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Abstract: We analyze 2-dimensional Ginzburg–Landau vortices at critical coupling,
and establish asymptotic formulas for the tangent vectors of the vortex moduli space
using theorems of Taubes and Bradlow. We then compute the corresponding Berry
curvature and holonomy in the large area limit.

Introduction

TheGinzburg–Landau theory is a phenomenological model for superconductivity, intro-
duced in [GL50]; for a more modern review see [AK02]. The theory gives variational
equations—the Ginzburg–Landau equations—for an Abelian gauge field and a complex
scalar field. The gauge field is the EM vector potential, while the norm of the scalar
field is the order parameter of the superconducting phase. The order parameter can be
interpreted as the wave function of the so-called BCS ground state, a single quantum
state occupied by a large number of Cooper pairs.

This paper focuses on certain static solutions of the 2-dimensional Ginzburg–Landau
equations called τ -vortices. Physicists regard the number τ as a coupling constant,
sometimes called the vortex-size.Mathematically, τ is a scaling parameter for themetric.
The geometry of τ -vortices has been studied since [JT80,B90], and there is a large
literature on the subject; cf. [MN99,MS03,CM05,B06,B11,DDM13,BR14,MM15].

Families of operators in quantum physics carry canonical connections. This idea was
introduced by Berry in [B84], and generalized by Aharonov and Anandan in [AA87].
These so-called Berry connections were used, for example, to understand the Quantum
Hall Effect [K85].

In gauge theories—including the Ginzburg–Landau theory—the Berry connection
can be understood geometrically as follows: the space P of solutions of gauge invariant
equations is an infinite dimensional principal bundle over the part of moduli space M
where the action of the gauge group G is free. Thus if all solutions are irreducible, then
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P is an infinite dimensional principal G-bundle
P
G

��
M

overM. The canonical L2-metric ofP defines a horizontal distribution—the orthogonal
complement of the gauge directions—which defines the Berry connection.

A connection on a principal G-bundle P → X defines parallel transport: for each
smoothmap� : [0, 1] → X , parallel transport around� is aG-equivariant isomorphism
from the fiber at �(0) to the fiber at �(1). If � is a closed loop, then �(0) = �(1), and
the corresponding parallel transport is called holonomy. If G is Abelian, holonomy is
given by the action of an element in G.

Holonomies of theBerry connection are gauge transformations,which have a physical
interpretation: they describe the adiabatic evolution of the state of the system, which is
its behavior under slow changes in the physical parameters such as external fields or
coupling constants.

This paper investigates the Berry connection of the τ -vortex moduli space associated
to a degree d hermitian line bundle over a closed, oriented Riemannian surface �. The
Berry holonomy assigns a gauge transformation gτ to each closed curve� inMτ . These
gauge transformations are U(1)-valued smooth functions on �. When d is positive and
τ is greater than the geometry-dependent constant τ0 = 4πd

Area(�) , then the moduli space,

Mτ , is identified with the d-fold symmetric power of the surface Symd(�). A closed
curve � in Symd(�) defines a 1-cycle in �, called sh(�), the shadow of �, which is
constructed by choosing a lift of � to �d → Symd(�), and taking the union of the
non-constant curves appearing in the lift (see Eq. (5.2) for precise definition). The main
theorem of this paper gives a complete topological and analytical description of these
gauge transformations in terms of the shadow:

Main Theorem (The Berry holonomy of the τ -vortex principal bundle). Let gτ ∈ G be
the Berry holonomy of a smooth curve � in the τ -vortex moduli space Mτ , and sh(�)
be the closed 1-cycle in � defined in Eq. (5.2). Then the following properties hold as
τ → ∞:

(1) [Convergence] gτ → 1 in the C1-topology on compact sets of � − sh(�).
(2) [Crossing] Let j : [0, 1] → � be a smooth path that intersects sh(�) transversally

and positively once, and write gτ ◦ j = exp(2π iϕτ ). Then ϕτ (1)− ϕτ (0) → 1.
(3) [Concentration] As a 1-current, 1

2π i g
−1
τ dgτ converges to the 1-current defined by

sh(�).

The map � �→ gτ induces a pairing

hol� : H1(�;Z) → H1(�;Z),
defined in (5.5).

(4) [Duality] For all τ > τ0, the homomorphism hol� is Poincaré duality.

When � is a positively oriented, bounding single vortex loop, or a positively oriented
vortex interchange (see Sect. 5 for precise definitions) our main theorem implies that the
corresponding holonomy can be written as gτ = exp(2π i fτ ), for a real function fτ on
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�. Moreover, fτ can be chosen so that it converges to 1 on the inside of the curve and to
0 on the outside. This makes physicists’ intuition about the holonomy precise; cf. [I01].

As mentioned above, τ is a scaling parameter for the metric: one can look at the
Ginzburg–Landau theory with τ = 1 fixed, but the Kähler form ω scaled as ωt = t2ω.
Our results, including theMain Theorem above, can be reinterpreted as statements about
the large area limit (i.e. t → ∞), which can be more directly related to physics (see
Sect. 6 for details).

The paper is organized as follows. In Sect. 1, we give a brief introduction to the
geometryof the τ -vortex equations on a closed surface, derive the tangent space equations
of the τ -vortex moduli space, and then recast them in a compact form. In Sect. 2, we
use theorems of Taubes and Bradlow to prove a technical result, Theorem 2.3, which
establishes asymptotic formulas for the tangent vectors of the τ -vortex moduli space. In
Sect. 3, we introduce the Berry connection associated to this problem. We then prove
asymptotic formulas for the Berry curvature in Sect. 4. In Sect. 5, we prove our Main
Theorem; the proofs are applications of Theorem 2.3. Section 6 discusses the large area
limit.

1. Ginzburg–Landau Theory on Closed Surfaces

1.1. The τ -vortex equations. Let� be a closed surface with Kähler form ω, compatible
complex structure J , and Riemannian metric ω(−, J (−)). Let L → � be a smooth
complex line bundle of positive degree d with hermitian metric h. For each unitary
connection ∇, and smooth section φ, consider the Ginzburg–Landau free energy:

Eλ,τ (∇, φ) =
∫

�

(
|F∇|2 + |∇φ|2 + λw2

)
ω, (1.1)

where λ, τ ∈ R+ are coupling constants, F∇ is the curvature of ∇, and

w = 1
2

(
τ − |φ|2

)
. (1.2)

The Euler–Lagrange equations of the energy (1.1) are the Ginzburg–Landau equations:

d∗F∇ + i Im(h(φ,∇φ)) = 0 (1.3a)

∇∗∇φ − λwφ = 0. (1.3b)

When λ = 1, the energy (1.1) can be integrated by parts and rewritten as different sum of
non-negative terms, and get the lower bound 2πτd. The minimizers satisfy the τ -vortex
equations:

i�F∇ − w = 0 (1.4a)

∂∇φ = 0, (1.4b)

where �F∇ is the inner product of the Kähler form ω and the curvature of ∇, and
∂∇ = ∇0,1 is the Cauchy–Riemann operator corresponding to∇. Solutions (∇, φ) to the
first order equations (1.4a) and (1.4b) automatically satisfy the second order equations
(1.3a) and (1.3b).
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1.2. The τ -vortex moduli space. As is standard in gauge theory, we work with the
Sobolev Wk,p-completions of the space of connections and fields. Let CL be the W 1,2-
closure of the affine space of smooth unitary connections on L and 0

L be the W 1,2-
closure of the vector space of smooth sections of L . Similarly, letk , andk

L be theW
1,2-

closure of k-forms, and L-valued k-forms respectively. The corresponding gauge groupG
is theW 2,2-closure of Aut(L) in theW 2,2-topology. The gauge group is canonically iso-
morphic to the infinite dimensionalAbelianLie groupW 2,2(�,U(1)), whoseLie algebra
isW 2,2(�; iR). Elements g ∈ Aut(L) act on CL ×0

L as g(∇, φ) = (
g ◦ ∇ ◦ g−1, gφ

)
,

and this defines a smooth action of G on CL ×0
L . Finally, the energy (1.1) extends to a

smooth function on CL ×0
L . The space Pτ of all absolute minimizers of the extended

energy is an infinite dimensional submanifold of CL ×0
L . Due to the gauge invariance

of energy (1.1), G acts on Pτ , and every critical point is gauge equivalent to a smooth
one by elliptic regularity. The τ -vortex moduli space is the quotient spaceMτ = Pτ /G.
Elements of Pτ are called τ -vortex fields, while elements of Mτ (gauge equivalence
classes of τ -vortex fields) are called τ -vortices. For brevity, we sometimeswrite τ -vortex
fields as υ = (∇, φ) ∈ Pτ and the corresponding τ -vortices as [υ] = [∇, φ] ∈ Mτ .

There is a geometry-dependent constant τ0 = 4πd
Area(�) , called the Bradlow limit,

with the property that if τ < τ0, then the moduli space is empty and if τ > τ0, then
there is a canonical bijection betweenMτ and the space of effective, degree d divisors;
cf. [B90, Theorem 4.6]. This space is also canonically diffeomorphic to the d-fold
symmetric product of the surface Symd(�), which is the quotient of the d-fold product
�×d = � × · · · ×� by the action of the permutation group Sd . Although this action is
not free, the quotient is a smooth Kähler manifold of real dimension 2d. For each value
of τ > τ0, there is a canonical L2-Kähler structure (see Sect. 1.3). In the borderline
τ = τ0 case, the φ-field vanishes everywhere and the moduli space is in one-to-one
correspondence with the moduli space holomorphic line bundles of degree d [B90,
Theorem 4.7]. Accordingly, we focus on the τ > τ0 case in this paper.

When τ > τ0, Bradlow’s map from Mτ to Symd(�) is easy to understand: By
integrating Eq. (1.4a), one sees that the L2-norm of φ is positive. On the other hand, φ
is a holomorphic section of L by Eq. (1.4b). Since φ is a non-vanishing holomorphic
section it defines an effective, degree d divisor, giving us the desired map. The inverse
of this map is much harder to understand an involves non-linear elliptic theory.

Much of this picture carries over to open surfaces, evenwith infinite area (for example
� = C), if one imposes proper integrability conditions; cf. [T84]. For simplicity we will
always assume that � is compact. Furthermore the moduli space is empty for d < 0,
and a single point for d = 0. Thus we will always assume that d > 0 in this paper.

1.3. Thehorizontal subspaces. The tangent space at anypoint of the affine spaceCL×0
L

is the underlying vector space i1 ⊕ 0
L . The tangent space of Pτ is described in the

next lemma.

Lemma 1.1. The tangent space of Pτ at the τ -vortex field υ = (∇, φ) is the vector
space of pairs (a, ψ) ∈ i1 ⊕0

L that satisfy

i�da + Re(h(ψ, φ)) = 0 (1.5a)

∂∇ψ + a0,1φ = 0. (1.5b)
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Proof. The linearization of equations (1.4a) and (1.4b) in the direction of (a, ψ) is:

lim
t→0

1
t

(
i�F∇+t a − 1

2

(
τ − |φ + t ψ |2

))
= i�da + Re(h(ψ, φ))

lim
t→0

1
t

(
∂∇+t a(φ + t ψ)

) = ∂∇ψ + a0,1φ,

where we used that υ is a τ -vortex field. This completes the proof, since the tangent
space is the kernel of the linearization of Eqs. (1.4a) and (1.4b).

The affine space CL ×0
L has a canonical L2-metric given by

〈
(a, ψ)

∣∣(a′, ψ ′)〉 =
∫

�

(
a ∧ ∗a′ + Re

(
h
(
ψ,ψ ′))ω)

(1.6)

where ∗ is the (conjugate-linear) Hodge operator of the Riemannian metric of �. One
can check that the restriction of the L2-metric (1.6) to the solutions of Eqs. (1.5a) and
(1.5b) makes Pτ a smooth, weak Riemannian manifold, and that gauge transformations
act isometrically on Pτ .

The pushforward of the tangent space T1G by the gauge action is called the vertical
subspace of TυPτ . We define the horizontal subspace of TυPτ to be the orthogonal
complement of the vertical subspace by the L2-metric (1.6). Since Mτ = Pτ /G, the
horizontal subspace is canonically isomorphic to the tangent space T[υ]Mτ of themoduli
space. The next lemma shows that the horizontal subspace is also the kernel of a first
order linear elliptic operator.

Lemma 1.2. The horizontal subspace of TυPτ , at the τ -vortex field υ = (∇, φ) ∈ Pτ ,
is the vector space of pairs (a, ψ) ∈ i1 ⊕0

L that satisfy

(
i�d + d∗)a + h(ψ, φ) = 0 (1.7a)

∂∇ψ + a0,1φ = 0. (1.7b)

Proof. The real part of Eq. (1.7a) is Eqs. (1.5a) and (1.7b) is Eq. (1.5b); thus solutions
of Eqs. (1.7a) and (1.7b) are in TυPτ . To finish the proof, we must check that a pair
(a, ψ) in TυPτ is orthogonal to the vertical subspace at υ exactly if Eqs. (1.7a) and
(1.7b) hold. The pushforward of i f ∈ Lie(G) at υ is given by X f (υ) = (−id f, i f φ),
hence horizontal vectors are pairs (a, ψ), that satisfy the following equation for every
f ∈ C∞(�;R):

0 = 〈(a, ψ)|(−id f, i f φ)〉 =
∫

�

(a ∧ ∗(−id f ) + Re(h(ψ, i f φ))ω).

Integrating the right-hand side by parts yields

0 =
∫

�

(
d∗a + i Im(h(ψ, φ))

)
i f ω.

Because this holds for all f ,we conclude that (a, ψ) is orthogonal to the vertical subspace
at υ exactly if d∗a + i Im(h(ψ, φ)) = 0 holds. Adding this (purely imaginary) equation
to the (purely real) Eq. (1.5a) gives Eq. (1.7a).
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Equations (1.7a) and (1.7b) depend on the choice of υ, but if (a, ψ) is a solution of
Eqs. (1.5b) and (1.7a) for υ and g ∈ G, then (a, gψ) is a solution of Eqs. (1.5b) and
(1.7a) for g(υ) = (∇ + gdg−1, gφ

)
. Since gauge transformations act isometrically, the

L2-metric on the horizontal subspaces of TPτ descends to a Riemannian metric onMτ .
Let K be the anti-canonical bundle of �, and 0,1 = 0

K
, the W 1,2-completion of

the space of smooth sections of K . We recast Eqs. (1.7a) and (1.7b) in a more geometric
way in the next lemma.

Lemma 1.3. Equations (1.7a) and (1.7b) are equivalent to the following pair of equa-
tions on (α, ψ) ∈ 0,1 ⊕0

L:

√
2 ∂

∗
α − h(φ,ψ) = 0 (1.8a)√
2 ∂∇ψ + αφ = 0. (1.8b)

Moreover, the unitary bundle isomorphism

(a, ψ) �→
(

1√
2
(a + i∗a), ψ

)
(1.9)

interchanges solutions of Eqs. (1.7a) and (1.7b) with solutions of Eqs. (1.8a) and (1.8b).

Proof. A complex 1-form α is in 0,1 exactly if α = i∗α. For a ∈ i1, define the
unitary map u by

u(a) = 1√
2
(a + i∗a). (1.10)

Using ∗2a = −a = a, we see that ∗u(a) = −iu(a), and thus u(a) ∈ 0,1. Setα = u(a).
With this notation a0,1 = α√

2
, which proves the equivalence of Eqs. (1.7b) and (1.8b).

The Kähler identities yield (i�d + d∗)a = −√
2 ∂∗α, which is equivalent to equation

(1.8a).

The vector space of solutions to Eqs. (1.8a) and (1.8b) has a canonical almost complex
structure coming from the complex structures of K and L , and this defines an almost
complex structure forMτ . Mundet i Riera [R00] showed that this structure is integrable,
and together with the L2-metric it makes Mτ a Kähler manifold.

To put Eqs. (1.8a) and (1.8b) in a more compact form, note that they are equivalent
to the single equation

Lυ(a, ψ) = 0,

where Lυ = D∇ +Aφ is defined as

D∇ : 0,1 ⊕0
L → 0 ⊕

0,1
L ; (α, ψ) �→

(√
2 ∂

∗
α,

√
2 ∂∇ψ

)

Aφ : 0,1 ⊕0
L → 0 ⊕

0,1
L ; (α, ψ) �→ (−h(φ,ψ), αφ),

The operator D∇ is a first order elliptic differential operator, and the operator Aφ is a
bundle map. Straightforward computation shows that for all Z ∈ 0,1 ⊕0

L

AφA∗
φ(Z) = |φ|2Z . (1.11)

Thus A∗
φ
is non-degenerate on the complement of the divisor of φ. Note that D∇ , Aφ ,

and hence L(∇,φ) make sense for any pair (∇, φ) ∈ CL ×0
L .
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Lemma 1.4. Let υ = (∇, φ) ∈ CL ×0
L be a pair such that ∂∇φ = 0. Then the operator

D∇A∗
φ
+AφD∗

∇ is identically zero.

Proof. The adjoint operators are

D∗
∇( f, ξ) =

(√
2 ∂f ,

√
2 ∂

∗
∇ξ

)
(1.12a)

A∗
φ( f, ξ) = (h(φ, ξ),− f φ) (1.12b)

for any ( f, ξ) ∈ 0 ⊕ 
0,1
L . The lemma follows from Eqs. (1.12a) and (1.12b), the

holomorphicity of φ, and the definitions of D∇ and Aφ .

Corollary 1.5. Let υ = (∇, φ) ∈ CL ×0
L be a pair such that ∂∇φ = 0. Then ker

(L∗
υ

)
is trivial.

Proof. From Lemma 1.4 and Eq. (1.11), we obtain LυL∗
υ

= D∇D∗
∇ +AφA∗

φ
. Hence if Z

is in the kernel of L∗
υ
, then

0 = ‖L∗
υ (Z)‖2L2 = ‖D∗

∇(Z)‖2L2 + ‖A∗
φ(Z)‖2L2 ,

which implies that both terms on the right vanish. By Eq. (1.11), Z vanishes where φ
does not, which is the complement of a finite set. But then Z vanishes everywhere by
continuity. Hence the kernel of L∗

υ
is trivial.

2. The Asymptotic form of Horizontal Vectors

In this section we will use of the following results of Taubes and Bradlow about the large
τ behavior of τ -vortex fields. Recall from Eq. (1.2) that

w = 1
2

(
τ − |φ|2

)
.

Theorem 2.1 (Bradlow and Taubes). There is a positive number c = c(�, ω, J, L , h)
such that each τ -vortex field υ = (∇, φ) ∈ Pτ satisfies

|φ|2 � τ (2.1a)

w + |∇φ| � cτ exp
(
−

√
τdistD
c

)
, (2.1b)

where distD is the distance from the divisor D = φ−1(0), and w is defined in Eq. (1.2).

Proof. In [B90, Proposition 5.2] Bradlow showed inequality (2.1a), using the fact that
τ -vortex fields satisfy the elliptic equation

(
� + |φ|2

)
w = |∂∇φ|2. (2.2)

The right-hand side is positive away from a finite set, so the maximum principle and
Eq. (1.2) implies inequality (2.1a). Inequality (2.1b) was proved in [T99, Lemma 3.3].

We call a divisor simple if the multiplicity of every divisor point is 1.
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Lemma 2.2. Fix a simple divisor D ∈ Symd(�) and a corresponding τ -vortex field
υ = (∇, φ) with τ > τ0. The smooth function

hD,τ = 1
2πτ

(
|∂∇φ|2 + 2w2

)
(2.3)

depends only on D and τ , but not on the choice of υ. Moreover,

lim
τ→∞ hD,τ =

∑
p∈D

δp, (2.4)

in the sense of measures, where δp is the Dirac measure concentrated at the point p ∈ �.

Proof. Every term in Eq. (2.3) is gauge invariant, which proves the independence of the
choice of υ for D. Using Eq. (2.2) we get hD,τ = 1

2πτ (�w + τw), hence for any smooth
function f :

∫

�

hD,τ f ω = 1
2πτ

∫

�

(�w + τw) f ω

= 1
2πτ

∫

�

w(� f )ω + 1
2π

∫

�

w f ω.

By [HJS96, Theorem 1.1], w converges to 2πδD in the sense of measures as τ → ∞.
Thus the first term converges to 0, and the second term converges to

∑
p∈D f (p), which

completes the proof. ��
The space of simple divisors, Symd

s (�), is an open dense set in Sym
d(�), and its com-

plement is called the big diagonal. When D is simple, a tangent vector in TDSymd(�)

can be given by specifying a tangent vector to � at each divisor point. Thus the rank d
complex vector bundle K → Symd

s (�) defined by

KD = ⊕
p∈D

K p

is isomorphic to T 0,1Symd
s (�). We next use ideas of [T99, Lemma 3.3] to construct an

almost unitary isomorphism from K to T 0,1Symd
s (�).

Fix a simple divisor D, and let υ be a corresponding τ -vortex field. Define

ρD = min({dist(p, q)|p, q ∈ D & p �= q} ∪ {inj(�, ω)}), (2.5)

where inj(�, ω) is the injectivity radius of the metric. Let χ be a smooth function on
[0,∞) that satisfies 0 � χ � 1, χ |[0,1] = 1, and χ |[2,∞) = 0, and set

χp = χ
(
2dist p
ρD

)
. (2.6)

For each � = {
θp

}
p∈D ∈ KD let θ̂p be the extension of θp to the open ball of radius

inj(�, ω) centered at p using the exponential map. Define a smooth section σ� of K
supported in neighborhood of D by setting

σ� =
∑
p∈D

χp θ̂p (2.7)
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and extending by 0 to all of �. Note that σ� satisfies

σ�(p) = θp & |∇σ�| = O(distD) ∀p ∈ D. (2.8)

Finally, for each such υ and � define Yυ,� as

Yυ,� = 1√
2πτ

(√
2wσ�, i�(σ� ∧ ∂∇φ)

)
∈ 0,1 ⊕0

L , (2.9)

where again w = 1
2

(
τ − |φ|2). Note that Yυ,� is gauge equivariant, that is, for every

g ∈ G:
g∗Yυ,� = Yg(υ),�. (2.10)

The following analytic result is the key ingredient needed to compute the asymptotic
curvature in Theorem 4.1 and holonomies in the Main Theorem.

Theorem 2.3 (The asymptotic form of horizontal vectors). For every υ ∈ Pτ and � ∈
KD as above, there is a unique Zυ,� ∈ 0 ⊕

0,1
L such that

Xυ,� = Yυ,� − L∗
υ

(
Zυ,�

)
(2.11)

is a horizontal tangent vector at υ. Moreover, the following asymptotic estimates hold:

(1) [L2-estimate] ‖Yυ,�‖2
L2(�)

→ ∑
p∈D

∣∣θp∣∣2 as τ → ∞.

(2) [Pointwise bound]
∣∣Xυ,� − Yυ,�

∣∣ = O
(
τ−1/2 exp

(
−

√
τdistD
c

))
, where distD is the

distance from D, and c is the positive number from Theorem 2.1.

Equation (2.11) defines a bundle map from K to T 0,1Symd
s (�) by

(D,�) �→ (
D,�∗

(
Xυ,�

))
, (2.12)

where υ is any τ -vortex field corresponding to the divisor D, and � is the projection
fromPτ toMτ

∼= Symd(�). Equation (2.10) implies that (2.12) does not depend on the
choice of υ. Furthermore, this map is almost unitary by Statements (1) and (2). Similar
results have only been known for flat metrics [T99, Lemma 3.3].

Proof of Theorem 2.3. FixYυ,� as inEq. (2.9). SinceLυ is elliptic, and ker
(L∗

υ

) = {0}, by
Corollary 1.5, the operator LυL∗

υ
is has a bounded inverse

(LυL∗
υ

)−1. Thus the equation

Lυ

(
Yυ,� − L∗

υ

(
Zυ,�

)) = 0 (2.13)

has a unique solution for Zυ,� given by

Zυ,� = (LυL∗
υ

)−1(Lυ

(
Yυ,�

))
(2.14)

Consequently Xυ,� in Eq. (2.11) is horizontal.
The pointwise norm of Yυ,� satisfies

∣∣Yυ,�

∣∣2 = hD,τ |σ�|2,
where hD,τ is defined in Eq. (2.3). Using Eq. (2.4), one gets Statement (1).
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In order to prove Statement (2), we put Zυ,� = (
fυ,�, ξυ,�

) ∈ 0⊕
0,1
L in Eq. (2.13)

to obtain the equations
(
1
2� + 1

2 |φ|2
)
fυ,� = 1√

8πτ
w∂

∗
σ�, (2.15a)(

∂∇∂
∗
∇ + 1

2 |φ|2
)
ξυ,� = i√

4πτ
�

(
∇0,1σ� ∧ ∂∇φ

)
. (2.15b)

Let G [φ] be the Green’s operator of the non-degenerate elliptic operator H[φ] = 1
2�+

1
2 |φ|2 on 0. Both H[φ] and G [φ] depend only on the gauge equivalence class of φ. By
an abuse of notation G [φ] will also denote the corresponding Green’s function, which
is a positive, symmetric function on � × � with a logarithmic singularity along the
diagonal. With this definitions, we can write fυ,� as

fυ,� = 1√
8πτ

∫

�

G [φ]w∂
∗
σ�ω. (2.16)

Standard elliptic theory gives the following bounds on the Green’s function:

G [φ](x, y) � c
(
1 +

∣∣ln(√τdist(x, y)
)∣∣) exp(−

√
τdist(x,y)

c

)
(2.17a)

∣∣dG [φ](x, y)
∣∣ � c√

τdist(x,y)
exp

(
−

√
τdist(x,y)

c

)
(2.17b)

for some c ∈ R+ independent of τ or D (see [T99, Equation (6.10)]). Using Eq. (2.16)
and inequalities (2.17a) and (2.17b), together with the bound on w in inequality (2.1b)
and on |∇σ�| in Eq. (2.8) we get (after possibly increasing c)

∣∣ fυ,�∣∣ � c
τ
exp

(
−

√
τdistD
c

)
(2.18a)

∣∣∂ fυ,�∣∣ � c√
τ
exp

(
−

√
τdistD
c

)
. (2.18b)

Before turning our attention to Eq. (2.15b), note that we have the following two scalar
identities

�
∣∣ξυ,�∣∣2 = 2Re

(〈
ξυ,�

∣∣∇∗∇ξυ,�
〉) − 2

∣∣∇ξυ,�∣∣2. (2.19a)

�
∣∣ξυ,�∣∣2 = 2

∣∣ξυ,�∣∣�∣∣ξυ,�∣∣ − 2
∣∣d∣∣ξυ,�∣∣∣∣2, (2.19b)

Using the “Kähler identity” on 0,1
L

∇∗∇ = 2∂∇∂
∗
∇ − i�F∇ = 2∂∇∂

∗
∇ − 1

2

(
τ − |φ|2

)
, (2.20)

in Eq. (2.15b), together with the Cauchy–Schwarz inequality in Eq. (2.19a), and Kato’s
inequality (cf. [FU91, Equation(6.20)])

∣∣d∣∣ξυ,�∣∣∣∣ �
∣∣∇ξυ,�∣∣ (2.21)

gives us (
� + 1

2τ
)∣∣ξυ,�∣∣ � c√

τ
|∇σ�|∣∣∂∇φ

∣∣. (2.22)
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Equation (2.22), together with the bound on
∣∣∂∇φ

∣∣ in inequality (2.1b) and the bound on
|∇σ�| in Eq. (2.8) gives us (again after possibly increasing c)

∣∣ξυ,�∣∣ � c
τ
exp

(
−

√
τdistD
c

)
. (2.23)

Applying ∂
∗
∇ to Eq. (2.15b) gives an elliptic equation on ∂

∗
∇ξυ,�. Similarly to the previous

computation we get the following inequality:

(
� + 1

2τ
)∣∣∣∂∗

∇ξυ,�
∣∣∣ � c

√
τ exp

(
−

√
τdistD
c

)
.

Thus (after possibly increasing c one last time)

∣∣∣∂∗
∇ξυ,�

∣∣∣ � c√
τ
exp

(
−

√
τdistD
c

)
. (2.24)

Finally, inequalities (2.18a), (2.18b), (2.23) and (2.24) give us

∣∣Xυ,� − Yυ,�

∣∣ = ∣∣L∗
υ

(
Zυ,�

)∣∣
�

√
2
∣∣∂ fυ,�∣∣ + |φ|| f | + √

2
∣∣∣∂∗

∇ξ
∣∣∣ + |φ||ξ |

= O
(
τ−1/2 exp

(
−

√
τdistD
c

))
,

which completes the proof of Statement (2).

3. The Berry Connection

The τ -vortex principal bundle is the principal G-bundle � : Pτ → Mτ described in
Sect. 1, with �(υ) = [υ]. In Lemma 1.1 we constructed a horizontal distribution on
the τ -vortex principal bundle, which is the orthogonal complement of the kernel of�∗.
This distribution is G-invariant, so is a connection in the distributional sense (cf. [KN63,
Chapter II]), which we call the Berry connection. The corresponding connection 1-form
is the unique Lie(G)-valued 1-form A that satisfies the three conditions:

(1) ker(Aυ) is the horizontal subspace at υ ∈ Pτ ,
(2) (g∗A)g(υ) = adg(Aυ), for all g ∈ G,
(3) A

(
X f

) = i f , for all i f ∈ W 2,2(�; iR) ∼= Lie(G), where X f (υ) = (−id f, i f φ),
as defined in Lemma 1.2.

The next lemma gives a formula for Aυ . Recall that for each τ -vortex field υ = (∇, φ),
the Green’s operator G [φ] is the inverse of the non-degenerate elliptic operator H[φ] =
1
2� + 1

2 |φ|2.
Lemma 3.1. The Lie(G)-valued 1-form on Pτ defined as

Aυ(a, ψ) = − 1
2G [φ]

(
d∗a + i Im(h(ψ, φ))

)
(3.1)

is the connection 1-form corresponding to the Berry connection.
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Proof. The right-hand side of Eq. (3.1) is the composition of the non-degenerate Green’s
operator and a Lie(G)-valued 1-form. In the proof of Lemma 1.1 we saw that the kernel
of this 1-form is exactly the horizontal subspace. This proves Condition (1) above.

Because G is Abelian, the adjoint representation of G is trivial, and hence the Condi-
tion (2) reduces to (g∗A)g(υ) = Aυ . Since g∗(a, ψ) = (a, gψ), we have

g∗Ag(υ)(a, ψ) = −1
2 G [φ]

(
d∗a + i Im(h(gψ, gφ))

)
= −1

2 G [φ]

(
d∗a + i Im(h(ψ, φ))

)
,

thus g∗Ag(υ) = Aυ . This proves Condition (2).
Finally,we show that A is the canonical isomorphismbetween the fibers of the vertical

bundle and the Lie algebra of G, that is A(
X f

) = i f for every f ∈ C∞(�;R):

Aυ

(
X f

) = −1
2 G [φ]

(
d∗(−id f ) + i Im(h(i f φ, φ))

)
ω

= iG [φ]

((
1
2� f + 1

2 |φ|2
)
f
)

= i f,

thus Condition (3) holds.

We can use Lemma 3.1 to compute the curvature 2-form of the Berry connection.
Since G is Abelian, the curvature, called the Berry curvature, is a Lie(G)-valued 2-form
which descends to the base spaceMτ .

Theorem 3.2. The curvature 2-form of the Berry connection at [υ] ∈ Mτ is

[υ](X,Y ) = G [φ](i Im(h(ψX , ψY ))) (3.2)

where (aX , ψX ) and (aY , ψY ) are the horizontal lifts of X and Y , respectively, at υ.
Moreover, Eq. (3.2) does not depend on the choice of the τ -vortex field υ representing
[υ].

Proof. The claim about the independence of the choice υ is immediate since everything
on the right-hand side is gauge invariant.

The curvature is the unique Lie(G)-valued 2-form  on Mτ that satisfies �∗() =
d A, where � is the projection from Pτ to Mτ . Thus it is enough to compute
d Aυ((aX , ψX ), (aY , ψY )) and compare it with Eq. (3.2). Recall, that the formula for
the exterior derivative

d A
(
X̃ , X̃

) = X̃
(
A
(
Ỹ

)) − Ỹ
(
A
(
X̃

)) − A
([
X̃ , Ỹ

])
, (3.3)

where X̃ and Ỹ are smooth local extensions of (aX , ψX ) and (aY , ψY ) respectively.
Choose the extensions so that their Lie bracket vanishes at υ. Let ϒt be the local flow
generated by X̃ , so ϒt (υ) = υ + t (aX , ψX ) + O

(
t2

)
. Since A

(
Ỹ

) = 0 at ϒ0(υ) = υ,
we have

X̃υ

(
A
(
Ỹ

)) = lim
t→0

1
t Aϒt (υ)

(
Ỹ (ϒt (υ))

)
.

Note that Ỹ (ϒt (υ)) = ((ϒt )∗(aY , ψY )) + O
(
t2

)
, because

[
X̃ , Ỹ

]
υ

= 0. Finally, let us
write

G[φ+t ψX+O(t2)] = G [φ] + t GX
[φ] + O

(
t2

)
.
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Keeping only the linear terms, we obtain

X̃υ

(
A
(
Ỹ

)) = lim
t→0

1
t Aϒt (υ)

(
Ỹ (ϒt (υ))

)

= lim
t→0

− 1
2t G[φ+t ψX+O(t2)]

(
d∗aY + i Im(h(ψY , φ + t ψX)) + O

(
t2

))

= lim
t→0

− 1
2t

(
i tG [φ](Im(h(ψY , ψX ))) + t GX

[φ]

(
d∗aY + i Im(h(ψY , φ))

))

= − i
2G [φ](Im(h(ψY , ψX ))),

where we used the fact that d∗aY +i Im(h(ψY , φ)) = 0 for tangent vectors. Interchanging
X̃ and Ỹ changes sign, since Im(h(ψY , ψX )) is skew. Substituting these into Eq. (3.3),
and noting that the commutator vanishes, gives Eq. (3.2).

4. The Asymptotic Berry Curvature

In this section we use Theorems 2.3 and 3.2 to analyze the Berry curvature in the large
τ limit.

As before, let D be a simple divisor, and υ = (∇, φ) be th corresponding τ -vortex
field. For each p ∈ D, choose �p = {θp,q}q∈D ∈ KD , so that |θp,q | = δp,q . Let
σp = σ�p be the corresponding section defined by Eq. (2.7), and let Xυ,�p = (

ap, ψp
)
,

as defined in Theorem 2.3. By Eq. (2.11),

Xυ,�p = Yυ,�p − L∗
υ

(
Zυ,�p

)
. (4.1)

where Zυ,�p = (
f p, ξp

) ∈ 0 ⊕
0,1
L . It is easy to see that in Statement (2) of Theorem

2.3 we can now replace distD with dist p, the distance from the single point p.
The set {X p}p∈D , where X p = �∗

(
Xυ,�p

) ∈ T[υ]Mτ , is an asymptotically orthonor-
mal basis for the horizontal subspace at υ, in the sense that as τ → ∞

〈
X p

∣∣Xq
〉 = δp,q + O

(
exp

(
−

√
τρD
c

))
→ δp,q .

Finally, for each tangent vector X , let X � = 〈X |−〉 be the metric-dual covector.

Theorem 4.1 (The asymptotic Berry curvature). There is a positive number c =
c(�, ω, J, L , h) such that if τ > τ0 = 4πd

Area(�) and [υ] is a simple τ -vortex, then the
Berry curvature satisfies

[υ] =
∑
p,q∈D

((
χpδp,q

iw
πτ

+ i Ap,q
τ

)
X �

p ∧ (
i Xq

)� + i B p,q
τ X �

p ∧ X �
q + iC p,q

τ

(
i X p

)� ∧ (
i Xq

)�)
,

(4.2)

where χp as defined in Eq. (2.6), and Ap,q
τ , B p,q

τ , and C p,q
τ are real functions, with

∣∣Ap,q
τ

∣∣ + ∣∣B p,q
τ

∣∣ + ∣∣C p,q
τ

∣∣ = O
(
τ−1 exp

(
−

√
τρD
c

))
. (4.3)
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Proof. For p �= q, Theorems 2.1 and 2.3 imply that

∣∣h(
ψp, ψq

)∣∣ = |ψp||ψq | � c exp
(
−

√
τ(dist p+distq)

c

)
� c exp

(
−

√
τρD
c

)
.

This inequality together with the fact that G [φ](1) = O
(
τ−1

)
from inequality (2.17a),

gives Eq. (4.3) in this case.
In general, for every p ∈ D, Theorem 3.2 shows that

1
i [υ]

(
X p, i X p

) = G [φ]

(∣∣ψp
∣∣2). (4.4)

This is non-negative, because G [φ] is given by convolutions with the positive Green’s
function. By Eq. (4.1), we can write

ψp = 1√
2πτ

i�
(
σp ∧ ∂∇φ

) − √
2 ∂

∗
∇ξp + f pφ. (4.5)

Applying the bounds in Theorems 2.1 and 2.3 to Eqs. (4.4) and (4.5), we obtain

1
i [υ]

(
X p, i X p

) = 1
2πτ G [φ]

(∣∣σp
∣∣2|∂∇φ|2

)
+ G [φ]

(
O

(
exp

(
−

√
τdist p
c

)))
. (4.6)

By inequality (2.17a), and the positivity of the Green’s function the last term is

G [φ]

(
O

(
exp

(
−

√
τdist p
c

)))
= O

(
τ−1 exp

(
−

√
τdist p
c

))
. (4.7)

Theorem 2.1 and Eq. (2.2) gives us

H[φ]

(
χpw

) = 1
2χp|∂∇φ|2 + O

(
τ exp

(
−

√
τdist p
c

))
. (4.8)

Thus we can write the main term in Eq. (4.6) as

G [φ]

( |σp|2|∂∇φ|2
2πτ

)
= G [φ]

(
χp |∂∇φ|2

2πτ

)
+ O

(
G [φ]

(
τdist2p exp

(
−

√
τdistp
c

)))

= χp
w
πτ

+ O
(
τ−1 exp

(
−

√
τdist p
c

))
, (4.9)

since
∣∣σp

∣∣2 − χp = O
(
dist2p

)
by (2.8). Combining Eqs. (4.6), (4.9) and (4.7) yields

1
i [υ]

(
X p, i X p

) = χp
w
πτ

+ O
(
τ−1 exp

(
−

√
τdist p
c

))
.

This completes the proof of Eqs. (4.2) and (4.3).
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5. The Asymptotic Berry Holonomy

A connection on a principal G-bundle P → X defines the notion of parallel transport;
cf. [KN63, ChapterII]. Parallel transport around a loop is called holonomy. Holonomy
can be viewed as a map from the loop space of X to the space of conjugacy classes of
G. For Abelian G, the later space is canonically isomorphic to G.

In our case, the τ -vortex principal bundle, Pτ → Mτ , is a principal G-bundle
equipped with the Berry connection. The physical interpretation is that if one adiabat-
ically moves the divisor points along a curve � in Symd(�), then the corresponding
τ -vortex field evolves by the parallel transport defined the Berry connection (cf. [K50],
and [B84]). In particular, when � is a loop, the holonomy of the Berry connection,
called the Berry holonomy, is a gauge transformation. In this section, we give analytic
and topological descriptions of the gauge transformations that arise as Berry holonomies.

Since the Berry holonomy is a map from the loop space of τ -vortex moduli space,
we recall some well-known properties of loops in Mτ

∼= Symd(�).
We call a loop � in Symd(�) a single vortex loop if only one of the divisor points

moves, and all other divisor points are fixed. In other words, single vortex loops are
induced by loops in� that are based at one of the divisor points. Every loop in Symd(�)

can be decomposed up to homotopy (and thus homology) to a product of single vortex
loops. Moreover,

H1(Mτ ;Z) ∼= H1

(
Symd(�);Z

) ∼= H1(�;Z), (5.1)

where the last isomorphism is given by sending single vortex loops to their homology
classes by the Hurewicz homomorphism.

Recall that the complement of Symd
s (�) is called the big diagonal.A loop inSymd(�)

is regular if it is a smooth, embedded (immersed, if d = 1) loop that does not intersect
the big diagonal. The big diagonal is empty when d = 1.When d > 1 the big diagonal is
a subvariety of codimension at least 2, thus every smooth loop in Symd(�) can be made
regular after a small smooth perturbation. Now consider the canonical covering map
�×d

s → Symd
s (�), where�

×d
s is the space of ordered d-tuples in� without repetition.

Given a regular loop � that starts at the simple divisor D = �(0) ∈ Symd
s (�), each lift

D̃ ∈ �×d of D determines a unique lift �̃ of �. The lift �̃ can be regarded as a d-tuple
(γ1, . . . , γd) of curves (not necessarily loops) in �. The shadow of �, sh(�) ⊂ � is

sh(�) =
⋃

image(γi), (5.2)

where the union is over all non-constant γi . The set sh(�) has a natural orientation
coming from the orientation of �. Since � is regular, sh(�) is a union of immersed,
oriented loops, hence it is an integer 1-cycle in �. The homology class in H1(�;Z)
represented by sh(�) is independent of the choice of the lift D̃. We denote this class by
[�]. It is easy to check the homotopy class of � in Symd(�) is sent to the homology
class [�] by the isomorphism (5.1). In general, for a single vortex loop, only one of the
γi ’s is not constant, say γ , and [�] = [

γ
] ∈ H1(�;Z).

Example 5.1. An example of sh(�) is seen on Fig. 1, where

[�] = [γ1] + [γ2] + [γ3] = [γ3],
since both γ1 and γ2 are null-homologous. Thus� is homologous to a single vortex loop.

We call a loop a (positively oriented) vortex interchange if, as in Fig. 2, only two
γi ’s, say γ1 and γ2, are not constant, and the composition � = γ1 ∗ γ2 is the (oriented)
boundary of a disk.
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γ1

γ2
γ3

Fig. 1. Single vortex loops: One divisor point moves along one of the γi ’s. All other divisor points are fixed

γ1

γ2

Fig. 2. Vortex interchange: One divisor point moves along γ1 and another divisor point moves along γ2. All
other divisor points are fixed

Since the Berry holonomy has values in the gauge group G, we also recall a couple
well-known properties of gauge transformations. Elements g ∈ G represent classes
in H1(�;Z) as follows: For a closed manifold X and a finitely generated Abelian
group G, Hn(�;G) is canonically isomorphic to the space [X, K (G, n)] of homotopy
classes of continuous maps from X to the Eilenberg-MacLane space K (G, n) (cf. [H02,
Theorem 4.57]). Since K (Z, 1) ∼= U(1) and G is homotopy equivalent to [�,U(1)], we
get that H1(�;Z) is canonically isomorphic to π0(G), which is also a group, because G
is. In fact, if G0 is the identity component of G, then π0(G) � G/G0, and the short exact
sequence

{0} → G0 ↪→ G � H1(�;Z) → {0} (5.3)

is non-canonically split.
The isomorphism between π0(G) and H1(�;Z) can be understood on the (co)cycle

level; since � is a closed, oriented surface, H1(�;Z) is canonically isomorphic to
Hom(H1(�;Z),Z). An element g ∈ G defines an element [g] ∈ Hom(H1(�;Z),Z)
via

[g]([γ ]) = g(γ ) = 1
2π i

∫

γ

g−1dg ∈ Z. (5.4)

The Berry holonomy can be viewed as a map from the loop space Mτ of Mτ to
G. It then induces a map hol∗ on the connected components:

π1(Mτ )
∼−→ π0(Mτ )

hol∗−−→ π0(G) ∼−→ H1(�;Z).
Since cohomology groups are Abelian, the above map factors down to the homology,
and thus defines a homomorphism:

hol� : H1(�;Z) ∼−→ H1(Mτ ;Z) hol∗−−→ H1(�;Z), (5.5)

where the first isomorphism is from (5.1). Using Eq. (5.4), an explicit formula for hol�
can be given as follows: if g = hol(�), then hol�([�]) evaluates on any 1-cycle γ by

hol�([�])
([
γ
]) = 1

2π i

∫

γ

g−1dg. (5.6)
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Finally, recall that a k-current is a continuous linear functional on k . A 1-form
a ∈ 1 defines a 1-current by

Ca(b) =
∫

�

a ∧ b. (5.7)

Similarly, a smooth 1-chain γ defines a 1-current by

Cγ (b) =
∫

γ

b. (5.8)

We say that the 1-currents in Eqs. (5.7) and (5.8) are the 1-currents defined by a and γ
respectively.

Now we are ready to prove our main theorem about the Berry holonomy, stated in
the introduction.

The proof of the Main Theorem. Since every smooth path can be made regular by an
arbitrarily small smooth perturbation, it is enough to check regular loops, �.

We prove Statement (1) first: Let υ be a τ -vortex field corresponding to D, and �̂ be
the horizontal lift of � starting at υ ∈ Pτ . Since � is regular, �(t) is simple for all t , thus
we can apply Theorem 2.3 to the velocity vector �̂′(t) = (at , ψt ), which is horizontal,
and hence obtain

|at | + |ψt | � cτ
d∑

i=1

∣∣γ ′
i (t)

∣∣ exp
(

−
√
τdistγi (t)

c

)
. (5.9)

By definition of the holonomy,

gτ (υ) = υ +

1∫

0

�̂′(t)dt =
⎛
⎝∇ +

1∫

0

atdt, φ +

1∫

0

ψt dt

⎞
⎠.

On the other hand, by the definition of the gauge action (for Abelian groups),

gτ (υ) =
(
∇ + gτdg

−1
τ , gτ φ

)
.

Thus we have

gτdg
−1
τ =

1∫

0

at dt, (5.10)

and

(gτ − 1)φ =
1∫

0

ψt dt. (5.11)

Let V ⊂ � be any compact set in the complement of sh(�). Since dist(sh(�),V) > 0,

Theorem 2.1 shows that |φ| �
√
τ

2 on V for all large τ . Hence Eqs. (5.9) and (5.11)
imply that for x ∈ V

|φ||gτ − 1|x �
√
τ
2 |gτ − 1|x �

1∫

0

|ψt (x)|dt � cτ
d∑

i=1

1∫

0

∣∣γ ′
i (t)

∣∣ exp(−
√
τdist(γi (t),x)

c

)
dt.

(5.12)
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Using |gτ | = 1,
∣∣dg−1

τ

∣∣ = |dgτ |, and Eqs. (5.9) and (5.10), we also obtain

|dgτ |x �
d∑

i=1

1∫

0

|at (x)|dt � cτ
d∑

i=1

1∫

0

∣∣γ ′
i (t)

∣∣ exp(−
√
τdist(γi (t),x)

c

)
dt. (5.13)

Combining the last two inequalities gives

√
τ |gτ − 1|x + |dgτ |x � c′τ exp

(
−

√
τdist(sh(�),V)

c

)
, (5.14)

for all large τ , which implies that |gτ − 1| and |dgτ | converge to 0, uniformly on V , as
τ → ∞. This proves Statement (1).

In order to proveStatement (2),wefirst assume that� is a single vortex loop, forwhich
sh(�) is an embedded loop, that bounds an embedded disk B in�, and D = �(0) = �(1)
has no divisor points in the interior B, and let p be the divisor point in D that is moved by
�. There is a canonical embedding of B intoMτ that sends a point x ∈ B to the divisor
x + (D − p). The image of this map, B̂, is an (oriented) disk in Mτ , whose (oriented)
boundary is �. We will denote this embedding by πB : B → B̂.

Since� is null-homotopic, gτ is in the identity component of G, and so can be written
as gτ = exp(2π i fτ ), where fτ is a smooth, real function on �. By Stokes’ Theorem,

fτ = 1
2π i

∫

B̂

. (5.15)

If j is a path as in Statement (2) of theMain Theorem, then ϕτ = fτ ◦ j . Using Eq. (5.15)
we see that

ϕτ (1)− ϕτ (0) = fτ ( j(1))− fτ ( j(0)) = 1
2π i

∫

B̂

(( j(1))−( j(0))),

where j(1) is in B, and j(0) is not. To evaluate this integral, we reparametrize using πB .
By Theorem 2.3, if ωτ is the pullback of the Kähler class ofMτ from B̂ to B using πB ,
then

ωτ = πτω + O(1).

For each x ∈ B, let wx be the function w, defined in Eq. (1.2), corresponding to the
divisor D = πB(x), and let dx = dist(x, { j(0), j(1)}). By [HJS96, Lemma1.1], wx |B
converges to 2πδx , in measure, since D ∩ B = {x}. Now using Theorem 4.1, the last
integral above equals to

ϕτ (1)− ϕτ (0) = 1
2π

∫

B

(
wx ( j(1))−wx ( j(0))

πτ
+ O

(
τ−1 exp

(
− 2

√
τdx
c

)))
(πτ + O(1))ωx

=
∫

B

(
δ(x, j(1)) + O

(
exp

(
−

√
τdx
c

)))
ωx + O

(
τ−1

)

= 1 + O
(
τ−1

)
.

This implies Statement (2) in the case where � is a simple vortex loop that bounds a
disk.
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In the general case, let I (2ε) be the tubular 2ε-neighborhood of I = image( j), where
ε is small enough so that I (2ε) ∩ sh(�) is a single embedded arc. Let �◦ be a single,
embedded bounding loop in �, as in the previous case, for which sh(�) and sh(�◦)
coincide on I (2ε). Let �out and �◦

out denote the parts of � and �◦, respectively, for
which sh(�out) and sh

(
�◦
out

)
lie in the complement of I (2ε). Similarly �in = �◦

in is
their common part. Now one can join �◦

out with the reverse of �out to get a piecewise
smooth loop �new, such that sh(�new) is disjoint from I (2ε), and furthermore, the loop
sum � ∗ �new and �◦y differ only by �out and its reverse, thus

gτhol�new = hol�◦ .

On I (ε) we have that hol�new converges to 1 in the C1-topology as τ → ∞. Since the
crossing formula holds for �◦, it must hold for � as well. This establishes the general
case of Statement (2).

In order to prove Statement (3) we pick a finite coverU of� by coordinate charts such
that for every (U, �) ∈ U the preimage of the intersection �−1(sh(�) ∩ U) ⊂ R

2 is
either (i) empty, (ii) the x-axis, or (iii) the union of the two axes. By using a subordinate
partition of unity, it is enough to prove Statement (3) for 1-forms that are supported
inside one of these charts. Fix one such chart (U, �) ∈ U , and let b ∈ 1 a 1-form with
supp(b) ⊂ U . Let us also write

�∗aτ = d fτ (5.16a)

�∗b = Adx + Bdy, (5.16b)

where A and B are compactly supported functions on R
2.

If �−1(sh(�) ∩ U) is empty, then the support of b and sh(�) are disjoint, hence

Csh(�)(b) =
∫

sh(�)

b =
∫

sh(�)∩supp(b)
b =

∫

∅
b = 0.

On the other hand, as τ → ∞, aτ → 0 on supp(b) by Statement (1), and hence
∣∣Caτ (b)

∣∣ � max
supp(b)

{|aτ |}‖b‖L1 → 0,

which proves Statement (3) in the case (i).
Next, if �−1(sh(�) ∩ U) is the x-axis, then by Eq. (5.16b),

Csh(�)(b) =
∫

�−1(sh(�)∩U)
�∗b =

∞∫

−∞
A(x, 0)dx . (5.17)

We also have

Caτ (b) =
∫

�

aτ ∧ b =
∫

U

aτ ∧ b =
∫

R2

d fτ ∧�∗b. (5.18)

Again using Eq. (5.16b), this becomes

Caτ (b) =
∫

R2

d fτ ∧(Adx + Bdy) =
∫

R2

d( fτ Adx + fτ Bdy)−
∫

R2

fτ
(
∂B
∂x − ∂A

∂y

)
dx∧dy.



124 Á. Nagy

The first integral on the right-hand side is zero by Stokes’ Theorem and the fact that A
and B are compactly supported. By Statement (2), we choose fτ so that it converges to
0 when y is positive and to 1 when y is negative. As τ → ∞, we then have

Caτ (b) =
∫

R2

fτ
(
∂A
∂y − ∂B

∂x

)
dx ∧ dy

→
∞∫

−∞

0∫

−∞

(
∂A
∂y (x, y)− ∂B

∂x (x, y)
)
dydx

=
∞∫

−∞
A(x, 0)dx .

Together with Eq. (5.17) this proves Statement (3) for case (ii).
Finally, if �−1(sh(�) ∩ U) is the union of the two axes, then again by Eq. (5.16b),

Csh(�)(b) =
∫

�−1(sh(�)∩U)
�∗b =

∞∫

−∞
A(x, 0)dx +

∞∫

−∞
B(0, y)dy. (5.19)

As before, we also have

Caτ (b) =
∫

R2

fτ
(
∂A
∂y − ∂B

∂x

)
dx ∧ dy. (5.20)

But now Statement (2) shows that, as τ → ∞, fτ converges to 0 in the upper left
quadrant, to 1 in the upper right and the lower left quadrants, and to 2 in the lower right
quadrant. Hence by Eq. (5.20),

Caτ (b) → 2
∫

R+

∫

R−

(
∂A
∂y (x, y)− ∂B

∂x (x, y)
)
dydx

+
∫

R+

∫

R+

(
∂A
∂y (x, y) − ∂B

∂x (x, y)
)
dydx

+
∫

R−

∫

R−

(
∂A
∂y (x, y) − ∂B

∂x (x, y)
)
dydx

=
∞∫

−∞
A(x, 0)dx +

∞∫

−∞
B(0, y)dy,

where the last step is an elementary computation. Together with (5.19), this proves
Statement (3) for the case (iii).

To prove Statement (4), according to Eq. (5.6) and the definition of the Poincaré
duality, we need to show that for any

[
γ
] ∈ H1(�;Z),

hol�([�])
([
γ
]) = 1

2π i

∫

γ

g−1
τ dgτ = [�] · [

γ
]
. (5.21)
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Since everything in (5.21) is homotopy invariant, we have the freedom to change �
by a homotopy. Recall from (5.1) that � can be decomposed, up to homotopy, to a
product of single vortex loops; thus it suffices to check Statement (4) for a basis of
π1

(
Symd(�)

) ∼= H1(�;Z). We use a “symplectic” basis: a set of simple closed curves
{αi , βi }1�i�g(�) such that αi intersects βi transversally and positively once, and αi ∩β j =
αi ∩ α j = βi ∩ β j = ∅ for i �= j . There is always such a set, and {[αi ], [βi ]}1�i�g(�) is
a basis of H1(�;Z), with

[αi ] · [α j ] = 0, [βi ] · [β j ] = 0, [αi ] · [β j ] = δi, j ,

where · is the homology intersection. Denote the corresponding single vortex loops in
Symd(�) by {̂αi , β̂i }1�i�g(�).

To prove Statement (4), we need only to verify (5.21) for every pair in the basis.
When γ ∈ {αi , βi }, and � ∈ {̂α j , β̂ j } with i �= j , we have by Statement (1) that

∫

γ

ig−1
τ dgτ = O

(
τ exp

(
−

√
τdist(γ,sh(�))

c

))
. (5.22)

When γ = αi and � = α̂i , for some i , we can chose another representative α′
i for[

γ
] = [αi ] that is disjoint from αi . Thus, again by Statement (1), we have

∫

γ

ig−1
τ dgτ = O

(
τ exp

(
−

√
τdist(αi ,α′

i)
c

))
. (5.23)

Thus all integrals in (5.22) and (5.23) converge to 0 as τ → ∞. On the other hand, these
integrals are integer multiples of 2π , so they had to be 0 for all τ > τ0.

Finally, assume that i = j and γ = αi and sh(�) = β̂i, or γ = βi and sh(�) = α̂i. In
order to prove the first of these cases, let us fix a small embedded segment j on γ = βi
that intersects sh(�) = αi once positively. Such paths exist by the construction of the
basis. Write gτ |I = exp(2π iϕτ ), and so g−1

τ dgτ |I = 2π idϕτ . Thus by Eq. (5.6),

hol�([�])
([
γ
]) =

∫

I

dϕτ + 1
2π i

∫

γ−I

g−1
τ dgτ

= ϕτ (1)− ϕτ (0) + O
(√

τ exp
(
−

√
τdist(sh(�),{j(0),j(1)})

c

))
.

By Statement (2), this converges to 1 as τ → ∞. On the other hand, hol�([�])
([
γ
])

is
an integer, so it had to be 1 for all τ > τ0. The same argument can be used in the case
of sh(�) = β̃i and γ = αi , which completes the proof of Statement (4) and the Main
Theorem.

Corollary 5.2. For all τ > τ0, the space Pτ is an infinite-dimensional vector bundle
over a connected, oriented and smooth manifold without boundary, M̂τ . This manifold
has real dimension 2d + 1 and is a U(1)-principal bundle over the universal cover of
Mτ . In particular Pτ is homotopy retracts to M̂τ .

Proof. First we will impose the Coulomb gauge: fix a τ -vortex field υ0 = (∇, φ) ∈ Pτ .
We say thatυ = (∇′, φ′) is inCoulomb gaugewith respect toυ0 if the 1-form a = ∇′−∇
is satisfies:

d∗a = 0.
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For eachυ ∈ Pτ there is in fact a gauge transformation g that is in the identity component
of G, and is unique up to constant gauge transformations (factors in U(1)), such that g(υ)
is in Coulomb gauge with respect to υ0. A proof of this, which applies to our case too,
can be found, for example, in [EN11, Lemma 2.1]. The set M̂τ ⊂ Pτ , called the
Coulomb slice, consisting the τ -vortex fields that are in Coulomb gauge with respect to
υ0 intersects each fiber.

Fix then a point x ∈ �, and require g(x) = 1. Such a g = gυ is then unique,moreover,
can be written as gυ = exp(i fυ), and fυ is also unique if one prescribes fυ(x) = 0. Set
gt,υ = exp(i t fυ). Then the map defined as r(t, υ) = gt,υ(υ) is a homotopy retraction of
Pτ to the Coulomb slice.

The intersection of each fiber with the Coulomb slice is a collection of circles, due
to the U(1) ambiguity mentioned above. Moreover, these circles are in bijection with
π0(G) ∼= π1(Mτ ). Thus M̃τ = M̂τ /U(1) is a π1(Mτ )-cover of Mτ , which is the
universal cover if connected.

Our Main Theorem implies that Pτ is connected, by the following argument: let υ
and υ ′ be two arbitrary τ -vortex fields. Since simple divisors are dense in Symd(�),
we can assume, that the corresponding divisors are simple. Join the two divisors by a
regular path�0. Then hol�0(υ) is equal to g

(
υ ′) for some g ∈ G. If g is not in the identity

component of G, then it represents a non-zero cohomology class [g] ∈ H2(�;Z). Let γ
be a smooth loop based at a divisor point of υ that represents the Poincaré dual of [g]; let
γ̂ be the induced single vortex loop, and set� = γ̂−1∗�0. Now υ and hol�(υ) = υ ′′ are
connected by the path in Pτ given by parallel transport. On the other hand, υ ′′ and υ are
gauge equivalent, and the connecting gauge transformation is in the identity component
of G, which means that there is a path from υ ′′ to υ. Thus Pτ is connected, but then so
is M̂τ , which completes the proof.

6. The Large Area Limit

Consider the energy (1.1) for the critical coupling constant λ = 1 and with τ = 1.
Bradlow’s criterion for the existence of irreducible vortices in this case becomes

τ0 = 2πd
Area(�) < 1, (6.1)

using the area with respect to the given area 2-form ω. Even when inequality (6.1) does
not hold for ω, it still holds for ωt = t2ω if t > t0 = √

τ0.
Let Pt be the space of all solutions of the 1-vortex equations with Kähler form ωt for

t > t0. A pair (∇, φ) ∈ CL ×0
L is in Pt if

i�t F∇ = 1
2

(
1 − |φ|2

)
(6.2a)

∂∇φ = 0, (6.2b)

where�t = �/t2. LetMt be the correspondingmoduli space Pt/G. Bradlow’s Theorem
still holds, hence Mt ∼= Symd(�), where the diffeomorphism is again given by the
divisor of the φ-field.

By [B90, Proposition 5.1], the following diagram is commutative when t2 = τ :

Pt
!t ��

����������� Pτ

�����������

Symd(�)

,
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where !t is the isomorphism of principal bundles given by !t (∇, φ) = (∇, tφ).
The L2-metric on Pt is defined by Eq. (1.6), but with Hodge operator and area form

given by ωt . For all X ∈ T Pt , we now have:

‖(!t )∗X‖Pτ = t‖X‖Pt . (6.3)

Thus the L2-metric of Pt is conformally equivalent to the pullback of the L2-metric of
Pτ via the bundle isomorphism !t .

The Berry connection on Pt → Mt is again defined as the orthogonal complement
of the vertical subspaces, hence it is the same as the pullback of the Berry connection
on Pτ via !t . Thus the results of Theorems 2.3 and 4.1 and our Main Theorem hold in
the large area limit (t → ∞):

Main Theorem for the large area limit. The conclusions of the Main Theorem in the
introduction hold for the principal G-bundle Pt → Mt with τ replaced everywhere by
t2.
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