) by an edge with every node u € S,.
In addition, we connect the nodes a(«) and b(«) with each other, see Fig. 6. The number
of particles in the simulator model is m" = m + d, where d is the number of extra terms
in Eq. (73). Define a simulator Hamiltonian as

d
Him = AHo+V,  Ho= > I—na@, V=A""Viin+ Vextra, (74)
a=1

d
Vimain = — Z v Pa Wa(oc),b(oz) and  Vextra = Hpos- (75)

a=I

Clearly, Hy has zero ground state energy and the ground subspace of Hy is spanned
by all 2-sparse configurations of particles in G’ such that the node a(w) is occupied
for each «. Note that the node b(«) must be empty due to the 2-sparsity constraint.
Define an encoding € : B,,(G) — By+q(G’) as follows. If S C U is a 2-sparse subset,
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a(a)
b(a)

Sa

Fig. 6. Simulation of multi-particle interactions D (Sy). We choose Hy = I — n4(q) such that the node a(e)
is occupied for any ground state of Hy. Then the node b(o) must be empty due to the 2-sparsity constraint.
The perturbation V moves the particle from a(«) to b(«) or vice verse

define £(S) = SU {a(l),...,a(d)} € U’. Note that £(S) is a 2-sparse subset since
a node a(w) has only one neighbor b(«) and the latter never belongs to £(S). Define
E|S) = |E(S)). The above shows that £ is an isometry and the image of £ coincides
with the ground subspace of Hy. Let us check that the perturbation V satisfies conditions
of Lemma 5. Obviously, (Viain)—— = 0 since any term in Vi,in moves a particle from
a(w) to b(a) or vice verse. The operator Vexya 1S block-diagonal since it acts trivially
on the extra nodes a(«), b(c). Let us check condition Eq. (31) of Lemma 5. Note that
no hopping in the original graph G is prohibited due to the presence of extra particles at
a(a) since these particles are separated from any node of G by at least two edges. Thus
(Vextra)—— = H pos, Wwhere Hpps = EHposET is the encoded version of Hp,s. Let us
compute (Vinain) —+ Hy ! (Vinain)+—- Suppose |S) is a ground state of Hy. The 2-sparsity
condition implies that a node b(cr) cannot be occupied if S, contains at least one particle.
This shows that (W («),p(@))+—15) = 0if SN Sy # @, Otherwise, (Wy(a),b(a))+— MOVes
the particle from a(«) to b(«). Thus

(Wa@).b@)+-18) = D(S)[(S\a(a)) U b(a)).

Note that the state in the righthand side is an eigenvector of Hy with an eigenvalue 1.
Note also that if (Vipain)+— moves a particle from some node a(«) to b(«) then (Viain) —+
must return the particle from b(«) to a(e). Thus

r r
(Vinain)—+ Hy ' (Vinain)+— = z Pa(Wa@).b@)—+Wa@),b@)+— = Z PaD(Sq).
a=l1

a=1

Here we noted that D(Sy)2 = D(Sy) = D(Sy). Thus

’
(Vextra) —— — (Vmain)—+H0_1(Vmain)+— = Ebos - Z PaD(Sa) = ﬁtargeta

a=1

that is, all conditions of Lemma 5 are satisfied.

We have proved that any Hamiltonian Hiagec € HCB2 (12, m, J) with d extra diagonal
terms — py D(Sy) such that 0 < p, < J can be simulated with an error (7, €¢) by
the Hamiltonian Hg, € HCBy(n',m’, J'), where n’ = n +2d, m" = m + d, and
J' =poly(n, J,e~', n~1). The simulation uses an encoding £ that maps basis vectors
to basis vectors. We shall absorb the extra diagonal terms into the Hamiltonian Hgiag in
all subsequent reductions.
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u v u u—+v v

G G’

Fig. 7. Construction of the extended graph G’ = (U’, E’) for the range-2 HCB simulator starting from the
graph G = (U, E) for the target range-1 HCB

9. Reduction from Range-2 Bosons to Range-1 Bosons

In this section we construct a range-2 HCB simulator for a range-1 HCB model. It in-
volves a second-order reduction. Consider a target Hamiltonian Hiarger € HCBn, m, J)
describing the m-particle sector of range-1 hard-core bosons on some graph G = (U, E)
with n nodes,

Htarget = - Z tu,qu,u + Hdiag' (76)
(u,v)eE

The range-2 HCB simulator will be defined on an extended graph G’ = (U’, E’) obtained
from G by placing an extranode at the center of every edge of G, see Fig. 7 for an example.
The extra node located at the center of an edge (u, v) € E will be denoted u + v. Then
the extended graph G’ has a set of nodes

U=U0UuUU", U'={u+v: (u,v)eckE)}. (77)

The simulator and the target models have the same number of particles m. Thus the
simulator has Hilbert space B,, 2(G’) spanned by 2-sparse m-node subsets in the graph
G’. Define a simulator Hamiltonian as Hgjm = AHp + V, where

Ho= D nu (78)

penalizes particles that occupy nodes located at the centers of edges of G. We choose
the perturbation as V = A2 Vinain + Vextra,» Where

1/2
Vmain = - Z tu,/v Wu,vv (79)
(u,v)eE’
Vextra = Hdiag + Z fu vy — nv)z' (80)
(u,v)eE

The sum in Ve, runs over pairs of nodes u, v € U considered as nodes of G’. Clearly,
Hy has zero ground state energy and its ground subspace is spanned by subsets of
nodes S € U’ such that SN U* = @ and |S| = m. Note that any distinct nodes
of § are automatically separated by at least two edges of G’, that is, S is a 2-sparse
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subset. Given any subset of nodes S C U in the graph G such that |S| = m, let
£(S) be the corresponding subset of nodes in the graph G’. We define the encoding
E : Bu(G) — By2(G) such that £]S) = |£(S)). The above shows that Im(E)
coincides with the ground subspace of Hy.

Let us check that the perturbation V satisfies the conditions of Lemma 5. First, we note
that (Vinain)—— = 0. Indeed, suppose S € U’ is a ground state of Hy. Then SNU* = @.
Thus Viain can only move a particle from some node u € U to some node v € U*
which produces an excited state of Hy. The operator Vexir, is block diagonal because it
is diagonal.

Let us now check condition Eq. (31) of Lemma 5. Consider any ground state of Hy,
that is, m-node subset S € U’ such that S N U* = #. We claim that

Vimain)+—18) = = > D" 43 (1= ) W |). 81)

ueS (u,v)eE

Indeed, the hopping terms in Viyain can only move a particle from some node u € S
to some node u + v such that (#, v) € E and such that the resulting configuration of
particles is 2-sparse. The latter condition is satisfied iff n,, = 0. Taking into account that
Wi u+v!S) 18 an eigenvector of H ! with an eigenvalue one, we get

(Vmain)7+H()71(Vmain)+f = Z tu,qu,v + Z Z tu,vnu(l —ny). (82)

(u,v)eE uelU (u,v)eE

Here the last term accounts for double-hopping processes where (Viain)+— moves a
particle from u to u + v and (Vpain)—+ returns the particle back to u. Using the identity
nu(1 = ny) +ny(1 —ny,) = (n, —ny)?* one gets

(Vmain)7+H071(Vmain)+7 = Z tu,qu,v + Z Z‘u,v(nu _nv)z- (83)
(u,v)eE (u,v)eE

The last term is exactly cancelled by Vexira Which proves condition Eq. (31) of Lemma 5.
Note that in this case the logical operators Wu,v and n,, coincide with W, ,, and n,, since
we encode each particle of the target model by a single particle in the simulator model.

To conclude, we have proved that any Hamiltonian Hiyeer € HCB(n, m, J) can
be simulated with an error (1, €) by the Hamiltonian Hgy, € HCB(n', m, J'), where
n = On? and J' = poly(n, J, e, n~1). The simulation uses an encoding & that
maps basis vectors to basis vectors.

10. Range-1 Bosons with a Controlled Hopping

Consider a graph G = (U, E) with n nodes and a Hamiltonian Hj,; € HCB(n, m, J)
describing the m-particle sector of the range-1 HCB model on the graph G. Suppose our
target Hamiltonian is

Hiarget = Hpos — z tesu,o e Wi v, (84)
(ciu,v)

where the sum runs over all triples of nodes (c; u, v) such that c € U, (u,v) € E, and
¢ ¢ {u, v}. The term n. W, , describes a controlled hopping process where the presence
of particle at the node ¢ controls whether the hopping between nodes u, v is turned on
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or off. The coefficients .., , are the controlled hopping amplitudes. We shall always
assume that #.;;, , > 0. The Hamiltonian Hyger acts on the m-particle sector B,, (G). Let
HCB*(n, m, J) be the set of Hamiltonians Hiarger defined above where 0 < f¢.,, < J.
In this section we show how to simulate Hiager by the standard range-1 HCB. The
simulation involves a composition of a first-order and a second-order reduction.

The simulator model will be defined on a graph G’ = (U’, E’) obtained from G by
adding certain extra nodes and extra edges. Namely, for each triple (c; u, v) that appears
in Eq. (84) we add an extranode a(c; u, v) and a pair of extra edges connecting a(c; u, v)
tou and v. Let n’ = |U’| be the number of nodes in the extended graph and Ut € U’ be
the set of all extra nodes a(c; u, v). The simulator and the target models have the same
number of particles m.

Our first reduction has a simulator Hamiltonian

I:Isim = AI:IO + ‘7» ~O = Z - ”c)na(c;u,v)s (85)

(c;u,v)

where V € HCB(/, m, J) will be chosen at the next reduction. The Hamiltonian FISJm
acts on the Hilbert space B,,(G"). Let H_ be the ground subspace of Hy. Obviously, H_
is spanned by configurations of particles such that a node a(c; u, v) can be occupied
only if ¢ is occupied. This property must hold for each extra node a(c; u, v). Lemma 4
shows that HSlm can simulate the restriction of any Hamiltonian from HCB(n’, m, J )
onto the subspace H_. In the rest of this section we assume that our full Hilbert space is
H = H_. The above simulation uses the trivial encoding, that is, £|S) = |S) if S € U’
is a ground state of Hy and £|S) = 0 otherwise.
Our second reduction has a simulator Hamiltonian

Hgm = AHy+ 'V, Hy=A Z Ng, V= Al/2‘/main + Vextras (86)

acU+
where
Vmain = - Z (tc;u,v)l/z(Wu,a(c;u,v) + Wv,a(c;u,v))v (87)
(ciu,v)
Vextta = Hpos + Z Teru, vl (y +ny). (88)
(c;u,v)

Here all operators are restricted to the subspace H defined above. We choose an encoding
& : B,,(G) — 'H that maps subsets of nodes in the graph G to the corresponding subsets
of nodes in the extended graph G’. Obviously, S € U’ is a ground state of Hy iff |S| = m
and S N U* = @, that is, all the extra nodes a(c; u, v) are empty. Thus Im(&) coincides
with the ground subspace of Hy.

Let us check that the perturbation V satisfies all conditions of Lemma 5. We note
that (Vinain) —— = 0 since Viain can only move a particle from (to) some ancillary node
a(c; u, v) which must be empty in any ground state of Hy. The Hamiltonian Ve 1S
block-diagonal since Hp,s acts trivially on all ancillary nodes whereas the second term
in Vexa is diagonal. It remains to check condition Eq. (31) of Lemma 5. Let § € U’
be any ground state of Hy. Then S N U* = @. We claim that W, 4(c:u.)|S) = O unless
ne = 1. Indeed, if n, = 0 and n, = 0 then both nodes u and a(c; u, v) are empty. If
ne = 0and n, = 1 then W, 4(u,v) moves a particle from u to a(c; u, v). However, a
state in which the node a(c; u, v) is occupied and the node c is empty is orthogonal to the
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subspace H. Since the simulator model is restricted to H, we have W, 4 (c.u,0)|1S) = 0
in both cases. In the remaining case, n, = 1, one has W, 4¢c.u,0)|S) = |S’), where
S’ = (§\ u) Ual(c; u, v). The above shows that

(Vinain)—+Hy ' (Vinain)+— = D tewuwfe(Way + 1y +1y). (89)

(c;u,v)

Here the first term describes processes where (Vmain)+— moves a particle from u to
a(c; u,v) and (Vimain)—+ moves the particle from a(c; u, v) to v. The last two terms
describe processes where (Vpain)+— moves a particle from u to a(c; u, v) and (Viain)—+
returns the particle back to u. The last two terms in Eq. (89) are canceled by Vexira. This
proves condition Eq. (31) of Lemma 5. Note that in this case the logical operators W, ,,
and 77, coincide with W, , and n,, since we encode each particle of the target model by
a single particle in the simulator model.

Combining Lemmas 3, 4 and 5 we conclude that any Hamiltonian Hiyrget €
HCB*(n, m, J) can be simulated with an error (7, €) by the Hamiltonian Hgm €
HCB(n', m, J') where n’ = O(n?) and J' = poly(n, J,e~!, n~!). The simulation
uses an encoding £ that maps basis vectors to basis vectors.

11. From Range-1 Bosons to 2-Local Stoquastic Hamiltonians

Let us start from a simple classification of two-qubit stoquastic interactions. In this
section we use the standard |0), |1) basis for a single qubit and the corresponding product
basis for n qubits.

Lemma 9. Let H be a two-qubit hermitian operator such that H has real matrix elements
in the standard basis and all off-diagonal matrix elements of H are non-positive. Then
H can be written as a sum of some diagonal two-qubit Hamiltonian Hgi,g and a convex
linear combination of operators

1. =X ® |0)(0] and —X ® |1)(1]
2. —10)(0] ® X and —|1){1| ® X
3.-X®X-Y®Y
4. -X®@X+YQ®Y

Proof. Let G = —H. Since G has real matrix elements, the expansion of G in the basis
of Pauli operators contains only the terms with even number of Y’s. Thus

G = —Hdiag+hX[X®I+hlxl®X+hXXx®X+hxzx®Z
+hzxZ QX +hyyY ®Y, (90)

where Hgj,g is some diagonal Hamiltonian. From

(0,0|G|1,1) =hxx —hyy =0 and (0,1|G|1,0) =hxx +hyy =0
one gets

hxxXQX+hyyY QY =p(XQ@X+YRY)+qg(XRX-Y®Y), (C2))
where p = (hxx+hyy)/2and g = (hxx —hyy)/2 are non-negative coefficients. From

(0,0IGI1,0) =hxr +hxz =0 and (0,1|G[1, 1) =hx; —hxz =0
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one gets
hxiX®1I+hxzX®Z = pX®I[0)(0]+gX & [1)(1], 92)

where p = hyx; + hxz and ¢ = hyx; — hxz are non-negative coefficients. Similar
calculation shows that

hixI1 @ X +hzxZ ® X = pl0)(0] ® X +¢[1)(1| ® X, (93)

where p = hyx + hzx and ¢ = hjx — hzx are non-negative coefficients. The lemma
now follows from Eqgs. (90-93). O

Let Huger € StogLH(n, J) be some fixed 2-local stoquastic Hamiltonian on n
qubits. Our goal is to simulate Hiareer by some Hamiltonian Hgim € HCB* (', m, J').
Recall that the latter describes the m-particle sector of range-1 hard-core bosons with
a controlled hopping on some graph G = (U, E) with n’ nodes, see Sect. 10. We shall
represent the j-th qubit of the target model by a pair of nodes {2j — 1, 2j} € U. The two
basis states |0) and |1) of the j-th qubit are represented by a particle located at the node
2j — 1 and 2j respectively (the dual rail representation). Thus the number of particles
in the simulator model is m = n.

For the sake of clarity we shall first explain how to construct an HCB* simulator
individually for each two-qubit stoquastic interaction listed in Lemma 9. Thus we shall
first consider the case n = m = 2. We shall simulate interactions (1) and (2) using a first-
order reduction. Interactions (3) and (4) will require a composition of a first-order and
a third-order reductions. Then we shall explain how to combine the simulators together.
To avoid interference between simulators we shall introduce some ancillary nodes such
that a simulator is activated only if the corresponding ancillary node is occupied by a
particle.

Consider first the case Hirger = —pX @ [0)(0] with p > 0. The HCB* simulator
is defined on a graph G = (U, E), where U = {1,2,3,4} and E = {1, 2}. The total
number of particles is m = 2, so that the simulator Hilbert space is B (G). The simulator
Hamiltonian is chosen as

Hgn = AHy+ 'V, Hy = niny +n3ny, 94)
V = —pn3Wis. 95)

Ground states of Hy are subsets of nodes {i, j} € U, wherei € {1,2}and j € {3,4]}.
The ground subspace of Hj encodes two logical qubits as follows:

0,0) =11,3), 10,1)=[1,4), [1,00=12,3), [1,1)=12,4). (96)

This is analogous to applying the dual-rail representation to each qubit. Obviously, V
commutes with Hp. Note that Wj > implements the logical X on the first qubit and n3
implements the logical operator |0) (0| on the second qubit. Lemma 4 implies that Hgim
can simulate the restriction of V onto the logical subspace, thatis, V__ = —pX ®|0)(0].
This is the desired target Hamiltonian. Using the same method one can simulate all
elementary interactions (1) and (2) in Lemma 9.

Next consider the case

Hiarget = —(p/D(X @ X +Y @ Y) = —p(|1,0)(0, 1| + 10, 1)(1, 0D, p > 0.
o7
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Fig. 8. Graph G = (U, E) of the HCB™ simulator for the target Hamiltonian —X ® X — Y ® Y. The total
number of particles is m = 2

The HCB* simulator will be defined on a graph G = (U, E) where U = {1, 2, 3,4, a},
see Fig. 8. We choose the total number of particles m = 2. The simulation involves a
composition of a first-order and a second-order reductions.

Our first reduction has a simulator Hamiltonian

Hgm = AHy+V,  Ho=nina+n3ns, V € HCB*(5,2,J). (98)

All above operators act on the Hilbert space B,(G). The perturbation V will be chosen at
the next reduction. Let H be the ground subspace of Ho. Itis spanned by configurations
of particles such that each qubit {1, 2} and {3, 4} contains at most one partlcle Lemma 4
implies that HSIm can simulate the restriction of any HCB* Hamiltonian V onto the
subspace H. Below we assume that our full Hilbert space is H.

Our second reduction has a simulator Hamiltonian

Hgm = AHy+V, Hy=ng4 V= A Vain + A Vegira, (99)

where
Viain = —p' P (Wia + Wa g +1naWa4), (100)
Vextra = p*2@ninz +ning +nan3). (101)

Here all operators are restricted to the subspace H with at most one particle per qubit.
Note that Hgjp, is an HCB* Hamiltonian. The ground subspace of Hy encodes two logical
qubits according to Eq. (96). Let us check that the perturbation satisfies all conditions of
Lemma 6. Note that (Vinain)—— = 0 since Viain can only move a particle from (to) the
ancillary node a. The last term in Vi,in does not contribute to (Viain) —— since n, = 0
for any ground state of Hy. Obviously, Vextra is block-diagonal.

Let us check condition Eq. (32) of Lemma 6. Informally, it says that the third-
order hopping process generated by Vinain must implement the logical hopping operator
between the two logical qubits. For example, suppose the initial state is |0, 1) = |1, 4).
Then (Vimain)+— moves a particle from 1 to a by applying W1 ,, then (Vipain)++ moves a
particle from 4 to 2 by applying n, W> 4, and then (Vipain) —+ moves a particle from a to
3 by applying W3_,. This produces the correct final state |1, 0) = |2, 3). More formally,
one can easily check that

(Vimain)+— |1, 1) = (Vinain)+—12, 4) =

(Vimain)+—10,0) = (Vinain)+—11,3) = —p'/? (13,a) + |1, a))
(Vinain)+—10, T) = (Vinain)+— 11, 4) = 1/* 14, a),
(Vimain)+—11, 0) = (Vinain)+— 12, 3) = 1/3 2, a).



On Complexity of the Quantum Ising Model 37

From this one easily gets

(Vmain)—+H()_l(Vmain)++H0_1(Vmain)+— = —P|m> <17_O| - PIL_0> <0,_1| = ﬁta.rget-
(102)

This proves condition Eq. (32). A similar calculation shows that

(Vimain)—+ Hy ' (Vmain)+— = p?/> (210, 0)(0, 0] + [0, 1)(0, 1| + |T, 0)(T, 0]

= p*B@2nin3 +ning + nan3z) (103)

which proves condition Eq. (33).

To compose the two reductions we extend Hgi, defined in Eq. (99) to the full Hilbert
space 3> (G) and substitute V= Hgin, into Eq. (98). Combining Lemmas 3, 4 and 6 we
conclude that Hiyge; can be simulated with an error (7, €) by Hgm € HCB*(5,2, J)
where J' = poly(p, n~!, e ~!). The simulation uses the dual rail encoding £ defined in
Eq. (96).

Finally, consider the case Hyget = —pX @ X + pY ® Y, where p > 0. This
Hamiltonian can be obtained from Hreer = —p(X ® X +Y ® Y) by conjugating the
second qubit with X. This is equivalent to exchanging nodes 3 and 4 in the reduction
described above. Hence we have constructed an HCB* simulator for all elementary
stoquastic interactions.

Suppose now that Hiarger € StoqLH(n, J) is a general 2-local stoquastic Hamiltonian
on n qubits. By Lemma 9,

m
Htarget = Hdiag + Z PaHy, (104)

a=1

where Hgiyg is a diagonal 2-local Hamiltonian with terms proportional to n,, and nyn.,
where p, > 0 are some coefficients, and each term H,, is one of the four elementary
stoquastic interactions applied to some pair of qubits. Obviously, the number of terms
is m < poly(n). The corresponding HCB* simulator Hgjp,, will be defined on a graph
G = (U, E) with 2n + m’ nodes, where m’ < m is the number of interactions of type
(3) or (4) in Hiarget, see Lemma 9. Without loss of generality, the first m’ interactions
Hy are of type (3) or (4). The total number of particles in the HCB* simulator will be
m = n, so that the Hilbert space of the simulator is B, (G). We shall need a composition
of a first-order and a third-order reductions.

Let us first define the set of nodes of G. Each qubit i gives rise to a pair of nodes
t (i) and b(i) which form the dual-rail representation of the qubit. We encode the basis
states |0) and |1) by a single particle located at the node # (i) and b(i) respectively. Each
interaction Hy, of type (3) or (4) gives rise to an extranode a(«) in G. This is the ancillary
node used in the graph shown on Fig. 8.

The set of edges of G is defined as follows. For each interaction H, of type (3)
coupling qubits 7, j we add an edge connecting nodes (i) and a(«), an edge connect-
ing nodes a(«) and 7(j), and an edge connecting nodes b(i) and b(j). The last edge
represents a controlled hopping with a control node a(«). For each interaction Hg of
type (4) coupling qubits i, j we add an edge connecting nodes # (i) and a(fB), an edge
connecting nodes a(f) and b(j), and an edge connecting nodes b (i) and 7(j). The last
edge represents a controlled hopping with a control node a(f8). The resulting subgraph
of G is shown on Fig. 9. This completes definition of the graph G for the HCB simulator.
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Qubit i Qubit j

Fig. 9. Construction of the graph G for the HCB simulator. Each qubit i is represented by a pair of nodes
t(i), b(i) using the dual-rail representation. The ancillary node a () controls hopping between b (i) and b(j).
The ancillary node a(f) controls hopping between b(i) and ¢ ()

Our first reduction has a simulator Hamiltonian

n
Hgim = AHy+V, Hy= Znt(i)nb(i), V e HCB*Q2n+m',n,J). (105)

i=1

All above operators act on the Hilbert space B3, (G). The perturbation V will be chosen at
the next reduction. Let { be the ground subspace of Hy. It is spanned by configurations
of particles such that each qubit {7(i), b(i)} contains at most one particle. Lemma 4
implies that Hgm can simulate the restriction of any HCB* Hamiltonian V onto the
subspace H. Below we assume that our full Hilbert space is .

Our second reduction has a simulator Hamiltonian

m
Hgim = AHp+ 'V, Hy = Z Na(a), V=A% Vinain + Al Vextra + Vextra-
a=1
(106)

Since the total number of particles is n and each qubit may contain at most one particle,
the ground subspace of Hy is spanned by states with exactly one particle per qubit. It
encodes n logical qubits under the dual rail representation. The perturbation operators are
defined as the sums of respective perturbation operators over all individual simulators.
More formally,

m’ m m
Vmain = Z Vrﬁam, Vextra = Z Vggtra, Vextra = Hdiag + Z Voz, (107)
a=1 a=1

a=m'+1

where the perturbation operators carrying an index « are defined by Egs. (95, 100, 101),
depending on the type of the interaction H,, with p replaced by p,, with the nodes {1, 2}
replaced by the nodes of the first logical qubit acted upon by H,, and with the nodes
{3, 4} replaced by the nodes of the second logical qubit acted upon by Hy.

Let us check that the perturbation V satisfies all conditions of Lemma 6. By definition,
Vextra and Vextra act trivially on the ancillary nodes a (o) and thus they are block diagonal.
Any term in Vi, moves a particle to (from) some ancillary node a(«). Since all these
nodes must be empty in the ground subspace of Hy, one has (Viain)—— = 0.
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Let us now check condition Eq. (33). We claim that

m/

(Vinain)—+ Hy ' (Vinain)+— = D (Vi&uin)—+ Hy ' (Vi) (108)

a=I

Indeed, any term in (Vip,in)+— must move a particle from some qubitnode u € {z (i), b(i)}
to some ancillary node a(«). In order to return the system to the ground subspace
of Hy, the factor (Vipain)—+ must move the particle from a(e) to u. Thus (V7. )4

H(;l(Vﬁ )+— = 0 for a # B. This implies Eq. (108). Since V2 . and Ve

main ain extra >
condition Eq. (33) for each individual simulator, Eq. (108) implies that Viain and Vexra
also satisfy condition Eq. (33).
Next let us check condition Eq. (32) of Lemma 6. We claim that

satisfy

m
(Vinain)—+Hy ' (Vinain) s+ Hy ' (Vmain)s— = D (Vi) —+ Hy ' (Vi) Hy ' (Viain)+—
a=1

(109)

Indeed, suppose (Vimain)+— moves a particle from a qubit node u € {t(i), b(i)} to some
ancillary node a(«). For concreteness, assume that H, is an interaction of type (3)
coupling qubits i, j and u = #(i). The factor (Vimain)++ can either apply the controlled
hopping term proportional to 74(«) Wp(i),p(j) Or move a particle from some other qubit
node v € {r(i"), b(i’)} to some ancillary node a(B) with @ # B. In the latter case,
however, we create two excited ancillary nodes so that (Viain)—+ Will not be able to
return the system back to the ground subspace of Hy. In the former case (Viain)—+ can
return the system to the ground subspace of Hy only by moving the particle from a(«) to
some node of qubit i or j. This proves Eq. (109). Since V5 . satisfies condition Eq. (32)

for each individual simulator with V&, = 0, Eq. (109) implies that

ml
(Viain)—+Hg ' (Vinain )4+ Hy ' (Vinain)+— = >, paHa. (110)
a=1
Furthermore, one has (V%)__ = paﬁa for interactions of type (1) and (2), that is, for

m’ < o < m. Therefore

m

(Vextra)—— = ﬁdiag + Z Paﬁa- (111)

a=m'+1

Combining this and Eq. (110) one arrives at

(Vextra)—— + (Vinain)—+ Hy " (Vinain)++ Hy ' (Vinain)+— = H taret- (112)

Thus all conditions of Lemma 6 are satisfied.

To compose the two reductions we extend Hgiy, defined in Eq. (106) to the full Hilbert
space B, (G) and substitute V= Hgin, into Eq. (105). Combining Lemmas 3, 4, 6 we
conclude that any Hamiltonian Hiyger € StogLH(n, J) can be simulated with an error
(1, €) by the Hamiltonian Hgy, € HCB*(n', n, J') where n’ = 2n +m’ = O(n?) and
J' =poly(n, J, e !, n_l). The simulation uses the dual rail encoding £ that maps basis
vectors to basis vectors.
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Finally, let us extend the above reduction to (2, k)-local stoquastic Hamiltonians. We
have to modify the simulator model by adding multi-particle interactions as described
in Sect. 8. More precisely, consider the target Hamiltonian defined in Eq. (104) and
suppose the term Hgiag contains k-qubit diagonal interactions with strength at most J.
Such Hamiltonian can be written as

Higg=— D, > plx, M)x)(xlu, (113)

xe{0, 1}k M<[n]

where p(x, M) are some real coefficients such that | p(x, M)| < poly(J, n),and |x) (x|
is the k-qubit projector |x)(x| acting on a subset of qubits M. Performing an overall
energy shift one can achieve p(x, M) > 0 for all x and M. Consider any fixed projector
|x)(x]p. Recall that the basis states |0) and |1) of the i-th qubit of the target model are
encoded by a particle located at the node #(i) and b(i) respectively. It follows that the
encoded version of a projector |0)(0]; can be written as I — ny,(;). Likewise, the encoded
version of a projector |1)(1]; can be written as I — n,(;). Thus the encoded version of
the projector |x) (x| is

Oy =[] d-me [] =maw.

ieM:x(i)=0 ieM:x(i)=1

Here x (i) denotes the bit of the string x associated with the i-th qubit. Let S(x, M) C U
be the union of all nodes b(i) withi € M and x(i) = O and all nodes ¢ (i) withi € M
and x (i) = 1. We conclude that the encoded version of Hyi,g is

Hig=— Y > pt.M) [ (—nw. (114)

xef{0,1}k M<[n] ueS(x,M)

As we have shown in Sect. 8 any such Hamiltonian can be included into the range-2
HCB model by adding one extra second-order reduction. Thus all our results obtained
for 2-local stoquastic Hamiltonians hold for (2, k)-local stoquastic Hamiltonians.

12. Proof of the Main Theorems

Now we have all ingredients needed for the proof of Theorems 1 and 2. Consider a target
Hamiltonian H € StogLH(n, J) or H € StogLH*(n, J). Let us prove that H can be
simulated with an arbitrarily small error (7, €), by a TIM Hamiltonian H' € TIM(n’, J')
such that n’ < poly(n) and J' < poly(n, J,e~', n~"). Here we use the definition of
simulation given in Sect. 3. The parameters 1, € will be specified later. Indeed, consider
the sequence of perturbative reductions constructed in Sects. 5—11. It can be described
by a sequence of Hamiltonians Hy, H», ..., Hg and encodings &1, &, ..., Eg—1 such
that the Hamiltonian H; and the encoding & simulate H,,; with a small error (1, €;) for
eacht =1,..., R — 1. Here Hgp = H is the desired target Hamiltonian and H; = H'
is a TIM Hamiltonian. Choose a simulation error n; = /2R and ¢; = €/2R for each
individual reduction. Since R = O(1), this implies n; = (1) and ¢; = Q(€). By
construction, each Hamiltonian H; belongs to one of the classes defined in Table 2 with
some number of nodes (qubits) n; and some interaction strength J;. In addition, each
Hamiltonian H; (except for Hg) is a sum of a strong unperturbed part (H;)o with a
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spectral gap A; > || H;;+1]| and a weak perturbation. We have shown that each reduction
satisfies

n; < poly(ny1) and J; < poly(ny1, a1, € 1, 7Y (115)

where t = 1,..., R — 1. Using the initial conditions ng = n, Jg = J, and taking
into account that R = O(1), we conclude that n’ = n; < poly(n) and J' = J; <
poly(n, J, e~ n~h).

Let £ = £1& - - Er—1 be the composition of all individual encodings. Applying
Lemma 3 one infers that the Hamiltonian H; and the encoding £ simulate Hg with an
error (1], €), where

H,
" 0(6) max || t+1||

~ r’ _l ~ E
<—-+0 A d e <—
n > (€) rntax ;, and € 5 : z

(116)

Increasing, if necessary, the spectral gaps A, by a factor poly(n~') one can achieve
n<nand€ <e.

To prove Theorem 1 we choose € as the precision specified in the statement of the
theorem. The parameter 1 does not play any role here. We have to use all reductions
described in Sects. 5—11 except for the one of Sect. 8 (the latter generates multi-particle
interactions that are only needed for the proof of Theorem 2). Then Hj is a TIM Hamil-
tonian with interactions of degree-3. Lemma | implies that the i-th smallest eigenvalues
of Hy and Hp differ at most by € for alli = 1,...,2". This proves Theorem 1 with
H = H,.

To prove Theorem 2 we shall choose € < §/3, where § is the spectral gap of H.
We have to use all reductions described in Sects. 6-11. By construction, the encodings
& used in all these reductions map basis vectors to basis vectors. In addition, one can
efficiently compute the action of & and &, on any basis vector. Thus the same properties
hold for the full encoding £ = £1&, - -+ Eg—1. Lemma 1 implies that the Hamiltonian
Hj has a non-degenerate ground state and a spectral gap at least § — 2¢ > §/3. Let |g)
and |g’) be the ground states of H and H;. By Lemma 2,

Ig) —Elg) Il <n+C8 e

for some constant coefficient C. Choosing € = min (§/3, 8C~') one can achieve
g’y — Elg)l < 27. Since n can be arbitrarily small, this proves Theorem 2 with
H = H,.

Let us remark that the map H — H’ in Theorem 2 can be made sufficiently smooth.
More precisely, suppose H smoothly depends on some parameter T such that the j-th
derivative of H with respect to T has norm at most poly(n) for any constant j. Then we
claim that the j-th derivative of H’ with respect to 7 has norm at most poly(n, 87 1).
Indeed, suppose Hiarget = H;+1 and Hgim = H; are the target and the simulator Hamil-
tonians used in some individual reduction and (7, €,) is the desired simulation error.
For concreteness, consider the reduction of Sect. 11. Note that the derivative of Hgjm,
becomes infinite if some of the coefficients p, in Eq. (104) becomes zero since Hgim

contains terms proportional to pé/ ? and pi/ ?. To avoid such singularities, let us choose
a sufficiently small cutoff value py,;, and replace py by py = |/ p2 + przm.n in Eq. (104)
(recall that the coefficients p, must be non-negative). This gives a new target Hamil-
tonian I:I[arget such that || Harget — ﬁwget | < pminpoly(n). We choose p,,i, small enough
so that || Harget — I:Itarget | < €. Let Hgm be the simulator Hamiltonian constructed for
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I:Itarget. Then ﬁsim simulates Hy,ger With the error approximately (7;, €;) and the j-th
derivative of Hgjm has norm at most poly(n, tn:i]n) = poly(n, efl) = poly(n, s~1). By
introducing a similar cutoff in all remaining reductions one can easily check that the
j-th derivative of H' with respect to 7 has norm at most poly(n, §~1). It is known that
an adiabatic path with the minimum spectral gap § such that the j-th derivative has norm
at most C; can be traversed in time 7' = O(C1872+Cr87 2+ Cf8_3), see [25]. This
implies Corollary 4.

Finally, let us remark that Theorem 2 can be extended to TIM Hamiltonians with
interactions of degree-3, although the corresponding encoding £ would no longer map
basis vectors to basis vectors. Indeed, let us modify the above proof of Theorem 2 by
including the reduction of Sect. 5. Then the final TIM Hamiltonian H’ has interactions of
degree-3. Let £ be the encoding used in the reduction of Sect. 5. Recall that £ encodes
each qubit u of the target model into a one-dimensional chain L, with a Hamiltonian
Hhain = — Z/‘ezm 8ZjZj1 + X, where m < poly(n) and g ~ 1, see Sect. 5. Basis
states of the logical qubit are |0) ~ |yo) + |1) and |T) ~ |o) — |¥1), where ¥ and
Y| are the ground states of Hepain satisfying X®™ Yo,1 = £Yo.1. Accordingly, the full
encoding £ = £1&, - - - Eg—1 maps any basis vector to a tensor product of the states |6)
and |1). Let us argue that the logical qubits can be efficiently initialized and measured.
Choose any physical qubiti € L,. Using Egs. (42, 43, 44) one gets ( 0|Z;|0) = & and
(11Z;|T) = —&, where £ > poly(n~!). Thus one can measure the logical qubit « in the
Z-basis by measuring any physical qubit of L,, in the Z-basis. However, the measurement
has to be repeated poly(n) times to get a reliable statistics. One can measure the logical
qubit in the X-basis in a single shot by measuring every qubit of L, in the X-basis.
Computing the product of the measured outcomes gives the eigenvalue of X®" which
differentiates between o and ;. Finally, the state |[+) = |¥) can be prepared by the
adiabatic evolution starting from the product state [+®™) and adiabatically turning on the
parameter g in the Hamiltonian Hpaiy. It is well-known that the minimum spectral gap
of Hcpain 1s £ (m’l), so that the initialization can be done in time poly(n). The logical
state |0) can be obtained from |¥) by adiabatically changing the logical Hamiltonian
from —X to —Z.
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A. Bounds on the Energy Splitting and Matrix Elements for the Ising Chain

In this section we prove Eqgs. (40, 44).

Let us first prove Eq. (40). Choose any g~

< R < 1 and consider contours
C={zeC?: |zl=R} and C'={zeC?: |z/=R7"}

We orient C and C~! clockwise and counter-clockwise respectively. Denote £, = Eq
and E_ = Ej, see Fact 1. Using Eq. (37) one can easily check that

Eyf =

d 241 — —1
i?{ 2/g?+1—gz+zh) a1
cuc-!

2mi z(Z"F 1)
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Since the contours C and C~! can be mapped to each other via a change of variable
z— z7!, one gets

dz(1+z")\/g?>+1—g(z+z7!
Ei:_ijf W E2")Ve 8@¥aT) (118)
2mi Jo zZ@Z"F 1)
Therefore
2 dzz" /g2 +1—g(z+z7!
S=FE —E, =" ¢ % Vs getz) (119)

i C I—sz

The function /g2 + 1 — g(z + z~!) is analytic in the complex plane with cuts along the
intervals [0, g’l] and [g, oo]. Deforming the contour C such that it goes from O to g’1
in the upper half-plane and then returns to O in the lower half-plane one gets

(120)

Using a bound

x+x T —g—g =2 g -0 — ) =@l =) (2D

we obtain

dm/ o2 — 1 g7
s> L/ ™32 [e=1 — xdx. (122)
T 0

Making a change of variables x = g~ 'y one gets

4mg™ /g2 —1 [!
33%/ dyy" 32/ T=y > Qg ™m™ /g2 — 1. (123)
0

Here we noted that the integral over y is equal to the beta function B(m — 1/2,3/2) =
Q(m_2). Finally, since /g2 — 1 = Q(m_l/z), one gets § > Q(m_c_3/2). To get an
upper bound in Eq. (40) we note that

xMg—x)g =) <gx Mg —x) and (1-x*)"P < -g < 0.

Performing the same change of variable as above one gets

1
5 < O(mg_m+1)/ dyy" 32 /1=y = 0(mg ™" YB(m — 1/2,3/2)
0
= 0m<"17?). (124)
Let us now prove Eq. (44). We shall use the notations of Fact 2. In the limit g — oo the
Hamiltonian Eq. (35) has ground states [0%™) and |1%™), that is,
1 1

Vo) = ﬁ(|0®m)+|1®m)) and |Y1) = ﬁ(|0®m) — [19M).

Thus & = (Y11Z;]¥0) = 1. Since & is areal continuous function of g, it suffices to show
that || > (1 — g~ 2)/3 forall g > 1. Let us write || = (1 — g~2)!/%;. Then we have
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to prove that n > 1. Since we already know that n = 1 in the limit g — o0, it suffices to
show that 1 is a monotone decreasing function of g for all g > 1. Below we prove that

9
n—la—z <0 forallg > I. (125)

Computing the derivative over g one gets

1 € 1
(e )
2\e, g g€p
and thus

9 m? 1 _ _ _
&ZZIOg(ep+eq)=£+§(g—g h Zepl Zeql . (126)
Poq P q

Here the sums over p and g can range over either Z,, or Z,, + 1/2. Using Eq. (126) one
gets

— 377 1 —

1 1 2

— = — Zy—Z_)", 127
9 13(8 g)( ) ( )

where

7, = Z e, and Z_= Z e (128)

PELy, qE€Lpy+1/2

This implies Eq. (125) and proves that n > 1 for all g > 1.
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