
Digital Object Identifier (DOI) 10.1007/s00220-016-2755-z
Commun. Math. Phys. 348, 27–68 (2016) Communications in

Mathematical
Physics

Self-Similar 2d Euler Solutions with Mixed-Sign Vorticity

Volker Elling

University of Michigan, Ann Arbor, USA. E-mail: velling@umich.edu

Received: 17 March 2014 / Accepted: 19 June 2016
Published online: 20 September 2016 – © Springer-Verlag Berlin Heidelberg 2016

Abstract: We construct a class of self-similar 2d incompressible Euler solutions that
have initial vorticity of mixed sign. The boundaries between regions of positive and
negative vorticity form algebraic spirals, similar to the Kaden spiral and as opposed to
Prandtl’s logarithmic vortex spirals. Also unlike the Prandtl case, spirals are not initially
present.

1. Introduction

1.1. Main result. We seek solutions of the 2d incompressible Euler equations

vt + ∇ · (v⊗ v) + ∇π = 0, ∇ · v = 0 in (x, t) ∈ R2 × ]0,∞[ (1)

with locally integrable self-similar initial data:

ω(x, t)
t↘0→ r−

1
μ ω̊(θ), (2)

where ω = ∇ × v is vorticity and (r, θ) are polar coordinates centered in x = 0.

Theorem 1. Given ε > 0 and μ ∈ ] 23 ,∞[, there is an N0 ∈ N so that a weak solution
of (1) and (2) exists for all initial data ω̊ satisfying the following conditions:

1. Periodicity: ω̊ is 2π
N -periodic for N ≥ N0.

2. Dominant rotation: the Fourier coefficients satisfy

|ω̊∧(0)| ≥ ε
∑

n 
=0

|ω̊∧(n)|. (3)
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Fig. 1. Left sample initial data with N = 4 (the paper proves existence for N sufficiently large, not necessarily
4). Center for t > 0, positive and negative vorticity patches roll into an algebraic spiral. Right detail of inner
spiral; note the densely packed almost circular turns

(The right-hand side and the integral in ω̊∧(n) = ∫ 2π
0 ω̊(θ)e−inθ dθ

2π are assumed
absolutely summable.) While standard theory [5,6,16,18] could possibly be adapted
to provide mere existence in some cases, it appears unsuitable to obtain the detailed
structural information below, especially because the known uniqueness results require
ω ∈ L∞ [29] or slightly weaker assumptions [28,30] which are not satisfied by our
initial data.

In contrast to our prior work [10], where ω̊ had to be (in particular) L∞-close to a
nonzero constant, the present paper covers “large” initial data, allowing not only regions
of zero vorticity (a necessary prerequisite for studying evolution of vortex patches with
non-regular boundary [2–4]) but also flows with a mix of positive and negative vorticity
(Fig. 1). In such initial data, vorticity of each sign would be in open cones with apex in
the origin (Fig. 1 left).

If ω̊∧(0) 
= 0, then the initial velocity has a net rotation around the origin, so intuition
suggests the cone tips will curl up into spirals (Fig. 1 center). Indeed we show:

Remark 1. In the setting of Theorem 1, for any t > 0 the boundaries between the
regions of positive, zero and negative ω are algebraic spirals (Fig. 1 center and right),
parametrized by

x(θ) = f (θ)︸︷︷︸
∼1

θ−μ

[
cos θ

sin θ

]
as θ → ∞. (4)

( f � g means there is a constant C < ∞ so that | f | ≤ Cg in some neighbourhood of
the limit point; f ∼ g means f � g as well).

Flows with algebraic spiral rollup are important in applications since they are ubiq-
uitous in physics [27, fig. 75, 84 and 92], in trailing vortices at aircraft wings, flow past
a sharp corner, Mach reflections [1], turbulent eddies, detaching boundary layers, the
Moore singularity of vortex sheets [23], etc. But prior to our work the mathematically
rigorous construction of algebraic spiral flows was unsuccessful; see [12,19,22] for var-
ious attempts and insights. Even numerical approximation is notoriously difficult and
unstable [13,20,21].

Since our initial data is self-similar, one would expect self-similar solutions as well,
and indeed we show:

Remark 2. The solutions of Theorem 1 have the form

ω(x, t) = t−1ω̌(x̌), v(x, t) = tμ−1v̌(x̌), x̌ = t−μx̌ (5)
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(the accent does not represent Fourier transforms). To understand the t exponents,
observe that ω = ∇ × v has dimensions of inverse time so that the initial condition
(2) fixes x ∼ tμ.

Finally, we control the asymptotic behaviour of the solutions:

Remark 3. The solutions of Theorem 1 satisfy

v � r1−
1
μ and ω � r−

1
μ as r ↘ 0 and as r ↗ ∞, uniformly in t ∈ [0,∞[; (6)

v, ω are continuous in x 
= 0.

The periodicity and dominant-sign assumptions will be relaxed in later work, but
cannot be expected to be fully removable: for μ ≥ 1, the initial vorticity ω(x, 0) =
r−1/μω̊(θ) ∼ r−1/μ decays too slowly as r → ∞ so that the Biot–Savart integral∫
R2

(x−y)⊥
|x−y|2 ω(y)dy (where (x, y)⊥ = (−y, x)) is not absolutely convergent at |y| → ∞;

definition in a principal-value sense requires a cancellation that occurs only for special
ω̊, such as 2π/N -periodic ω̊ for N ≥ 2.

Moreover, when dominance changes from positive to negative vorticity, then the
spirals we construct flip from counterclockwise to clockwise, with non-spiral borderline
cases expected. Hence (3) cannot be omitted entirely.

Finally, the numerical work of Pullin [20,21] (see Fig. 2) on self-similar vortex sheet
shows complicated bifurcation phenomena, in particular non-uniqueness (which is our
main motivation [9]), a field of major recent activity [7,8,14,15,17,24–26].

1.2. Self-similarity for the Euler equations. To motivate our ansatz (2) we consider
smooth solutions of the 2d vorticity equation

0 = ωt + v · ∇ω, v = ∇⊥
x Δ−1

x ω

(where∇⊥Δ−1 is the Biot–Savart operator onR2) and explore more general self-similar
scalings of the form

ω(x, t) = f (t)ω̌(g(t)x︸ ︷︷ ︸
x̌

),

where f, g are smooth and positive on some nonempty interval of times t . Then

∇xω = f g∇x̌ω̌,

∂tω = f ′ω̌ + f g′x · ∇x̌ω̌ = f ′ω̌ +
f g′

g
x̌ · ∇x̌ω̌,

v = ∇⊥
x Δ−1ω = f

g
∇⊥
x̌ Δ−1

x̌ ω̌
︸ ︷︷ ︸

=v̌

.

The vorticity equation turns into

0 = f ′(t)ω̌(x̌) +
f (t)g′(t)
g(t)

x̌ · ∇x̌ω̌(x̌) + f (t)2v̌(x̌) · ∇x̌ω̌(x̌).
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r ∼ 1/θ spirals

Fig. 2. Pullin’s non-uniqueness example

We require the t-dependent factors to be equal up to multiplicative constants:

f ′ = const · f 2, f g′

g
= const · f 2.

The first equation has solutions

f (t) = 1

C1t + C0

for some constants C1,C0.

Case 1 (“logarithmic”): C1 = 0. Then necessarily C0 > 0. Dilation, reflection and
translation in space and time are symmetries of the Euler equations, and if we consider
two Euler solutions equivalent if they coincide after symmetry transformations, then we
can eliminate C0 and other constants: time dilation and time reversal yield

f (t) = 1.

Then the second equation g′/g = const · f has solutions g(t) = C2eαt for constants
C2 > 0 and α. By space dilation and reflection we may take C2 = 1:

g(t) = eαt .
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Case 2 (“algebraic”): C1 
= 0. Using time dilation and reversal we obtain C1 = 1, then
a time shift yields C0 = 0. Hence it is sufficient to consider

f (t) = 1

t

for t > 0. Then the second equation g′/g = const · f has solutions g(t) = C2t−μ

for constants C2 > 0 and μ. Again we may use invariance under space dilation and
reflection to take C2 = 1:

g = t−μ.

In summary, up to symmetries there are only two interesting families of f, g. (In
fact with some changes μ → ±∞ formally yields the logarithmic case as a limit of the
algebraic one.)

If we add dissipative terms, then the family of similarity laws narrows down consid-
erably, for example for Navier–Stokes viscosity toμ = 1

2 , for the unsteady compressible
Euler equations to the acoustic scaling μ = 1. For steady viscous flows we refer to the
discussion in [11]. However, while the incompressible Euler equations feature only a
single physical phenomenon (vortical motion), the compressible or viscous extensions
mix other effects (acoustic waves, laminar viscosity, turbulence,…) with separation of
time scales; physical observations show that in a large variety of physical flows either
the viscous or the inviscid effects and either the acoustic or the incompressible features
dominate the other in many regions of space-time. Hence imposing exact self-similarity,
while leading to more tractable problems, excludes many interesting asymptotic behav-
iours for those models.

Our primarymotivation [9] is to work towards a proof of the nonuniqueness examples
of Pullin (Fig. 2, see [21]), which feature algebraic vortex spirals with μ in a range from
slightly less than 1 to about 1.3. These examples are a special case of a more general
problem: how do algebraic vortex spirals, which are ubiquitous in physical flow [27, fig.
83], arise from flows without spirals?

In the exponential case the flow is qualitatively the same for all real t , so if spirals
are present at one time they are present at all times. But in the algebraic case

ω(x, t) = t−1ω̌(x̌), x̌ = t−μx (7)

withμ > 0 the limit t ↘ 0 is distinguished. To converge to nontrivial initial dataω(0, x)
we need that at least in some fixed x the right-hand side t−1ω̌(x̌) converges to a finite
but nonzero limit, hence

|ω̌(x̌)| ∼ t = (|x|/|x̌|)1/μ x 
=0∼ |x̌|−1/μ as x̌ → ∞ along the ray spanned by x.

Now we obtain on such a ray that

|ω(x, 0)| ← |ω(x, t)| = t−1|ω̌(t−μx)| ∼ t−1|t−μx|−1/μ = |x|−1/μ

Thus the initial values, more precisely their asymptotics at infinity, determine the value
of μ.

Conversely, since smooth vorticity is known (under some additional assumptions)
to persist uniquely for all time in 2d [18, ch. 3 and 4], we need to consider nonsmooth
flows for formation of infinite spirals. We expect spirals to result from rollup of fluid
by localized concentrations of vorticity; a natural ansatz for such concentrations are δ
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functions (point vortices) inducing v ∼ r−1, or slower algebraic blowup like v ∼ r1−1/μ

(μ > 0) corresponding to ω(0, x) ∼ r−1/μ as r = |x| → ∞. We expect the behaviour
of the solution for such initial data to be asymptotic (at |x| → 0 and t ↘ 0) to the
solution of ω(0, x) = r−1/μω̊(θ), which is precisely our choice (2). This initial data and
the 2d incompressible Euler equations are invariant under the scaling

ω(x, t) ← sω(st, sμx), v(x, t) ← s1−μv(st, sμx) (s > 0),

so it is natural (but, in absence of uniqueness, not forcing) to expect corresponding
solutions to be invariant as well, which is precisely our choice (5).

1.3. Overview. The proof of Theorem 1 has three parts. In Sect. 2 we specialize the
incompressible Euler equations (1) to the case of self-similar solutions. Then we change
to a coordinate system b = (β, φ) that is especially suitable for the construction of
solutions with spiral stratification. The equations simplify in several crucial ways that
are really the key to the overall solution. In the process we extract a 1d function Ω(φ),
a parameter of the problem, that corresponds closely to the initial data ω̊(φ) (see (21)
and Proposition 41). We linearize the equations around a special background solution
and Fourier-transform the resulting operator in φ. The resulting system decomposes into
infinitely many ordinary differential equations, one for each Fourier mode.

In Sect. 3 we define carefully designed function spaces and invert the ODEs on them;
simultaneously we analyze the action of various constituent operators of the nonlinear
PDE on these spaces. Our particular choice of function spaces is the other nontrivial key
ingredient to the overall solution. We conclude that the system is invertible on certain
spaces that render the nonlinear PDE C1, so that the implicit function theorem yields
solutions near the background solution, for a range of Ω . Since some of the function
spaces use negative norms, we are able to solve for “large” initial data. However, a
smallness restriction remains, and indeed N0 in Theorem 1 must be taken larger as ε

approaches 0. (The existence of mixed-sign vorticity solutions only requires ε < 1
though, hence a fixed N0; although it is computable, we do not try to do so since we
hope to weaken the restriction in future work.)

Finally in Sect. 4 we argue that the function obtained in new coordinates has sufficient
regularity to be a weak solution of the original problem, prove that the variety of initial
data generated by Ω is as large as claimed in Theorem 1, and show that the regions of
negative and positive vorticity are bounded by algebraic spirals.

2. Equations

2.1. Coordinate changes. The solution of the problem begins with several changes of
coordinates. Since we are looking for low-regularity solutions, some outer divergences
will be treated as distributional derivatives, using the well-known formula

f = ∇x · w ⇔ f det∇T
y x = ∇y · (adj∇T

y x w) (8)

where adj is the classical adjoint matrix, ∇T
y x the Jacobian of the coordinate transform

y �→ x. This formula is valid even if the divergence ∇x ·w is interpreted in the distribu-
tional sense, assuming x andw are sufficiently regular to make all products well-defined
in a distributional sense. Since some of the following coordinate changes are implicit
(i.e. depend on the solution of the problem in new coordinates), we cannot comment



Self-Similar 2d Euler Solutions with Mixed-Sign Vorticity 33

on the validity of each manipulation until Sect. 4 where solutions have already been
constructed; in the meantime the reader may simply assume all functions involved are
sufficiently smooth.

First, the divergence constraint ∇x · v = 0 implies

v = ∇⊥
x ψ (9)

for a scalar stream function ψ ; (x, y)⊥ = (−y, x) is counterclockwise rotation by 90◦.
We focus on the vorticity formulation

0 = ∂tω + ∇x · (ωv) (10)

with

ω = ∇x × v = Δxψ. (11)

We seek self-similar solutions: with x̌ = t−μx,

ψ(t, x) = t2μ−1ψ̌(x̌), v(t, x) = tμ−1v̌(x̌), ω(t, x) = t−1ω̌(x̌); (12)

using (8) the problem reduces to

0 = (2μ − 1)ω̌ + ∇x̌ ·
(
ω̌(v̌ − μx̌)

)
, v̌ = ∇⊥

x̌ ψ̌, ω̌ = Δx̌ψ̌. (13)

To study spirals converging to a common origin it is convenient to use some form of
polar coordinates, namely

a = (a, θ), a = log ř , ř = |x̌|, θ = �x̌, (14)

where � is the counterclockwise angle from the positive horizontal axis (see Fig. 3),
leading to

0 = (2μ − 1)ř2ω̌ + (ψ̌aω̌)θ − ((ψ̌θ + μe2a)ω̌)a, e2aω̌ = Δaψ̌. (15)

Finally we change to coordinates b = (β, φ) so that ∂β is tangential to pseudo-
streamlines, i.e. so that the transformed vorticity equation has a (∂β, ∂φ) divergence
with zero ∂φ part. This scalar constraint does not determine the choice of (β, φ); we
may impose another one: given the spiral behaviour it is natural to choose β and φ to be
angles:

θ = β + φ. (16)

After calculating with a general ansatz a = a(β, φ), the constraint implies

a = 1

2
log

ψ̌β

−μ
(17)

This solution-dependent change of coordinates is non-degenerate if and only if, using
the convenient abbreviation

∂ϕ := ∂φ − ∂β, (18)

we have

det ab = −aϕ 
= 0 (19)
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∂θ

∂a

Fig. 3. a = (a, θ) coordinates

∂β

∂φ

Fig. 4. b = (β, φ) coordinates

everywhere. Now the vorticity equation reduces to

(1− 1

2μ
)ψ̌ϕβω̌ = ∂β(ω̌ψ̌ϕ) (20)

which has the surprisingly simple solution

ω̌ = ψ̌
− 1

2μ
ϕ Ω(φ) (21)

where Ω is some function that can be chosen freely, as data. That is natural: we have a
choice of initial data ω̊(θ), another single-variable function; Ω will correspond closely,
but not exactly, to ω̊ (later investigated in Proposition 41).

The last remaining equation is the Poisson equation Δψ̌ = ω̌ which transforms by a
lengthy but elementary calculation using the adj formula for divergence (8) to

0 = F̌ := ∂ϕ

(
=:g(ϕ)

︷ ︸︸ ︷

2ψ̌β

(
1 + (

ψ̌βφ

2ψ̌β

)2
) ψ̌ϕ

ψ̌βϕ

− ψ̌φψ̌βφ

2ψ̌β

)

+∂φ

( ψ̌βϕ · ψ̌φ − ψ̌βφ · ψ̌ϕ

2ψ̌β︸ ︷︷ ︸
=:g(φ)

)
+

ψ̌βϕψ̌
− 1

2μ
ϕ

2μ︸ ︷︷ ︸
=:g(0)

Ω (22)
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Although Eq. (22), a 3rd order nonlinear PDE for ψ̌ , looks intimidating, we can identify
some particular solutions that are inherited from the x, t form. An important class are the
stationary ones with ω(x) = ω(r) so that v is purely angular, hence orthogonal to∇ω so
that the vorticity equation 0 = v ·∇ω is trivially satisfied. The initial condition (2) yields

the special case ω(r) = ω̊r−
1
μ with ω̊ = const 
= 0 and ψ = (2− 1

μ
)−2ω̊r2−

1
μ . These

solutions are not only stationary, but also self-similar in the sense (5). (We emphasize
that the solutions we are going to construct for nonconstant ω̊ will not be stationary.) In
our new coordinates the trivial solutions corresponds to multiples of

ψ̌0 = β1−2μψ0, ψ0 =
1

2μ − 1
(23)

(to see this, transform (23) back to x coordinates to compare to the given ω,ψ). ψ̌0
solves (22) for data

Ω0 = 2μ − 1

μ
(24)

(this can be checked quickly by substituting ψ̌0,Ω0 into (17) and using that all ∂φ yield
0).

In Sect. 2.2 we scale the β-decay out of ψ̌ and F̌ in (22) to reach new variables
F, ψ (see (28)), then linearize F around ψ0. After defining function spaces Ψ for
solution candidates ψ (Sect. 3.4), W for the data Ω (Sect. 3.8) and F for the values of
F (Sect. 3.6), we prove in Sect. 3.9 that for some neighbourhood B(Ψ )

εψ (ψ0) of ψ0 in

Ψ the map F is C1 on B(Ψ )
εψ (ψ0) × W into F . In Sect. 3.7 we show that the Fréchet

derivative ∂F/∂ψ(ψ0,Ω0) is a linear isomorphism on Ψ into F . Hence the implicit
function theorem shows there is a family of solutions for Ω0 near Ω .

To achieve a large-data result we strongly exploit the divergence form of (22). In
Sect. 3.2 we find a “near-maximal” multiplication algebra G for the nonlinear terms
g(ϕ), g(φ), g(0) in (22). This enables us to seek Ω in negative-norm spaces (namely

〈D〉 12A(T) whereA(T) is the Wiener algebra, 〈x〉 = (1 + x2)
1
2 and D = −i∂φ). In fact

our techniques can solve the problem for some ω̊ that are non-regular distributions, in fact
non-measure distributions. However, physically interesting cases (such as δ functions)
do not seem to be included among the non-function distributions, so to avoid technical
bloat we state a result only for ω̊ that are continuous functions.

A key difficulty of the problem is the asymptotic behaviour as β → ∞. To solve
the problem for nonconstant perturbations ω̊ of the constant ω̊, we need to perturb
the background solution ψ̌ and hence the coordinate transformation from β, φ to x̌,
whose curves of constant φ are algebraic spirals. A perturbation that does not decay
sufficiently fast towards the spiral center will cause the curves to self-intersect (Fig. 5
right). This can easily happen since the spiral turns are very densely packed. Self-
intersection corresponds to a degenerate coordinate transform b �→ x̌ which would
manifest itself in the equations (22) as denominators ψ̌βϕ crossing zero. The β → ∞
problem will surface in many analytical details throughout the paper.

2.2. Scaling and linearization. It is convenient to remove theβ decay fromall quantities,
leading to new versions with overbar, starting with

ψ̌ = β1−2μψ. (25)
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p = 2 p = 2 (detail) p = 2.3 (detail)

Fig. 5. The spiral R+ � β �→ β−1eiβ perturbed to β−1eiβ(1 + αβ−δeipβ), with α = 0.5, δ = 0.7. (The
spiral center is not drawn, leaving a white spot in the middle.) Integer frequency p: the perturbation is barely
noticeable near the center. Non-integer frequency p: physically unreasonable self-intersection

We write f́ for multiplication-by- f operators. a∧ = Fa and a∨ = F−1a represent the
Fourier transform and inverse transform of a = a(β, φ) with respect to φ ∈ T, with
dual variable n, leaving the first variable β untouched. We abbreviate

∂β := β́2μ∂ββ́1−2μ = β́∂β︸︷︷︸
=:B

+ 1́− 2́μ́ (26)

∂ϕ := β́2μ∂ϕβ́1−2μ = β́∂ϕ + 2́μ́ − 1́, F−1∂ϕF = − β́(∂β − i ń)
︸ ︷︷ ︸

=:A
+ 2́μ́ − 1́ (27)

Now (22) takes the form

0 = F = 2μ2(−∂ϕg(ϕ) − ∂φg(φ) − g(0)Ω) (28)

g(ϕ) = 2
(
1 + (

∂φ∂βψ

2∂βψ
)2

)
∂βψ

∂ϕψ

(∂ϕ + 1́)∂βψ
− ∂φ∂βψ · ∂φψ

2 ∂βψ
(29)

g(φ) = (∂ϕ + 1́)∂βψ · ∂φψ − ∂φ∂βψ · ∂ϕψ

2 ∂βψ
(30)

g(0) = 1

2μ
(∂ϕ + 1́)∂βψ · (∂ϕψ)

− 1
2μ (31)

At this point the reader should appreciate that no β́ remain except inside ∂ϕ and ∂β .
This is far from trivial: that the resulting derivatives of ψ can be estimated in spaces
without β decay is crucial for solving the problem. Note that ∂ϕ = ∂φ − ∂β , so that one
of ∂φ, ∂β, ∂ϕ is redundant. However, ∂ϕ, ∂β contain a β́ here while ∂φ does not, so the
choice of operators and the arrangement of the terms is a key step in overcoming the β

decay problem.
We seeknontrivial solutions by linearizing the equation around the trivialψ = ψ0 and

Ω = Ω0 and taking the Fourier transform: another lengthy but elementary calculation
yields
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F−1 ∂F

∂ψ
(ψ0,Ω0)F = −

(

=:A+︷ ︸︸ ︷

A −
=:ḿ+︷ ︸︸ ︷

((2́ + ń)μ́ − 1́)
)(

=:A−︷ ︸︸ ︷

A −
=:ḿ−︷ ︸︸ ︷

((2́− ń)μ́ − 1́)
)

=:B1︷ ︸︸ ︷
(B + 1́)

︸ ︷︷ ︸
=:R

+(2μ − 1)(A − B)︸ ︷︷ ︸
=:E

(32)

We observe the essential fact that the operator has decomposed into infinitely many
ordinary differential operators. Reason: we linearized around a function ψ̌0(β, φ) =
const · β1−2μ that is constant in φ which therefore does not appear in the variable
coefficients, so that Fourier transforms in that coordinate are effective.

We will invert this linearized operator by first inverting the 3rd order operator R and
then absorbing E as a perturbation (see Sect. 3.7).

3. Function Spaces, Estimates and Implicit Function Theorem

In this section we define function spaces for the domain Ψ and codomain F of the
nonlinear map F in (28) we are trying to invert, as well as several multiplication algebras
G,G−,G0 for the nonlinear parts of that map. Then on these spaces we carefully estimate
the continuity of each differential operator constituting F .

3.1. Wiener algebras with regularity. Since the linearization (32) decomposed into ordi-
nary differential operators after taking Fourier transforms, it is convenient to analyze
these operators separately for each frequency n ∈ Z on function spaces Xn and then to
combine Xn into an overall space.

We utilize the following Wiener-type algebras, which are slightly nonstandard
because we need Xn to depend on n. The reader may wish to note the definition and
propositions, but skip over the standard proof techniques on first reading.

Definition 1. Let (Xn)n∈Z be a sequence of Banach spaces. �1(Xn) is the space of
sequences u = (un) with un ∈ Xn for all n ∈ Z with finite norm

‖(un)‖�1(Xn)
=

∑

n∈Z
‖un‖Xn

.

A straightforward adaptation of the standard proofs for n-independent Xn yields

Proposition 1. �1(Xn) is a Banach space.

Let X be a Banach space, Y a linear space, T : X → Y linear injective. Then TX
is a Banach space with the induced norm

‖T x‖TX = ‖x‖X
Alternatively, if T is a linear continuous operator on D′(R+) (but not necessarily

injective; typically some differential operator), and X a Banach space continuously
embedded in D′(R+), then TX is a Banach space with the standard induced norm

‖u‖TX = inf{‖x‖X : T x = u}.
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Let X ,Y be Banach spaces. [X ,Y] is the space of linear continuous operators on X
into Y , with operator norm

‖T ‖[X ,Y] := inf{C ∈ [0,∞[ : ∀x ∈ X : ‖T x‖Y ≤ C ‖x‖X }.
[X ] = [X ,X ].

Henceforth, if a, b are expressions that may depend on j, k, n, we write

a � b

if |a| ≤ Cb for a constant C < ∞ independent of j, k, n. We write a ∼ b if b � a
as well. We write X ↪→ Y if a linear topological space X is continuously embedded
in another linear topological space Y . For Banach spaces X ,Y which vary with j, k, n,
n-uniform continuous embedding means ‖id‖[X ,Y] � 1, which we abbreviate as

X ∼
↪→ Y .

We use the standard notation 〈n〉 = (1 + n2)
1
2 .

Let Xn be a sequence of Banach spaces. Assume that for some q < ∞ the spaces
〈ń〉−qXn are n-uniformly continuously embedded in a Banach spaceX which is contin-
uously embedded in D′(R+). (This is necessary because polynomial growth bounds on
Fourier transforms are needed to render the inverse transform well-defined in the sense
of temperate distributions; all needed results from their classical theory are adapted with
obvious modifications.)

Definition 2.

As(Xn) := (〈ń〉−s�1(Xn))
∨ (33)

(Xn is permitted to vary with n, so s should be considered an index of smoothness only
when q = 0 above.)

Remark 4. A0(Xn) with Xn = C for all n is the classical Wiener algebra A(T).

Proposition 2. As(Xn) is a Banach space.

Proof. F−1 and 〈ń〉−s are injective, and �1(Xn) is a Banach space by Proposition 1, so
As(Xn) with the induced norm is a Banach space. ��
Remark 5. If Tn : Xn → Yn is linear with

‖Tn‖[Xn ,Yn ] � 1,

then T (un) := (Tnun) defines a continuous linear map on As(Xn) into As(Yn). In

particular, if Xn
∼
↪→ Yn , then

As(Xn) ↪→ As(Yn).

If additionally Tn is an isomorphism with
∥∥∥T−1

n

∥∥∥[Xn ,Yn ]
� 1,

then T defines an isomorphism of As(Xn) onto As(Yn). Finally,

As(Xn ⊕ Yn) = As(Xn) ⊕As(Yn). (34)
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Proposition 3. Let (Xn), (Yn), (Zn) be sequences of Banach spaces embedded in
D′(R+). Assume that for all j, k ∈ Z and x ∈ X j , y ∈ Yk the product x ·y is well-defined
and in Z j+k , with

X j · Yk
∼
↪→ Z j+k (35)

Finally, let s ≥ 0.
Then for x ∈ As(Xn) and y ∈ A−s(Yn) the right-hand side of

(x · y)∧(n) :=
∑

k∈Z
x∧(n − k) · y∧(k)

is absolutely convergent, so we may define the product x · y by it, and moreover

As(Xn) ·A−s(Yn) ↪→ A−s(Zn) (36)

As(Xn) ·As(Yn) ↪→ As(Zn) (37)

Proof. In Appendix 5.1. ��
Remark 6. The regularity exponents±s cannot be improved, as simple examples show. In
more familiar terms, the standard definition of distributions T of order s times functions
u,

∀χ ∈ D : 〈T · u, χ〉 := 〈T, u · χ〉,
requires u · χ ∈ Cs , hence u ∈ Cs .

3.2. The multiplication algebras G. Cb(. . .) represents the continuous functions that are
bounded (including up to infinity). If we omit the domain, then R+ is implied.

For the remainder of the paper we choose some χ0 ∈ C∞(R+) so that χ0 = 1 near 0
and χ0 = 0 near∞. Abbreviate

χ∞ = 1− χ0

so that χ∞ = 0 near 0 and χ∞ = 1 near∞. Let δ > 0; we will restrict the value further
later on. Abbreviate

⋂
β́±δCb = β́δCb ∩ β́−δCb. (38)

IfX ,Y are Banach spaces embedded in the same linear Hausdorff space, thenX ∩Y
and X + Y are also Banach spaces with the induced norms

‖u‖X∩Y := max{‖u‖X , ‖u‖Y },
‖u‖X+Y := inf{‖x‖X + ‖y‖Y : u = x + y};

β́δCb, β́−δCb ↪→ D′(R+), so
⋂

β́±δCb is a Banach space. Obviously

Cb ·
⋂

β́±δCb ↪→
⋂

β́±δCb (39)

The following Banach algebras G... are the spaces for the values of g(ϕ), g(φ), g(0)

in (28). These three expressions are nonlinear in ψ and its derivatives, but F in (28)
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is linear in g(ϕ), g(φ), g(0). By multiplying before taking divergence, we are able to
construct solutions of lower regularity.

We write C for subspaces of constant functions, usually functions of β (the domain
will be clear from the context). For an element v of some vector space V , Cv is the span
of v.

Definition 3. For n ∈ NZ consider the following spaces of functions of β (with δ jk = 0
unless j = k where δ jk = 1):

Gn
0 :=

⋂
β́±δCb ⊕ Cχ0 (40)

Gn− :=
⋂

β́±δCb ⊕ Cχ0 ⊕ δ0nCχ∞
χ∞=1−χ0=

⋂
β́±δCb ⊕ Cχ0 ⊕ δ0nC (41)

Gn :=
⋂

β́±δCb ⊕ Cχ0 ⊕ Cχ∞
χ∞=1−χ0=

⋂
β́±δCb ⊕ Cχ0 ⊕ C (42)

The ⊕ are direct sums because (consider the limits β ↘ 0 and β ↗ ∞) χ∞ and χ0 are
linearly independent and not contained in

⋂
β́±δCb. For n /∈ NZwe set all these spaces

to {0}. (After inverse transforms this corresponds to the 2π
N -periodicity in Theorem 1.)

Functions in Gn have the asymptotic behaviours

const︷︸︸︷
c0 + βδ

bounded︷ ︸︸ ︷
r0(β) as β ↘ 0,

c∞︸︷︷︸
const

+ β−δr∞(β)︸ ︷︷ ︸
bounded

as β ↗ ∞.

Gn− allows a c∞ term only in the n = 0 Fourier mode; Gn
0 does not allow it at all.

It is natural to wonder why we would not allow g(ϕ), g(φ), g(0) to live in the larger
space Cb. That is because we will, in light of (32), represent ψ as (B + 1́)−1A−1− g, and

when applying A + 1́ to ψ (as g(ϕ), g(φ), g(0) require us to be able to) we (formally) get

(A + 1́)(B + 1́)−1A−1− g = B−1AA−1− g

But B−1 = (β∂β − 0)−1 is undefined on Cb because it has the characteristic exponent
s = 0. Formally the Green function representation is

B−1 f (β) =
∫ β

...

β ′−1 f (β ′)dβ ′,

but for generic f ∈ Cb the β ′−1 will cause logarithmic blowup either at β = 0+ or at
β = ∞, no matter how we choose the boundary “. . .”. B−1 is, however, well-defined on⋂

β́±δCb (albeit not into). (If our linearized operator happened to have (B + ś)−1 with a
more convenient s instead of (B+1́)−1, then the paper could be shortened considerably.)

From the definitions the following products are obvious:

Proposition 4. For all j, k ∈ Z,

G j
0 · Gk ∼

↪→ G j+k
0 (43)

G j · Gk ∼
↪→ G j+k (44)

G j
− · Gk−

∼
↪→ G j+k

− (45)
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(All embeddings are uniform in n (
∼
↪→) because Gn,Gn

0 are independent of n while Gn−
has only two different values.)

We also note the following obvious embeddings (C∞c being C∞ functions of compact
support)

C∞c (R+) ↪→
⋂

β́±δCb ∼
↪→ Gn

0
∼
↪→ Gn−

∼
↪→ Gn ∼

↪→ Cb ↪→ D′(R+) (46)

The spaces Gn,Gn−,Gn
0 define the behaviour of g∧(β, n) for each n separately. The

following spaces define the asymptotics of g∧ as |n| → ∞. We require regularity 1
2 ,

which will be motivated in Sect. 3.8.

Definition 4.

G := A 1
2 (Gn) (47)

G− := A 1
2 (Gn−) (48)

G0 := A 1
2 (Gn

0 ) (49)

Using (37) and (43), (44), (45) we immediately obtain

Proposition 5.

G0 · G ↪→ G0 (50)

G · G ↪→ G (51)

G− · G− ↪→ G− (52)

Proposition 6.

1 ∈ G− ⊂ G (53)

Proof. The Fourier transform of 1 is δ0n which is = 1 for n = 0 (in Gn− by (41)), = 0
for n 
= 0 (trivially in Gn−). The G− norm is obviously finite. ��

3.3. L and L−1. Now we start analyzing the differential operators in (32).

Definition 5. From now on consider

Z := β́(∂β − i ź) (54)

L := Z − ś (55)

where s, z ∈ R.

Remark 7. Note Z
(26)= B for z = 0, Z

(27)= A for z = n.

If we regard these differential operators as defined on D′(R+), then

ker L = Cβseizβ (56)

Proposition 7. Let s 
= 0. Then L is injective on Cb.
Proof. If not, then by (56) βseizβ ∈ Cb. But for s 
= 0 that function is not bounded. ��
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Definition 6. Let s 
= 0 so that L is injective on Cb (Proposition 7). For the remainder
of the paper, let L−1 : LCb → Cb refer to the inverse of L : Cb → LCb:

L−1L = id on Cb, (57)

LL−1 = id on LCb. (58)

L is continuous on D′(R+), so LCb is a Banach space with the induced norm, and
obviously

L : Cb → LCb is an isometry, (59)

L−1 : LCb → Cb is an isometry. (60)

If we apply the inverse on Cb rather than LCb, we can use the following estimate.

Proposition 8. Let s 
= 0. Then

Cb ↪→ LCb, (61)

so

LL−1 (58)= id on Cb, (62)

and we have the estimate
∥∥∥L−1

∥∥∥[Cb]
≤ |s|−1. (63)

Proof. Set

u(β) = βseizβ
∫ β

∞sign s

f (β ′)
β ′seizβ ′

dβ ′

β ′
︸ ︷︷ ︸

=:w(β)

where

∞sign s =
{
∞, s > 0
0, s < 0

so that (since f is bounded) the integrand is absolutely summable. It is easy to check
that u solves Lu = f . Moreover

|u(β)| = |βseizβ
∫ β

∞sign s
f (β ′)β ′−s−1e−i zβ ′

dβ ′|
β ′=xβ=
x=β ′/β

|
∫ 1

∞sign s
f (xβ)x−s−1eizβ(1−x)dx |

≤
∫ 1

∞sign s
| f (xβ)|x−s−1dx ≤ ‖ f ‖Cb

∫ 1

∞sign s
x−s−1dx = |s|−1 ‖ f ‖Cb (64)

which yields (63), and ‖ f ‖LCb =
∥∥L−1 f

∥∥Cb ≤
∥∥L−1

∥∥[Cb] ‖ f ‖Cb yields (61). ��
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Proposition 9.

(Z − ś)β́r = β́r (Z − ś + ŕ) on D′(R+) (65)

Proof. Trivial calculation. ��

Proposition 10. Let r ∈ R and s /∈ {0, r}. If

u ∈ (Z − ś + ŕ)Cb (sufficient: u ∈ Cb), and (66)

u ∈ β́−r (Z − ś)Cb (sufficient: u ∈ β́−rCb), (67)

then

β́r (Z − ś + ŕ)−1u = (Z − ś)−1β́r u + βseizβc (68)

where the scalar c is zero if sign s = sign(s − r) for all n.

Proof. By assumption s 
= 0 and s − r 
= 0, so (61) yields Cb ↪→ (Z − ś + ŕ)Cb and
β́−rCb ↪→ β́−r (Z− ś)Cb so that the right conditions in (66) and (67) imply the left ones.

Let u ∈ (Z − ś + ŕ)Cb and βr u ∈ (Z − ś)Cb, then

(Z − ś)(Z − ś)−1 β́r u︸︷︷︸
∈(Z−ś)Cb

(58)= β́r u︸︷︷︸
∈(Z−ś+ŕ)Cb

(58)= β́r (Z − ś + ŕ)(Z − ś + ŕ)−1u

(65)= (Z − ś)β́r (Z − ś + ŕ)−1u

We remove Z − ś from the left of both sides, having to allow a multiple of its kernel
element βseizβ :

(Z − ś)−1β́r u = β́r (Z − ś + ŕ)−1u − cβseizβ

which is (68). Solve for the constant c:

c = e−i zβ́(
β́−(s−r)(Z − ś + ŕ)−1u︸ ︷︷ ︸

∈Cb
− β́−s(Z − ś)−1β́r u︸ ︷︷ ︸

∈Cb

)
(69)

If sign s = sign(s− r) 
= 0, then either as β → 0 or as β → +∞ both β−s and β−(s−r)

decay, whereas all other right-hand side factors are bounded, so c = 0. ��

Proposition 11. Let s /∈ [−δ, δ]. Then
∥∥∥(Z − ś)−1

∥∥∥[⋂ β́±δCb]
≤ dist(s, [−δ, δ])−1 (70)
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Proof.
∥∥∥(Z − ś)−1u

∥∥∥⋂
β́±δCb

= max
σ=±1

∥∥∥(Z − ś)−1u
∥∥∥

β́σδCb
= max

σ=±1

∥∥∥β́−σδ(Z − ś)−1β́σδβ́−σδu
∥∥∥Cb

(68),r=σδ=
sign s=sign(s−σδ) 
=0

max
σ=±1

∥∥∥(Z − ś + σ δ́)−1β́−σδu
∥∥∥Cb

≤ max
σ=±1

∥∥∥(Z − ś + σ δ́)−1
∥∥∥[Cb]︸ ︷︷ ︸

(63)≤
s−σδ 
=0

|s−σδ|−1

∥∥∥β́−σδu
∥∥∥Cb︸ ︷︷ ︸

=‖u‖
β́σ δCb≤‖u‖⋂

β́±δCb

≤max
σ=±1

|s − σδ|−1

︸ ︷︷ ︸
=dist(s,[−δ,δ])−1

‖u‖⋂
β́±δCb .

��
For the rest of the paper we fix some constant δ with

0 < δ < min{1, 2μ − 1}. (71)

Then m±
(32)= 2μ − 1± nμ yields for N sufficiently large and n ∈ NZ that

dist(m±, [−δ, δ]) ∼ 〈n〉, in particular m± 
= 0 and (72)

signm+ = sign(m+ + δ) = sign(m+ − δ), (73)

signm− = sign(m− + δ) = sign(m− − δ); (74)

dist(−1, [−δ, δ]) ∼ 1, in particular (75)

sign 1 = sign(1 + δ) = sign(1− δ). (76)

Lemma 1.
∥∥∥A−1

+

∥∥∥[⋂ β́±δCb]
� 〈n〉−1 (77)

∥∥∥A−1−
∥∥∥[⋂ β́±δCb]

� 〈n〉−1 (78)
∥∥∥B−1

1

∥∥∥[⋂ β́±δCb]
� 1 (79)

Proof. Using A−1±
(32)= (A − ḿ±)−1, (77) and (78) follow from (70) with Z = A and

s = m±
(72)∼ 〈n〉. Using B−1

1
(32)= (B− (−1́))−1, (79) follows from (70) with Z = B and

s = −1. ��

3.4. The space Ψ for solution candidates. The space Ψ houses the solution candidates
ψ . Since our goal is to define the largest “convenient” multiplication algebra G for the
nonlinear terms, it is convenient to define Ψ indirectly:
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Definition 7.

Ψ n := B−1
1 A−1− Gn− (80)

We also use

Ψ n
δ := B−1

1 A−1−
⋂

β́±δCb (81)

Ψ n
0 := B−1

1 A−1− (Cχ0) (82)

Ψ n− := B−1
1 A−1− (δ0nC) (83)

and note (see (41))

Ψ n = Ψ n
δ ⊕ Ψ n

0 ⊕ Ψ n− (84)

Proposition 12. Ψ n is a Banach space, and

A−B1 : Ψ n → Gn− is an isometry. (85)

Proof. A−
(32)= A− ḿ− and B1

(32)= B − (−1́). Note m−
(72)
= 0 
= −1, so by Proposition

7 A− and B1 are injective on Cb, and by (61) A−1− Cb ↪→ Cb and B−1
1 Cb ↪→ Cb. Therefore

A−1− Gn−
(46)
↪→ A−1− Cb ↪→ Cb and B−1

1 A−1− Gn−
(46)
↪→ B−1

1 A−1− Cb ↪→ B−1
1 Cb ↪→ Cb. Hence

A− is also injective on the smaller space A−1− Gn−, and B1 is also injective on B−1
1 A−1− Gn−.

Thus A− : A−1− Gn− → Gn− is bijective, hence an isometry with the induced norm that
makes A−1− Gn− a Banach space; in turn Ψ n = B−1

1 A−1− Gn− is a Banach space with the
norm induced by B1, and B1 : B−1

1 A−1− Gn− → A−1− Gn− another isometry. Composition
of two isometries yields (85). ��
Remark 8. Note that inverses (β́(∂β − i ź) − ś)−1 increase β decay at β → ∞ at all
β-frequencies except near z. For example

(β́(∂β − i ź) − ś)−1eipβ
(64)=

∫ β

∞sign s
βseizββ ′−s−1ei(p−z)β ′

dβ ′

(now integrate by parts a few times and estimate the remainder into O)

= β−1eipβ
( 1

i(p − z)
+ O(β−1)

)

So if p 
= z we gain a β−1 over the input eipβ . But clearly the coefficient blows up as
p → z, and for p = z we have

(β́(∂β − i ź) − ś)−1eizβ = βseizβ
∫ β

∞sign s
β ′−s−1dβ ′

= −1

s
eizβ

so we have not gained any decay.
Since B−1

1 = β́∂β + 1́ and A−1− = β́(∂β − i ń) − ḿ− that means Ψ functions gain
decay β−2 compared to Gn− at frequencies separated from 0 and n, but only β−1 near
them.

Such a function space with frequency-dependent weights at β → ∞ could be defined
more explicitly, but for our purposes that appears to bemore cumbersome than the natural
representation B−1

1 A−1− Gn− suggested by the form of R in (32).
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Definition 8.

Ψ := A 1
2 (Ψ n) (86)

Proposition 13. Ψ is well-defined and a Banach space.

Proof. By Proposition 12 Ψ n are Banach spaces for all n, and Ψ n = B−1
1 A−1− Gn−

∼
↪→

B−1
1 A−1− Cb

(78)∼
↪→
(79)

Cb ↪→ D′ so that by Proposition 2 with q = 0 and X = Cb, Ψ is a

Banach space as well. ��

3.5. Continuity onΨ . Nowwe come to the continuity of various operators onΨ n
δ . In the

following result, observe that applying B1 to B−1
1 A−1− g first cancels B−1

1 before there is
a need to commute A through it. Hence a β0 term at β → 0 or β → ∞ is not produced.

Proposition 14.

‖id‖[Ψ n
δ ,Gn−] � 〈n〉−1 (87)

‖B‖[Ψ n
δ ,Gn

0 ] � 〈n〉−1 (88)

‖AB1‖[Ψ n
δ ,Gn

0 ] � 1 (89)

Proof. Ψ n
δ = B−1

1 A−1−
⋂

β́±δCb and
⋂

β́±δCb
(40)
↪→ Gn

0
(41)
↪→ Gn−, so it is sufficient to show

∥∥∥id B−1
1 A−1−

∥∥∥[⋂ β́±δCb,Gn−]
� 〈n〉−1

∥∥∥BB−1
1 A−1−

∥∥∥[⋂ β́±δCb,Gn
0 ]

� 〈n〉−1

∥∥∥AB1B
−1
1 A−1−

∥∥∥[⋂ β́±δCb,Gn
0 ]

� 1

These follow from (78) and (79) by linear combinations B = B1− 1́ and A = A− + ḿ−
using ḿ−

(72)
� 〈n〉. ��

In the next result we apply A without any helping B1. As explained this turns the
χ∞β−1 at β → ∞ produced by B−1

1 into χ∞β0. The result can in general only fit into
Gn , not the smaller Gn− or Gn

0 .

Proposition 15.

‖A‖[Ψ n
δ ,Gn ] � 1 (90)

Proof. Consider ψ ∈ Ψ n
δ , i.e.

ψ = (B + 1́)−1(A − ḿ−)−1g, g ∈
⋂

β́±δCb ↪→ Cb. (91)
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We telescope A = B − inβ́, so that the prior estimate (88) reduces the problem to an
estimate for inβ́ψ . Only n 
= 0 is nontrivial. Consider

inβ́ψ = inβ́(B + 1́)−1

X︷ ︸︸ ︷
(A − ḿ−)−1g.

For σ = ±1,

X = β́σδβ́−σδ(A − ḿ−)−1

︸ ︷︷ ︸
∗

g︸︷︷︸
∈Cb

;

we apply (68) with Z = A, s = m− − σδ and r = −σδ to * to obtain

X = β́σδ

∗︷ ︸︸ ︷
(A − ḿ− + σ δ́)−1

∈Cb︷ ︸︸ ︷
β́−σδg;

to justify this we argue that s = m− − σδ 
= 0 
= m− = s − r by (72), and that
g, β́−σδg ∈ Cb so that (66) and (67) are satisfied. Note sign s = sign(m− − σδ) =
sign(m−) = sign(s − r) (again by (72)) so that no c term appears. Now

inβ́ψ = inβ́σδβ́1−σδ(B + 1́)−1
︸ ︷︷ ︸

∗∗

X︷ ︸︸ ︷
β́σδ(A − ḿ− + σ δ́)−1β́−σδg

To ** we also apply (68), with Z = B, s = −σδ and r = 1− σδ, obtaining

inβ́ψ = β́σδ(B + σ δ́)−1inβ́(A − ḿ− + σ δ́)−1β́−σδg
︸ ︷︷ ︸

=:u︸ ︷︷ ︸
=:rσ

+ cσ (92)

To justify the last step we argue that s = −σδ 
= 0 
= −1 = s − r by (71), and that

g ∈ Cb and m−
(72)
= 0 imply X = (A − ḿ−)−1g ∈ Cb, hence (66); justification of (67)

in the form u ∈ (B + σ δ́)Cb, is to follow below. Note c− is a constant (in β), whereas
c+ = 0 since for σ = +1 we have sign s = sign(−σδ) = sign(−1) = sign(s − r).

We telescope

inβ́ = B − A = (B + σ δ́) − ḿ− − (A − ḿ− + σ δ́) on D′(R+)

so that formally

u =
R1︷ ︸︸ ︷

(B + σ δ́)(A − ḿ− + σ δ́)−1β́−σδg −
R2︷ ︸︸ ︷

ḿ−(A − ḿ− + σ δ́)−1β́−σδg

−(A − ḿ− + σ δ́)(A − ḿ− + σ δ́)−1β́−σδg
︸ ︷︷ ︸

R3

(93)

We check each part: β́−σδg ∈ Cb and m− − σδ
(72)
= 0 mean by (62) that R3 = β́−σδg ∈

Cb is well-defined, and by (63) that (A − ḿ− + σ δ́)−1β́−σδ ∈ Cb is well-defined, so
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R2 is well-defined and in Cb. Since δ 
= 0 means Cb
(61)
↪→ (B + σ δ́)Cb, we see that

u = R1 + R2 + R3 ∈ (B + σ δ́)Cb so that the steps to (92) are now fully justified.
We proceed to estimate rσ :

rσ
(92)= (B + σ δ́)−1u

(use (B + σ δ́)−1(B + σ δ́) = id on Cb by (57) with δ
(71)
= 0)

(93)= (A − ḿ− + σ δ́)−1β́−σδg

− ḿ−(B + σ δ́)−1(A − ḿ− + σ δ́)−1β́−σδg

− (B + σ δ́)−1β́−σδg

We estimate the three terms:
∥∥∥(A − ḿ− + σ δ́)−1β́−σδg

∥∥∥Cb

(63)
�
(72)

〈n〉−1
∥∥∥β́−σδg

∥∥∥Cb
∥∥∥(B + σ δ́)−1β́−σδg

∥∥∥Cb

(63)
�
(71)

∥∥∥β́−σδg
∥∥∥Cb

∥∥∥ḿ−(B + σ δ́)−1(A − ḿ− + σ δ́)−1β́−σδg
∥∥∥Cb

(63)
�
(72)

∥∥∥β́−σδg
∥∥∥Cb

so that altogether

‖rσ‖Cb �
∥∥∥β́−σδg

∥∥∥Cb
�

∥∥ψ
∥∥

Ψ n
δ

Having estimated rσ in (92), and c+ being 0, it remains to estimate c−: (92) with
σ = −1 shows

c− = const = β in

=ψ︷ ︸︸ ︷
(B + 1́)−1(A − ḿ−)−1g

︸ ︷︷ ︸
=:w

− β−δr−. (94)

By now-familiar arguments w is well-defined and in Cb, with
‖w‖Cb �

∥∥ψ
∥∥

Ψ n
δ

.

Since c− is constant, it can be estimated by evaluating the right-hand side of (94) at any
β, say β = 1, and we obtain

|c−| ≤ ‖w‖Cb + ‖r−‖Cb �
∥∥ψ

∥∥
Ψ n

δ

Altogether we have that

inβψ = (χ0 + χ∞)inβψ
(92)= χ0β

δr+ + χ∞(β−δr− + c−)

= χ0β
δr+ + χ∞β−δr−︸ ︷︷ ︸
∈⋂

β́±δCb

+ χ∞c−︸ ︷︷ ︸
∈Cχ∞

︸ ︷︷ ︸
(42)∈ Gn

with Gn norm �
∥∥ψ

∥∥
Ψ n

δ
. ��
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Proposition 16.

‖AB‖[Ψ n
δ ,Gn ] � 1 (95)

Proof.

‖AB‖[Ψ n
δ ,Gn ]

AB=AB1−A≤ ‖AB1‖[Ψ n
δ ,Gn ]︸ ︷︷ ︸

(89)
�

Gn
0 ↪→Gn

1

+ ‖A‖[Ψ n
δ ,Gn ]︸ ︷︷ ︸

(90)
� 1

� 1

��
Having dealt with the most difficult part Ψ n

δ , we examine the fairly trivial action of the
various differential operators id, B, A, AB on Ψ n−.
Proposition 17.

B|Ψ n− = 0 (96)

AB|Ψ n− = 0 (97)

A|Ψ n− = 0 (98)

AB1|Ψ n− = 0 (99)

‖id‖[Ψ n−,Gn−] � 〈n〉−1 (100)

ψ0 ∈ Ψ (101)

Proof. Ψ n−
(83)= B−1

1 A−1− (δ0nC), so for n 
= 0 the statement is trivial. Consider n = 0:

B1 = β́∂β1 = 0, AB1 = A0 = 0, A1 = β́(∂β − i ń)1
n=0= 0,

AoB1 = A(B + 1́)1 = A1 = 0,

which yields the first four estimates.

A−B1
1

1− 2μ︸ ︷︷ ︸
∈Cb

(32)=
n=0

(A + 1́− 2́μ́)(B + 1́)
1

1− 2μ
= 1

Def. 6⇒ B−1
1 A−1− 1 = 1

1− 2μ
⇒ idΨ n− = B−1

1 A−1− (δ0nC) = δ0nC

Hence id maps Ψ n− into δ0nC
(41)
↪→ Gn−. (100) is trivial since Ψ n− is one-dimensional for

n = 0 and zero for n 
= 0. Moreover

1

2μ − 1
= B−1

1 A−1− (−1) ∈ B−1
1 A−1− (δ0nC)

(80)∈ Ψ n

so that

ψ0
(23)= (δ0n

1

2μ − 1
)∨ ∈ Ψ

(the Ψ = A 1
2 (Ψ n) norm is obviously finite). ��
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Finally we examine the action of 1́, B, A, AB on Ψ n
0 . Cχ0 introduces terms without

decay at β ↘ 0. we remove the χ0 terms at the cost of new terms in Ψ n
δ on which we

have estimates already.

Lemma 2.

‖Bχ0‖⋂
β́±δCb ≤ 1 (102)

‖Aχ0‖⋂
β́±δCb ≤ 〈n〉 (103)

‖ABχ0‖⋂
β́±δCb ≤ 〈n〉 (104)

Proof.

Bχ0 = β́∂βχ0

Aχ0 = β́∂βχ0 − i ńβ́χ0

ABχ0 = β́(∂β − i ń)β́∂βχ0 = β́∂βχ0 + β́2∂2βχ0 − i ńβ́2∂βχ0

∂βχ0, ∂
2
βχ0 ∈ C∞c (R+) ↪→ ⋂

β́±δCb, and likewise βχ0 ∈ ⋂
β́±δCb (note δ

(71)≤ 1). ��
Lemma 3.

B−1
1 A−1− χ0 = −m−1− χ0 + r where ‖r‖Ψ n

δ
� 1 (105)

Proof.

A− χ0︸︷︷︸
∈Cb

= −m− χ0︸︷︷︸
∈Cb (61)

↪→
m−
=0

A−Cb

+ Aχ0︸︷︷︸
(103)∈ Cb↪→A−Cb

(57)⇒
m−
=0

χ0 = −m−A−1− χ0 + A−1− Aχ0

⇔ A−1− χ0 = −m−1− χ0 + A−1− (m−1− Aχ0︸ ︷︷ ︸
=:g1

) (106)

where

‖g1‖⋂
β́±δCb ≤ |m−1− |

︸ ︷︷ ︸
(72)
� 〈n〉−1

‖Aχ0‖⋂
β́±δCb︸ ︷︷ ︸

(103)
� 〈n〉

� 1. (107)

Similarly

B1χ0 = χ0 + Bχ0

⇒ χ0 = B−1
1 χ0 + B−1

1 Bχ0︸︷︷︸
∈Cb

⇔ B−1
1 χ0 = χ0 + B−1

1 A−1− A−B(−χ0)︸ ︷︷ ︸
=:g2

(108)
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‖g2‖⋂
β́±δCb ≤ ‖ABχ0‖⋂

β́±δCb︸ ︷︷ ︸
(104)
� 〈n〉

+ |m−|︸︷︷︸
(72)
� 〈n〉

‖Bχ0‖⋂
β́±δCb︸ ︷︷ ︸

(103)
� 1

� 〈n〉 (109)

Combining (106) with (108) we get

B−1
1 A−1− χ0

(106)= B−1
1 (−m−1− χ0 + A−1− g1)

(108)= −m−1− χ0 + B−1
1 A−1− (−m−1− g2 + g1)︸ ︷︷ ︸

=:r
Note

‖r‖Ψ n
δ

(81)=
∥∥∥g1 − m−1− g2

∥∥∥⋂
β́±δCb

(107)
�

(109)
1

��
Proposition 18.

‖id‖[Ψ n
0 ,Gn−] � 〈n〉−1 (110)

‖B‖[Ψ n
0 ,Gn

0 ] � 〈n〉−1 (111)

‖AB1‖[Ψ n
0 ,Gn

0 ] � 1 (112)

‖A‖[Ψ n
0 ,Gn ] � 1 (113)

‖AB‖[Ψ n
0 ,Gn ] � 1 (114)

Proof.

‖id‖[Ψ n
0 ,Gn−]

(82)=
∥∥∥id B−1

1 A−1
+ χ0

∥∥∥Gn−
(105)
� |m−1− |

︸ ︷︷ ︸
(72)
� 〈n〉−1

‖χ0‖Cχ0︸ ︷︷ ︸
=1

+ ‖id‖[Ψ n
δ ,Gn−]︸ ︷︷ ︸

(87)
� 〈n〉−1

‖r‖Ψ n
δ︸ ︷︷ ︸

(105)
� 1

� 〈n〉−1

‖B‖[Ψ n
0 ,Gn

0 ]
(82)=

∥∥∥BB−1
1 A−1

+ χ0

∥∥∥Gn
0

(105)
� |m−1− |

︸ ︷︷ ︸
(72)
� 〈n〉−1

‖Bχ0‖⋂
β́±δCb︸ ︷︷ ︸

(102)
� 1

+ ‖B‖[Ψ n
δ ,Gn

0 ]︸ ︷︷ ︸
(88)
� 〈n〉−1

‖r‖Ψ n
δ︸ ︷︷ ︸

(105)
� 1

� 〈n〉−1

‖AB1‖[Ψ n
0 ,Gn

0 ]
(82)=

∥∥∥AB1B
−1
1 A−1

+ χ0

∥∥∥Gn
0

(105)
� |m−1− |

︸ ︷︷ ︸
(72)
� 〈n〉−1

‖A(B + 1)χ0‖⋂
β́±δCb︸ ︷︷ ︸

(104)
�

(103)
〈n〉

+ ‖AB1‖[Ψ n
δ ,Gn

0 ]︸ ︷︷ ︸
(89)
� 1

‖r‖Ψ n
δ︸ ︷︷ ︸

(105)
� 1

� 1

‖A‖[Ψ n
0 ,Gn ]

(82)=
∥∥∥AB−1

1 A−1
+ χ0

∥∥∥Gn
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(105)
� |m−1− |

︸ ︷︷ ︸
(72)
� 〈n〉−1

‖Aχ0‖⋂
β́±δCb︸ ︷︷ ︸

(103)
� 〈n〉

+ ‖A‖[Ψ n
δ ,Gn ]︸ ︷︷ ︸

(90)
� 1

‖r‖Ψ n
δ︸ ︷︷ ︸

(105)
� 1

� 1

‖AB‖[Ψ n
0 ,Gn ]

(82)=
∥∥∥ABB−1

1 A−1
+ χ0

∥∥∥Gn

(105)
� |m−1− |

︸ ︷︷ ︸
(72)
� 〈n〉−1

‖ABχ0‖⋂
β́±δCb︸ ︷︷ ︸

(104)
� 〈n〉

+ ‖AB‖[Ψ n
δ ,Gn ]︸ ︷︷ ︸

(95)
� 1

‖r‖Ψ n
δ︸ ︷︷ ︸

(105)
� 1

� 1

��
Remark 9. We have treated each direct summand of Ψ n ; combining the estimates easily
yields (remember (26),(27): the operator A is the Fourier transform of−β́∂ϕ , B the one
of β́∂β and in the transform of ∂φ)

‖id‖[Ψ n ,Gn−]
(84)≤ ‖id‖[Ψ n

δ ,Gn−]︸ ︷︷ ︸
(87)
� 〈n〉−1

+ ‖id‖[Ψ n
0 ,Gn−]︸ ︷︷ ︸

(110)
� 〈n〉−1

+ ‖id‖[Ψ n−,Gn−]︸ ︷︷ ︸
(100)
� 〈n〉−1

� 〈n〉−1 (115)

⇒ ‖id‖[Ψ,G−] = ‖id‖[A 1
2 (Ψ n),A 1

2 (Gn−)]
(115)
< ∞ (116)

‖B‖[Ψ n ,Gn
0 ]

(84)≤ ‖B‖[Ψ n
δ ,Gn

0 ]︸ ︷︷ ︸
(88)
� 〈n〉−1

+ ‖B‖[Ψ n
0 ,Gn

0 ]︸ ︷︷ ︸
(111)
� 〈n〉−1

+ ‖B‖[Ψ n−,Gn
0 ]︸ ︷︷ ︸

(96)= 0

� 〈n〉−1 (117)

⇒
∥∥∥β́∂β

∥∥∥[Ψ,G0]
(117)
< ∞ (118)

‖AB1‖[Ψ n ,Gn
0 ]

(84)≤ ‖AB1‖[Ψ n
δ ,Gn

0 ]︸ ︷︷ ︸
(89)
� 1

+ ‖AB1‖[Ψ n
0 ,Gn

0 ]︸ ︷︷ ︸
(112)
� 1

+ ‖AB1‖[Ψ n−,Gn
0 ]︸ ︷︷ ︸

(99)= 0

� 1 (119)

⇒
∥∥∥β́∂ϕ(β́∂β + 1́)

∥∥∥[Ψ,G0]
(119)
< ∞ (120)

‖A‖[Ψ n ,Gn ]
(84)≤ ‖A‖[Ψ n

δ ,Gn ]︸ ︷︷ ︸
(90)
� 1

+ ‖A‖[Ψ n
0 ,Gn ]︸ ︷︷ ︸

(113)
� 1

+ ‖A‖[Ψ n−,Gn ]︸ ︷︷ ︸
(98)= 0

� 1 (121)

⇒
∥∥∥β́∂ϕ

∥∥∥[Ψ,G]
(121)
< ∞ (122)

‖AB‖[Ψ n ,Gn ]
(84)≤ ‖AB‖[Ψ n

δ ,Gn ]︸ ︷︷ ︸
(95)
� 1

+ ‖AB‖[Ψ n
0 ,Gn ]︸ ︷︷ ︸

(114)
� 1

+ ‖AB‖[Ψ n−,Gn ]︸ ︷︷ ︸
(97)= 0

� 1 (123)
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⇒
∥∥∥β́∂ϕβ́∂β

∥∥∥[Ψ,G]
(123)
< ∞ (124)

∥∥∂φ

∥∥[Ψ,G−]
(115)
< ∞ (125)

∥∥∂β

∥∥[Ψ,G−]
(26)≤

∥∥∥β́∂β

∥∥∥[Ψ,G−]︸ ︷︷ ︸
(118)
<

G0↪→G−
∞

+ (2μ − 1)‖id‖[Ψ,G−]︸ ︷︷ ︸
(116)
< ∞

(118)
<

(116)
∞ (126)

∥∥∂φ∂β

∥∥[Ψ,G−]
(26)≤

∥∥∥∂φβ́∂β

∥∥∥[Ψ,G−]︸ ︷︷ ︸
(117)
<

Gn
0 ↪→Gn−

∞

+ (2μ − 1)
∥∥∂φ

∥∥[Ψ,G−]︸ ︷︷ ︸
(125)
< ∞

< ∞ (127)

∥∥∂ϕ

∥∥[Ψ,G]
(27)≤

∥∥∥β́∂ϕ

∥∥∥[Ψ,G]︸ ︷︷ ︸
(122)
< ∞

+ (2μ − 1)‖id‖[Ψ,G]︸ ︷︷ ︸
(116)
<

G−↪→G
∞

< ∞ (128)

∥∥∥(∂ϕ + 1́)∂β

∥∥∥[Ψ,G]
(27)≤
(26)

∥∥∥β́∂ϕβ́∂β

∥∥∥[Ψ,G]︸ ︷︷ ︸
(124)
< ∞

+ (2μ − 1)
∥∥∥β́∂ϕ

∥∥∥[Ψ,G]︸ ︷︷ ︸
(122)
< ∞

+ 2μ
∥∥∥β́∂β

∥∥∥[Ψ,G]︸ ︷︷ ︸
(118)
<

G0↪→G
∞

+ 2μ(2μ − 1)‖id‖[Ψ,G]︸ ︷︷ ︸
(116)
<

G−↪→G
∞

< ∞ (129)

3.6. The space F for values of F. F is the space for the values of F in (28). These
values arise from the outer divergence of g(ϕ), g(φ), g(0). No pointwise multiplications
occur outside these three terms, so we can regard the outer divergence as distributional;
F may contain non-regular distributions.

Definition 9.

Fn := A+Gn− (130)

Proposition 19. Fn is a Banach space and

A+ : Gn− → Fn is an isometry. (131)

Proof. L = A+
(32)= A − m+ is injective on Cb by Proposition 7 (using s = m+

(72)
= 0),

hence also injective on Gn−
(46)
↪→ Cb, so A+ : Gn− → A+Gn− = Fn is bijective, hence an

isometry and Fn a Banach space with the induced norm. ��
Definition 10.

F := A 1
2 (Fn) (132)
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This definition is valid because 〈n〉−1Fn , whose elements need not be functions, is
continuously embedded into the Banach space (β + β−1)(Cb + ∂βCb) (norm induced
by ∂β, β + β−1) which in turn is continuously embedded in D′(R+); the embedding of
〈n〉−1Fn is n-uniform because A−1

+ = β́∂β − inβ́ − ḿ+ with m+ = 2μ − 1 + nμ can
add at most one n growth which is absorbed by 〈n〉−1. Hence q = 1 can be used in the
runup to definition (33). We obtain

Proposition 20. F is a Banach space.

Proposition 21.

‖id‖[⋂ β́±δCb,Fn ] � 〈n〉−1 (133)

Proof.

‖id‖[⋂ β́±δCb,Fn ] =
∥∥∥A+A

−1
+

∥∥∥[⋂ β́±δCb,A+Gn−]
=

∥∥∥A−1
+

∥∥∥[⋂ β́±δCb,Gn−]
(41)≤

∥∥∥A−1
+

∥∥∥[⋂ β́±δCb,⋂ β́±δCb]
(77)
� 〈n〉−1

��
Proposition 22.

‖id‖[Cχ0,Fn ] � 〈n〉−1 (134)

Proof.

A+χ0
(32)=
(27)

−ḿ+χ0 − inβχ0 + β∂βχ0

⇔ χ0 = −m−1
+

(
A+χ0 + inβχ0 − β∂βχ0

)

⇒ ‖χ0‖Fn ≤

(72)
� 〈n〉−1

︷ ︸︸ ︷
|ḿ+|−1 (

(130)= ‖χ0‖Gn−
(41)≤ ‖χ0‖Cχ0

=1
︷ ︸︸ ︷
‖A+χ0‖Fn +

(133)
� ‖βχ0‖⋂

β́±δCb�1
︷ ︸︸ ︷
〈n〉 ‖βχ0‖Fn

+
∥∥β∂βχ0

∥∥Fn︸ ︷︷ ︸
(133)
� 〈n〉−1‖β∂βχ0‖⋂

β́±δCb�〈n〉−1

)

� 〈n〉−1

��
Lemma 4.

‖id‖[Cχ∞,Fn ] � 〈n〉−1 (135)

Proof. For n = 0:

A+χ∞ = (β́(∂β − i ń) − ḿ+)χ∞
(32)=
n=0

(β́∂β − (2μ − 1))χ∞
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⇔ χ∞ = (1− 2μ)−1(A+χ∞ − β∂βχ∞)

⇔ ‖χ∞‖Fn ≤ |2μ − 1|−1( ‖A+χ∞‖Fn︸ ︷︷ ︸
(130)= ‖χ∞‖Gn−

(41)≤ ‖χ∞‖Cχ∞=1

+
∥∥β∂βχ∞

∥∥Fn︸ ︷︷ ︸
(133)
� 〈n〉−1

) � 1

For n 
= 0:

A+(β
−1χ∞) = (β́(∂β − i ń) − ḿ+)(β

−1χ∞)

= −inχ∞ + (−m+ − 1)χ∞β−1 + ∂βχ∞
⇔ χ∞ = (in)−1((−m+ − 1)χ∞β−1 + ∂βχ∞ − A+(χ∞β−1)

)

⇒ ‖χ∞‖Fn ≤ 〈n〉−1(|m+ + 1|︸ ︷︷ ︸
�〈n〉

∥∥∥χ∞β−1
∥∥∥Fn︸ ︷︷ ︸

(133)
� 〈n〉−1

+
∥∥∂βχ∞

∥∥Fn︸ ︷︷ ︸
(133)
� 〈n〉−1

+
∥∥∥A+(χ∞β−1)

∥∥∥Fn︸ ︷︷ ︸
(130)= ‖χ∞β−1‖Gn−�1

)

� 〈n〉−1

��
Proposition 23.

‖id‖[Gn ,Fn ] � 〈n〉−1 (136)

Proof. Combine (133), (134) and (135). ��
Proposition 24. ń maps Gn into Fn, with

∥∥ń
∥∥[Gn ,Fn ] � 1 (137)

Proof. Immediate from (136). ��
Proposition 25. A maps Gn− into Fn, with

‖A‖[Gn−,Fn ] � 1 (138)

Proof. A = A+ + m+, so

‖A‖[Gn−,Fn ] ≤ ‖A+‖[Gn−,Fn ]︸ ︷︷ ︸
(130)≤ 1

+ |m+|︸︷︷︸
(72)〈n〉

‖id‖[Gn−,Fn ]︸ ︷︷ ︸
(136)
�

Gn−↪→Gn
〈n〉−1

� 1

��
From (138), (137) and (136) we immediately get

Proposition 26.
∥∥∂ϕ

∥∥[G−,F ] < ∞ (139)
∥∥∂φ

∥∥[G,F ] < ∞ (140)

‖id‖[G,F ] < ∞ (141)
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3.7. ∂F/∂ψ is a linear isomorphism. Since we intend to apply the implicit function
theorem it is essential to show that our linearized operator R − E in (32) is invertible.
This rests on two ideas: first, R is a product of the three first-order ordinary differential
operators A+, A−, B1 which are easy to invert. Second, E = 0 for n = 0, whereas it is
small (relative to R) at large n. Here is one of the two points where the high periodicity
we require in Theorem 1 is essential. (In future work we will discuss the technically
more difficult inversion of R− E for nonzero non-large n; then the value of μ will play
a bigger role.)

Proposition 27. For any n ∈ NZ, R is an isometry on Ψ n onto Fn.

Proof.

R
(32)= A+A−B1;

combine (85) with (131). ��
Proposition 28.

‖E‖[Ψ n ,Fn ] � N−1 (142)

Proof.

E
(32)= (2μ − 1)(A − B)

For n = 0 we have A
(27)=
(26)

B, hence E = 0. For n ∈ NZ\{0},

‖E‖[Ψ n ,Fn ] � (‖A‖[Ψ n ,Gn ]︸ ︷︷ ︸
(121)
� 1

+ ‖B‖[Ψ n ,Gn ]︸ ︷︷ ︸
(117)
�

Gn
0⊂Gn

〈n〉−1

)‖id‖[Gn ,Fn ]︸ ︷︷ ︸
(136)
� 〈n〉−1

� 〈n〉−1 � N−1

��
Proposition 29. For N R − E is an n-uniform isomorphism on Ψ n into Fn.

Proof. R is an isometry and ‖E‖[Ψ n ,Fn ]
(142)≤ 1

2 for N sufficiently large, so that R − E
is an n-uniform isomorphism. ��

Proposition 30. For N sufficiently large, ∂F
∂ψ

(ψ0,Ω0) : Ψ → F is an isomorphism.

Proof. ByProposition 29, theFourier transform−(R−E)of ∂F
∂ψ

(ψ0,Ω0) isn-uniformly

an isomorphism on Ψ n into Fn , so ∂F
∂ψ

(ψ0,Ω0) is an isomorphism on Ψ = A 1
2 (Ψ n)

into F = A 1
2 (Fn). ��
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3.8. The spaceW for data Ω . Now we defineW , the space for the data Ω . We choose
negative regularity− 1

2 in φ direction. This is crucial for obtaining large initial data that
may change sign.

Definition 11. Let Wn = C for n ∈ NZ,W = 0 for other n ∈ Z.

W := A− 1
2 (Wn) (143)

Motivation: say Ω was allowed to have regularity −σ . Then its product with g(0), and
hence F (see (28)), have regularity −σ at most. From F to G we gain one order of
regularity, to index 1− σ (put differently we gain two orders from F into Ψ , then lose
one into G due to the various ∂ϕ, ∂φ in g(ϕ), g(φ), g(0) which contain n). g(0) is estimated

in G, so the two factors g(0) and Ω have regularity 1 − σ and −σ . To well-define the
product we need (by Proposition 36) that (1− σ) + (−σ) ≥ 0, hence −σ ≥ − 1

2 .
(It is worth investigating whether a reformulation of the problem might overcome

this limitation.)

Proposition 31.

Ω0 ∈ W (144)

Proof. 1∧ = δ0n ∈ Wn for all n, and the A− 1
2 (Wn) norm is obviously finite. Hence

multiples of 1, including Ω0, are inW . ��

Lemma 5.

W j · Gk ∼
↪→ G j+k (145)

Proof. Let j, k ∈ Z. If j /∈ NZ, then W j = 0; if k /∈ NZ, then Gk = 0; either way

W j · Gk = 0. Let j, k ∈ NZ so that j + k ∈ NZ. Then W j · Gk = C · Gk = Gk (42)=
G j+k . ��

Proposition 32.

W · G ↪→ F (146)

In particular

W ↪→ F (147)

Proof. 1
(53)∈ G, so (147) is implied by (146) which we prove now:

W · G = A− 1
2 (Wn) ·A 1

2 (Gn)
(145)
↪→
(36)

A− 1
2 (Gn)

(137)
↪→ A 1

2 (Fn) = F

��
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3.9. F is continuously differentiable. So far we have estimated linear maps: various
derivatives applied to ψ . Now we combine these into nonlinear terms by multiplication.
We point out an essential problem: we have defined Ψ as B−1

1 A−1− of Gn−, not Gn . This
is because Gn allows terms with asymptotics cβ0 (c 
= 0 constant) as β → ∞ at all n;
A−1− would map this into a term c2β−1 + o(β−1) and then B−1

1 = (B− (−1́))−1, which
has characteristic exponent −1, would produce c3β−1 logβ, not c3β−1. After taking
derivatives and multiplying (nonlinearity) the logβ would cause havoc and prevent
closure.

But now when we apply the inverse R−1 = B−1
1 A−1− A−1

+ to defects f we need to
ensure that A−1

+ f is indeed in the smaller space Gn−. This required the choiceF = A+Gn−
in (132). The price to pay is that the outer divergence of F (28) must map into A+Gn− as

opposed to a larger space A+Gn . Since the factors that constitute g(ϕ), g(φ), g(0) involve
∂ϕψ which lives in Gn (as discussed in the context of (90)), this appears difficult.

However, we make a crucial observation: the key difficulty in (28) is ∂ϕg(ϕ) (since ∂φ

on g(φ) does not involve β́, hence cannot lose decay, and similarly g(0)Ω is harmless).
Fortunately the values of g(ϕ) are indeed in the smaller space Gn−: ∂ϕ appears only in

one particular fraction in g(ϕ) (see (29)), which has a crucial cancellation that eliminates
all n 
= 0 occurrences of +cχ∞(β)β0. This is proven in detail in the last part of the
following proof.

Definition 12. Let B(Ψ )
εψ (ψ0) be the ball in Ψ of radius εψ around ψ0 (which is ∈ Ψ by

(101), so the ball is well-defined). Let B(W)
εΩ (Ω0) be the ball in W of radius εΩ around

Ω0 (which is ∈ W by (144)).

Proposition 33. Let α ∈ {−1/(2μ),−1}. For εψ sufficiently small, ψ ∈ B(Ψ )
εψ (ψ0):

inf ∂ϕψ > 0, ψ �→ (∂ϕψ)α ∈ C1(B(Ψ )
εψ

(ψ0);G) (148)

inf(∂ϕ + 1́)∂βψ > 0, ψ �→ 1/(∂ϕ + 1́)∂βψ ∈ C1(B(Ψ )
εψ

(ψ0);G) (149)

sup ∂βψ < 0, ψ �→ 1/∂βψ ∈ C1(B(Ψ )
εψ

(ψ0);G−) (150)

ψ �→ ∂ϕψ/(∂ϕ + 1́)∂βψ ∈ C1(B(Ψ )
εψ

(ψ0);G−) (151)

Proof. (148): G is a unital Banach algebra ((53), (51)); Taylor expansion of x �→ xα

around x = 1 yields (for either α) an analytic function f : U → G on a neighbourhood

U ⊂ G of 1
(27)=
(23)

∂ϕψ0. By (128) ∂ϕ is C1 (in fact linear continuous) on B(Ψ )
εψ (ψ0) into

G, so we can restrict εψ so that ∂ϕ maps B(Ψ )
εψ (ψ0) into U and thus f ◦ ∂ϕ is C1 on

B(Ψ )
εψ (ψ0) into G.
(149): analogous, expanding x �→ x−1 around −2μ

(27),(26)=
(23)

(∂ϕ + 1́)∂βψ0 and

observing that (∂ϕ + 1́)∂β

(129)∈ C1(B(Ψ )
εψ (ψ0);G).

(150): G− is also a unital Banach algebra ((53), (52)), so we can expand around

∂βψ0
(26)=
(23)

−1 and use ∂β

(126)∈ C1(B(Ψ )
εψ (ψ0);G−);
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(151):

(∂ϕ + 1́)∂β
(27)=
(26)

2́μ́β́∂β + β́∂ϕ(β́∂β + 1́) − 2́μ́(β́∂ϕ + 2́μ́ − 1́︸ ︷︷ ︸
=∂ϕ

)

(∂ϕψ)−1 · (∂ϕ + 1́)∂βψ = (∂ϕψ)−1

︸ ︷︷ ︸
(148)∈
α=−1

G

· (2́μ́β́∂βψ
︸ ︷︷ ︸
(118)∈ G0

+ β́∂ϕ(β́∂β + 1́)ψ
︸ ︷︷ ︸

(120)∈ G0

)

︸ ︷︷ ︸
∈G0︸ ︷︷ ︸

(50)∈ G0↪→G−

− 2́μ́︸︷︷︸
(53)∈ G−

Hence ψ �→ (∂ϕψ)−1(∂ϕ + 1́)∂βψ is C1(B(Ψ )
εψ (ψ0);G−). Moreover the expression is

= −2μ at ψ = ψ0 (see above), hence invertible in G− on some neighbourhood U of
−2μ. We restrict εψ > 0 further to stay in that neighbourhood. ��

Note that the troublesome ∂ϕ factors have been rewritten as a combination of
Bψ, AB1ψ and ψ , without Aψ . This enables us to map into Gn− and achieve closure of
the estimates. If the fraction was replaced by (∂ϕψ)−1 alone or (∂ϕ + 1́)∂βψ alone, this
closure would not be possible.

Definition 13. Henceforth we restrict εψ so that the preconditions of Proposition 33
hold.

Proposition 34. For εψ > 0 sufficiently small,

ψ �→ g(φ) ∈ C1(B(Ψ )
εψ

(ψ0);G) (152)

ψ �→ g(0) ∈ C1(B(Ψ )
εψ

(ψ0);G) (153)

ψ �→ g(ϕ) ∈ C1(B(Ψ )
εψ

(ψ0);G−) (154)

Proof. (152): inspect g(φ) in (30) and observe that every term is C1 in ψ ∈ B(Ψ )
εψ (ψ0)

into G by (150) and (125) to (129).

(153): inspect g(0) in (31): every term isC1 intoG, by (129) and (148) (usingDefinition
13).

(154): inspect g(ϕ) in (29). The only factor using ∂ϕ is the fraction in (151) which is
C1 into G−. Every other factor uses only ∂β, ∂φ, ∂φ∂β , hence is clearly into G−: 1/∂βψ

by (150), the rest by (126), (125) and (127). G− is an algebra by (52). ��

Proposition 35. ψ �→ F(ψ,Ω) is C1 on B(Ψ )
εψ (ψ0) ×W into F .

Proof.

F
(28)= 2μ2(−

(139)∈ C1(G−;F)︷︸︸︷
∂ϕ

(154)∈ C1(B(Ψ )
εψ

(ψ0);G−)

︷︸︸︷
g(ϕ) −

(140)∈ C1(G;F)︷︸︸︷
∂φ

(152)∈ C1(B(Ψ )
εψ

(ψ0);G)

︷︸︸︷
g(φ)
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− Ω︸︷︷︸
∈W

· g(0)
︸︷︷︸

(153)∈ C1(B(Ψ )
εψ

(ψ0);G)

︸ ︷︷ ︸
(146)∈ C1(B(Ψ )

εψ
(ψ0)×W;F)

)

��

3.10. Implicit function theorem.

Proposition 36. For N sufficiently large and εψ, εΩ > 0 sufficiently small, there is a C1
map H : B(W)

εΩ (Ω0) → B(Ψ )
εψ (ψ0) so that

F(H(Ω),Ω) = 0 (155)

for all Ω ∈ B(W)
εΩ (Ω0). H(Ω) is real if Ω is real.

Proof. By Proposition 35 F is C1 on B(Ψ )
εψ (ψ0)×W intoF . Moreover F(ψ0,Ω0) = 0.

By Proposition 30 ∂F/∂ψ(ψ0,Ω0) is a linear isomorphism on Ψ into F . Hence the
implicit function theorem for Banach spaces yields existence and C1 regularity of H .

It is obvious from inspection of (28) that F maps real ψ,Ω into real distributions,
so the implicit function theorem yields a real-valued H(Ω) for real Ω . ��
Definition 14. For the remainder of the paper we take

ψ = H(Ω). (156)

4. Solution Properties

Having completed the hard step of constructing ψ , it remains to show that it is a weak
solution and has the properties claimed in the introduction.

{∂ϕ, ∂φ, id}{∂β, id}Ψ (125) to (129)
↪→ G (47)= A 1

2 (Gn)
(46)
↪→ A 1

2 (Cb) ↪→ Cb(R+ ×T).

(157)

Using ∂β
(18)= ∂φ − ∂ϕ that means

ψ̌ββ, ψ̌βφ, ψ̌φ ∈ C0(β,φ)(R+ ×T), ψ̌β, ψ̌ ∈ C1(β,φ)(R+ ×T) (158)

(we do not control ψ̌φφ).
By Definition 13,

ψ̌ϕ = β́−2μ∂ϕψ
(148)
> 0, (159)

ψ̌βϕ = β́−1−2μ(∂ϕ + 1́)∂βψ
(149)
> 0, (160)

ψ̌β = β́−2μ∂βψ
(150)
< 0. (161)
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In particular for x = β, φ we have

ax
(17)= ψ̌βx

2ψ̌β

∈ C0(β,φ)(R+ ×T).

Hence b = (β, φ) �→ a = (a, θ) is C1, and

det ab
(19)= −aϕ

(17)= − ψ̌βϕ

2ψ̌β

(160)
>

(161)
0

so b �→ a is a C1 diffeomorphism, as well as onto R × T (same proof as in [10,
Section 7.4]).

a �→ x̌ is obviously a diffeomorphism and maps R×T onto R2\{0}.
Since x̌ �→ b and b �→ ψ̌ are both C1, we obtain

v̌ = ∇⊥
x̌ ψ̌ ∈ C0x̌ (R2\{0})

Definition 15. Henceforth we restrict Ω ∈ B(W)
εΩ (Ω0) to be an element of the Wiener

algebra A0(T) and hence of C0(T) as well.

Thus

ω̌
(21)= ψ̌

− 1
2μ

ϕ Ω
(158)∈
(159)

C0(β,φ)(R+ ×T) = C0x̌ (R2\{0})

and altogether

v, ω ∈ C0(x,t)((R2\{0}) × ]0,∞[).
Since v ∈ C0, in contrast to our prior work where v ∈ C1, some (elementary) care is

needed with the nonlinear part of the vorticity equation.

Lemma 6. Let Σ ⊂ R2 be open. With all derivatives in the D′(Σ) sense, let v = ∇⊥ψ

with ψ ∈ C1(Σ) and ω̌ = ∇ × v = Δψ ∈ C0(Σ). Then

∇ × [∇ · (v⊗ v)] = ∇ · (vω). (162)

Proof. Let θδ be a standard mollifier. Consider ψδ := ψ ∗ θδ which is well-defined
outside Σ\Bδ(Σ) which converges monotonically to Σ as δ ↘ 0. Set ε12 = 1 = −ε21,
ε11 = ε22 = 0. We use the Einstein convention; subscripts are derivatives:

ψ ∈ C1(�) ⇒ ψδ = ψ ∗ θδ → ψ in C0(Σ) and

ψδ
j = ψ j ∗ θδ → ψ j in C0(Σ),

ω ∈ C0(�) ⇒ ψδ
kk = Δψδ = ω ∗ θδ → ω = ψkk in C0(Σ)

and therefore

ψδ
kψ

δ
p → ψkψp and

ψδ
kkψ

δ
p → ψkkψp in C0(Σ)
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so that (all remaining limits in D′(Σ))

(ψδ
kψ

δ
p)km → (ψkψp)km

(ψδ
kkψ

δ
p)m → (ψkkψp)m

∇ × [∇ · (v⊗ v)] = −ε jk(v jvm)km = −ε jk(ε�jψ�ε
pmψp)km = ε pm(ψkψp)km

← ε pm(ψδ
kψ

δ
p)km

= ε pm(ψδ
kkψ

δ
p)m + ε pm(ψδ

kψ
δ
kp)m

= ε pm(ψδ
kkψ

δ
p)m + (

ψδ
kψ

δ
k

2
)pmε pm

︸ ︷︷ ︸
=0

→ ε pm(ψkkψp)m = (ωvm)m = ∇ · (vω)

��
Proposition 37. ψ defines a solution of

0 = ∇ × (
∂tv + ∇x · (v⊗ v)

)
(163)

Proof. First we observe that

∇x · v = 0

is simply a consequence of our definition

v = ∇⊥
x ψ.

Moreover, it is easy to check that all our coordinate changes correctly treated the outer
divergences as distributional, while all other derivatives are defined in the classical sense
(with results inC0). Hencewemay also trace from (28) back to the original curl constraint
(11) which then shows

∇x × v = ω on (R2\{0}) ×R+ (164)

Moreover we may trace from our definition

ω = (∂ϕψ)
− 1

2μ Ω,

back to (21), i.e.

ω̌ = ψ̌
− 1

2μ
ϕ Ω,

which yields a weak solution of (20), i.e.

0 = (1− 1

2μ
)ψ̌ϕβω̌ − ∂β(ω̌ψ̌ϕ), on (R2\{0}) ×R+

which can then be traced back to the original divergence-form vorticity equation (10):
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0 = ∂tω + ∇x · (ωv)
(164)= ∂t∇ × v + ∇x · ((∇ × v)︸ ︷︷ ︸

∈C0

v︸︷︷︸
∈C0

)

(162)= ∇ × (
∂tv + ∇x · (v⊗ v)

)
on (R2\{0}) ×R+.

��
Hence the solution we constructed does define a weak solution in the interior; now

we discuss the initial data and asymptotics.

Proposition 38. As t ↘ 0, ω(t, ·) satisfies our initial condition (2), with convergence
in C0(R2\{0}) (i.e. locally uniformly), and

ω̊ = h|β=0,φ=θ (165)

where

h := wΩ (166)

with

w := (
∂βψ

−μ∂ϕψ
)

1
2μ (167)

Proof.

ω
(5)= t−1ω̌

(21)= t−1(∂ϕψ̌)
− 1

2μ Ω
(27)=
(25)

(
t

β
)−1(∂ϕψ)

− 1
2μ Ω

and

r
(5)= tμř

(17)=
(14)

tμ(
∂βψ̌

−μ
)
1
2
(26)=
(25)

(
t

β
)μ(

∂βψ

−μ
)
1
2

︸ ︷︷ ︸
(150)∼ 1

(168)

so

r
1
μ ω = (

∂βψ

−μ
)

1
2μ (∂ϕψ)

− 1
2μ

︸ ︷︷ ︸
=w

Ω = h
(157)∈
Def. 15

Cb(R+ ×T) (169)

(168) shows that holding x and hence r = |x| fixed while taking t ↘ 0 corresponds to

β ↘ 0, and then x fixed also means �x = θ
(16)= β + φ → φ. So we find our initial

data on the ray with angle θ by considering (β, φ) = (0, θ). Since h ∈ Cb(R+ × T) is
φ-uniformly continuous at β = 0+ that means (with (165))

ω(t, x)
t↘0→ r−

1
μ ω̊(θ) in C0(R2\{0}).

��
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Proposition 39. Our solutions satisfy (6).

Proof. For v this is as in [10, Section 8.3]; for ω we observe

ω
(169)= r−

1
μ h︸︷︷︸

∈Cb
� r−

1
μ .

��
Proposition 40. If 2

3 < μ, then our v = v(t, x) is a weak solution on R2 × [0,∞[
(including origin); if 1

2 < μ ≤ 2
3 , then it is a weak solution on (R2\{0}) × [0,∞[.

Proof. As in [10, Section 8.3]: integrate (163) against a test function supported in
(R2\{0}) × [0,∞[ and use Proposition 38 for the boundary integral over t = 0. For
μ > 2

3 observe that the asymptotics (6) are strong enough to remove x = 0 from of the
support of any test function. ��

Having shown that our solution satisfies the initial condition as well, we turn to
discuss the variety of initial data.

Proposition 41. For N sufficiently large there is an εω̊ > 0 so that

(i) Ω �→ ω̊ maps B(W)
εΩ (Ω0) ∩A0 onto a superset of B(W)

εω̊
(ω̊0), and

(ii) ω̊ ∈ A0(Wn) if and only if Ω ∈ A0(Wn).

Proof. (i) We want to show that at Ω = Ω0

Ω �→ ω̊
(165)=
(166)

w|β=0 · Ω (170)

is a local diffeomorphism in the norm of W , which is regarded as a space of functions
of φ alone. We have already shown C1 prior to our application of the implicit function
theorem, so it is sufficient to show study the Fréchet derivative is an isomorphism.

∂βψ
(26),(23)=
Ω=Ω0

(β∂β + 1́− 2́μ́)
1

2μ − 1
= −1, (171)

∂ϕψ
(27),(23)=
Ω=Ω0

(β∂ϕ − 1́ + 2́μ́)
1

2μ − 1
= 1 and (172)

(∂ϕ + 1́)∂ϕψ
(27),(23)=
Ω=Ω0

(β∂ϕ + 2́μ́)(β∂β + 1́− 2́μ́)
1

2μ − 1
= −2μ, (173)

so

w
(167)=

Ω=Ω0
(
−∂βψ0

μ∂ϕψ0
)

1
2μ

(23)= μ
− 1

2μ . (174)

Write d/dΩ for a derivative with ψ as function of Ω , as per (156), but ∂/∂Ω and ∂/∂ψ

for ψ,Ω varied separately. Then

dω̊

dΩ

(170),(174)=
Ω=Ω0

μ
− 1

2μ
︸ ︷︷ ︸

>0

id +
(∂w

∂ψ

dψ

dΩ

)
|Ω=Ω0,β=0 · Ω0.
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The first term is clearly an isomorphism on W , so it is sufficient to show the second
term can be made small: Ω0 is a constant, which multiplies all spaces used; we inspect
the operators in the other factor. We have already shown in the context of the implicit
function theorem argument (Proposition 36) that dψ/dΩ at Ω = Ω0, ψ = ψ0 is
bounded on W into Ψ . Next,

∂w

∂ψ

(174)= 1

2μ
(
−∂βψ

μ∂ϕψ
)

1
2μ (− 1

−∂βψ
∂β − 1

∂ϕψ
∂ϕ)

(171),(172)=
Ω=Ω0

−1

2
μ
− 1

2μ−1
(∂β + ∂ϕ);

this operator is bounded on Ψ into G by (126) and (128). Moreover

F(∂β + ∂ϕ)F−1 (26)=
(27)

B − A = inβ́,

so the operator is bounded into the closed subspace of G functions g with g∧(0) = 0.
Evaluation atβ = 0 on that subspace (regularity 1

2 ) intoW (regularity− 1
2 ) has arbitrarily

small operator norm for N sufficiently large. Thus the second term in (170) can be made
arbitrarily small, which completes the proof of (i).

(ii) On one hand

ω̊ = w|β=0 · Ω;

on the other hand at Ω = Ω0 we have w|β=0 = μ
− 1

2μ = const > 0, and since

w|β=0 ∈ A 1
2 depends continuously on Ω , it remains uniformly positive for Ω near Ω0,

and then

Ω = 1

w|β=0
· ω̊.

Since w|β=0 and its inverse are in A 1
2 , ω̊ is in A0 if and only if Ω is. ��

Proof of Theorem 1According to Proposition 41 there is an εω̊ > 0 so that we can obtain
a weak solution for any initial data ω̊ with

εω̊ ≥ ∥∥ω̊ − ω̊0
∥∥W = |ω̊∧(0) − ω̊0| +

∑

n∈NZ\{0}
〈n〉− 1

2
︸ ︷︷ ︸
≤〈N 〉− 1

2

|ω̊∧(n)|

Focus on the ones with ω̊∧(0) = ω̊0. Then it is sufficient to satisfy

∑

n∈NZ\{0}
|ω̊∧(n)| ≤ 〈N 〉 12 εω̊ = 〈N 〉 12 εω̊

|ω̊0| |ω̊∧(0)|

Given ε > 0 as in Theorem 1 take N0 so large that N ≥ N0 implies 〈N 〉 12 εω̊/|ω̊0| ≥ ε−1.
Then we have solved the problem for all 2π

N -periodic ω̊ with

|ω̊∧(0)| ≥ ε
∑

n∈Z\{0}
|ω̊∧(n)|

and ω̊∧(0) = ω̊0 
= 0.
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This is extended to arbitrary ω̊∧(0) 
= 0 by applying to the solutions the well-known
Euler scaling symmetry

ω(x, t) ← sω(x, st)

Hence we have constructed solutions for all initial data satisfying (3). ��
To justify (4), observe that

ω = (
t

β
)−1

︸ ︷︷ ︸
>0

(∂ϕψ)
1
2μ

︸ ︷︷ ︸
(159)
>0

Ω.

Hence signω = signΩ in any (x, t) ∈ (R2\{0}) × R+. Ω = Ω(φ) has constant sign
on curves of constant φ and varying β; for each fixed t > 0

r = (
t

β
)μ (

∂βψ

−μ
)
1
2

︸ ︷︷ ︸
∼1

∼ β−μ

while θ = β + φ. Hence these curves are parametrized (for fixed φ and θ → ∞) by

θ �→ x(θ) = θ−μ

[
cos θ

sin θ

]
f (θ)︸︷︷︸
∼1

as claimed.
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5. Appendix

5.1. Wiener algebras.

Lemma 7.

〈n〉 � 〈k〉 + 〈n − k〉 (175)

Proof.

〈n〉 � max{1, |n|} = max{1, |k + (n − k)|} ≤ max{1, |k| + |n − k|}
≤ 〈k〉 + 〈n − k〉.

��
Lemma 8.

〈n〉 � 〈n − k〉〈k〉 (176)

and

〈n〉−1 � 〈n − k〉〈k〉−1. (177)
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Proof.

〈n〉
(175)
� 〈k〉 + 〈n − k〉
= 〈k〉 · 1 + 1 · 〈n − k〉
≤ 〈k〉 · 〈n − k〉 + 〈k〉 · 〈n − k〉 ∼ 〈k〉〈n − k〉

This is (176); exchange k with n to obtain

〈k〉 � 〈n − k〉〈n〉
and divide by 〈n〉〈k〉 to obtain (177). ��
Proof of Proposition 3 Let x ∈ As(Xn) and y ∈ A−s(Yn).

∑

n∈Z
〈n〉−s

S︷ ︸︸ ︷∑

k∈Z

∥∥x∧(n − k) · y∧(k)
∥∥Zn

(35)≤
∑

n∈Z
〈n〉−s

∑

k∈Z

∥∥x∧(n − k)
∥∥Xn−k

∥∥y∧(k)
∥∥Yk

(177)
�

∑

n∈Z

∑

k∈Z
〈n − k〉s ∥∥x∧(n − k)

∥∥Xn−k
〈k〉−s

∥∥y∧(k)
∥∥Yk

≤ ‖x‖As (Xn)
‖y‖A−s (Xn)

< ∞ (178)

In particular the series S on the left-hand side is convergent, hence x · y is well-defined,
and

‖x · y‖A−s (Zn)
=

∥∥∥∥∥
∑

n∈Z
〈n〉−s(x · y)∧(n)

∥∥∥∥∥
Zn

�
∑

n∈Z
〈n〉−s

∥∥∥∥∥
∑

k∈Z
x∧(n − k) · y∧(k)

∥∥∥∥∥
Zn

≤
∑

n∈Z
〈n〉−s

∑

k∈Z

∥∥x∧(n − k) · y∧(k)
∥∥Zn

(178)
� ‖x‖As (Xn)

‖y‖A−s (Xn)

which is (36). Using (176) instead of (177) we get (37). ��
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