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Abstract: It is well known that a planar central configuration of the n-body problem
gives rise to solutions where each particle moves on a specific Keplerian orbit while the
totality of the particles move on a homographic motion. When the eccentricity e of the
Keplerian orbit belongs in [0, 1), following Meyer and Schmidt, we call such solutions
elliptic relative equilibria (shortly, ERE). In order to study the linear stability of ERE in
the near-collision case, namely when 1 − e is small enough, we introduce the collision
index for planar central configurations. The collision index is a Maslov-type index for
heteroclinic orbits and orbits parametrised by half-lines that, according to the definition
given by Hu and Portaluri (An index theory for unbounded motions of Hamiltonian
systems, Hu and Portaluri (2015, preprint)), we shall refer to as half-clinic orbits and
whose definition in this context, is essentially based on a blow up technique in the case
e = 1.Weget the fundamental properties of collision index and approximation theorems.
As applications, we give some new hyperbolic criteria and prove that, generically, the
ERE of minimal central configurations are hyperbolic in the near-collision case, and we
give a detailed analysis of Euler collinear orbits in the near-collision case.

1. Introduction

For n particles of mass m1, . . . ,mn , let q1, . . . , qn ∈ R
2 be the position vectors,

p1, . . . , pn ∈ R
2 be the momentum vectors. Setting di, j =‖ qi − q j ‖, the Hamil-

tonian function has the form

H =
n∑

j=1

‖ p j ‖2
2m j

−U (q1, . . . , qn), U =
∑

1≤ j<k≤n

m jmk

d jk
. (1.1)
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U will be defined on configuration space

� = {x = (x1, . . . , xn) ∈ R
2n \ � :

n∑

i=1

mi xi = 0},

where � = {x ∈ R
2n : ∃i �= j, xi = x j } is the collision set. A central configuration is

a solution (q1, . . . , qn) = (a1, . . . , an) of

− λm jq j = ∂U

∂q j
(q1, . . . , qn) (1.2)

for some constant λ. An easy computation shows that λ = U (a)/I(a) > 0, where
I(a) = ∑

m j‖a j‖2 is the moment of inertia. Otherwise stated, a central configuration
with I(a) = 1 is a critical point of the function U constrained to the set E = {x ∈ � |
I(x) = 1}. Please refer [35] for the properties of central configuration.

It is well known that a planar central configuration of the n-body problem gives rise
to solutions where each particle moves on a specific Keplerian orbit while the totality
of the particles move on a homographic motion. Following Meyer and Schmidt [31],
we call these solutions as elliptic relative equilibria and in shorthand notation, simply
ERE. Specifically, when the eccentricity e = 0, the Keplerian elliptic motion becomes
circular and all the bodies move around the center of masses along circular orbits with
the same frequency. Traditionally these orbits are called relative equilibria .

As pointed out in [31], there are two four-dimensional invariant symplectic subspaces,
E1 and E2, and they are associated to the translation symmetry, dilation and rotation
symmetry of the system. In other words, there is a symplectic coordinate system inwhich
the linearized system of the planar n-body problem decouples into three subsystems on
E1, E2 and E3 = (E1∪ E2)

⊥, where⊥ denotes the symplectic orthogonal complement.
A symplectic matrixM is called spectrally stable if all eigenvalues ofM belong to the
unit circle U of the complex plan, whileM is called hyperbolic if no eigenvalues ofM
are on U. The ERE is called hyperbolic (resp. stable) if the monodromy matrix M is
restricted to E3, that is,M|E3 is hyperbolic (resp. stable).

There are many interesting results for the linear stability of ERE (cfr. [15,33,34,38,
39,41] and references therein). Many of them investigated the relative equilibria for e
small enough and as far as we know, only a few of them studied the linear stability of
ERE with e ∈ [0, 1). To our knowledge, the elliptic Lagrangian solution is the only
case that is well studied. The Lagrangian solution, which was discovered by Lagrange
in 1772 [22], is the ERE of the equilateral triangle central configuration in the planar
three body problem.

It is well known that the stability of elliptic Lagrangian solutions depend on the
eccentricity e and on

β = 27(m1m2 + m1m3 + m2m3)

(m1 + m2 + m3)2
. (1.3)

Long et al. used Maslov-type index and operator theory to study the stability problem,
and gave out a full description of the bifurcation graph (cfr. [17,18]). Moreover, Wang
et al. built up a trace formula for linear Hamiltonian systems and Sturm–Liouville sys-
tems, and used it to give an estimate of the stability region as well as of the hyperbolic
region [20,21].

In the study of the near-collision case, that is, when 1− e is small enough, a blow-up
technique fromMartínez et al. [28] is very useful to carry over our analysis. The authors
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Fig. 1. Phase portrait of (2.7) from [29]

considered 4D linear systemdepending on a small parameterσ > 0 and the singular limit
for σ → 0. Based on it, they computed the trace tr1 = λ1 + λ−1

1 , tr2 = λ2 + λ−1
2 , where

λi , λ
−1
i , i = 1, 2 are the eigenvalues of monodromy matrix. Under a “nondegenerate

condition" they describe the asymptotic behaviour of log |tri |, i = 1, 2 and tr2. Their
study includes the ERE of Lagrangian equilateral triangle and Euler collinear central
configurations.

Motivated by the these results, we will use blow-up technique and index theory
to study the stability problem of ERE. The index theory we used will be based on
the Maslov-type index. The Maslov index is associated to a given continuous path of
Lagrangian subspaces and the Maslov-type index is assigned to a path of symplectic
matrices. We briefly review the Maslov index theory in Sect. 2.2 and give its relation
with the Maslov-type index. For the reader’s convenience, we now roughly describe the
Maslov-type index theory. Let Sp(2n) be the set of symplectic matrix in R

2n equipped
with the standard symplectic structure, and let I2n be the identity matrix on R

2n . Let
γ ∈ C([0, T ],Sp(2n)) with γ (0) = I2n , for ω ∈ U, roughly speaking, the Maslov-type
index iω(γ ) is the intersection number (by a small perturbation) of γ and Dω := {M ∈
Sp(2n), det(M − ωI2n) = 0}. Please refer to [24] for the details.

By the blow-up technique, the limit of ERE , as e → 1, can be described by
two heteroclinic orbits l0, l+ connected P± (cfr. to Fig. 1). Throughout of the paper,
we denote by γe the fundamental solution of the essential part of ERE, that is,
γ̇e(t) = JB(t)γe(t), t ∈ [0, 2π ], γe(0) = id, where B(t) is defined in Eq. (2.2).
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Given a symmetric matrix R we shall denote by λ1(R), the smallest eigenvalue of R.
When the limit equilibrium P± is non-hyperbolic, we have the following result.

Theorem 1.1. Let a0 ∈ E be a planar central configuration which satisfies

λ1(D
2U |E (a0)) < −1

8
U (a0), (1.4)

where D2U |E (a0) is the Hessian of U restricted to E at a0. Then i1(γe) → ∞ as e → 1.
For 1

U (a0)
λ1(D2U |E (a0)) = − 1

8 − r1, let ε = 1
2 min{ r1

2r1+5
, 1/8}, ê = 1−e2

2 . If ê < ε3,
then we have

i1(γe) ≥ 2
√
r1

π
ln

( ε2√
ê

)
− 6. (1.5)

From [24], it is well-known that, for any ω ∈ U, |iω − i1| ≤ n, then Theorem 1.1 shows
also that iω(γe) → ∞ as e → 1, which implies there exists a sequence e j (ω) converging
to 1, such that the system is ω-degenerate.

It is well known that any T -periodic solution is a critical point of the action functional

F(q) =
∫ T

0

[ n∑

i=1

mi‖q̇i (t)‖2
2

+U (q)
]
dt

defined on loop spaceW 1,2(R/TZ,�). Let now xe be the ERE corresponding to a0 with
eccentricity e, and let φ(xe) be theMorse index of xe (meaning that it is the total number
of the negative eigenvalues of F ′′(xe)). Since the Morse index is equal to Maslov-type
index (cfr. to Lemma 5.3). We have φ(xe) is not less than the Maslov-type index i1(γe)
coming from the essential part. Theorem 1.1 implies that, if a0 satisfied (1.4), then
φ(xe) → ∞ as e → 1 [19].

The above theorem is related to the result of the interesting paper of Barutello and
Secchi [4]. They defined a collision Morse index for one-collision solution in n-body
problem with α homogeneous potentials, and proved that the collision index is infinite
under the condition (1.4) for theNewton potential. Their results show that a one-collision
solution asymptotic to a0 which satisfied (1.4) cannot be locally minimal for the action
function. A Morse-type index theorem both for colliding and parabolic motions will be
given in [5].

Themost interesting case, however, is preciselywhen P± is hyperbolic, in this casewe
can define theMaslov index for heteroclinic orbits and half-clinic orbits. (Cfr. Equations
(3.2) and (3.4)). For half-clinic orbits, we mean a solution of Hamiltonian system x(t)
defined on R

+ or R−, where R+ and R
− stands for the non-negative and non-positive

half-line, respectively and such that the initial condition x(0) belongs to a Lagrangian
subspace whilst x(t) converge to an equilibrium point when t → ±∞. Also in this
last case , we assign a Maslov index to both l0 and l+ and we shall refer to it as the
collision index. After defining the collision index, we shall prove Theorem 3.3 and we
shall refer to it as the approximation theorem. Let us now show that, under a suitable
non degenerate conditions for e → 1, the Maslov index for γe is convergent to the sum
of the collision index on l0, l+. This is a main part (cfr. Sect. 3.1 for the details). In the
study of the stability problem, the Dirichlet, Neumann, periodic, anti-periodic boundary
conditions play an important role. Our key idea is to use theMaslov index corresponding
to these 4 kinds of boundary conditions for determining the stability.
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Throughout of the paper, we always let V j
d = R

j ⊕0, V j
n = 0⊕R

j be the Lagrangian
subspace in (R2 j , ω0) which correspond to the Dirichlet and Neumann boundary con-
ditions respectively, and we always omit the subscript if no confusion is possible. For
ERE, by using the approximation theorem, we get the following result.

Theorem 1.2. Let a0 ∈ E be such that λ1(D2U |E (a0)) > − 1
8U (a0) and we assume

that a0 is nondegenerate and collision nondegenerate. Let φ(a0) be the Morse index of
a0 which is the total number of negative eigenvalues of D2U |E (a0). For 1 − e small
enough, we have, γe(2π)Vd � Vd,

μ(Vd , γe(t)Vd , t ∈ [0, 2π ]) = k + i(Vd; l+), (1.6)

and γe(2π)Vn � Vn,

μ(Vn, γe(t)Vn, t ∈ [0, 2π ]) = 2φ(a0) + i(Vd ; l+), (1.7)

where � means transversal, k = 2n − 4, i(Vd; l+) is the collision index on l+ defined by
(3.4) and μ is the Maslov index.

The definition of collision nondegenerate index is given inDefinition 3.2. The degenerate
problem on l0 will be discussed in Sect. 3.2. We observe that, in contrast with respect to
the nondegeneracy condition along l0, we didn’t establish a useful criterion for detecting
the nondegeneracy along l+.

If the central configurations have brake symmetry (cfr. Definition 4.1), the collision
index of heteroclinic could be decomposed into the sum of index on half-clinic orbits
and this will simplify the computation. To our knowledge, the Lagrangian and Euler
central configurations both have brake symmetry. Another example is the 1 + n central
configurations, that is regular polygon configurations with a central mass. It will be
interesting to provide central configurations without this symmetry property.

As an application, we study the stability of ERE for minimizer central configurations.
For a central configuration a0, it is obvious that D2U |E (a0) has a trivial eigenvalue 0,
which comes from the rotation invariant. The central configuration a0 is called nonde-
generate minimizer if all the nontrivial eigenvalues are bigger than 0, while a0 is called
strong minimizer if all the nontrivial eigenvalues are bigger than U (a0).

Theorem 1.3. Weassume that a0 is a nondegenerateminimizer that satisfies the collision
nondegenerate condition. If 1 − e is sufficiently small, then the ERE is hyperbolic.

In the case e = 0, Moeckel conjectured [2] that a relative equilibrium is linearly stable
only if it associated to a minimizing central configuration. Our results show that in the
case that 1 − e small enough, it is generally hyperbolic. By the way, we conjecture that
Theorem 1.3 is true also without the collision nondegenerate condition.

In the case a0 strong minimizer the following result holds.

Theorem 1.4. The ERE of a strong minimizer a0 is hyperbolic for any e ∈ [0, 1).
A typical example of nondegenerate minimizer central configurations is the Lagrangian
central configurations, which is strong minimizer if β > 8. For Lagrangian orbits,
the conclusion of Theorem 1.3 was proved in [17] without the collision nondegenerate
condition and the result of Theorem 1.4 was proved by Ou [36]. Another easy example
is the 1 + 3-gon central configurations, that is, the regular triangular configurations with
a central mass. The three unit masses with unit distance away from the mass mc at the
origin. As a direct application of Theorems 1.3 and 1.4, we get the next result.
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Corollary 1.5. Let a0 be a 1 + 3-gon central configuration with central mass mc, for

mc ∈ [0, 81+64
√
3

249 ) and we assume that a0 is collision nondegenerate. If 1 − e is suffi-

ciently small, then the ERE is hyperbolic Furthermore, if mc ∈ [0,
√
3

24 ) then the ERE is
hyperbolic for any e ∈ [0, 1).
Another conjecture of Moeckel [2] states that a relative equilibrium is linearly stable
only if it has a dominant mass. For example the Lagrangian orbits and ERE of 1 + 3-
gon relative to a strong minimizer have no dominant mass. Thus Theorem 1.4 can be
considered as a support of Moeckel’s conjecture in the case of e > 0, so we guess
Moeckel’s conjecture is also true in the case of ERE.

The collision index plays an important role in the study of the stability problem. We
shall give some conjectures for the collision index that are relatedwith Long’s conjecture
for the Maslov-type index of ERE (cfr. Remark 5.6 for further details).

As a further application,we consider theEREofEuler collinear central configurations
[14], which we simply refer to as elliptic Euler orbits. The linear stability of this kind of
orbit depends upon two parameters, e and δ, where the last one δ ∈ [0, 7] only depends
on mass m1,m2,m3. (Cfr. Appendix A of [28] and [27] for further details). To our
knowledge, the near collision case was first studied by Martínez et al. [28]. Long and
Zhou used Maslov-type index theory in order to describe the ±1-degenerate curves;
they also analysed the stability problem. It is worth noting that by their methods is not
possible to explain the limit property of ±1-degenerate curves numerically proved by
Martínez et al. [28]. Please refer to Figs. 7 and 8. Using the collision index, we explain
the limit property. We show that δ > 1/8 is equivalent to condition (1.4). Theorem 1.1
implies the ±1-degenerate curves don’t intersect [1/8, 7] × 1. In the case δ ∈ (0, 1/8),
the collision index is well defined, we analyse the near-collision phenomena by the
collision index. We can compute in detail for the collision index on l0, but unfortunately,
we can’t determine the collision index on l+ by analytical method. Instead, we develop
a numerical method to compute the collision index. Based on numerical results A, the
collision index strictly proved the behaviour of the ±1 in the near-collision case. Please
refer to Sect. 5.2 for the details.

This paper is organized as follows. We review the Meyer-Schmidt reduction and
Martínez, Samà,Simó blow up technique at Sect. 2.1. We give a brief introduction of the
Maslov index theory and we prove Theorem 1.1 in Sect. 2.2. The definition of collision
index is stated and the approximation theorem is proved in Sect. 3.1. The computation
of the collision index along l0 and some basic properties of the collision index are given
in Sect. 3.2. In Sect. 4, we study the case of brake symmetric central configurations.
We give some applications in Sect. 5. In Sect. 5.1, we study the minimizing central
configurations and we prove Theorem 1.3 and Theorem 1.4. We use the collision index
to analyse the Euler orbits in Sect. 5.2. At last, for the reader’s convenience, we give the
details of the numerical method used to compute the collision index in Sect. 6.

2. Blow Up and Limit Index for the Non-Hyperbolic Case

This section includes some basic preliminaries.Wefirst briefly review the decomposition
of ERE by following authors in [31] and the blow-up technique of Martínez, Samà and
Simó [29] in Sect. 2.1, then we review the fundamental property of Maslov index in
Sect. 2.2, and give the proof of Theorem 1.1.
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2.1. Reduction and blow up method. In 2005, Meyer and Schmidt strongly used the
structure of the central configuration for the elliptic Lagrangian orbits and symplectically
decomposed the fundamental solution of the elliptic Lagrangian orbit into two parts, one
of which corresponds to the Keplerian solution and the other is the essential part of the
dynamics, needed for studying the stability. For the reader’s convenience, we briefly
review the central configuration coordinates, by following Meyer and Schmidt [31].

Suppose that Q = (q1, . . . , qn) ∈ R
2n with mass m1, . . . ,mn is a central

configuration, and P = (p1, . . . , pn) ∈ R
2n . Let I j be the identity matrix on

R
j , J2 j =

(
0 j −I j
I j 0 j

)
. We denote by Jn = diag(J2, . . . , J2)2n×2n and M =

diag(m1,m1,m2,m2, . . . ,mn,mn)2n×2n . We assume that t �→ x(t) is a periodic solu-
tion of ERE, then the corresponding fundamental solution is

γ̇ (t) = J4nH
′′(x(t))γ (t), γ (0) = I4n . (2.1)

As in [31, Corollary 2.1, pag. 266], Eq. (2.1) can be decomposed into 3 subsystems
on E1, E2 and E3 = (E1 ∪ E2)

⊥ respectively. The basis of E1 is (0, u), (Mu, 0),
(0, v), (Mv, 0), where u = (1, 0, 1, 0, . . .), v = (0, 1, 0, 1, .), and E2 is spanned by
(0,Q), (MQ, 0), (0, JnQ), (JnMQ, 0). For X = (g, z, w) ∈ R

2 × R
2 × R

2n−4 and
Y = (G, Z ,W ) ∈ R

2 ×R
2 ×R

2n−4, we consider the linear symplectic transformation
of the form Q = PX,P = P−T Y , where P is such that JP = PJ, PT MP = I2n
([31], p263). Now B(t) = H ′′(x(t)) in this new coordinate system has the form B(Q) =
B1⊕ B2⊕ B3, where Bi = B|Ei . The essential part B3(t) is a path of (4n−8)×(4n−8)
symmetric matrix.

In the rotating coordinate system and by using the true anomaly as the variable,Meyer
and Schmidt [31] gave a very useful form of the essential part

B(t) =
(

Ik −Jk/2

Jk/2 Ik − Ik+D
1+e cos(t)

)
, t ∈ [0, 2π ], (2.2)

where k = 2n − 4 and e is the eccentricity, t is the true anomaly and

D = 1

λ
PT D2U (Q)P

∣∣
w∈Rk , wi th λ = U (Q)

I(Q)
. (2.3)

We denote by R := Ik + D, which can be considered as the regularized Hessian of
the central configurations. In fact, for a0 ∈ E which is a central configurations, then
I(a0) = 1.With respect to themassmatrixM inner product, theHessian of the restriction
of the potential to the inertia ellipsoid, is given by

D2U |E (a0) = M−1D2U (a0) +U (a0).

Then we have

P−1D2U |E (a0)P = PT D2U (a0)P +U (a0), (2.4)

and thus

R = 1

U (a0)
P−1D2U |E (a0)P

∣∣
w∈Rk . (2.5)
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Thus the corresponding Sturm–Liouville system is

− ÿ − 2Jk/2 ẏ +
R

1 + e cos(t)
y = 0. (2.6)

In order to study the singular limit case e → 1, we use a change of coordinates as in
[29]. In fact, in the case of Newtonian potential, this can be interpreted as a McGehee
change of coordinates (cfr. [30,32]). Let q = (1 + e cos(t))1/2, Q = −2q̇ and change
the time variable to τ , where dt = qdτ . Throughout the paper, we always use x ′ = dx

dτ

and ẋ = dx
dt . Then we have

q ′ = −1

2
qQ, Q′ = 1

2
Q2 + q2 − 1. (2.7)

Weobserve that (2.7) iswell defined forq = 0 and its first integral is E = q2( Q
2

2 + q2

2 −1).
An easy computation shows that, for the orbits with eccentricity e, the first integral with
E = e2−1

2 = −ê. The system has two equilibria P± = (0,±√
2) lying on the level set

E = 0. We distinguish the level set E = 0 into two orbits

l0 = {(q, Q) ∈ R
2|q = 0, |Q| <

√
2}, (2.8)

and

l+ = {(q, Q) ∈ R
2|q > 0, Q2 + q2 = 2}. (2.9)

On l0, we have

ql0(τ ) = 0, Ql0(τ ) = −√
2 tanh(

√
2

2
τ), (2.10)

and the system on l+ is

q ′
l+ = −1

2
qQ, Q′

l+ = −q2

2
. (2.11)

The solution is given by

ql+(τ ) = √
2/ cosh(

√
2τ

2
), Ql+(τ ) = √

2 tanh(

√
2τ

2
). (2.12)

For convenience, we also let l−0 = {(p, Q) ∈ l0, Q ≤ 0} and l+0 = {(p, Q) ∈ l0, Q ≥ 0},
similarly, let l−+ = {(p, Q) ∈ l+, Q ≤ 0} and l++ = {(p, Q) ∈ l+, Q ≥ 0}. Obviously,
l0 = l−0 ∪ l+0 and l+ = l−+ ∪ l++.

Throughout of the paper, we always let γe (e ∈ [0, 1)) be the fundamental solution
of (2.2). For simplicity, γe can also be considered as a function of τ . For q �= 0 we

consider the matrix S = diag(q
1
2 Ik, q− 1

2 Ik) ∈ Sp(2k) and for T = τ(2π), we have
S(T ) = S(0). We let γ̂e(τ ) = S(τ )γe(τ )S−1(0) and we observe that the associated
monodromy matrix is similar to the one of γe. A direct computation shows that

d

dτ
γ̂e = J B̂γ̂e, γ̂e(0) = I2k, τ ∈ [0, T ], (2.13)
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Fig. 2. An illustration of the sections used in the proof of Theorem 3.3

with

B̂ =
(

Ik
Q
4 Ik − qJk/2

Q
4 Ik + qJk/2 q2 Ik − R

)
. (2.14)

The linear system (2.13) is well-defined also when e = 1. In this case, E = 0, the
system has two equilibria corresponding to P±, and the system can be considered as two
heteroclinic orbits.

Proposition 2.1. P± is hyperbolic if and only if λ1(R) > − 1
8 .

Proof. We observe that at points P±, the linear part with form D± =
Jk

(
Ik ±

√
2
4 Ik

±
√
2
4 Ik −R

)
. P± is hyperbolic if and only if the eigenvalue of D± is not

on the imaginary line. Since R is diagonalizable by choose suitable bases, the results is
from simple computations. ��

Given ε < 1/8, we define the following sections (see Fig. 2)

�0 = {(q, Q)|0 < q < ε, Q = 0}, �1 = {(q, Q)|0 < q < ε, Q = −√
2 + ε},

�2 = {(q, Q)|q = ε,−
√
2 − ε2 < Q < ε − √

2},
�3 = {(q, Q)|0 <

√
2 − q < ε, Q = 0}.

�4 = {(q, Q)|q = ε,
√
2 − ε < Q <

√
2 − ε2},

�5 = {(q, Q)|0 < q < ε, Q = √
2 − ε}.
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If ê = 1−e2
2 , Ẽ(ê) := {(q, Q), E = −ê} denotes the energy level set. A direct

computation show that Ẽ(ê) intersects �i , i = 0, . . . , 5 simply, i.e. intersect at exactly
one point when ê < ε3, ε < 1/8. In this case, the Poincaré map Pi : �i−1 �→ �i ,
i = 1, . . . , 5 is well defined. In fact, ê < ε2 ensures the intersection with �0, �3. For
the intersection of Ẽ(ê) and �1, we observe that, since Q = −√

2 + ε, are solutions of
q2((−√

2+ε)2/2+q2/2−1) = −ê, we getq2± = 1
2 (ε(2

√
2−ε)±((ε(2

√
2−ε))2−8ê)

1
2 ).

For ε < 1/8, ê < ε3, we have q2− < ε2 < q2+, which guarantee the simple intersection.
Since Ẽ(ê) is convex, this also ensure the simple intersection with �2, and we have the
simple intersection of �4, �5 by symmetry.

Following [29], we denote by τl0 > 0 the time defined by Ql0(τl0) = −√
2 + ε and

τl+ > 0 such that ql+(−τl+) = ε. It is obvious Ql0(−τl0) = √
2− ε and ql+(τl+) = ε. τl0

and τl+ are finite and independent of e once ε is fixed. Let q0 = q(0) and τ1, τ2 be the
smallest positive time such that (q(τ1), Q(τ1)) ∈ �1 and (q(τ2), Q(τ2)) ∈ �2 . It is clear
that q0, τ1 and τ2 depend on ê. Moreover q0 → 0, τ1 → τl0 and T /2 − τ2 → τl+ when
ê → 0. Similarly, let τ4, τ5 be the smallest positive time such that (q(τ4), Q(τ4)) ∈ �4
and (q(τ5), Q(τ5)) ∈ �5. We have τ4 −T /2 → τl+ and T − τ5 → τl0 . The next lemma
was proved in [29]; however, for the reader’s convenience, we proved it with a slight
sharp estimates.

Lemma 2.2. For ε < 1/8, ê < ε3, we have

(a)

√
2 ln(

ε

q(τ1)
) ≤ τ2 − τ1 ≤ 2√

2 − ε
ln(

ε

q(τ1)
), (2.15)

(b)

∫ τ2

τ1

q(τ )dτ ≤ 2ε√
2 − ε

< 2ε, (2.16)

(c)

∫ τ2

τ1

|Q(τ ) +
√
2|dτ < 2ε. (2.17)

Proof. To prove (a), we observe that for τ ∈ [τ1, τ2], −
√
2 ≤ Q(τ ) ≤ −√

2 + ε. Multi-

plying by−q(τ )/2we get 12 (
√
2−ε)q(τ ) ≤ q ′(τ ) ≤

√
2
2 q(τ ) and hence Equation (2.15)

by a direct integration. To prove (b), please note that
∫ τ2
τ1

q(τ )dτ ≤ 2√
2−ε

∫ τ2
τ1

q ′(τ )dτ ≤
2√
2−ε

q(τ2). Equation (2.16) follows by observing that q(τ2) = ε.

To prove (c), let F(q) = √
2 − √

2 − q2. Then F(q) ≤ cq for q < ε, with c =
ε√

2+
√
2−ε2

. From (b), we have

∫ τ2

τ1

F(q)dτ ≤ 2cε√
2 − ε

. (2.18)

Please observe that, near P−, l+ is graph of F(q) − √
2. Let y = Q +

√
2 − F(q), then

0 < y < ε. By a direct computation it follows that

y′ = (
q2

2
√
2 − q2

−
√
2 − q2)y + y2/2 = −√

2y(1 + o1),

where |o1| ≤ ε. Thus we have −√
2y(1 + ε) ≤ y′ ≤ −√

2y(1 − ε), then
∫ τ2

τ1

ydτ ≤ 1√
2(1 − ε)

y(τ1) ≤ ε√
2(1 − ε)

. (2.19)
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From (2.18, 2.19), we have
∫ τ2

τ1

|Q +
√
2|dτ ≤

∫ τ2

τ1

(y + F(q))dτ ≤ ε√
2(1 − ε)

+
2cε√
2 − ε

< 2ε. (2.20)

��

2.2. The index limit on the non-hyperbolic case . We start by briefly reviewing the
Maslov index theory [3,6,37] in this subsection. Let (R2n, ω) be the standard symplectic
space, and Lag(2n) the Lagrangian Grassmanian, i.e. the set of Lagrangian subspaces
of (R2n, ω). For two continuous paths L1(t), L2(t), t ∈ [a, b] in Lag(2n), the Maslov
index μ(L1, L2) is an integer invariant. Here we use the definition from [6]. We list
several properties of the Maslov index. The details could be found in [6].

Property I (Reparametrization invariance) Let � : [c, d] → [a, b] be a continuous
and piecewise smooth function with �(c) = a, �(d) = b, then

μ(L1(t), L2(t)) = μ(L1(�(τ )), L2(�(τ ))). (2.21)

Property II (Homotopy invariant with end points) For two continuous family
of Lagrangian path L1(s, t), L2(s, t), 0 ≤ s ≤ 1, a ≤ t ≤ b, and satisfies
dimL1(s, a) ∩ L2(s, a) and dimL1(s, b) ∩ L2(s, b) is constant, then

μ(L1(0, t), L2(0, t)) = μ(L1(1, t), L2(1, t)). (2.22)

Property III (Path additivity) If a < c < b, then

μ(L1(t), L2(t)) = μ(L1(t), L2(t)|[a,c]) + μ(L1(t), L2(t)|[c,b]). (2.23)

Property IV (Symplectic invariance) Let γ (t), t ∈ [a, b] is a continuous path in
Sp(2n), then

μ(L1(t), L2(t)) = μ(γ (t)L1(t), γ (t)L2(t)). (2.24)

Property V (Symplectic additivity) Let Wi , i = 1, 2 be symplectic space, L1, L2 ∈
C([a, b], Lag(W1)) and L̂1, L̂2 ∈ C([a, b], Lag(W2)), then

μ(L1(t) ⊕ L̂1(t), L2(t) ⊕ L̂2(t)) = μ(L1(t), L2(t)) + μ(L̂1(t), L̂2(t)). (2.25)

In the case L1(t) ≡ V0, L(t) = γ (t)V , where γ is a path of symplectic matrix we
have a monotonicity property (cfr. [21]).

Property VI (Monotone property) Suppose for j = 1, 2, L j (t) = γ j (t)V , where
γ̇ j (t) = J B j (t)γ j (t) with γ j (t) = I2n . If B1(t) ≥ B2(t) in the sense that B1(t)− B2(t)
is non-negative matrix, then for any V0, V1 ∈ Lag(2n), we have

μ(V0, γ1V1) ≥ μ(V0, γ2V1). (2.26)

One efficient way to study the Maslov index is via crossing form introduced by [37].
For simplicity and since it is enough for our purpose, we only review the case of the
Maslov index for a path of Lagrangian subspace with respect to a fixed Lagrangian
subspace. Let �(t) be a C1-curve of Lagrangian subspaces with �(0) = �, and let V
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be a fixed Lagrangian subspace which is transversal to �. For v ∈ � and small t , define
w(t) ∈ V by v + w(t) ∈ �(t). Then the form

Q(v) = d

dt

∣∣∣∣
t=0

ω(v,w(t)) (2.27)

is independent of the choice of V (cfr. [37]). A crossing for �(t) is some t for which
�(t) intersects W nontrivially, i.e. for which �(t) ∈ O1(W ). The set of crossings is
compact. At each crossing, the crossing form is defined to be

�(�(t),W, t) = Q|�(t)∩W . (2.28)

A crossing is called regular if the crossing form is non-degenerate. If the path is given by
�(t) = γ (t)�with γ (t) ∈ Sp(2n) and� ∈ Lag(2n), then the crossing form is equal to
(−γ (t)T J γ̇ (t)v, v), for v ∈ γ (t)−1(�(t)∩W ), where ( , ) is the standard inner product
on R2n .

For �(t) and W as before, if the path has only regular crossings, following [25], the
Maslov index is equal to

μ(W,�(t)) = m+(�(�(a),W, a)) +
∑

a<t<b

sign(�(�(t),W, t))

−m−(�(�(b),W, b)), (2.29)

where the sum runs all over the crossings t ∈ (a, b) and m+,m− are the dimensions of
positive and negative definite subspaces, sign = m+ −m− is the signature. We note that
for aC1-path�(t)with fixed end points, and we can make it only have regular crossings
by a small perturbation.

In contrast with the definition given in Eq. (2.29), the Maslov index defined in [37]
has the following form

μRS(�(t),W ) = 1

2
sign(�(�(a),W, a)) +

∑

a<t<b

sign(�(�(t),W, t))

+
1

2
sign(�(�(b),W, b)). (2.30)

We observe that, for the non-degenerate path (i.e. L(t) ∩ W = 0 for t = a, b),

μ(W, L(t)) = μRS(L(t),W ).

Note that forM ∈ Sp(2n),Gr(M) := {(x, Mx) | x ∈ R
2n} is a Lagrangian subspace

of the symplectic vector space (R2n ⊕ R
2n,−ω ⊕ ω). Let γ (t) be a path of symplectic

matrices, � = �1 ⊕ �2 ∈ Lag(4n), where �i ∈ Lag(2n), for i = 1, 2, then following
[37] and by computing the crossing forms, we have

μ(�1 ⊕ �2,Gr(γ (t))) = μ(�2, γ (t)�1). (2.31)

For a continuous path γ (t) ∈ Sp(2n) with γ (0) = I2n , the Maslov-type index
iω(γ ) ∈ Z is a very useful tool in studying the periodic orbits of Hamiltonian systems
[24]. The next lemma [25, Corollary 2.1] gives its relation with the Maslov index.
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Lemma 2.3. For any γ (t), we have

i1(γ ) + n = μ(�,Gr(γ (t))), (2.32)

and
iω(γ ) = μ(Gr(ω),Gr(γ (t))), ω ∈ U\{1}, (2.33)

where � is the diagonal Gr(I2n), Gr(ω) = Gr(ωI2n).

For V1, V2 ∈ Lag(2n) and a Lagrangian path t �→ �(t), the difference of theMaslov
indexes with respect to the two Lagrangian subspaces is given in terms of the Hörmander
index, i.e. [37, Theorem 3.5]

s(V0, V1;�(0),�(1)) = μ(V0,�) − μ(V1,�). (2.34)

Obviously,

s(V0, V1;�(0),�(1)) = s(V0, V1; e−εJ�(0), e−εJ�(1)), (2.35)

for ε > 0 small enough. The Hörmander index is independent of the choice of the
path connecting �(0) and �(1). Under the non-degenerate condition, i.e. V1, V2 are
transversal to �(0),�(1) correspondingly. Two basic properties are given below

s(V0, V1;�(0),�(1)) = −s(V1, V0;�(0),�(1)),

s(�(0),�(1); V0, V1) = −s(V0, V1;�(0),�(1)),

If Vj = Gr(A j ), �( j) = Gr(Bj ) for symmetry matrices A j and Bj , then

s(V0, V1;�(0),�(1)) = 1

2
sign(B0 − A1) +

1

2
sign(B1 − A0) − 1

2
sign(B1 − A1)

−1

2
sign(B0 − A0), (2.36)

where for a symmetric matrix A, sign(A) is the signature of the symmetric form 〈A·, ·〉.
A direct corollary shows that

|s(V0, V1;�(0),�(1))| ≤ 2n. (2.37)

A sharp estimate for the difference of Neumann and Dirichlet boundary conditions has
been given in [26].

Let γ be a fundamental solution of a periodic orbit, then γ ∈ C([0, T ],Sp(2n)) with
γ (0) = I2n , as we have mentioned in the introduction, the Maslov index μ(Vn, γ Vn),
μ(Vd , γ Vd) and Maslov-type index i1(γ ), i−1(γ ) play an important role in the study of
stability problem.

We come back to ERE, and we recall that γ̂e(τ ) = S(τ )γe(τ )S−1(0), with S =
diag

(
q

1
2 Ik, q− 1

2 Ik
)

∈ Sp(2k). Please note that S(T ) = S(0), and the path S(τ ) is

contractible in Sp(2n). In fact, if we set Sα = diag
(
q

1
2
α Ik, q

− 1
2

α Ik
)
with qα = (1 +

α cos(t))1/2, then Sα is homotopy to the constant path S0(τ ) ≡ I2k by Sα for α ∈ [0, e].
We have

Lemma 2.4. For e ∈ [0, 1), suppose dimGr(Sα(T )γe(T )S−1
α (0)) ∩ � is constant for

α ∈ [0, e], then μ(Gr(γe),�) = μ(Gr(γ̂e),�).
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From Lemmas 2.3 and 2.4, we get

iω(γe) = iω(γ̂e), ∀ω ∈ U, e ∈ [0, 1). (2.38)

We first consider the Maslov index on l−0 . Let �0(τ ) be the fundamental solution on
l0, that is

d

dτ
�0(τ ) = J B̂0�0(τ ), �0(0) = I2k, τ ∈ [−∞,+∞), (2.39)

with B̂0 =
(

Ik
Ql0
4 Ik

Ql0
4 Ik −R

)
.

Proposition 2.5. Suppose λ1(R) = −(1/8 + r1) with r1 > 0, then, we have

μ(Vd , �0(τ )Vd , τ ∈ [0, τ0]) ≥
[√

r1
π

τ0

]
, (2.40)

where [Z ] denote the maximum integer which is not bigger than Z.

Proof. By changing the basis, we assume R = diag(λ1, . . . , λk) where λ1 ≤ λ2 ≤
. . . ≤ λk and λ1 < − 1

8 . Based on the property V of the Maslov index, we have the
decomposition

μ(Vd , �0(τ )Vd) =
k∑

i=1

μ(V 1
d , � i

0(τ )V 1
d ),

where � i
0(τ ) satisfies the equation

d

dτ
� i

0(τ ) = J2 B̂i�
i
0(τ ), � i

0(0) = I2, τ ∈ [0,+∞), (2.41)

with B̂i =
(

1
Ql0
4

Ql0
4 −λi (R)

)
. Since B̂i |V 1

d
> 0, then�(� i

0(τ )V 1
d , V 1

d , τ ) > 0, this implies

that μ(V 1
d , � i

0(τ )V 1
d , τ ∈ [0,+τ0]) is nondecreasing with respect to τ0. Moreover we

have

μ(V 1
d , � i

0(τ )V 1
d , τ ∈ [0, τ0]) =

∑

0<τ j<τ0

νi (τ j ),

where νi (τ j ) = dim V 1
d ∩ � i

0(τ j )V
1
d . In order to compute the Maslov index

μ(V 1
d , � i

0(τ )V 1
d , τ ∈ [0, τ0]), we choose the basis e1 = (1, 0)T of V 1

d and we let
ei1(τ ) = � i

0(τ )e1. Then μ(V 1
d , � i

0(τ )V 1
d , τ ∈ [0, τ0]) is equals to the number of zeros

of f i (τ ) = det(Mi (τ )), for Mi (τ ) = (e1, ei1(τ )).

Let � i
0(τ ) =

(
ai (τ ) bi (τ )

ci (τ ) di (τ )

)
. Then f i (τ ) = ci (τ ). From Eq. (2.41), we get that

ci (τ ) satisfies the equation

d2

dτ 2
ci (τ ) =

(
3

8
tanh2(

√
2

2
τ) − 1

4
+ λi (R)

)
ci (τ ),

ci (0) = 0, ċi (0) = 1.
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For i = 1, λ1(R) = − 1
8 − r1, then we have 3

8 tanh
2(

√
2
2 τ) − 1

4 + λ1(R) ≤ −r1. Using
the Sturm comparison theorem, we know the number of zeros of ci (τ ) will be no less

than
[√

r1
π

τ0

]
. This is complete the proof. ��

In order to proof the Theorem 1.1, we need the lemma below. We will give an
estimation ofMaslov index on the period [τ1, τ2]. Let ε1 = min{ r1

2r1+5
, 1/8}, and γ̂ (τ, τ1)

be the fundamental solution of (2.13) with γ̂ (τ1, τ1) = I2k , we have

Lemma 2.6. For ε ≤ 1
2ε1, ê < ε3,

μ(Vd , γ̂ (τ, τ1)Vd; τ ∈ [τ1, τ2]) ≥
√
r1

π
ln

( ε2√
ê

)
− 3. (2.42)

Proof. Let B̂− =
(

Ik −
√
2
4 Ik

−
√
2
4 Ik −R

)
. Suppose | Q+

√
2

4 − q| < ε1 for some ε1 < 1, then

we have

B̂ − B̂− =
(

0k
Q+

√
2

4 Ik − qJk/2
Q+

√
2

4 Ik + qJk/2 q2

)
> −ε1 I2k .

Let B̂ε1 = B̂− − ε1 I2k , by the monotonicity property of Maslov index, we have

μ(Vd , γ̂ (τ, τ1)Vd; τ ∈ [τ1, τ2]) ≥ μ(Vd , exp((τ − τ1)J B̂ε)Vd; τ ∈ [τ1, τ2]). (2.43)

Since R is diagonalizable, by using the �-product, we can split B̂ε1 into the product
of k two by two matrices, where the first factor (which is needed for computing the

Maslov index) is given by B̂1 :=
(
1 − ε1 −

√
2
4

−
√
2
4 1/8 + r1 − ε1

)
. By the direct sum property

of Maslov index, we have

μ(Vd , exp((τ − τ1)J B̂ε1)Vd; τ ∈ [τ1, τ2])
≥ μ(V 1

d , exp((τ − τ1)J B̂1)V
1
d ; τ ∈ [τ1, τ2]). (2.44)

Let f (ε1, r1) = ε21 − (r + 9
8 )ε1 + r1, B̃ = diag(1, f (ε1, r1)), P =(

(1 − ε1)
−1/2 0

0 (1 − ε1)
1/2

) (
1

√
2
4

0 1

)
, then

P−1 exp((τ − τ1)J B̂1)P = exp((τ − τ1)J B̃).

We have

μ(Vd , exp((τ − τ1)J B̂1Vd) = μ(P−1Vd , exp((τ − τ1)J B̃ P−1Vd)

≥ μ(Vd , exp((τ − τ1)J B̃Vd) − 2, (2.45)

where the last inequality is from (2.37). In the next, we will estimate μ(Vd , exp((τ −
τ1)J B̃)Vd; τ ∈ [τ1, τ2]). A direct computation shows that f (ε1, r1) > r1/2 if ε1 <
r1

2r1+5
, and hence B̃ > B̃r1/2 := diag(1, r1/2). Moreover

μ(Vd , exp((τ − τ1)J B̃r/2)Vd ; τ ∈ [τ1, τ2]) ≥
√
r1(τ2 − τ1)√

2π
− 1. (2.46)
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For ε < ε1
2 , then | Q+

√
2

4 − q| < ε1, From (2.45, 2.46) and (2.15), we have

μ(Vd , γ (τ, τ1)Vd; τ ∈ [τ1, τ2]) ≥ μ(Vd , exp((τ − τ1)J B̂1Vd ; τ ∈ [τ1, τ2])
≥ μ(Vd , exp((τ − τ1)J B̃r/2)Vd; τ ∈ [τ1, τ2]) − 2

≥
√
r1 ln( ε

q(τ1)
)

π
− 3. (2.47)

Direct compute show thatq2(τ1) = 1
2 (ε(2

√
2−ε)−((ε(2

√
2−ε))2−8ê)

1
2 ) ≤ 8ê

3ε(2
√
2−ε)

,

then

ln
( ε

q(τ1)

)
= ln(ε) − 1

2
ln(q2(τ1)) ≥ ln

( ε2√
ê

)
. (2.48)

The result is from (2.47–2.48). ��
Proof of Theorem 1.1. Under the assumption λ1(R) = − 1

8 − r1, from Lemma 2.6, we

have For ε ≤ 1
2ε1, ê < ε3,μ(Vd , γ (τ, τ1)Vd; τ ∈ [τ1, τ2]) ≥

√
r1
π

ln
(

ε2√
ê

)
−3. Similarly

μ(Vd , γ (τ, τ4)Vd; τ ∈ [τ4, τ5]) ≥
√
r1

π
ln

( ε2√
ê

)
− 3. (2.49)

We have

μ(Vd , γ (τ, 0)Vd ; τ ∈ [0, T ]) ≥ 2
√
r1

π
ln

( ε2√
ê

)
− 6. (2.50)

The results now follows from the fact that i1(γ ) ≥ μ(Vd , γ Vd) (for Lagrangian system,
we refer Sect. 5.1 for a detailed discussion). This complete the proof. ��

3. Collision Index for Planar Central Configurations

This section is the main part of our paper. We give the definition of the collision index
in Sect. 3.1 and we prove the approximation theorem; we study the basic property of the
collision index and we compute in detail the collision index on l0 in Sect. 3.2.

3.1. Collision index . In this subsection, we will consider the Maslov index on the half
line with a hyperbolic equilibrium. This is similar to the case of homoclinic orbit [10]
and heteroclinic orbit [16], and a detailed study to the half-clinic orbits is given in [5,16].

To define the Maslov index of the half line, we firstly review some basic fact of
heteroclinic orbits. We consider the Hamiltonian flow induced by

ż = J B(t)z, t ∈ R. (3.1)

We assume the limit is hyperbolic, meaning that

J B(±∞) = lim
t→∞ J B(±t)

is hyperbolic. It follows thatR2n = V±
s ⊕V±

u ,whereV±
s (V±

u ) is the stable subspace(resp.
unstable subspace) of the equilibria which is spanned by the generalized eigenvector
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of eigenvalue with negative real part (positive real part) of J B(±∞). Moreover, both
the stable subspace V±

s and the unstable subspace V±
u are Lagrangian subspaces of

(R2n, ω0). The topology of Lagrangian Grassmannian Lag(2n) is given by the metric

ρ(V,W ) =‖ PV − PW ‖,
where PV ,PW is the orthogonal projection to V,W and ‖ . ‖ is the operator norm.

Let γ (t, ν) satisfy (3.1) with γ (ν, ν) = I2n . In what follows we set γ (t) := γ (t, 0).
Clearly γ satisfies a semigroup property; that is, γ (t, ν)γ (ν, τ ) = γ (t, τ ). For ν ∈ R,
define

Vs(ν) = {ξ |ξ ∈ R
2n and lim

t→∞ γ (t, ν)ξ = 0},
and

Vu(ν) = {ξ |ξ ∈ R
2n and lim

t→−∞ γ (t, ν)ξ = 0}.

We remark that

lim
ν→∞ Vs(ν) = V +

s and lim
ν→−∞ Vu(ν) = V−

u .

It is well known that both Vs(ν) and Vu(ν) are Lagrangian subspaces of (R2n, ω0). An
important property from [1] is the following: if V transversal to Vs(0), then

lim
t→∞ γ (t, 0)V = V +

u .

Similarly, if V transversal to Vu(0), then

lim
t→−∞ γ (t, 0)V = V−

s .

Let R± := {±x ≥ 0, x ∈ R}. We will define the Maslov index of the half line R+ or
R

−. We notice that the discussions for heteroclinic orbit works for the half-clinic orbit.
Firstly, we give the definition of nondegeneracy.

Definition 3.1. (i) The linear system (3.1) on R is called nondegenerate if there is no
bounded solution,

(ii) the linear system on R
± is called nondegenerate with respect to V0, if there is no

bounded solutions on R
± which satisfies z(0) ∈ V0.

We observe that for the system with hyperbolic limit, all the bounded solution must
decay to 0 as t → ±∞ [1].

We firstly give the definition of Maslov index on R+. For, let V0, V1 ∈ Lag(2n) and
we suppose that the system is nondegenerate with respect to V0, that is V0 � Vs(0).
Then γ (t, 0)V0 is a path of Lagrangian subspaces having limit V +

u and so, we define the
Maslov index on R

+ with V0, V1 by

i+(V1, V0) := μ(V1, γ (t, 0)V0, t ∈ R
+). (3.2)

In the caseR−, recall that Vu(t) is a path of Lagrangian subspace and limt→−∞ Vu(t) =
V−
u , then for V ∈ Lag(2n), we define

i−(V ) := μ(V, Vu(t), t ∈ R
−). (3.3)
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We observe that the definition onR− does not need the nondegenerate condition. Finally,
we will define the Maslov index on R which is fully studied in [16]. Supposing that the
linear system is nondegenerate on R, then limt→−∞ Vu(t) = V−

u and limt→∞ Vu(t) =
V +
u . Thus we define

i(V ) := μ(V, Vu(t), t ∈ R). (3.4)

Under the nondegenerate condition, it is obvious that

i(V ) = i−(V ) + i+(V, Vu(0)).

We come back to ERE. By assuming that λ1(R) > − 1
8 , we can identify l0, l+ withR,

and identify l∓0 , l
±
+ with R

±. For V0, V satisfying the nondegenerate conditions, i(V1)
on l0 or l+, i+(V1, V0) on l

−
0 or l++ and i−(V1) on l+0 and on l−+ are well defined, and we

shall refer to as collision index.

Definition 3.2. The planar central configuration is called collision nondegenerate if the
corresponding system on l+ is nondegenerate.

We identify R with l+, and let Vu(τ ) be the unstable subspace. Under the nondegenerate
conditions,

lim
τ→±∞ Vu(τ ) = V±

u .

Let Vu,0 be the unstable subspace on l
−
0 , then

lim
τ→±∞ Vu,0(τ ) = V∓

u .

For V0, V1 ∈ Lag(2n), satisfying V0 � Vs(0), then the Maslov index i+(V0, V1) and
i−(V1) are well defined. As e → 1, we have the next approximation theorem which
plays a key role in our paper.

Theorem 3.3. Assuming λ1(R) > − 1
8 , we have: (i) If V

−
u � V1, the system is nonde-

generate with respect to V0 on l
−
0 , and nondegenerate with respect to V1 on l

−
+ , then, for

1 − e small enough, V1 � γ̂e(T /2)V0 and

μ(V1, γ̂e(τ )V0, τ ∈ [0, T /2]) = i+(V1, V0; l−0 ) + i−(V1; l−+ ). (3.5)

(ii) If V +
u � V1, the system is nondegenerate with respect to V0 on l++ , and nondegenerate

with respect to V1 on l+0 , then, for 1 − e small enough, V1 � γe(T )γ̂ −1
e (T /2)V0 and

μ(V1, γ̂e(τ )γ̂ −1
e (T /2)V0, τ ∈ [T /2, T ]) = i+(V1, V0; l++) + i−(V1; l+0 ). (3.6)

(iii) If V±
u � V1, the system is collision nondegenerate, and nondegenerate with respect

to V0, V1 on l
−
0 , l

+
0 correspondingly, then, for 1 − e small enough, V1 � γ̂e(T )V0 and

μ(V1, γ̂e(τ )V0, τ ∈ [0, T ]) = i+(V1, V0; l−0 ) + i−(V1; l+0 ) + i(V1; l+). (3.7)

The proof is based on a series lemmas, we firstly give the next lemma which is from
[29].
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Lemma 3.4. Let us consider the linear system

x ′ = Dx + C(τ )x, (3.8)

where D is k × k diagonal matrix and C(t) is a continuous matrix in t ∈ [0, t̂], such
that

∫ t̂
0 ‖C(s)‖ds < ε̂, for some constant ε̂ which satisfies 6

√
kε̂

1−3ε̂ < 1 and let γ (τ) be the

fundamental solution of (3.8). Then for t ∈ [0, t̂], we have

γ (t) = (I + O(t)) exp(Dt)(I + S), (3.9)

where ‖O(t)‖ ≤ 3
√
kε̂

1−3ε̂ , ‖S‖ ≤ 6
√
kε̂

1−3ε̂ .

Proof. From lemma 6 of [29] and for ε̂ < 1/4, let λ be an eigenvalue of D and V be
the corresponding eigenvector.Then there exists a solution ϕ(t) of (3.8) such that

‖e−λtϕ(t) − V ‖ ≤ 3ε̂

1 − 3ε̂
.

Let ei , i = 1, . . . , k be the canonical basis, Y (t) be the matrix defined by ϕ1, . . . , ϕk

as column vectors. We define O(t) := Y (t) exp(−Dt) − I , then ‖O(t)‖ ≤ 3
√
kε̂

1−3ε̂ for

t ∈ [0, t̂]. Obviously, γ (t) = Y (t)Y−1(0) = (I + O(t)) exp(Dt)(I + O(0))−1. Let
S := (I + O(0))−1 − I , then for ‖O(0)‖ < 1/2, we have

‖S‖ ≤ ‖O(0)‖
1 − ‖O(0)‖ < 2‖O(0)‖ ≤ 6

√
kε̂

1 − 3ε̂
,

which complete the proof. ��
Assume that λ1(R) > − 1

8 , then P± are hyperbolic. We recall that we set D± =
J B̂(P±) having the form Jk

(
Ik ±

√
2
4 Ik

±
√
2
4 Ik −R

)
. An easy computation shows that the

eigenvalues of D± are real if λ1(R) > − 1
8 . Choose basis such that R is diagonal-

isable, that is R = diag(λ1, . . . , λk) with λ1 ≤ · · · ≤ λk . Let P1 =
(
Ik

√
2
4

0k Ik

)
,

P2 =
(√

1/8 + RIk
√
1/8 + RIk

Ik −Ik

)
, P = P1P2. By a direct computation we get that

P−1D−P = diag(η1, . . . , ηk,−η1, . . . ,−ηk), (3.10)

where η j = √
1/8 + λ j . Let η̂ = max{η j , η

−1
j ; j = 1, . . . , k}, then easy computation

show that

max{‖P‖, ‖P−1‖} ≤ 2(1 + η̂). (3.11)

Based on Lemma 3.4, we firstly prove the important lemma below.
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Lemma 3.5. We assume that λ1(R) > − 1
8 and we let γ̂ (τ, τ1) be the fundamental

solution of (2.13) with γ̂ (τ1, τ1) = I2k . Then for ε < ε0, ê < ε3, we have the following
estimate below

γ̂ (τ, τ1) = P(I2k + �(τ))D(τ )(I2k + S)P−1, τ ∈ [τ1, τ2], (3.12)

where the matrices �(τ), S satisfy ‖�‖ ≤ c1
2 ε, ‖S‖ ≤ c1ε, for ε0, c1 is constant and

dependent on R and D(τ ) = diag(eη1(τ−τ1), . . . , eηk (τ−τ1), e−η1(τ−τ1), . . . , e−ηk (τ−τ1)).

Proof. Simple computation shows that J B̂(τ ) = D− + C(τ ) with

C(τ ) =
(

− Q+
√
2

4 Ik − qJk/2 −q2 Ik
0k

Q+
√
2

4 Ik − qJk/2

)
.

Let W (τ ) = P−1γ̂ (τ, τ1)P , then

Ẇ (τ ) = (P−1D−P + P−1C(τ )P)W (τ ).

Let ε < ε0, where ε0 < 1/8 will be fixed later. It is obvious
∫ τ2
τ1

q2(τ ) ≤ ∫ τ2
τ1

q(τ )dτ for

0 < q < 1. From Eqs. (2.16–2.17), we have
∫ τ2
τ1

q(τ ) ≤ 2ε as well as
∫ τ2
τ1

|Q(τ )+
√
2| ≤

2ε. Then we have
∫ τ2

τ1

‖C(τ )‖dτ ≤
∫ τ2

τ1

(
1

2
‖Q +

√
2‖ + 2‖q‖ + ‖q2‖)dτ ≤ 6ε, (3.13)

and from (3.11) also that
∫ τ2

τ1

‖P−1C(τ )P‖dτ ≤ 24(1 + η̂)2ε. (3.14)

Let ε0 = (24(3 + 6
√
k)(1 + η̂)2)−1 and for ε < ε0, we denote ε̂ = 24(1 + η̂)2ε. Then,

ε < ε0 implies 6
√
kε̂

1−3ε̂ < 1. From Lemma 3.4, we have

‖�‖ ≤ 3
√
kε̂

1 − 3ε̂
≤ c1

2
ε, ‖S‖ ≤ 6

√
kε̂

1 − 3ε̂
≤ c1ε, (3.15)

where c1 = 242
√
k(1 + η̂)2 only depend on R. This complete the proof. ��

Given two subspaces, graphs of two linear operators, it is possible to introduce a norm
topology on the Lagrangian Grassmannian, equivalent to the gap topology, as below.
More precisely, if E = E− ⊕ E+, a sequence of operators (Ln)n∈N ⊂ L(E−, E+)

converges to L if and only if their graphs converge to the graph of L . Another important
property is that, the image T V of a closed subspace V by an invertible linear operator T ,
is continuously depending on (T, V ). From Lemma 3.5, P−1(Vu) = Vd and P−1(Vs) =
Vn . For V ∈ Lag(2n) with V � V−

s , then ∃LV such that

P−1V = Gr(LV ).

We give a equivalent metric

ρ̂(V,W ) =‖ LV − LW ‖ .
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It is obvious that LV−
u

= 0k , since V−
u � V1, so ∃σ1 > 0 such that V � V1 if ‖LV ‖ ≤ σ1.

For σ > 0, we always denote

Bρ̂ (V, σ ) = {W ∈ Lag(2n), ρ̂(V,W ) < σ }.
Lemma 3.6. Let V̄ = Gr(LV ), i.e. V̄ = PV . Then for any V̄ ∈ U (σ ) = {V̄ : ‖LV ‖ <

σ } with σ < 1 and if ‖�‖ < σ/6 then (I + �)V̄ ∈ U (2σ) .

Proof. For � =
(

�1 �2
�3 �4

)
, we have (I + �)

(
x

LV x

)
=

(
(I + �1 + �2LV )x

(�3 + (I + �4)LV )x

)
.

Let y = (I + �1 + �2LV )x and choose ‖�‖ small enough, then we have (I + �)V̄ =
Gr((�3 + (I + �4)LV )(I + �1 + �2LV )−1). Since ‖�‖ < σ/6, an easy computation
shows that

‖(�3 + (I + �4)LV )(I + �1 + �2LV )−1‖ ≤ ‖�2‖ + ‖I + �4‖‖LV ‖
I − ‖�1‖ − ‖�2‖‖LV ‖

<
‖�‖ + (1 + ‖�‖)‖LV ‖
I − ‖�‖ − ‖�‖‖LV ‖ < 2σ. (3.16)

��
Lemma 3.7. For any 0 < σ < 1, we let εσ := min{ε0, σ

24c1
}. If ε ≤ εσ , V ∈

Bρ̂ (V−
u , σ/4) and ê < ε3, then for every τ ∈ [τ1, τ2], we have γ̂e(τ, τ1)V ∈ Bρ̂ (V−

u , σ ).

Proof. From (3.12), P−1γ̂e(τ, τ1)V = (I2k + �(τ))D(τ )(I2k + S)P−1V where V ∈
Bρ̂ (V−

u , σ/4), P−1V ∈ U (σ/4). Since ‖S‖ ≤ C1ε ≤ σ
24 , thenwehave (I2k+S)P−1V ∈

U (σ/2) by Lemma 3.6. Obviously D(τ )U (σ/2) ⊂ U (σ/2), using Lemma 3.6 again,
we have (I2k + �(τ))D(τ )(I2k + S)P−1V ∈ U (σ ), which conclude the proof. ��

Let �0 be the fundamental solution on l0 as given in Equation (2.39) and �+(τ, ν)

be the fundamental solution on l+. Let σ < 1
3 min{ρ(V−

u , V1), ρ(V−
u , V−

s )} small
enough such that Bρ(V−

u , 3σ) � V−
s , V1. For this σ , ∃σ1 > 0 such that Bρ̂ (V−

u , σ1) ⊂
Bρ(V−

u , σ ), and let εσ1 be the number corresponding to σ1 in Lemma 3.7.
Choose ε < σ1 small enough such that

max{ρ(�0(τ0)V0, V
−
u , ), ρ(Vu(−τl+), V

−
u , ), ρ(�+(−τl+ , 0)V1, V

−
s , )} < σ. (3.17)

From Lemma 3.7, We have

Lemma 3.8. For this fixed ε, ê < ε3, ρ(γ̂e(τ )V0, V−
u ) < σ for τ ∈ (τ1, τ2).

Similarly, by the symmetric Fig. 2, for �4, �5, we have the following result.

Lemma 3.9. For this fixed ε, ê < ε3, ρ(γ̂e(τ )γ̂ −1
e (T /2)V1, V +

u ) < σ for τ ∈ (τ+4 , τ+5 ).

Proof of Theorem 3.3. To prove (i), wewill compute theMaslov indexμ(V1, γ̂e(τ )V0; τ

∈ [0, T /2]) on the three time interval [0, τ1], [τ1, τ2] and [τ2, T /2]. Form Lemma 3.8,
for ê < ε3,

μ(V1, γ̂e(τ )V0, τ ∈ [0, τ1)) = μ(V1, �0(τ )V0, τ ∈ [0, τl0 ] = i(V1, V0; l−0 ). (3.18)

Obviously

μ(V1, γ̂e(τ )V0, τ ∈ [τ1, τ2]) = 0. (3.19)
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Nowwe consider the path on [τ2, T /2]. Please note that for ê < ε3, ρ(γ̂e(τ2)V0, V−
u ) <

σ by Lemma 3.8 and ρ(�+(−τl+ , 0)V1, V
−
s , ) < σ by (3.17), then γ̂e(τ2)V0 �

�+(−τl+ , 0)V1, which implies

�+(0,−τl+)γ̂e(τ2)V0 � V1.

Since γ̂e(τ − τ2) uniformly converges to �+(τ,−τl+), we have for ê < ε3 small
enough,

μ(V1, γ̂e(τ )V0, τ ∈ [τ2, T /2]) = μ(V1, �+(τ,−τl+)V0, τ ∈ [−τl+ , 0]) = i−(V1; l−+ ).

(3.20)

The result of (i) is from (3.18), (3.19) and (3.20).
The proof of (ii) is based Lemma 3.9 and is totally analogous.
To prove (iii), we compute Maslov index μ(V1, γ̂e(τ )V0; τ ∈ [0, T ]) on the five

time intervals [0, τ1], [τ1, τ2], [τ2, τ4], [τ4, τ5] and [τ5, T ]. By assumption of collision
nondegenerate, the system is nondegenerate on l+, that is limτ→+∞ Vu(τ ) = V +

u . So for
σ small enough, V ∈ Bσ (V−

u ), we have limτ→+∞ �(τ,−τl+)V = V +
u . If we consider−τl+ as the starting point, this means the system is nondegenerate with respect to V . By

arguing as in step (i), we have for ê < ε3 small enough.

μ(V1, γ̂e(τ )V0, τ ∈ [τ2, τ4)) = μ(V1, �+(τ,−τl+)(γ̂e(τ2)V0),

τ ∈ [−τl+ , τl+ ] = i(V1; l+),
μ(V1, γ̂e(τ )V0, τ ∈ [τ4, τ5)) = 0,

and

μ(V1, γ̂e(τ )V0, τ ∈ [τ5, T )) = i−(V1; l−0 ),

with (3.18–3.19), we get the result. ��

3.2. Some fundamental property of collision index. We first compute the collision index

on l0. Recall that on line l0, B̂ =
(

Ik
Q
4 Ik

Q
4 Ik −R

)
. We can choose bases such that R =

diag(r1, . . . , rk), and set B̂r =
(

1 Q
4

Q
4 −r

)
. Given any two 2mk × 2mk square block

matrices Mk =
(
Ak Bk
Ck Dk

)
with k = 1, 2, the symplectic sum of M1 and M2 is defined

by

M1 � M2 =
⎛

⎜⎝

A1 0 B1 0
0 A2 0 B2
C1 0 D1 0
0 C2 0 D2

⎞

⎟⎠ .

It is clear that, B̂ = B̂r1 � · · · B̂rk . We start by considering the two dimensional case.
The linear systems ż = J B̂r z with the form

ẏ = −Q

4
y + r x, (3.21)

ẋ = y +
Q

4
x, (3.22)
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where z = (y, x)T . Assuming that r �= 0, r > − 1
8 and by taking derivative with respect

to τ on both sides of (3.21), we have

ÿ = − Q̇

4
y − Q

4
ẏ + r ẋ

= (
Q2

16
− Q̇

4
+ r)y

= (
1

4
− 1

8
tanh2(

√
2τ

2
) + r)y, (3.23)

where the second equality is from the fact that x = 1
r (ẏ +

Q
4 y) by (3.21). Let

f := 1

4
− 1

8
tanh2(

√
2τ

2
) + r = 1

8
(1 − tanh2(

√
2τ

2
)) + (r +

1

8
) > 0. (3.24)

Lemma 3.10. If r > − 1
8 , r �= 0, then (i) for any t2 > t1, there is no nontrivial solution

of (3.23) which satisfies boundary condition y(t1)ẏ(t1) ≥ y(t2)ẏ(t2); (ii) there is no
nontrivial solution satisfying y(0)ẏ(0) = 0 and y → 0, ẏ → 0 as τ → ±∞; (iii) there
is no nontrivial bounded solution on R.

Proof. Suppose y is solution of (3.23), then multiply by y and by integrating over the
time interval [t1, t2] we have

y(t1)ẏ(t1) − y(t2)ẏ(t2) +
∫ t2

t1
(ẏ2 + f y2)dτ = 0. (3.25)

The first conclusion now readily follows. By taking limit of (3.25) could get the second
conclusion. The third conclusion follows from the fact that any bounded solution must
decay exponential fast. ��

Recall that Vd , Vn are Lagrangian subspaces corresponding to the Dirichlet and Neu-
mann boundary conditions. In the two dimensional case, let e1 = (1, 0)T , e2 = (0, 1)T .
Then it is obvious that Vd , Vn are the linear spaces spanned by e1, e2. An easy compu-
tation shows that z(0) = e1 is equivalent to y(0) = 1 and ẏ(0) = 0. In the same way,
z(0) = e2 is equivalent to y(0) = 0 and ẏ(0) = r . The second conclusion of Lemma
3.10. implies that for r �= 0, the system is nondegenerate. However this is not true for
r = 0. In fact, let r = 0 in Eqs. (3.21–3.22). Then there is a nontrivial solution satisfies
Z(0) = e2 and Z(t) → 0. Thus we have

Lemma 3.11. Supposing r > −1/8, the system on l−0 is nondegenerate with Vd , and it
is nondegenerate with Vn if and only if r �= 0.

We firstly consider the Maslov index on l+0 , so we have the following result.

Lemma 3.12. Suppose r > −1/8 and r �= 0. Then

i−(Vd; l+0 ) = i−(Vn; l+0 ) = 0. (3.26)
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Proof. By the definition ofMaslov index, we only need to show that there is no nontrivial
solution. If not, we assume that Z(τ ) is the solution of the Eqs. (3.21–3.22). Then
Z(τ ) → 0 as τ → −∞ and then ẏ(τ )y(τ ) → 0. Let t1 → −∞ in (3.25), we have

− y(t2)ẏ(t2) +
∫ t2

−∞
(ẏ2 + f y2)dτ = 0. (3.27)

Please note that y(t2)ẏ(t2) = − Q
4 y

2(t2) + r x(t2)y(t2). Then for t2 ∈ R
−, Z(t2) ∈ Vd

or Vn implies y(t2)ẏ(t2) ≤ 0, so we get the result. ��
We continuous to compute the Maslov index on l−0 .

Corollary 3.13. Suppose r > −1/8 and r �= 0, then

i+(Vn, Vd ; l−0 ) = 0, (3.28)

and

i+(Vn, Vn; l−0 ) =
⎧
⎨

⎩

1 if r ∈ (− 1
8 , 0),

0 if r > 0.
(3.29)

Proof. The proof follows from Eq. (2.29). Please note that Lemma 3.10. implies that
there are no nontrivial solutions which satisfy Z(0) = e1, e2 and Z(T ) ∈ Vn for some
T > 0. There is a crossing for i+(Vn, Vn; l−0 ) at T = 0. An easy computation shows
that the crossing form �(Vn, Vn, 0) is positive for r ∈ (− 1

8 , 0) and negative for r > 0,
which implies the results. ��

To compute the collision index i+(Vd , Vd ; l−0 ) and i+(Vd , Vn; l−0 ), we will use the

Hörmander index. We observe that, in the point (0, Q−), J B̂r (−∞) =
( √

2
4 r

1 −
√
2
4

)

and hence the eigenvalues λ± = ±( 18 +r)
1
2 with eigenvector e−± = (

√
2
4 ± ( 18 +r)

1
2 , 1)T .

The unstable subspace V−
u is spanned by e−

+ and stable subspace V−
s is spanned by e−−.

Similarly, at (0, Q+), J B̂r (+∞) =
( −√

2
4 r

1
√
2
4

)
, the eigenvalues λ± = ±( 18 + r)

1
2 with

eigenvector e+± = (−
√
2
4 ± ( 18 + r)

1
2 , 1)T . The unstable subspace V +

u is spanned by e++
and stable subspace V +

s is spanned by e+−. The Hörmander index could be computed
by (2.35), (2.36), or we just choose simple Lagrangian paths connected �(0),�(1) and
compute the difference. For reader’s convenience, we list the result below.

s(Vd , Vn, Vd , V
−
u ) = 1, (3.30)

s(Vd , Vn, Vn, V
−
u ) = 0, (3.31)

s(Vn, Vd , V
−
u , V +

u ) =
⎧
⎨

⎩

1 if r ∈ (− 1
8 , 0),

0, if r > 0,
(3.32)

s(Vd , V
−
u , Vn, V

−
s ) = s(Vd , V

−
u , Vd , V

−
s ) = 0. (3.33)

Figures 3, 4, 5, 6 illustrate the Hörmander index (3.30–3.33), where y is the horizontal
coordinate, x is the vertical coordinate and the anticlockwise rotation is positive rotation.
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Fig. 3. s(Vd , Vn , Vd , V−
u ) and s(Vd , Vn , Vn , V−

u )

Fig. 4. s(Vd , V−
u , Vn , V−

s ) and s(Vd , V−
u , Vd , V−

s )

From Lemma 3.11., the system is nondegenerate for r �= 0, so γ (τ)Vd −→ V−
u and

γ (τ)Vn −→ V−
u as τ −→ +∞. We have

i+(Vd , Vd ; l−0 ) = i(Vn, Vd ; l−0 ) + s(Vd , Vn, Vd , V
−
u ), (3.34)

i+(Vd , Vn; l−0 ) = i(Vn, Vn; l−0 ) + s(Vd , Vn, Vn, V
−
u ). (3.35)

Thus from Eqs. (3.30–3.31) we have

Corollary 3.14. Suppose r > −1/8 and r �= 0,

i+(Vd , Vd ; l−0 ) = 1, (3.36)
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Fig. 5. s(Vn , Vd , V−
u , V +

u ) for r ∈ (− 1
8 , 0)

Fig. 6. s(Vn , Vd , V−
u , V +

u ) for r > 0

and

i+(Vd , Vn; l−0 ) =
⎧
⎨

⎩

1 if r ∈ (− 1
8 , 0),

0, if r > 0.
(3.37)

We come back to the higher dimension. We denote by φ(R) the number of total
negative eigenvalues of R. It is obvious that, φ(R) = φ(a0) which is the Morse index
of the central configuration a0. By property V of Maslov index, we have
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Corollary 3.15. Supposing λ1(R) > −1/8, R is nondegenerate, then we have

i−(Vd; l+0 ) = 0, i−(Vn; l+0 ) = 0, (3.38)

i+(Vd , Vd ; l−0 ) = k, i+(Vd , Vn; l−0 ) = φ(R), (3.39)

and

i+(Vn, Vd ; l−0 ) = 0, i+(Vn, Vn; l−0 ) = φ(R). (3.40)

We then consider the linear system on l+, and recall that under the collision nonde-
generate condition i(V ) is well defined.

Proposition 3.16. Under the collision nondegenerate condition, we have

i(Vn; l+) = i(Vd ; l+) + φ(R) (3.41)

Proof. Please note that i(Vn; l+) = i(Vd ; l+)+s(Vn, Vd , V−
u , V +

u ), we only need to show

s(Vn, Vd , V
−
u , V +

u ) = φ(R). (3.42)

We choose basis such that R = diag(r1, . . . , rn) and consider the 2-dimension linear
system ż = J2 B̂2(r)z; (3.42) is from (3.32). ��

Now we give the proof of Theorem 1.2.

Proof. Since R is nondegenerate, Vu, Vd � V±
u , from (3.7),

lim
e→1

μ(Vd , γ̂e(τ )Vd , τ ∈ [0, T ]) = i−(Vd ; l+0 ) + i+(Vd , Vd ; l−0 ) + i(Vd ; l+),

from (3.38–3.39), we have

lim
e→1

μ(Vd , γ̂e(τ )Vd , τ ∈ [0, T ]) = k + i(Vd ; l+).

Then, (1.6) follows from Lemma 2.4 and the fact that γe(2π) = γ̂e(T ).
Similar,

lim
e→1

μ(Vn, γ̂e(τ )Vn, τ ∈ [0, T ]) = i−(Vn; l+0 ) + i+(Vn, Vn; l−0 ) + i(Vn; l+), (3.43)

(1.7) is from (3.38), (3.40–3.41) and Lemma 2.4. ��
It is worth noticing that in several cases we can’t analytically compute the collision index
and for this reason, we now introduce a numerical method which can be useful in this
situation.

We first consider the case for R+. We choose V ∈ Lag(2n), such that B̂(τ )|V > 0
for τ ∈ R

±. Then the crossing form �(�(τ), V, τ ) > 0 and we have

μ(V, γ (τ )V0) =
∑

0<τ j<∞
ν(τ j ),

where ν(τ j ) = dim V ∩ γ (τ j )V0. For the Lagrangian system, we can always choose
Vd = V and then B̂(t)|Vd = In > 0. We can get the Maslov index from the Hörmander
index, in fact

μ(V1, γ (τ )V0, τ ∈ [0, T ]) = μ(Vd , γ (τ )V0, [0, T ]) + s(V1, Vd , V0, γ (T )V0).
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Under the nondegenerate conditions, limT→∞ γ (T )V0 = V +
u , then we have

μ(V1, γ (τ )V0, τ ∈ R
+) = μ(Vd , γ (τ )V0, τ ∈ R

+) + s(V1, Vd , V0, V
+
u ).

The cases of R− and R are similar, so we just make −T be the starting time, where
T > 0 is large enough.

Remark 3.17. For computing the Maslov index μ(Vd , γ (τ )V0), we start by choos-
ing a basis {ξ1(0), . . . , ξn(0)} of V0 and, by using a numerical integrator, we get
ξk(t) := γ (t)ξk(0). For j = 1, . . . , n, let e j the basis of Vd , t �→ M(t) be the
path of 2n × 2n matrices defined by M(t) := (e1, . . . , en, ξ1(t), . . . , ξn(t)) and we
set f (t) = det(M(t)). Then μ(Vd , γ (t)V0) is equal to the total number of zeros of
f (t). Since t �→ | f (t)| is exponentially increasing, this method works well for not so
large time. Instead, we use the robust numerical algorithm based on exterior algebra
representation. We refer the interested reader to the following papers [7–9] in which the
authors compute the Maslov index for homoclinic orbits (cfr. Sect. 6).

4. Collision Index for Brake Symmetry Central Configurations

In the next, we will consider the case that the central configuration with brake symmetry.
We start with the following Definition.

Definition 4.1. The central configuration with normalized Hessian R is said with brake
symmetry if there exists a k×k symmetrymatrix N which satisfies N 2 = Ik , NJ = −JN ,
RN = N R.

To our knowledge, the Lagrangian configuration [17], Euler central configuration [27]
and the 1 + n central configurations have the brake symmetry property [34,40]. It could
be interesting to find an example without having this symmetry property.

In the brake symmetry case, let N̂ = diag(N ,−N ), and denote

g : x(τ ) → N̂ x(T − τ). (4.1)

Obviously, g2 = id and g·−J d
dτ

= −J d
dτ

·g. From the fact ofq(τ ) = q(T −τ), Q(τ ) =
−Q(T − τ), easy computations show that N̂ B̂(T − τ) = B̂(τ )N̂ , and consequently

gB̂ = B̂g. (4.2)

Let E± = ker(g ∓ I ), then

ker(−J
d

dτ
− B̂) = ker((−J

d

dτ
− B̂)

∣∣
E+) ⊕ ker((−J

d

dτ
− B̂)

∣∣
E−). (4.3)

Moreover, by the generalized Bott-type iteration formula forMaslov index [18, (Th 1.1)]
or [26], we have

i1(γ̂ ) + k = μ(V +(N̂ ), γ̂ (τ )V +(N̂ ), τ ∈ [0, T /2]) + μ(V−(N̂ ), γ̂ (τ )V−(N̂ ),

τ ∈ [0, T /2]), (4.4)

i−1(γ̂ ) = μ(V +(N̂ ), γ̂ (τ )V−(N̂ ), τ ∈ [0, T /2]) + μ(V−(N̂ ), γ̂ (τ )V +(N̂ ),

τ ∈ [0, T /2]), (4.5)
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where V±(N̂ ) = ker(N̂ ∓ I2n), k = 2n − 4. Similarly, we can decompose of Dirichlet
and Neumann boundary condition as follows

μ(Vd , γ̂ (τ )Vd , τ ∈[0, T ])=μ(V +(N̂ ), γ̂ (τ )Vd , τ ∈[0, T /2])+μ(V−(N̂ ), γ̂ (τ )Vd),

τ ∈[0, T /2]), (4.6)

μ(Vn, γ̂ (τ )Vn, τ ∈[0, T ])=μ(V +(N̂ ), γ̂ (τ )Vn), τ ∈[0, T /2])+μ(V−(N̂ ), γ̂ (τ )Vn),

τ ∈ [0, T /2]). (4.7)

For the iteration formula of brake orbits we refer the interested reader to [23]. Then we
consider the collision orbit, and let K be the space of bounded solution of ż = J B̂(τ )z
on l+, and K± be the space of bounded solution on l−+ which satisfies z(0) ∈ V±(N̂ ).
Similar to (4.3), we have

Lemma 4.2. For the brake symmetry central configurations, on l+, we have

K = K+ ⊕ K−. (4.8)

Proof. Please note that on l+, N̂ B̂(−τ) = B̂(τ )N̂ , if z(τ ) is one solution then N̂ z(−τ)

is another solution. Let z±(τ ) = 1
2 (z(τ ) ± N̂ z(−τ)), then z± ∈ K∓, which implies the

result. ��
Obviously, there is standard brake symmetry on l0, that is N̂0 = diag(Ik,−Ik),

then V +(N̂0) = Vd and V−(N̂0) = Vn . Let K0 be the space of bounded solution of
ż = J B̂(τ )z on l0, and K0± be the space of bounded solution on l−0 which satisfies
z(0) ∈ V±(N̂0). We have on l0,

K0 = K0
+ ⊕ K0−. (4.9)

On l0, the nondegenerate condition is clear. Now, from (4.9) and Lemma 3.11, we
have

Proposition 4.3. The system on l0 is nondegenerate if and only if R is nondegenerate.

Since R satisfies brake symmetry, letV± = ker(N∓Ik), so it is obvious dimV± = k
2 .

Let V̂± = JV± ⊕ V± be symplectic subspace thus R2k = V̂ + ⊕ V̂−. Set R± = R|V± ,

and denote B̂± =
(

I k
2

Q
4 I k2

Q
4 I k2

−R±

)
, we get B̂ = B̂+ � B̂−, and the fundamental solution

satisfies �0 = �0|V̂ + � �0|V̂− . Furthermore we have

i(V,W ; l−0 ) = i(V |V+ ,W |V+; l−0 ) + i(V |V− ,W |V−; l−0 ), (4.10)

for V,W = V±(N̂ ) or Vd , Vn . Please note that

V +(N̂ )|V̂ + = Vd , V +(N̂ )|V̂− = Vn, V−(N̂ )|V̂ + = Vn, V−(N̂ )|V̂− = Vd . (4.11)

From (3.39)–(3.40), we have

i+(V
+(N̂ ), Vd ; l−0 ) + i+(V

−(N̂ ), Vd ; l−0 ) = k, (4.12)

i+(V
+(N̂ ), Vn; l−0 ) + i+(V

−(N̂ ), Vn; l−0 ) = 2φ(R), (4.13)

i+(V
+(N̂ ), V +(N̂ ); l−0 ) + i+(V

−(N̂ ), V−(N̂ ); l−0 ) = k + φ(R). (4.14)

i+(V
−(N̂ ), V +(N̂ ); l−0 ) + i+(V

+(N̂ ), V−(N̂ ); l−0 ) = φ(R). (4.15)
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For the brake symmetry central configurations, we get the following approximation
theorem.

Theorem 4.4. Let λ1(R) > − 1
8 be nondegenerate with brake symmetry property, and

satisfying the collision nondegenerate conditions. Thus we have

lim
e→1

μ(Vd , γ̂e(τ )Vd , τ ∈ [0, T ]) = k + i−(V−(N̂ ); l−+ ) + i−(V +(N̂ ); l−+ ), (4.16)

lim
e→1

μ(Vn, γ̂e(τ )Vn, τ ∈ [0, T ]) = 2φ(R) + i−(V−(N̂ ); l−+ ) + i−(V +(N̂ ); l−+ ), (4.17)

lim
e→1

i−1(γ̂e) = lim
e→1

i1(γ̂e) = φ(R) + i−(V−(N̂ ); l−+ ) + i−(V +(N̂ ); l−+ ). (4.18)

Proof. Since R is collision nondegenerate, from (4.8), the system is nondegenerate with
respect to V±(N̂ ) on l−+ , and also from the condition that R is nondegenerate, then the
system is nondegenerate with respect to V±(N̂ ), Vn , Vd on l

−
0 . From (i) of Theorem 3.3,

we have

lim
e→1

μ(V, γ̂e(τ )W, τ ∈ [0, T /2]) = i(V,W ; l−0 ) + i(V ; l−+ ),

for V,W is V±(N̂ ), Vn , Vd . From (4.4–4.7), we have

lim
e→1

μ(Vd , γ̂e(τ )Vd , τ ∈ [0, T ]) = i+(V
+(N̂ ), Vd ; l−0 ) + i+(V

−(N̂ ), Vd ; l−0 )

+i−(V +(N̂ ); l−+ ) + i−(V−(N̂ ); l−+ ),

lim
e→1

μ(Vn, γ̂e(τ )Vn, τ ∈ [0, T ]) = i+(V
+(N̂ ), Vn; l−0 ) + i+(V

−(N̂ ), Vn; l−0 )

+i−(V +(N̂ ); l−+ ) + i−(V−(N̂ ); l−+ ),

lim
e→1

i1(γ̂e) = i+(V
+(N̂ ), V +(N̂ ); l−0 ) + i−(V +(N̂ ); l−+ )

+i+(V
−(N̂ ), V−(N̂ ); l−0 ) + i−(V−(N̂ ); l−+ ) − k,

lim
e→1

i−1(γ̂e) = i+(V
−(N̂ ), V +(N̂ ); l−0 ) + i−(V +(N̂ ); l−+ )

+i+(V
+(N̂ ), V−(N̂ ); l−0 ) + i−(V−(N̂ ); l−+ ).

Then (4.16–4.18) is from (4.4–4.7) and (4.12–4.15). ��
Comparing of (1.6) in Theorem 1.2 and (4.16), we have

Corollary 4.5. Let λ1(R) > −1/8. If R is nondegenerate, has the brake symmetry
property and if the collision nondegenerate condition is fulfilled, then we have

i−(V−(N̂ ); l−+ ) + i−(V +(N̂ ); l−+ ) = i(Vd ; l+). (4.19)

It is clear that i(Vd; l+) ≥ 0.We shall now prove that i−(V±(N̂ ); l−+ ) is also nonnegative.
Weconsider theMaslov indexonR−, supposing the system is nondegeneratewith respect
to V1, and V1 � V−

u , then for −τ0 large enough,

μ(V1, Vu(τ ), τ ∈ (−∞, 0]) = μ(V1, γ (τ, τ0)Vu(τ0), τ ∈ [τ0, 0]).
From the property (III), (IV), for γ (−s, 0), s ∈ [0,∞)

μ(V1, γ (τ, τ0)Vu(τ0), τ ∈ (τ0, 0)) = μ(γ (−s, 0)V1, V
−
u , s ∈ [0,∞)),
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we have

μ(V1, Vu(τ ), τ ∈ (−∞, 0]) = −μ(V−
u , γ (−τ)V1, τ ∈ [0,∞)).

By the nondegenerate condition, we have limT→∞ γ (−T )V1 = Vs , then we have

μ(V1, Vu(τ ), τ ∈ (−∞, 0]) = s(Vd , V
−
u , V1, V

−
s ) − μ(Vd , γ (−τ)V1, τ ∈ [0,+∞)).

In the case of ERE, an easy computation shows that

d

dτ
�+(−τ) = −J B̂(−τ)�+(−τ), (4.20)

where �+(τ ) = �+(τ, 0) is the fundamental solution on l+. If the central configuration
satisfies the brake symmetry, that is N̂ B̂(−τ) = B̂(τ )N̂ , then, direct computation shows
that

�+(−τ) = N̂�+(τ )N̂ , τ ∈ [0,∞).

So we have

μ(Vd , �+(−τ)V1) = μ(Vd , N̂�+(τ )N̂ V1, τ ∈ [0,∞)).

Please note that if −B̂(τ )|V < 0 for t ∈ R
+, then the crossing form �(�(t), Vd , t) < 0,

we have

μ(Vd , �+(−τ)V1) = −
∑

0<τ j<∞
ν(τ j ) ≤ 0,

where ν(τ j ) = dim Vd ∩ �+(−τ j )V1.

Please note that, in the case V1 = V j
d ⊕ V (k− j)

n , where V j
d ∈ Vd , V

(k− j)
n ∈ Vn , from

(3.33), we have

s(Vd , V
−
u , V1, V

−
s ) = 0.

Since V±(N̂ ) is a direct sumofDirichlet Lagrangian subspace andNeumannLagrangian
subspace, by (4.11), we have

Lemma 4.6. On l−+ , we have

i−(V±(N̂ )) =
∑

0<τ± j<∞
ν(τ±

j ) ≥ 0, (4.21)

where ν(τ±
j ) = dim Vd ∩ �+(−τ±

j )V±(N̂ ).

5. Applications

We give applications for the collision index. In Sect. 5.1 we consider the ERE ofminimal
central configurations and prove some hyperbolicity results. At Sect. 5.2, we study the
stability of Euler orbits.
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5.1. Minimal central configurations. In order to give a hyperbolic criteria, we first
review some results on Morse index. Consider the linear Sturm systems

− d

dt
(P(t)ẏ + Q(t)y) + QT (t)ẏ + R(t)y = 0, (5.1)

as P, R, Q are continuous path of matrices in R2n and satisfy P(t) > 0, R(t) = R(t)T .
This linear Sturm system (5.1) corresponds to the linear Hamiltonian system

ż = J B(t)z, z ∈ R
2n, (5.2)

where

B(t) =
(

P−1(t) −P−1(t)Q(t)
−QT P−1(t) QT (t)P−1(t)Q(t) − R(t)

)
. (5.3)

Let

L(t, x(t), ẋ(t)) = 1

2
((Pẋ + Qx) · ẋ + QT ẋ · x + Rx · x), (5.4)

and F(x) = ∫ T
0 {L(t, x(t), ẋ(t))}dt on W 1,2([0, T ],Cn). We denote

D(ω, T ) = {x ∈ W 1,2([0, T ],Cn), x(0) = ωx(T )}, ω ∈ U.

Obviously,

W 1,2
0 ([0, T ],Rn) ⊂ D(ω, T ) ⊂ W 1,2([0, T ],Cn).

Let L = F ′′(0) := − d
dt (P(t) d

dt + Q(t)) + QT (t) d
dt + R(t), and more precisely, set

Ln,Lω,Ld to be the operator with formL under theNeumann,ω andDirichlet boundary
conditions separately. Let λk(L) be the k-th eigenvalue of L. From the monotonicity
property of the eigenvalues [12], we have

λk(Ln) ≤ λk(Lω) ≤ λk(Ld). (5.5)

Let φ be the Morse index of L which is defined to be the total number of negative
eigenvalues, which is equal to the dimension of maximum negative definite subspace of
F . Let φd , φω, φn be the Morse index of Ld ,Lω,Ln separately. From (5.5), we have

φd ≤ φω ≤ φn .

Proposition 5.1. The system is hyperbolic if φn = φd and Ln is nondegenerate.

Proof. Please note that the system is hyperbolic, that is,σ(γ (T ))∩U = ∅ is equivalent to
Lω which is nondegenerate for∀ω ∈ U. Supposing k0 = φn = φd , we have λk0(Lω) < 0
by (5.5). On the other hand,Ln is nondegenerate which implies λk0+1(Ln) > 0 and hence
λk0+1(Lω) > 0, which implies the result. ��
Please note that φn = 0 implies φd = 0, so we have

Corollary 5.2. The system is hyperbolic if Ln > 0.

From Theorem 1.2 of [18] or P172 of [24], we list the relation of Morse index and
Maslov index below.



Collision Index and Stability of Elliptic Relative 835

Lemma 5.3. Let γ be the fundamental solution of (5.2), then we have

φω(L) = iω(γ ), νω(L) = νω(γ ), ∀ω ∈ U, (5.6)

φd(L) + n = μ(Vd , γ Vd), φn(L) = μ(Vn, γ Vn). (5.7)

Proof of Theorem 1.3. Please note that the central configuration a0 is non degenerate
minimizer which implies λ1(R) > 0, i.e. φ(R) = 0 and R is nonsingular. Under the
collision nondegenerate condition, from (1.6)–(1.7), for 1 − e small enough

μ(Vd , γe(t)Vd , t ∈ [0, 2π ]) − k = lim
e→1

μ(Vn, γe(t)Vn, t ∈ [0, 2π ]). (5.8)

From (5.7), we have φd = φn . The nondegenerate of Ln is from Theorem 1.2, so the
result is from Proposition 5.1. ��

A typical example is the Lagrangian equilateral triangle central configuration. It is
obvious that R = diag((3+

√
9 − β)/2, (3−√

9 − β)/2) satisfies the brake symmetry
with N = diag(1,−1). This fact had been used to decompose the−1-degenerate curves
in [17]. It is proved in [17] that for any β ∈ (0, 9], 1 − e small enough, Ln is positive,
and consequently hyperbolic. By the approximation formula (4.17) and the nonnegative
property (4.21), we have

Proposition 5.4. If the Lagrangian central configurations is collision nondegenerate,
then i−(V−(N̂ ); l−+ ) = i−(V +(N̂ ); l−+ ) = 0, and hence i(Vd ; l+) = 0.

We continue by studying the case of strong minimizer, so please note that a central
configuration is strong minimizer if it satisfies λ1(R) > 1. The next lemma is important
in the proof of Theorem 1.4.

Lemma 5.5 (see [20, Proposition 2]). If δ > 1,ω ∈ U, thenA(e, δ) = − d2

dt2
−1+ δ

1+e cos(t)

is positive operator for all e ∈ [0, 1) on its domain D̄1(ω, 2π), where D̄n(ω, 2π) =
{y ∈ W 2,2([0, 2π ],Cn)|y(2π) = ωy(0), ẏ(2π) = ω ẏ(0)}.

Now we can proof Theorem 1.4.

Proof. For the ERE, we have

L = − d2

dt2
Ik − 2Jk/2

d

dt
+

R

1 + e cos(t)
.

then L > L̂ := − d2

dt2
Ik −2Jk/2 d

dt +
λ1(R)Ik
1+e cos(t) . We only need to show L̂ > 0 with domain

D̄k(ω, 2π) for any ω ∈ U. Let R(t) =
(
cos(t)Ik − sin(t)Ik
sin(t)Ik cos(t)Ik

)
, then

RL̂RT = − d2

dt2
Ik − Ik +

λ1(R)Ik
1 + e cos(t)

.

Since λ1(R) > 1,we get the result from Lemma 5.5. ��
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It is obvious that for the strong minimizer if it is collision nondegenerate, the approxi-
mation theorem implies i(Vd , l+) = 0.

In the special case, the ERE of Lagrangian central configurations is hyperbolic for
β > 8, e ∈ [0, 1), which had proved directly in [36]. As another example, we consider
the 1 + 3 central configurations, and let m1 = m2 = m3 = 1 and m0 = mc, the essential
part R = I4 +D with

D =

⎛

⎜⎜⎜⎜⎜⎜⎝

1
2 0 − 3

√
3u(3+mc)

2(1+
√
3mc)

0

0 1
2 0 3

√
3mc(3+mc)

2(1+
√
3mc)

− 3
√
3mc(3+mc)

2(1+
√
3mc)

0
√
3(3+mc)

2(1+
√
3mc)

0

0 3
√
3mc(3+mc)

2(1+
√
3mc)

0
√
3(3+mc)

2(1+
√
3mc)

⎞

⎟⎟⎟⎟⎟⎟⎠
, (5.9)

was computed in [31]. Please note that there is a typo in (39) of [31]. Let

D∓ =
⎛

⎝
1
2 ∓ 3

√
3mc(3+mc)

2(1+
√
3mc)

∓ 3
√
3mc(3+mc)

2(1+
√
3mc)

√
3(3+mc)

2(1+
√
3mc)

⎞

⎠ ,

then D = D− � D+. Obviously the eigenvalues λ± of D∓ is same, direct computation
shows that

λ±(mc) = 1

2
(1 +

√
3mc)

−1
[√

3mc +
3
√
3 + 1

2
±

(
27(m2

c + 3mc) +
(3

√
3 − 1

2

)2) 1
2
]
.

(5.10)

Obviously λ+(mc) > 0 for mc ∈ [0,+∞). Let mc(0) =
√
3

24 , mc(−1) = 81+64
√
3

249 , then
λ−(mc(0)) = 0 and λ−(mc(−1)) = −1, moreover

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ−(mc) > 0 i f mc ∈ [0,mc(0)),

−1 < λ−(mc) < 0 if mc ∈ (mc(0),mc(−1)),

− 9
8 < λ−(mc) < −1, if mc ∈ (mc(−1),+∞).

(5.11)

Since λ1(R) = 1+λ−(mc), it is obvious that Theorems 1.3 and 1.4 imply Corollary 1.5.

Remark 5.6. Inspired by the recent results obtained in [17], we conjecture that the non-
degenerate minimal central configuration is collision nondegenerate and satisfies

i(Vd ; l+) = 0. (5.12)

In a private communication with the first named author, Prof. Y. Long posed the
following conjecture.

A smooth T -periodic non-collision solution of the planar N -body problem, with
N > 3, is a smooth global minimizer of the action functional on the space of all
T -periodic orbits having non-trivial winding number if and only if it is an elliptic
motion corresponding to the global minimal central configuration of the potential
restricted to the inertia ellipsoid.
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We observe that, Long’s conjecture implies that, for any e ∈ [0, 1) the Morse index
for the ERE of any non-degenerate minimal central configuration is 0. In the case of
brake symmetric central configurations, Long’s conjecture, imply our conjecture in the
collision nondegenerate case. This conjecture is still open, and in the case e = 0, an
interesting result from Chenciner and Desolneux shows that the minima of the action on
the zero mean loop space, is the relative equilibrium corresponding to a minimal central
configuration. [11].

5.2. Stability analysis of Euler orbits. The Euler orbits have been studied in [27,28], in
this case, R = diag(−δ, 2δ + 3), where δ ∈ [0, 7] only depends on mass m1,m2,m3.
Please refer to Appendix A of [28] for the details. Although there is no physical meaning
for δ > 7, we will assume δ ≥ 0 to make the mathematical theory complete.

Wewill use the index theory to study the stability problem.Letγδ,e be the fundamental
solutions ofB(t)which is given by (2.2), that is γ̇δ,e = J2B(t)γδ,e, t ∈ [0, 2π ], γδ,e(0) =
I4. For δ = 0, the system degenerates to the Kepler problem, and it has been studied in

[19], which proved that γ0,e(2π) with normal form

(
1 1
0 1

)
� I2 and

iω(γ0,e) =
⎧
⎨

⎩

0, if ω = 1,

2, if ω ∈ U\{1}.
(5.13)

The Maslov-type index in the case δ > 0 has been studied by Long and Zhou [27],
then we review firstly their results. For any j ∈ N, there exists 1-degenerate curves
� j = Gr(ϕ j (e)), and we also let �0 = Gr(ϕ0(e)) with ϕ0(e) = 0. Then γδ,e only
degenerates at∪∞

j=1� j and dim ker(γδ,e(2π)− I4) = 2 if (δ, e) ∈ ∪∞
j=1� j . TheMaslov-

type index satisfies

i1(γδ,e) = 2 j + 3, i f ϕ j (e) < δ ≤ ϕ j+1(e), j ∈ N ∪ {0}. (5.14)

Similarly, for ∀ j ∈ N, there exists pair −1-degenerate curves ϒ±
j = Gr(ψ±

j (e)).

Let ψ s
j (e) = min{ψ+

j (e), ψ
−
j (e)} and ψ l

j (e) = max{ψ+
j (e), ψ

−
j (e)}. Moreover, we

set ψ l
0 = ψ s

0 = 0, then for k ∈ N we have

i−1(γδ,e) =
⎧
⎨

⎩

2 j, if δ ∈ (ψ l
j−1, ψ

s
j ],

2 j + 1, if δ ∈ (ψ s
j , ψ

l
j ].

(5.15)

Direct computation shows that ψ+
j (0) = ψ−

j (0), but it is not clear if, for e > 0, there
exist other intersection points. There is a monotonicity property for Maslov-type index,
that is for ω ∈ U

iω(γδ1,e) ≤ iω(γδ2,e), i f δ1 ≤ δ2. (5.16)

The ±1 degenerate curves satisfies

0 < ψ s
1 ≤ ψ l

1 < ϕ1 < ψ s
2 ≤ ψ l

2 < · · · ψ s
j ≤ ψ l

j < ϕ j < ψ s
j ≤ ψ l

j < · · · . (5.17)
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Moreover for the region between the ±1-degenerate curves, γδ,e(2π) is elliptic-
hyperbolic and for the region between the pairs of −1-degenerate curves γδ,e(2π) is
hyperbolic.

As a continuous work of Long and Zhou [27], we use the near-collision index to
study the limit case. From Theorem 1.1, we have

Theorem 5.7. If δ ∈ (1/8, 7], let ε = 1
2 min{ δ

2δ+5 , 1/8}, ê = 1−e2
2 . For ê < ε3, we have

i1(γe) ≥ 2

π
(δ − 1

8
)
1
2 ln

( ε2√
ê

)
− 6. (5.18)

Hence

sup{lime→1ϕ j (e), lime→1ψ
±
j (e), j ∈ N} ≤ 1/8. (5.19)

Proof. Since R = diag(−δ, 2δ + 3), then for δ > 1/8, λ1(R) < −1/8. Now Eq. (5.18)
follows from (1.5) of Theorem 1.1. To prove (5.19), let δ̂ j = lime→1ϕ j (e), then there
exists el → 1 such that liml→∞ ϕ j (el) = δ̂ j . If δ̂ j > 1/8, thenwe choose δε ∈ (1/8, δ̂ j ),
for l large enough, δε < ϕ j (el), by themonotone property (5.16), so we have i1(γδε,el ) ≤
2 j + 1, which contradict to (5.18). The proof for lime→1ψ

±
j (e) ≤ 1/8 is similar. ��

Let N = diag(1,−1), then N R = RN , we will compute the collision index for
δ ∈ (0, 1/8) by the decomposition property. By the brake symmetry, from (4.3) we have

dim ker(γδ,e(2π) + 1) = dim(V−(N̂ ) ∩ γδ,e(2π)V +(N̂ ))

+dim(V +(N̂ ) ∩ γδ,e(2π)V−(N̂ )).

We always set ψ+
k to be the degenerate curve in the sense that V +(N̂ )∩γδ,e(2π)V−(N̂ )

nontrivial and similarly ψ−
k to be the degenerate curve in the sense that V−(N̂ ) ∩

γδ,e(2π)V +(N̂ ) nontrivial.
We get the collision index on l−+ numerically from (4.21) and the step in Remark

3.17. With the help of matlab, we have
Numerical result A: For the Euler orbits is collision nondegenerate for δ ∈ (0, 1

8 ),
and on l−+

i−(V +(N̂ ); l−+ ) = i−(V−(N̂ ); l−+ ) = 1. (5.20)

It is obvious that φ(R) = 1 for δ ∈ (0, 1
8 ), then from (4.18), we have

Corollary 5.8. For δ ∈ (0, 1
8 ), under the condition of numerical result A, we have

lim
e→1

i1(γ ) = lim
e→1

i−1(γ ) = 3. (5.21)

From (3.39–3.40), easy computation shows that for δ ∈ (0, 1
8 ),

i(V +(N̂ ), V−(N̂ ); l−0 ) = 1, i(V−(N̂ ), V +(N̂ ); l+0 ) = 0.

So for 1 − e small enough,

μ(V +(N̂ ), γδ,eV
−(N̂ )) = 2, (5.22)

μ(V−(N̂ ), γδ,eV
+(N̂ )) = 1. (5.23)
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Theorem 5.9. Under the assumption of numerical fact A, for the ±1-degenerate curve,
we have

lim
e→1

ϕ j (e) = lim
e→1

ψ±
j+1(e) = 1/8, f or j ∈ N, (5.24)

lim
e→1

ψ+
1 (e) = 0, lim

e→1
ψ−
1 (e) = 1/8. (5.25)

Proof. To prove (5.24), from Theorem 5.7, we only need to show

inf{ lim
e→1

ϕ j (e), lim
e→1

ψ±
j+1(e), j ∈ N} ≥ 1/8. (5.26)

The proof of (5.26) is similar to (5.19). Let δ̄ j = lim
e→1

ϕ j (e). If δ̄ j < 1/8, then we choose

el → 1, such that ϕ j (el) → δ̄ j . Choose ε < 1/8− δ̄ j , for l large enough, ϕ j (el) < δ̄ j +ε,
so we have

i1(γδ̄ j+ε,el ) > i1(γϕ j (el ),el ) = 2 j + 3, (5.27)

which is contradict to (5.21). It is totally similar that lim
e→1

ψ±
j+1(e) ≥ 1/8 for j ∈ N.

Direct computation shows that for δ ∈ (0, 1/8), μ(V−(N̂ ), γδ,0V +(N̂ )) =
μ(V +(N̂ ), γδ,0V−(N̂ )) = 1. By monotone property,

μ(V +(N̂ ), γδ,eV
−(N̂ )) =

⎧
⎨

⎩

1, if δ ∈ (0, ψ+
1 ],

2, if δ ∈ (ψ+
1 , ψ+

2 ].
(5.28)

From (5.22), we get lime→1 ψ+
1 (e) = 0. The proof for lime→1 ψ−

1 (e) = 1/8 is from
(5.23) and the step is similar. ��

This theorem shows that the system is hyperbolic for δ ∈ (0, 1
8 ), and 1 − e small

enough. To explain the results, we use the pictures which are taken from [29] (Fig. 7,
Fig. 8).

Fig. 7. Stability bifurcation diagram
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Fig. 8. A magnification of Fig. 7 for 1 − e small

6. Numerical Results for Collision Index

As shown in Remark 3.17, in order compute the collision index, we only need to count
the zeros of a determinant function. We use the exterior algebra representation from
[7–9] to do the computation. For reader’s convenience, we give a brief review in the
four-dimensional case, here.

Consider the linear system

ẋ = A(τ )x, x ∈ R
4, τ ∈ [0,+∞), (6.1)

where A(+∞) is hyperbolic. Let ∧2(R4) be the vector space of 2-vector space in R
4.

Supposing e j , j = 1, . . . , 4 is basis ofR4, then ê1 = e1∧e2, ê2 = e1∧e3, ê3 = e1∧e4,
ê4 = e2 ∧ e3, ê5 = e2 ∧ e4, ê6 = e3 ∧ e4 is basis of ∧2(R4). There is a induced system
from (6.1)

ẏ = A(2)(τ )y, y ∈ ∧2(R4). (6.2)

Suppose A = (ai, j ), then A(2) could be expressed by (ai, j ) (cfr. [9, Equation (2.8)] for
the expression). Let σ be the sum of the eigenvalues of A(∞) with positive real part.
Let ŷ(τ ) = e−στ y(τ ), then

d ŷ

dτ
= (A(2)(τ ) − σ I4)ŷ. (6.3)

To compute the Maslov index μ(Vd , γ (τ )V0), we choose a basis ξ1(0), ξ2(0) of V0,
and let ŷ(0) = y(0) = ξ1(0) ∧ ξ2(0) = ∑6

j=1 y j (0)ê j . Then ŷ(τ ) could be computed
by matlab from Equation (6.3). Let γ be the fundamental solution of (6.1), then γ (τ)V0
could be expressed by ŷ(τ ). We choose e1, e2 to be the basis of Vd , then it is obvious
that Vd ∩ γ (τ)V0 is nontrivial if and only if e1 ∧ e2 ∧ ŷ(τ ) = 0, which is equivalent to
ŷ6(τ ) = 0. So we can draw the picture of ŷ6(τ ) and count the number of zero points to
get the Maslov index.
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Fig. 9. ŷ+6 (τ ) for δ = 0.1

Fig. 10. ŷ−
6 (τ ) for δ = 0.1

We will compute i−(V±(N̂ ); l−+ ) for Euler and Lagrangian orbits. From Lemma 4.6,
we only need to count the points of Vd ∩γ (−τ±

j )V±(N̂ ). From (4.20), the linear system

with form with ẋ(τ ) = −J B̂(−τ)x(τ ), let A(τ ) = −J B̂(−τ), then we can get A(2)(τ ).
We choose e1, e4 to be the basis of V +(N̂ ) and e2, e3 to be the basis of V−(N̂ ). Let
ŷ+(τ ) be the solution of (6.3) with initial condition ŷ(0) = ê3 and ŷ−(τ ) be the solution
with initial condition ŷ(0) = ê4, then i−(V±(N̂ ); l−+ ) just is the zero points of ŷ±

6 (τ ).

We firstly give some numerical pictures for Euler orbits:
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Fig. 11. ŷ+6 (τ ) for δ = 1

Fig. 12. ŷ−
6 (τ ) for δ = 1

It is obvious that there is only one zero point in Figs. 9 and 10, and we have computed
it for many value of δ ∈ (0, 1/8) and for time large as τ = 1000. All the pictures shows
that there is only one zero point. This is why we gave Numerical result A.

If δ > 1/8, Theorem 1.1 shows that the collision index is infinity, which is corre-
sponding to the picture of Figs. 11 and 12 that the number of zero points growth in direct
proportion to the time.

For the Lagrangian orbits, Proposition 5.4 shows that the collision index is zero,
which corresponds to the following pictures showing no zero point (Figs. 13, 14).

It is quite difficult in a concrete situation to establish if an orbit is collision non-
degenerate. However, if the collision index depends on one parameter having a jump,
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Fig. 13. ŷ+6 (τ ) for β = 6

Fig. 14. ŷ−
6 (τ ) for β = 6

then there is a collision degenerate point. During our computations, we found that the
Kepler case (δ = 0) is collision degenerate. We guess that every nondegenerate central
configuration satisfying the condition λ1(R) > −1/8 is collision nondegenerate.
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