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Abstract: We consider a class of invariant measures for a passive scalar f driven by an
incompressible velocity field u, on a d-dimensional periodic domain, satisfying

∂t f + u · ∇ f = 0, f (0) = f0.

The measures are obtained as limits of stochastic viscous perturbations. We prove that
the span of the H1 eigenfunctions of the operator u ·∇ contains the support of these mea-
sures. We also analyze several explicit examples: when u is a shear flow or a relaxation
enhancing flow (a generalization of weakly mixing), we can characterize the limiting
measure uniquely and compute its covariance structure. We also consider the case of
two-dimensional cellular flows, for which further regularity properties of the functions
in the support of the measure can be deduced. Themain results are proved with the use of
spectral theory results, in particular the RAGE theorem, which are used to characterize
large classes of orbits of the inviscid problem that are growing in H1.

1. Introduction

We consider the small noise inviscid limit of a class of stochastically forced linear
drift-diffusion equations of the form

d f + (u · ∇ f − ν� f ) dt = √
ν � dWt , f (0) = f0, (1.1)

evolving on a d-dimensional periodic domain. Here u is a fixed Lipschitz-continuous,
divergence-free vector field, ν > 0 is the diffusivity parameter and �dWt represents a
white in time, spatially colored Gaussian noise (see (3.1) below for the full definition).
We will always consider mean-zero initial data and forcing, which immediately implies
that ∫

Td
f (t, x)dx = 0
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for all t ≥ 0.
It is a classical result [10] that there exists a unique Gaussian invariant measure μν

associated to the Markov semigroup generated by (1.1). Due to the balance between
diffusion and noise, it is possible to show that the sequence {μν}ν∈(0,1] converges, up
to subsequences, to an invariant measure μ0 of the inviscid deterministic equation (in
general, there might be more than one limit point)

∂t f + u · ∇ f = 0, f (0) = f0. (1.2)

In this article, we characterize the support of these measures μ0 in terms of the spectral
properties of the operator u · ∇. Specifically, we prove the following theorem.

Theorem 1.1. Let μ0 be an invariant measure for (1.2), obtained in the small noise
inviscid limit from (1.1). Define

E = span
{
ϕ ∈ H1 : u · ∇ϕ = iλϕ, λ ∈ R

}L2

. (1.3)

Then μ0(H1 ∩ E) = 1. In particular, spt(μ0) ⊂ E.

Extensions to more general linear problems are also covered by our approach (e.g.
compact manifolds without boundaries and more general dissipation, such as fractional
or inhomogeneous diffusion).

In addition, we consider several concrete examples where we are able to characterize
the subspace E in (1.3) and/or to take advantage of properties of u · ∇ − ν� to obtain
a more detailed picture of the support of μ0. The theorem above is derived as a conse-
quence of a rigidity result involving a uniform time-average growth of Sobolev norms of
solutions to (1.2) (see Theorem 2.3). This criterion, verified for linear problems, could
in principle be used to deduce similar conclusions for nonlinear systems (see Remark
2.5 below).

The idea of balancing diffusion and noise by scaling with the parameter ν was intro-
duced in the context of the two-dimensional Navier–Stokes and Euler equations in a
periodic domain in [25,28], and later extended to other systems [26,27]. The resulting
invariant measures are expected to give some information about the generic, long-time
dynamics of the inviscid systems in weak topologies, that is, taking into account the
possibility of infinite-dimensional effects such as mixing and inviscid damping [4,16].
However, formost nonlinear problems, for example the 2DEuler equations, we currently
do not have much explicit information about these measures [16,28,33].

The mixing of passive scalars at high Peclet number (ν → 0 in (1.1)) is a subject
of enduring interest in applied mathematics (see e.g. [1,2,30,36,37] and the references
therein), which provides a clear motivation for studying (1.1). Another motivation for
studying passive scalars lies in the fact that, unlike nonlinear problems, spectral proper-
ties of u · ∇ provide precise information about the long-time behavior of (1.2) – an idea
that can be traced back to the seminal work [23], where weakly mixing flows are identi-
fied with dynamical systemswith purely continuous spectra. This additional information
will allow us to prove Theorem 1.1 and confirm the intuition that the inviscid invariant
measures constructed in the manner described above should mostly retain information
about the long-time dynamics of the large scales in the solutions, rather than information
about the “enstrophy” in the small scales.

The intuitive idea of our result is as follows: if u ·∇ mixes the scalar, then small scales
are created and then rapidly annihilated by the dissipation on time scales faster than the
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natural O(ν−1) scale. This mixing-enhanced dissipation effect and related mechanisms
have been studied in several works, e.g. [3,5–7,17,40] and the references above (see
also Remarks 4.10–4.11 for discussions about other types of small noise limits). In
[7], the authors characterized a special class of flows, referred to therein as relaxation
enhancing, which are precisely the flows with no H1 eigenfunctions (a strictly larger
class than weakly mixing flows). The authors showed that in this case, the deterministic
problem

∂t f + u · ∇ f − ν� f = 0, f (0) = f0.

dissipates L2 density faster than O(ν−1).
In our context, Theorem 1.1 shows that in the case of relaxation enhancing flows

the only invariant measure produced by small noise limits is a point mass at zero. Note
that this is in sharp contrast to the case of 2D Navier–Stokes to Euler limit, where it is
known that the resulting inviscid measures cannot collapse to a single point; namely,
the possibility of μ0 being a Dirac mass on a steady state is ruled out by conservation
of energy and enstrophy [28]. One of the fundamental differences between the situation
considered here and the 2D Navier–Stokes equations is the lack of an H−1 balance for
the solution to (1.1). Indeed, f is the analogue of the vorticity, and the energy balance for
2D Navier–Stokes is precisely an H−1 balance for the vorticity. In the linear problem
(1.2), the measures can certainly reduce to a point mass: the most apparent example
is given by weakly mixing flows, and more generally relaxation enhancing flows, but
this can also happen for simple shear flows depending on the structure of the noise (see
Sect. 4).

Plan of the paper. In Sect. 2 we consider the inviscid problem (1.2), and prove a general
result on the growth of the H1 norm of solutions with initial data in E⊥, the orthogonal
complement of E as defined in (1.3). As a direct consequence, we deduce that invariant
measures for (1.2) with finite H1 moment are supported on E . We proceed with the
construction of such measures in Sect. 3, via a small noise inviscid limit of invariant
measures for (1.1). We also discuss statistically stationary solutions, and highlight the
properties preserved in the limit as ν → 0. Finally, Sect. 4 is devoted to explicit examples
of fluid flows for which the invariant measures can be better characterized: in the case
of relaxation enhancing flows and shear flows, the covariance operator of the (unique)
Gaussian invariant measure can be computed explicitly, while for cellular flows further
regularity properties are observed to hold.

General notation. Throughout the paper, c will denote a generic positive constant,
whose valuemay change from line to line in a given estimate. In the same spirit, c0, c1, . . .
will denote fixed constants appearing in the course of proofs or estimates, which have
to be referred to specifically. Given a Banach space X , B(X) will stand for the Borel σ -
algebra on X ,P(X) for the set of Borelian probability measures on X and Mb(X) (resp.
Cb(X)) for the space of bounded measurable (resp. continuous) real-valued functions
on X . We call R+ = [0,∞).

Function spaces. Let d ≥ 2 be a positive integer. Throughout the article,Td = [0, 2π ]d
will denote the d-dimensional torus and all the real-valued functions on T

d will be
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tacitly assumed to be mean-free. Accordingly, we will not make a distinction between
homogeneous and inhomogeneous spaces. For p ∈ [1,∞) the Lebesgue norm on

L p =
{
ϕ : Td → R

d ,

∫
Td

|ϕ(x)|pdx < ∞,

∫
Td

ϕ(x)dx = 0

}

is denoted by ‖ · ‖L p (with the obvious changes for p = ∞), 〈·, ·〉 stands for the scalar
product in L2, while for s ∈ R the homogeneous Sobolev norms on Hs = Hs(Td) are
denoted as usual by ‖ · ‖Hs = ‖(−�)s/2 · ‖L2 . Without explicit reference, we will often
make use of the Poincaré inequality

‖ϕ‖L2 ≤ 1√
λ1

‖ϕ‖H1 , ϕ ∈ H1,

where λ1 > 0 is the first eigenvalue of the Laplace operator, and whose eigenvalues
{λ j } j∈N are well-known to form a monotonically increasing and divergent sequence.
The associated orthonormal Fourier basis will be denoted by {e j } j∈N, and P≤N will
indicate the projection onto the span of the first N elements of this basis.

2. The Inviscid Problem

For x ∈ T
d and t ≥ 0, we study in this section certain properties of solutions to the

inviscid transport equation

∂t f + u · ∇ f = 0, f (0) = f0. (2.1)

Here u = u(x) : T
d → R

d is a given Lipschitz, divergence-free, time-independent
velocity vector field. The goal here is to make precise the close relationship between
the spectral properties of the operator u · ∇ and the invariant measures for the linear
semigroup generated by (2.1).

Any incompressible Lipschitz flow u generates a volume measure-preserving trans-
formation 
t (x), defined through the differential equation

d

dt

t (x) = u(
t (x)), 
0(x) = x . (2.2)

Existence and uniqueness of solutions to the aboveODE (2.2), guaranteed by the assump-
tions on u, translate into analogous properties for (2.1). In particular, it is standard to
infer that all solutions to (2.1) with f0 ∈ L2 satisfy

f ∈ Cb(R; L2) ∩ W 1,∞(R; H−1)

and that (2.1) generates a one-parameter, strongly continuous, unitary group {S(t)}t∈R
of linear solution operators S(t) : L2 → L2 acting as

f0 �→ S(t) f0 = f (t), S(t) f0(x) = f0(
−t (x)),

fulfilling the group properties

S(0) = IdL2 , S(t + τ) = S(t)S(τ ), S(t)∗ = S(−t), ∀t, τ ∈ R

and satisfying the bound

sup
t∈R

‖∂t f (t)‖H−1 ≤ ‖ f0‖L2 ‖u‖L∞ . (2.3)
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Furthermore, if we assume the initial datum f0 ∈ H1, then we have for some c > 0
independent of u,

‖S(t) f0‖H1 ≤ c e‖u‖Lip|t |‖ f0‖H1 , ∀t ∈ R.

2.1. Spectral properties of fluid flows. Inspired by the analysis of [7], it is conceivable
to expect that the set of H1-eigenfunctions of the operator u · ∇ plays an important
role in the analysis of (2.1). Specifically, this point of view will prove very useful when
(2.1) is recovered as an inviscid limit of viscous equations, providing information about
important effects involving anomalously fast dissipation. In this spirit, we define the
closed subspace

E = span
{
ϕ ∈ H1 : u · ∇ϕ = iλϕ, λ ∈ R

}L2

, (2.4)

generated by H1-eigenfunctions of u · ∇. We can then write L2 = E ⊕ E⊥ and denote
by

�e : L2 → E and �⊥
e : L2 → E⊥

the respective orthogonal projections. It is not hard to see that the corresponding
unbounded operator

L = iu · ∇ : D(L) ⊂ L2 → L2, D(L) =
{
ϕ ∈ L2 : Lϕ ∈ L2

}
,

is closed, densely defined (H1 ⊂ D(L)), self-adjoint, generates {S(t)}t∈R (i.e. S(t) =
ei Lt ), and maps D(L) ∩ E to E , and therefore D(L) ∩ E⊥ to E⊥ as well. Its restriction

L̃ = L|E⊥ : D(L) ∩ E⊥ → E⊥,

is itself a closed, densely defined and self-adjoint operator on E⊥. Following the approach
of [34], we can therefore further split E⊥ and define the projection �̃p on the spectral
subspace generated by the pure point measure given by the spectral decomposition of
L̃ . Denote by �̃c the projection onto its orthogonal complement in E⊥, that is, onto the
orthogonal complement of the eigenfunctions of L̃ .

More importantly, L̃ has no H1-eigenfunctions and is therefore, in the terminology of
[7], relaxation-enhancing (see Definition 4.1 below). We discuss relaxation-enhancing
flows in more detail below in Sect. 4. Of importance here are two results from [7] on the
behavior of time averages with respect to the linear unitary semigroup generated by L̃ ,
which we denote as

S̃(t) = ei L̃t : E⊥ → E⊥, ∀t ∈ R.

The first one concerns the evolution of the continuous spectrum of L̃ , which we restate
slightly for our setting. Its proof is based on the so-called RAGE theorem as in [35].

Lemma 2.1 ([7], Lemma 3.2). Let K ⊂ E⊥ be a compact set. For any N , σ > 0, there
exists Tc = Tc(N , σ,K) such that for all T ≥ Tc and any f0 ∈ K

1

T

∫ T

0
‖P≤N S̃(t)�̃c f0‖2L2dt ≤ σ‖ f0‖2L2 ,

where P≤N is the projection onto the span of the first N eigenfunctions of the Laplace
operator.
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Contrary to [7], we have stated the result for a general compact set rather than a
compact subset of the unit sphere of L2. By linearity, it is clear that the statements are
equivalent. The crucial point here is that the choice of the time Tc depends on the compact
set K in a uniform way rather than pointwise on f0 ∈ K. It is also worth mentioning
that the above result is true for the operator L and its spectral projection �c on L2 as
well, and does not require the absence of H1-eigenfunctions. This is in contrast with the
second lemma below, for which the fact that L̃ does not have H1-eigenfunctions plays
an essential role. It describes the behavior of the point spectrum under S̃(t).

Lemma 2.2 ([7], Lemma 3.3). Let K ⊂ E⊥ be a compact set such that 0 /∈ K, and
define

K1 = {
φ ∈ K : ‖�̃pφ‖L2 ≥ ‖φ‖L2/2

}
.

For any B > 0 there exists Np(B,K) and Tp(B,K) such that for any N ≥ Np, any
T ≥ Tp and any f0 ∈ K1

1

T

∫ T

0
‖P≤N S̃(t)�̃p f0‖2H1dt ≥ B‖ f0‖2L2 ,

where P≤N is the projection onto the span of the first N eigenfunctions of the Laplace
operator.

2.2. Invariant measures and their support: a general result. The main result of this
section is a general statement about the average growth of the H1-norm of solutions to
inviscid problems. The result is similar to ideas in [7,40], where time-averaged norm
growth of the inviscid problem is used to deduce enhanced dissipation of the viscous
problem. It reads as follows.

Theorem 2.3. Let K ⊂ H1 ∩ E⊥ be a nonempty compact set in L2 such that 0 /∈ K.
Then the solution operator S(t) : L2 → L2 for (2.1) satisfies

lim
T→∞ inf

f0∈K
1

T

∫ T

0
‖S(t) f0‖2H1dt = ∞. (2.5)

Proof. We first notice that (2.5) only needs to be proven for S̃(t) since we are assuming
thatK is a subset of E⊥. Fix B > 0 arbitrarily. We aim to find T0 = T0(B,K) > 0 such
that for any T ≥ T0

1

T

∫ T

0
‖S̃(t) f0‖2H1dt ≥ B‖ f0‖2L2 , ∀ f0 ∈ K. (2.6)

The result will follow after noting that inf f0∈K ‖ f0‖L2 > 0 due to compactness and
0 �∈ K. Notice that it is important that T0 depends on K but not on f0. Define the
following subset of K (which is also compact in L2),

K1 = {
φ ∈ K : ‖�̃pφ‖L2 ≥ ‖φ‖L2/2

}
.

We consider two cases.
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� Case 1: f0 ∈ K1. By Lemma 2.2 there exist Np(B,K) and Tp(B,K) such that for
any T ≥ Tp

1

T

∫ T

0
‖P≤Np S̃(t)�̃p f0‖2H1dt ≥ 4B‖ f0‖2L2 .

Using Lemma 2.1, fix Tc(Np, B,K) such that for all T ≥ Tc

1

T

∫ T

0
‖P≤Np S̃(t)�̃c f0‖2L2dt ≤ B

λNp

‖ f0‖2L2 ,

where λNp is the Np-th eigenvalue of the Laplace operator on T
d . Therefore, for any

T ≥ max{Tp, Tc} we have
1

T

∫ T

0
‖S̃(t) f0‖2H1dt ≥ 1

T

∫ T

0
‖P≤Np S̃(t) f0‖2H1dt

≥ 1

2T

∫ T

0
‖P≤Np S̃(t)�̃p f0‖2H1 − 1

T

∫ T

0
‖P≤Np S̃(t)�̃c f0‖2H1

≥ 1

2T

∫ T

0
‖P≤Np S̃(t)�̃p f0‖2H1 − λNp

T

∫ T

0
‖P≤Np S̃(t)�̃c f0‖2L2

≥ 2B‖ f0‖2L2 − B‖ f0‖2L2 = B‖ f0‖2L2 .

Therefore (2.6) holds whenever f0 ∈ K1.

� Case 2: f0 /∈ K1. Since the eigenvalues λn of the Laplace operator form an increasing
divergent sequence, we can choose NB ∈ N such that

λNB

16
≥ B.

By the definition of K1, we have that

‖�̃c f0‖2L2 ≥ 3

4
‖ f0‖2L2 , (2.7)

or, equivalently,

‖�̃p f0‖2L2 ≤ 1

4
‖ f0‖2L2 . (2.8)

Also, exploiting Lemma 2.1, fix Tc = Tc(B,K) such that

1

T

∫ T

0
‖P≤NB S̃(t)�̃c f0‖2L2dt ≤ 1

8
‖ f0‖2L2 , (2.9)

for every T ≥ Tc and every f0 ∈ K. Since S̃(t) is unitary, for each t ≥ 0 we have

‖(I − P≤NB )S̃(t) f0‖2L2 ≥ 1

2
‖(I − P≤NB )S̃(t)�̃c f0‖2L2 − ‖(I − P≤NB )S̃(t)�̃p f0‖2L2

≥ 1

2
‖S̃(t)�̃c f0‖2L2 − 1

2
‖P≤NB S̃(t)�̃c f0‖2L2 − ‖S̃(t)�̃p f0‖2L2

= 1

2
‖�̃c f0‖2L2 − 1

2
‖P≤NB S̃(t)�̃c f0‖2L2 − ‖�̃p f0‖2L2 ,
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and hence with (2.7), (2.8) we conclude

‖(I − P≤NB )S̃(t) f0‖2L2 ≥ 3

8
‖ f0‖2L2 − 1

2
‖P≤NB S̃(t)�̃c f0‖2L2 − 1

4
‖ f0‖2L2

= 1

8
‖ f0‖2L2 − 1

2
‖P≤NB S̃(t)�̃c f0‖2L2 .

From the above inequality and (2.9), we then learn that

1

T

∫ T

0
‖(I − P≤NB )S̃(t) f0‖2L2dt ≥ 1

16
‖ f0‖2L2 , ∀T ≥ Tc.

Therefore, for each T ≥ Tc we have

1

T

∫ T

0
‖S̃(t) f0‖2H1dt ≥ 1

T

∫ T

0
‖(I − P≤NB )S̃(t) f0‖2H1dt

≥ λNB

T

∫ T

0
‖(I − P≤NB )S̃(t) f0‖2L2dt

≥ λNB

16
‖ f0‖2L2

≥ B‖ f0‖2L2 ,

for all T ≥ Tc and every f0 ∈ K\K1. Hence, (2.6) is proven in the second case as well,
and the proof is concluded. ��

Recall that a Borel probability measure μ0 ∈ P(L2) is called an invariant measure
for S(t) if, for every t ∈ R,

μ0(A) = μ0(S(t)A), ∀A ∈ B(L2). (2.10)

In an equivalent way, a measure μ0 is invariant for S(t) if

∫
L2

ϕ(ζ )dμ0(ζ ) =
∫
L2

ϕ(S(t)ζ )dμ0(ζ ), (2.11)

for every t ∈ R and every bounded real-valued continuous function ϕ on L2. Notice that
there is no need to take the inverse image of S(t) in (2.10), since we are dealing with
a group of operators. The support of μ0, denoted by spt(μ0), is the intersection of all
closed sets with measure one according to μ0.

As a consequence of Theorem 2.3, we infer the following information about the
support of a certain class of invariant measure μ0 of S(t).

Corollary 2.4. Let μ0 ∈ P(L2) be an invariant measure for S(t) such that

∫
L2

‖ζ‖2H1dμ0(ζ ) < ∞. (2.12)

Then μ0(H1 ∩ E) = 1. In particular, spt(μ0) ⊂ E.



Invariant Measures for Passive Scalars in the Small Noise Inviscid Limit 109

In the proof of this result, we will make use of the invariance property (2.11) for the
function ϕ(·) = ‖ · ‖2

H1 , which is only assumed to be in L1(μ0). To justify this, for

each n ∈ N, we truncate the H1 norm on the Fourier side by defining the sequence of
functions ϕn(ζ ) = max{ϕ(P≤nζ ), n}. Then {ϕn}n∈N ⊂ Cb(L2) and by (2.11) we infer
that ∫

L2
ϕn(S(t)ζ )dμ0(ζ ) =

∫
L2

ϕn(ζ )dμ0(ζ ), ∀n ∈ N.

We can then take n → ∞ and use the monotone convergence theorem to obtain
∫
L2

‖S(t)ζ‖2H1dμ0(ζ ) =
∫
L2

‖ζ‖2H1dμ0(ζ ), ∀t ≥ 0. (2.13)

Proof of Corollary 2.4. Firstly notice that a straightforward application of Chebyshev’s
inequality together with assumption (2.12) implies that μ0(H1) = 1. Fix c1 > 0 such
that ∫

L2
‖ζ‖2H1dμ0(ζ ) ≤ c1.

We need to show that μ0(E) = 1. Suppose not. Then μ0(Ec ∩ H1) > 0. First, consider
the case that μ0(E⊥ ∩ H1\ {0}) > 0 (note that this holds in the case E = {0}). Then,
by the inner regularity of the measure μ0, we can deduce the existence of a compact set
K ⊂ (E⊥ ∩ H1)\ {0} and an ε > 0 such that

μ0(K) > ε.

Moreover, we may restrict ourselves toK such that sup f ∈K ‖ f ‖H1 < ∞. Fix a positive
constant M such that

M ≥ 2c1
ε

.

By Theorem 2.3, we can find TM > 0 large enough so that

inf
f0∈K

1

TM

∫ TM

0
‖S(t) f0‖2H1dt ≥ M,

Hence,

ε < μ0 (K) ≤ μ0

(
f0 ∈ H1 : 1

TM

∫ TM

0
‖S(t) f0‖2H1dt ≥ M

)
. (2.14)

We will see that this is sufficient to rule out the existence of K.
Second, consider the case that E is non-trivial and μ0(E⊥ ∩ H1\ {0}) = 0. Let{

φ j
}N̄
j=1 (with N̄ ≤ ∞) be an orthonormal basis for E consisting of H1 eigenvalues of

L . By the continuity of μ0 with respect to decreasing sequences of sets, we have

lim
N→∞ μ0

((
span

({
φ j

}N̄
j=N

)
⊕ E⊥)

∩ Ec
)

= 0,
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and hence for N < N̄ sufficiently large, there holds

μ0

((
span

({
φ j

}N
j=1

)
⊕ E⊥)

∩ Ec
)

> 0.

By inner regularity, there exists a compact setK ⊂ (
span(φ1, . . . , φN ) ⊕ E⊥)∩ Ec and

an ε > 0 such that

μ0(K) > ε.

As above, we may further restrict ourselves to K such that sup f ∈K ‖ f ‖H1 < ∞. Due
to the fact that N < ∞, it follows that �e maps K into H1, that is, we have �e :
span(φ1, . . . , φN ) ⊕ E⊥ → E ∩ H1 as a bounded linear operator. Hence, there is a
constant CN (depending only on N ) such that for an arbitrary f ∈ K,

‖S(t) f0‖H1 ≥ ‖S(t)(I − �e) f0‖H1 − ‖S(t)�e f0‖H1

≥ ‖S(t)(I − �e) f0‖H1 − CN sup
f0∈K

‖ f0‖H1 .

By Theorem 2.3, for any M ′, we can find TM ′ > 0 large enough so that

inf
f0∈(I−�e)K

1

TM ′

∫ TM ′

0
‖S(t) f0‖2H1dt ≥ M ′,

and hence, by choosingM ′ sufficiently large relative toCN sup f ∈K ‖ f0‖H1 , and possibly
increasing TM , we have that

ε < μ0 (K) ≤ μ0

(
f0 ∈ H1 : 1

TM

∫ TM

0
‖S(t) f0‖2H1dt ≥ M

)
. (2.15)

Sinceμ0 is invariant and supported on H1, we use Fubini’s theorem and (2.13) to obtain

∫
L2

1

TM

∫ TM

0
‖S(t)ζ‖2H1dtdμ0(ζ ) = 1

TM

∫ TM

0

∫
L2

‖S(t)ζ‖2H1dμ0(ζ )dt

= 1

TM

∫ TM

0

∫
L2

‖ζ‖2H1dμ0(ζ )dt

=
∫
L2

‖ζ‖2H1dμ0(ζ ) ≤ c1.

To conclude, Chebyshev’s inequality, (2.14) or (2.15), and our choice of M imply that

ε < μ0 (K) ≤ μ0

(
f0 ∈ H1 : 1

TM

∫ TM

0
‖S(t) f0‖2H1dt ≥ M

)

≤ 1

M

∫
L2

1

TM

∫ TM

0
‖S(t)ζ‖2H1dt dμ0(ζ ) ≤ c1

M
≤ ε

2
,

(2.16)

a contradiction. This finishes the proof. ��
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Remark 2.5. Corollary 2.4 essentially exploits the norm growth (2.5) available for the
linear semigroup S(t) for data in any compact set K ⊂ E⊥. In principle, linearity is not
needed as long as (2.5) holds. To make this precise, let R(t) : L2 → L2 be a (possibly
nonlinear) semigroup, and assume that there exists an invariant measure μ0 ∈ P(L2)

for R(t) such that
∫
L2

‖ζ‖2H1dμ0(ζ ) < ∞.

If there exists a compact set K such that

lim
T→∞ inf

f0∈K
1

T

∫ T

0
‖R(t) f0‖2H1dt = ∞,

thenμ0(K) = 0. Indeed, ifμ0(K) > ε > 0, a computation analogous to (2.16) produces
a contradiction.

2.3. Extensions to an abstract setting. For simplicity of the presentation, we proved
Theorem 2.3 and Corollary 2.4 in the case of the space L2, the operator u · ∇, and
the scale of standard Sobolev spaces generated by the Laplace operator. Since Lemmas
2.1–2.2 are valid in a more general setting (see [7]), Theorem 2.3 also holds in greater
generality. We here state the more general context in which the results of the previous
section hold.

Let (H, ‖ · ‖H ) be a Hilbert space, and let A be a strictly positive self-adjoint linear
operator

A : D(A) ⊂ H → H,

such that D(A) is compactly embedded in H . From classical spectral theory [39], we
have that A possesses a strictly positive sequence of eigenvalues {λk}k∈N such that

{
0 < λ1 ≤ λ2 ≤ · · · ,

λk → ∞ for k → ∞,

and associated eigenvectors {ek}k∈N which form an orthonormal basis for H . Using the
powers of A, we can define the Hilbert space

H1 = D(A1/2), ‖ϕ‖H1 = ‖A1/2ϕ‖.
In particular

λ1‖ϕ‖2H ≤ ‖ϕ‖2H1 .

Let L be a self-adjoint linear operator such that there exists a c > 0 and B ∈ L2
loc(0,∞)

such that for any ϕ ∈ H1 and t > 0,

‖Lϕ‖H ≤ c‖ϕ‖H1 , ‖ei Ltϕ‖H1 ≤ B(t)‖ϕ‖H1 .

Here ei Lt is the unitary group on H generated by the ordinary differential equation

f ′ − i L f = 0, f (0) = f0 ∈ H.
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Defining the subspace E spanned by the H1 eigenfunctions of L as in (2.4), namely

E = span
{
ϕ ∈ H1 : Lϕ = λϕ, λ ∈ R

}L2

,

the abstract version of Theorem 2.6 reads as follows.

Theorem 2.6. Let K ⊂ H1 ∩ E⊥ be a nonempty compact set in H such that 0 /∈ K.
Then

lim
T→∞ inf

f0∈K
1

T

∫ T

0
‖ei Lt f0‖2H1dt = ∞.

We then have an analogue of Corollary 2.4.

Corollary 2.7. Let μ0 ∈ P(H) be an invariant measure for ei Lt such that∫
H

‖ζ‖2H1dμ0(ζ ) < ∞.

Then μ0(H1 ∩ E) = 1. In particular, spt(μ0) ⊂ E.

Theorem 2.6 and Corollary 2.7 provide a general result that applies to the following
cases, some of which may be of wider interest:

• dynamical systems posed on (finite dimensional) Riemannian manifolds without
boundaries, indeed, the choice of Td in (1.1) was arbitrary and simply for clarity of
exposition;

• small noise limits of inhomogeneous diffusion problems, for example,

d f + (u · ∇ f − ν∇ · (A(x)∇ f )) dt = √
ν � dWt , f (0) = f0,

where A(x) is smooth, symmetric, and uniformly positive definite;
• fractional order dissipation; this is discussed further in Sect. 2.4 below.

2.4. Generalizations to different Sobolev norms. The concrete case discussed inSect. 2.2
corresponds to

H =
{
ϕ ∈ L2 :

∫
Td

ϕ(x)dx = 0

}
, A = −�, L = iu · ∇.

By modifying the above setting to

H =
{
ϕ ∈ L2 :

∫
Td

ϕ(x)dx = 0

}
, A = (−�)2s, L = iu · ∇,

for s > 0, it is easily seen that more general versions of the previous results hold. Thanks
to Theorem 2.6, it is clear that the classical Sobolev space H1 in Theorem 2.3 does not
play a specific role other than being the domain of the square root of the Laplace operator.
Correspondingly, for fractional dissipation we may define

E = span
{
ϕ ∈ Hs : u · ∇ϕ = iλϕ, λ ∈ R

}L2

,

and we then have the following.
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Theorem 2.8. Let s > 0 and K ⊂ Hs ∩ E⊥ be a nonempty compact set in L2 such that
0 /∈ K. Then

lim
T→∞ inf

f0∈K
1

T

∫ T

0
‖S(t) f0‖2Hsdt = ∞.

The importance of the above observation relies on the fact that invariant measures to
the deterministic inviscid equation (2.1) will be constructed via a particular vanishing
viscosity limit of dissipative stochastic flows. If the dissipation is generated by the
Laplacian, viscous invariant measures will satisfy a bound analogous to (2.12) which
turns out to be stable under the limit procedure. However, if for example the dissipation
is given by a fractional power of the Laplacian, only a weaker Sobolev norm will be
preserved (or a stronger Sobolev norm if one takes s > 1). We therefore state the more
general version of Corollary 2.4 hereafter.

Corollary 2.9. Let s > 0 and μ0 ∈ P(L2) be an invariant measure for S(t) such that∫
L2

‖ζ‖2Hsdμ0(ζ ) < ∞.

Then μ0(Hs ∩ E) = 1. In particular, spt(μ0) ⊂ E.

3. Inviscid Deterministic Limit of Viscous Stochastic Measures

An interesting class of invariant measures for infinite dimensional Hamiltonian systems
such as the 2D Euler and KdV equations may be obtained from a viscous-stochastic
perturbation where the noise and dissipation terms are carefully balanced. While the
measures obtained from such a procedure have been studied extensively in a series of
recent works, see e.g. [25–28,33], their structure remains poorly understood. Here and
in the sequel Sect. 4 we considered this limit in a linear setting and show that the results
in the previous section can be used to obtain significant information about the structure
of these limiting measures.

As in the previous Sect. 2, we fix a divergence free Lipschitz flow u and consider the
corresponding stochastically forced, linear system

d f + (u · ∇ f − ν� f ) dt = √
ν � dWt = √

ν
∑
k∈N

ψkek dW
k
t , f (0) = f0, (3.1)

evolving on T
d where ν ∈ (0, 1] is a diffusivity parameter and ψk ≥ 0 are coefficients

satisfying

‖�‖2 =
∑
k∈N

|ψk |2 < ∞.

The sequence Wt = {Wk
t }k∈N consists of independent copies of the standard one-

dimensional Wiener process (Brownian motion). As such, for each k, dWk
t is formally

a white noise which, in particular, is stationary in time.
Having fixed a stochastic basis S = (�,F , {Ft }t≥0,P,Wt ) and an F0 measurable

initial datum f0 ∈ L2 the existence of a unique weak solution to (3.1) can be deduced
by classical stochastic PDEs methods; see [9]. More precisely for each ν ∈ (0, 1], there
exists a unique L2-valued random process { f ν(t)}t≥0 with f ν(0) = f0 almost surely
and such that:
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(1) The process f ν(t) is Ft -adapted and

f ν ∈ C(R+; L2) ∩ L2
loc(R

+; H1).

almost surely.
(2) Equation (3.1) is satisfied in the time integrated sense

f ν(t) +
∫ t

0

[
u · ∇ f ν(s) − ν� f ν(s)

]
ds = f ν(0) +

√
ν � Wt , (3.2)

with probability 1 for each t ≥ 0. Here the equality holds in the space H−1.

When f0 ∈ L2(�, L2) we have f ∈ L2(�; L∞
loc(R

+; L2) ∩ L2
loc(R

+; H1)) and these
solutions of (3.1) are easily seen to satisfy the energy balance equation

E‖ f ν(t)‖2L2 + 2νE
∫ t

τ

‖ f ν(s)‖2H1ds = E‖ f ν(τ )‖2L2 + ν‖�‖2(t − τ) (3.3)

which holds for any t > τ ≥ 0. Moreover using exponential martingale estimates one
has that

P

(
sup
t≥0

(
‖ f ν(t)‖2L2 + ν

∫ t

0
‖ f ν(s)‖2H1ds − tν‖�‖2 − ‖ f0‖2

)
> K

)
≤ e

− λ1
2‖�‖2 K

for every K > 0, which yields additional exponential moments (see e.g. [28]).
It is worth emphasizing that, in contrast to active scalar systems like the stochastic

Navier–Stokes, we can identify the distribution of solutions of (3.1). For this, consider
the linear deterministic counterpart of (3.1)

∂t f + u · ∇ f − ν� f = 0, f (0) = f0. (3.4)

For any ν > 0, the associated semigroup generated by (3.4) will be denoted by

Sν(t) : L2 → L2.

Note that the adjoint Sν(t)∗ is the solution operator associated with

∂t f − u · ∇ f − ν� f = 0, f (0) = f0.

Given any deterministic f0 ∈ L2 we have that f ν(t) is Gaussian with mean Sν(t) f0 and
variance given as

Qν(t) = ν

∫ t

0
Sν(s)��∗Sν(s)

∗ds.
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3.1. The Markovian framework and stationary statistical solutions. Associated to (3.1)
is the so-called Markov semigroup {Pν

t }t≥0, defined on the space Mb(L2) as

Pν
t ϕ( f0) = Eϕ( f ν(t, f0)), ϕ ∈ Mb(L

2), t ≥ 0.

Here, we stress the dependence on the initial datum by writing f ν(t, f0) for the solution
to (3.1) emanating from f0. Since f ν(t, f0) depends continuously on f0, it follows that
{Pν

t }t≥0 is Feller, namely, it also maps Cb(L2) to itself.
For each ν > 0, the classical Krylov-Bogolyubov procedure establishes the existence

of an invariant measure μν ∈ P(L2) for (3.1), that is an element such that
∫
L2

Pν
t ϕ(ζ )dμν(ζ ) =

∫
L2

ϕ(ζ )dμν(ζ ), ∀t ≥ 0.

Suchmeasures correspond to statistically invariant states of (3.1). Unlike in the nonlinear
setting (see e.g. [10,28] and the references therein), the uniqueness of μν is not an issue
here. Indeed, as Sν(t) is an exponentially stable dynamical system, its only invariant
measure is the Dirac mass centered at zero. Therefore, [10], Theorem 6.2.1 provides a
precise characterization of μν . Specifically,

μν = N (0, Qν),

a Gaussian centered at 0 with covariance operator given by

Qν = ν

∫ ∞

0
Sν(t)��∗Sν(t)

∗dt.

We denote by f ν
S (t) a statistically stationary solution associated to μν , for which

P( f ν
S (t) ∈ A) = μν(A), ∀A ∈ B(L2), t ≥ 0.

In particular, it follows from the energy equation (3.3) that any statistically stationary
solution obeys the stronger balance

E‖ f ν
S (t)‖2H1 =

∫
�

‖ f ν
S (t)‖2H1dP =

∫
H1

‖ζ‖2H1dμν(ζ ) = 1

2
‖�‖2, ∀t ≥ 0. (3.5)

Similarly to [28] (and see also e.g. [8,13]) we have the following further ν-independent
bounds.

Lemma 3.1. Let f ν
S be a statistically stationary solution associated to the invariant

measure μν . For each T > 0, define the trajectory space

YT = L2(IT ; H1) ∩ (H1(IT ; H−1) +Wα,4(IT ; L2)) (3.6)

where IT = [0, T ] and α ∈ (1/4, 1/2). Then,

E‖ f ν
S ‖2YT

≤ c0, (3.7)

where c0 = c0(‖u‖L∞ , α, T, ‖�‖2) > 0 is independent of ν ∈ (0, 1].
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Proof. The first part of the bound in L2(IT ; H1) follows directly from (3.5). For the
second bound in H1(IT ; H−1) +Wα,4(IT ; L2) we split (3.2) as,

f ν
S (t) = g(t) +

√
ν�Wt ,

where

gν(t) = −
∫ t

0

[
u · ∇ f ν

S (s) − ν� f ν
S (s)

]
ds + f ν(0).

Observe that

‖∂t gν(t)‖H−1 ≤ (‖u‖L∞‖ f ν
S (t)‖L2 + ν‖ f ν

S (t)‖H1
)

≤ (1 + ‖u‖L∞)‖ f ν
S (t)‖H1 .

Similarly

‖gν(t)‖2H−1 ≤ c(1 + ‖u‖L∞)

∫ T

0
‖ f ν

S (t)‖2H1dt + c‖ f ν
S (0)‖2H1 .

As a consequence, making another use of (3.5) we conclude that

E

∫ T

0
(‖gν(t)‖2H−1 + ‖∂t gν(t)‖2H−1)dt ≤ c(1 + ‖u‖2L∞)‖�‖2, (3.8)

for a constant c > 0 independent of ν ∈ (0, 1]. Since �Wt − �Ws ∼ N (0, �(t − s))
for any t > s ≥ 0 we have that

E‖�Wt − �Ws‖4 ≤ c‖�‖4(t − s)2

which yields the estimate

E

∫ T

0
‖�Wt‖4L2dt + E

∫ T

0

∫ T

0

‖�Wt − �Ws‖4L2

|t − s|1+4α dt ds ≤ c(T )‖�‖4. (3.9)

Combining (3.8) and (3.9) now gives the second ν-independent bound concluding the
proof. ��

3.2. The inviscid limit. Thanks to the compactness of the embedding of H1 into L2

and (3.5), the collection {μν}ν∈(0,1] is easily seen to be tight. As such one can extract
weakly convergent subsequences and we will refer to any limiting probability measure,
denoted by μ0, as a Kuksin measure. As mentioned above, such measures have been
extensively studied in an analogous nonlinear setting [16,25–28,33]. Let us now recall
some properties of μ0 which may be obtained in a similar manner to these works.

We begin by observing that invariance is preserved in this inviscid limit

Proposition 3.2. The measure μ0 ∈ P(L2) is invariant under the group {S(t)}t∈R
defined by (2.1), namely

μ0(A) = μ0(S(t)A), ∀A ∈ B(L2), t ∈ R.
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As discussed in Sect. 2, the inviscid problem (2.1) is well-posed for initial data in L2;
let X be the set of all solutions to (2.1). As we have seen,

X ⊂ Cb(R; L2) ∩ W 1,∞(R; H−1).

Define K0 : X → L2 by K0ϕ = ϕ(0). From uniqueness, it follows that K0 is one-
to-one, while existence for any arbitrary initial datum f0 ∈ L2 shows that K0 is onto,
hence invertible. As a consequence, from any Borel probability measure μ on L2 it is
possible to define a lifted probability measure µ on X via

µ(A) = μ(K0A), A ∈ B(X ).

The proof of Proposition 3.2 is very similar to that in [28], Theorem 5.2.2, and see
also [13]. We therefore omit the details of the following steps, based on compactness
arguments and probabilistic methods.

• To the sequence {μν}ν∈(0,1] ⊂ P(L2), we associate the sequence of lifted mea-
sures on trajectories {µν}ν∈(0,1] ⊂ P(YT ). The latter is tight in C(R+; H−ε) ∩
L2
loc(R

+; H1−ε), for any ε > 0, thanks to Lemma 3.1, hence limit points µ0 exist.
• In view of (3.7), µ0(L

2(IT ; H1)) = 1, and µ0 is in fact the lifting of the measure
μ0. Moreover, µ0 is the law of a stationary process fS whose trajectories solve the
inviscid equation (2.1), at least up to a set of measure zero. This implies the μ0 is
invariant under S(t).

Let us next highlight some further properties of μ0 and its associated statistically
stationary solutions fS .

Lemma 3.3. Let fS be a statistically stationary solution of (2.1) associated to a Kuksin
measure μ0. Then almost every realization of fS belongs to the space X .

Proof. Byconstruction, any statistically stationary solution fS is a solution to the inviscid
problem (2.1) and a limit point of a subsequence of statistically stationary solutions f ν

S
associated to μν . Almost surely and for every T > 0, f ν

S belongs to the trajectory space
YT (see (3.6)), with

E‖ f ν
S ‖2YT

≤ c0.

In turn, a lower semicontinuity argument implies that the same holds for weak subse-
quential limits, namely

E‖ fS‖2YT
≤ c0.

Since the space YT (see e.g. [24,31,32]) is continuously embedded in C(IT ; L2), we
infer that almost surely

fS ∈ C(R+; L2).

Moreover, fS can be extended backward in time due to time-reversibility of the inviscid
equation. As a consequence, any statistically stationary solution fS to (2.1) is global in
time, belongs to X , and satisfies the global estimate (2.3). ��

Besides the above features, the measure μ0 possesses an additional property that is
essential to our analysis.
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Lemma 3.4. Let μ0 be a Kuskin measure and let fS ∈ X be a statistically stationary
solution to (2.1) associated to μ0. Then

∫
L2

‖ζ‖2H1dμ0(ζ ) = E
1

T

∫ T

0
‖ fS(t)‖2H1dt ≤ 1

2
‖�‖2, (3.10)

for every T > 0.

Proof. The equality in (3.10) is simply a consequence of the fact that fS is a statistically
stationary solution associated to μ0. Now, for each ν > 0 and thanks to stationarity,
(3.3) implies that

E
1

T

∫ T

0
‖ f ν

S (t)‖2H1dt = 1

2
‖�‖2, ∀T > 0.

The uniformity with respect to ν > 0 of the above estimate together with weak com-
pactness and lower semicontinuity implies that

E
1

T

∫ T

0
‖ fS(t)‖2H1dt ≤ 1

2
‖�‖2, ∀T > 0.

This proves (3.10). ��
The main result of this work now follows in a straightforward manner by combining

the above Lemma 3.4 and Corollary 2.4.

Theorem 3.5. Let μ0 be a Kuksin measure for the linear inviscid problem (2.1). Then

– μ0(L∞ ∩ H1 ∩ E) = 1.
– μ0 = N (0, Q0), where Q0 is a limit point of {Qν}ν∈(0,1] in the weak operator
topology.

The fact that the support of μ0 is a subset of L∞ is discussed briefly in Remark 3.6
below. Also, μ0 is Gaussian since it is the limit of Gaussian measures. However, in the
general case the (subsequential) convergence of the covariance operators Qν can be only
guaranteed in the weak operator topology. In order to deduce further properties of μ0,
such as uniqueness or more information on the support, one would have to prove better
quantitative estimates on Qν . As shown in the following Sect. 4, this will be possible
in a few specific cases in which the operator u · ∇ − ν� or, equivalently, the evolution
semigroup Sν(t), is better understood.

Remark 3.6. That the support of μ0 is a subset of L∞ follows from a variant of [16],
Theorem 4.2, in which an instantaneous parabolic regularization from L2 to L∞ was
shown by means of a Moser type argument. The proof applies to linear advection-
diffusion equations with divergence-free velocity field [16], Remark 4.4 and fractional
dissipation [16], Remark 4.5. In [16], two-dimensionality is used only to avoid the vortex-
stretching term that would arise in the three-dimensional Navier–Stokes equations. For
scalar, linear advection-diffusion equations, the generalization to higher dimensions is
similar to the case of fractional dissipation. Both are based on restricting 2∗ in [16],
Equation (4.18) to smaller values. For example, in the case of −� dissipation and
dimension d > 2, one would need to choose 2∗ ∈ (2, 2d

d−2 ). However, the proof of [16],
Theorem 4.2 works for any fixed 2∗ > 2.
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4. Explicit Examples

In this section we discuss some cases where explicit computations are possible. This
allows us to determine some more precise information about the Kuksin measures and,
in some cases, characterize them explicitly.

4.1. Relaxation enhancing flows. Our first example concerns a class of flows for which
the associated Kuksin measure is trivial. The concept of relaxation enhancing flow was
introduced in [7], although similar issues were investigated in previous works as well
[6,18–21].

Definition 4.1 (Relaxation enhancing). An incompressible velocity field u : Td → R
d

is called relaxation enhancing if for every τ > 0 and δ > 0, there exists ν0 = ν0(τ, δ)

such that for any ν < ν0 and any f0 ∈ L2 we have

‖Sν(τ/ν) f0‖L2 < δ‖ f0‖L2 , (4.1)

where Sν(t) denotes the semigroup associated to (3.4).

The main result of [7] shows that relaxation enhancing flows can be identified pre-
cisely in terms of spectral properties of the linear operator u · ∇.

Theorem 4.2 ([7], Theorem 2.1). A Lipschitz continuous incompressible flow u is relax-
ation enhancing if and only if the operator u · ∇ has no eigenfunctions in H1 other than
the zero function.

In particular, weakly mixing flows [11,12,22,38]—flows such that iu · ∇ has purely
continuous spectrum—are relaxation enhancing. Theorem 3.5 above shows that if a flow
is relaxation enhancing, then there exists a unique Kuksin measure and it is simply a
single atom of unit mass at zero (in fact, this is true of all invariant measures satisfying
μ(H1) = 1). This is because Theorem 4.2 implies that E = {0}. However, due to
the explicit estimate on Sν(t) available from (4.1), for relaxation enhancing flows we
write a direct proof of the result by characterizing the covariance of the unique invariant
measures μν = N (0, Qν), for ν > 0. This proof will also generalize to some further
examples.

Theorem 4.3 Let u be a relaxation enhancing flow. Then δ0, the Dirac mass centered at
zero, is the unique Kuksin measure for the linear inviscid evolution S(t).

Proof As discussed above in Sect. 3.1, for every ν > 0 the unique invariant measure for
(3.1) is a Gaussian N (0, Qν) with covariance operator Qν given by

Qν = ν

∫ ∞

0
Sν(t)��∗Sν(t)

∗dt.

Note that in view of the structure of � in (3.1), ��∗ is the operator

��∗ϕ =
∑
k∈N

ψ2
k 〈ek, ϕ〉 ek .
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We proceed to show that ‖Qν‖L2→L2 → 0 as ν → 0, which immediately yields the
desired result. Since u is relaxation enhancing, by Definition 4.1, for all δ, τ > 0, there
exists ν0 > 0 sufficiently small such that for all ν < ν0

‖Sν(τ/ν)‖L2→L2 < δ. (4.2)

Since ‖T ‖L2→L2 = ‖T ∗‖L2→L2 for all bounded operators T : L2 → L2, we have
that (4.2) holds also for Sν(t)∗. We also have the straightforward estimate from the heat
equation which holds regardless of the velocity field u (as long as it is incompressible),

‖Sν(t)‖L2→L2 ≤ e−νλ1t , ∀t ≥ 0, (4.3)

where λ1 is the first (non-zero) eigenvalue of the Laplacian. In particular, Sν(t) is a
contraction, and the estimate (4.2) will propagate at later times as well, namely, for any
τ and δ there exists a ν0 = ν0(δ, τ ) > 0 such that

‖Sν(t)‖L2→L2 < δ, ∀t ≥ τ

ν
, (4.4)

for all ν < ν0. Then, for any ϕ ∈ L2 with ‖ϕ‖L2 = 1 we have

‖Qνϕ‖L2 ≤ ν

∫ ∞

0

∥∥Sν(t)��∗Sν(t)
∗ϕ

∥∥
L2 dt

≤ ν‖�‖2
∫ τ/ν

0
‖Sν(t)‖2L2→L2 dt + ν‖�‖2

∫ ∞

τ/ν

‖Sν(t)‖2L2→L2 dt.

Using (4.3)–(4.4) we then infer that

‖Qνϕ‖L2 ≤ ν‖�‖2
∫ τ/ν

0
e−2νλ1tdt + ν‖�‖2

∫ ∞

τ/ν

e−νλ1t ‖Sν(t)‖L2→L2 dt

≤ ν‖�‖2
∫ τ/ν

0
e−2νλ1tdt + δν‖�‖2

∫ ∞

τ/ν

e−νλ1tdt

≤ ‖�‖2
2λ1

(
1 − e−2λ1τ

)
+

δ‖�‖2
λ1

e−λ1τ . (4.5)

Fix ε > 0 arbitrary and choose τ such that 1 − e−2λ1τ ≤ ε and δ < ε. Then by (4.2),
there exists an ν0 = ν0(ε),

‖Qνϕ‖L2 ≤ 3‖�‖2
2λ1

ε, ∀ν < ν0.

The norm estimate on Qν follows: for all ε > 0, there exists a ν0 such that ν < ν0
implies

‖Qν‖L2→L2 ≤ 3‖�‖2
2λ1

ε,

and hence

lim
ν→0

‖Qν‖L2→L2 = 0.

Since the covariance converges in the operator norm to zero it follows that

lim
ν→0

μν = δ0,

completing the proof. ��
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Remark 4.4 Notice that the quantitative estimate (4.2) plays a crucial role in the proof of
Theorem4.3 described above, and highlights the usefulness of having amore quantitative
understanding of Sν(t) for ν > 0.

4.2. General shear flows. In this section we discuss the very simple example of shear
flows in two dimensions (on T

2 or a more general torus of arbitrary side length, but let
us take the former for simplicity):

u(x, y) =
(
u(y)
0

)
. (4.6)

It will be clear from the proof that analogous results hold also for d-dimensional shear
flows (for d ≥ 3) with similar proofs. To simplify the exposition, we will discuss a
relatively nice class of shear flows, rather than concern ourselves with the most general
of cases (surely a more general class is possible).

Definition 4.5 We say a shear flow (4.6) is non-degenerate provided that u′ is continuous
and that u′ vanishes in at most finitely many points.

It will be convenient to write the force in terms of the standard Fourier basis:

�dWt =
∑

(k, j)∈Z2∗

ψk, j ek, jdW
k, j
t ,

where Z2∗ = Z
2\{(0, 0)} and

ek, j = 1

4π2 e
−ikx−i j y

and {Wk, j
t }(k, j)∈Z2∗ are independentBrownianmotions. To ensure the force is real-valued,

we naturally enforce the symmetry conditions

ψk, j = ψ−k,− j , Wk, j
t = W−k,− j

t .

Note that despite the apparent coupling, the force can still be written as a sum of inde-
pendent Brownian motions:

�dWt =
∑
j>0

(
ψ0, j e0, j + ψ0,− j e0,− j

)
dW 0, j

t

+
∑

(k, j)∈Z2∗:k>0

(
ψk, j ek, j + ψ−k,− j e−k,− j

)
dWk, j

t .

We then get the following result.

Theorem 4.6 Let u be a non-degenerate shear flow in the sense of Definition 4.5. Then,
for each choice of �, the resulting Kuksin measure is given uniquely by a Gaussian
N (0, Q0) with covariance defined by the following: for any ϕ ∈ L2,

Q0ϕ =
∑
j �=0

∣∣ψ0, j
∣∣2

2 | j |2 〈e0, j , ϕ〉e0, j . (4.7)
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Remark 4.7 Notice that even though (4.6) is not relaxation enhancing, if ψ0, j = 0 for
all j then the Kuksin measure is still the Dirac mass δ0.

Proof First we prove that the only L2 eigenfunctions for L = iu · ∇ with u of the form
(4.6) are independent of x . To see this, suppose there existed some ϕ ∈ L2 such that

u · ∇ϕ = u∂xϕ = iλϕ, λ ∈ R

in the sense of distributions but which is not independent of x . Taking the Fourier
transform with respect to x implies the following almost everywhere in y and k �= 0:

0 = (λ − ku(y)) ϕ̂(k, y).

By the hypotheses of non-degeneracy and the mean-value theorem, it follows that u(y)
can only take the same value finitely many times, and hence this identity can only be
satisfied if ϕ̂(k, y) = 0 almost everywhere for all k non-zero. Consequently, the only
possible H1 eigenfunctions are independent of x (almost everywhere) and are all zero
eigenfunctions of the operator u(y)∂x . Therefore,

E =
{
ϕ ∈ L2 : ϕ(x, y) = ϕ(y) a.e.

}

and hence the projection �e : L2 → E is simply given by

(�eϕ)(x, y) =
∫
T

ϕ(x, y)dx .

Moreover, by Theorem 4.2, it follows that if one restricts L̃ = L|E⊥ , with

E⊥ =
{
ϕ ∈ L2 :

∫
T

ϕ(x, y)dx = 0 a.e.

}
,

then L̃ is relaxation enhancing since it has a purely continuous spectrum.
Next, because �e and � commute, it follows that the solution f ν(t) = Sν(t) f0 of

the deterministic viscous problem (3.4) satisfies

∂t�e f
ν = ν��e f

ν, �e f
ν(0) = �e f0

and so E is an invariant subspace also for Sν(t) and not just S(t) – this is the crucial
point of the proof. If we denote S̃ν(t) = Sν(t)|E⊥ , then since L̃ = LE⊥ is relaxation
enhancing, from Definition 4.1 we have that for every τ > 0 and δ > 0, there exists
ν0 = ν0(τ, δ) such that for any ν < ν0 and any f0 ∈ E⊥,

‖S̃ν(τ/ν) f0‖L2 < δ‖ f0‖L2 . (4.8)

Finally, notice by linearity that

Sν(t) f0 = Sν(t)�e f0 + Sν(t)(I − �e) f0,

however, by the above invariants, we also have

�eSν(t) f0 = Sν(t)�e f0 = eν∂yy t�e f0

(I − �e)Sν(t) f0 = Sν(t)(I − �e) f0 = S̃ν(t) f0
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and the same holds for Sν(t)∗. Denote for any ϕ ∈ L2 the operator

��∗ϕ =
∑

(k, j)∈Z2∗

|ψk, j |2〈ek, j , ϕ〉ek, j .

Therefore, to compute the covariance, for any ϕ ∈ L2 we have

Qνϕ = ν

∫ ∞

0
Sν(t)��∗Sν(t)

∗ϕdt

= ν

∫ ∞

0

∑
(k, j)∈Z2∗

|ψk, j |2〈ek, j , Sν(t)
∗ϕ〉Sν(t)ek, jdt

= ν

∫ ∞

0

∑
(k, j)∈Z2∗

|ψk, j |2〈Sν(t)ek, j , ϕ〉Sν(t)ek, jdt

= ν
∑
j �=0

∫ ∞

0
|ψ0, j |2〈Sν(t)e0, j , ϕ〉Sν(t)e0, jdt

+ ν

∫ ∞

0

∑
(k, j)∈Z2:k �=0

|ψk, j |2〈Sν(t)ek, j , ϕ〉Sν(t)ek, jdt

= ν
∑
j �=0

|ψ0, j |2
∫ ∞

0
〈eνt∂yy e0, j , ϕ〉eνt∂yy e0, jdt

+ ν

∫ ∞

0

∑
(k, j)∈Z2:k �=0

|ψk, j |2〈S̃ν(t)ek, j , ϕ〉S̃ν(t)ek, jdt

:= T1ϕ + T ν
2 ϕ.

The first term, T1, is independent of ν. Indeed, since e0, j are eigenfunctions of the heat
operator:

T1ϕ = ν
∑
j �=0

|ψ0, j |2
∫ ∞

0
e−2ν| j |2t 〈e0, j , ϕ〉e0, jdt =

∑
j �=0

|ψ0, j |2
2| j |2 〈e0, j , ϕ〉e0, j . (4.9)

On the other hand, because S̃ν(t) is relaxation enhancing, the latter term is estimated
precisely as in (4.5) in the proof of Theorem 4.3. Hence, we may deduce as above that

lim
ν→0

∥∥T ν
2

∥∥
L2→L2 = 0,

and therefore

lim
ν→0

‖Qν − T1‖L2→L2 = 0,

completing the proof. ��
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4.3. Non-degenerateCellular flows. In this sectionwe discuss one last example inwhich
we can get some additional regularity and other kinds of information due to the rigidity
of E , even if we cannot determine the invariant measures precisely.

Definition 4.8 For a smooth streamfunction ψ , we say u = ∇⊥ψ is a non-degenerate
cellular flow ifT2 can be tiledwith a finite number of open, disjoint, curvilinear polygons
Pi (referred to as cells) whose boundaries are smooth except at the vertices, such that
the following holds:

• T
2 =

⋃
i

Pi ;

• inside each polygon Pi , there is a unique fixed point xei ∈ Pi and we assume that
the other level curves Ci (z) = {x ∈ Pi : ψ(x) = z} are smooth curves which are
diffeomorphic to concentric circles away from the edges of Pi , that is, there exists
a homeomorphism Mi : Pi → D (where D denotes the unit disk) which is a
diffeomorphism away from the edges ofPi such that there is some strictly monotone
function r(z) for which we have Mi (Ci (z)) = {x ∈ D : |x| = r(z)};

• the vertices of the polygons, denoted xhj , are fixed points;
• the edges of the polygons are smooth streamlines which form a simply-connected

network of heteroclinic connections between the vertices xhj ;• the following non-degeneracy condition holds on each polygon:

∂z

(∫
Ci (z)

1

|∇ψ(x)|d�
)

= 0

in at most finitely many points.

In what follows, denote the functions

Ti (z) =
∫
Ci (z)

1

|∇ψ(x)|d�,

which are the period of the orbit with “energy” level z. Further, denote the set of all

fixed points as the disjoint union F = Fe ∪ Fh , where Fe =
{
xe1, . . . , x

e
j

}
is the set of

fixed points in the interior of the cells and Fh = {
xh1, . . . , x

h
m

}
is the set of fixed points

comprising the vertices.We refer to the set Fh together with the heteroclinic connections
as the edge-vertex network. See Fig. 1 for a schematic of a typical cellular flow. As above,
denote

E = span
{
ϕ ∈ H1 : iu · ∇ϕ = λϕ, λ ∈ R

}L2

.

Clearly, there aremany non-smooth eigenfunctions corresponding to the zero eigenvalue
(such as functions which are constant over one cell and zero elsewhere), however, the
Kuksin measures are also supported on H1, which together with the form of the eigen-
functions, imposes additional rigidity. In particular we have the following theorem.

Theorem 4.9 Let u be a non-degenerate cellular flow on T
2. Then

E ∩ H1 =
{
ϕ ∈ H1 : u · ∇ϕ = 0 a.e.

}
,

and it follows that all ϕ ∈ E∩H1 are constant along streamlines, continuous onT2\Fe,
C1/2 on every compact set K with K ∩ F = ∅, and attain the same value everywhere in
the edge-vertex network. Finally, it follows from Theorem 1.1 that all Kuksin measures
μ0 associated to the flow u satisfy μ0(E ∩ H1) = 1.
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Fig. 1. A typical cellular flow

Remark 4.10 Theorem 4.9 is, heuristically at least, consistent (thoughmuch less precise)
with the results of Iyer and Novikov in [29], which show that information travels along
the edge-vertex network much faster than it travels across streamlines on the interior of
the cells and so rapidly homogenizes near the edge-vertex network on time-scales faster
than ν−1.

Remark 4.11 One can imagine extendingTheorem4.9 towider classes of 2Dflowswhich
satisfy suitable non-degeneracy conditions (for example, those studied in [14,15]).

Proof of Theorem 4.9 First note that the streamlines of the flow are precisely the level
curves of ψ . The first step is to prove that all H1 eigenfunctions of L = iu · ∇ are
constant along streamlines almost everywhere using a variant of the argument employed
in Theorem 4.6. Suppose ϕ ∈ H1 is such that

∇⊥ψ · ∇ϕ = iλϕ, λ ∈ R

in the sense of distributions. Consider the cell P j and draw a smooth curve �(τ), τ ∈
[0, 1], connecting xej with an edge of the polygon such that �(τ) intersects each level
curve C j (z) at a single point, which we denote by xz . Note this is always possible due
to the assumption that the level curves be diffeomorphic to concentric circles: indeed,
draw a line from the origin to the point (0, 1), and then map this line back to P j using
M j and take the resulting curve as �(τ). Define

d

dt

t (z) = ∇⊥ψ(
t (z)), 
0(z) = xz .

and

h(t, z) = ϕ(
t (z)),

defined for z between ψ(xej ) and the value of ψ on the edge of the cell; let us denote
this range z ∈ (z0, z1). Due to the regularity properties of the streamlines, it follows that

t (z) is a smooth function (for z away from z0 and z1) and hence h(t, z) is H1 away
from from z0, z1. Hence, for almost every z ∈ (z0, z1), h(t, z) is periodic with period
Tj (z) and from the chain rule we have

∂t h(t, z) = iλh(t, z)
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in the sense of distributions. For each z, it follows that either λ = 0 (and hence h(t, z) is
constant in t) or λmust be an integer multiple of Tj (z). However, by the non-degeneracy
hypotheses, Tj (z) can take the samevalue onlyfinitelymany times andhenceh(t, z)must
be constant in t for almost every z. It follows then that ϕ is constant along streamlines
within the cells. Since the edge-vertex network is a measure-zero set, we therefore have
that all H1 eigenfunctions are constant along streamlines almost everywhere. It further
follows that all H1 eigenfunctions have eigenvalue zero.

Next, let ϕ ∈ E ∩ H1 be arbitrary. Since all of the H1 eigenfunctions correspond to
the same eigenvalue (zero), it follows that ϕ is itself necessarily an H1 eigenfunction.
We have thus deduced that

E ∩ H1 =
{
ϕ ∈ H1 : u · ∇ϕ = 0 a.e.

}
.

Using diffeomorphisms to locally straighten the streamlines, we see that because ϕ is
constant along streamlines, it follows that ϕ must be C1/2 away from F (the set of fixed
points) by Morrey’s theorem H1

loc(R) ↪→ C1/2
loc (R). That is, ϕ is C1/2 in any compact

set K such that K ∩ F = ∅. Further, by continuity and taking limits along trajectories
(along which ϕ is constant) from the interior of the cell, we see that ϕ is constant on
the heteroclinic connections between the vertices and takes the same value on any two
heteroclinic connections which bound the same cell. Therefore, up to a measure zero
alteration, we can take ϕ that same value at the vertices and so ϕ is continuous on every
compact set which does not intersect Fe. Finally, by continuity and the connectedness
of the edge-vertex network, we see that ϕ must attain the same value everywhere in the
entire edge-vertex network. ��
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