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Abstract: Amodel derived in (Klein et al., J FluidMech 288:201–248, 1995) for n near-
parallel vortex filaments in a three dimensional fluid region takes into consideration the
pairwise interaction between the filaments along with an approximation for motion by
self-induction. The same system of equations appears in descriptions of the fine structure
of vortex filaments in the Gross–Pitaevski model of Bose–Einstein condensates. In this
paper we construct families of standing waves for this model, in the form of n co-rotating
near-parallel vortex filaments that are situated in a central configuration. This result
applies to any pair of vortex filaments with the same circulation, corresponding to the
case n = 2. The model equations can be formulated as a system of Hamiltonian PDEs,
and the construction of standing waves is a small divisor problem. The methods are a
combination of the analysis of infinite dimensional Hamiltonian dynamical systems and
linear theory related to Anderson localization. The main technique of the construction
is the Nash–Moser method applied to a Lyapunov–Schmidt reduction, giving rise to a
bifurcation equation over a Cantor set of parameters.

Introduction

The dynamics of self-interacting infinitesimal vortex tubes in a three dimensional fluid is
in general a complex problem, involving the coherence of structures under time evolution
of individual filaments, and possible filament collision and reconnection. However, in
certain limiting cases there are models that are relatively straightforward to understand,
which exhibit dynamics that are subject to rigorous analysis. In [18], a model system of
equations was derived for the interaction of n near-parallel vortex filaments, all sharing
the same circulation. In this model we consider points in R

3 coordinatized by (x1 +
i x2, x3) ∈ C × R and give n-many curves (u j (t, s), s) ∈ C × R that describe the
positions of n vertically oriented vortex filaments, each with unit circulation γ = 1.
From [18] the system of model equations for the dynamics of n near-parallel vortex
filaments is given by
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∂t u j = i

⎛
⎝∂ssu j +

n∑
i=1,i �= j

u j − ui∣∣u j − ui
∣∣2

⎞
⎠ , j = 1, . . . n . (1)

The case of exactly parallel vortex filaments in an incompressible inviscid fluid reduces
to a problem of interactions of point vortices inR2, which is described by a finite dimen-
sional Hamiltonian system. The model (1) represents an approximation of near - parallel
vortex filament interactions, which is valid in an asymptotic regime in which vortex fil-
aments have small deviation from being exactly parallel and they remain uniformly
separated.

The above model has been extensively studied. In [17] the long time existence of
solutions of (1) is given for n = 2 and for certain near triangular configurations with
n = 3. The article [1] gives a long time existence theorem for the case n = 4 near the
configuration of a square, and gives a global in time solution for central configurations
consisting of rotating regular polygons of an arbitrary number n ≥ 3 of filaments. In
this latter work the authors give a uniform lower bound on the distance between the
filaments. In a very recent paper [2] the same authors give examples where the model
(1) evolves filaments that intersect in finite time, thus giving rise to singular behavior;
this illustrates the limits of the validity of the model, at least as an approximation of the
Euler equations uniformly in time.

We recently learned of a second setting in which the near-parallel vortex model
appears, namely in studies of the dynamics of vortices for the Gross–Pitaevski model
of Bose–Einstein condensates. Under conditions of vortex confinement, the core of a
higher index vortex filament separates into a fine structure described by the system
of near-parallel index-1 filaments, whose positions are described by the system (1)
(see [10]). This asymptotic description has been rigorously established in [6] in the
stationary case, and in the case of nontrivial time dependent evolution in [16]. To our
knowledge, the rigorous analytic justification of (1) as a model of vortex filaments for
the Euler equations of fluid dynamics is open.

In this paper we consider families of time periodic solutions that additionally are peri-
odic in the spatial variable s. Our main result is a bifurcation theory for periodic standing
waves of this n vortex ensemble, giving rise to families of solutions that bifurcate from
n exactly parallel filaments that revolve around an axis, with positions determined by a
central configuration. For n = 2 this addresses the case of any two near-parallel filaments
with the same circulation. When n ≥ 3 we consider arbitrary central configurations of
vortex filaments. In all cases we consider, the amplitudes of the standing waves that are
constructed are restricted to a Cantor set, due to an accumulation of resonances along
the bifurcating solution branches.

Specifically, as a consequence of the conclusions of our Theorem 2 below, the fol-
lowing result holds for the n vortex filament problem (Figs. 1, 2).

Theorem 1. Let a j be a central configuration, satisfying

ωa j =
n∑

i=1(i �= j)

a j − ai∣∣a j − ai
∣∣2 .

Then the n vortex filament problem (1) has solutions of the form

u j (t, s) = a j e
itω (1 + u(Ω(r)t, s; r)) ,
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ω

Fig. 1. Two vortex filaments that have large separation, that rotate uniformly around the center with small
frequency ω ∼ 0. The perturbation from straight filaments oscillates approximately as u(s, t) ∼ r(e−i t ) cos s

ω

Fig. 2. Two vortex filaments with small separation, rotating with frequency ω ∼ ∞. The perturbation from
straight filaments oscillates approximately as u(s, t) ∼ r(i

√
2ω sin

√
2ωt) cos s

where ω is a diophantine frequency, r is a small amplitude varying over a Cantor set,
and Ω(r) = Ω0 +O(r2) with Ω0 = √

1 + 2ω and

u(t, s) = r cos s (cos t − iΩ0 sin t) +O(r2).

Many PDEs that describe physical phenomena exhibit the structure of an infinite
dimensional Hamiltonian system. Equations that model nonlinear wave phenomena are
such, and they typically possess equilibria that are elliptic points in the sense of dynam-
ical systems, for which one anticipates families of nearby periodic and quasi-periodic
solutions. However for Hamiltonian PDEs, even the construction of periodic solutions
often presents a small divisor problem, due to the infinite number of degrees of freedom
and the spectral properties of the relevant linearized operators. Thus such constructions
are analogous to the analytic challenge of constructing invariant tori in KAM theory.

In this paper the methods that are used to construct periodic solutions involve a
Lyapunov–Schmidt reduction alongwith aNash–Moser procedure, a strategy introduced
in Craig and Wayne [7]. This technique is useful in problems with multiple resonances,
as it has the advantage that it does not require the third Melnikov condition that is a
feature in the classical KAM methods, as for example in [19,20]. This procedure was
generalized by Bourgain to construct quasiperiodic solutions for Hamiltonian PDEs, in
for instance [3], and was further used and improved by Berti and Bolle [4] and a number
of other authors.

The strategy of Lyapunov–Schmidt reduction is used to solve the range equation
through aNash–Moser procedure,with smoothing operators given byFourier truncations
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of finite but increasing dimension. The convergence of the procedure relies on estimates
of the inverse of a sequence of finite dimensionalmatrices of asymptotically large dimen-
sion. Approximate inversion of linearized operators is the key to most applications of
KAM theory to Hamiltonian PDEs. Resolvent estimates that resemble Fröhlich–Spencer
estimates are used to control the inverse of the linearization, projected off of the kernel.
However, restrictions in the local coordinates of the kernel and the frequency parameters
have to be imposed in order to obtain these estimates. These in turn require the excision
of certain near resonant subsets of parameter space in an inductive procedure. The esti-
mates for the projected inverse operator diverge, due to the small divisors, a divergence
that is overcome by the rapid convergence of the Newton method. However, at the end of
the process the set of parameters for which the scheme converges is reduced to a Cantor
set of positive measure, and the bifurcation equation is solved only over this Cantor set.

In this paper, the bifurcation equation is analyzed with the use of the symmetries.
These symmetries imply the existence of two bifurcation branches, one consisting of
standing waves and one of traveling waves. The branch of standing waves corresponds to
a symmetry-breaking phenomenon from a one-dimensional orbit to a three-dimensional
orbit. Estimates on the measure of the intersection of the branch of nontrivial standing
waves with the Cantor set finishes the proof. The branch of traveling wave solutions does
not involve small divisors; it is discussed in the Appendix along with other solutions.

The Nash–Moser procedure has been previously applied to nonlinear wave equa-
tions and NLS equations in [3,4,7,8] and [5], and for standing water waves in [23]. We
have two purposes in developing the analysis of Hamiltonian PDEs and small divisor
problems in this paper. Firstly, the underlying problem of vortex filament dynamics has
a relevance to fluid dynamics, and in particular to questions of Euler flows. Moreover,
we have a secondary objective, which is to present a simplified and more straightfor-
ward proof of the relevant estimates of the inverse of the linearized operator, being a
variant and a conceptually simpler version of the classical Fröhlich-Spencer estimates.
We believe that these will be useful for other small divisor problems, whether for finite
dimensional Hamiltonian systems in resonant situations for which the third Melnikov
condition is not expected to hold, or for problems of invariant tori for Hamiltonian PDEs.

In Sect. 1, we set up the question of existence of standing waves as a problem of
bifurcation theory in a space with symmetries, related to PDE analogs of [12] and [15].
In Sect. 2 we discuss the Lyapunov–Schmidt reduction with the use of the Nash–Moser
procedure. In Sect. 3we present the estimates for the projected inverses, assuming certain
hypotheses on the separation of singular sites and estimates of the spectra of the relevant
linear operators. This step is at the heart of the Nash–Moser procedure. In Sect. 4 we esti-
mate the measure of the set of parameters for which the above hypotheses of separation
and inversion are satisfied. Finally in Sect. 5 we show that solutions of the bifurcation
equation intersect the above set of good parameters, and show that the intersection has
asymptotically full measure. In the Appendix we discuss the symmetries of the standing
waves, and in addition we give a result about the global bifurcation of periodic traveling
waves, which has a much different character than that of the standing waves.

1. Central Configurations of Vortex Filaments

A central configuration of exactly parallel vortex filaments is a family of straight and
exactly parallel lines (u j (t), s), whose dynamics satisfy u j (t) = eiωt a j , where the
coordinates a j ∈ C satisfy
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ωa j =
n∑

i=1,i �= j

a j − ai
|a j − ai |2 (2)

for all j = 1, . . . n. Such configurations arise in studies of the n-body problem, for
example [13,21,22] and the references contained in these papers.

Homographic solutions for the vortex filament problem are solutions with

u j (t, s) = w(t, s)a j ,

where a j ’s are complex numbers satisfying (2). In this class of solutions the shape of
the intersections of the filaments with a horizontal complex plane is homographic with
the shape of their intersection with any other horizontal plane {x3 = c} for any x3 and
at any time t . Homographic solutions of this form satisfy the Eq. (2) and

∂tw = i
(
∂ssw + ω |w|−2 w

)
. (3)

The set of solutions w(t, s)a j foliate an invariant manifold. By rescaling one may set
ω = 1 in (2). In the case n = 2 of two filaments, the complement of this subspace, that is
in center of circulation coordinates, the orbit space is foliated by solutions of the linear
Schrödinger equation, see [17].

Solutions of Eq. (2) are known as central configurations of the n-vortex problem, and
solutions of this form have been well studied in the literature. For instance, in [17] and
[14], a polygonal central configuration with a central filament is discussed. Solutions
to Eq. (3) also generate homographic solutions when a central filament with different
circulation is fixed at the central axis, see [17].

Equation (3) can be formulated as a Hamiltonian system, given by

∂tw = i∂w̄H(w)

where the Hamiltonian for the system is

H =
∫ 2π

0
|∂sw|2 − ln(|w|2) ds.

Since the Hamiltonian H(w) is autonomous and invariant under change of phase and
translation, the energy H , the angular momentum

I =
∫ 2π

0
|w|2 ds,

and the momentum

W =
∫ 2π

0
w̄(i∂sw) ds

are conserved quantities.
The simplest solutions to Eq. (3) are relative equilibria of the formw(t, s) = eiωtv(s).

In these solutions the filaments turn around a central axis at a constant uniform speed.
For this class of solutions equation (3) becomes

ωv = ∂ssv + |v|−2 v , (4)

with ω being the angular frequency.
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One simple family of solutions of (4) in helical form is given by v(s) = aeiσ s with
ω = −σ 2 + a−2. Thus a continuum of solutions of Eq. (3) is given by

w(t, s) = aei(ωt+σ s) with ω = −σ 2 + a−2 (5)

which is parametrized by the vortex filament separation a. The solutions in this contin-
uum have a one dimensional orbit aeiθei(ωt+σ s) for θ ∈ S

1. Equation (3) is similar to
the Kepler problem; other solutions to this equation are discussed in the Appendix.

The Eq. (3) is invariant under the family of Galilean transformations

e−iα2t eiαsw(t, s − 2αt). (6)

Under a transformation, the solution (5) generates the family

aei((ω−2ασ−α2)t+(σ+α)s) .

Since ω = −σ 2 + a−2, by the choice α = −σ , the solution (5) becomes aeiω with
ω = a−2. Hence, under the symmetry exhibited by the Galilean transformations, the
different branches aei(ωt+σ s) are transformed to the branch with σ = 0.

From the previous remark, we may assume without loss of generality that the bifur-
cation branch of periodic solutions is close to the co-rotating exactly parallel solutions
aeiωt , with ω = 1/a2. Subsequently, using the Galilean transformation, any periodic
solution near aeiωt can be reproduced as a solution that is a perturbation of aei(ωt+σ s)

for an arbitrary choice of σ ∈ R.
The Eq. (3) is invariant under the scaling

τ−1w(τ 2t, τ s) ,

so that any P-periodic boundary condition in s may be fixed to P = 2π . However, once
the spatial period has been fixed, the amplitude a cannot be scaled further. It therefore
suffices to consider the problem of bifurcation of solutions which have spatial period
2π . The amplitude parameter a has the role of an external parameter in the problem, and
solutions aeiωt have different properties depending on a, due to patterns of resonance.

Finally, we address the bifurcation of 2π/Ω-periodic solutions in time which are
close to the exactly parallel central configuration eiωt a, using the change of coordinates

w(t, s) = aeωi tv(Ωt, s). (7)

Under rescaling the time variable, the 2π/Ω-periodic solutions of the Eq. (3) satisfy the
equation

iΩ∂tv = −∂ssv + ω(1 − |v|−2)v. (8)

Since the equation depends of the amplitude a only through the angular frequency ω, in
the subsequent analysis we choose to parametrize solution families of (8) through the
frequency ω.

2. The Nash–Moser Method

By arguments of generic bifurcation, following the remarks in the Appendix, it is
expected that there is one bifurcating branch of traveling waves and one of standing
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waves. The traveling waves do not present a small divisor problem, and we give a proof
of their existence in the Appendix.

To prove the existence of families of standing wave solutions, we use a Nash–Moser
method in a subspace of symmetries (10), a reduction which simplifies several aspects
of the proof; in particular in this setting singular regions consist of isolated sites, the
linearization is not degenerate, and the kernel of the linear operator is one dimensional.

Using the change of variables v = 1 + u in Eq. (8), where u is a small perturbation,
the bifurcation of periodic solutions are zeros of the map

f (u;Ω) = −iΩut − uss + ω(u + ū) + ωg(u, u), (9)

where Ω is the temporal frequency, and the nonlinearity is given by

g(u, ū) =
∞∑
n=2

(−1)nūn = ū2

1 + ū
.

Our main result is stated in the following theorem.

Theorem 2. For ω diophantine, with only one exceptional value ω = ω0, there exists
r0 > 0 and a Cantor subset C ⊂ [0, r0]with measure |C| ≥ r0(1−r0Cβ) (r0 	 1), such
that the operator f (u;Ω) has a nontrivial bifurcation branch of solutions of f (u;Ω) =
0 parametrized by r ∈ C. The solutions (u(s, t; r),Ω(r)) are analytic and periodic in s
and t, and they have the following form;

u(t, s; r) = r cos s (cos t − iΩ0 sin t) +O(r2),

where Ω(r) = Ω0 + Ω2r2 + O(r3) with Ω0 = √
1 + 2ω and Ω2 �= 0. Moreover, the

solutions u(s, t) are Whitney smooth in r and exhibit the symmetries

u(t, s) = u(t,−s) = ū(−t, s). (10)

In fact, solutions of this theorem satisfy the additional symmetry

u(t, s) = u(t + π, s + π).

The solutions of Theorem 2 have an orbit which is a 3-torus, given by eiθu j (t +ϕ, s +ψ)

for (θ, ϕ, ψ) ∈ T
3.

The exceptional value ω0 of the rotational frequency parameter is due to the failure
of the nondegeneracy condition of the amplitude-frequency map in the construction of
the bifurcation branch of periodic standing wave solutions.

Theorem 2 follows the basic structure of the Lyapunov center theorem, however it
concerns the time evolution of a PDE and subsequently the analysis must deal with
the problem of small divisors. In addition the problem naturally encounters a resonant
situation corresponding to its translation invariance in the variable s ∈ R, which presents
a second difficulty. To overcome the latter, we seek solutions which are symmetric under
reflections in space and time. A posteriori we show that this set of time periodic solutions
are the unique standing wave solutions. In order to work in the setting of symmetric
solutions, we define the Hilbert space

L2
sym(T2;C) = {u ∈ L2(T2;C) : u(t, s) = u(t,−s) = ū(−t, s)},
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with the inner product

〈u1, u2〉 = 1

(2π)2

∫
T2

u1ū2dtds.

A function u ∈ L2
sym may be written in a Fourier basis

u =
∑
k∈N

a0,k cos ks +
∑

j∈N+,k∈N

(
a j,k cos j t + ib j,k sin j t

)
cos ks

with a j,k, b j,k ∈ R. We are using the notation that N = {0, 1, ..} and N
+ = {1, 2, ...}.

The linearization of the map f about u = 0 is

L(Ω)u := f ′(0;Ω)u = −iΩut − uss + ω(u + ū).

Explicitly, L(Ω) is diagonal in the above basis, and the Fourier component j = 0 is

L(Ω)(a0,k cos ks) = (k2 + 2ω)a0,k cos ks.

For the Fourier component j ∈ N
+, the linear map is

L(Ω)

((
a j,k
b j,k

)
·
(

cos j t
i sin j t

)
cos ks

)
= Mj,k

(
a j,k
b j,k

)
·
(

cos j t
i sin j t

)
cos ks,

where Mj,k is the matrix

Mj,k(Ω) =
(
k2 + 2ω −Ω j
−Ω j k2

)
.

The matrix Mj,k has eigenvalues

λ j,k,±1 = k2 + ω ±
√
j2Ω2 + ω2,

and normalized eigenvectors

v j,k,±1 = 1

c j,±1

(
ω ± √

j2Ω2 + ω2

− jΩ

)
,

where

c j,±1 = √
2

(
ω2 + j2Ω2 ± ω

√
j2Ω2 + ω2

)1/2

.

The orthonormal eigenbasis is given by e0,0,1 = 1, e0,k,1 = √
2 cos ks and

e j,k,l = ckv j,k,l ·
(

cos j t
i sin j t

)
cos ks

for ( j, k, l) ∈ N
+×N×{1,−1}, where c0 = √

2 and ck = 2 (k �= 0). That is, we have〈
ex , ey

〉 = δx,y and for every function u ∈ L2
sym ,

u =
∑
x∈Λ

〈u, ex 〉 ex , L(Ω)u =
∑
x∈Λ

λx 〈u, ex 〉 ex ,
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where

x ∈ Λ = N
+×N×{1,−1} ∪ {0}×N×{1}.

Define the analytic norm

‖u‖2σ =
∑

( j,k,l)∈Λ

〈
u, e j,k,l

〉2
e2|( j,k)|σ 〈( j, k)〉2s ,

where 〈( j, k)〉 = √
1 + j2 + k2. Even though the eigenfunctions ex depend on the fre-

quencyparameterΩ , and the norm‖u‖σ is defined through this systemof eigenfunctions,
the norm is in fact independent of Ω since the basis {ex }x∈Λ is orthonormal.

Lemma 1. The Hilbert space hσ of analytic functions given by

hσ = {u ∈ L2
sym(T2;C) : ‖u‖σ < ∞} .

is an algebra for s > 1;

‖uv‖σ ≤ cσ,s ‖u‖σ ‖v‖σ .

Proof. The result is quite standard. Let u ∈ L2(T2,C), then the norm

∑

( j,k)∈Z2

∣∣∣
〈
u, ei( j t+ks)

〉∣∣∣2 e2|( j,k)|σ 〈( j, k)〉2s (11)

has the algebra property under the convolution for s > 1, see [8]. The result follows
from the fact that the two norms ‖·‖σ and (11) are equivalent in L2

sym .

Lemma 2. The nonlinear operator g(u, ū) satisfies

‖g(u, ū)‖σ < cσ ‖u‖2σ ,

for small ‖u‖σ . Thus, the map f is well defined and continuous in
{
u ∈ hσ : ‖u‖σ < c−1

σ

}
.

Proof. That the map is well defined follows from the equivariant property and the first
statement. The first inequality follows from the algebraic property,

‖g(u, ū)‖σ =
∥∥∥∥∥

∞∑
n=2

(−1)nūn
∥∥∥∥∥

σ

≤
∞∑
n=2

cn−1
σ,s ‖u‖nσ = cσ,s ‖u‖2σ

1 − cσ,s ‖u‖σ

< cσ ‖u‖2σ .

The eigenvalue λ j,k,−1(Ω) is zero when the frequency is equal to

Ω j,k = j−1
√
k4 + 2k2ω.

In the case that there are no additional resonances, andwithout loss of generality, wemay
analyze the branch of bifurcation from the eigenvalue λ1,1,−1; all other being equivalent
up to scaling (see the Appendix). In the next proposition we prove that there are no
additional resonances if ω is irrational.
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Proposition 1. Let Ω0 = √
1 + 2ω. For ω irrational, the kernel of the map L(Ω0) has

dimension one, corresponding to the eigenfunction e1,1,−1.

Proof. The eigenvalues of Mj,k(Ω0) are λ j,k,l(Ω0) for l = ±1. The determinant of the
matrix Mj,k(Ω0) is

d j,k(Ω0) = λ j,k,1λ j,k,−1 = 2
(
k2 − j2

)
ω +

(
k4 − j2

)
.

Since the frequency Ω0 is chosen such that M1,1 is not invertible, then d1,1(Ω0) = 0.
Since ω is irrational, then the determinant d j,k is zero only if both numbers k2 − j2 and
k4 − j2 are zero. For ( j, k, l) ∈ Λ, the condition happens only when ( j, k) = (1, 1) or
( j, k) = (0, 0). But the eigenvalue λ0,0,1 = 2ω is always positive, then the only zero
eigenvalue in the lattice Λ is λ1,1,−1(Ω0).

The eigenvalue λ0,0,−1 is always zero, and on L2(T2;C) it contributes to the null
space of L(Ω). However on the space L2

sym that takes the symmetries into account, the
(0, 0,−1) is not an element of the lattice Λ, and therefore e0,0,−1 /∈ L2

sym does not
contribute to the respective null space.

For A ⊆ Λ a subset of lattice points, define PA as the projection onto the Fourier
components x ∈ A ⊆ Λ,

PAu =
∑
x∈A

〈u, ex 〉 ex .

The null space of L(Ω0) is supported on only one lattice point N := {x = (1, 1,−1) ∈
Λ} because of the symmetry reduction; hence L(Ω0)ex = 0. Thus, PN is the projection
onto the one dimensional kernel, and PΛ\N is the projection onto its complement. In
future studies of quasi-periodic solutions the set N will in general comprise a possibly
large but finite number of lattice sites.

Lyapunov–Schmidt reduction. Define the decomposition u = v+w into its components
in the kernel and the range of L(Ω0);

v = PNu, w = PΛ\Nu.

Then the zeros of the nonlinear operator f (u;Ω) defined in (9) are the solutions of the
pair of equations

PN f (v + w;Ω) = 0 , PΛ\N f (v + w;Ω) = 0.

Let r ∈ R be a parametrization of the kernel of f ′(0;Ω0) given by

v(r) = re1,1,−1 ∈ L2
sym(T2;C).

The strategy of the construction consists in solving w(r,Ω) in the range equation
PΛ\N f (v(r) + w;Ω) = 0, using a Nash–Moser procedure. The key aspect of this
step is that it is a small divisor problem, which implies that the function w(r,Ω) can
only be constructed in a Cantor set of parameters (r,Ω) in a neighborhood of (0,Ω0).

Initial Nash–Moser step. A first approximation of the solution is constructed projecting
in the ball B0 of radius L0,

B0 = {( j, k) ∈ Λ\N : | j | + |k| < L0}.
To solve the first step of the Nash–Moser iteration, we use the following proposition;
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Lemma 3. For a diophantine number ω, if Ω is such that |Ω − Ω0| < cγ /L2τ+1
0 , then

∣∣λ j,k,−1 (Ω)
∣∣ > cγ /L2τ+2

0

for all ( j, k) with |( j, k)| < L0.

Proof. Using the determinant of Mj,k(Ω0), and the fact that |qω − p| ≥ γ / |q|τ , we
have

∣∣d j,k(Ω0)
∣∣ ≥ γ /

∣∣∣2
(
k2 − j2

)∣∣∣τ ≥ cγ /L2τ
0 .

Since
∣∣λ j,k,1

∣∣ ≤ cL2
0, then ∣∣λ j,k,−1(Ω0)

∣∣ ≥ cγ /L2τ+2
0 .

The result follows from the inequalities∣∣λ j,k,−1 (Ω))
∣∣ ≥ ∣∣λ j,k,−1(Ω0)

∣∣ − ∣∣λ j,k,−1 (Ω) − λ j,k,−1(Ω0)
∣∣

� γ /L2τ+2
0 − | j | |Ω − Ω0| � γ /L2τ+2

0 .

By the implicit function theorem and the lemma above, there is a solution w0(r,Ω)

of PB0 f (v(r)+w0,Ω) = 0, which is defined over the regime of parameters (r,Ω) with
0 ≤ r < r0 and |Ω − Ω0| < cγ /L2τ+1

0 .

Subsequent Nash–Moser steps. Let PBn be the projection in the ball

Bn = {( j, k) ∈ Λ\N : | j | + |k| < Ln}
with Ln = 2nL0. The Nash–Moser method consists in providing a better approximation
wn at the nth step, where

wn(r,Ω) = wn−1(r,Ω) + δwn .

Here δwn is the correction given by the approximate Newton’s method

δwn = −GBn PBn f (wn−1(r,Ω); r,Ω), (12)

where the inverse operator to ∂w f (wn−1(r,Ω); r,Ω) on Bn is given by

GBn = (
PBn∂w f (wn−1)PBn

)−1 .

If the operator norm of the inverse has a tame estimate
∥∥GBn

∥∥
σn

� γ −2
n

1

dn
, (13)

where σn = σn−1 − 2γn , dn < dn−1 and (r,Ω) ∈ Nn , then we obtain an inductive
estimate for δwn of the form

‖δwn‖σn < Cr2e−κn with κ ∈ (1, 2).

The following theorem quantifies the smallness condition that are required for the con-
vergence of the iterative scheme.

Theorem 3. If dn = L−β
n for β > 3/2 and

∑∞
n=1 2γn → σ0/2, from the estimate (13),

then wn(r,Ω) converges to the solution w(r,Ω) ∈ hσ0/2 of

PΛ\N f (v(r) + w(r,Ω),Ω) = 0,

which is Whitney smooth in (r,Ω) over the Cantor set N = ∩∞
n=1Nn (see the result in

[9]).
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3. Estimates of the Inverse

Approximate inversion of the linearized operator ∂w f (v(r)+w;Ω) is key to applications
of the Nash–Moser method. In this paper we follow an approach that is motivated by
techniques that have been developed to study Anderson localization [11]. We use the
basic approach developed by Craig and Wayne in [7] with innovations by Bourgain [3],
and Berti and Bolle [4], but we introduce certain simplifications that clarify the method.
We expect that this version will be useful in further applications of Nash–Moser methods
to Hamiltonian PDEs.

In this paper we describe the situation in which singular sites occur in uniformly
bounded clusters, and clusters are separated asymptotically in the lattice. This is typically
the case of time periodic solutions for PDEs in one space dimension.

For the particular case of the problem of vortex filaments, we will be making certain
assumption on the nature and the spectra of the relevant linearized operators. These
assumptions will be verified in the subsequent Sect. 4, where in order to do so we excise
certain regions of parameter space (r,Ω) ∈ N .

Given w ∈ PΛ\N L2
sym , the projection PΛ\N ∂w f of the linearization of the nonlinear

operator (9) at the point v(r) + w ∈ L2
sym is given by

PΛ\N ∂w f (v(r) + w;Ω) = PΛ\N (L(Ω) + ω∂wg(v + w))PΛ\N . (14)

Because (1) is a Hamiltonian PDE, this linear operator is Hermitian.
In the Fourier basis {ex } the operator (14) is expressed by the matrix

H(w; r,Ω) = D(Ω) + T (w; r,Ω),

where, for x, y ∈ Λ\N , the matrix D is a diagonal;

D(Ω) = diagx∈Λ\N (λx (Ω)),

and T is a Töplitz linear operator

T (w; r,Ω)(x, y) = 〈
ω∂wg(v(r) + w)ey, ex

〉
.

Estimates of operators acting on analytic spaces hσ are realized with the operator
norm:

‖G‖σ := max

{
supx

∑
y |G(x, y)| eσ |x−y| 〈x − y〉s

supy
∑

x |G(x, y)| eσ |x−y| 〈x − y〉s
}

.

Consider the restriction of the linearized operator H = PΛ\N ∂w f (v(r) + w;Ω) to
�2(E), where E ⊆ Λ\N is a region of lattice sites of Λ. Its inverse operator is denoted
by

GE = (PE H PE )−1

Definition 1. Let A, B ⊂ Λ. For the restriction of amatrix H , a linear mapping of �2(Λ)

to a mapping �2(B) → �2(A), we define

HB
A = PAH PB .

With this notation we have (GE )BA = PA(PE H PE )−1PB .
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Fix w = wn−1 the approximation of the (n − 1)th step of the Nash–Moser iteration.
The main linear estimate is of the matrix

GBn (wn−1) = (
PBn H(wn−1)PBn

)−1 ,

where the region Bn ⊆ Λ\N is a ball centered at the origin of large radius Ln .

Definition 2. We say that a site x ∈ Λ is regular if |λx | > d0. The subset of regular
sites is denoted by A ⊂ Λ.

We say that a site is singular if |λx | ≤ d0. We define Sn ⊂ Λ to be the set of singular
sites in the annulus Bn\Bn−1.

With these definitions we have the following decomposition of the lattice as a disjoint
union;

Λ = A ∪∞
n=1 Sn .

The hypotheses we use to control the norm of GBn are:

(h1) The non-diagonal Töplitz matrix T has the exponential decay property

‖T (u)‖σn ≤ Cr0

for ‖u‖σn < r0.
(h2) The set of singular points in Bn\Bn−1 is the union of bounded regions S j that are

pairwise separated. That is,

Sn = ∪ j S j , rad(S j ) < c0 ,

and for S j , Si ⊂ Sn ∪ Sn−1, we assume that

dist(Si , S j ) > 4�n .

(h3) ForC(S j ) the tubular neighborhood of radius �n around S j , assume that the spectra
of HC(S j ) are bounded away from zero by dn . That is

spec(HC(S j )) ⊂ R\[−dn, dn] .
These will be shown to hold inductively for parameters (r,Ω) in the set Nn . We

defined recursively

σn = σn−1 − 2γn .

Theorem 4. Assume hypothesis (h1)–(h3), and suppose that cr0/d0 < 1/4, and

cγn r0e
−γn�n/dn < 1/4 ,

where

cγ = c
∑
x∈Z

e−γ |x | � γ −2.

Let En = Bn−1 ∪ Sn ∪ An with An consisting of regular sites in Λ\Bn−1, then we have
that ∥∥GEn (wn−1)

∥∥
σn

� cγn/dn. (15)
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The proof of Theorem 4 builds on a sequence of lemmas that serve to estimate the
norms of local Hamiltonians about singular sites.

Let Cn(S j ) be the neighborhood of radius �n around S j ⊂ Sn ,

Cn(S j ) = {x ∈ Λ : dist(x, S j ) < �n}.
Because of hypothesis (h2) the sets Cn(S j ) are disjoint for distinct S j . We prove the
following fact, omitting for clarity some instances of the indices n and j .

Lemma 4. Assume cr0/d0 < 1/2. From hypotheses (h1)–(h3), for ‖u‖σn < r0 and for
any regular subset E ⊂ A or for C(S) an �-tubular neighborhood of a singular region
S, we have

‖GE‖σn ≤ 2

d0
,

∥∥GC(S)

∥∥
σn

≤ C

dn
.

Proof. Since E is regular,
∥∥∥(

DE
E

)−1
T E
E

∥∥∥
σn

≤ cr0/d0 < 1/2, then

‖GE‖σn =
∥∥∥∥∥
(
I +

(
DE

E

)−1
T E
E

)−1 (
DE

E

)−1
∥∥∥∥∥

σn

≤ 2

d0
.

Since HC(S) is self-adjoint, by hypothesis (h3), the L2-norm of GC(S) is bounded by
1/dn ,

∥∥GC(S)

∥∥
0 ≤ 1/dn . Since the set S has radius bounded by c0, then

∥∥∥(GC(S))
S
S

∥∥∥
σn

≤ eσnc0cs0

∥∥∥(GC(S))
S
S

∥∥∥
0

≤ C

dn
.

Since singular regions are separated, then the set E = C(S) \ S is regular. From the
self-adjoint property, only two more cases require verification,

∥∥∥(GC(S))
S
E

∥∥∥
σn

≤ C/dn and
∥∥∥(GC(S))

E
E

∥∥∥
σn

≤ C/dn .

Let us define the connection matrix

Γ := HC(S) − HE ⊕ HS = T S
E + T E

S .

From resolvent identities we have that

GC(S) = GE ⊕ GS − GE ⊕ GSΓ GC(S),

then
(GC(S))

S
E = GET

S
E (GC(S))

S
S . (16)

Therefore, for the first case we have
∥∥∥(GC(S))

S
E

∥∥∥
σn

≤ C
r0
d0

1

dn
.

From resolvent identities, we have that

GC(S) = GE ⊕ GS − GE ⊕ GSΓ GE ⊕ GS + GE ⊕ GSΓ GC(S)Γ GE ⊕ GS,
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then
(GC(S))

E
E = GE + GET

S
E (GC(S))

S
ST

E
S GE . (17)

Thus, for the second inequality we have

∥∥∥(GC(S))
E
E

∥∥∥
σn

≤ 2

d0
+ C

r20
d20

1

dn
≤ C

1

dn
.

Lemma 5. Let PxG be the projection on the xth row of G, then for any σ > γ > 0

‖G‖σ−γ ≤ cγ sup
x

‖PxG‖σ .

Let A and B be two sets such that dist(A, B) ≥ �, then

‖PAGPB‖σ−γ ≤ e−γ � ‖G‖σ .

Proof. The first result follows from the inequalities

sup
y

∑
x

|G(x, y)| e(σ−γ )|x−y| 〈x − y〉s ≤ sup
y

∑
x

‖PxG‖σ e−γ |x−y|

≤ cγ sup
x

‖PxG‖σ ,

and

sup
x

∑
y

|G(x, y)| e(σ−γ )|x−y| 〈x − y〉s ≤ sup
x

‖PxG‖σ .

The second result follows from the long step � between A and B that gives the estimate
e−γ � in the exponential decay of the norm σ − γ . That is, since |x − y| > � for x ∈ A
and y ∈ B, then

sup
y∈B

∑
x∈A

|G(x, y)| e(σ−γ )|x−y| 〈x − y〉s ≤ e−γ � ‖G‖σ ,

and similarly for the supremum over x .

Proof of Theorem 4 The main estimate on the inverse

GBn = (
PBn H(wn−1)PBn

)−1

is obtained by a approach distilled from [4]; we construct a preconditioner matrix Ln
(Fig. 3) from GCn(Bn−1), GAn and inverses GCn(S j ) of the local Hamiltonians HCn(S j )
for S j ⊂ Sn . These inverses satisfy estimates as follows: Since An is regular, then

∥∥GAn

∥∥
σn

� 1/d0. (18)

By (h2) and Lemma 6, then
∥∥GCn(Bn−1)

∥∥
σn−1

� cγn−1/dn−1. (19)

By (h1)–(h3) and Lemma 4, then
∥∥GCn(S j )

∥∥
σn−1

� 1/dn . (20)
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0

0

GAn

GC(Bn−1)

GC(Sj)

SjC(Bn−1) An

Sj

Bn−1

An

Fig. 3. Preconditioner matrix Ln

We define the preconditioner matrix Ln as

Ln = GAn + PBn−1GCn(Bn−1) +
∑

S j⊂Sn

PSj GCn(S j ). (21)

Thus, we have that

Ln(H
En
En

) = GAn (H
An
An

+ HEn\An
An

)

+ PBn−1GCn(Bn−1)(H
Cn(Bn−1)

Cn(Bn−1)
+ HEn\Cn(Bn−1)

Cn(Bn−1)
)

+
∑

S j⊂Sn

PSj GCn(S j )(H
Cn(S j )
Cn(S j )

+ H
En\Cn(S j )
Cn(S j )

)

= IEn + Kn,

where, using that GAn H
An
An

= IAn etc., we have that

Kn = GAn H
En\An
An

+ PBn−1GCn(Bn−1)H
En\Cn(Bn−1)

Cn(Bn−1)
+

∑
S j⊂Sn

PSj GCn(S j )H
En\Cn(S j )
Cn(S j )

.

We conclude from (22) that as long as (IEn + Kn)
−1 exists, we have

GEn = (HEn
En

)−1 = (IEn + Kn)
−1Ln . (22)

A bound on the operator norm ‖Ln‖σn uses that
∥∥GAn

∥∥
σn

≤ c/d0 and∥∥PBn−1GCn(Bn−1)

∥∥
σn−1

≤ cγn−1/dn−1. Then referring to Lemma 5, we have

∥∥∥∥∥∥
∑

S j⊂Sn

PSj GCn(S j )

∥∥∥∥∥∥
σn−1−γn

≤ cγn sup
x∈Sn

∥∥GCn(x)
∥∥

σn−1
� cγn/dn .
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Since Ln is the sum of the above three operators, we conclude that

‖Ln‖σn ≤ c/d0 + cγn−1/dn−1 + cγn/dn � cγn/dn .

There is a recursive relation among the constants γn , �n and dn , for which we will
show that ‖Kn‖σn ≤ 3/4, hence ‖I + Kn‖σn ≤ 4. Therefore, we obtain the result of the
theorem

∥∥GEn

∥∥
σn

≤ 4
∥∥∥L−1

n

∥∥∥
σn

� cγn/dn .

To estimate Kn , we rewrite it as

Kn = GAnT
En\An
An

+ PBn−1GCn(Bn−1)T PEn\Cn(Bn−1) +
∑

S j⊂Sn

PS j
GCn(S j )T PEn\Cn(S j ).

The proof exploits the fact that dist(Bn−1, En\Cn(Bn−1)) and dist
(
S j , En\Cn(S j )

)
are

greater than �n , i.e. the long step �n gives the estimate in the exponential decay of the
norm σn−1 − γn by e−γn�n . That is, by the first result of Lemma 5 we have for S j that

∥∥∥PSj
GCn(S j )T PEn\Cn(S j )

∥∥∥
σn−1−γn

≤ cγn

dn
r0e

−γn�n ,

while for Bn−1 we have

∥∥PBn−1GCn(Bn−1)T PEn\Cn(Bn−1)

∥∥
σn−1−γn

≤ cγn−1

dn−1
r0e

−γn�n .

By the second result of Lemma 5, we can estimate row by row the matrix involving the
singular sites Sn as

∥∥∥∥∥∥
∑

S j⊂Sn

PS j
GCn(S j )T PEn\Cn(S j )

∥∥∥∥∥∥
σn−1−2γn

≤ cγn

dn
r0e

−γn�n .

Thus we conclude that

‖Kn‖σn−1−2γn ≤ c

d0
r0 +

cγn−1

dn−1
r0e

−γn�n +
cγn

dn
r0e

−γn�n ≤ 3

4

since we have assumed that cr0/d0 < 1/4 and cγn r0e
−γn�n/dn < 1/4.

The inductive procedure of the estimate GBn (wn−1) assumes the analogous estimate
for GBn−1(wn−2) holds. But in the proof, the estimate for GBn−1(wn−1) is used instead.
In the next lemmawe prove that this estimate is true also becausewn−1−wn−2 = δwn−1
is bounded for all n in the Nash–Moser procedure.

Lemma 6. For any set En−1 = Bn−1 ∪ An−1 with An−1 regular we have that

∥∥GEn−1(wn−1)
∥∥

σn−1
� cγn−1/dn−1.
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Proof. We assume from the previous step that
∥∥GEn−1(wn−2)

∥∥
σn−1

� cγn−1/dn−1.

The difference of the Hamiltonians is defined as

Rn−1 := HEn−1(wn−1) − HEn−1(wn−2)

= TEn−1(wn−1) − TEn−1(wn−2).

From Taylor’s theorem, since δwn−1 = wn−1 − wn−2, we have

Rn−1 = T ′
En−1

(wn−2)[θ(δwn−1)].
Since

∥∥T ′(wn−2)
∥∥

σn−1
� ‖wn−2‖σn−1

|v|2 with wn−2 bounded for all n and |v| ≤ r0,
then

‖Rn−1‖σn−1
� ‖δwn−1‖σn−1

� εn−1.

By the inductive hypothesis, we have that
∥∥GEn−1(wn−2)Rn−1

∥∥
σn−1

� εn−1/dn−1 ≤ 1/2,

the result follows from the fact that

GEn−1(wn−1) = GEn−1(wn−2)(IEn−1 + GEn−1(wn−2)Rn−1)
−1.

4. Verification of Hypotheses

In this sectionwe prove the exponential decay of the Töplitz matrix T , andwe discuss the
separation property of the singular regions. Then, we prove the estimate of the spectrum
of the Hamiltonians in the singular regions for good parameters (r,Ω) in a subset Nn .

4.1. (h1) Exponential decay.

Lemma 7. If ‖u‖σ < r0, then ‖T (u)‖σ < Cr0.

Proof. Let u be a function with ‖u‖σ < r0, by the algebra property of the norm, we
have that the function

h (u) = ω

∞∑
n=2

n (−1)n ūn−1

satisfy ‖h‖σ < Cr0. Then by definition
∣∣〈h, e j,k,l

〉∣∣ < Cr0e
−σ |( j,k)| 〈 j, k〉−s .

Let xn = ( jn, kn, ln) ∈ Λ, then

T (x1, x2) = 〈
hex2 , ex1

〉 =
∑
x3∈Λ

〈
h, ex3

〉 〈
ex2ex3 , ex1

〉

Since
〈
ex2ex3 , ex1

〉 = 0 when j3 /∈ {± j1 ± j2} or k3 /∈ {±k1 ± k2}, and since∣∣〈ex2ex3 , ex1
〉∣∣ ≤ 1, then



Standing Waves in Near-Parallel Vortex Filaments 193

|T (x1, x2)| ≤
∑

l3=±1, j3∈{± j1± j2}, k3∈{±k1±k2}

∣∣〈h, e j3,k3,l3
〉∣∣

≤ 2
∑

j3∈{± j1± j2}, k3∈{±k1±k2}
Cr0e

−σ |( j3,k3)| 〈 j3, k3〉−s .

Since there are four elements in the sum, and they satisfy j3 ≥ | j1 − j2| and k3 ≥
|k1 − k2|, then

|T (x1, x2)| ≤ 8Cr0e
−σ |(| j1− j2|,|k1−k2|)| 〈| j1 − j2| , |k1 − k2|〉−s .

4.2. (h2) Separation property. Wesay that ( j, k, l) ∈ Λ is a singular site if
∣∣λ j,k,l(Ω)

∣∣ ≤
d0.

Lemma 8. Let ( j1, k1) and ( j2, k2) be two different singular sites, then for a sufficiently
small d0, we have that

| j1 − j2| ≥ C |k1 + k2| ,
where C is a constant that only depends on Ω and ω. Furthermore, the constant is
uniform in ( j, k, l) ∈ Λ for (Ω,ω) in neighborhood of (Ω0, ω0).

Proof. The sites of the form ( j, k, 1) are never singular if d0 << 1. Given that λ j,k,−1 =
k2 + ω − √

( jΩ)2 + ω2, then
∣∣∣k21 − k22

∣∣∣ − CΩ | j1 − j2| ≤ ∣∣λ j1,k1,−1 − λ j2,k2,−1
∣∣ ≤ 2d0.

If k1 = k2, taking d0 small enough such that d0 ≤ CΩ/2, then j1 = j2. Finally, if
k1 �= k2, there exists a constant c such that

| j1 − j2| ≥ 1

CΩ

(∣∣∣k21 − k22

∣∣∣ − 2d0
)

≥ c |k1 + k2| .

Now let S = {( j0, k0,−1)} be a singular site in the annulus Bn+1/Bn . By the previous
inequality, the neighborhood

Cn(S) = {( j, k, l) : |( j, k) − ( j0, k0)| < �n}
contains only one singular site for �n = CL1/2

n .

4.3. (h3) Good parameters. We analyze the spectrum of the local Hamiltonians

HC(S)(wn; r,Ω) = PC(S)(D(Ω) + T (v(r) + wn(r,Ω);Ω))PC(S).

For |r | ≤ r0 , there is only one eigenvalue of HC(S)(wn,Ω)with norm less than d0/2
if r0 << d0/2. Let e(r,Ω) be that eigenvalue of HC(S) with

|e(r,Ω)| < dn << d0/2,

then e(r,Ω) is isolated fromother eigenvalues, and as such it is analytic in the parameters.
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Lemma 9. For |r | < r0, there exists a constant C > 0 such that

∂Ωe(r,Ω) ≤ −CLn.

Proof. Since e(r,Ω) is analytic, then

∂Ωe(r,Ω) = ∂Ωe(0,Ω) + O(r) = ∂Ωλ j,k,−1 + O(r).

By an explicitly calculation

∂Ωλ j,k,−1 = − j2Ω√
j2Ω2 + ω2

≥ −CΩLn ,

because the site ( j, k) is singular with | j | ≥ CLn .
From the above lemma, for a fix r < r0, the eigenvalue e(r,Ω) is a monotone

decreasing function of Ω . Since e(r,Ω) is analytic, then there is an unique analytic
function Ωz(r) such that e(r,Ωz(r)) = 0. Since e(0,Ω) = λ j,k,−1(Ω) for r = 0, then

Ωz(0) = Ω j,k = 1

j

√
k4 + 2k2ω

and ( j, k,−1) ∈ S j .

Lemma 10. We have that

Ωz(r) = Ω j,k +
1

Ln
O(r2).

Proof. Since e(r,Ω) is analytic then

e(r,Ω) = e(0,Ω j,k) + ∂Ωe(0,Ω j,k)(Ω − Ω j,k) + ∂r e(0,Ω j,k)r + h.o.t

By the Feynman–Hellman formula, we have that

∂r e(0,Ω j,k) = 〈T ′(0)[∂rv,ψ0], ψ0〉.
In the space L2

sym , the functions are ψ0 = e j,k,−1, ∂rv = e1,1,−1, and

d2g(0)[w1, w2] = ∂2ū g(0)w̄1w̄2 = 2w̄1w̄2.

Thus, for any j, k �= 1/2, we have that

〈ψ0, T
′(0)[∂rv,ψ0]〉 = 〈2ωē1,1,−1ē j,k,−1, e j,k,−1〉 = 0.

Since ∂Ωe(0,Ω j,k) < −CLn , then

∂Ωe(0,Ω j,k)(Ωz − Ω j,k) + h.o.t. = 0

Using the implicit function theorem, we have that Ωz − Ω j,k is a function of r , and

Ωz − Ω j,k = 1

Ln
O(r2).

Let N j,k be the neighborhood of the curve Ωz(r) given by

N j,k = {(r,Ω) : |Ωz(r) − Ω| < C
dn
Ln

}, (23)

by the previous lemma, and the mean value theorem, the eigenvalue satisfy |e(r,Ω)| >

dn if (r,Ω) /∈ N j,k . Thus, the hypothesis (h3) holds true in the complement of the set
of parameters

∪( j,k)∈Sn N j,k ,

where the union is taken over all singular sites in the annulus Bn\Bn−1.
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5. Intersection Property

In this section, we present the arguments for the Whitney regularity of w(r,Ω) for
(r,Ω) ∈ N = ∩∞

n=1 Nn . Then, we prove that the intersection of the curve

C ={(r,Ω(r)) : Ω(r) = Ω0 + Ω2r
2 + O(r3)},

and the Cantor set N has positive measure in the case Ω2 �= 0. Finally, we prove that
the curve C corresponding to the bifurcation of standing waves has the non-degeneracy
property Ω2 �= 0.

5.1. Whitney regularity. At the nth Nash–Moser step excisions are made in parameter
space (r,Ω) ∈ Nn−1 consisting of the union of neighborhoods N j,k , each of width
Cdn/Ln . On the parameter set Nn−1\ ∪ j,k N j,k , after the excision of the N j,k , we
solve (12) for the correction δwn(r,Ω). We may now provide a smooth interpolant for
δwn(r,Ω) across the excisions, in the usual way. Construct a cutoff function ϕn(r,Ω) ∈
C∞
0 , which is supported in Nn−1\ ∪ j,k N j,k and for which ϕn(r,Ω) = 1 on the new

parameter set Nn := Nn−1\ ∪ j,k 2N j,k , where

2N j,k := {(r,Ω) : |Ωz(r) − Ω| < c
2dn
Ln

}

are excisions of just twice the width of the previous N j,k . This can be done so that

the cutoff function ϕn has derivatives bounded by |∂α
Ω∂

β
r ϕn| ≤ C( Ln

2dn
)α+β . Then

ϕnδwn(r,Ω) ∈ C∞(N0) and ϕnδwn = δwn on Nn . Now wn = wn−1 + ϕnδwn is
C∞ in the set of parameters (r,Ω) ∈ N0, wn = wn−1 + δwn on Nn , and moreover, for
(r,Ω) ∈ N0 the sequence wn converges in hσ0/2 along with all of its derivatives with
respect to (r,Ω); and the following estimate holds

∥∥∂α
Ωw

∥∥
σ0/2

≤ Cr2,
∥∥∂r∂

α
Ωw

∥∥
σ0/2

≤ Cr .

5.2. Measure of good parameters.

Lemma 11. Let r− and r+ be the minimum and the maximum of {r : (r,Ω) ∈ C ∩ N j,k},
we have that

∣∣∣r2− − r2+

∣∣∣ ≤ C

Ω2

dn
Ln

.

Proof. Let r0 be such thatΩz(r0) = Ω(r0), then the point (r0,Ω(r0)) is the intersection
of the curves Ωz(r) and Ω(r). Since Ω(r) = Ω0 + Ω2r2 + O(r3), then

|Ω(r−) − Ω(r0)| � Ω2

2
|r2− − r20 |.

By the previous lemma

|Ωz(r0) − Ωz(r−)| ≤ C

Ln

∣∣∣r2− − r20

∣∣∣ .
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Since Ω(r−),Ωz(r−) ∈ N j,k , then

Cdn
Ln

≥ |Ω(r−) − Ωz(r−)| ≥ |Ω(r−) − Ωz(r0)| − |Ωz(r0) − Ωz(r−)|

≥ Ω2

2
|r2− − r20 | − C

Ln

∣∣∣r2− − r20

∣∣∣ ≥ Ω2

4
|r2− − r20 |.

Analogously, we have for the estimate of r+ that
∣∣r2+ − r20

∣∣ ≤ Cdn
Ω2Ln

. The lemma follows
from the triangle inequality.

Lemma 12. If Ω2 �= 0, the measure of the set {r : (r,Ω) ∈ C∩N j,k} is bounded by

∣∣{r : (r,Ω) ∈ C∩N j,k}
∣∣ <

C√
Ω2

dn√
Ln

.

Proof. For a singular site Ω0 | j | ∼ k2, then

Ωz(0) = Ω j,k = |k/j |
√
k2 + 2ω ∼ Ω0

√
1 + 2ωk−2.

Thus,

|Ω0 − Ωz(0)| = Ω0

∣∣∣∣
−2ωk−2

1 +
√
1 + 2ωk−2

∣∣∣∣ > Ω0

∣∣∣2ωk−2
∣∣∣ � C

Ln
.

From the definition of r−, we have |Ωz(r−) − Ω(r−)| < Cdn/Ln . By the properties
of Ωz we have |Ωz(0) − Ωz(r−)| < Cr2−/Ln , then

C

Ln
r2− +

Cdn
Ln

> |Ω(r−) − Ωz(0)| .

Since the curve C is of the form Ω(r) = Ω0 + Ω2r2 + O(r3), then

|Ω(r−) − Ωz(0)| > |Ω0 − Ωz(0)| − 2Ω2r
2−.

Thus,
(
2Ω2 +

C

Ln

)
r2− > |Ω0 − Ωz(0)| − Cdn

Ln
>

C

Ln
(1 − Cdn) >

C

2Ln
.

For Ω2 �= 0, we conclude that r+ > r− > C/
√

Ω2Ln . By the above lemma, we have

r+ − r− ≤ C

Ω2

dn
Ln

(C
√

Ω2Ln) ≤ C√
Ω2

dn√
Ln

.

Proposition 2. Let dn = L−β
n . If Ω2 �= 0 and β > 3/2, then the measure of good

parameters is positive. Moreover,

|{r ∈ [0, r0) : (r,Ω) ∈ N ∩ C}| > r0(1 − r0Cβ),

where

Cβ = C√
Ω2

∞∑
n=1

L3/2−β
n < ∞.
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Proof. There are atmost cL2
n singular sites at the n step, then the previous lemma implies

|{r ∈ [0, r0) : (r,Ω(r)) /∈ Nn ∩ C}| ≤ r0L
2
n

C√
Ω2

dn√
Ln

.

Thus

|{r ∈ [0, r0) : (r,Ω) ∈ N ∩ C}| ≥ r0 − r0
C√
Ω2

∞∑
n=1

L3/2−β
n = r0(1 − r0Cβ).

5.3. Non-degeneracy of the bifurcation branch. In this section we prove that for all
parameters ω with only one exceptional value ω = ω0 we have Ω2 �= 0; namely,
the bifurcation branch has nondegenerate curvature at the bifurcation point. For the
asymptotic expansion

u = ru1 + r2u2 +O(r3),

Ω(r) = Ω0 + rΩ1 + r2Ω2 +O(r3),

we have that

f (w;Ω) = Lu + i(Ω(r) − Ω0)ut + ωū2 − ωū3 +O(|u|4) = 0,

where L = L(Ω0) is the linear map at Ω0.
At order r , we have Lu1 = 0, and then u1 = e1,1,−1(Ω0). Thus, at order r2 we have

Lu2 − iΩ1∂t u1 + ωu21 = 0.

Multiplying by u1, integrating by parts, and using that L is self-adjoint with Lu1 = 0,
we get that

Ω1 〈i∂t u1, u1〉 = ω
〈
ū21, u1

〉
.

The basis e j,k,l at Ω = Ω0 is given by e0,0,1 = 1,

e0,2,1 = √
2 cos 2s,

e1,1,−1 = 2(a cos t + ib sin t) cos s,

e2,0,±1 = √
2(a± cos 2t + ib± sin 2t),

e2,2,±1 = 2(a± cos 2t + ib± sin 2t) cos 2s,

where (a, b)T = v1,1,−1 and (a±, b±)T = v2,0,±1. Since

〈i∂t u1, u1〉 = 1

4π2

∫
T2

i∂t u1ū1 dtds = −2ab,

then 〈
u21, u1

〉
= 1

4π2

∫
T2

e31,1,−1 dtds = 0. (24)

Since Ω1 = 0 and u2 = −ωL−1u12, then we conclude that

ū2 = −ωL−1u21.

At order r3, we obtain

Lu3 − iΩ2∂t u1 + 2ωu1u2 − ωū31 = 0.
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Multiplying by u1 and integrating by parts, then

−Ω2 〈i∂t u, u1〉 = ω
〈
2ωu1L

−1(u21) + ū31, u1
〉
.

Thus, we have

Ω2 = ω

2ab

(〈
ū31, u1

〉
+ 2ω

〈
L−1u21, u

2
1

〉)
.

To calculate the first product, we use that
∫ 2π

0
cos4 θ dθ = 3π/4,

∫ 2π

0
cos2 θ sin2 θ dθ = π/4,

then
〈
ū31, u1

〉
= 4

π2

(
a4

3π

4
− 6a2b2

π

4
+ b4

3π

4

)
3π

4

= 9

4

(
a4 − 2a2b2 + b4

)
= 9

4

(
a2 − b2

)2

Since
(
a

b

)
= 1√

2
√
1 + ω

(
1√

1 + 2ω

)
,

then (
a2 − b2

)2 = ω2

(1 + ω)2
and 2ab =

√
1 + 2ω

1 + ω
. (25)

We conclude from the next proposition that

Ω2 = 1

6

ω2

(ω + 1) (ω + 2)
√
2ω + 1

(
4ω3 + 29ω2 + 33ω − 6

)
.

Since Ω2 = 0 at only one point ω0 > 0, the curve has the property for the intersection
with the Cantor set N except for ω0.

Proposition 3. We have that
〈
L−1u21, u

2
1

〉
= 1

24 (ω + 1)2 (ω + 2)

(
8ω3 + 31ω2 + 12ω − 12

)
.

Proof. To calculate
〈
L−1u21, u

2
1

〉
, we use the expression for u21 given by

u21 = e21,1,−1 = (a2 − b2 + cos 2t + i2ab sin 2t)(1 + cos 2s).

Projecting the vector (1, 2ab) in the orthonormal components (a+, b+) and (a−, b−), we
have that

u21 =
(
a2 − b2

) (
e0,0,1 +

1√
2
e0,2,1

)

+ (a+ + 2abb+)

(
1√
2
e2,0,1 +

1

2
e2,2,1

)

+ (a− + 2abb−)

(
1√
2
e2,0,−1 +

1

2
e2,2,−1

)
.
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Thus, we have

〈
L−1u21, u

2
1

〉
=

(
a2 − b2

)2 (
λ−1
0,0,1 +

1

2
λ−1
0,2,1

)
+ P , (26)

where P is the polynomial

P = (a+ + 2abb+)
2
(
1

2
λ−1
2,0,1 +

1

4
λ−1
2,2,1

)

+ (a− + 2abb−)2
(
1

2
λ−1
2,0,−1 +

1

4
λ−1
2,2,−1

)
.

For the first term we have
(

λ−1
0,0,1 +

1

2
λ−1
0,2,1

) (
a2 − b2

)2 = 1

4

ω

(ω + 1)2 (ω + 2)
(3ω + 4) .

To calculate P , we define the polynomial

Q =
√

ω2 + 8ω + 4,

then a± and b± are given by

(
a±
b±

)
= 1√

2
√
Q2 ± ωQ

(
ω ± Q

−2
√
1 + 2ω

)
,

and the eigenvalues are λ0,0,1 = 2ω, λ0,2,1 = 2(ω + 2), λ2,0,±1 = ω ± Q and λ2,2,±1 =
ω ± Q + 4.

Thus, we have

1

2
λ−1
2,0,±1 +

1

4
λ−1
2,2,±1 = 1

48

1

2ω + 1

(
2ω2 + 3ω + 4 ± (5 − 2ω)Q

)
,

and

(a± + 2abb±)2 = 1

2(Q2 ± ωQ)

(
ω ± Q − 2

1 + 2ω

1 + ω

)2

.

After a computations with Maple, and alternatively by hand, we conclude that

P = 1

24

1

(ω + 1)2

(
8ω2 − 3ω − 6

)
.
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Appendix

Periodic solutions of Eq. (8) are zeros of the map

f (v) = −iΩ∂tv − ∂ssv + ω(1 − |v|−2)v.

The map f is T3-equivariant with the action of (θ, ϕ, ψ) ∈ T
3 given by

ρ(θ, ϕ,ψ)v = eiθ v(t + ϕ, s + ψ).

In addition, the map is equivariant by the actions

ρ(κ)v(t, s) = v(t,−s), ρ(κ̄)v(t, s) = v̄(−t, s).

Since

ρ(θ, ϕ,ψ)ρ(κ) = ρ(κ)ρ(θ, ϕ,−ψ),

ρ(θ, ϕ, ψ)ρ(κ̄) = ρ(κ̄)ρ(−θ,−ϕ,ψ),

then the map f is equivariant by the action of the non-abelian group

Γ = O(2) × (T2 ∪ κ̄T2).

The equilibrium v0 is fixed by the actions of κ , κ̄ and (0, ϕ, ψ) ∈ T
3, then the isotropy

group of v0 is

Γv0 = O(2) × (S1 ∪ κ̄S1).

The orbit of v0 has dimension one, with

Γ v0 = {eiθ : θ ∈ S1}.
The linear map f ′(v0) in coordinates u = (v, v̄) ∈ C

2 is given by

L(Ω)u =
(−iΩ∂t − ∂ss + ω ω

ω −iΩ∂t − ∂ss + ω

)
u.

The linear map L in Fourier components is

L(Ω)u =
∑

( j,k)∈Z2

Mj,k(Ω)u j,ke
i( j t+ks),

where the matrix

Mj,k(Ω) =
(

Ω j + k2 + ω ω

ω −Ω j + k2 + ω

)

has eigenvalues λ j,k,±1(Ω) as before.
For j = 1, the eigenvalue λ1,k,−1(Ω) is zero at

Ω0 = |k|
√
k2 + 2ω.

Let (a, b) be the eigenvector ofM1,k(Ω0) corresponding to the eigenvalue λ1,k,−1. Thus,
the periodic functions
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v(z1, z2) = z1ae
i(ks+t) + z̄1be

−i(ks+t)

+z2ae
i(−ks+t) + z̄2be

−i(−ks+t)

are in the kernel of f ′(v0;Ωk) for (z1, z2) ∈ C
2.

The action of Γv0 in the parametrization of the kernel (z1, z2) is given by

ρ(ϕ,ψ)(z1, z2) = eiϕ(eikψ z1, e
−ikψ z2),

ρ(κ)(z1, z2) = (z2, z1),

ρ(κ̄)(z1, z2) = (z̄2, z̄1).

The isotropy groups of the action are inherited by the bifurcating solutions. Using
the elements κ and ϕ ∈ S

1, we may assume without loss of generalization that the first
coordinate is real and positive, z1 = a ∈ R, unless both coordinates are zero.

If z2 = 0, then the isotropy group is generated by

(0, ϕ,−ϕ/k) ∈ T
3 and κκ̄ .

This isotropy group Γ(a,0) is isomorphic to O(2), and the orbit of (a, 0) contains a
2-torus.

If z2 �= 0, using the action of (0, ϕ,−ϕ/k) ∈ T
3, which fixes the first coordinate and

acts by multiplying the second one by e2ϕ , we may assume that z2 is real.
If z2 = z1, then the isotropy group of (a, a) is generated by

(0, π,−π/k), κ and κ̄ .

This isotropy group Γ(a,a) is finite, and its orbit contains a 3-torus. In other cases the
isotropy group is generated by (0, π,−π/k).

Traveling waves. Functions in the fixed point space of Γ(a,0) satisfy

v(t, s) = ρ(0, ϕ,−ϕ/k)v(t, s) = v(t + ϕ, s − ϕ/k),

thus they are of the form

v(t, s) =
∑
l∈Z

vl,lke
i(lt+lks).

In this case the non-zero Fourier components are in a line on the lattice. Moreover, from
v(t, s) = v̄(−t,−s), we have that vl,lk ∈ R.

Since f is Γ × S
1-equivariant, the map f sends the fixed point space of Γ(a,0) into

itself. The restriction of L to this subspace is given by

L (u) =
∑
l∈Z

Ml,klul,lke
i(lt+slk),

where u j,k = (v j,k, v̄ j,k). Moreover, for l = 1, if ω is irrational, the kernel at

Ω = Ω0 := |k|
√
k2 + 2ω

is one dimensional. Since λ1,k,−1(Ω) changes sign at Ω0, by arguments of topological
bifurcation [15], there is a global bifurcation of periodic solutions near (v0,Ω0).

Theorem 5. The map f (v;Ω) has a global bifurcation of periodic traveling wave solu-
tions from (1,Ω0). These are solutions for the filament problem of the form
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u j (t, s) = a j e
iωtv(Ωt + ks), (27)

where v is a 2π -periodic solution.

In [1] there is a proof of existence of traveling waves which are asymptotic to parallel
filaments at infinity. Also, in [14] there is a proof of global bifurcations of periodic
traveling waves for a polygonal relative equilibrium. The proof in this reference uses
equivariant degree theory to deal with the symmetries.

Standing waves. The group Γ(a,a) is generated by the elements (0, π,−π/k), κ and κ̄ .
Thus, functions with the isotropy group Γ(a,a) satisfy

v(t, s) = v(t + π, s − π/k) = v(t,−s) = v̄(−t, s).

These solutions are the standing waves constructed in this article.
Since v0 = 1 is the only solution of the orbit eiθ v0 that satisfy the symmetries (10),

then f ′(v0) is not degenerate when restricted to the subspace of functions (10). We have
taken advantage of this fact in our proof of the existence of standing waves.

In order to solve the small divisor problem, the frequency ω has been chosen to be
diophantine. In this case there are no resonant Fourier components, and all branches
from different k’s can be derived from the same branch k = 1 and the transformation
τ−1v(τ 2t, τ s) for some τ . Thus, the case k = 1 that we have analyzed in the paper is
the general one.

Relative equilibria. To find other relative equilibria we may solve Eq. (4) by the method
of quadratures, as in the Kepler problem. In polar coordinates, v = reiθ , the equation
becomes ∂sθ = c/r2 where c is the angular momentum, and

∂2s r − c2r−3 + r−1 − ωr = 0. (28)

If c = 0, then θ = θ0 is constant. In this case, each filament lies in a plane that
contain the central axis. Since ω is positive, there is a unique equilibrium at r = ω−1/2,
this corresponds to the 2π -periodic solution (5) with σ = 0. There are more bounded
solutions with r(s) → 0 when s → ±∞, but these solutions are less relevant for
modeling because the filaments approach each other and therefore exit from the regime
of validity of the approximation. There are other relevant solutions that are unbounded.

If c �= 0, the dependency of equations on s can be eliminated as in theKepler problem.
Changing variables as ρ = r−1 (see [21]), then ∂sr = −c∂θρ and ∂ssr = −c2ρ2∂θθρ.
Thus, the equation becomes

c2∂θθρ + c2ρ − ρ−1 + ωρ−3 = 0 . (29)

These equation may be integrated from c2(∂θρ)2 + V (ρ) = E with the potential

V (ρ) = c2ρ2 − ln ρ2 − ωρ−2.

Equation (29) have two equilibria for ω ∈ (0, 1/4c2) given by

ρ2± = 1

2c2

(
1 ±

√
1 − 4c2ω

)
.
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Since ω = −c2ρ4± +ρ2± and θ(s) = cρ2±s, then the equilibria ρ± correspond to solutions

u = ρ−1± ei(ωt+cρ
2±s), which are the helix solutions (5).

Moreover, the equilibrium ρ+ is a minimum of V , and there are periodic solutions
close to ρ+. The continuum of periodic solutions near ρ+ consists of helices that are in
a bounded annulus. Actually, the projection in the plane of these periodic solutions are
asymptotically ellipses. More complex solutions may be obtained using the Galilean
transformation applied to the helix-like solutions.
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