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Abstract: Westudy the critical behavior for inhomogeneousversions of theCurie-Weiss
model, where the coupling constant Ji j (β) for the edge i j on the complete graph is given
by Ji j (β) = βwiw j/(

∑
k∈[N ] wk).We call the product form of these couplings the rank-

1 inhomogeneous Curie-Weiss model. This model also arises [with inverse temperature
β replaced by sinh(β)] from the annealed Ising model on the generalized random graph.
We assume that the vertex weights (wi )i∈[N ] are regular, in the sense that their empirical
distribution converges and the secondmoment converges as well.We identify the critical
temperatures and exponents for these models, as well as a non-classical limit theorem
for the total spin at the critical point. These depend sensitively on the number of finite
moments of the weight distribution. When the fourth moment of the weight distribution
converges, then the critical behavior is the same as on the (homogeneous) Curie-Weiss
model, so that the inhomogeneity is weak. When the fourth moment of the weights
converges to infinity, and the weights satisfy an asymptotic power law with exponent
τ with τ ∈ (3, 5), then the critical exponents depend sensitively on τ . In addition, at
criticality, the total spin SN satisfies that SN/N (τ−2)/(τ−1) converges in law to some
limiting random variable whose distribution we explicitly characterize.

1. Introduction

Universality is a key concept in the theory of phase transitions, with application to a large
variety of physical systems. Informally, universality means that in the thermodynamic
limit different systems show common properties close to criticality. The theory based on
the renormalization group suggests that systems fall into universality classes, defined
by the values of their critical exponents describing the nature of the singularities of
measurable thermodynamic quantities at the critical point.

In the presence of heterogeneities, e.g. spin systems on random graphs used to model
interaction on a network [1,12,13,21] it is not clear a-priori to what extent universality
applies. From the point of view of the structure of the network, emerging properties of
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real networks have been identified in several empirical studies in different contexts—
social, information, technological and biological networks. Many of them are scale free,
with a degree sequence obeying power-law distribution, and small world, with short
graph-distance among vertices. As a consequence power-law random graphs, i.e., graph
sequences where the fraction of nodes that have k neighbors is proportional to k−τ

for some τ > 1, are often used as mathematical models for real-world networks. In
this paper we investigate universality for spin systems on power-law random graphs
displaying phase transitions.

The issue of universality is related to the network functionality. Indeed the occurrence
of a thermodynamic phase transition is associated to a change in macroscopic properties
of the networks, for instance the possibility to reach consensus in a social network can
be related to the occurrence of a spontaneous magnetization. Thus the investigation of
different universality classes for spin systems on random graphs is a relevant question
with immediate practical relevance for the network functionality.

Due to the random environment, when considering the Ising model on the random
graphs used tomodel real networks, a distinction is required between different averaging
procedures. Two settings are often studied in the literature: the quenched measure (graph
realizations are studied one-by-one so that they produce a random Boltzmann-Gibbs
measure) and the annealed measure (all graph realizations are considered at once and
they give rise to a deterministic Boltzmann-Gibbs measure). See [7,18] for an extended
discussion of the two settings.

In the paper [11], the quenched critical exponents have been rigorously analyzed for
a large class of random graph models. More precisely in [11] it is proved that the critical
exponent δ (describing the behavior of the magnetization at the critical temperature as
the external field vanishes), the exponent β (describing the behavior of the spontaneous
magnetization as the temperature increases to the critical temperature) and the exponent
γ (describing the divergence of the susceptibility as the temperature decreases to the
critical temperature) take the same values as themean-fieldCurie-Weissmodelwhenever
the degree distribution has a finite fourth moment. This includes for instance the case
of the Erdős–Rényi random graph. For power law random graphs, it is proved that for
τ > 5 the model is in the mean-field universality class, whereas the critical exponents
are different from the mean-field values for τ ∈ (3, 5).

In this paper we provide the analysis of the critical behavior but in the annealed
setting. Our results are fully compatible with the universality conjecture. The annealed
critical temperature is different (actually higher) than the quenched critical temperature,
but the set of annealed critical exponents that can be rigorously studied are the same as
the quenched critical exponents. In the annealed setting our results are stronger since we
are able to show that γ ′ = γ . Here γ ′ describes the divergence of the susceptibility as
the temperature approaches to the critical temperature from below, and in the quenched
setting we were able to show only that γ ′ ≥ γ .

A main difference between the quenched and annealed case is that while the analysis
of the quenched measure could be done in great generality, the study of the annealed
case is much harder. Indeed the results of [11] are valid for all graph sequences that
are locally like a homogeneous random tree [2,8–10,22] and uniformly sparse. For the
annealed setting it is not enough to control the behavior of the model on the typical
graph realizations (namely rooted random trees). For the annealed measure one needs
to study exponential functionals of the graphs, i.e., questions on large deviations of
sparse random graphs that are largely unsolved. Thus we specialize our analysis of the
annealed critical exponents to a particular class of random graphs models. This is given
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by the Generalized Random Graph models, also called inhomogeneous random graphs
of rank-1 in the literature (see [4,20] for a non-rigorous study).

By exploiting the factorization of the Gibbs measure and the edges independence
we reduce the study of the annealed measure for the Ising model on the Generalized
Random Graph to the analysis of an inhomogeneous Curie-Weiss model. As we shall
see, for this model we are able to also study the properties at criticality. On a sequence of
temperatures approaching the critical value, we prove the scaling limit for the properly
renormalized total spin. As a result, our findings extend the analysis of the scaling limit
of the standard Curie-Weiss model [14–16] and provides new asymptotic laws for the
(properly renormalized) total spin.

2. Model Definitions and Results

2.1. Inhomogeneous Curie-Weiss model. We start by defining the inhomogeneous
Curie-Weiss model. This is a generalization of the classical Curie-Weiss model in which
the strength of the ferromagnetic interaction between spins is not spatially uniform. As
the standard Curie-Weiss model, it is defined on the complete graph with vertex set
[N ] := {1, . . . , N }. See Table 1 at the end of the paper for a summary of the important
notation used in this paper.

Definition 2.1 (Inhomogeneous Curie-Weiss model). Let σ = {σi }i∈[N ] ∈ {−1, 1}N be
spin variables. The inhomogeneous Curie-Weiss model, denoted by CWN (J), is defined
by the Boltzmann–Gibbs measure

μN (σ ) = eHN (σ )

ZN

(2.1)

where the Hamiltonian is

HN (σ ) = 1

2

∑

i, j∈[N ]
Ji j (β)σiσ j + B

∑

i∈[N ]
σi (2.2)

and ZN is the normalizing partition function. Here β is the inverse temperature, B is the
external magnetic field and J = {Ji j (β)}i, j∈[N ] are the spin couplings.

In the above, the interactions Ji, j (β) might be arbitrary functions of the inverse
temperature (in particular no translation invariance is required), provided that the ther-
modynamic limit is well-defined, i.e., the following limit defining the pressure exists
and is finite,

φ(β, B) := lim
N→∞

1

N
log ZN (β, B). (2.3)

In the following we will restrict to the ferromagnetic version of the model, i.e., we
will assume Ji j (β) > 0. Since the coupling constants J = {Ji j (β)}i, j∈[N ] are positive
and possibly different for different edges, we speak of an inhomogeneous Curie-Weiss
model. We next state our hypotheses on the coupling variables. Each vertex i ∈ [N ]
receives a weight wi , We will take J = {Ji j (β)}i, j∈[N ] such that

Ji j (β) = wiw j

�N

β, where �N =
∑

k∈[n]
wk . (2.4)
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In the case where wi ≡ 1, our model reduces to the (homogeneous) Curie-Weiss model.
We will call the coupling constants in (2.4) the rank-1 inhomogeneous Curie-Weiss
model. In Sect. 2.3, we describe the assumptions that we make on the weight sequence
w = (wi )i∈[N ].

In [18] it is shown that the rank-1 inhomogeneous Curie-Weiss model arises in the
study of the annealed Ising model with network of interactions given by the rank-1
inhomogeneous random graph, also called the generalized random graph, which we
describe next.

2.2. Generalized random graph. In the generalized random graph [5,19], each vertex
i ∈ [N ] receives aweightwi . Given theweights, edges are present independently, but the
occupation probabilities for different edges are not identical, rather they are moderated
by the weights of the vertices. We assume that the weights w = (wi )i∈[N ] are strictly
positive (there is no loss of generality in supposing this, since the vertices with zero
weight will be isolated and can be removed from the network).

Definition 2.2 (Generalized random graph). Denote by Ii j the Bernoulli indicator that
the edge between vertex i and vertex j is present and by pi j = P

(
Ii j = 1

)
the edge prob-

ability, where different edges are present independently. Then, the generalized random
graph with vertex set [N ], denoted by GRGN (w), is defined by

pi j = wiw j

�N + wiw j
, (2.5)

where �N = ∑N
i=1 wi is the total weight of all vertices.

We have now defined two classes of models that depend on vertex weights w =
(wi )i∈[N ]. We next state the assumptions on these weights.

2.3. Assumptions on the vertex weights. We study sequences of inhomogeneous Curie-
Weiss models and generalized random graphs as N → ∞. For this, we need to assume
that the vertex weight sequences w = (wi )i∈[N ] are sufficiently nicely behaved. Let
UN ∈ [N ] denote a uniformly chosen vertex in GRGN (w) and WN = wUN its weight.
Then, the following condition defines the asymptotic weightW and set the convergence
properties of (WN )N≥1 to W :

Condition 2.3 (Weight regularity). There exists a random variable W such that, as
N → ∞,

(i) WN
D−→ W,

(ii) E[W 2
N ] = 1

N

∑
i∈[N ] w2

i → E[W 2] < ∞,

where
D−→ denotes convergence in distribution. Further, we assume that E[W ] > 0.

Note that, by uniform integrability, Condition 2.3(ii) implies that also E[WN ] =
1
N

∑
i∈[N ] wi → E[W ] < ∞.

Condition 2.3 implies that the sequence (GRGN (w))N≥1 is a uniformly sparse tree-
like graph with strongly finite mean and with asymptotic degree D distributed as amixed
Poisson random variable,

P(D = k) = E

[

e−W Wk

k!
]

, (2.6)
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see e.g., [19, Chapter 6].
Our results depend sensitively on whether the fourth moment of W is finite. When

this is not the case, then we will assume a power-law bound on the tail of the asymptotic
weight:

Condition 2.4 (Tail of W ). The random variable W satisfies either of the following:

(i) E[W 4] < ∞,
(ii) W obeys a power law with exponent τ ∈ (3, 5], i.e., there exist constants CW >

cW > 0 and w0 > 1 such that

cWw−(τ−1) ≤ P(W > w) ≤ CWw−(τ−1), ∀w > w0. (2.7)

To prove the results on the scaling limit at criticality we will strengthen our assump-
tions as follows:

Condition 2.5 (Tail of WN and deterministic sequences). The sequence of weights
(wi )i∈[N ] satisfies either of the following:

(i) E[W 4
N ] = 1

N

∑
i∈[N ] w4

i → E[W 4] < ∞,
(ii) it coincides with the deterministic sequence

wi = cw

(
N

i

)1/(τ−1)

, (2.8)

for some constant cw > 0 and τ ∈ (3, 5).

We remark that the above deterministic sequence is N -dependent (we do not make this
dependence explicit) and its limit W satisfies (2.7) since wi = [1 − F]−1(i/N ), where
F(x) = 1− (cwx)−(τ−1) for w ≥ cw. In the next section, we explain what the annealed
measure of the Ising model on GRGN (w) is.

2.4. Annealed Ising model. We first define the annealed Ising model in general on finite
graphs with N vertices, then we specialize to GRGN (w). We denote by GN = (VN , EN )

a random graph with vertex set VN = [N ] and edge set EN ⊂ VN × VN . We denote by
QN the law of the graphs with N vertices.

Definition 2.6 (Annealed Ising measure). For spin variables σ = (σ1, ..., σN ) taking
values on the space of spin configurations �N = {−1, 1}N the annealed Ising measure
is defined by

PN (σ ) =
QN

(
exp

[
β
∑

(i, j)∈EN
σiσ j + B

∑
i∈[N ] σi

])

QN (ZGN (β, B))
, (2.9)

where

ZGN (β, B) =
∑

σ∈�N

exp

⎡

⎣β
∑

(i, j)∈EN

σiσ j + B
∑

i∈[N ]
σi

⎤

⎦ (2.10)

is the partition function.
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With abuse of notation in the following we use the same symbol to denote both a
measure and the corresponding expectation.

Definition 2.7 (Annealed thermodynamic quantities). For a given N ∈ N we introduce
the following thermodynamics quantities at finite volume:

(i) The annealed pressure:

ψN (β, B) = 1

N
log (QN (ZN (β, B))) . (2.11)

(ii) The annealed magnetization:

MN (β, B) = PN

(
SN

N

)

, (2.12)

where the total spin is defined as

SN =
∑

i∈[N ]
σi . (2.13)

(iii) The annealed susceptibility:

χN (β, B) = ∂

∂B
MN (β, B). (2.14)

2.5. Annealed Ising model on GRG. We now specialize the previous definitions to the
annealed Ising model on the Generalized Random Graph. By assuming the probability
pi j of each edge in EN is that given in (2.5), we can compute explicitly the average of the
partition function (2.10). Indeed, recalling that Ii, j is the indicator of the edge between
vertex i and j , we can write

QN (ZN (β, B)) = QN

( ∑

σ∈�N

exp
[
β
∑

i< j

Ii jσiσ j + B
∑

i∈[N ]
σi

])
(2.15)

and, by using the independence of the variables Ii, j , we compute [18] that

QN (ZN (β, B)) = C (β)
∑

σ∈�N

eB
∑

i∈[N ] σi e
1
2

∑
i, j∈[N ] Ji j (β)σiσ j , (2.16)

where C(β) > 0 is a constant and the positive couplings Ji j (β) are defined as

Ji j (β) = 1

2
log

(
eβ pi j + (1 − pi j )

e−β pi j + (1 − pi j )

)

. (2.17)

The r.h.s. of (2.16) can be seen as the partition function of an inhomogeneous Curie-
Weiss model with couplings J given by (2.17). Thus, the annealed Ising model on the
GRGN (w) is equivalent to such CWN (J), i.e., the two measures coincide point-wise on
the sample space. Our proof [see Eq. (4.63)] shows that the Ji j (β) in (2.17) are close to
the form in (2.4) with β replaced by sinh(β), so that the study of the annealed generalized
random graph reduces to the rank-1 ICW model. Preliminarily to the statement of our
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main results we recall the model solution given in [18]. By symmetry, we always take
B ≥ 0. We denote by βc the annealed critical inverse temperature defined as

βc := inf{β > 0 : M(β, 0+) > 0}, (2.18)

where the spontaneous magnetization is given by

M(β, 0+) = lim
B→0+

lim
N→∞ MN (β, B). (2.19)

Theorem 2.8 (Thermodynamic limit for annealed Ising on GRGN (w) and for rank-1
CWN (J) [18]). Let (GN )N≥1 be a sequence of GRGN (w) graphs satisfying Condi-
tion 2.3. Then,

(i) For all 0 ≤ β < ∞ and for all B ∈ R, the annealed pressure exists in the
thermodynamic limit N → ∞ and is given by

ψ(β, B) := lim
N→∞ ψN (β, B). (2.20)

(ii) The magnetization per vertex exists in the limit N → ∞ and is given by

M(β, B) := lim
N→∞ MN (β, B). (2.21)

The limit value M equals: M(β, B) = ∂
∂Bψ(β, B) for B>0, whereas M = 0 in

the region 0 < β < βc, B = 0. More explicitly, when B > 0 or B = 0+ and β > βc

M(β, B) = E

[

tanh

(√
sinh (β)

E [W ]
Wz∗ + B

)]

, (2.22)

where z∗ = z∗(β, B) is the unique positive solution of the fixed point equation

z = E

[

tanh

(√
sinh (β)

E [W ]
Wz + B

)√
sinh (β)

E [W ]
W

]

. (2.23)

(iii) The annealed critical inverse temperature is given by

βc = asinh (1/ν) , (2.24)

where

ν = E[W 2]
E[W ] . (2.25)

(iv) The thermodynamic limit of susceptibility exists and is given by

χ(β, B) := lim
N→∞ χN (β, B) = ∂2

∂B2ψ(β, B). (2.26)

(v) For the rank-1 inhomogeneous Curie-Weiss model CWN (J), (i)–(iv) hold with β

replaced with asinh(β).
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Theorem 2.8 shows that a phase transition exists for the annealed Ising model on
the generalized random graph and the rank-1 inhomogeneous Curie-Weiss model. For
the rank-1 inhomogeneous Curie-Weiss model in the special case where wi ≡ 1, The-
orem 2.8 reproves the classical result for the Curie-Weiss model. When the weights are
inhomogeneous, the critical value is instead given by βc = 1/ν.

Let us compare the annealed critical value in (2.24) to that in the quenched setting
as derived in [17]. There, it is proved that the quenched critical value β

qu
c equals β

qu
c =

atanh(1/ν) > asinh(1/ν) = βc. Thus, the annealed critical value is smaller due to a
collaboration of the Ising model and the graph properties.

In this paper, we analyze the block spin scaling limits at βc and we study the univer-
sality class of the model. For this, we define the annealed critical exponents analogous
to the random quenched critical exponents as in [11]:

Definition 2.9 (Annealed critical exponents). Theannealed critical exponentsβ, δ, γ, γ ′
are defined by:

M(β, 0+) � (β − βc)
β , for β ↘ βc; (2.27)

M(βc, B) � B1/δ, for B ↘ 0; (2.28)

χ(β, 0+) � (βc − β)−γ , for β ↗ βc; (2.29)

χ(β, 0+) � (β − βc)
−γ ′

, for β ↘ βc, (2.30)

where we write f (x) � g(x) if the ratio f (x)/g(x) is bounded away from 0 and infinity
for the specified limit.

We remark that, as is customary in the literature, we use the same letter for the
inverse temperature β and for the magnetization critical exponent β. In this paper they
are distinguished by the use of the plain, respectively bold, character.

2.6. Main results. We start by proving that the annealed critical exponents for the mag-
netization and the susceptibility take the values conjectured in [20].

Theorem 2.10 (Annealed critical exponents). Let (GN )N≥1 be a sequence ofGRGN (w)

graphs fulfilling Conditions 2.3 and 2.4. Then, the annealed critical exponents defined
in Definition 2.9 using βc given in (2.24) exist and satisfy

τ ∈ (3, 5) E[W 4] < ∞
β 1/(τ − 3) 1/2
δ τ − 2 3

γ = γ ′ 1 1

For the boundary case τ = 5 there are the following logarithmic corrections for
β = 1/2 and δ = 3:

M(β, 0+) �
( β − βc

log 1/(β − βc)

)1/2
for β ↘ βc, M(βc, B) �

( B

log(1/B)

)1/3
for B ↘ 0.

(2.31)
The same results hold for the rank-1 inhomogeneous Curie-Weiss model CWN (J), the
critical exponents being now defined using βc = 1/ν.
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Remark 2.11 (Comparison to the Curie-Weiss model). For the rank-1 inhomogeneous
Curie-Weiss model, we see that the inhomogeneity does not change the critical behavior
when the fourth moment of the weight distribution remains finite, but it does when the
fourth moment of the weight distribution increases to infinity. In the latter case, we call
the inhomogeneity relevant.

Remark 2.12 (Comparison to the quenched case). In [11], the first two and fourth authors
of this paper have shown that the same critical exponents hold for the quenched setting of
the Ising model on power-law random graphs, such as GRGN (w), under the assumptions
in Conditions 2.3 and 2.4. In [11], however, we onlymanaged to prove a one-sided bound
on γ ′. Thus, our results show that for GRGN (w) both the annealed and quenched Ising
model have the same critical exponents, but a different critical value. This is a strong
example of universality.

Remark 2.13 (Extension of γ = 1). The result γ = 1 holds under more general condi-
tions, i.e., E[W 2] < ∞. See Theorem 3.6 below.

From the previous theorem we can also derive the joint scaling of the magnetization
as (β, B) ↘ (βc, 0):

Corollary 2.14 (Joint scaling in B and (β − βc)). For τ �= 5,

M(β, B) = �
(
(β − βc)

β + B1/δ), (2.32)

where f (β, B) = �(g(β, B)) means that there exist constants c1,C1 > 0 such that
c1g(β, B) ≤ f (β, B) ≤ C1g(β, B) for all B ∈ (0, ε) and β ∈ (βc, βc + ε) with ε small
enough. For τ = 5,

M(β, B) = �
(( β − βc

log 1/(β − βc)

)1/2
+
( B

log(1/B)

)1/3)
. (2.33)

Our second main result concerns the scaling limit at criticality. The next theorem
provides the correct scaling and the limit distribution of SN at criticality (for a heuristic
derivation of the scaling, see the discussion in Sect. 2.7). For GRGN (w), we define the
inverse temperature sequence

βc,N = asinh(1/νN ), (2.34)

where

νN = E[W 2
N ]

E[WN ] , (2.35)

so that βc,N → βc for N → ∞. For rank-1 CWN (J), we replace β by asinh(β), so that
βc,N = 1/νN . Our main result is the following:

Theorem 2.15 (Non-classical limit theorem at criticality). Let (GN )N≥1 be a sequence
of GRGN (w) graphs satisfying Conditions 2.3 and Condition 2.5 and let δ have the
respective values stated in Theorem 2.10. Then, there exists a random variable X such
that

SN

N δ/(δ+1)

D−→ X, as N → ∞, (2.36)
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where the convergence isw.r.t. themeasure PN at inverse temperatureβc,N = asinh(1/νN )

and external field B = 0. The random variable X has a density proportional to
exp(− f (x)) with

f (x) =

⎧
⎪⎨

⎪⎩

1
12

E[W 4]
E[W ]4 x

4 when E[W 4] < ∞,

∑
i≥1

(
1
2

(
τ−2
τ−1 x i

−1/(τ−1)
)2 − log cosh

(
τ−2
τ−1 x i

−1/(τ−1)
))

when τ ∈ (3, 5).

(2.37)
The same result holds for the rank-1 inhomogeneous Curie-Weiss model at its critical
value βc,N = 1/νN .

We will see that in both the case where the fourth moment is finite as well as when
it is infinite,

lim
x→∞

f (x)

x1+δ
= C, (2.38)

with

C =
⎧
⎨

⎩

1
12

E[W 4]
E[W ]4 when E[W 4] < ∞,

(
τ−2
τ−1

)τ−1 ∫∞
0

( 1
2 y

−2/(τ−1) − log cosh y−1/(τ−1)
)
dy when τ ∈ (3, 5).

(2.39)
This result extends the non-classical limit theorem for the Curie-Weiss model to the

annealed GRGN (w) and the rank-1 CWN (J).

2.7. Discussion. Random weights. Instead of choosing theweightsw deterministically,
one can also choose the weights i.i.d. according to some random variable W , with
E[W 4] < ∞. In this case, Condition 2.3 holds a.s. by the laws of large numbers. Hence,
if QN denotes the average over all graphs drawn according to the GRG conditioned on
the weights, then our results also hold a.s. When in the annealing also the average over
the weights is taken, then the model becomes unphysical, because the pressure becomes
infinite as is proved in [18].

Critical exponents. Theorem 2.10 implies that the annealed exponents are the same
as in the quenched case. Indeed, by (2.6), the condition E(W 4) < ∞ is equivalent to
E(K 3) < ∞, where K is the forward degree of the branching process describing the local
structure of GRGN (w). Thus the conditions in Theorem 2.10 defining the universality
classes are the same as those in Theorem 2.8 in [11].

Scaling limit of block spin variable. In [18], it is proved that the classical central limit
theorem for the total spin SN holds in the one-phase region of the annealed Ising model
i.e.,

SN − PN (SN )√
N

D−→ N (0, χ), w.r.t. PN , as N → ∞. (2.40)

In [17] we prove the analogous result in the quenched setting. More precisely, we prove
(2.40) for the quenched measure in the quenched uniqueness regime for all random
graphs that are locally tree-like. A prominent example is the GRGN (w) as studied here.

At criticality, i.e. for (β, B) = (βc, 0), the limit in (2.40) is no longer true. A scaling
different from

√
N has to be used to obtain the scaling limit, and also this limit is not
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a normal random variable. In [15,16], Ellis and Newman prove that for the standard
Curie-Weiss model

SN

N 3/4
D−→ X, as N → ∞, (2.41)

where X is a random variable with density proportional to exp{− 1
12 x

4}. We extend
this result to the rank-1 inhomogeneous Curie-Weiss model, and thus to the annealed
Ising model. We prove that the scaling with N 3/4 is also correct when E[W 4] < ∞,
but different for τ ∈ (3, 5). Furthermore we show that when E[W 4] = ∞, different
asymptotic distributions arise in the scaling limit. We characterize them for the weight
deterministic sequence (2.8) in which the weights follows a precise power-law. Such a
sequence is rather generic in the sense that it produces an asymptotic weight that is also
power-law distributed. The analysis shows that the fluctuations of the total spin decrease
as the exponent τ becomes smaller and the distribution seen in the scaling limit has tails
proportional to e−Cxτ−1

.

Heuristic for the scaling limit. To obtain a guess for the correct scaling, we can use
the standard scaling relation between δ and η as in [14]. On a box in the d-dimensional
lattice with side lengths n, [n]d ⊂ Z

d , the exponent η satisfies

P(d)
n (S2n ) ∼ nd+2−η, (2.42)

where P(d)
n is the expectation w.r.t. the Ising measure on this box and Sn is the sum

of all spins inside the box, where it should be noted that there are nd sites in the box.
Hence, to compare this with our setting, we take N = nd and, with an abuse of notation,
let Sn = SN . If there is an exponent λ such that SN/Nλ converges in distribution to a
non-trivial limit, then it must also hold that PN

(
(Sn/Nλ)2

) = PN

(
S2n/n

2dλ) converges.

Hence S2n ∼ n2dλ, so that d + 2− η = 2dλ. The standard scaling relation 2− η = d δ−1
δ+1

[14] now suggests that we should choose

λ = δ

δ + 1
. (2.43)

We prove that this is indeed the correct scaling and we also show that the tail of the
density behaves like exp{−Cxδ+1} as is conjectured on Zd (see [14, Section V.8]).

Near-critical scaling window. Theorem 2.15 is proved along the critical sequence βc,N
approaching the critical inverse temperature βc in the limit N → ∞. A different scaling
limit might be obtained by working with a sequence near the critical one, the so-called
near-critical window, i.e., βc,N +�N with �N → 0 at an appropriate rate. As is argued
in Sect. 4.5, it turns out that for the annealed Ising model the width �N of the scaling
window is N−(δ−1)/(δ+1) and the scaling limit differs by a quadratic term that appears
in in the function f (x) describing the density of SN/N δ/(δ+1) in (2.37).

At criticality.Asa consequenceof the previous discussion,we also infer that if oneworks
at critical inverse temperatureβc, the scaling limit thatwill be seen to depend on the speed
atwhich νN approaches ν. Indeed, from (2.24) and (2.34), one hasβc−βc,N = O(ν−νN ).
For a natural example given by the deterministic sequence in Condition 2.5 (ii) one has
that when τ > 5 then ν − νN = o(1/N 1/2) and thus the limiting distribution does not
change; on the contrary when τ ∈ (3, 5] then ν − νN = ζN−(δ−1)/(δ+1)(1 + o(1)) for
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some ζ �= 0, and thus the distribution changes since we are shifted in the near-critical
window. See again Sect. 4.5 for more details.

Organisation of this paper. In Sect. 3, we start by deriving the annealed critical expo-
nents in Theorem 2.10. In Sect. 4, we prove our non-classical limit theorems at criticality
in Theorem 2.15. We will prove our results only for the annealed GRGN (w), since the
proofs for the rank-1 inhomogeneousCurie-Weissmodels are either identical, or simpler.

3. Annealed Critical Exponents: Proof of Theorem 2.10

We follow a strategy similar to that in [11], although the proof in our case is a bit easier
since the annealed magnetization is expressed in terms of the deterministic fixed point
z∗ in (2.23), whereas in the quenched setting the magnetization is expressed in terms of a
fixed point of a distributional recursion. The proof of Theorem2.10 is split into Theorems
3.5 dealing with the exponents β and δ (Sect. 3.1), Theorem 3.6 for the exponent γ and
Theorem 3.7 for the exponent γ ′ (Sect. 3.2). Some lemmas and propositions containing
preliminary results are also stated and proved in Sect. 3.1.

Our analysis of the critical behavior crucially builds on the fixed point equation (2.23).
We apply truncation arguments together with monotonicity (see the proof of Proposition
3.3 for a prototypical example). We rely on Taylor expansion properties for the fixed
point z∗ in (2.23) as is customary for the Ising model. By truncation we mean that we
decompose the range on integration of various expectations with respect to the limiting
distribution W according to the size of the fixed point z∗ and using asymptotics for
truncated moments of W .

3.1. Magnetization: critical exponents β and δ. We start by showing that the phase
transition is continuous.

Lemma 3.1 (Continuous phase transition). Let ((β�, B�))�≥1 be a sequence with β� and
B� non-increasing, β� ≥ βc and B� > 0, and β� ↘ βc and B� ↘ 0 as � → ∞. Then,
the solution of (2.23) satisfies

lim
�→∞ z∗(β�, B�) = 0. (3.1)

In particular,
lim
B↘0

z∗(βc, B) = 0, and lim
β↘βc

z∗(β, 0+) = 0. (3.2)

Proof. The existence of the limit (3.1) is a consequence of the monotonicity of z∗(β, B)

and the fact that z∗(β, B) ≥ 0 for B ≥ 0. Suppose that lim�→∞ z∗(β�, B�) = c > 0.
Then, it follows from (2.23) and dominated convergence that

c = lim
�→∞ z∗(β�, B�) = E

[

tanh

(√
sinh (βc)

E [W ]
Wc

)√
sinh (βc)

E [W ]
W

]

< c sinh(βc)ν = c,

(3.3)

where we used that tanh(x) < x for x > 0 and βc = asinh(1/ν). This contradiction
proves the lemma. ��
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We next show that z∗ has the same scaling as we want to prove for M(β, B) by
proving the upper and lower bounds in Propositions 3.3 and 3.4 below. These then allow
us to obtain the theorem. But first we state some properties for truncated moments ofW
in the following lemma:

Lemma 3.2 (Truncated moments of W ). Assume that W obeys a power law for some
τ > 1, see item (ii) in Condition 2.4. Then there exist constants ca,τ ,Ca,τ > 0 such that,
as � → ∞,

{
ca,τ �

a−(τ−1)

cτ−1,τ log �
≤ E

[
Wa1l{W≤�}

] ≤
{
Ca,τ �

a−(τ−1) when a > τ − 1,
Cτ−1,τ log � when a = τ − 1.

(3.4)

and, when a < τ − 1,
E
[
Wa1l{W>�}

] ≤ Ca,τ �
a−(τ−1). (3.5)

Proof. The proof is similar to that of [11, Lemma 3.4]. ��
In the following we write ci , Ci , i ≥ 1 for constants that only depend on β and on

moments of W and satisfy

0 < lim inf
β↘βc

ci (β) ≤ lim sup
β↘βc

ci (β) < ∞, (3.6)

and the same holds for Ci . The constants Ci appear in upper bounds and ci in lower
bounds. Furthermore, we write ei , i ≥ 1 for error functions that depend on β, B and on
moments of W , and satisfy

lim sup
B↘0

ei (β, B) < ∞ and lim
B↘0

ei (βc, B) = 0. (3.7)

Here, the subscript i is just a label for constants and error functions.
Further, we introduce the following notation that will be used extensively in the

following:

α(β) :=
√
sinh(β)

E[W ] . (3.8)

Proposition 3.3 (Upper bound on z∗). Let β ≥ βc and B > 0. Then, there exists a
C1 > 0 such that

z∗ ≤ √
E[W ] sinh(β)B + sinh(β)νz∗ − C1z

∗δ, (3.9)

where δ takes the values as stated in Theorem 2.10. For τ = 5,

z∗ ≤ √
E[W ] sinh(β)B + sinh(β)νz∗ − C1z

∗3 log
(
1/z∗

)
. (3.10)

Proof. We frequently use that tanh(B) ≤ B. A Taylor expansion around x = 0 gives
that, for some ζ ∈ (0, x),

tanh(x + B) = tanh(B) + (1 − tanh2(B))x − tanh(B)(1 − tanh2(B))x2

− 1

3
(1 − tanh2(ζ + B))x3 + tanh(ζ + B)(1 − tanh2(ζ + B))x3

≤ B + x − 1

3
x3 +

4

3
tanh(x + B)x3, (3.11)
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where we also used that tanh(x) ≤ 1. If we now assume that x + B ≤ atanh 1
8 , then

tanh(x + B) ≤ B + x − 1

6
x3. (3.12)

We apply this result to (2.23) where x = α(β)Wz∗, which we force to be at most atanh 1
8

by introducing an indicator function as follows:

z∗ ≤ E
[(
B + α(β)Wz∗

)
α(β)W

]

+ E

[{
tanh

(
α(β)Wz∗ + B

) − (
B + α(β)Wz∗

)}
α(β)W1l{α(β)Wz∗+B≤atanh 1

8 }
]
,

(3.13)

since tanh(B + x) ≤ B + x . Hence, using (3.12),

z∗ ≤ √
E[W ] sinh(β)B+sinh(β)νz∗−1

6
α(β)4E

[
W 41l{α(β)Wz∗+B≤atanh 1

8 }
]
z∗3. (3.14)

For E[W 4] < ∞, this is indeed of the form (3.9) and we are done. If τ ∈ (3, 5), then it
follows from Lemma 3.2 that

E

[
W 41l{α(β)Wz∗+B≤atanh 1

8 }
]

≥ c4,τ

(
α(β)

(atanh 1
8 − B)

z∗
)τ−5

, (3.15)

which proves the proposition for τ ∈ (3, 5). The proof for τ = 5 is similar and we omit
it. ��

We now proceed with the lower bound:

Proposition 3.4 (Lower bound on z∗). Let β ≥ βc and B > 0. Then, there exists a
c1 > 0 such that

z∗ ≥ √
E[W ] sinh(β)B + sinh(β)ν z∗ − c1z

∗δ − Be1, (3.16)

where δ takes the values as stated in Theorem 2.10. For τ = 5,

z∗ ≥ √
E[W ] sinh(β)B + sinh(β)νz∗ − c1z

∗3 log
(
1/z∗

) − Be1. (3.17)

Proof. As in (3.11) we can bound

tanh(x + B) ≥ B + x − 1

3
x3 − B(B + Bx + x2), (3.18)

where we have used that B−B2 ≤ tanh(B) ≤ B. ForE[W 4] < ∞, we can immediately
use this to obtain

z∗ ≥ √
E[W ] sinh(β)B + sinh(β)νz∗ − c1z

∗3 − Be1, (3.19)

where

c1 = 1

3
sinh2(β)

E[W 4]
E[W ]2 , (3.20)
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and

e1 = B
√
E [W ] sinh (β) + B sinh(β)νz∗ +

(
sinh (β)

E [W ]

)3/2

E[W 3]z∗2. (3.21)

All terms in e1 indeed converge to 0 in the appropriate limit, because of Lemma 3.1.
For τ ∈ (3, 5), we rewrite z∗ as

z∗ = √
E[W ] sinh(β)B + sinh(β)νz∗

+ E
[{
tanh

(
α(β)Wz∗ + B

) − (
B + α(β)Wz∗

)}
α(β)W

(
1l{W≤1/z∗} + 1l{W>1/z∗}

)]
.

(3.22)

The case where W ≤ 1/z∗ can be treated as above. This gives

E

[{

tanh
(
α(β)Wz∗ + B

) − (
B + α(β)Wz∗

)
}

α(β)W1l{W≤1/z∗}
]

≥ −1

3
sinh2(β)

E[W 41l{W≤1/z∗}]
E[W ]2 z∗3 − Be2, (3.23)

where

e2 = Bα(β)E[W1l{W≤1/z∗}]+B sinh(β)
E[W 21l{W≤1/z∗}]

E[W ] z∗+α(β)3 E[W 31l{W≤1/z∗}]z∗2.
(3.24)

By Lemma 3.2,
E[W 41l{W≤1/z∗}] ≤ C4,τ z

∗τ−5, (3.25)

so that indeed (3.23) is bounded from below by

−c2z
∗τ−2 − Be2. (3.26)

with

c2 = 1

3
sinh2(β)

C4,τ

E[W ]2 . (3.27)

Using Lemma’s 3.1 and 3.2, one can also show that all terms in e2 indeed converge to 0
in the appropriate limit.

It remains to bound the term whereW > 1/z∗. For this we use that tanh(x + B) ≥ 0:

E

[{

tanh
(
α(β)Wz∗ + B

) − (
B + α(β)Wz∗

)
}

α(β)W1l{W>1/z∗}
]

≥ − sinh(β)
E[W 21l{W>1/z∗}]

E[W ] z∗ − Be3, (3.28)

where
e3 = α(β)E[W1l{W>1/z∗}]. (3.29)

By Lemma 3.2,
E[W 21l{W>1/z∗}] ≤ C2,τ z

∗τ−3, (3.30)

again giving the right scaling. As a consequence (3.28) is bounded from below by
−c3z∗τ−2 − Be3 with

c3 = 1

3
sinh(β)

C2,τ

E[W ]2 . (3.31)
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Similarly,
e3 ≤ α(β)C1,τ z

∗τ−2, (3.32)

which indeed converges to 0. We conclude that (3.16) holds with c1 = c2 + c3 and
e1 = e2 + e3. ��

The upper and lower bounds on z∗ in the previous two propositions allow us to prove
that the critical exponents take the values stated in Theorem 2.10:

Theorem 3.5 (Values of β and δ). The critical exponents β and δ equal the values as
stated in Theorem 2.10 when E[W 2] < ∞ and τ ∈ (3, 5). Furthermore, for τ = 5
(2.31) holds.

Proof. Proof for exponent β. We start by giving upper bounds on the magnetization.
From (2.22) it follows that

M(β, B) = E
[
tanh

(
α(β)Wz∗ + B

)] ≤ B +
√
E [W ] sinh (β)z∗. (3.33)

We first analyze β and hence take the limit B ↘ 0 for β > βc. This gives

M(β, 0+) ≤ √
E [W ] sinh (β)z∗0, (3.34)

where we write z∗0 = limB↘0 z∗. Since M(β, 0+) > 0 by the definition of βc, the same
must be true for z∗0. We will deal first with the cases τ ∈ (3, 5) and E[W 4] < ∞. Taking
the limit B ↘ 0 in (3.9) and dividing by z∗0, we get for τ �= 5

C1z
∗δ−1
0 ≤ sinh(β)ν − 1, (3.35)

and hence, observing that β = 1/(δ − 1),

z∗0 ≤ C−β
1 (sinh(β)ν − 1)β . (3.36)

From a Taylor expansion of sinh(β) around βc = asinh(E[W ]/E[W 2]) it follows that
sinh(β)ν − 1 ≤ cosh(β)ν(β − βc). (3.37)

Hence,
M(β, 0+) ≤ √

E [W ] sinh (β)C−β
1 (cosh(β)ν)β (β − βc)

β , (3.38)

so that it is easy to see that

lim sup
β↘βc

M(β, 0+)

(β − βc)β
< ∞. (3.39)

The lower bound can be obtained in a similar fashion. Starting from tanh x ≥ x − x2

and taking the limit B ↘ 0 for β > βc in (2.22), we obtain

M(β, 0+) ≥ √
E [W ] sinh (β)z∗0 − sinh(β)νz∗0

2
. (3.40)

Again, starting from the lower bound (3.16), taking B ↘ 0 and dividing by z∗0

z∗0 ≥ c−β
1 (sinh(β)ν − 1)β , (3.41)

and, by a Taylor expansion around βc,

sinh(β)ν − 1 = cosh(βc)ν(β − βc) + O((β − βc)
2). (3.42)
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Using (3.36), (3.41) and (3.42) in (3.40) we obtain:

M(β, 0+) ≥ √
E [W ] sinh (β)c−β

1

[
cosh(βc)ν(β − βc) + O((β − βc)

2)
]β

− sinh(β)νC−2β
1

[
cosh(βc)ν(β − βc) + O((β − βc)

2)
]2β

, (3.43)

which shows that also

0 < lim inf
β↘βc

M(β, 0+)

(β − βc)β
, (3.44)

concluding the proof for the exponent β in the cases τ ∈ (3, 5) and E[W 4] < ∞. In the
case τ = 5 we can prove the upper bound for M(β, 0+) in a similar fashion, i.e., taking
the limit B ↘ 0 for β > βc of (3.10) and dividing by z∗0. This yields to

z∗0
2 ≤ sinh(β)ν − 1

C1 log(1/z∗0)
≤ cosh(β)ν(β − βc)

C1 log(1/z∗0)
≤ C̃

(β − βc)

log(1/z∗0)
, (3.45)

where (3.37) has been used in order to obtain the second inequality and cosh(β) has
been bounded in a right neighborhood of βc to obtain the third inequality. Since x �→
1/ log(1/x) is increasing in (0,1) and z∗0 ≤ C(β − βc)

1
2 for some C > 0,1 form (3.45)

we obtain:

z∗0
2 ≤ C̃(β − βc)

C1 log(1/[C(β − βc)1/2]) . (3.46)

The previous inequality together with (3.34), proves the upper bound

lim sup
β↘βc

M(β, 0+)
(

β − βc
log(1/(β − βc))

)1/2 < ∞. (3.47)

The lower bound can be obtained in the same way. Indeed, from (3.17) in the limit
B → 0, we obtain, for some positive constants C̃ and Ĉ

z∗0
2 ≥ sinh(β)ν − 1

C1 log(1/z∗0)
≥ C̃

(β − βc)

log(1/z∗0)
≥ Ĉ

(β − βc)

log(1/(β − βc))
, (3.48)

where, once more, we have used that x �→ 1/ log(1/x) is increasing in (0,1) and the
bound z∗0 ≥ C(β − βc)

1/(2−ε) for some C > 0 and any 0 < ε < 2.2 The previous
inequality plugged in (3.40) gives

lim inf
β↘βc

M(β, 0+)
(

β − βc
log(1/(β − βc))

)1/2 > 0, (3.49)

1 The proof of z∗0 ≤ C(β − βc)
1
2 can be obtained by rewriting (3.45) as −z∗0

2 log z∗0
2 ≤ k(β − βc), for

some k > 0. Since w < −w logw for w < 1/e, we conclude that for β − βc > 0 small enough, the previous
inequality gives z∗0

2 < k(β − βc).
2 The proof of the inequality z∗0 ≥ C(β − βc)

1/(2−ε), for 0 < ε < 2 can be obtained starting from the
rightmost inequality of (3.48) combined with the fact that log 1/x ≤ Aεx−ε for all x ∈ (0, 1) and any ε > 0.
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concluding the proof for τ = 5. ��
Proof for exponent δ. We continue with the analysis for δ. Setting β = βc in (3.9), we
obtain

z∗(βc, B) ≤ (C1

√
E[W ])− 1

δ B1/δ. (3.50)

Using this inequality in (3.33) with β = βc, we obtain

M(βc, B) ≤ B +
E[W ]C− 1

δ

1

(
√
E[W 2])1+ 1

δ

B1/δ, (3.51)

which proves that

lim sup
B↘0

M(βc, B)

B1/δ
< ∞ (3.52)

since δ > 1. Inequality (3.16) with β = βc gives

z∗(βc, B) ≥ c−1/δ
1

(
1

√
E[W 2] − e1(βc, B)

)1/δ

B1/δ. (3.53)

This estimate, along with (3.50), will be used in the lower bound of the magnetization
at β = βc obtained by tanh x ≥ x − x2:

M(βc, B) ≥ B +
E[W ]

√
E[W 2] (1 − 2B)z∗(βc, B) − z∗(βc, B)

2 − B2, (3.54)

giving, for B > 0 small,

M(βc, B) ≥ B +
E[W ]

√
E[W 2] (1 − 2B)c−1/δ

1

(
1

√
E[W 2] − e1(βc, B)

)1/δ

B1/δ

− (C1

√
E[W ])−2/δB2/δ − B2. (3.55)

Recalling that limB↘0 e1(βc, B) = 0 and δ > 1, the previous bound gives

lim inf
B↘0

M(βc, B)

B1/δ
≥ √

E[W ](c1
√
E[W 2])−1/δ > 0, (3.56)

which concludes the proof for δ in the cases τ ∈ (3, 5) and E[W 2] < ∞. The analysis
for τ = 5 can be performed in a similar way as for β. ��

Proof of Corollary 2.14 The proof can be simply adapted as in [11, Corollary 2.9]. ��
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3.2. Susceptibility: critical exponents γ and γ ′. We now analyze the susceptibility and
compute the critical exponents γ and γ ′. We start by computing the former under more
general conditions than those of Theorem 2.10.

Theorem 3.6 (Value of γ ). For E[W 2] < ∞,

lim
β↗βc

χ(β, 0+)(βc − β) = E[W ]2
E[W 2] tanh(βc), (3.57)

so that γ = 1.

Proof. From Theorem 2.8 it follows that in the one-phase region, i.e., for β < βc or
B �= 0,

χ(β, B) = ∂

∂B
M(β, B) = E

[(

1 + α(β)W
∂z∗

∂B

)(
1 − tanh2

(
α(β)Wz∗ + B

))
]

.

(3.58)
We can also compute the derivative of z∗ by taking the derivative of (2.23):

∂z∗

∂B
= E

[(

α(β)W + α(β)2W 2 ∂z∗

∂B

)(
1 − tanh2

(
α(β)Wz∗ + B

))
]

. (3.59)

If we take the limit B ↘ 0 forβ < βc, then the tanh2(·) term vanishes, since by definition
of βc it holds that z∗0 ≡ limB↘0 z∗ = 0. Hence, if we write

∂z∗0
∂B

= lim
B↘0

∂

∂B
z∗(β, B), (3.60)

then (3.59) simplifies to

∂z∗0
∂B

= √
E[W ] sinh(β) + sinh(β)ν

∂z∗0
∂B

. (3.61)

Solving for
∂z∗0
∂B gives

∂z∗0
∂B

=
√
E[W ] sinh(β)

1 − sinh(β)ν
. (3.62)

Also taking the limit B ↘ 0 in (3.58) and using the above gives

χ(β, 0+) = 1 +
E[W ] sinh(β)

1 − sinh(β)ν
. (3.63)

From a Taylor expansion around βc, we get that

sinh(βc) − cosh(βc)(βc − β) ≤ sinh(β) ≤ sinh(βc) − cosh(β)(βc − β), (3.64)

so that

1 +
E[W ]2 sinh(β)

E[W 2] cosh(βc)(βc − β)
≤ χ(β, 0+) ≤ 1 +

E[W ]2 sinh(β)

E[W 2] cosh(β)(βc − β)
, (3.65)

since sinh(βc)ν = 1. Hence, (3.57) follows. ��
We now analyze γ ′:
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Theorem 3.7 (Value of γ ′). For W satisfying Condition 2.4 with E[W 4] < ∞ or with
τ ∈ (3, 5),

γ ′ = 1. (3.66)

Proof. We split the proof into the two cases that cover the hypotheses of the theorem.

(a) Proof under the assumptionE[W 4] < ∞. We are now in the regime where β > βc,
so that z∗0 > 0. We start from (3.59), take the limit B ↘ 0 and linearize the hyperbolic
tangent. In order to control this approximation, we define g(x) = x2 − tanh2(x) and
remark that on the basis of our assumption onW , we have that E[(W 2 ∨1)g(W )] < ∞.
It will be useful also to factorize g(x) = x4k(x) with k(x) = O(1) as x → 0, so that
we also have E[W 6k(W )] < ∞. This gives

∂z∗0
∂B

= E

[(

α(β)W + α(β)2W 2 ∂z∗0
∂B

)(
1 − tanh2

(
α(β)Wz∗0

))
]

= √
E[W ] sinh(β) − e0 +

∂z∗0
∂B

(
sinh(β)ν − α(β)4 E[W 4]z∗20

)
+

+ E

[(
∂z∗0
∂B

α(β)2W 2 + α(β)W

)

g
(
α(β)Wz∗0

)
]

, (3.67)

where

e0 =
(
sinh(β)

E [W ]

)3/2

E

[
W 3

]
z∗20 . (3.68)

Solving (3.67) for
∂z∗0
∂B gives

∂z∗0
∂B

=
√
E[W ] sinh(β) − e0 − E

[
α(β)Wg

(
α(β)Wz∗0

)]

1 − sinh(β)ν + α(β)4 E[W 4]z∗20 − E
[
α(β)2W 2g

(
α(β)Wz∗0

)] . (3.69)

To analyze (3.69) we use the lower and upper bounds in Propositions 3.4 and 3.3. Taking
the limit B ↘ 0 in (3.16) with δ = 3, c1 given in (3.20) and dividing by z∗0, we obtain

z∗20 ≥ 3
E[W ]2
E[W 4]

1

sinh2(β)
(sinh(β)ν − 1) . (3.70)

Taking the same limit B ↘ 0 in (3.14) and dividing by z∗0 we obtain also

z∗20 ≤ 6
E[W ]2

E[W 41l{α(β)Wz∗≤atanh 1
8 }]

1

sinh2(β)
(sinh(β)ν − 1) . (3.71)

By Taylor expansion,

sinh(β)ν − 1 = cosh(βc)ν(β − βc) + O((β − βc)
2), (3.72)

we conclude, from (3.70), (3.71), and the fact thatE[W 41l{α(β)Wz∗≤atanh 1
8 }] → E[W 4] as

β → βc, that z∗0
2 = O(β −βc). Using this, we can now evaluate the terms in numerator

and denominator of (3.69) asβ → βc. The first term in the numerator has a non vanishing
finite limit, while e0 = O(β −βc). The third term (ignoring the irrelevant multiplicative
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factor α(β) ) is E
[
Wg

(
α(β)Wz∗0

)] = α(β)4z∗40 E
[
W 5k

(
α(β)Wz∗0

)] = O((β − βc)).
Indeed, since k(x) ≤ 1

x2
,

α(β)4z∗40 E

[
W 5k

(
α(β)Wz∗0

)] ≤ α(β)2E
[
W 3

]
z∗20 = O(β − βc). (3.73)

Let us now consider the denominator and define

D(β) := 1 − sinh(β)ν + α(β)4 E[W 4]z∗20 . (3.74)

By (3.70), (3.71) and (3.72),

2 cosh(βc)ν(β − βc) + O((β − βc)
2)

≤ D(β) ≤ (a(β) − 1) cosh(βc)ν(β − βc) + O((β − βc)
2), (3.75)

where a(β) is a function that converges to 6 as β → βc. Thus, from the previous
display we obtain D(β) = O(β − βc). The fourth term in the denominator of (3.69),
again discarding an irrelevant factor and arguing as before, is E

[
W 2g

(
α(β)Wz∗0

)] =
α(β)4z∗40 E

[
W 6k

(
α(β)Wz∗0

)] = O((β − βc)
2). Therefore, summarizing our findings,

∂z∗0
∂B

= O((β − βc)
−1). (3.76)

From (3.58), the upper bound follows using (3.76):

χ(β, 0) ≤ E

[(

1 + α(β)W
∂z∗0
∂B

)]

≤ 1 +
√
sinh(β)E[W ]O((β − βc)

−1). (3.77)

Similarly, for the lower bound we use that 1− tanh2(x) ≥ 1− x2 for every x , we obtain

χ(β, 0) ≥ E

[(

1 + α(β)W
∂z∗0
∂B

)(
1 − α(β)2W 2z∗20

)]

= 1 + E

[

α(β)W
∂z∗0
∂B

]

− E

[
α(β)2W 2z∗20

]
− E

[

α(β)3W 3z∗20
∂z∗0
∂B

]

= 1 +
√
sinh(β)E[W ]O((β − βc)

−1)

− sinh(β)νO(β − βc) − α(β)3E[W 3]O(1), (3.78)

again starting from (3.58), using (3.76) and z∗0
2 = O(β − βc). From (3.77) and (3.78)

we obtain

0 < lim inf
β↘βc

χ(β, 0+)(β − βc) ≤ lim sup
β↘βc

χ(β, 0+)(β − βc) < ∞, (3.79)

proving the theorem in the case that E[W 4] < ∞.

(b) Proof for W satisfying Condition 2.4 (ii). Now we generalize the previous proof
in order to encompass also the case of those W whose distribution function F(w) =
1 − P(W > w) satisfies Condition 2.4(ii). We start by defining

hβ,B,z∗(w) = tanh
(
αwz∗ + B

)
α w − α2w2z∗, (3.80)
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where the dependence of α on β has been dropped, and rewriting (2.23) as

z∗ = E
[
hβ,B,z∗(W )

]
+ α2z∗E[W 2]. (3.81)

Using integration by parts,

E
[
hβ,B,z∗(W )

] =
∫ +∞

0
hβ,B,z∗(w)dF(w) = −

∫ +∞

0
hβ,B,z∗(w)d(1 − F(w))

= − lim
w→+∞[hβ,B,z∗(w)(1 − F(w))] + hβ,B,z∗(0)(1 − F(0))

+
∫ +∞

0
h′

β,B,z∗(w)(1 − F(w))dw. (3.82)

The boundary terms in the previous display vanish and therefore

E
[
hβ,B,z∗(W )

] =
∫ +∞

0
h′

β,B,z∗(w)(1 − F(w))dw. (3.83)

Taking into account that the power law of Condition 2.4(ii) holds for w > w0, we write
the previous integral as

E
[
hβ,B,z∗(W )

] = G(β, B, z∗) + J̄ (β, B, z∗), (3.84)

where

G(β, B, z∗) :=
∫ w0

0
h′

β,B,z∗(w)(1 − F(w))dw,

J̄ (β, B, z∗) :=
∫ +∞

w0

h′
β,B,z∗(w)(1 − F(w))dw. (3.85)

Therefore, (3.81) can be rewritten as

z∗ = G(β, B, z∗) + J̄ (β, B, z∗) + α2z∗E[W 2]. (3.86)

Nowwe take the limit B ↘ 0 in the previous equation. Recalling that z∗0 := limB↘0 z∗ >

0, and since the following limits exist:

lim
B↘0

G(β, B, z∗) = G(β, z∗0), lim
B↘0

J̄ (β, B, z∗) = J (β, z∗0), (3.87)

by bounded convergence, then we arrive to

z∗0 = G(β, z∗0) + J (β, z∗0) + α2z∗0E[W 2]. (3.88)

In the next step we bound J (β, z∗0). From the definition of J̄ (β, B, z∗) in (3.85), and
Condition 2.4(ii),

cW

∫ +∞

w0

h′
β,B,z∗(w)w−(τ−1)dw ≤ J̄ (β, B, z∗) ≤ CW

∫ +∞

w0

h′
β,B,z∗(w)w−(τ−1)dw.

(3.89)
Applying the change of variable y = αz∗w leads to

∫ +∞

w0

h′
β,B,z∗(w)w−(τ−1)dw
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= ατ−1z∗τ−2
∫ +∞

αw0z∗

[
tanh(y + B) − y tanh2(y + B) − y

]
y−(τ−1)dy. (3.90)

Therefore, denoting

Ī (β, B, z∗) :=
∫ +∞

αw0z∗

[
tanh(y + B) − y tanh2(y + B) − y

]
y−(τ−1)dy, (3.91)

we can rewrite (3.89) as follows:

cWατ−1z∗τ−2 Ī (β, B, z∗) ≤ J̄ (β, B, z∗) ≤ CWατ−1z∗τ−2 Ī (β, B, z∗). (3.92)

Since, again by bounded convergence,

lim
B↘0

Ī (β, B, z∗) =
∫ +∞

αw0z∗0

[
tanh(y) − y tanh2(y) − y

]
y−(τ−1)dy =: I (β, z∗0),

(3.93)
we obtain from (3.89) that

cWατ−1z∗0
τ−2 I (β, z∗0) ≤ J (β, z∗0) ≤ CWατ−1z∗0

τ−2 I (β, z∗0). (3.94)

On the other hand, since tanh(y) − y tanh2(y) − y < 0 for y > 0, we also have

k(τ ) :=
∫ +∞

1
[y tanh2(y) + y − tanh(y)]y−(τ−1)dy ≤ −I (β, z∗0)

≤
∫ +∞

0
[y tanh2(y) + y − tanh(y)]y−(τ−1)dy =: K (τ ). (3.95)

Therefore, from (3.88), (3.94) and (3.95),

z∗0 ≥ G(β, z∗0) − cWατ−1z∗0
τ−2K (τ ) + α2z∗0E[W 2] (3.96)

and
z∗0 ≤ G(β, z∗0) − CWατ−1z∗0

τ−2k(τ ) + α2z∗0E[W 2]. (3.97)

The next step is to control the behaviour of G(β, z∗0) as β → βc. We start by showing
that G(β, z∗0) is O(z∗30 ) as β → βc. From the definition of G(β, z∗0),

G(β, z∗0) =
∫ w0

0

[
−α2z∗0w − tanh2(αz∗0w)α2z∗0w + α tanh(αz∗0w)

]
(1 − F(w))dw.

(3.98)
Since the function between the square brackets is negative for y > 0 and decreasing, we
have

0 ≥ G(β, z∗0) ≥ [−α2w0z
∗
0 − α2w0z

∗
0 tanh

2(αw0z
∗
0) + α tanh(αw0z

∗
0)]

∫ w0

0
(1 − F(w))dw

≥ [−α2w0z
∗
0 − α2w0z

∗
0 tanh

2(αw0z
∗
0) + α tanh(αw0z

∗
0)] = −4

3
α4w3z∗30 + O(z∗50 )

(3.99)

where the last equality is obtained by Taylor expansion.
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Thus, the previous inequality implies that G(β, z∗0) = O(z∗0
3). Again, from (3.96)

and (3.97) dividing by z∗0,

1 − α2
E[W 2] ≥ z∗τ−3

0

(
G(β, z∗0)z

∗2−τ
0 − cWατ−1K (τ )

)
, (3.100)

and
1 − α2

E[W 2] ≤ z∗τ−3
0

(
G(β, z∗0)z

∗2−τ
0 − CWατ−1k(τ )

)
. (3.101)

Since G(β, z∗0)z
∗2−τ
0 = O(z∗5−τ

0 ) and τ ∈ (3, 5), the previous inequalities together
with (3.72) imply that z∗τ−3

0 = O(β − βc) as β ↘ βc.
Next, we consider the derivative of z∗0. Again, taking the limit B ↘ 0 for β > βc of

(3.59) we obtain

∂z∗0
∂B

= αE[W ] − αE[W tanh2(αWz∗0)]
1 − α2E[W 2] + α2E[W 2 tanh2(αWz∗0)]

. (3.102)

Since the numerator has a finite positive limit as β ↘ βc (in particular, the second term
is vanishing), we will focus on the denominator

D2(β) := 1 − α2
E[W 2] + α2

E[W 2 tanh2(αWz∗0)]. (3.103)

We start by decomposing the average

E[W 2 tanh2(αWz∗0)] = E[W 2 tanh2(αWz∗0)1l{W≤w0}] + E[W 2 tanh2(αWz∗0)1l{W>w0}],
(3.104)

and analyze the two terms separately. The first one can be bounded as follows

0 ≤ E[W 2 tanh2(αWz∗0)1l{W≤w0}] ≤ α2w4
0z

∗2
0 (3.105)

showing that

E[W 2 tanh2(αWz∗0)1l{W≤w0}] = O(z∗20 ) = O((β − βc)
2

τ−3 ), (3.106)

with the exponent satisfying 2/(τ − 3) > 1 since τ ∈ (3, 5). The second term can be
treated with the integration by parts formula

E[W 2 tanh2(αWz∗0)1l{W>w0}] = − lim
w→+∞[w2 tanh2(αwz∗0)(1 − F(w))]

+ w2
0 tanh

2(αw0z
∗
0)(1 − F(w0))

+
∫ +∞

w0

∂

∂w
[w2 tanh2(αwz∗0)](1 − F(w))dw.

(3.107)

Since τ > 3, from Condition 2.4 we conclude that the limit in the previous display
vanishes. It is also simple to see that

w2
0 tanh

2(αw0z
∗
0)(1 − F(w0)) = O(z∗20 ) = O((β − βc)

2
τ−3 ). (3.108)

From (3.103) and using (3.104), (3.106), (3.107), (3.108), we can write

D2(β) = D̄2(β) + O((β − βc)
2

τ−3 ), (3.109)
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with

D̄2(β) := (1 − α2
E[W 2]) + α2

∫ +∞

w0

∂

∂w
[w2 tanh2(αwz∗0)](1 − F(w))dw. (3.110)

The second term in the r.h.s. of (3.109) is O((β − βc)
s) with s > 1, therefore we can

forget it since the first term of D̄2(β) is O(β − βc). Now we focus on the second term
of D̄2(β).

By using (2.7) and applying the change of variable y = αz∗w, we can bound the
integral in the last display as

∫ +∞

w0

∂

∂w
[w2 tanh2(αwz∗0)](1 − F(w))dw ≤ CWατ−3z∗τ−3

0 M(τ ), (3.111)

where

M(τ ) :=
∫ +∞

0

[
2y tanh2(y) + 2y2 tanh(y)(1 − tanh2(y))

]
y−(τ−1)dy, (3.112)

and the bound in (3.111) is obtained thanks to the positivity of the integrand. The
convergence of the integral is ensured by the fact that this function is O(y4−τ ) close to
y = 0 with 1 > 4 − τ > −1 and is O(y−τ+2) as y → ∞ with −τ + 2 < −1. In a
similar fashion, we can also obtain

∫ +∞

w0

∂

∂w
[w2 tanh2(αwz∗0)](1 − F(w))dw ≥ cWατ−3z∗τ−3

0 m(τ ), (3.113)

with

m(τ ) :=
∫ +∞

ε

[
2y tanh2(y) + 2y2 tanh(y)(1 − tanh2(y))

]
y−(τ−1)dy, (3.114)

for β sufficiently close to βc. At this stage ε > 0 is an arbitrary fixed quantity that will
be chosen later (but independently of β). By (3.96) and (3.97),

G(β, z∗0)z∗0
−1 − (1 − α2

E[W 2])
cWατ−1K (τ )

≤ z∗τ−3
0 ≤ G(β, z∗0)z∗0

−1 − (1 − α2
E[W 2])

CWατ−1k(τ )
,

(3.115)
which, substituted in (3.111) and (3.113), gives

G(β, z∗0)z∗0
−1m(τ )

K (τ )
− (1 − α2

E[W 2])m(τ )

K (τ )

≤ α2
∫ +∞

w0

∂

∂w
[w2 tanh2(αwz∗0)](1 − F(w))dw

≤ G(β, z∗0)z∗0
−1 M(τ )

k(τ )
− (1 − α2

E[W 2])M(τ )

k(τ )
. (3.116)

By definition of D̄2(β),

G(β, z∗0)z∗0
−1m(τ )

K (τ )
+ (1 − α2

E[W 2])
(

1 − m(τ )

K (τ )

)

≤ D̄2(β)
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≤ G(β, z∗0)z∗0
−1 M(τ )

k(τ )
+ (1 − α2

E[W 2])
(

1 − M(τ )

k(τ )

)

. (3.117)

In the last step of the proof, we show that m(τ )
K (τ )

> 1. This can be done by properly
choosing the arbitrary quantity ε in (3.114).Wewill prove the first inequality, the second
one can be obtained in the same way. Starting from (3.95) and (3.114), we introduce the
functions Kb(τ ) and ma(τ ) for a ≥ 0, b ≥ 0 as

Kb(τ ) :=
∫ +∞

b

d

dy

[
y2 − y tanh(y)

]
y−(τ−1)dy, (3.118)

ma(τ ) :=
∫ +∞

a

d

dy

[
y2 tanh2(y)

]
y−(τ−1)dy, (3.119)

which coincide with K (τ ) and m(τ ) for b = 0 and a = ε, respectively. By applying the
integration by parts formula the two functions can be written as

Kb(τ ) = −b3−τ + b2−τ tanh(b) + (τ − 1)
∫ +∞

b
(y2 − y tanh(y))y−τdy, (3.120)

ma(τ ) = −a tanh(a) + (τ − 1)
∫ +∞

a
y2 tanh2(y)y−τdy. (3.121)

Since

lim
a→0+
b→0+

ma(τ )

Kb(τ )
= m0(τ )

K (τ )
=

∫ +∞
0 y2 tanh2(y) y−τdy

∫ +∞
0

[
y2 − y tanh(y)

]
y−τdy

> 1, (3.122)

where the inequality can be proved by observing that y2 tanh2(y) > y2 − y tanh(y) for
all y > 0, then for any ε > 0 sufficiently small,

m(τ )

K (τ )
> 1. (3.123)

SinceG(β, z∗0)z∗0
−1 = O(z∗20 ) = O((β−βc)

s)with s = 2
τ−3 > 1 and (1−α2

E[W 2]) =
O(β −βc), with 1−α2

E[W 2] < 0 for β > βc and close to βc [see (3.72)], we conclude
that 0 < D̄2(β) = O(β − βc), for the same values of β. This proves that

0 <
∂z∗0
∂B

= O((β − βc)
−1). (3.124)

The previous equation together with z∗0
τ−3 = O(β −βc) allows us to conclude the proof

along the same lines of the case with E[W 4] < ∞. Indeed, the upper bound (3.77) is
still valid in the present case, since only the first moment ofW is involved. For the lower
bound we argue as follows. Since, 1 − tanh2(x) > 1 − tanh(x) > 1 − x for x > 0, we
have

χ(β, 0) ≥ E

[(

1 + α(β)W
∂z∗0
∂B

)
(
1 − α(β)Wz∗0

)
]

= 1 − √
sinh(β)E[W ]z∗0 +

√
sinh(β)E[W ]∂z

∗
0

∂B
− sinh(β)νz∗0

∂z∗0
∂B

= 1 − √
sinh(β)E[W ]O((β − βc)

1/(τ−3)) +
√
sinh(β)E[W ]O((β − βc)

−1)

− sinh(β)νO((β − βc)
1/(τ−3))O((β − βc)

−1). (3.125)

The inequalities (3.77) and (3.125) imply (3.79) concluding the proof of the theorem. ��
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4. Non-classical Limit Theorems at Criticality: Proof of Theorem 2.15

In this section we prove Theorem 2.15. For this, we follow the strategy of the proof for
the Curie-Weiss model (see e.g. [14, Theorem V.9.5]). It suffices to prove that for any
real number r

lim
N→∞ PN

(

exp

(

r
SN

N δ/(δ+1)

))

=
∫∞
−∞ exp (r z − f (z)) dz
∫∞
−∞ exp (− f (z)) dz

. (4.1)

As observed in [18], the measure PN is approximately equal to the inhomogeneous
Curie-Weiss measure

P̃N (g) = 1

Z̃ N

∑

σ∈�N

g(σ )e
1
2 sinh β

∑
i, j∈[N ]

wiw j
�N

σiσ j = 1

Z̃ N

∑

σ∈�N

g(σ )e
1
2
sinh β
�N

(∑
i∈[N ] wiσi

)2

,

(4.2)
where g(σ ) is any bounded function defined in�N and Z̃ N is the associated normalization
factor, i.e.,

Z̃ N =
∑

σ∈�N

e
1
2
sinh β
�N

(∑
i∈[N ] wiσi

)2

. (4.3)

We first prove the theorem for this measure P̃N , which is the rank-1 inhomogeneous
Curie-Weiss model with β replaced with sinh(β).

For this, we use the Hubbard–Stratonovich identity to rewrite P̃N

(
exp

(
r SN
Nλ

))
as

a fraction of two integrals of an exponential function in Lemma 4.1 in Sect. 4.1. We
next split the analysis into the cases E[W 4] < ∞ and τ ∈ (3, 5) in Sects. 4.2 and 4.3,
respectively. For both these cases we analyze the exponents in the integrals and use
Taylor expansions to show that they converge in Lemmas 4.2 and 4.4, respectively. We
then use dominated convergence to show that the integrals also converge in Lemmas 4.3
and 4.5, respectively. The tail behavior of f (x) for τ ∈ (3, 5) is analyzed in Lemma 4.6.
Combining these results we conclude the proof of Theorem 2.15 in Sect. 4.4: we first
prove the theorem for P̃N and then we show that the theorem also holds for PN in
Lemma 4.7. Finally, in Sect. 4.5, we discuss how to adapt the proof to obtain the results
on the scaling window.

4.1. Rewrite of the moment generating function. To ease the notation we first rescale SN

by Nλ and later set λ = δ/(δ +1). We rewrite P̃N

(
exp

(
r SN
Nλ

))
in the following lemma:

Lemma 4.1 (Moment generating function of SN/Nλ). For B = 0,

P̃N

(
exp

(
r
SN

Nλ

))
=

∫∞
−∞ e−NGN (z;r)dz
∫∞
−∞ e−NGN (z;0)dz

, (4.4)

where

GN (z; r) = 1

2
z2 − E

[
log cosh

(
αN (β)WNz +

r

Nλ

)]
, (4.5)

with

αN (β) =
√

sinh β

E[WN ] . (4.6)
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Proof. We use the Hubbard–Stratonovich identity, i.e., we write et
2/2 = E

[
et Z

]
, with

Z standard Gaussian, to obtain

Z̃ N P̃N

(
exp

(
r
SN

Nλ

))
=

∑

σ∈�N

e
r
Nλ

∑
i∈[N ] σi e

1
2
sinh β
�N

(∑
i∈[N ] wiσi

)2

=
∑

σ∈�N

e
r
Nλ

∑
i∈[N ] σi

E

[
e

√
sinh β
�N

(∑
i∈[N ] wiσi

)
Z
]

= 2NE
[ ∏

i∈[N ]
cosh

(
√
sinh β

�N

wi Z +
r

Nλ

)]

= 2NE
[
e
∑

i∈[N ] log cosh
(√

sinh β
�N

wi Z+
r
Nλ

)
]
. (4.7)

We rewrite the sum in the exponential, using the fact that WN = wUN , where UN is a
uniformly chosen vertex in [N ], as

Z̃ N P̃N

(
exp

(
r
SN

Nλ

))

= 2NE
[
exp

{
NE

[
log cosh

(
√

sinh β

NE[WN ]WN Z +
r

Nλ

)
| Z

]}]

= 2N√
2π

∫ ∞

−∞
e−z2/2 exp

{
NE

[
log cosh

(
αN (β)WN

z√
N

+
r

Nλ

)]}
dz. (4.8)

By substituting z/
√
N for z, we get

Z̃ N P̃N

(
exp

(
r
SN

Nλ

))

= 2N
√

N

2π

∫ ∞

−∞
e−Nz2/2 exp

{
NE

[
log cosh

(
αN (β)WNz +

r

Nλ

)]}
dz

= 2N
√

N

2π

∫ ∞

−∞
e−NGN (z;r)dz. (4.9)

In a similar way we can rewrite

Z̃ N = 2N
√

N

2π

∫ ∞

−∞
e−NGN (z;0)dz, (4.10)

so that the lemma follows. ��

4.2. Convergence for E[W 4] < ∞. We analyze the asymptotics of the function
GN (z; r):
Lemma 4.2 (Asymptotics of GN forE[W 4] < ∞). For β = βc,N , B = 0 and E[W 4] <

∞,

lim
N→∞ NGN (z/N 1/4; r) = −zr

√
E[W ]

ν
+

1

12

E[W 4]
E[W 2]2 z

4. (4.11)
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Proof. Taylor expanding log cosh(x) about x = 0 gives that

log cosh(x) = x2

2
− 1

12
x4 + O(x6). (4.12)

We want to use this to analyze NGN (z/N 1/4; r) and hence need to analyze the second,
fourth and sixth moment of

√
sinh βc,N
E[WN ] WN

z
N1/4 +

r
Nλ .

The second moment equals, using that λ = δ/(δ + 1) = 3/4,

E

[(
αN (βc,N )WN

z

N 1/4 +
r

Nλ

)2] = sinh βc,NνN

z2√
N

+ 2
√
sinh βc,NE[WN ] zr

N
+

r2

N 6/4

= z2√
N

+ 2
zr

N

√
E[WN ]

νN

+ o(1/N ), (4.13)

where we have used that sinh βc,N = 1/νN in the second equality.
For the fourth moment we use that by assumption the first four moments of WN are

O(1). Hence, for all r ,

E

[(
αN (βc,N )WN

z

N 1/4 +
r

Nλ

)4] = sinh2 βc,N

E[WN ]2 E[W 4
N ] z

4

N

+ O
( 1

N 3/4+λ
+

1

N 2/4+2λ +
1

N 1/4+3λ +
1

N 4λ

)

= E[W 4
N ]

E[W 2
N ]2

z4

N
+ o(1/N ). (4.14)

For the sixth moment, we have to be a bit more careful since E[W 6] is potentially
infinite. We can, however, use that

E[W 6
N ] = 1

N

N∑

i=1

w6
i ≤ (

N
max
i=1

wi )
2 1

N

N∑

i=1

w4
i = (max

i
wi )

2
E[W 4

N ]. (4.15)

It can easily be seen that maxNi=1 wi = o(N 1/4) when WN
D−→ W and E[W 4

N ] →
E[W 4] < ∞. Hence,

E

[(
αN (βc,N )WN

z

N 1/4

)6] = sinh3 βc,N

E[WN ]3 E[W 6
N ] z6

N 6/4 = o(N 1/2)E[W 4
N ]

E[W 2
N ]3

z6

N 6/4

= o(1/N ). (4.16)

In a similar way, it can be shown that

E

[(
αN (βc,N )WN

z

N 1/4 +
r

Nλ

)6] = o(1/N ). (4.17)

Putting everything together and using that the first four moments of WN converge by
assumption,

lim
N→∞ NGN (z/N1/4; r) = lim

N→∞

(√
N

2
z2 − NE

[

log cosh
(
αN (βc,N )WN

z

N1/4 +
r

Nλ

)]
)
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= −zr

√
E[W ]

ν
+

1

12

E[W 4]
E[W 2]2 z

4. (4.18)

��
From Lemma 4.2 it also follows that the integral converges as we show next:

Lemma 4.3 (Convergence of the integral for E[W 4] < ∞). For β = βc,N , B = 0 and
E[W 4] < ∞,

lim
N→∞

∫ ∞

−∞
e−NGN (z/N1/4;r)dz =

∫ ∞

−∞
e
zr E[W ]√

E[W2] −
1
12

E[W4]
E[W2]2 z

4

dz. (4.19)

Proof. We prove this lemma using dominated convergence. Hence, we need to find a
lower bound on NGN (z/N 1/4; r). We first rewrite this function by using that

E

[
1

2
αN (βc,N )2W 2

N

( z

N 1/4

)2
]

= 1

2

( z

N 1/4

)2
. (4.20)

Hence,

GN (z/N1/4; r) = E

[
1

2
αN (βc,N )2W 2

N

(
z

N1/4

)2
− log cosh

(
αN (βc,N )WN

z

N1/4 +
r

Nλ

)
]

= E

[
1

2

(

αN (βc,N )WN
z

N1/4

)2
− log cosh

(
αN (βc,N )WN

z

N1/4

)
]

− E

[

log cosh
(
αN (βc,N )WN

z

N1/4 +
r

Nλ

)
− log cosh

(
αN (βc,N )WN

z

N1/4

)]

(4.21)

Since

d2

dx2
(
1

2
x2 − log cosh x) = 1 − (1 − tanh2(x)) = tanh2(x) ≥ 0, (4.22)

the function 1
2 x

2 − log cosh x is convex and we can use Jensen’s inequality to bound

E

[1

2

(
αN (βc,N )WN

z

N 1/4

)2 − log cosh
(
αN (βc,N )WN

z

N 1/4

)]

≥ 1

2

(
αN (βc,N )E[WN ] z

N 1/4

)2 − log cosh
(
αN (βc,N )E[WN ] z

N 1/4

)

= 1

2

(
√
E[WN ]

νN

z

N 1/4

)2 − log cosh
(
√
E[WN ]

νN

z

N 1/4

)
. (4.23)

As observed in the proof of [14, Theorem V.9.5], there exist positive constants A and ε

so that
1

2
x2 − log cosh x ≥ d(x) :=

{
εx4, for |x | ≤ A,

εx2, for |x | > A.
(4.24)

To bound the second term in (4.21), we can use the Taylor expansion

log cosh(a + x) = log cosh(a) + tanh(ξ)x, (4.25)
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for some ξ ∈ (a, a + x), and that | tanh(ξ)| ≤ |ξ | ≤ |a| + |x | to obtain
E

[
log cosh

(
αN (βc,N )WN

z

N 1/4 +
r

Nλ

)
− log cosh

(
αN (βc,N )WN

z

N 1/4

)]

≤ E

[∣
∣
∣ log cosh

(
αN (βc,N )WN

z

N 1/4 +
r

Nλ

)
− log cosh

(
αN (βc,N )WN

z

N 1/4

)∣
∣
∣
]

≤ E

[(∣
∣
∣αN (βc,N )WN

z

N 1/4

∣
∣
∣ +

|r |
Nλ

) |r |
Nλ

]
= αN (βc,N )E[WN ] |zr |

N 1/4+λ
+

r2

N 2λ

=
√
E[WN ]

νN

|zr |
N

+
r2

N 3/2 . (4.26)

Hence,

e−NGN (z/N1/4;r) ≤ exp
{
√
E[WN ]

νN

|zr | + r2

N 1/2 − Nd
(
√
E[WN ]

νN

z

N 1/4

)}
, (4.27)

which we use as the dominating function. Hence, we need to prove that the integral of
this function over z ∈ R is uniformly bounded. We split the integral as

∫ ∞

−∞
exp

{
√
E[WN ]

νN

|zr | + r2

N 1/2 − Nd
(
√
E[WN ]

νN

z

N 1/4

)}
dz

=
∫
∣
∣
∣
∣

√
E[WN ]

νN
z

N1/4

∣
∣
∣
∣≤A

exp
{
√
E[WN ]

νN

|zr | + r2

N 1/2 − Nd
(
√
E[WN ]

νN

z

N 1/4

)}
dz

+
∫
∣
∣
∣
∣

√
E[WN ]

νN
z

N1/4

∣
∣
∣
∣>A

exp
{
√
E[WN ]

νN

|zr | + r2

N 1/2 − Nd
(
√
E[WN ]

νN

z

N 1/4

)}
dz.

(4.28)

The first integral equals

∫
∣
∣
∣
∣

√
E[WN ]

νN
z

N1/4

∣
∣
∣
∣≤A

exp
{
√
E[WN ]

νN

|zr | + r2

N 1/2 − ε
E[WN ]4
E[W 2

N ]2 z
4
)}

dz, (4.29)

which clearly is uniformly bounded. The second integral equals

∫
∣
∣
∣
∣

√
E[WN ]

νN
z

N1/4

∣
∣
∣
∣>A

exp
{
√
E[WN ]

νN

|zr | + r2

N 1/2 − ε
E[WN ]

νN

z2
√
N
)}

dz (4.30)

= 1

N 1/4

∫
∣
∣
∣
∣

√
E[WN ]

νN
y

N1/2

∣
∣
∣
∣>A

exp
{
√
E[WN ]

νN

|yr |
N 1/4 +

r2

N 1/2 − ε
E[WN ]

νN

y2
)}

dy,

where we have substituted y = zN 1/4. This converges to zero for N → ∞, because the
integral is uniformly bounded.

Together with the pointwise convergence proved in Lemma 4.2, this proves Lemma
4.3. ��
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4.3. Convergence for τ ∈ (3, 5). We next analyze GN (z; r) for τ ∈ (3, 5), assuming
Condition 2.5.

Lemma 4.4 (Asymptotics of GN for τ ∈ (3, 5)). Assume that Condition 2.5(ii) holds.
For β = βc,N , B = 0 and τ ∈ (3, 5),

lim
N→∞ NGN (z/N 1/(τ−1); r) = −zr

√
E[W ]

ν
+ f

(√
E[W ]

ν
z

)

, (4.31)

where f (z) is defined in (2.37).

Proof. Define the function

g(w, z) = 1

2

(
αN (βc,N )wz

)2 − log cosh
(
αN (βc,N )wz

)
, (4.32)

so that we can rewrite, in a similar way as in (4.21),

NGN

(
z/N

1
τ−1 ; r

)
= NE[g(WN , z/N

1
τ−1 )] (4.33)

− NE

⎡

⎣log cosh
( 1
√
E[W 2

N ]
WN

z

N
1

τ−1

+
r

Nλ

)

− log cosh
( 1
√
E[W 2

N ]
WN

z

N
1

τ−1

)
⎤

⎦ .

By the definition of WN , we can rewrite

E[g(WN , z/N 1/(τ−1))] = 1

N

N∑

i=1

g(wi , z/N
1/(τ−1)). (4.34)

With the deterministic choice of the weights as in (2.8),

g(wi , z/N
1/(τ−1)) = 1

2

(
αN (βc,N )

wi z

N 1/(τ−1)

)2 − log cosh
(
αN (βc,N )

wi z

N 1/(τ−1)

)

= 1

2

⎛

⎝ 1
√
E[W 2

N ]
cwz

i1/(τ−1)

⎞

⎠

2

− log cosh

⎛

⎝ 1
√
E[W 2

N ]
cwz

i1/(τ−1)

⎞

⎠ .

(4.35)

From this it clearly follows that, for all i ≥ 1,

lim
N→∞ g(wi , z/N

1/(τ−1)) = 1

2

(
1

√
E[W 2]

cwz

i1/(τ−1)

)2

− log cosh

(
1

√
E[W 2]

cwz

i1/(τ−1)

)

.

(4.36)
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It remains to show that also the sum converges, which we do using dominated conver-
gence. For this, we use a Taylor expansion of log cosh(x) about x = 0 up to the fourth
order

log cosh(x) = x2

2
+
(
−2 + 2 tanh2(ξ) + 6 tanh2(ξ)(1 − tanh2(ξ))

) x4

4! ≥ x2

2
− x4

12
,

(4.37)

for some ξ ∈ (0, x). Hence,

g(wi , z/N
1/(τ−1)) ≤ 1

12

⎛

⎝ 1
√
E[W 2

N ]
cwz

i1/(τ−1)

⎞

⎠

4

= 1

12

1

E[W 2]2 + o(1)

(cwz)4

i4/(τ−1)
.

(4.38)
Since τ ∈ (3, 5), it holds that 4/(τ − 1) > 1, so that

lim
N→∞

N∑

i=1

1

12

1

E[W 2]2 + o(1)

(cwz)4

i4/(τ−1)
< ∞. (4.39)

We conclude that

lim
N→∞

N∑

i=1

g(wi , z/N
1/(τ−1)) =

∞∑

i=1

⎛

⎝ 1

2

(
1

√
E[W 2]

cwz

i1/(τ−1)

)2

− log cosh

(
1

√
E[W 2]

cwz

i1/(τ−1)

)⎞

⎠

= f

(√
E[W ]

ν
z

)

, (4.40)

where in the last equality we have used that E[W ] = cw
τ−1
τ−2 . This is in turn a conse-

quence of the following explicit computation giving an upper and lower bound onE[WN ]
matching in the limit N → ∞. An upper bound on the first moment is given by

E[WN ] = 1

N

N∑

i=1

cw

(
N

i

)1/(τ−1)
= cwN− τ−2

τ−1

N∑

i=1

cwi−1/(τ−1) ≤ cwN− τ−2
τ−1

(

1 +
∫ N

1
i−1/(τ−1)di

)

= cw
τ − 1

τ − 2
− cw

1

τ − 2
N− τ−2

τ−1 , (4.41)

and a lower bound by

E[WN ] ≥ cwN− τ−2
τ−1

∫ N

1
i−1/(τ−1)di = cw

τ − 1

τ − 2
− cw

τ − 1

τ − 2
N− τ−2

τ−1 . (4.42)

From this it indeed follows that

E[W ] = lim
N→∞E[WN ] = cw

τ − 1

τ − 2
. (4.43)

To analyze the second term in (4.33), we can use the Taylor expansions

log cosh(a + x) = log cosh(a) + tanh(a)x + (1 − tanh2(ξ))x2

= log cosh(a) + (a − tanh ζ(1 − tanh2 ζ )a2)x + (1 − tanh2(ξ))x2,
(4.44)
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for some ξ ∈ (a, a + x) and ζ ∈ (0, a). This gives

NE

[
log cosh

( 1
√
E[W 2

N ]
WN

z

N
1

τ−1

+
r

Nλ

)
− log cosh

( 1
√
E[W 2

N ]
WN

z

N
1

τ−1

)]

= N

√
E[WN ]

νN

z

N
1

τ−1

r

Nλ
− NE

[
tanh ζ(1 − tanh2 ζ )W 2

N

] 1

E[W 2
N ]

z2

N
2

τ−1

r

Nλ

+ NE

[
(1 − tanh2(ξ))

] r2

N 2λ

=
√
E[WN ]

νN

zr + o(1), (4.45)

where the last equality follows from λ = τ−2
τ−1 and τ ∈ (3, 5). ��

Again it follows that also the integral converges:

Lemma 4.5 (Convergence of the integral for τ ∈ (3, 5)). For β = βc,N , B = 0 and
τ ∈ (3, 5),

lim
N→∞

∫ ∞

−∞
e−NGN (z/N1/(τ−1);r)dz =

∫ ∞

−∞
e
zr
√

E[W ]
ν

− f

(√
E[W ]

ν
z

)

dz. (4.46)

Proof. We again start from the rewrite of GN in (4.21). As before,

NE[g(WN , z/N
1

τ−1 )] =
N∑

i=1

[1

2

( 1
√
E[W 2

N ]
cwz

i1/(τ−1)

)2−log cosh
( 1
√
E[W 2

N ]
cwz

i1/(τ−1)

)]
,

(4.47)
where it is easy to see that the summands are positive and decreasing in i . Hence,

NE[g(WN , z/N
1

τ−1 )]
≥

∫ N

1

[1

2

( 1
√
E[W 2

N ]
cwz

y1/(τ−1)

)2 − log cosh
( 1
√
E[W 2

N ]
cwz

y1/(τ−1)

)]
dy. (4.48)

We want to use (4.24), and hence split the integral in the region where | 1√
E[W 2

N ]
cwz

y1/(τ−1) |
is bigger or smaller than A. This gives

NE[g(WN , z/N
1

τ−1 )] ≥ ε
c2wz

2

E[W 2
N ]

∫
(

A
√

E[W2
N ]

cw |z|
)τ−1

1

1

y
2

τ−1

dy

+ ε
c4wz

4

E[W 2
N ]

∫ N
(

A
√

E[W2
N ]

cw |z|
)τ−1

1

y
4

τ−1

dy

= ε
c2wz

2

E[W 2
N ]

τ − 1

τ − 3

⎛

⎝
( A

√
E[W 2

N ]
cw|z|

)τ−3 − 1

⎞

⎠
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− ε
c4wz

4

E[W 2
N ]

τ − 1

5 − τ

⎛

⎝N− 5−τ
τ−1 −

( A
√
E[W 2

N ]
cw|z|

)−(5−τ)

⎞

⎠

= k1|z|−(τ+1) − k2z
2 − o(1)z4 + k3|z|9−τ , (4.49)

for the proper constants k1, k2, k3 > 0. Since 9 − τ > 4,
∫ ∞

−∞
e−k1|z|−(τ+1)+k2z2+o(1)z4−k3|z|9−τ

dz < ∞. (4.50)

Together with the pointwise convergence in the previous lemma, this proves this lemma
for r = 0. For r �= 0, the proof can be adapted as for the case E[W 4] < ∞. ��

We next analyze the large x behavior of f (x) arising in the density of the limiting
random variable:

Lemma 4.6 (Asymptotics of f for τ ∈ (3, 5)). For τ ∈ (3, 5),

lim
x→∞

f (x)

xτ−1 =
(

τ − 2

τ − 1

)τ−1 ∫ ∞

0

(
1

2y2/(τ−1)
− log cosh

1

y1/(τ−1)

)

dy < ∞. (4.51)

Proof. We first prove that the integral is finite. For this, define

h(y) = 1

2
y2 − log cosh y, (4.52)

so that h(y) ≥ 0. Then,
∫ ∞

0

(
1

2y2/(τ−1)
− log cosh

1

y1/(τ−1)

)

dy =
∫ ∞

0
h

(
1

y1/(τ−1)

)

dy. (4.53)

Since log cosh y ≥ 0, we have h(y) ≤ 1
2 y

2, and hence

h

(
1

y1/(τ−1)

)

≤ 1

2y2/(τ−1)
. (4.54)

This is integrable for y → 0, because 2/(τ − 1) < 1 for τ ∈ (3, 5).
Using (4.37), for y large,

h

(
1

y1/(τ−1)

)

≤ 1

12

1

y4/(τ−1)
. (4.55)

This is integrable for y → ∞, because 4/(τ − 1) > 1 for τ ∈ (3, 5).
To prove that f (x)/xτ−1 converges to the integral as x → ∞ we rewrite, with

a = (τ − 2)/(τ − 1),

f (x)

xτ−1 = 1

xτ−1

∞∑

i=1

h
(
a

x

i1/(τ−1)

)
= aτ−1 1

(ax)τ−1

∞∑

i=1

h
(( 1

i/ (ax)τ−1

)1/(τ−1))

= aτ−1
∫ ∞

0
h

(
1

y1/(τ−1)

)

dy (1 + o(1)) . (4.56)

��
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4.4. Proof of Theorem 2.15. We can now prove Theorem 2.15 for the measure P̃N :

Proof of Theorem 2.15 for the measure P̃N . We can do a change of variables so that
∫ ∞

−∞
e−NGN (z;r)dz = N 1/(δ+1)

∫ ∞

−∞
e−NGN (z/N1/(δ+1);r)dz. (4.57)

Hence, using Lemma 4.1

P̃N

(
exp

(
r

SN

N δ/(δ+1)

))
=

∫∞
−∞ e−NGN (z/N1/(δ+1);r)dz
∫∞
−∞ e−NGN (z/N1/(δ+1);0)dz

. (4.58)

It follows from Lemma 4.3 for E[W 4] < ∞ and from Lemma 4.5 for τ ∈ (3, 5) that

lim
N→∞ P̃N

(
exp

(
r

SN

N δ/(δ+1)

))
=

∫∞
−∞ e

zr
√

E[W ]
ν

− f

(√
E[W ]

ν
z

)

dz

∫∞
−∞ e

− f

(√
E[W ]

ν
z

)

dz

=
∫∞
−∞ exr− f (x)dx
∫∞
−∞ e− f (x)dx

,

(4.59)

where we made the change of variables x =
√

E[W ]
ν

z in both integrals to obtain the last
equality.

As mentioned, this is sufficient to prove the convergence in distribution of SN
N δ/(δ+1) to

the random variable X (see [14, Theorem A.8.7(a)]).
For the case E[W 4] < ∞,

lim
x→∞

f (x)

x1+δ
= lim

x→∞

1
12

E[W 4]
E[W ]4 x

4

x4
= 1

12

E[W 4]
E[W ]4 . (4.60)

For τ ∈ (3, 5), the proof that limx→∞ f (x)
x1+δ = C is given in Lemma 4.6. ��

It remains to show that the statement of Theorem 2.15 also holds for the measure PN .
This follows from the following lemma:

Lemma 4.7 For E[W 4] < ∞ and τ ∈ (3, 5),

lim
N→∞ PN

(
exp

(
r
SN

Nλ

))
− P̃N

(
exp

(
r
SN

Nλ

))
= 0. (4.61)

Proof. As shown in [18],

PN

(
g(σ )

) =
∑

σ∈�N
g(σ )e

1
2

∑
i, j∈[N ] Ji jσiσ j

∑
σ∈�N

e
1
2

∑
i, j∈[N ] Ji jσiσ j

, (4.62)

where

Ji j = 1

2
log

(
eβ pi j + (1 − pi j )

e−β pi j + (1 − pi j )

)

= pi j sinh β − p2i j sinh β(cosh β − 1) + O(p3i j ),

(4.63)
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where we have used the Taylor expansion of log(1 + x) about x = 0 in the last equality.
Hence, using (2.5),

e
1
2

∑
i, j∈[N ] Ji jσiσ j = e

1
2

∑
i, j∈[N ]

((
wiw j

�N +wiw j
− wiw j

�N

)

sinh β−p2i j sinh β(cosh β−1)+O(p3i j )

)

σiσ j

× e
1
2 sinh β

∑
i, j∈[N ]

wiw j
�N

σiσ j

=: eEN (σ )e
1
2 sinh β

∑
i, j∈[N ]

wiw j
�N

σiσ j
. (4.64)

Hence, we can rewrite (4.62) as

PN

(
g(σ )

) =
∑

σ∈�N
g(σ )eEN (σ )e

1
2 sinh β

∑
i, j∈[N ]

wiw j
�N

σiσ j

∑
σ∈�N

eEN (σ )e
1
2 sinh β

∑
i, j∈[N ]

wiw j
�N

σiσ j

= P̃N

(
g(σ )eEN (σ )

)

P̃N

(
eEN (σ )

) .

(4.65)
Combining this with the Cauchy-Schwarz inequality gives

∣
∣
∣
∣PN

(
exp

(
r
SN
Nλ

))
− P̃N

(
exp

(
r
SN
Nλ

))∣∣
∣
∣ =

∣
∣
∣P̃N

(
exp

(
r SN
Nλ

)(
eEN (σ ) − P̃N

(
eEN (σ )

)))∣∣
∣

P̃N
(
eEN (σ )

)

≤

√

P̃N

(
exp

(
2r SN

Nλ

))
√

P̃N

((
eEN (σ ) − P̃N

(
eEN (σ )

))2
)

P̃N
(
eEN (σ )

)

=

√

P̃N

(
exp

(
2r SN

Nλ

))√

P̃N

(
e2EN (σ )

)
− P̃N

(
eEN (σ )

)2

P̃N
(
eEN (σ )

) .

(4.66)

From (4.59), it follows that the first square root converges as N → ∞. We next analyze
EN (σ ) and show that EN (σ ) → 0 in probability w.r.t. P̃N . We also show that EN (σ ) is
uniformly bounded from above, so that the lemma follows by dominated convergence.

We first analyze the contribution of the O(p3i j ) terms in EN (σ ). Note that

∑

i, j∈[N ]
p3i j =

∑

i, j∈[N ]

(
wiw j

�N + wiw j

)3

≤
∑

i, j∈[N ]

(
wiw j

�N

)3

= 1

�3N

( ∑

i∈[N ]
w3
i

)2

. (4.67)

For E[W 2
N ] → E[W 2] < ∞ it holds that maxi wi = o(

√
N ). Hence,

( ∑

i∈[N ]
w3
i

)2

≤ (max
i

wi )
2
( ∑

i∈[N ]
w2
i

)2

= o(N 3)E[W 2
N ]2 = o(�3N ), (4.68)

because �N = O(N ). Hence,

EN (σ ) = 1

2

∑

i, j∈[N ]

((
wiw j

�N + wiw j
− wiw j

�N

)

sinh β − p2i j sinh β(cosh β − 1) +O(p3i j )

)

σiσ j

= − 1

2

∑

i, j∈[N ]

( w2
i w2

j

�N (�N + wiw j )
sinh β +

(
wiw j

�N + wiw j

)2

sinh β(cosh β − 1)

)

σiσ j + o(1)
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= − 1

2
sinh β cosh β

∑

i, j∈[N ]

w2
i w2

j

�2N
σiσ j + o(1)

= − 1

2
sinh β cosh β

( ∑

i∈[N ]

w2
i

�N
σi

)2
+ o(1), (4.69)

where the third equality can be proved as in the analysis of p3i j . Hence, EN (σ ) is indeed

uniformly bounded from above, so that eEN (σ ) is uniformly bounded.
It remains to prove that EN (σ ) → 0 in probability w.r.t. P̃N . We define YN =

∑
i∈[N ]

w2
i

�N
σi , so that

EN = −1

2
sinh β cosh β Y 2

N + o(1). (4.70)

We analyze the moment generating function of YN the same way as SN/Nλ. That is, we
use the Hubbard–Stratonovich identity to rewrite

P̃N

(
erYN

)
=

∑
σ∈�N

erYN e
1
2
sinh β
�N

(
∑

i∈[N ] wiσi )
2

∑
σ∈�N

e
1
2
sinh β
�N

(
∑

i∈[N ] wiσi )
2

=

∑
σ∈�N

E

[

e
r
∑

i∈[N ]
w2
i

NE[WN ] σi+
√

sinh β
NE[WN ]

∑
i∈[N ] wiσi Z

]

∑
σ∈�N

E

[

e

√
sinh β

NE[WN ]
∑

i∈[N ] wiσi Z
]

=
E

[

e
NE

[
log cosh

(
r

W2
N

NE[WN ]+
√

sinh β
NE[WN ]WN Z

) ∣
∣ Z

]]

E

[

e
NE

[
log cosh

(√
sinh β

NE[WN ]WN Z
) ∣
∣ Z

]]

=
∫∞
−∞ e

−z2/2+NE

[
log cosh

(
r

W2
N

NE[WN ]+
√

sinh β
NE[WN ]WN z

)]

dz

∫∞
−∞ e

−z2/2+NE

[
log cosh

(√
sinh β

NE[WN ]WN z
)]

dz

. (4.71)

We do a change of variables replacing z/
√
N by z, so that

P̃N
(
erYN

)
=

∫∞−∞ e
−Nz2/2+NE

[
log cosh

(
r

W2
N

NE[WN ] +
√

sinh β
E[WN ] WN z

)]

dz

∫∞−∞ e
−Nz2/2+NE

[
log cosh

(√ sinh β
E[WN ] WN z

)]

dz

=
∫∞−∞ e

−NGN (z;0)+NE

[
log cosh

(
r

W2
N

NE[WN ] +
√

sinh β
E[WN ] WN z

)−log cosh
(√ sinh β

E[WN ] WN z
)]

dz
∫∞−∞ e−NGN (z;0)dz

=
∫∞−∞ e

−NGN (z/N1/(δ+1);0)+NE

[
log cosh

(
r

W2
N

NE[WN ] +
√

sinh β
E[WN ] WN

z
N1/(δ+1)

)−log cosh
(√ sinh β

E[WN ] WN
z

N1/(δ+1)

)]

dz
∫∞−∞ e−NGN (z/N1/(δ+1);0)dz

,

(4.72)

where we did another change of variable in the last equality.
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In Lemmas 4.2 and 4.4, we proved that NGN (z/N 1/(δ+1); 0) converges for β = βc.
We Taylor expand the remaining term,

NE

[
log cosh

(
r

W 2
N

NE[WN ] +
√

sinh β

E[WN ]WN
z

N1/(δ+1)

)
− log cosh

(
√

sinh β

E[WN ]WN
z

N1/(δ+1)

)]

= E

[
tanh

(
√

sinh β

E[WN ]WN
z

N1/(δ+1)

)
r

W 2
N

E[WN ] + o(1)
]
. (4.73)

For E[W 3
N ] → E[W 3] < ∞, which includes power-law distributions with τ > 4, we

can use that | tanh(x)| ≤ |x |, so that
∣
∣
∣E

[
tanh

(
√

sinh β

E[WN ]WN
z

N1/(δ+1)

)
r

W 2
N

E[WN ]
]∣
∣
∣ ≤

√
sinh β

E[WN ]
|zr |

N1/(δ+1)

E[W 3
N ]

E[WN ] = o(1). (4.74)

For τ ∈ (3, 4] we use the deterministic choice of the weights as in (2.8) and δ = τ − 2
to rewrite

∣
∣
∣E

[
tanh

(
√

sinh β

E[WN ]WN

z

N 1/(δ+1)

)
r

W 2
N

E[WN ]
]∣
∣
∣

=
∣
∣
∣
1

N

N∑

i=1

tanh
(
√

sinh β

E[WN ]wi
z

N 1/(τ−1)

)
r

w2
i

E[WN ]
∣
∣
∣

=
∣
∣
∣
1

N

N∑

i=1

tanh
(
√

sinh β

E[WN ]
cwz

i1/(τ−1)

) rc2w
E[WN ]

(
N

i

)2/(τ−1) ∣
∣
∣

≤ |r |c2w
E[WN ]N

2/(τ−1)−1 + N 2/(τ−1)−1

√
sinh β

E[WN ]
|r z|c3w
E[WN ]

N∑

i=2

i−3/(τ−1). (4.75)

For τ > 3 the first term is o(1). For τ ∈ (3, 4),

N 2/(τ−1)−1
N∑

i=2

i−3/(τ−1) ≤ N− τ−3
τ−1

∫ N

1
i−3/(τ−1)di

= τ − 1

4 − τ

(
N− τ−3

τ−1 − N−1/(τ−1)
)

= o(1), (4.76)

whereas for τ = 4

N 2/(τ−1)−1
N∑

i=2

i−3/(τ−1) ≤ N− τ−3
τ−1

∫ N

1
i−3/(τ−1)di = N− τ−3

τ−1 log N = o(1). (4.77)

Hence, in all cases the integrands in the numerator and denominator of (4.72) have the
same limit. In Lemmas 4.3 and 4.5 it is proved that the integral in the denominator
converges. Since

∣
∣
∣E

[
tanh

(
√

sinh β

E[WN ]WN

z

N 1/(δ+1)

)
r

W 2
N

E[WN ]
]∣
∣
∣ ≤ rE[W 2

N ]
E[WN ] = O(1), (4.78)
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it follows by dominated convergence that the integral in the numerator has the same
limit. Hence,

lim
N→∞ P̃N

(
erYN

)
= 1, (4.79)

from which it follows that YN → 0 in probability w.r.t. P̃N . Hence, also
− 1

2 sinh β cosh β Y 2
N → 0 in probability w.r.t. P̃N . Since o(1) also converges to 0 in

probability, so does the sum:

EN = −1

2
sinh β cosh β Y 2

N + o(1) −→ 0 in probability w.r.t. P̃N . (4.80)

��
Remark 4.8 (Sharp asymptotics of the partition function). It follows from the changes
of variables in (4.9) and (4.57) that

ZN (βc, 0) = AN 1/2+1/(δ+1)2N (1 + o(1)).

For E[W 4] < ∞, this exponent equals 1/2 + 1/(δ + 1) = 3/4, whereas for τ ∈ (3, 5),
it is 1/2 + 1/(δ + 1) = (τ + 1)/(2τ − 2). Thus the partition function has finite-size
power-law corrections (in agreement with [6] where the classical Curie-Weiss model is
considered).

4.5. Scaling window. Instead of looking at the inverse temperature sequence βN = βc,N

we can also look at β ′
N = βc,N + b/N

δ−1
δ+1 for some constant b. The analysis still works

and the limiting density instead becomes

exp

{
b

2
cosh(βc)

E[W 2]2
E[W ]3 x2 − f (x)

}

. (4.81)

To see why this is correct we look at the following second moment, which shows up in
the expansion of GN , see (4.13):

1

2
E

[(
√

sinh(βc,N + b/N
δ−1
δ+1 )

E[WN ] WN

z

N 1/(δ+1)
+

r

N δ/(δ+1)

)2]

= z2

2N 2/(δ+1)
sinh(βc,N + b/N

δ−1
δ+1 )

E[W 2
N ]

E[WN ] +
√

sinh(βc,N + b/N
δ−1
δ+1 )E[WN ] zr

N
+ o(1/N ). (4.82)

In the first term, we Taylor expand the sine hyperbolic about βc,N , which gives

sinh(βc,N + b/N
δ−1
δ+1 ) = sinh(βc,N ) + cosh(βc,N )b/N

δ−1
δ+1 + O

(
1/N 2 δ−1

δ+1

)
. (4.83)

For the other term, and also for the other terms in the expansion of GN , it suffices to note
that √

sinh(βc,N + b/N
δ−1
δ+1 ) = √

sinh(βc,N ) + O
(
1/N

δ−1
δ+1

)
. (4.84)
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Hence, (4.82) equals

z2

2N 2/(δ+1)
+

z2

2N 2/(δ+1)
cosh(βc,N )

b

N
δ−1
δ+1

E[W 2
N ]

E[WN ] +
zr

N

E[WN ]
√
E[W 2

N ]
+ o(1/N )

= z2

2N 2/(δ+1)
+
bz2

2N
cosh(βc,N )

E[W 2
N ]

E[WN ] +
zr

N

E[WN ]
√
E[W 2

N ]
+ o(1/N ). (4.85)

In the expansion of GN (z/N 1/(δ+1); r) the first term in (4.85) drops as usual, whereas
the second term in (4.85) remains. After multiplication by N (cf. (4.18)), one has

−NGN (z/N 1/(δ+1); r) = bz2

2
cosh(βc)

E[W 2
N ]

E[WN ] − f

⎛

⎝ E[WN ]
√
E[W 2

N ]
z

⎞

⎠ + o(1). (4.86)

Using the substitution x = E[WN ]√
E[W 2

N ]
z the above converges in the limit N → ∞ to the

exponent in (4.81), as required. ��

Table 1. List of symbols used

Symbol Definition Description
N Number of vertices
[N ] {1, . . . , N } Set of first N positive integers
β Inverse temperature
B External field
HN Hamiltonian
ZN Partition function
φ limN→∞ 1

N log ZN Pressure of inhomogeneous Curie-Weiss model
wi Weight of vertex i
w (w1, . . . , wN ) Sequence of weights
�N

∑N
i=1 wi Total weight

GRGN (w) Generalized random graph with weights w and N vertices
pi j

wiw j
�N +wiw j

Probability of an edge between vertices i and j in GRGN (w)

WN Weight of uniformly chosen vertex

W Random variable chosen such that WN
D−→ W

ν E[W 2]/E[W ] Size-biased weight
νN E[W 2

N ]/E[WN ] Its finite volume analogue
τ Power-law exponent
QN Law of the random graphs
PN Annealed Ising measure
ψN

1
N log QN (ZN ) Annealed pressure

SN
∑N

i=1 σi Total spin
MN PN (SN /N ) Annealed magnetization
χN

∂
∂B MN Annealed susceptibility

ψ, M, χ limN→∞ of ψN , MN , χN , respectively
βc asinh(1/ν) Annealed critical inverse temperature
βc,N asinh(1/νN ) Its finite volume analogue
β, δ, γ , γ ′ Critical exponents, see Def. 2.9
z∗ Fixed point of (2.23)
P̃N Curie-Weiss approximation of PN , see (4.2)
Z̃N Curie-Weiss approximation of ZN , see (4.3)
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Limit distribution at βc instead of βc,N . In the above, we look at the inverse temper-
ature sequence βN = βc,N and then take the limit N → ∞. Alternatively, we could
immediately start withβ = βc. The scaling limit that will be seen depends on the speed at
which νN approaches ν. Indeed, from (2.24) and (2.34), one has βc−βc,N = O(ν−νN ).

We investigate this for the deterministic weights according to (2.8), and first inves-
tigate how close νN is to ν. By [3, Lemma 2.2], νN = ν + ζN−η + o(N−η) with
η = (τ − 3)/(τ − 1) and ζ an explicit non-zero constant. Thus, for τ > 5,
νN = ν + o(N−1/2). Hence, the results stay the same (see the previous discussion).

When τ ∈ (3, 5), instead, νN = ν + ζN−η + o(N−η) = ν + ζN− δ−1
δ+1 + o(N− δ−1

δ+1 ), so
we are shifted inside the critical window (see the previous discussion). Hence, in this
case the limiting distribution changes. ��
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