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Abstract: We study M-theory on a Calabi–Yau fourfold with a smooth surface S
of AN−1 singularities. The resulting three-dimensional theory has a N = 2 SU (N )

gauge theory sector, which we obtain from a twisted dimensional reduction of a seven-
dimensional N = 1 SU (N ) gauge theory on the surface S. A variant of the Vafa–
Witten equations governs the moduli space of the gauge theory, which—for a trivial
SU (N ) principal bundle over S—admits a Coulomb and a Higgs branch. In M-theory
these two gauge theory branches arise from a resolution and a deformation to smooth
Calabi–Yau fourfolds, respectively. We find that the deformed Calabi–Yau fourfold as-
sociated to the Higgs branch requires for consistency a non-trivial four-form background
flux in M-theory. The flat directions of the flux-induced superpotential are in agreement
with the gauge theory prediction for the moduli space of the Higgs branch. We illustrate
our findings with explicit examples that realize the Coulomb and Higgs phase transition
in Calabi–Yau fourfolds embedded in weighted projective spaces. We generalize and
enlarge this class of examples to Calabi–Yau fourfolds embedded in toric varieties with
an AN−1 singularity in codimension two.

1. Introduction

The construction of gauge theories via dimensional reduction on Calabi–Yau varieties
with singularities has become a powerful approach to study both supersymmetric gauge
theories and moduli spaces of Calabi–Yau varieties in the vicinity of singularities. For
gauge theories with eight supercharges—such as N = 2 theories in four spacetime
dimensions or N = 1 theories in five spacetime dimensions—the interplay between
Higgs and Coulomb branches of the gauge theory and the corresponding “extremal
transitions” between geometric phases of singular Calabi–Yau threefolds has led to
important insights into strongly coupled supersymmetric gauge theories and theirmoduli
spaces [1–8].
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While holomorphy strongly constrains supersymmetric theories with eight super-
charges [9–13], it is a less powerful tool for supersymmetric theories with four su-
percharges [14–16], e.g., N = 1 theories in four spacetime dimensions and N = 2
theories in three spacetime dimensions. As a consequence the analysis of the gauge the-
ory branches becomes more challenging but also richer. (For a proposal of a transition
in a system with only two supercharges see Ref. [17].)

In this work gauge theories with four supercharges are constructed from M-theory
on a Calabi–Yau fourfold. That is to say we want to make predictions regarding the rel-
evant moduli spaces (and transitions among them) of the low-energy physics governing
degrees of freedom localized near a complex codimension two singularity, which gives
rise to a three-dimensional N = 2 gauge theory, studied for instance in Refs. [18–27].
This should be contrasted with results obtained from codimension two singularities in
type II string theories for theories with eight supercharges studied in Refs. [3,4]. In both
scenarios the essential idea is that such codimension two singularities are associated to
non-Abelian enhanced gauge symmetry. This is understood from the duality betweenM-
theory compactified on K3 to the heterotic string compactified on T 3 [28]. The charged
degrees of freedom represent M2-branes wrapping the two-cycles whose volume van-
ishes in the singular limit. In the limit in which the K3 volume is large, bulk modes
decouple from the low-energy dynamics of the seven-dimensional modes localized at
the singular locus. The resulting gauge theory is described by a non-Abelian gauge the-
ory with sixteen supercharges. Compactifying further on a circle shows that IIA theory
near an ADE singularity exhibits enhanced gauge symmetry in six dimensions. Now the
charged modes are associated to wrapped D2-branes.

In a Calabi–Yau n-fold—n = 4 for the M-theory compactifications to three dimen-
sions or n = 3 for the IIA compactification to four dimensions—a codimension two
singularity can be thought of as a face of suitable codimension in the Kähler cone, in
which some number of divisors shrink to a (n − 2)-dimensional locus S along which
we find an ADE singularity. Deep in the interior of this face, the volume of S and those
of any relevant submanifolds are large, which means we can study the low-energy dy-
namics by a suitably twisted dimensional reduction along S of the gauge theory from
seven (respectively six) dimensions down to three (respectively four) dimensions. This
will lead to a prediction for anN = 2 gauge theory describing the low-energy dynamics
near the singular locus. Kähler deformations away from the singularity will describe
the Coulomb branch of this theory, while its Higgs branch, when present, will lead to a
prediction for the complex structure moduli space of the related compactification on the
Calabi–Yau space obtained via an extremal transition.

Compared to gauge theories with eight supercharges from singular Calabi–Yau three-
folds [3,4], constructing theories with four supercharges from Calabi–Yau fourfolds
requires additional geometric data [29,30]. Namely, in order to entirely describe the
geometrically engineered gauge theory, it is necessary to specify the M-theory com-
pactification on the Calabi–Yau fourfold together with a suitable four-form background
flux. That is to say, the branches of the gauge theory are geometrically realized only if
the four-form flux in the Calabi–Yau fourfold phases are specified correctly. The condi-
tions which the four-form flux in M-theory must satsify are rather stringent, but a large
number of examples have been constructed in recent years as a by-product of the study
of fluxes in F-theory [31–40], when those fluxes are being studied via M-theory. Note
that the extremal transitions we are concerned with in this paper cannot be seen directly
in F-theory because the Coulomb branch of the M-theory compactification does not lift
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to F-theory. Nevertheless, they are an important feature of the corresponding M-theory
compactification as was noticed in the above references.

ForCalabi–Yau fourfoldswith conifold singularities in codimension three—describing
three-dimensional N = 2 Abelian gauge theories at low energies—the role of back-
ground fluxes in the corresponding Calabi–Yau fourfold phases has been pioneered in
the context of F-theory in Ref. [33] and studied in detail in Ref. [26]. In this work,
we analyze the phase structure of SU (N ) gauge theories arising from AN−1 surface
singularities in a Calabi–Yau fourfold. To obtain the anticipated branches of the three-
dimensionalN = 2 SU (N ) gauge theory, we find that it is again essential to determine
the correct four-form fluxes in the associated Calabi–Yau fourfold phases. In this work
the focus is on SU (N ) gauge theories obtained from a twisted dimensional reduction
on the surface S with a trivial principal SU (N ) bundle. Then the Coulomb branch of
the gauge theory arises from the resolved Calabi–Yau fourfold phase in the absence of
background flux, while the Higgs branch requires a specific non-trivial four-form flux.
In this phase, the flux induces a superpotential which obstructs some of the Calabi–Yau
fourfold moduli. These obstructions become essential because they allow us to identify
the Higgs branch moduli space of the gauge theory with the unobstructed moduli space
of the Calabi–Yau fourfold. Thus, while the four-form flux of the Higgs branch must
fulfill the aforementioned consistency conditions, the flux is further constrained by the
requirement that the Higgs branch moduli space arises from the flat directions of the
flux-induced superpotential in the associated M-theory Calabi–Yau fourfold phase.

In order to explicitly check the anticipated interplay between phase transitions among
gauge theory branches and their realizations as Calabi–Yau fourfolds, it is necessary to
establish geometric tools to efficiently study the extremal transitions among the rele-
vant Calabi–Yau geometries. The work of Mavlyutov [41,42] provides a mathemati-
cal framework to describe explicit examples, in which both the resolved and deformed
Calabi–Yau fourfold phases are constructed as hypersurfaces and complete intersections
in toric varieties, respectively. Analyzing this large class of examples, we demonstrate
the anticipated agreement with the gauge theory predictions.

The organization of this work is as follows. In Sect. 2 we review the role of four-form
background fluxes for M-theory compactified on Calabi–Yau fourfolds. In Sect. 3 we
perform the twisted dimensional reduction of the N = 1 seven-dimensional SU (N )

gauge theory on the surface S with trivial SU (N )-principal bundle. For the resulting
three-dimensionalN = 2 gauge theory, we deduce the spectrum and predict the geome-
try of the Coulumb and Higgs branch moduli spaces. In Sect. 4 the analysis of the gauge
theory of the previous section is continued, emphasizing the M-theory compactification
point of view and deducing some general geometric properties of the resolved and de-
formed Calabi–Yau fourfold phases. In Sect. 5 we construct two explicit examples based
upon Calabi–Yau fourfold hypersurfaces with AN−1 surface singularities in weighted
projective spaces. We construct both the resolved and the deformed Calabi–Yau four-
fold phases in detail and verify the gauge theory predictions. In Sect. 6 we generalize
these examples to hypersufaces with AN−1 surface singularities embedded in toric va-
rieties. For this large class of examples, we again find agreement with the gauge theory
predictions. In Sect. 7 we present our conclusions.

2. M-Theory and G-Flux

The eleven-dimensional N = 1 gravity multiplet in the supergravity limit of M-theory
consists of the graviton and the anti-symmetric three-form tensor field as its bosonic
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degrees of freedom. The expectation value of the field strength of the three-form tensor
field is known as the four-formflux G. On a topologically non-trivial eleven-dimensional
Lorentzian manifold M11 a consistently quantized four-form flux G fulfills the quanti-
zation condition [43]

G

2π
+

p1(M11)

4
= H4(M11,Z), (2.1)

where p1(M11) is the first Pontryagin class of themanifold M11.1 In this notewe focus on
M-theory compactifications on a compact Calabi–Yau fourfold X to three-dimensional
Minkowski space M1,2. Then the quantization condition reduces to2

G

2π
− c2(X)

2
∈ H4(X,Z). (2.2)

As a consequence, when the second Chern class c2(X) of the Calabi–Yau fourfold X
is not divisible by 2, a consistent M-theory realization on the Calabi–Yau X requires a
non-zero and half-integral background flux G. Furthermore, due to the compactness of
X the Gauss law for the flux G demands the tadpole cancellation condition [29,30,43]

M = χ(X)

24
− 1

2

∫
X

G

2π
∧ G

2π
, (2.3)

in terms of the Euler characteristic χ(X) of the fourfold X and an integer M which
enumerates the net number of space-time filling (anti-)M2-branes. Note that the quanti-
zation condition (2.2) ensures that the right hand side of the tadpole condition is always
integral [43]. In particular, a Calabi–Yau fourfold with an even second Chern class c2(X)

admits an M-theory background with vanishing four-form flux G, because the evenness
of c2(X) geometrically implies that the Euler characteristic χ(X) of such a Calabi–Yau
fourfold X is divisible by 24, c.f., Ref. [43].

In this note we analyze the phase structure of M-theory arising from extremal tran-
sitions of Calabi–Yau fourfolds along AN−1 surface singularities. That is, we consider
a singular Calabi–Yau fourfold X0 with an AN−1 singularity along a smooth surface S,
and we assume that X0 admits a geometric transition to both a deformed Calabi–Yau
fourfold X � and a resolved Calabi–Yau fourfold X �.

In the context of M-theory compactifications extremal transitions among Calabi–
Yau fourfolds are not automatically in accord with both the tadpole and the quantization
condition [26,33]. Thus for a M-theory transition between X � and X � we must specify
the number of space-time filling M2-branes M� and M� and the background four-form
fluxes G� and G� in the respective Calabi–Yau fourfold phases. As in Ref. [26], we
consider phase transitions with a constant number of space-time filling M2-branes, i.e.,

M� = M�, (2.4)

which we assume are located far from the transition. With this assumption the physics of
the transition is governed by the degrees of freedom arising in the vicinity of the surface

1 For ease of notation we use the letter G for both the four-form flux and its cohomological representative.
2 For complex manifolds X the first Pontryagin class is given by p1(X) = −c2(T X ⊗ C) in terms of the

complexified tangent bundle T X ⊗C = T 1,0X ⊕ T 1,0X so that p1(X) = c1(X)2 −2c2(X) (with c1(X) = 0
for Calabi–Yau fourfolds X ).
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singularity of the Calabi–Yau fourfold X0, and the tadpole cancellation condition yields
the transition condition

χ(X �)

24
− χ(X �)

24
= 1

2

∫
X �

G�

2π
∧ G�

2π
− 1

2

∫
X�

G�

2π
∧ G�

2π
, (2.5)

where the left-hand side is solely determined by the topological change between the
transition fourfolds X � and X �.

Choosing the right-hand side of (2.5)—combined with the quantization condition
(2.2)—ensures that a M-theory phase transition is in accord with known anomaly can-
cellation conditions. It, however, does not guarantee that a transition can actually occurs
dynamically. As the M-theory background fluxes generate a flux-induced superpotential
W and/or a twisted superpotentials W̃ [44]

W =
∫

X
� ∧ G

2π
, W̃ =

∫
X

J ∧ J ∧ G

2π
, (2.6)

an unobstructed extremal transition in M-theory is only realized along a flat direction of
the flux-induced scalar potential V , which is a function of these flux-induced superpo-
tentials. Here� is the holomorphic four form and J is the Kähler form of the Calabi–Yau
fourfold X .

A simple solution for a dynamical M-theory transition is realized by a vanishing flux
G� and a non-vanishing primitive flux G�, i.e.,

G� �= 0 with G� ∧ J = 0, G� = 0, (2.7)

provided that the quantization condition (2.2) for both X � and X � as well as the tadpole
relation (2.5) are met. This solution is of particular importance to us, as it geometrically
realizes the Coulomb–Higgs gauge theory transitions that we focus on in this work. On
the one hand—due to G� = 0—none of the geometric M-theory moduli are obstructed
in the resolved Calabi–Yau fourfold X �. On the other hand, there is a flux-induced
superpotential

W � =
∫

X �

� ∧ G�

2π
, (2.8)

which generates a potential for some of the complex structure moduli fields in the de-
formed Calabi–Yau fourfold X �. At low energies the massive modes of the obstructed
complex structuremoduli are integrated out and a flux-restricted complex structuremod-
uli space M�

cs(G�) ⊂ M�
cs remains. Geometrically, we can think of the unobstructed

complex structure moduli as those complex structure deformation, under which the
flux G� remains of Hodge type (2, 2), whereas the Hodge structure of G� varies with
respect to the obstructed complex structure moduli. Therefore, it is the flux-restricted
moduli spaceM�

cs(G�) that yields the flat directions of the superpotential W � and should
thus be compared to the moduli space in the effective gauge theory description at low
energies. Note that the Kähler moduli of the Calabi–Yau fourfold X � nevertheless re-
main unobstructed because by the primitivity assumption of the flux G� no twisted
superptoential is generated.
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3. Field Theory Analysis

In this section we discuss the predictions one obtains regarding the relevant moduli
spaces from our understanding of the low-energy physics governing degrees of freedom
localized near a (complex) codimension two singularity in M-theory. We start with a
brief review of the results of Refs. [3,4] on codimension two singularities in type II
string theory, and proceed to contrast this with the situation in M-theory.

3.1. Type IIA string theory on a Calabi–Yau threefold. The moduli space of type II
compactifications on X � is identified with the moduli space of Calabi–Yau metrics and
closed antisymmetric tensor fields on X �. Following Ref. [3] we discuss the IIA string in
the vicinity of a face of theKähler cone atwhich divisors are contracted to a smooth curve
C of AN−1 singularities of genus g; the superconformal field theory will be singular for
suitably tuned B-field.

The transverse AN−1 singularity is resolved by blowing up along C . The vanishing
cycles are described by a chain of N −1 two-spheres�i in this space, with their intersec-
tion matrix corresponding to the Dynkin diagram of AN−1. As we move about C these
spheres sweep out N−1 divisors Ei on M . In homology there are then (N−1) shrinking
two-cycles �i , and N−1 shrinking four-cycles Ei . The light soliton states are given by
D2-branes wrapping chains of the form �i ∪ �i+1 ∪ · · · ∪ � j (with both orientations)
and under the Ramond–Ramond gauge symmetry associated to Ei their charges fill out
the roots of AN−1.

In the limit in which C is large (deep in the associated face) we can approximately
think of the low-energy theory as a twisted compactification on C of the six-dimensional
theory obtained by including the massless solitons.

In flat space the six-dimensional theory contains a vector VM , two complex scalars
φ, and two fermions, all in the adjoint representation of SU (N ). The charged com-
ponents are the soliton states; the neutral components are supplied by the moduli of
the ALE space. The fields transform under a global SU (2) × SU (2) R-symmetry.
The compactification breaks the local Lorentz group as SO(6) → SO(4) × U (1) ∼
SU (2) × SU (2) × U (1), and the requisite spin was determined in Ref. [3] to be the
identification of

J ′ = JL − J (1)
3 − J (2)

3 , (3.1)

as the generator of rotations in tangent space T C , where JL is the “standard” Lorentz
generator, and the other two correspond to the Cartan elements of the SU (2) factors.
In four dimensions this leads to a theory with N = 2 supersymmetry, SU (N ) gauge
symmetry, and g massless hypermultiplets in the adjoint representation of the gauge
group. For g > 1 the theory is IR free and a classical description is reliable in the
vicinity of the singular locus; for a discussion of the special cases g ≤ 1, c.f., Ref. [3].

The local structure of the moduli space near the singularity is modeled—deep in the
cone—by the structure of the space of vacua of this gauge theory, which leads to the
following predictions:
Kähler deformations away from the singular locus (and the associated B-fields) pa-
rameterize the Coulomb branch of the theory, along which the scalar φ in the vector
multiplet acquires an expectation value, constrained by the potential to be diagonal-
izable by a gauge transformation. The eigenvalues of φ, subject to the tracelessness
condition, form coordinates on a SN cover of the Coulomb branch, on which the Weyl
group W(SU (N ))  SN acts via the N − 1 dimensional representation. At generic
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points—corresponding to smooth X �—the unbroken gauge symmetry is U (1)N−1, and
the massless matter comprises g(N − 1) neutral hypermultiplets. The Weyl group acts
on these as well via g copies of the same representation, so locally the moduli space of
X � is a quotient of a product of special Kähler manifolds.

In addition, the gauge theory has a Higgs branch in which the hypermultiplets ac-
quire nonzero expectation values. In terms of the compactification on X � this is the
condensation of solitonic states [2]. This describes the deformations of X � smoothing
the singularity. At generic points on this branch the gauge group is completely broken
and the (quaternionic) dimension of the Higgs branch is

dimHH = (g − 1)(N 2 − 1). (3.2)

The Hodge numbers of the two spaces are thus related by

h1,1(X �) = h1,1(X �)−(N −1), h2,1(X �) = h2,1(X �) + (g − 1)(N 2−1) − g(N − 1),
(3.3)

where g(N − 1) is substracted in the last line of (3.3) since these moduli already appear
on the Coulomb branch, as we recall below.

We can somewhat refine this prediction. There are special submanifolds on the
Coulomb branch (meeting at the origin) along which non-Abelian subgroups of SU (N )

are unbroken. These correspond exactly to fixed point sets of the SN action, where
eigenvalues of φ coincide. In general an unbroken symmetry

SU (k1) × · · · × SU (kp) × U (1)p−1 (3.4)

where
∑

ki = N , ki ≥ 1 (and factors of SU (1) are simply to be ignored) will occur
in codimension N − p, and there will be g massless hypermultiplets in the adjoint
representation of the unbroken group. We can allow these to acquire expectation values,
breaking the non-Abelian part completely and leading to a mixed branchH(k1,...,kp) with
the Higgs component having dimension

dimHH(k1,...,kp) = (g − 1)
p∑

i=1

(k2i − 1) + g(p − 1). (3.5)

We can also see the transition to the Higgs branch along a different path which will
prove more transparent in the geometrical analysis. At a generic point on the Coulomb
branch, we can turn on expectation values for the g(N − 1) neutral hypermultiplet
scalars.3 Then, as we tune φ to zero, the non-Abelian symmetry is not restored, and
the gauge symmetry remains U (1)N−1. The theory is still IR free and we can use
classical analysis. The hypermultiplet expectation values lead to masses for the off-
diagonal components of rank N (N −1). Thus there are at the singular point an additional
(g−1)N (N −1) charged hypermultiplets with theU (1) charges of g −1 adjoints. When
these acquire generic expectation values the gauge symmetry is Higgsed leading back
to the Higgs branch dimension in Eq. (3.2). In other words, we can rewrite the second
equation in (3.3) as

h2,1(X �) = h2,1(X �) + (g − 1)(N 2 − N ) − (N − 1), (3.6)

understanding the additional moduli as arising fromHiggsing theU (1)N−1 under which
the (g−1)N (N − 1) hypermultiplets are charged.

3 These are the moduli that we alluded to immediately after Eq. (3.3).
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3.2. M-theory on a Calabi–Yau fourfold. The discrete choices determining a compact-
ification of M-theory to three dimensions include, as discussed above, a choice of a
topological type for the Calabi–Yau fourfold X as well as a choice of the four-form flux
G and the number M ofM2-branes, satisfying the conditions (2.2) and (2.3). Given such
a choice, the moduli space is determined by the subspace of the space of Calabi–Yau
metrics on X for which the chosen four-form flux G is of Hodge type (2, 2) as well as
primitive. There are additional moduli associated to periods of the three-form A3—i.e.,
h2,1(X) of these—as well as to the positions of the M2-branes.

As above we wish to consider a face of the Kähler cone of a Calabi–Yau fourfold X �

at which a divisor contracts to a smooth surface S of transverse AN−1 singularities. As
above, this is resolved by blowing up N − 1 times along S producing N − 1 exceptional
divisors Ei and the vanishing cycles are the Ei as well as N − 1 two-cycles �i . We will
assume here that we can make a choice of flux on X � such that generic points in the
vicinity of this face correspond to Kähler classes for which the flux is primitive. This
means that there areM-theory vacua associated to a smooth X � in which the singularities
have been resolved. This implies that the flux, if nonzero, is primitive for smooth X�,
meaning that—if J i are the (1, 1) cohomology classes dual to Ei—then G� ∧ J i = 0
for all i . In the cases we consider here this very restrictive condition will be met by
setting G� = 0. Further, we assume that the positions of the M2-branes are all far from
the contracting divisors, so that the worldvolume degrees of freedom decouple from the
low-energy theory of the modes at the singularity.

In this situation, we can perform a calculation of the low-energy theory in the vicinity
of the singular locus along similar lines to those followed above. In a suitable region (near
a point deep in the face of the Kähler cone) bulk modes decuple from the dynamics near
the singular locus and the low-energy dynamics is given by aN = 1 seven-dimensional
supersymmetric Yang–Mills theory on M1,2 × R

4, in which the charged modes are
excitations of membranes wrapping vanishing cycles and the neutral modes describe
the moduli. We then want to perform a suitably twisted dimensional reduction of this
seven-dimensional theory, in which we replace R

4 by a compact Kähler manifold S,
such that we obtain an N = 2 theory in three dimensions.

The seven-dimensional supersymmetric Yang–Mills theory is obtained by dimen-
sional reduction from ten dimensions and is given in Ref. [45]. It has a global SU (2)R
R-symmetry, and the fields are a gauge field AM , a triplet Si of scalars, and a doublet
	α of gaugini satisfying the symplectic Majorana condition

	α = εαβ B	β∗, (3.7)

where the complex conjugation matrix B satisfies

B−1�M B = �M ∗ B B∗ = −id. (3.8)

All the fields transform in the adjoint representation of the gauge group.
As noted above, the charged fields correspond to excitations of M2-branes wrapping

the collapsing cycles, while the Cartan elements are associated to moduli of the com-
pactification on X �. The gauge field A is associated to periods of the three-form field
A3 along the vanishing cycles; the scalars Si are moduli of the metric resolving the
singularity.

The supersymmetry variations are parameterized by a symplectic Majorana spinor
doublet εI and the relevant one for us is [45]

δ	α = −1

4
FM N �M N εα +

i

2
�M DM

(
Siσ

i
)

α

βεβ +
1

4
εi jk[Si , S j ](σk)α

βεβ. (3.9)
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3.2.1. Twisted dimensional reduction. When we dimensionally reduce, the Lorentz
group is reduced SO(1, 6)× SU (2)R → SO(1, 2)× SO(4)× SU (2)R with the SO(4)
eventually broken by the curvature of S. The representations inwhich the fields transform
reduce as

A : (7, 1) → (3, 1, 1) ⊕ (1, 4v, 1),
S : (1, 3) → (1, 1, 3),
	 : (8, 2) → (2, 4s, 2). (3.10)

Since S is Kähler, the structure group is in fact U (2) ∼ SU (2)L × U (1)I , under
which

4v → 21 ⊕ 2−1, 4s → 20 ⊕ 11 ⊕ 1−1. (3.11)

In a twisted reduction, we will replace U (1)I generated by JI with U (1)′ generated
by the linear combination J ′ = JI + 2J 3

R . The curvature of S will then couple to the
twistedU (2) and the unbroken global symmetry will beU (1)R generated by 2J 3

I . Under
SO(1, 2) × SU (2)L × U (1)′ × U (1)R we have the decompositions

(7, 1) → (3, 1)0,0 ⊕ (1, 2)1,1 ⊕ (1, 2)−1,−1,

(1, 3) → (1, 1)2,2 ⊕ (1, 1)−2,−2 ⊕ (1, 1)0,0,
(8, 2) → (2, 2)1,1 ⊕ (2, 2)−1,−1 ⊕ (2, 1)2,1 ⊕ (2, 1)0,−1 ⊕ (2, 1)0,1 ⊕ (2, 1)−2,−1.

(3.12)

We identify the correspondingmodesof thefields by their transformationunder SU (2)L×
U (1)′ as

AM → Aμ, Am, Am , Si → q,q , 	 → ψm, ψm, χ, λ−, λ+, χ. (3.13)

Our model for the local moduli space will be the space of supersymmetric vacua of
this theory. Following Ref. [46], we will construct this by evaluating the supersymmetry
variation of 	+ under the two unbroken supersymmetries. Setting this to zero yields a
slight modification of the Vafa–Witten equations [47]

F (2,0) = 0, J ∧ F (1,1) + [q,q] = 0, [q,�] = 0,

D� = D� = 0, Dq = 0; (3.14)

setting the variation of 	− to zero yields the complex conjugate equations by the sym-
plectic Majorana condition.

3.2.2. Predictions for the moduli space. Solutions to these equations provide our pre-
dictions for the local structure of the moduli space. Clearly the space of solutions breaks
up into disjoint components labeled by the Chern classes of the flux F . In the situationwe
are describing, in which the generic point in the space of compactifications on X� near
the singular locus is smooth, the bundle we obtain will be flat. The charged components
of the curvature are certainly zero away from the singular locus since they are carried
by wrapped branes which become massive; the neutral components can be described as
the integrals of G� over the fibers �i , which we are assuming vanish.

Three dimensional N = 2 gauge theories contain additional discrete parameters,
supersymmetric Chern–Simons couplings for the gauge fields. In general, the effective
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gauge theory describing the low-energy physics near a singularity will have nonzero
Chern–Simons couplings and these can have different values between the Coulomb and
Higgs vacua [26]. In the cases we discuss here, these couplings vanish on the Coulomb
branch and the fact that all of the chiral multiplets are in real representations means this
will also be the case on the Higgs branch.

Linearizing about a trivial SU (N ) principal bundle, the modes of (Aμ, λ±,�) form
vector multiplets with masses associated to eigenvalues of the Laplacian on S. The
modes of (Am, ψm) form chiral multiplets with masses associated to eigenvalues of
the Laplacian on (0, 1)-forms on S. The modes of (q, χ) form chiral multiplets with
masses associated to eigenvalues of the Laplacian on (2, 0)-forms on S. The massless
modes will thus be h0(S) = 1 vector multiplet and h0,1(S) + h2,0(S) chiral multiplets,
all in the adjoint representation of the gauge group. For the multiplicities of the chiral
multiplets, we will also use the irregularity q and the geometric genus pg , which are
respectively the conventional birational invariants for the dimensions h1,0(S) = h0,1(S)

and h2,0(S) = h0(KS) of the algebraic surface S.
We can then write the low-lying excitations in terms of a basis ei for H0,1(S), a basis

E A for H0(KS) and the dual basis E B for H0(K S), i.e.,

� = φ, Am =
∑

i

ai ei , q =
∑

A

qA E A, q =
∑

B

qB E
B
, (3.15)

with the three-dimensional fields, φ, ai , qA, qB , taking values in the Lie algebra and φ

is real. In terms of these the conditions for unbroken supersymmetry reduce to

[ai , φ] = 0,
∑
j,A

Ci j A[a j ,qA] = 0, [qA, φ] = 0,

[qB, φ] = 0 ,
∑

A

[qA,qA] = 0 ,
(3.16)

where

Ci j A =
∫

S
ei ∧ e j ∧ E. (3.17)

The superpotential that leads to these equations has the form

W =
∑
i, j,A

Ci j A Tr
(
[ai , a j ]qA

)
. (3.18)

In the following we restrict our analysis to surfaces S with q = 0 and pg ≥ 1. As
we will see in the following, this assumption ensures that there are no non-perturbative
corrections to the Coulomb branch of the gauge theory.

The model then has a Coulomb branch along which the real scalar φ acquires an
expectation value.By a gauge transformation this can be taken to lie in theCartan algebra.
As in the previous subsection we can use the first N − 1 eigenvalues as coordinates, and
the Weyl groupW(SU (N ))  SN acts on these. At generic points the gauge symmetry
is U (1)N−1. In fact [27] the Coulomb branch is complex Kähler. The periods of the
dual six-form A6 along Ei are neutral scalars dual to the neutral gauge bosons, and
they combine with φi to form holomorphic coordinates. At a generic point the massless
modes of qA are those commuting with φ so we have pg(N − 1) neutral massless chiral
mutiplets. Again, the Weyl group SN acts on these and the moduli space is a quotient.
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There is another branch of the moduli space, along which qA acquires a nonzero
expectation value, completely breaking the gauge group and accordingly φ becomes
massive. The last equation of Eqs. (3.14) is the moment map for the adjoint action of
the gauge group leading as usual to a Higgs branch of complex dimension

dimCH = (pg − 1)(N 2 − 1). (3.19)

This (Higgs) branch is interpreted as a local model for the moduli space of the com-
pactification on X �, but we will in general find nonzero flux. Thus (3.19) does not lead
directly to a prediction for the deformation space of the moduli of X �.

As above, we have the more refined picture of the way these branches intersect at
singular loci. At the codimension N − p locus in the Coulomb branch along which the
unbroken gauge group is given by Eq. (3.4) we will have pg massless chiral multiplets
in the adjoint representation. Turning on generic expectation values for qA breaks the
non-Abelian part completely and leads to a mixed branch H(k1,...,kp) with the Higgs
component having dimension

dimCH(k1,...,kp) = (pg − 1)
p∑

i=1

(k2i − 1) + pg(p − 1). (3.20)

As in the previous subsection, there is another path in moduli space implementing
the transition from the Coulomb branch to the Higgs branch. At a generic point on the
Coulomb branch we can turn on expectation values for the pg(N − 1) neutral chiral
fields. Then, as we tune φ to zero the gauge symmetry remains U (1)N−1. The D-term
condition—implementing the third equation of Eq. (3.14)—then leads to a mass term
for the charged chiral fields leaving (pg − 1)N (N − 1) charged fields with the charges
of pg − 1 adjoints, leading as was found in Ref. [26] to a Higgs branch along which the
gauge symmetry is completely broken and whose dimension agrees with our calculation
above.

3.2.3. Quantum corrections and region of validity. Our discussion above has been en-
tirely classical, and we need to address the degree to which quantum corrections might
invalidate our conclusions. We are using the effective three dimensional field theory to
make predictions about the moduli space of M-theory compactifications, and relating
this to the moduli space of Kähler and complex structure deformations of the Calabi–
Yau fourfolds X � and X �, respectively. We thus need to check separately the degree to
which our description of the space of vacua is subject to corrections from non-trivial
low-energy dynamics in the three-dimensional gauge theory, and the degree to which
the geometric moduli space agrees with the space of M-theory compactifications. In the
examples of Sect. 3.1 the four dimensional gauge theory was (for g > 1) IR free and
semiclassical considerations provided an accurate description of the moduli space near
the origin. The Coulomb branch suffered no string corrections, and α′ corrections to
the metric were computable using mirror symmetry or by taking advantage of special
geometry to relate them to the holomorphic prepotential; the relevant parts of this, deep
in the singular cone, were explicitly computed in Ref. [3]. On the Higgs branch, α′
corrections were absent and non-perturbative string effects were suppressed deep in the
cone.

In the case at hand, thefirst newphenomenon is that the encountered three-dimensional
gauge theories are strongly coupled at low energy. The low-energy dynamics ofN = 2
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gauge theories in three dimensions has been studied, for example in Refs. [18–27]. At
the origin, we find non-trivial interacting superconformal field theories for pg > 1.
For pg = 1 the low-energy supersymmetry is enhanced to N = 4. The metric on the
Coulomb branch is subject to both perturbative and non-perturbative corrections. For
pg ≥ 1 the singularity at the origin of the Coulomb branch is unchanged by these, and
the Higgs branch has the predicted singular structure [20].

The moduli space of M-theory compactifications on X is the space of Calabi–Yau
metrics and A3 periods subject to the conditions imposed byG-flux. Themetric is subject
to corrections but the superpotential is corrected only by five-brane instantons [48]. Deep
in the cone we expect the contributions of these to be suppressed, with the exception of
the contributions of five-branes wrapping the vanishing divisors Ei in the case of the
Calabi–Yau fourfold X �. In the absence of background flux G�, these can contribute to
the superpotential only if χ(Ei ,OEi ) = 1. But in the case at hand, the divisors Ei are
P
1-fibrations over the surface S, and therefore we find χ(Ei ,OEi ) = pg − q + 1. In the

cases studied here, where q = 0 and pg > 0, these instantons cannot contribute to the
superpotential. Therefore, the classical description of the moduli space remains valid.
The absence of a non-perturbative superpotential can be taken as another confirmed
prediction of our identification of the gauge theory at the singularity.4

4. General Features of SU(N)Models

In this section we describe some general geometric properties of the SU (N ) gauge theo-
ries studied in theprevious section. In particular,we establish howM-theory compactified
on Calabi–Yau fourfolds realizes the phase structure of the SU (N ) gauge theory.

4.1. Gauge theories from surface singularities in Calabi–Yau fourfolds. To realize geo-
metrically the twisted dimensional reduction along the surface S, let us consider a
Calabi–Yau fourfold X0 with a smooth surface S of AN−1 singularities. We assume
for simplicity of exposition that a tubular neighborhood of the surface S in X0 is given
by the hypersurface equation

xy = zN , (4.1)

in the total space of the bundle L1 ⊕L2 ⊕KS with x , y and z sections of the bundles L1,
L2 and the canonical line bundle KS , respectively. We further assume that the canonical
line bundle KS is sufficiently ample.

M-theory compactified on the singular Calabi–Yau fourfold X0 yields the twisted
dimensional reduction along S studied in Sect. 3.2.1. That is to say that the eleven-
dimensional supercharge Q11 dimensionally reduces on the surface S to the seven-
dimensional supercharge Q7, which—due to the origin of S as a subvariety in the am-
bient space X0 with trivial canonical class—becomes a section of the canonical spinc

bundle Sc
S . This canonical spin

c bundle arises from a spinc structure on S associated
to a spin structure on T S ⊕ KS . Therefore—assuming first that the surface S has a
spin structure—the twisted dimensional reduction along S amounts to tensoring the spin
bundle SS of the surface S with K 1/2

S , namely

SS
⊗K 1/2

S−−−−→
twist

SS ⊗ K 1/2
S = Sc

S . (4.2)

4 See Ref. [21], for a calculation of the non-perturbative superpotential in a situation where it is nonzero.
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But even if the surface S is not spin—i.e., both the spin bundle SS and the square
root of K 1/2

S are simultaneously ill-defined—we can still formally perform the twist by

tensoring with K 1/2
S , because there exists always a canonical spinc structure on S such

that the resulting spinc bundle Sc
S is well-defined.5

Since the twist acts on the supercharges, which generate the resulting spectrum of
three-dimensional N = 2 supermultiplets, tensoring with K 1/2

S realizes the twist of JI
as in Sect. 3.2.1. This yields geometrically the previously determined three-dimensional
N = 2 supersymmetric Yang–Mills spectrum of a single vector multiplet and pg + q
chiral matter multiplets in the adjoint representation of SU (N ).

4.2. The change in topology for the Coulomb–Higgs phase transition. In the M-theory
compactification the Coulomb branch of the gauge theory realizes a crepant resolution
of the singular Calabi–Yau fourfold X0 to the resolved Calabi–Yau fourfold X �. This
amounts to replacing the AN−1 surface singularity along S in X0 by a chain of N
P
1-bundles over S.
The Higgs branch of the gauge theory describes deformations of the singular Calabi–

Yau fourfold X0 to the Calabi–Yau fourfold X �, locally given by the deformed hyper-
surface equation

xy = zN +
N∑

j=0

ωN− j z
j . (4.3)

Here ω j are sections of the pluri-canonical line bundles j KS .
To determine the change in Euler characteristic for the transition, we compare the

smooth Calabi–Yau fourfold X � to the smooth Calabi–Yau fourfold X �. Let us specialize
to the fourfold X � arising fromω j = 0 for j < N but with a generic sectionωN of N KS ,
such that the Eq. (4.3) becomes xy = zN +ωN . Then the AN−1 surface singularity in X �

is replaced by a bundle of a bouquet S2 ∨ · · ·∨ S2 of N − 1 two-spheres collapsing over
the curve C ⊂ S, where C is the vanishing locus of ωN . We assume that for the generic
choice of ωN the curve C is smooth.6 Thus, as both smooth Calabi–Yau fourfold phases
X � and X � arise from topological fibrations of a bouquet of N −1 two-spheres over S\C,
the change in Euler characteristic between X � and X � is determined by the difference in
Euler characteristic of the fibrations along the curve C. The Euler characteristic of the
bouquet of N two-spheres fibered over C in X � becomes N · χ(C) and compares to the
Euler characteristic 1 · χ(C) of the collapsed fibers over C in X �, so that

χ(X �) − χ(X �) = (N − 1)χ(C). (4.4)

The Euler characteristic χ(C) in turn is minus the degree of the canonical bundle KC of
C, which by the adjunction formula is computed to be KC = (N + 1)KS|C . Therefore,
the canonical bundle KC has degree (N + 1)N K 2

S , and we arrive with Eq. (4.4) at

χ(X �) − χ(X �) = N (N − 1)(N + 1)K 2
S . (4.5)

5 A non-vanishing second Stiefel–Whitney class w2(S) ∈ H2(S,Z2) is the obstruction to the existence
of a spin structure on S. As w2(S) = w2(KS), it is also the obstruction to the existence of a square root of
the canonical line bundle. Therefore, we have w2(T S ⊕ KS) = w2(S) + w2(KS) = 0, which implies the
existence of a canonical spinc structure on S.

6 If the generic curve C is not smooth, additional massless matter fields are present in the gauge theory
spectrum.
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This argument generalizes from the AN−1 case toCalabi–Yau fourfolds X0 with a smooth
surface S of ADE singularities. Then the curve C ⊂ S becomes the vanishing locus of
a section of the line bundle hG KS in terms of the dual Coxeter number hG of the ADE
group G, and we obtain

χ(X �) − χ(X �) = rGhG(hG + 1)K 2
S, (4.6)

where rG is the rank of the group G.

4.3. The gauge theory and geometric moduli space. Before we study explicit examples
in the next section,wemake some further general remarks about the relationship between
the gauge theory and the geometric moduli spaces.

In the Coulomb branch of the gauge theory the adjoint-valued scalar field φ of the
vector multiplet acquires an expectation value in the Cartan subalgebra

〈φ〉 = Diag (φ1, . . . , φN ) , φ1 + · · · + φN = 0, (4.7)

which generically breaks the gauge group SU (N ) to its maximal Abelian subgroup
U (1)N−1. The Weyl group W(SU (N ))  SN of SU (N ) permutes the expectation
values φ j , j = 1, . . . , N . Hence, we can view the expectation values φ j as coordinates
on the SN -covering space of the N −1-dimensionalmoduli space of theCoulomb branch.
To describe the Coulomb moduli space itself—and not its N !-fold cover—we pick in
the Weyl orbit of diagonal expectation values (4.7) a representative obeying

φ1 ≥ φ2 ≥ · · · ≥ φN . (4.8)

In the Calabi–Yau fourfold X � the non-negative differences J j = φ j − φ j+1, j =
1, . . . , N −1, become Kähler coordinates for the N −1 exceptional divisors in the chain
of N − 1 P1 fibrations over the surface S. If any two expectation values in 〈φ〉 coincide,
the representative (4.8) of the Weyl orbit ceases to be unique and the gauge group is not
entirely broken to the maximal Abelian subgroup. Geometrically, some of the Kähler
moduli J j vanish, and hence we are on the boundary of the Kähler cone. This means
that the AN−1 surface singularity is not entirely resolved in the Calabi–Yau fourfold X0,
which geometrically reflects that the gauge group is only partially broken to a group
properly containing its maximal Abelian subgroup.

In the Higgs branch of the gauge theory it is the adjoint-valued matter fields q
that acquire an expectation value. The expectation values of the matter fields q are
adjoint-valued sections of H0(S, KS) and deform the ADE surface singularity (4.1).
The deformations are governed by invariant theory of the SU (N ) gauge group and take
the form

xy = det (z · IN + M) . (4.9)

Here M is a traceless N × N matrix whose entries are sections of the canonical line
bundle KS . The deformed hypersurface Eq. (4.9) is manifestly Weyl invariant, as the
Weyl group SN acts on q by conjugation with permutation matrices

σ ∈ SN : q �→ P†
σ q Pσ . (4.10)

We observe that—in agreement with the gauge theory prediction for the Higgs branch
in Sect. 3.2.2—the invariant deformations (4.9) parametrize a (N 2 − 1) · (pg − 1)-
dimensional subspace in the space of all hypersurface deformation (4.3). In theM-theory
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compactification on the Calabi–Yau fourfold X �, the gauge invariant deformations (4.9)
become the flat directions of the superpotential (2.8) arising from a suitable four-form
flux G�. The flux G� is required to be primitive, to fulfill the quantization condition (2.2),
and to accommodate for the tadpole cancellation condition (2.5), which implies together
with Eq. (4.5) that

1

2

∫
X �

G�

2π
∧ G�

2π
= 1

24
N (N − 1)(N + 1)K 2

S . (4.11)

We now claim that in the neighborhood where the Calabi–Yau fourfold X � is described
in terms of the hypersurface Eq. (4.9) the flux G� is locally given by

G�

2π
= N − 1

2
R − T . (4.12)

Here R is the two-dimensional algebraic cycle arising from the intersection

R : x = z = 0, (4.13)

while T is the two-dimensional algebraic cycle given by

T : x = 0, rank S ≤ N − 2, (4.14)

in terms of the N×(N−1) submatrix S of the N×N matrix z·IN+M obtained by deleting
the last column. Note that the construction of the submatrix S is not gauge invariant,
as gauge transformations act upon the matrix z · In + M by conjugation. As a matter
of fact there is a whole Weyl orbit of algebraic cycles R obtained form conjugation by
permutationmatrices according toEq. (4.10),which give rise to equivalent flux-restricted
moduli space M�

cs(G�) in agreement with the Higgs branch moduli space (3.19).
The detailed local analysis of Calabi–Yau fourfolds with AN−1 singularities in codi-

mension two together with the structure of local background fluxes is presented else-
where [49]. Here we justify our proposal in the context of extremal transitions in global
Calabi–Yau fourfolds.Namely, for a rather large class of toric example to be studied in the
next two sections, we explicitly spell out a consistent background flux G�, which in the
vicinity of the deformed AN−1 surface singularity agrees with our local proposal (4.12)
for the four-form flux G�.

We observe that the Weyl group W(SU (N ))  SN acts on the matrix M according
to Eq. (4.10), and hence induces a non-trivial action on the submatrix S of the flux
component T , generating the Weyl orbit of fluxes G�. While non-trivially acting on the
flux G�, the Weyl group SN does not change any complex structure moduli because
det (z · IN + M) remains invariant with respect to conjugation by permutation matrices.
Therefore, the Weyl group action realizes a monodromy in the M-theory moduli space,
which is fibered over the complex structure moduli space of X �. Nevertheless, the re-
stricted complex structure moduli spaceM�

cs(G�)—identified with the Higgs branch of
the gauge theory—remains invariant under the monodromy action upon the flux G�. It
is rather surprising that we find a remnant of the Weyl group in the M-theory moduli
space of the Calabi–Yau phase associated to the gauge theory Higgs branch. It would
interesting to further study the implications of this observation. We will give an explicit
example of this phenomenon in Sect. 5.1.
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5. Examples in Weighted Projective Spaces

In this section we provide two examples of hypersurfaces in weighted projective space
to help fix ideas in a global setting: an SU (2) example (which is similar to an example
previously presented in Ref. [33]) and an SU (6) example.

5.1. Calabi–Yau fourfolds from P
(1,1,2,2,2,2). We consider a generic weighted hypersur-

face X0 of weight 10 in P(1,1,2,2,2,2) defined by a weight 10 polynomial f10(x1, . . . , x6),
its desingularization X �, and its smoothing X �.

5.1.1. Geometric data. SinceP(1,1,2,2,2,2) is the quotient ofP5 by theZ2-action given by
multiplication of the coordinates (x1, . . . , x6) by (−1,−1, 1, 1, 1, 1), the codimension
two locus Y defined by x1 = x2 = 0 has a transverse A1 singularity. Then Y  P

3, with
(x3, x4, x5, x6) serving as homogeneous coordinates. We can resolve the singularity of
P

(1,1,2,2,2,2) by blowing up Y to get a smooth variety P̃. Then the proper transform X �

of X0 in P̃ is smooth.
Furthermore, X0 is singular along S = X0∩Y ,whichhas equation f10(0, 0, x3, x4, x5,

x6) in the homogeneous coordinates of Y  P
3. Since x3, . . . , x6 each have weight 2,

then the weighted polynomial f = f10(0, 0, x3, x4, x5, x6) has degree 5 as an ordi-
nary polynomial, and we have identified S as a quintic hypersurface in P3, i.e. a quintic
surface. By the Lefschetz hyperplane theorem, we have q = h1,0(S) = 0.

By the adjunction formula, we have

KS = OS(−4 + 5) = OS(1). (5.1)

The number of adjoint chiral multiplets is then pg = h0(KS) = h0(OS(1)).We compute
this space of sections using the exact sequence

0 → OP3(−4)
α−→ OP3(1)

r−→ OS(1) → 0, (5.2)

where α is multiplication by f and r is restriction to S. Taking cohomology of (5.2) and
using H0(OP3(−4)) = H1(OP3(−4)) = 0, we get

pg = h0(OS(1)) = h0(OP3(1)) = 4. (5.3)

Thus we have 4 adjoint chiral multiplets in our SU (2) gauge theory.
To describe X �, we first embed P(1,1,2,2,2,2) as a singular quadric hypersurface in P6

by

P
(1,1,2,2,2,2) → P

6, (x1, . . . , x6) �→ (x21 , x22 , x1x2, x3, x4, x5, x6). (5.4)

Letting (y0, . . . , y6) be homogeneous coordinates on P
6, we see that (5.4) embeds

P
(1,1,2,2,2,2) isomorphically onto the singular quadric hypersurfacewith equationq0(y) =

y0y1 − y22 = 0. Furthermore, after the substitution y0 = x21 , y1 = x22 , y2 = x1x2, and
yi = xi for 3 ≤ i ≤ 6 described by (5.4), we can find a homogenous degree five
polynomial g(y) with g(y) = f10(x), and g(y) is unique up to multiples of q0(y).
We conclude that X0 is isomorphic to the complete intersection of q0(y) and g(y), a
(singular) complete intersection Calabi–Yau fourfold P6[2, 5].

This description makes it clear how to smooth X0 to obtain X �: simply smooth the
singular quadric q0(y) to a quadric q�(y) to obtain a more general complete intersection
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Calabi–Yau P
6[2, 5]. The generic q� = 0 will intersect g = 0 transversely, so the

resulting Calabi–Yau fourfold will be smooth. In fact, we can still get a smooth complete
intersection Calabi–Yau if q� = 0 has an isolated singularity at which g does not vanish.
Such a q� is a rank 6 quadric.

To count moduli for these deformations of q0(y), the space of first order deformations
of q0 is given by the degree 2 part of C[y0, . . . , y6]/J (q0). Since the partial derivatives
of q0 are just y0, y1, y2 up to multiple, the space of first order deformations is identified
with homogeneous degree 2 polynomials in y3, y4, y5, y6, a ten-dimensional space.

Wemake contact with the discussion in Sect. 4, where the deformation was described
by (4.3), with ω2 ∈ H0(S, 2KS). For the quintic surface, we have that H0(S, 2KS) =
H0(S,OS(2)). Tensoring (5.2) withO(1) and using the vanishing of the cohomologies
ofOP3(−3), we conclude that H0(S, 2KS) is identifiedwith the space of degree 2 homo-
geneous polynomials in P

3. So the space of smoothings which we described explicitly
above is canonically identified with H0(S, 2KS).

5.1.2. Adding G-flux. Letting L ∈ H2(X �) be the proper transform of the divisor (x1 =
0) ⊂ X0 and M ∈ H2(X �) be the proper transform of the divisor (x3 = 0) ⊂ X0,
explicit computation gives7

c2(X �) = 2L M + 10M2, (5.5)

which is visibly an even class. Therefore G� = 0 satisfies the quantization condition.
We now exhibit explicit smoothings X � which satisfy a G-flux constraint, parallel

to a construction previously presented in Ref. [33]. In the example under investigation,
S is a quintic surface and KS = OS(1) so we have that K 2

S = 5. It follows according
to Eq. (4.4) that the Euler characteristic changes by 30 = (N + 1)N (N − 1)K 2

S with
N = 2.

Starting the transitionwith G� = 0 as above, then for G� we require 1
2

(
G�

2π

)2 = 30
24 =

5
2 . We also require G� to satisfy the quantization condition (2.2) that c2(X �) − 2 · G�

2π is
even.

We can find a suitable G� after constraining q� to be a rank 6 quadric (whose singular
point p is not contained in the quintic hypersurface g = 0). We have seen that we can
parametrize the moduli of q� as

q� = y0y1 − y22 + q̂(y3, y4, y5, y6). (5.6)

In this parametrization, q� has rank 6 if and only if q̂ has rank 3. Writing

q̂ =t(y3, . . . , y6)Q(y3, . . . , y6) (5.7)

in terms of a 4 × 4 symmetric matrix Q, the condition for q̂ to have rank 3 is that
det Q = 0, a codimension one condition. This gives a 10 − 1 = 9 dimensional moduli
space, which we will identify with the Higgs branch of the gauge theory after exhibiting
G�. As a check, the dimension of the Higgs branch of an SU (2) gauge theory with 4
adjoints is 3 · 4 − 3 = 9.

If q̂ has rank 3, then it can be put in the form q̂ = y23 + y4y5 after a change of
coordinates, leading to

q� = y0y1 − y22 + y23 + y4y5. (5.8)

7 Since this is a standard computation, we will content ourselves with explaining how to perform an
equivalent computation in a more general context in Sect. 6.
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This equation can be compared with (4.9) by rewriting it as

y0y1 = det

(
y2 I2 +

(
y3 y4
y5 −y3

))
(5.9)

Then the quadric q� = 0 contains the 3-planes P1 and P2 defined by y0 = y3 −
y2 = y4 = 0 and y0 = y3 − y2 = y5 = 0 as codimension two subvarieties. The 3-
planes described explicitly above are in different rulings. However, nonsingular (rank 7)
quadrics have only one ruling.

We wish to emphasize this point, which encodes the key geometric property of our
choice of flux. A homogeneous quadric of rank r in Pr−1 contains an irreducible family
of linear subspaces when r is odd, but contains two distinct families of linear subspaces
when r is even.8 This statement about linear subspaces depends only on the rank, not on
the dimension in which the quadric has been embedded. Thus, a quadric in P

2k of rank
2k has a unique singular point and two families of linear subspaces, but when we smooth
this quadric to one of rank 2k + 1 (the generic case) there is only one family of linear
subspaces. In particular, the difference P1 − P2 of spaces from the two families exists as
a cycle on the rank 2k quadric which cannot be extended to a cycle on the nonsingular
quadric of rank 2k + 1.

Restricting to X � by intersection with g = 0, these Pi yield codimension two sub-
varieties of X � with cohomology classes T1, T2 ∈ H4(X �,Z). Since on q� we have that
y0 = y3 − y2 = 0 is P1 ∪ P2, we have in cohomology that H2 = T1 + T2, where H is
the hyperplane class of P6 restricted to X �. As in Refs. [26,33], we then take

G�

2π
= 1

2
(T1 − T2) . (5.10)

Since the cycles T1 and T2 have the same degrees, and H6(X �) = 0 by Lefschetz, we
see that H · G� = 0 and G� is primitive. Furthermore, G� is of Hodge type (2, 2), as it
is an algebraic cohomology class. Thus all of the directions in moduli corresponding to
rank 6 q� are flat directions relative to the superpotential generated by G�.

However, if we try to deform further to a rank 7 (nonsingular) quadric q�, then there
is only one ruling on q� so we do not have cycles T1 and T2 in that case. In the absence
of cycles T1 and T2, there is no reason for G� to remain of type (2, 2) and we expect that
it is not of type (2, 2). It would be interesting to verify this expectation.

Returning to the situation where q� has rank 6, since each Ti ⊂ P
6 is a complete

intersection of three linear forms and a quintic, we compute the Chern class of its normal
bundle in X � as

c
(
NTi ,X �

) = (1 + H)3 (1 + 5H)

(1 + 2H) (1 + 5H)
. (5.11)

Expanding (5.11), we get c2(NTi ,X � ) = H2, which is numerically 5, as Ti has degree 5,
owing to the intersection with g = 0. Thus

T 2
1 = T 2

2 = 5. (5.12)

We then compute T1 · T2 = T1 · (H2 − T1) = 5− 5 = 0. Thus
(

G�

2π

)2 = 5
2 as required.

8 This is closely related to the familiar fact that an orthogonal group in a space of odd dimension has a
single irreducible spinor representation, but an orthogonal group in a space of even dimension has two distinct
spinor representation.
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For the quantization condition, explicit computation gives c2(X �) = 11H2. Since
we only need to compute mod 2, we can replace 2 · G�

2π = T1 − T2 by T1 + T2 = H2. We

learn that c2(X �)−2 · G�

2π is congruent mod 2 to 10H2, which is even. So the quantization
condition is satisfied.

Looking at Eq. (5.9), the action of the Weyl group W(SU (2))  Z2 is realized by
interchanging rows and columns, i.e.(

y3 y4
y5 −y3

)
�→

(−y3 y5
y4 y3

)
, (5.13)

which has the effect of switching T1 and T2. So the Weyl group sends G� to −G�.
Recall that G� is determined by a choice of ruling of a quadric, or equivalently, by a

choice of a matrix in the representation (5.9) of one of the equations for X �. Then the
Weyl group action can be explicitly realized as a monodromy in the M-theory moduli
space over the complex structure moduli space. We realize this monodromy as follows.
Consider the spaceM of 2× 2 matrices of linear forms in y3, y4, y5 whose determinant
is a rank 3 quadric. We choose a path inMwhich starts at the matrix on the left of (5.13)
and ends at the matrix on the right of (5.13). Explicitly, we can take

M(θ) =
⎛
⎝ eiθ y3

y4
(
1+eiθ

)
+y5

(
1−eiθ

)
2

y5
(
1+eiθ

)
+y4

(
1−eiθ

)
2 −eiθ y3

⎞
⎠ , 0 ≤ θ ≤ π, (5.14)

so that θ parametrizes a path in the unobstructed complex structure moduli space
M�

cs(G�). For θ = 0 we get G� as in Eq. (5.10), while for θ = π we get −G�.

5.2. Calabi–Yau fourfolds from P
(1,5,6,6,6,6). We consider a generic weighted hypersur-

face X0 of weight 30 in P(1,5,6,6,6,6) defined by a weight 30 polynomial f30(x1, . . . , x6),
its desingularization X �, and its smoothing X �.

5.2.1. Geometric data. Since P(1,5,6,6,6,6) is the quotient of P5 by the Z6-action given
by multiplication of the coordinates (x1, . . . , x6) by (ω, ω5, 1, 1, 1, 1) with ω6 = 1 and
an additional Z5-action, the codimension two locus Y defined by x1 = x2 = 0 has a
transverse A5 singularity, at least away from the point p = (0, 1, 0, 0, 0, 0) which is the
isolated fixed point of the additional Z5. Then Y  P

3, with (x3, x4, x5, x6) serving as
homogeneous coordinates. We can resolve the singularity of P(1,5,6,6,6,6) (away from p)
by blowing up Y to get a smooth variety P̃. Since a generic f30 does not vanish at p, it
follows that the proper transform X � of X0 in P̃ is smooth.

Furthermore, X0 is singular along S = X0∩Y ,whichhas equation f30(0, 0, x3, x4, x5,
x6) in the homogeneous coordinates of Y  P

3. Since x3, . . . , x6 each have weight 6,
then the weighted polynomial f = f10(0, 0, x3, x4, x5, x6) has degree 5 as an ordinary
polynomial, and we have identified S as a quintic hypersurface in P

3, i.e., a quintic
surface. So again we have q = h1,0(S) = 0, K 2

S = 5 and there are 4 adjoints in our
SU (6) gauge theory.

To describe X �, we first embed P
(1,5,6,6,6,6) as a singular weighted hypersurface in

P
(1,5,1,1,1,1,1) by

P
(1,5,6,6,6,6) → P

(1,5,1,1,1,1,1), (x1, . . . , x6) �→ (x61 , x62 , x1x2, x3, x4, x5, x6).
(5.15)
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Letting (y0, . . . , y6) be homogeneous coordinates on P
(1,5,1,1,1,1,1), we see that (5.15)

embedsP(1,5,6,6,6,6) isomorphically onto theweight 6hypersurfacewith equationq0(y) =
y0y1 − y62 = 0. Furthermore, after the substitution y0 = x61 , y1 = x62 , y2 = x1x2, and
yi = xi for 3 ≤ i ≤ 6 described by (5.15), we can find a homogenous degree five
polynomial g(y) with g(y) = f30(x). Note that g does not vanish at the unique singular
point p = (0, 1, 0, 0, 0, 0, 0) of P(1,5,1,1,1,1,1). We conclude that X0 is isomorphic to the
complete intersection of q0(y) and g(y), a (singular) complete intersection Calabi–Yau
fourfold P(1,5,1,1,1,1,1)[6, 5].

This description makes it clear how to smooth X0 to obtain X �: simply smooth
the q0(y) to a general weight 6 hypersurface q�(y) to obtain a more general complete
intersection Calabi–Yau P

(1,5,1,1,1,1,1)[6, 5]. The generic q� = 0 will intersect g = 0
transversely, so the resulting complete intersection Calabi–Yau will be smooth.

To count moduli for these deformations of q0(y), the space of first order deforma-
tions of q0 modulo g is given by the degree 6 part of C[y0, . . . , y6]/(J (q0), g).9 Since
the partial derivatives of q0 are just y0, y1, y52 up to multiple, the space of first order
deformations is identified with homogeneous degree 6 polynomials in y2, y3, y4, y5, y6
modulo g, where y2 occurs with degree at most 4.

Write these deforming polynomials as

4∑
j=0

h6− j (y3, y4, y5, y6)y j
2 . (5.16)

Since h6− j is to be taken modulo g, we view the coefficients of yd
2 as h6−d ∈ H0(S,

OS(6− j)). So we see that the space of smoothings is identified with⊕6
j=2H0(S, j KS),

in complete agreement with (4.3).

5.2.2. Adding G-flux. Resolving the A5 singularity introduces five exceptional divisors,
which we denote by E1, . . . , E5. Letting L ∈ H2(X �) be the proper transform of
the divisor (x1 = 0) ⊂ X0, M ∈ H2(X �) be the proper transform of the divisor
(x2 = 0) ⊂ X0, and N ∈ H2(X �) be the proper transform of the divisor (x3 = 0) ⊂ X0,
explicit computation gives10

c2(X �) = (2E3 + 6E2 + 12E1 + 20L + 2M + 10N )N , (5.17)

which is visibly an even class. Therefore G� = 0 satisfies the quantization condition.
We now exhibit explicit smoothings X � which satisfy a G-flux constraint. In the

example under investigation, S is a quintic surface and KS = OS(1) so we have that
K 2

S = 5. It follows that the Euler characteristic changes by 1050 = N (N −1)(N +1)K 2
S

with N = 6 according to Eq. (4.5).

Starting the transition with G� = 0 as above, then for G� we require 1
2

(
G�

2π

)2 = 1050
24 ,

or
(

G�

2π

)2 = 175
2 . We also require G� to satisfy the quantization condition (2.2) that

c2(X �) − 2 · G�

2π is even.

9 In the case of P(1,1,2,2,2,2)[10], we did not have to consider the deforming polynomials modulo g since
the degree of q0 was less than the degree of g.
10 Since this is a standard computation, we again content ourselves with explaining how to perform an

equivalent computation in a more general context in Sect. 6.
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We can find a suitable G� after constraining q� to be of the form

y0y1 = det (y2 I6 + M(y)) , (5.18)

where M(y) is a traceless 6× 6 matrix of linear forms in y3, . . . , y6 and I6 is the 6× 6
identity matrix. There are 35×4 moduli for the entries of M(y), which must be reduced
by 35 since conjugation by an SU (6)matrix does not alter q�. These 35×4−35 moduli
precisely match the moduli of the Higgs branch of an SU (6) theory with 4 adjoints.
Note that M ≡ 0 corresponds to q� = q0.

Let S(y) be the 6× 5 submatrix of y2 I6 + M(y) obtained by deleting its last column.
Let R ⊂ X � be the 4-cycle defined by y0 = y2 = 0 and let T ⊂ X � be the 4-cycle
defined by

T = {
y ∈ X � | y0 = 0, rank S(y) ≤ 4

}
. (5.19)

We put
G�

2π
= 5

2
R − T ∈ H4(X �), (5.20)

which is of Hodge type (2, 2) since it is an algebraic cohomology class.
We check that G� is primitive by computing that its image in the cohomology of the

fivefold F defined by g = 0 vanishes.
Let H be the restriction to F of hyperplane class ofP(1,5,1,1,1,1,1). Since F has weight

5 and the weighted projective space has a Z5 quotient, we have
∫

F H5 = 5/5 = 1.
Since R is defined in F by q� = y0 = y2 = 0, its image in F is 6H3. By Porteous’s

formula, T has image 15H3 in F . Thus the image of the class of (5/2)R − T in F
vanishes and we have verified primitivity.

We compute
(

G�

2π

)2
by computing the intersections R2, RT , and T 2 in X �. Since X �

is a (6, 5) complete intersection in P(1,5,1,1,1,1,1) and R is a complete intersection of two
linear forms, we have

R2 = 6 · 5 · 14
5

= 6, (5.21)

where the denominator of 5 arises from theZ5 quotient in the weighted projective space.
For RT , we can replace R by the algebraically equivalent cycle y2 = y3 = 0.

Computing RT inside F we get

RT =
∫

F
15H3 · H2 = 15. (5.22)

Finally, we compute T 2 as the degree of the second Chern class of the normal bundle
NT,X � of T in X �. First we define

T̃ =
{
(y, z) ∈ X � × P

4 | S(y)z = 0
}

. (5.23)

The projection π : X � × P
4 → X � maps T̃ to T . This projection fails to be an isomor-

phism only over points of T at which S(y) has rank 3 or less. Since the rank 3 condition
is codimension 6 in X �, we see that T̃ → T is an isomorphism.

We have

c(NT,X � ) = c(X �)

c(T )
, (5.24)
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where we omit restrictions to T for brevity. Similarly,

c(NT̃ ,F×P4) = c(F × P
4)

c(T̃ )
= c(F)c(P4)

c(T̃ )
(5.25)

with omitted restrictions to T̃ .
Letting η be the hyperplane class P4, we have

c(NT̃ ,F×P4) = (1 + H)(1 + H + η)6, (5.26)

since the six components of S(y)z are bilinear and together with y0 = 0 define T̃ as a
complete intersection. Since X � is the hypersurface in F defined by q� = 0, we have

c(F)|X � = c(X �)(1 + 6H). (5.27)

Identifying T̃ with T via π , we get from (5.24)–(5.27)

c(NT,X � ) = (1 + H + η)6(1 + H)

(1 + η)5(1 + 6H)
(5.28)

which gives
c2(NT,X � ) = 15H2 − 5Hη, (5.29)

identified as a class on T̃ . We can easily push (5.29) to F × P
4 since T̃ is a complete

intersection of 6 divisors in the class H + η and the divisor y0 = 0 of class H :

c2(NT,X � ) = (15H2 − 5Hη)H(H + η)6 ∈ H18(F × P
4) (5.30)

We project (5.30) to F by extracting the coefficient of η4, which is 125H5 ∈ H10(F),
which evaluates to 125. So finally

T 2 = 125. (5.31)

Putting (5.21), (5.22), and (5.31) together, we get

(
G�

2π

)2

= 25

4
R2 − 5RT + T 2 = 75

2
− 75 + 125 = 175

2
(5.32)

as required.
For the quantization condition, explicit computation gives c2(X �) = 15H2. Since we

only need to compute mod 2, we can replace 2 · G�

2π = 5R − 2T by 5R = 5H2 because

R is a complete intersection of two linear equations in X �. We learn that c2(X �)−2 · G�

2π
is congruent mod 2 to 10H2, which is even. So the quantization condition is satisfied.

Looking at (5.18), the action of the Weyl group W(SU (6))  S6 is realized by
permuting the rows and columns of M(y). As we did at the end of Sect. 5.1, we can
realize this Weyl group action as a monodromy. We rewrite the submatrix S(y) of
y2 I6 + M(y) as

S(y) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

(y2 I6 + M(y)) . (5.33)
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The projection matrix P appearing in (5.33) has columns e1, . . . , e5 chosen from the
standard basis of C6. Choose a permutation σ in the Weyl group. We can then choose a
path in the space of 6 × 5 matrices of maximal rank starting from P and ending at the
matrix whose columns are eσ(1), . . . , eσ(5) to realize the Weyl action as a monodromy.

6. Toric Geometry and Further Examples

We begin by reviewing the setup for investigating Calabi–Yau hypersurfaces and com-
plete intersections in toric varieties, specialized to Calabi–Yau fourfolds. See [50,51].

Let N and M be a pair of dual lattices of rank 5. We consider a pair (�,�◦) of 5-
dimensional reflexive polytopes, with� ⊂ MR spanned by vertices in M , and�◦ ⊂ NR

spanned by vertices in N . The origin is the unique interior point of�∩ M and of�◦∩ N .
The polytopes are related by

�◦ = {n ∈ NR | 〈m, n〉 ≥ 1 for all m ∈ �} . (6.1)

The toric variety P� can also be described as the toric variety associated to fan obtained
by taking the cones over the faces of �◦. Since this toric variety is typically highly
singular, we choose a maximal projective crepant subdivision of that fan to obtain a toric
variety with controllable singularities. The fan �� of this toric variety satisfies

(i) ��(1) = �◦ ∩ N − {0}
(ii) X�� is projective and simplicial

We let X � ⊂ X�� be a general anticanonical hypersurface, so that X � is a Calabi–Yau
fourfold.

6.1. Gauge group SU (N ). To achieve the situation of AN−1 singularities, we assume:

�◦ has a one-dimensional edge � containing N − 1 interior lattice points (6.2)

Let v1 and v2 be the endpoints of �. We can choose an m� ∈ M so that 〈m�, v1〉 =
N − 1 and 〈m�, v2〉 = −1.

If we remove the cones containing the interior lattice points of � from the fan ��,
we obtain a fan �0. The natural map π : X�� → X�0 blows down a divisor to a
threefold with transverse AN−1 singularities. After intersecting with an anticanonical
hypersurface in X�� , we get a map X � → X0 of Calabi–Yau fourfolds, contracting a
divisor to a surface S of AN−1 singularities.

To begin to understand S, we consider the dual face �◦ ⊂ � defined by

�◦ = {m ∈ MR | 〈m, v1〉 = −1, 〈m, v2〉 = −1} . (6.3)

Then �◦ is a 3-dimensional polytope. We have for the geometric genus of S

pg = |int (�◦) ∩ M |, (6.4)

as we will check later.
We denote the primitive integral generators of the other one-dimensional cones in�0

by v3, . . . , vk . We also denote by Di ⊂ X�0 the toric divisor associated with the edge
vi , 1 ≤ i ≤ k. Similarly, we denote by D�

i ⊂ X�� the toric divisor associated with the
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edge vi . For D�
i , we can have 1 ≤ i ≤ k as above, or vi can denote one of the n − 1

interior lattice points of �.
We form a new simplicial fan�� in (N ⊕Z)R with 1-dimensional cones w0, . . . , wn

given by the vertices
w0 = ( v1−v2

N ,−(N − 1)),

w1 = (0, 1),

w2 = (v2, 0),

wi = (vi ,−N 〈m�, vi 〉), i ≥ 3.

(6.5)

The six-dimensional cones ��(6) of �� can be described as follows. Let σ ∈ �0(5)
be a 5-dimensional (simplicial) cone of �0. We partition the edges σ(1) of σ into the
set σ(1)1 of edges spanned by v1 or v2, and the set σ(1)2 of edges spanned by vi with
i ≥ 3. We have abused notation slightly by labeling the edges by their primitive integral
generators vi .

Then we form ��(6) as follows: for each σ ∈ �(5) we form one or more 6-
dimensional simplicial cones as the span of the vectors wi−1 for each vi ∈ σ(1)1,
together with the vectors wi for each vi ∈ σ(1)2, and exactly one more vector from
among {w0, w1, w2}. A distinct cone is included in ��(6) for each choice of this addi-
tional vector w0, w1 or w2. The fan �� is a the fan whose cones are the faces of one of
the top-dimensional cones just described.

Using the fact that �0 is a fan, it is straightforward to check that the intersection of
any two cones of �� is a face of each, so that �� is indeed a fan. Furthermore, it is
straightforward to check that �� is complete since �0 is. We let D�

i ⊂ X�� be the toric
divisor associated with the edge wi .

Example. Let �0 be a fan for P(1,1,2,2,2,2). A convenient choice is to take the complete
simplicial fan with edges spanned by the rows of⎛

⎜⎜⎜⎜⎜⎝

−1 −2 −2 −2 −2
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

(6.6)

We label the rows as v1, . . . , v6 in order. The edge � joining v1 and v2 has one interior
lattice point v0 = (0,−1,−1,−1,−1) and we have an SU (2) example. The fan for ��

is obtained from the fan for � by replacing each cone containing both v1 and v2 by two
cones: one cone in which v1 and v2 are replaced by v1 and v0, and other cone in which
v1 and v2 are replaced by v0 and v2.

Choosing m� = (−1, 0, 0, 0, 0) ∈ M we have

〈m�, v1〉 = 1, 〈m�, v2〉 = −1, 〈m�, vi 〉 = 0 for i ≥ 3. (6.7)

Then (6.5) gives the edges of the fan �� as the rows of⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 −1 −1 −1 −1
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(6.8)
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with the labeling w0, . . . , w6. The cones of �� are immediately seen to consist of all
cones spanned by any proper subset of {w0, . . . , w6}. We therefore obtain the fan for
P
6, the space that we embedded P

(1,1,2,2,2,2) into in Sect. 5.1.1.

Example. Let �0 be a fan for P(1,5,6,6,6,6). A convenient choice is to take the complete
simplicial fan with edges spanned by the rows of

⎛
⎜⎜⎜⎜⎜⎝

−5 −6 −6 −6 −6
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

(6.9)

We label the rows as v1, . . . , v6 in order. The edge � joining v1 and v2 has 5 interior
lattice points and we have an SU (6) example. The interior lattice points are

v0 = (0,−1,−1,−1,−1), v−1 = (−1,−2,−2,−2,−2),

v−2 = (−2,−3,−3,−3,−3),

v−3 = (−3,−4,−4,−4,−4), v−4 = (−4,−5,−5,−5,−5,−5).

(6.10)

Choosing m� = (−1, 0, 0, 0, 0) ∈ M we have

〈m�, v1〉 = 5, 〈m�, v2〉 = −1, 〈m�, vi 〉 = 0 for i ≥ 3. (6.11)

Then (6.5) gives the edges of the fan �� as the rows of

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 −1 −1 −1 −5
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(6.12)

with the labeling w0, . . . , w6. The cones of �� are immediately seen to consist of all
cones spanned by any proper subset of {w0, . . . , w6}. We therefore obtain the fan for
P

(1,1,1,1,1,1,5), the space that we embedded P
(1,5,6,6,6,6) into in Sect. 5.2.1.11

Consider the map ι : X�0 → X�� given by

(y0, y1, y2, y3, . . .) = (x N
1 , x N

2 , x1x2, x3 . . .), (6.13)

where (y0, . . . , yk) are the homogeneous coordinates of X�� . We check that the map is

well-defined. If g = (t j ) ∈ G(�0), then
∏

t
〈m,v j 〉
j = 1 for all m ∈ M . Then g · x maps

to
(t N
1 x N

1 , t N
2 x N

2 , t1t2x1x2, t3x3 . . .), (6.14)

11 The general toric procedure requires us to add more edges from additional points of �◦ ∩ N . However,
for simplicity we can safely exclude them from discussion since the weighted hypersurface f considered in
Sect. 5.2.1 does not contain the fixed point of the P5 action.
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which we have to show is equivalent to (x N
1 , x N

2 , x1x2, . . .) up to an element of G(��).
In other words, we have to check that for all (m, n) ∈ M ⊕ Z we have

(t N
1 )〈(m,n),w0〉(t N

2 )〈(m,n),w1〉(t1t2)
〈(m,n),w2〉

k∏
j=3

(t j )
〈(m,n),w j 〉 = 1. (6.15)

But the left hand side of (6.15) simplifies to

t 〈m,v1〉−N (N−1)n
1 t 〈m,v2〉+Nn

2

k∏
j=3

(t j )
〈(m−Nnm�,v j 〉 =

k∏
j=1

(t j )
〈(m−Nnm�,v j 〉, (6.16)

which is 1 because m − Nnm� ∈ M and g ∈ G(�).
It is straightforward to check that the image of ι in coordinates lands inCk+1− Z(��)

and is an embedding after modding out by G(�0) and G(��).

Example. For P(1,1,2,2,2,2) the embedding into P
6 is

(y1, . . . , y6) �→ (y21 , y22 , y1y2, y3, . . . , y6) (6.17)

in complete agreement with Sect. 5.1.1.

Example. For P(1,5,6,6,6,6) the embedding into P(1,5,1,1,1,1,1) is

(y1, . . . , y6) �→ (y61 , y62 , y1y2, y3, . . . , y6) (6.18)

in complete agreement with Sect. 5.2.1.
Clearly, ι(X�0) is contained in the hypersurface q0(y) = y0y1 − yN

2 = 0. The linear

equivalence D�
0 + D�

1 ∼ N D�
2 is realized by (Nm�, 1) ∈ M ⊕ Z.

Since ι∗(OX
�� (D�

2))  OX�0
(D0 + D1) and ι∗(OX

�� (D�
j ))  OX�0

(D j ) for j ≥ 3,
we see that

ι∗(OX
�� (

k∑
j=2

D�
j ))  OX�0

(

k∑
j=1

D j ) = OX�0
(−K X� ), (6.19)

and it is easy to see that X0 pulls back from a section ofOX
�� (

∑k
j=2 D�

j ) =: OX
�� (D′)

which we denote by f (y). Thus X0 is identified with a complete intersection of q0(y)

and f (y) in X�� . The singular locus S is defined by y0 = y1 = y2 = f (y) = 0.
Adjunction again says that the canonical bundle of S is the restriction of D�

2.
We can describe this complete intersection using a nef partition [51] if desired,

partitioning the edges ρ j spanned by the w j into two sets:

{ρ0, ρ1}, {ρ2, ρ3, . . . , ρk} (6.20)

and we are led to view q0(y) as a section of OX
�� (D0 + D1).

We can identify a basis of sections of OX
�� (D�

2) with monomials χ(m,n), (m, n) ∈
M ⊕ Z, satisfying

〈(m, n), w0〉 = 〈m, v1−v2
2 〉 − n ≥ 0

〈(m, n), w1〉 = n ≥ 0
〈(m, n), w2〉 = 〈m, v2〉 ≥ −1
〈(m, n), w j 〉 = 〈m, v j 〉 ≥ 0 ( j ≥ 3)

(6.21)
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via the correspondence

χ(m,n) ↔ z(m,n) := y2

k∏
j=0

y〈(m,n),wk 〉
j (6.22)

If m ∈ int(�◦) ∩ M , (6.21) is satisfied for (m, 0) ∈ M ⊕ Z, since m ∈ int(�◦) ∩ M
is equivalent to

〈m, v1〉 = −1, 〈m, v2〉 = −1, 〈m, v j 〉 ≥ 0 ( j ≥ 3). (6.23)

Thus y0y1, yN
2 , and yr

2

∏N−r
j=1 z(mi j ,0) (mi j ∈ int(�◦)∩ M) are identified with sections of

OX
�� (N D�

2). By the now-familiar argument, we will only need to consider r ≤ N − 2.

We change notation and rewrite the pg sections z(mi ,0), mi ∈ int(�◦) ∩ M as
z1, . . . , z pg . Then

q�(y) = y0y1 + yN
2 +

N−2∑
r=0

yr
2

∑
J⊂{1,...,pg }
|J |=N−r

a j1... jN−r

∏
z ji (6.24)

is a deformation of q0(y).
Suppose that c2(X �) is the restriction of an even toric class in H4(X��,Z), which implies
that G� = 0 satisfies quantization. Then we will exhibit explicit smoothings X � which
satisfy a G-flux constraint.

The strengthened hypothesis on the evenness of c2(X �) is needed so that the exhibited
G� satisfies the quantization condition. The examples from Sect. 5 both satisfy this
hypothesis. The tadpole condition is always satisfied, as we will see.

We can find a suitable G� after constraining q� to be of the form

y0y1 = det (y2 IN + M(y)) , (6.25)

where M(y) is a traceless N × N matrix of linear forms in y3, . . . , ypg+2 and IN is the
N × N identity matrix. There are pg(N 2 − 1) moduli for the entries of M(y), which
must be reduced by N 2 − 1 since conjugation by an SU (N ) matrix does not alter q�.
These (pg − 1)(N 2 − 1) moduli precisely match the moduli of the Higgs branch of an
SU (N ) theory with pg adjoints. Note that M ≡ 0 corresponds to q� = q0.

Let S(y) be the N × (N − 1) submatrix of y2 IN + M obtained by deleting its last
column. Let R ⊂ X � be the 4-cycle defined by y0 = y2 = 0 and let T ⊂ X � be the
4-cycle defined by

T = {
y ∈ X � | y0 = 0, rank S(y) ≤ N − 2

}
. (6.26)

We put
G�

2π
= N − 1

2
R − T ∈ H4(X �), (6.27)

which is of type (2, 2) since it is an algebraic cohomology class.
We check that G� is primitive by computing that its image in the cohomology of the

fivefold F defined by g = 0 vanishes.
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Since R is defined in F by q� = y0 = y2 = 0, its class in F is N D�
0(D�

2)
2. By

Porteous’s formula, T has class N (N−1)
2 D�

0(D�
2)

2. Thus the class of N−1
2 R − T vanishes

in F and we have verified primitivity.

We compute
(

G�

2π

)2
by computing R2, RT , and T 2. Since X � is a complete intersec-

tion of divisors in the classes N D�
2 and D′, R is a complete intersection of y0 and y2,

we have
R2 = N (D�

0)
2(D�

2)
3D′ ∈ H12(X��). (6.28)

Computing RT inside F we get

RT = N (N − 1)

2
(D�

0)
2(D�

2)
3D′ ∈ H10(F). (6.29)

Finally, we compute T 2 as the degree of the second Chern class of the normal bundle
NT,X � of T in X �. First we define

T̃ =
{
(y, z) ∈ X � × P

N−2 | S(y)z = 0
}

. (6.30)

The projection π : X � × P
N−2 → X � maps T̃ to T . This projection fails to be an

isomorphism only over points of T at which S(y) has rank N − 3 or less. Since the rank
3 condition is codimension 6 in X �, we see that T̃ → T is an isomorphism.

We have

c(NT,X � ) = c(X �)

c(T )
, (6.31)

where we omit restrictions to T for brevity. Also,

c(NT̃ ,F×PN−2) = c(F × P
N−2)

c(T̃ )
= c(F)c(PN−2)

c(T̃ )
= c(X �)(1 + N D�

2)c(P
N−2)

c(T̃ )
.

(6.32)
We get

c(NT̃ ,F×PN−2) = (1 + D�
0)(1 + D�

2 + η)N , (6.33)

since the N components of S(y)z are bilinear in P
N−2 and sections of O(D�

2), which
define T̃ as a complete intersection together with y0. Identifying T̃ with T via π , we get

c(NT,X � ) = (1 + D�
2 + η)N (1 + D�

0)

(1 + N D�
2)(1 + η)N−1

(6.34)

which gives

c2(NT,X � ) = (D�
0 − N D�

1)η +
N (N − 1)

2
(D�

2)
2 = −D�

1η +
N (N − 1)

2
(D�

2)
2, (6.35)

where we have used D�
0 + D�

1 ∼ N D�
2. Computing the intersection on F × P

N−2, this
is just

(−D�
1η +

N (N − 1)

2
(D�

2)
2)D�

0(D�
2 + η)N ∈ H2N+6(F × P

N−2). (6.36)
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We project down to T by extracting the coefficient of ηN−2, which is
(

N

2

)2

D�
0(D�

2)
4 −

(
N

3

)
D�
0D�

1(D�
2)

3 ∈ H10(F). (6.37)

Expressing this as a class on the toric variety finally gives

T 2 =
((

N

2

)2

D�
0(D�

2)
4 −

(
N

3

)
D�
0D�

1(D�
2)

3

)
D′ ∈ H12(X��). (6.38)

Finally (
G�

2π

)2

= (N − 1)2

4
R2 − (N − 1)RT + T 2, (6.39)

which evaluates on X�� to

N (N − 1)2

4
(D�

0)
2(D�

2)
3D′ − N (N − 1)2

2
(D�

0)
2(D�

2)
3D′ +

(
N

2

)2

D�
0(D�

2)
4D′

−
(

N

3

)
D�
0D�

1(D�
2)

3D′, (6.40)

which simplifies to

(
G�

2π

)2

= (N + 1)N (N − 1)

12
D�
0D�

1(D�
2)

3D′ ∈ H12(X��), (6.41)

where we have again used D�
0 + D�

1 ∼ N D�
2.

Since S is a complete intersection of y0, y1, y2, and g, the class of S is D�
0D�

1D�
2D′.

By adjunction, we find

KS = −
k∑

i=0

D�
i + D�

0 + D�
1 + D�

2 + D′ = D�
2. (6.42)

Thus we get

1

2

∫
X �

G�

2π
∧ G�

2π
= (N + 1)N (N − 1)

24
K 2

S = χ(X �) − χ(X �)

24
, (6.43)

as required according to Eq. (4.11).
It remains to check the quantization condition. We first recall the computation of the

Chern classes of a toric variety. Let X� be a smooth projective toric variety of dimension
n with � edges in the fan �. Let D1, . . . , D� ⊂ X� be the corresponding toric divisors.
Then we have a short exact sequence [52]

0 → O�−n
X�

→
�⊕

i=1

OX� (Di ) → TX� → 0, (6.44)

which gives

c(X�) =
�∏

i=1

(1 + Di ). (6.45)
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So if X ⊂ X� is an anticanonical hypersurface we have

c(X) =
∏�

i=1(1 + Di )

1 +
∑�

i=1 Di
, (6.46)

which gives
c2(X) =

∑
i< j

Di D j . (6.47)

In particular, for X � ⊂ X�� we have

c2(X �) =
∑
i< j

D�
i D�

j . (6.48)

Similarly, for X � we get

c(X �) =
∏k

i=0(1 + D�
i )

(1 + D�
0 + D�

1)(1 +
∑k

i=2 D�
i )

, (6.49)

which gives
c2(X �) = D�

0D�
1 +

∑
2≤i< j≤k

D�
i D�

j . (6.50)

We now let f = ι ◦ π : X�� → X�� be the composition. Since (6.48) and (6.50)
show that c2(X �) is the restriction of a cohomology class on X�� and c2(X �) is the
restriction of a cohomology class on X�� , we are able to compare c2 on both sides of
the transition using f ∗.

We continue our labeling conventions, so that the vertices in � are labeled, in order

v1, v0, v−1, . . . , v2−N , v2. (6.51)

We compute

f ∗(D�
0) = N D�

1 + (N − 1)D�
0 + . . . + D�

2−N ,

f ∗(D�
1) = D�

0 + · · · + (N − 1)D�
2−N + N D�

2,

f ∗(D�
2) = D�

1 + D�
0 + · · · + D�

2−N + D�
2,

f ∗(D�
i ) = D�

i , i ≥ 3. (6.52)

As a check, note that f ∗(D�
0 + D�

1 − N D�
2) = 0, as it had to be owing to the linear

equivalence D�
0 + D�

1 ∼ N D�
2.

Since (6.52) is a standard toric calculation, we content ourselves with just a fewwords
of explanation. We have f ∗ = π∗ ◦ ι∗, and ι∗ is calculated below in (6.56). Since π is a
blowdown, all that π∗ can do is introduce the exceptional divisors with multiplicities. It
then follows from the fact that the vertices (6.51) are on the edge �, in order, that for a
pullback the coefficients of D�

1, D�
0, . . . , D�

2−N , D�
2 must be in arithmetic progression.

Since the coefficients of D�
1 and D�

2 are fixed by (6.56), these observations are enough
to completely determine (6.52).

For the quantization condition, we only need to compute mod 2. Since T is an
integral class, we can replace N−1

2 R − T with N−1
2 R in checking quantization. We see

that quantization follows immediately from two claims:
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• f ∗(c2(X �) − (N − 1)R) ≡ c2(X �) (mod 2)
• f ∗ : H∗(X��,Z2) → H∗(X��,Z2) is injective

The first claim is checked by direct calculation, which can be separated into the cases
where N is odd and N is even.

If N is odd, then (6.52) simplifies to

f ∗(D�
0) = D�

1 + D�
−1 + · · · + D�

4−N + D�
2−N ,

f ∗(D�
1) = D�

0 + D�
−2 + · · · + D�

3−N + D�
2,

f ∗(D�
2) = D�

1 + D�
0 + · · · + D�

2−N + D�
2,

f ∗(D�
i ) = D�

i , i ≥ 3. (6.53)

Also, since N −1 is even, we only have to show that f ∗(c2(X �)) ≡ c2(X �) (mod 2). This
follows immediately from (6.48), (6.50), (6.53), and the Stanley–Reisner vanishings:

Di · D j = 0 for 2 − N ≤ i < j ≤ 2 unless vi , v j are adjacent in the ordering (5.51)
(6.54)

Similarly, if N is even we have

f ∗(D�
0) = D�

0 + D�
−2 + · · · + D�

2−N ,

f ∗(D�
1) = D�

0 + D�
−2 + · · · + D�

2−N ,

f ∗(D�
2) = D�

1 + D�
0 + · · · + D�

2−N + D�
2,

f ∗(D�
i ) = D�

i , i ≥ 3. (6.55)

Then (N − 1)R ≡ R (mod 2). Since R = D�
0D�

2, the claim follows from f ∗(c2(X �) +

D�
0D�

2) ≡ c2(X �) (mod 2), which is again checked by direct calculation as above.
The injectivity of f ∗ can be broken down into the injectivity of ι∗ and π∗ separately.

The injectivity of π∗ follows since π is a blowup. The injectivity of ι∗ follows from the
simpler computation analogous to (6.52)

ι∗(D�
0) = N D1,

ι∗(D�
1) = N D2,

ι∗(D�
2) = D1 + D2,

ι∗(D�
i ) = Di , i ≥ 3, (6.56)

which follows immediately from (6.13). The form of the fan �� shows that all linear
equivalences and Stanley–Reisner relations among the Di pull back from corresponding
relations in the D�

i . So we only have to look at (6.56) as a linear transformation to deduce

that the kernel of ι∗ is generated by D�
0 + D�

1 − N D�
2, which is zero.
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7. Conclusions

In this work we studied the three-dimensionalN = 2 low energy theory of M-theory on
Calabi–Yau fourfolds X0 with a smooth surface S of AN−1 singularities.We found that—
due tomasslessM2-brane degrees of freedom from the AN−1 singularity at codimension
two—the three-dimensional effective theory resulted in a N = 2 SU (N ) gauge theory
with adjoint matter multiplets at low energies. Alternatively, we obtained the same gauge
theory from a twisted dimensional reduction of the seven-dimensional N = 1 SU (N )

gauge theory on the surface S.
From the twisted dimensional reduction, we derived for the three-dimensionalN = 2

SU (N ) gauge theory its matter spectrum, consisting of adjoint-valued N = 2 chiral
multiplets. Furthermore, we established that a variant of the Vafa–Witten equations [47]
governed the supersymmetric ground states of the low energy theory. These equations
allowed us to determine the moduli spaces of the Higgs and Coulomb branches of the
gauge theory, where we in particular focus on the twisted dimensional reduction on S
with a trivial SU (N ) principal bundle.

From the results of the performed gauge theory analysis, we predicted geometric
properties of the M-theory compactification on the singular Calabi–Yau fourfold X0.
First of all, we matched Coulomb and Higgs branches of the gauge theory with the
crepant resolution to the (smooth) Calabi–Yau fourfolds X� and with the deformation
to the (smooth) Calabi–Yau fourfold X �, respectively. That is to say, a transition from
the Coulomb to the Higgs branch in the gauge theory corresponded to an extremal
transition between the resolved Calabi–Yau fourfold X � and the deformed Calabi–Yau
fourfold X � inM-theory. Furthermore, we argued that in order to arrive at the anticipated
SU (N ) gauge theory branches—arising from a trivial SU (N ) principal bundle over S—
the Coulomb–Higgs phase transition starting from a Calabi–Yau fourfold X � with no
backgroundflux ends at aCalabi–Yau fourfold X � with non-trivial background four-form
flux G�.

The proposed flux G� was required for consistency reasons so as to match the tadpole
cancellation condition—due to the change of Euler characteristic along the extremal
transition [26]—and to fulfill the flux quantization condition of M-theory [43]. But
maybe even more importantly, the correct choice of the flux G� was essential to be in
accord with the moduli space of the Higgs branch of the SU (N ) gauge theory. Namely,
we showed that the background flux G� was primitive and generated a non-trivial M-
theory superpotential. The flux G� was of Hodge type (2, 2) along the flat directions
of the flux-induced superpotential, which in turn comprised the unobstructed complex
structure moduli deformations associated to the Higgs branch of the described SU (N )

gauge theory. Furthermore, we observed that as we moved about the M-theory moduli
space in the Calabi–Yau phase associated to the gauge theory Higgs branch, the flux G�

exhibited non-trivial monodromy behavior given in terms of the described Weyl group
action W(SU (N )) on the flux G�.

In order to demonstrate our general arguments—inspired by Refs. [41,42]—using
the framework of toric geometry we explicitly gave examples for extremal transitions
between the Calabi–Yau fourfolds X � and X �. Namely, starting from a five-dimensional
toric varieties with AN−1 singularities in codimension two, we realized the Calabi–Yau
fourfold X � as a hypersurface in the resolved toric variety, whereas we constructed
the deformed Calabi–Yau fourfold X � as a complete intersection in a six-dimensional
toric variety. With the toric computational tools at hand, these examples allowed us
to explicitly verify the general predictions concerning the interplay between the gauge
theory moduli spaces and the M-theory background fluxes.
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In this work wemainly focused on a particular gauge theory scenario arising from the
twisted dimensional reduction of a trivial SU (N ) principal bundle over surface S. Firstly,
extending the analysis to non-trivial SU (N ) principal bundles over the surface S would
correspond to extremal transitions in M-theory with non-trivial background fluxes on
bothCalabi–Yau fourfolds X � and X �—inanalogy to thefindings forM-theory four-form
fluxes associated to phases of three-dimensional N = 2 Abelian gauge theories [26].
Secondly, it would be interesting to extend the analysis to general ADE or even non-
simply laced gauge groups. Note also that since the obtained results depended only
on the local geometry in the vicinity of a codimension two singularity in the singular
Calabi–Yau fourfold X0, the gauge theory branches are already captured in M-theory
in terms of extremal transitions among suitable local Calabi–Yau fourfolds. Thus the
relevant local Calabi–Yau fourfolds deserve further study as well. We plan to return to
these issues in the future [49].
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