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Abstract: We study the dynamics defined by the Boltzmann equation set in the Euclid-
ean spaceRD in the vicinity of globalMaxwellianswith finitemass.AglobalMaxwellian
is a special solution of the Boltzmann equation for which the collision integral vanishes
identically. In this setting, the dispersion due to the advection operator quenches the
dissipative effect of the Boltzmann collision integral. As a result, the large time limit
of solutions of the Boltzmann equation in this regime is given by noninteracting, freely
transported states and can be described with the tools of scattering theory.

1. Introduction

In kinetic theory, the state of a monatomic gas is described by its distribution function
F ≡ F(v, x, t) ≥ 0, that is, the number density at time t of gas molecules with velocity
v ∈ R

D located at the position x ∈ R
D. The distribution function is governed by the

Boltzmann equation
∂t F + v · ∇x F = B(F, F), (1.1)

whereB(F, F) is a quadratic integral operator acting on the v variable only, known as the
Boltzmann collision integral. The collision integral has a rather complicated expression
whose details are not needed in this introduction. Suffice it to say that all the information
on molecular interaction needed for the kinetic description of a gas is encoded in the
collision kernel b(ω, V ), a nonnegative function of the relative velocity V of colliding
particle pairs and of a unit vector ω that measures the deviation of relative velocity
before and after collision. The explicit formula of the Boltzmann collision integral and
its dependence on the collision kernel b will be given in Sect. 2.2 below.

The present paper investigates the long time behavior of solutions F ≡ F(v, x, t)
of the Boltzmann equation (1.1) on R

D× R
D ×R+ satisfying some appropriate decay

conditions as |x | + |v| → ∞, implying in particular that∫∫
RD×RD

(1 + |x |2 + |v|2)F(v, x, t) dvdx < ∞ for each t ≥ 0. (1.2)
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436 C. Bardos, I. M. Gamba, F. Golse, C. D. Levermore

The Boltzmann equation set in the spatial domain R
D involves two very different

mechanisms, namely dispersion and relaxation to local equilibrium.
Dispersion is associated to the free transport equation, and one of its manifestations

is the following observation. Let f ≡ f (v, x, t) be a solution of

∂t f + v · ∇x f = 0, f
∣∣
t=0 = f in,

and assume that f in ≡ f in(v, x) satisfies a bound of the form

0 ≤ f in(v, x) ≤ φ(x) for a.e. (v, x) ∈ R
D× R

D,

where φ ∈ L1(RD). Then, for each t > 0, the macroscopic density ρ associated to f
satisfies

0 ≤ ρ(x, t) :=
∫
RD

f (v, x, t) dv ≤
∫
RD

φ(x − tv) dv = 1

tD

∫
RD

φ(y) dy = 1

tD
‖φ‖L1

for a.e. x ∈ R
D. In particular

ρ(x, t) → 0 as t → +∞ for a.e. x ∈ R
D.

Relaxation to local equilibrium is associated to the collision integral and can be more
or less formulated as follows. Let g ≡ g(v, t) be a solution of the space homogeneous
Boltzmann equation

∂t g = B(g, g), g
∣∣
t=0 = gin,

where gin ≡ gin(v) satisfies the assumptions

gin(v) ≥ 0 for a.e. v ∈ R
D and

∫
RD

gin(v)(1 + |v|2) dv < +∞.

In the limit as t → +∞, we expect that g(v, t) converges to a Maxwellian distribution,
i.e.,

g(t, v) → M[ρ∞, u∞, θ∞](v) := ρ∞

(2πθ∞)
D
2

exp

(
−|v − u∞|2

2θ∞

)
,

where

ρ∞ :=
∫
RD

gin(v) dv, u∞ := 1

ρ∞

∫
RD

gin(v) dv,

θ∞ := 1

ρ∞

∫
RD

1
D |v − u∞|2gin(v) dv

if ρ∞ > 0, while g(v, t) = 0 for a.e. (v, t) ∈ R
D× R

D if ρ∞ = 0.
In general, dispersion and relaxation to local equilibrium are competingmechanisms,

because the effect of molecular collisions at the position x ∈ R
D obviously vanishes if

the macroscopic density ρ(x, t) → 0 as t → +∞. For instance, dispersion is used in
[2,10,12] to control the nonlinear collision integral, and to establish the global existence
of solutions of the Boltzmann equation.

However, these two mechanisms cooperate to produce a remarkable class of explicit
solutions of the Boltzmann equation in the spatial domain RD, henceforth referred to as
global Maxwellians.
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Definition 1.1. A global Maxwellian is a distribution function M ≡ M(v, x, t) satis-
fying both

∂tM + v · ∇xM = 0 and B(M,M) = 0.

An example of global Maxwellian is

M(v, x, t) := e−|x−tv|2 .

A complete description of global Maxwellians with finite mass can be found in [15].
More precisely, the main result in [15] is the following variational characterization.

Given F in ∈ L1(RD× R
D, (1+ |x |2 + |v|2)dxdv) such that F in ≥ 0 a.e. onRD× R

D,
there exists a unique global Maxwellian MF in such that1

∫∫
RD×RD

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
v

|v|2
x − tv

|x − tv|2
(x − tv) · v

x ∧ v

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
MF in(v, x, t) dvdx =

∫∫
RD×RD

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
v

|v|2
x

|x |2
x · v

x ∧ v

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

F in(v, x) dvdx

for all t ∈ R. Notice that the left hand side of the equality above is independent of
t . Indeed, any global Maxwellian M satisfies M(v, x, t) = M(v, x − tv, 0) for all
(v, x, t) ∈ R

D× R
D× R.

Moreover, for each t ∈ R, the function (v, x) �→ MF in(v, x, t) satisfies the following
variational property:

H [ f ] :=
∫∫

RD×RD
f ln f (v, x) dvdx ≥ H [MF in(t)] = H [MF in(0)]

for all a.e. nonnegative f ∈ L1(RD× R
D, (1 + |x |2 + |v|2)dxdv) such that

∫∫
RD×RD

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
v

|v|2
x − tv

|x − tv|2
(x − tv) · v

x ∧ v

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

f (v, x) dvdx =
∫∫

RD×RD

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
v

|v|2
x

|x |2
x · v

x ∧ v

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

F in(v, x) dvdx,

with equality if and only if f (v, x) = MF in(v, x, t) for a.e. (v, x) ∈ R
D× R

D. (See
section 1.5 in [15] for more details.)

The purpose of the present work is to study the dynamics defined by the Boltzmann
equation near global Maxwellians in the Euclidean spaceRD. In particular, we establish
the existence and uniqueness of solutions in that regime and analyze in detail the large

1 For a, b ∈ R
D, the notation a ∧ b designates the skew-symmetric tensor a ⊗ b − b ⊗ a.
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time behavior of these solutions. More precisely, solutions F of the Boltzmann equation

(1.1) over RD× R
D ×R+ such that F

∣∣∣
t=0

= F in satisfy the global conservation laws

∫∫
RD×RD

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
v

|v|2
x − tv

|x − tv|2
(x − tv) · v

x ∧ v

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

F(v, x, t) dvdx =
∫∫

RD×RD

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
v

|v|2
x

|x |2
x · v

x ∧ v

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

F in(v, x) dvdx

for all t ≥ 0, under some appropriate decay condition on F that implies (1.2). (See
Theorem B below for a precise statement.) On the other hand, under a decay condition
more stringent than (1.2), Boltzmann’s H Theorem (see below) asserts that the function

t �→ H [F(t)]

is nonincreasing for each solution F of the Boltzmann equation (1.1).
Together with the variational characterization of global Maxwellians recalled above,

this raises the following question, which is at the core of the present paper.

Problem. Let F be a solution of the Cauchy problem for the Boltzmann equation (1.1)
with initial data F in satisfying appropriate decay conditions at infinity, implying in
particular (1.2). In the limit as t → +∞, does F(t) converge (in some sense) to the state
of maximal entropy (or minimal H -function) compatible with the global conservation
laws satisfied by F? In particular, does H [F(t)] converge to H [MF in ] as t → +∞?

The main result in the present work is that this question is answered in the negative.

2. Main Results

2.1. Background on global Maxwellians. We first recall the complete description of
global Maxwellians from [15].

Theorem A. The family of all global Maxwellians over the spatial domain R
D and

belonging to L∞(Rt ; L1(RD× R
D)) is of the form

M(v, x, t) = m

(2π)D

√
det(Q) exp(−q(v − v0, x − x0, t)),

with

q(v, x, t) = 1
2 (c|v|2 + a|x − tv|2 + 2b(x − tv) · v + v · B(x − tv))

and Q = (ac − b2)I + B2,

where m, a, c > 0, b ∈ R, x0, v0 ∈ R
D and B is a skew-symmetric D×D matrix with

real entries such that the symmetric matrix Q is definite positive.
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Henceforth we denote by � the set

� := {(a, b, c, B)∈R
3 ×R

D×D s.t. a, c > 0, B = −BT , and (ac−b2)I + B2 > 0}.
With the notation

M[ρ, u, θ ](v) := ρ

(2πθ)
D
2

e− |v−u|2
2θ ,

elementary computations show that

M(v, x, t) = M[ρ(x, t), u(x, t), θ(t)](v),

with

ρ(x, t) = mθ(t)
D
2

√
det( Q

2π ) exp(− 1
2θ(t)xT Qx), u(x, t) = θ(t)(axt − bx − Bx),

(2.1)
and

θ(t) = 1

at2 − 2bt + c
. (2.2)

Given any global Maxwellian M on R
D× R

D× R, we consider the Banach spaces

XM := ML∞(RD× R
D× R), with norm ‖F‖M := ‖F/M‖L∞(RD×RD×R),

and

YM(0) := M(0)L∞(RD× R
D), with norm | f |M(0) := ‖ f/M(0)‖L∞(RD×RD).

2.2. Assumptions on the collision kernel. Henceforth, we assume that the collision ker-
nel has separated form, i.e.

b(z, ω) = |z|β b̂(ω · n) with n = z/|z|,
and satisfies the weak cutoff condition

b :=
∫
SD−1

b̂(ω · n)dω < ∞.

Such a collision kernel will be said to correspond to a “hard” potential for the molecular
interaction if β ∈ (0, 1], and to a “soft” potential if β ∈ (−D, 0). The case β = 0
corresponds to an assumption made by Maxwell in [17], and is referred to as the case
of “Maxwell molecules”. The case where b(z, ω) = |z · ω| is the case of hard sphere
collisions. The case β ∈ (1, 2] is referred to as “super-hard”; it does not arise from any
radial, inverse power law potential and is therefore of limited physical interest.

The collision integral is defined in terms of the collision kernel as follows. For each
measurable F ≡ F(v, x, t) defined a.e. onRD× R

D × I where I is an interval ofR and
satisfying

|F(v, x, t)| ≤ M(v, x, t) for a.e. (v, x, t) ∈ R
D× R

D × I (2.3)
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for some global Maxwellian M, one has

B(F, F)(v, x, t)

=
∫∫

SD−1×RD
(F(v′, x, t)F(v′∗, x, t) − F(v, x, t)F(v∗, x, t))b(v − v∗, ω)dωdv∗.

The velocities v′ and v′∗ are defined in terms of v, v∗ and ω by the formulas

v′ = v − (v − v∗) · ωω, v′∗ = v∗ + (v − v∗) · ωω.

These formulas give the general solution (v′, v′∗) ∈ R
D× R

D of the system of equations

v′ + v′∗ = v + v∗, |v′|2 + |v′∗|2 = |v|2 + |v∗|2,
where v and v∗ are given vectors in R

D. Henceforth we use the notation

F = F(v, x, t), F∗ = F(v∗, x, t), F ′ = F(v′, x, t), F ′∗ = F(v′∗, x, t),

which is customary in the literature on the Boltzmann equation.
Since we are dealing with cutoff kernels throughout the present work, the Boltzmann

collision integral can be decomposed into gain and loss terms, denoted respectively
B+(F, F) and B−(F, F), and defined as follows

B+(F, F)(v, x, t) =
∫∫

SD−1×RD
F(v′, x, t)F(v′∗, x, t)b(v − v∗, ω)dωdv∗,

B−(F, F)(v, x, t) =
∫∫

SD−1×RD
F(v, x, t)F(v∗, x, t)b(v − v∗, ω)dωdv∗.

The loss term can be recast as

B−(F, F)(v, x, t) := F(v, x, t)A(F)(v, x, t),

with

A(F)(v, x, t) :=
∫∫

SD−1×RD
F(v∗, x, t)b(v − v∗, ω)dωdv∗.

Integrating first in the ω variable, the term A(F) takes the form

A(F)(v, x, t) = b
∫
RD

F(v∗, x, t)|v − v∗|βdv∗.

In particular, if F is a global Maxwellian as in Theorem A, one has

A(M)(v, x, t) = ρ(x, t)θ(t)
β
2 aβ

(
v − u(x, t)√

θ(t)

)

= mb
√
det( Q

2π )θ(t)
D+β
2 exp(− 1

2θ(t)xT Qx)aβ

(
v − u(x, t)√

θ(t)

)
, (2.4)

with the notation

aβ(w) :=
∫
RD

|w − w∗|βM[1, 0, 1](w∗)dw∗. (2.5)
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In the sequel, we shall use repeatedly the following elementary estimate: for all
F,G ∈ XM, one has

|B−(F,G)(v, x, t)| ≤ ‖F‖M‖G‖MB−(M,M) = ‖F‖M‖G‖MA(M)M, (2.6)

and

|B+(F,G)(v, x, t)| ≤ ‖F‖M‖G‖MB+(M,M)

= ‖F‖M‖G‖MB−(M,M) = ‖F‖M‖G‖MA(M)M, (2.7)

where the penultimate equality follows from the identity B(M,M) = 0.

2.3. Mild solutions of the Boltzmann equation and their fundamental properties. We
shall henceforth use the notationA to designate the advection operator, i.e.Aφ = v · ∇xφ,
which is the infinitesimal generator of the one-parameter group etA defined by the for-
mula

etAφ(x, v) = φ(x + tv, v).

Throughout the present paper, we shall use the following notion of solution of the
Boltzmann equation.

Definition 2.1. Amild solution of the Boltzmann equation is a function F ≡ F(v, x, t)
belonging to L1

loc(R
D× R

D × I ) where I is an interval ofR, such that B(F, F) belongs
to L1

loc(R
D× R

D × I ) and

et2AF(v, x, t2) = et1AF(v, x, t1) +
∫ t2

t1
esAB(F, F)(v, x, s) ds

for a.e. (v, x) ∈ R
D× R

D and t1, t2 ∈ I . In particular, F is a.e. equal to a unique element
of C(I ; L1

loc(R
D× R

D)), to which it will be henceforth identified.

Mild solutions of the Boltzmann equations with appropriate decay conditions in the
limit as |x | + |v| → ∞ satisfy basic conservation properties, which are summarized in
the following statement.

Theorem B. Let F ≡ F(v, x, t) be a measurable function defined a.e. on RD× R
D × I

where I is an open interval of R and satisfying the bound (2.3). Then

(a) for a.e. (x, t) ∈ R
D × I

∫
RD

B(F, F)(v, x, t)

⎛
⎝ 1

v
1
2 |v|2

⎞
⎠ dv = 0.

Assume moreover that F is a mild solution of the Boltzmann equation in the sense
of distributions on R

D× R
D × I . Then
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(b) the function F satisfies the global conservation laws

d

dt

∫∫
RD×RD

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
v

1
2 |v|2
x − tv

1
2 |x − tv|2
(x − tv) · v

x ∧ v

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

F(v, x, t)dvdx = 0

in the sense of distributions on I .

In addition, theBoltzmann equation satisfies a dissipation property, well known under
the name of “Boltzmann’s H theorem”, which is recalled below.

Boltzmann’s H Theorem. Let F ≡ F(v, x, t) be a measurable function defined a.e.
on RD× R

D × I where I is an open interval of R and satisfying the bound

0 ≤ F(v, x, t) ≤ M(v, x, t), for a.e. (v, x, t) ∈ R
D× R

D × I

where M is a global Maxwellian. Then

(a) for a.e. (x, t) ∈ R
D × I∫

RD
B(F, F)(v, x, t) ln F(v, x, t)dv ≤ 0,

(b) the inequality above is an equality if and only if B(F, F) = 0 a.e. on RD× R
D × I

or, equivalently, if and only if F is a local Maxwellian, i.e. if and only if there exists
ρ ≡ ρ(x, t) ≥ 0 and θ ≡ θ(x, t) > 0, and u ≡ u(x, t) ∈ R

D such that

F(v, x, t) = M[ρ(x, t), u(x, t), θ(x, t)](v).

Assume moreover that F is a mild solution of the Boltzmann equation on R
D× R

D × I
satisfying the lower bound

F(v, x, t) ≥ αM(v, x, t), for a.e. (v, x, t) ∈ R
D× R

D × I,

where α ∈ (0, 1). Then

(c) the Boltzmann H function associated to F defined as

H [F](t) :=
∫∫

RD×RD
F ln F(v, x, t)dvdx

satisfies

dH [F]
dt

(t) =
∫∫

RD×RD
B(F, F)(v, x, t) ln F(v, x, t)dvdx ≤ 0

in the sense of distributions on I .

Theorem B(a) and Boltzmann’s H Theorem (a)–(b) are classical properties of the
Boltzmann equation, and are discussed in most books on the Boltzmann equation, for
instance [4,6]. See also Corollary 3.2 and Proposition 3.3 in [8] for proofs based on
assumptions slightly more general than those used in the present paper. Proofs of The-
orem B(b) and of part (c) of the H Theorem are given in the appendix for the reader’s
convenience.
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2.4. Dispersion vs. dissipation. Let M be a global Maxwellian, of the form

M(v, x, t) := m

(2π)D

√
det Qe−q(v,x,t)

where

q(v, x, t) = 1
2

(
v

x − tv

)T (
cI bI − B

bI + B aI

) (
v

x − tv

)
, Q := (ac − b2)I + B2

with (a, b, c, B) ∈ �.

Lemma 2.1. Assume that the collision kernel b has separated form with β ∈ (−D, 0]
and let M be a global Maxwellian as in Theorem A. Then

‖A(M)(t)‖L∞(RD×RD) ≤ mb
√
det( Q

2π )aβ(0)θ(t)
D+β
2 ,

with

aβ(0) = 2β/2�(
D+β
2 )/�(D2 ) > 0.

Moreover, if β ∈ (1 − D, 0] then

μ(M) :=
∫
R

‖A(M)(t)‖L∞(RD×RD)dt < ∞. (2.8)

The next lemma shows the effect of dispersion induced by the free transport operator
on the damping coefficient in the loss term of the Boltzmann collision integral. By
integrating first in the time variable before taking the sup norm in x and v, one gains
one extra power of the relative velocity in the collision kernel b. Therefore, this lemma
applies to all cutoff collision kernels corresponding to hard as well as soft potentials,
unlike Lemma 2.1. It extends the computation on pp. 221–222 of [12] (see also formula
(3.5) in [10]) to the larger class of global Maxwellians described in [15] and considered
in the present work.

Lemma 2.2. Assume that the collision kernel b has separated form with β ∈ (1−D, 1].
Under the assumptions above, the function

(v, x, t) �→
∫
J
A(M)(v, x − tv + sv, s) ds

is bounded on R
D× R

D× R for each interval J ⊂ R. Specifically, one has
∣∣∣∣
∫
J
A(M)(v, x − tv + sv, s) ds

∣∣∣∣ ≤ ν(M) for a.e. (v, x, t) ∈ R
D× R

D× R,

where

ν(M) := sup
(v,x,t)∈RD×RD×R

∣∣∣∣
∫
R

A(M)(v, x − tv + sv, s) ds

∣∣∣∣

≤ mb

(2π)D− 1
2
√
a

(
(2πa)D/2 +

|SD−1|√det Q

β + D − 1

)
. (2.9)
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2.5. Existence, uniqueness and stability for the Cauchy problem. Our analysis of the
dynamics of the Boltzmann equation in the neighborhood of global Maxwellian begins
with the following existence and uniqueness result. It states the existence and unique-
ness of the mild solution of the Cauchy problem for the Boltzmann equation under the
assumption that the initial distribution function F in is close enough to the restriction at
time t = 0 of a global Maxwellian M which is itself small enough when measured in
terms of the parameter ν(M) defined in Lemma 2.2.

Theorem 2.1. Assume that the collision kernelb has separated formwithβ ∈ (1−D, 1].
Let M be a global Maxwellian such that ν(M) defined in (2.9) satisfies ν(M) < 1

4 .

(a) For each F in ∈ YM(0) such that

|F in − M(0)|M(0) <
(1 − 4ν(M))2

8ν(M)
,

there exists a unique mild solution F ∈ XM of the Boltzmann equation such that

F(0) = F in and ‖F − M‖M ≤ r,

with

r =
(

1

4ν(M)
− 1

) ⎛
⎝1 −

√
1 − 8ν(M)|F in − M(0)|M(0)

(1 − 4ν(M))2

⎞
⎠ .

(b) Moreover, if 1
2 ≤ 4ν(M) < 1, or if one has both

0 < 4ν(M) < 1
2 and |F in − M(0)|M(0) ≤ 1 − 6ν(M),

then r ≤ 1 and therefore

0 ≤ (1 − r)M(v, x, t) ≤ F(v, x, t)

≤ (1 + r)M(v, x, t) for a.e. (v, x, t) ∈ R
D× R

D× R.

Theorem 2.1 extends earlier works, especially those of Illner and Shinbrot [12] and
Hamdache [10]. Our proof is based on the same type of fixed-point argument that was
used in [10], rather than the Kaniel–Shinbrot iteration method [13] that was used in
[12]. (See section 6 of [13] for citations of earlier uses of the fixed-point argument.)
We also refer to more recent papers by Toscani [20], by Goudon [9], and by Alonso
and Gamba [1], all of which use Kaniel–Shinbrot iteration to construct solutions near
global Maxwellians for the case of soft potentials. Unlike Theorem 2.1, these later
references do not require a smallness condition (like ν(M) < 1

4 ) on the reference
Maxwellian. Otherwise, Theorem 2.1 considers a class of collision kernels larger than
that in [1,9,12,20] and the largest possible class of global Maxwellians, including those
with rotation, whereas [1,9,12,20] consider only global Maxwellians without rotation.

Another differencewith [10] is statement (b),which gives a sufficient condition for the
positivity of the solution so obtained. The Boltzmann equation governs the evolution of
distribution functions for gas molecules. Therefore, solutions of the Boltzmann equation
which are negative on sets of positive measure are not physically admissible.
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Henceforth, the solution F of the Cauchy problem with initial condition F(0) = F in

obtained in Theorem 2.1 will be denoted

F(t) = St F
in, t ∈ R.

In other words, St is the one-parameter group generated by the Boltzmann equation.
Notice that, under the condition on F in in Theorem 2.1, the solution St F in is defined for
all values of the time variable t , negative as well as positive. Such solutions are referred
to as “eternal solutions”.

Although the mathematical results obtained throughout this paper hold for positive
as well as negative times, the Cauchy problem for the Boltzmann equation for positive
times is of course of greater physical interest than its analogue for negative times. The
fact that the solutions of the Cauchy problem for the Boltzmann equation obtained in
Theorem 2.1 can be extended to all negative times is a mathematical property of the
physical regime corresponding to the assumptions of Theorem 2.1. This observation
applies to all the statements in Sects. 2.5 and 2.6, and we shall return to it later.

The next theorem establishes the continuous dependence of the solution F of the
Cauchy problem for the Boltzmann equation in terms of the initial data F in. More
precisely, we show that the one-parameter group St is locally Lipschitz continuous on
the neighborhood of M(0) where it is defined.

Theorem 2.2. Assume that the collision kernelb has separated formwithβ ∈ (1−D, 1].
LetM be a globalMaxwellian. Assume that ν(M) defined in (2.9) satisfies the condition
ν(M) < 1

4 . Let F
in
1 and F in

2 ∈ YM(0) be such that

ε := max(|F in
1 − M(0)|M(0), |F in

2 − M(0)|M(0)) <
(1 − 4ν(M))2

8ν(M)
.

Let F1(t) = St F in
1 and F2(t) = St F in

2 for all t ∈ R. Then

‖F1 − F2‖M ≤ |F in
1 − F in

2 |M(0)√
(1 − 4ν(M))2 − 8ν(M)ε

.

In the case of cutoff collision kernels corresponding to soft potentials, one has the
following more general stability and uniqueness result.

Theorem 2.3. Assume that the collision kernelb has separated formwithβ ∈ (1−D, 0].
Let F1 and F2 be two mild solutions of the Boltzmann equation satisfying the bound

|Fj (v, x, t)| ≤ M(v, x, t), for a.e. (v, x, t) ∈ R
D× R

D× R and j = 1, 2.

Then

‖F1 − F2‖M ≤ |F1(0) − F2(0)|M(0)e
4μ(M),

where μ(M) is the constant defined in (2.8).

Uniqueness is a direct consequence of the last inequality: if F1(0) = F2(0) a.e. on
R
D× R

D, then F1 = F2 a.e. on RD× R
D× R. The constant μ(M) is not optimal in the

bound above, and can be replaced with

max

(∫ ∞

0
‖A(M)(t)‖L∞(RD×RD)dt,

∫ 0

−∞
‖A(M)(t)‖L∞(RD×RD)dt

)
,

as can be seen from the proof.
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2.6. Large time behavior. In this section, we pursue our analysis of the dynamics of the
Boltzmann equation near globalMaxwellianwith a detailed discussion of the asymptotic
behavior of St F in for t → ±∞. Recall that A denotes the advection operator, i.e.
Aφ = v · ∇xφ, which is the infinitesimal generator of the one-parameter group etA

defined by the formula etAφ(x, v) = φ(x + tv, v).
Our first result in this direction is the following simple but general observation.

Theorem 2.4. Assume that the collision kernel b has separated form with exponent
β ∈ (1−D, 2]. Let F ≡ F(v, x, t) be a mild solution of the Boltzmann equation defined
a.e. on R

D× R
D × (t0,+∞)—resp. RD× R

D × (−∞, t0))—for some t0 ∈ R. Assume
that, for some global Maxwellian M, defined in terms of m > 0 and (a, b, c, B) ∈ �

as in Theorem A, the solution F satisfies

|F(v, x, t)| ≤ M(v, x, t)

for a.e. (v, x, t) ∈ R
D× R

D × (t0,+∞)—resp. RD× R
D × (−∞, t0). Then there exists

a unique F+∞ ≡ F+∞(v, x)—resp. F−∞ ≡ F−∞(v, x)—such that

‖F(t) − e−tAF+∞‖L1(RD×RD) → 0

as t → +∞—resp.

‖F(t) − e−tAF−∞‖L1(RD×RD) → 0

as t → −∞.
The functions F±∞ are given by

F+∞ = F in +
∫ ∞

0
esAB(F, F)(s) ds,

F−∞ = F in −
∫ 0

−∞
esAB(F, F)(s) ds,

and satisfy the bound

|F±∞(v, x)| ≤ M(v, x, 0) for a.e. (v, x) ∈ R
D× R

D.

This theorem obviously applies to the solution F(t) = St F in obtained in Theo-
rem2.1, since it satisfies the bound−(1+r)M(t) ≤ (1−r)M(t) ≤ St F in ≤ (1+r)M(t)
for all t ∈ R. The asymptotic states F±∞ so obtained obviously satisfy the bounds

(1 − r)M(v, x, 0) ≤ F±∞(v, x) ≤ (1 + r)M(v, x, 0) for a.e. (v, x) ∈ R
D× R

D,

since etAM(t) = M(0) and

(1−r)M(v, x, t) ≤ St F
in(v, x) ≤ (1+r)M(v, x, t) for a.e. (v, x, t) ∈ R

D× R
D× R.

Definition 2.2. Let M be a global Maxwellian. Let F in and F+∞ (resp. F−∞) be two
elements of YM(0). We say that F+∞ = T +F in (resp. F−∞ = T −F in) if there exists
a unique mild solution F of the Boltzmann equation on R

D× R
D × [0,+∞) (resp. on

R
D× R

D × (−∞, 0]) such that ‖F(t) − e−tAF+∞‖L1(RD×RD) → 0 as t → +∞ (resp.
‖F(t) − e−tAF−∞‖L1(RD×RD) → 0 as t → −∞).
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This defines two operators T + and T − on subsets ofYM(0). In view of Theorems 2.1
and 2.4 and of the remarks before the definition above, the operators T ± are defined on

BYM(0)

(
M(0), (1−ν(M))2

8ν(M)

)
provided that ν(M) < 1

4 , and satisfy2

T ± (
BYM(0)

(
M(0), (1−4ν(M))2

8ν(M)

))
⊂ BYM(0)

(
M(0), 1

4ν(M)
− 1

)
.

Notice that the existence of the operators T ± on balls of a slightly different class of
spaces analogous to YM(0) had been established by Hamdache [10]. Hamdache uses a
less general class of global Maxwellians, which do not include solid rotation as in the
present work. On the other hand, Hamdache’s results are set on Banach spaces analogous
to YM(0), based on L p with 1 ≤ p ≤ ∞, instead of L∞ only, as in our work. But the
setting involving L p for p �= ∞ fails to guarantee the positivity of the solution of
the Boltzmann equation, at variance with all the results presented above. Therefore, the
existence theorem above (Theorem 2.4), which is based on amore general class of global
Maxwellians than its predecessors and yields the positivity of the distribution function,
is new.

Analogous results on discrete velocity models of the kinetic theory of gases have
been established earlier: see also formula (16.16) in [19] and Theorem 5.4 in [3].

Although the asymptotic behavior of solutions of the Boltzmann equation over RD

for large positive time is of greater physical interest than the large negative time limit,
the fact that both limits are obtained by exactly the same mathematical arguments is an
important clue.

We know that when the Boltzmann equation is set on a bounded spatial domain, as-
suming for instance that x belongs to some periodic box, or to some bounded, connected
open set ofRD with smooth boundary and appropriate boundary conditions (such as spec-
ular reflection of the gas molecules at the boundary), its solution converges, as t → +∞,
to the uniform Maxwellian state that is compatible with the initial and boundary con-
ditions, as well as with the fundamental conservation laws implied by the Boltzmann
equation itself (see for instance [7]). In particular, different initial data F in may, in the
case of a bounded spatial domain, lead to the same Maxwellian state in the long time
limit.

By analogy, one might think that the asymptotic behavior for t → +∞ of any mild
solution F of the Boltzmann equation over RD, satisfying appropriate decay conditions
more stringent than (1.2) as |x | + |v| → ∞, is given by the global Maxwellian M
with the same globally conserved quantities as F—i.e. by the state of maximal entropy
compatible with the same conserved quantities as F . However, this seems unlikely,
since the mathematically analogous asymptotic behavior for t → −∞ is not expected
to involve the entropy.

In fact the dynamics defined by the Boltzmann equation set in the Euclidean space
R
D in the long time limit is completely different from the case of a bounded domain, as

shown by the next theorem.

Theorem 2.5. Assume that the collision kernel b has separated form with exponent
β ∈ (1 − D, 0]. Let F1 ≡ F1(v, x, t) and F2 ≡ F2(v, x, t) be mild solutions of the
Boltzmann equation defined a.e. onRD× R

D × (t0,+∞)—resp.RD× R
D × (−∞, t0)—

satisfying the bounds

2 If E is a Banach space, BE (x, r)—resp. BE (x, r)—designates the open ball—resp. the closed ball—
centered at x with radius r in E .
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|F1(v, x, t)| ≤ M(v, x, t) and |F2(v, x, t)| ≤ M(v, x, t)

for a.e. (v, x, t) ∈ R
D× R

D × (t0,+∞)—resp. RD× R
D × (−∞, t0)—where M is a

global Maxwellian, defined in terms of m > 0 and (a, b, c, B) ∈ � as in Theorem A.
Let F±∞

j ≡ F±∞
j (v, x) be such that

‖Fj (t) − e−(t−t0)AF+∞
j ‖L1(RD×RD) → 0 for j = 1, 2

as t → +∞—resp.

‖Fj (t) − e−(t−t0)AF−∞
j ‖L1(RD×RD) → 0 for j = 1, 2

as t → −∞. Then

|F1(t) − F2(t)|M(t) ≤ |F+∞
1 − F+∞

2 |M(t0)e
4μ(M)

for all t > t0—resp.

|F1(t) − F2(t)|M(t) ≤ |F−∞
1 − F−∞

2 |M(t0)e
4μ(M)

for all t < t0. In particular, if F+∞
1 = F+∞

2 (resp. F−∞
1 = F−∞

2 ) a.e. on R
D× R

D,

then

F1(v, x, t) = F2(v, x, t) for a.e. (v, x) ∈ R
D× R

D

for all t > t0—resp. t < t0.

In other words, the operators T ± are one-to-one on their domains of definition in the
case of soft molecular interactions: unlike in the case of the Boltzmann equation set in
a bounded domain, different initial data lead to different asymptotic states F±∞.

Whether these operators are onto is another natural question, which is partially an-
swered by the next theorem.

Theorem 2.6. Assume that b has separated form with β ∈ (1−D, 1]. LetM be a global
Maxwellian, with ν(M) defined in (2.9) such that ν(M) < 1

4 . Let F
±∞ satisfy

F±∞ ∈ BYM(0)

(
M(0), (1−4ν(M))2

8ν(M)

)
.

Then there exists a unique F in± ∈ YM(0) satisfying F in± ∈ BYM(0) (M(0), r) with

r =
(

1

4ν(M)
− 1

) ⎛
⎝1 −

√
1 − 8ν(M)|F±∞ − M(0)|M(0)

(1 − 4ν(M))2

⎞
⎠ ,

and

T ±F in± = F±∞.
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We henceforth denote

(T ±)−1F±∞ := F in± (2.10)

the initial data obtained in Theorem 2.6. In other words, Theorem 2.6 defines right
inverse operators (T ±)−1 : F±∞ �→ F in± such that T ± ◦ (T ±)−1 = Id on the ball

BYM(0)

(
M(0), (1−4ν(M))2

8ν(M)

)
. Besides

(T ±)−1
(
BYM(0)

(
M(0), (1−4ν(M))2

8ν(M)

))
⊂ BYM(0)

(
M(0), 1

4ν(M)
− 1

)
.

Notice the difference between Theorems 2.5 and 2.6. Theorem 2.5 establishes the
one-to-one property for the operators F in �→ F±∞ possibly for large initial data, under
the only assumption that the Boltzmann equation has a mild solution with initial data
F in that remains below some global Maxwellian. However, we do not know whether
Theorem 2.5 holds for hard potentials. Theorem 2.6 on the other hand holds for all cutoff
kernels, for hard as well as soft potentials, and implies that the operators F in �→ F±∞
are not only one-to-one but also onto. But Theorem 2.6 is only a local result: it holds
only in some neighborhood of a global Maxwellian.

Theorems 2.5 and 2.6 answer in the negative the question raised in the problem stated
at the end of Sect. 1. As explained above, the asymptotic behavior of solutions of the
Boltzmann equation over RD for large positive time is of much greater physical interest
than the large negative time limit. Nevertheless, the mathematical methods used in the
proof of Theorems 2.5 and 2.6 allow treating both limits in the same way.

A result analogous to Theorem 2.6 had been established earlier by X. Lu (see The-
orem 4.2 in [16]). However, X. Lu uses weight functions which decay slower than
Maxwellians as |v| → ∞: see formulas (1.14)–(1.15)–(1.16) in [16]. In fact Remark 2
on p. 1172 in [16] states explicitly that the solutions obtained in there are not bounded
from below by a traveling Maxwellian.

In the next theorem, we discuss the continuity properties of the operators T ± and of
their right inverses (T ±)−1 defined in (2.10).

Theorem 2.7. Assume that b has separated form with β ∈ (1 − D, 1], and let M
be a global Maxwellian with ν(M) defined in (2.9) such that ν(M) < 1

4 , and let

0 ≤ ε <
(1−4ν(M))2

8ν(M)
.

(a) For F in
1 , F in

2 ∈ BYM(0) (M(0), ε) one has

|T ±F in
1 − T ±F in

2 |M(0) ≤ |F in
1 − F in

2 |M(0)√
(1 − 4ν(M))2 − 8ν(M)ε

.

(b) For F±∞
1 , F±∞

2 ∈ BYM(0) (M(0), ε) one has

|(T ±)−1F±∞
1 − (T ±)−1F±∞

2 |M(0) ≤ |F±∞
1 − F±∞

2 |M(0)√
(1 − 4ν(M))2 − 8ν(M)ε

.
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2.7. Scattering theory for the Boltzmann equation. The results obtained in the previous
section imply the existence of a scattering regime for the Boltzmann equation set in the
Euclidean spaceRD, at least in the vicinity of some global Maxwellian states—i.e. those
for which ν(M) < 1

4 .
In the words of Lax and Phillips [14], “Scattering theory compares the asymptotic

behavior of an evolving system as t tends to −∞ with its asymptotic behavior as t
tends to +∞”. Chapter 2 of [14] defines the notion of scattering operator in terms of the
translation representation of unitary groups in Hilbert spaces.

Since the Boltzmann equation involves entropy production via Boltzmann’s H the-
orem, the one-parameter group St constructed in Theorem 2.1 is very different from a
unitary group defined on aHilbert space. Therefore, it is a priori unclear that the concepts
of scattering theory defined in such terms can be applied in the context of the kinetic
theory of gases.

There is however a scattering theory for the linear Boltzmann equation, sketched for
instance in section XI.12 of [18]. The notion of scattering operator for the linear Boltz-
mann equation considered byM. Reed and B. Simon differs from the theory described in
[14] in two ways, which they summarize as follows. “In the first place, the natural space
of states is not a Hilbert space but a cone in a (non-Hilbert) vector space; in the second
place, the equation of motion we describe defines a one-sided dynamics […]” For that
reason, the definition of the wave and scattering operators in formulas (239)–(240) of
[18] differs from the one in [14].

The present section uses the same formalism as [14].

Definition 2.3. Let M be a global Maxwellian. Let F+∞ and F−∞ be two elements
of YM(0). We say that F+∞ = SF−∞ if there exists a unique mild solution F of
the Boltzmann equation on R

D× R
D× R such that |F(v, x, t)| ≤ M(v, x, t) for a.e.

(v, x, t) ∈ R
D× R

D× R for some global Maxwellian M, and

‖F(t) − e−tAF+∞‖L1(RD×RD) → 0 as t → +∞,

while

‖F(t) − e−tAF−∞‖L1(RD×RD) → 0 as t → −∞.

We have put together in the next theorem the main properties of the scattering oper-
ator S.

Theorem 2.8. Assume that b has separated form with β ∈ (1 − D, 1], and let M be a
global Maxwellian with ν(M) defined in (2.9) such that ν(M) < 1

4 .

(a) For each F−∞ ∈ BYM(0) (M(0), (1−4ν(M))2

8ν(M)
), there exists a unique asymptotic state

F+∞ ∈ BYM(0) (M(0), r) with

r =
(

1

4ν(M)
− 1

) ⎛
⎝1 −

√
1 − 8ν(M)|F−∞ − M(0)|M(0)

(1 − 4ν(M))2

⎞
⎠ ,

such that

SF−∞ = F+∞.

In particular SM(0) = M(0).
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(b) For each F+∞ ∈ BYM(0) (M(0), (1−4ν(M))2

8ν(M)
), there exists a unique asymptotic state

F−∞ ∈ BYM(0) (M(0), r) with

r =
(

1

4ν(M)
− 1

) (
1 −

√
1 − 8ν(M)|F+∞ − M(0)|M(0)

(1 − 4ν(M))2

)
,

such that

SF−∞ = F+∞.

The distribution function F−∞ so obtained is henceforth denoted by

S−1F+∞ := F−∞.

In other words, the map S−1 so defined is a right inverse of S, i.e. S ◦ (S−1) = Id

on the ball BYM(0)

(
M(0), (1−4ν(M))2

8ν(M)

)
.

(c) ThemapsS andS−1 are locallyLipschitz continuouson BYM(0) (M(0), (1−4ν(M))2

8ν(M)
).

More precisely, for each ε satisfying 0 < ε <
(1−4ν(M))2

8ν(M)
and each pair of asymp-

totic states F±∞
1 , F±∞

2 ∈ BYM(0) (M(0), ε), one has

|SF−∞
1 − SF−∞

2 |M(0) ≤ |F−∞
1 − F−∞

2 |√
(1 − 4ν(M))2 − 8ν(M)ε

, and

|S−1F+∞
1 − S−1F+∞

2 |M(0) ≤ |F+∞
1 − F+∞

2 |√
(1 − 4ν(M))2 − 8ν(M)ε

.

(d) The scattering operator S satisfies the global conservation laws

∫∫
RD×RD

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
v

|v|2
x

|x |2
x · v

x ∧ v

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
SF−∞(v, x) dvdx =

∫∫
RD×RD

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
v

|v|2
x

|x |2
x · v

x ∧ v

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

F−∞(v, x) dvdx

for each F−∞ ∈ BYM(0) (M(0), (1−4ν(M))2

8ν(M)
).

(e) The scattering operator S decreases the Boltzmann H function: if 1
2 < 4ν(M) < 1,

or if 0 < 4ν(M) ≤ 1
2 and |F−∞ − M(0)|M(0) < 1 − 6ν(M), then

H [F−∞] ≥ H [SF−∞].

This inequality is an equality if and only if there exists a global Maxwellian M̃ such
that F−∞ = M̃(0).
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(f) Let β ≤ 0. Assume moreover that 1
2 ≤ 4ν(M) < 1, or that 0 < 4ν(M) < 1

2 and
that F−∞ satisfies the condition |F−∞ − M(0)|M(0) ≤ 1 − 6ν(M). Let MF−∞
be the global Maxwellian such that

∫∫
RD×RD

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
v

|v|2
x

|x |2
x · v

x ∧ v

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

F−∞(v, x) dvdx =
∫∫

RD×RD

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
v

|v|2
x

|x |2
x · v

x ∧ v

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
MF−∞(v, x, 0) dvdx;

(see [15]). Then

H [SF−∞] ≥ H [MF−∞],
with equality if and only if F−∞ = SF−∞ = MF−∞(0).

The existence of a scattering operator has been established by Bony [3] in the case
of the discrete velocity models of the kinetic theory of gases—see also lecture 16 in
[19], especially the sentence following formula (16.16). However the scattering theory
so obtained is noticeably different from the one constructed in the present work. For
instance, the operator analogous toT + in [3] is known to be discontinuous (see section 5.6
in [3]). A significant difference between the real Boltzmann equation and all the discrete
velocity models is of course the class of globalMaxwellians studied in [15] in the former
case. Indeed, no analogue of the class of global Maxwellians is known to exist in general
for discrete velocity models.

It is perhaps worth noticing that the analogue of Theorem 2.6 obtained by X. Lu
(Theorem 4.2 in [16]) cannot be used for the purpose of constructing the scattering
operator S in the vicinity of global Maxwellians, in view of Remark 2 on p. 1172 in
[16]. (Indeed, the Boltzmann solutions obtained in Theorem 4.2 of [16] have decay
properties excluding Maxwellians).

One way to poetically recast our results is that the traditional argument for the heat
death of the universe is wrong, at least when applied to a universe that expands forever.
That argument asserts the universewill approach its entropymaximizing state,whichwill
be a cooling homogeneous state. However, our results show that an unconfined system
generally does not approach its entropy maximizing state, but rather has a dispersing
asymptotic state upon which much of its past depends through a Lipschitz continuous
bijection. In physical terms, most particles do not experience enough collisions for the
entropy maximizing state to be approached before the unconfined system disperses. Of
course, the unconfined system modeled here by the Boltzmann equation is not a good
model for the universe and we are not claiming that the fate of the universe is not a
cooling homogeneous state. Rather, we are only pointing out that the traditional heat
death argument has gaps in it.

3. Proofs of Lemmas 2.1 and 2.2

Proof of Lemma 2.1. The first inequality follows from the formula (2.4) and observing
that

a(w) =
∫
RD

|w − w∗|βM[1, 0, 1](w∗)dw∗ ≤
∫
RD

|w∗|βM[1, 0, 1](w∗)dw∗ = aβ(0)
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because w �→ M[1, 0, 1](w) and w �→ |w|β are nonincreasing functions3 of |w| since
β ≤ 0. (The argument in the footnote follows the proof of inequality (10.2.1) on p. 261
in [11]). Thus

∫
R

‖A(M)(t)‖L∞(RD×RD)dt ≤ mb
√
det( Q

2π )aβ(0)
∫
R

θ(t)
D+β
2 dt < ∞

since θ(t) = O(1/t2) as t → ±∞ (by 2.2) and D+β
2 > 1

2 . The explicit formula for
aβ(0) comes from a straightforward computation (we recall that |SD−1| = 2β/2�(D2 )).

��
Proof of Lemma 2.2. First
∫
J
A(M)(v, x − tv + sv, s) ds = b

∫
RD

|v − v∗|β
∫
J
M(v∗, x − tv + sv, s) dsdv∗

= b
∫
RD

|v−v∗|β
∫
J
M(v∗, x−tv+s(v−v∗), 0) dsdv∗.

Indeed, since (∂t + v · ∇x )M = 0, one has

M(v∗, x − tv + sv, s) = M(v∗, x − tv + s(v − v∗), 0).

Then

q(v∗, X + Z , 0) = 1
2 (a|X + Z |2 + c|v∗|2 + 2(X + Z) · (bI + B)v∗)

= 1
2 (a|X + Z + 1

a (bI + B)∗v∗|2 − 1
a |(bI + B)T v∗|2 + c|v∗|2).

Since B = −BT , one has

|(bI + B)T v∗|2 = ((bI + B)T v∗|(bI + B)T v∗) = b2|v∗|2 + (BT v∗|BT v∗)
= b2|v∗|2 − (B2v∗|v∗),

3 Lemma. Let f, g ∈ C((0,+∞)) be nonincreasing on (0,+∞), and such that, for each x ∈ R
D, the

function y �→ f (|x − y|)g(|y|) is integrable. Then
∫
RD

f (|x − y|)g(]y|)dy ≤
∫
RD

f (|y|)g(|y|)dy for each x ∈ R
D.

Proof. Elementary computations show that, for each x ∈ R
D, one has

∫
RD

f (|y|)g(]y|)dy −
∫
RD

f (|x − y|)g(|y|)dy

= 1
2

∫
RD

( f (|y|) − f (|x − y|))(g(|y|) − g(|x − y|))dy

= 1
2

∫
|x−y|>|y|

( f (|y|) − f (|x − y|))(g(|y|) − g(|x − y|))dy

+ 1
2

∫
|x−y|<|y|

( f (|y|) − f (|x − y|))(g(|y|) − g(|x − y|))dy.

In the first integral on the right hand side, one has both f (|y|) − f (|x − y|) ≥ 0 and g(|y|) − g(|x − y|) ≥ 0
since f and g are nonincreasing. By the same token, f (|y|) − f (|x − y|) ≤ 0 and g(|y|) − g(|x − y|) ≤ 0 in
the second integral on the right hand side. Hence both integrals on the right hand side are nonnegative. ��
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so that

q(v∗, X + Z , 0)

= 1
2

(
a

∣∣∣∣X + Z +
1

a
(bI + B)∗v∗

∣∣∣∣
2

+
1

a

(
ac|v∗|2 − b2|v∗|2 + (B2v∗|v∗)

))

= 1
2

(
a

∣∣∣∣X + Z +
1

a
(bI + B)T v∗

∣∣∣∣
2

+
1

a
(Qv∗|v∗)

)
.

Thus∣∣∣∣
∫
J
M(v∗, x − tv + s(v − v∗), 0) ds

∣∣∣∣
= m

(2π)D

√
det Qe−(Qv∗|v∗)/2a

∣∣∣∣
∫
J
e−a|x−tv+ 1

a (bI+B)T v∗+s(v−v∗)|2/2 ds
∣∣∣∣

≤ m

(2π)D

√
det Qe−(Qv∗|v∗)/2ae

−a

(∣∣x−tv+ 1
a (bI+B)T v∗

∣∣2−(
x−tv+ 1

a (bI+B)T v

∣∣v−v∗
)2

/|v−v∗|2
)

×
∫
R

e−az2|v−v∗|2/2 dz

= m

(2π)D

√
det Qe−(Qv∗|v∗)/2ae

−a

(∣∣x−tv+ 1
a (bI+B)T v∗

∣∣2−(
x−tv+ 1

a (bI+B)T v

∣∣v−v∗
)2

/|v−v∗|2
)

×
√
2π

a

1

|v − v∗|
≤ m

(2π)D

√
2π

a

1

|v − v∗|
√
det Qe−(Qv∗|v∗)/2a .

We conclude that∣∣∣∣
∫
J
A(M)(v, x−tv+sv, s) ds

∣∣∣∣ ≤ mb
(2π)D

√
2π

a

√
det Q

∫
RD

|v−v∗|β−1e−(Qv∗|v∗)/2a dv∗

≤ mb
(2π)D

√
2π

a

√
det Q

∫
|v−v∗|>1

e−(Qv∗|v∗)/2a dv∗

+
mb

(2π)D

√
2π

a

√
det Q

∫
|v−v∗|<1

|v − v∗|β−1 dv∗

≤ mb
(2π)D

√
2π

a

(
(2πa)D/2 +

|SD−1|√det Q

β + D − 1

)
.

��

4. Existence, Uniqueness and Stability for the Cauchy Problem

In the case of hard potentials, A(M) /∈ L∞(RD× R
D× R); hence B± does not map

XM × XM into XM. Controlling the collision integral requires integrating first along
the characteristic lines of the free transport operator and using the dispersion effect of
the free transport operator as in the previous section (Lemma 2.2), as explained in the
next lemma.
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Lemma 4.1. Consider the maps defined on XM × XM by

C± : (F,G) �→ C±(F,G)(v, x, t) :=
∫ t

0
B±(F,G)(v, x − tv + sv, s) ds,

and set

C := C+ − C−.

Then, for all F,G ∈ XM, one has

‖C(F, F) − C(G,G)‖M ≤ 2ν(M)‖F + G‖M‖F − G‖M,

and

‖C(F, F)‖M ≤ 2ν(M)(2 + ‖F − M‖M)‖F − M‖M.

Proof. Observe that, for all F,G ∈ XM,

C±(F, F) − C±(G,G) = 1
2C±(F + G, F − G) + 1

2C±(F − G, F + G).

Therefore, by (2.7) and (2.6)

|C±(F, F) − C±(G,G)| ≤ ‖F + G‖M‖F − G‖M
×

∣∣∣∣
∫ t

0
A(M)(v, x − tv + sv, s)M(v, x − tv + sv, s) ds

∣∣∣∣
≤ ‖F + G‖M‖F − G‖MM(v, x, t)

×
∣∣∣∣
∫ t

0
A(M)(v, x − tv + sv, s) ds

∣∣∣∣ ,
so that

‖C±(F, F) − C±(G,G)‖M ≤ ν(M)‖F + G‖M‖F − G‖M.

With the definition of C in terms of C±, this gives the first inequality in the lemma. The
second inequality in the lemma follows from the first inequality, the fact that

‖F +M‖M ≤ ‖F − M‖M + 2‖M‖M = ‖F − M‖M + 2

and the identity C(M,M) = 0. ��
The proof of Theorem 2.1 is based on the previous lemma and a fixed point argument.

Proof of Theorem 2.1. To say that F is a (mild) solution of the Boltzmann equation

(∂t + v · ∇x )F = B(F, F), F
∣∣∣
t=0

= F in,

means that

F(v, x, t) = F in(v, x − tv) + C(F, F)(v, x, t),

or in other words, that F is a fixed point of the map

E : G �→ F in(v, x − tv) + C(G,G)(v, x, t).

Assume that F in ∈ YM(0); then

E(F)(v, x, t) − M(v, x, t) = F in(v, x − tv) − M(v, x − tv, 0) + C(F, F)(v, x, t)
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so that

‖E(G) − M‖M ≤ ‖F in/M(0) − 1‖L∞(RD×RD) + ‖C(G,G)‖M
≤ |F in − M(0)|YM(0) + 2ν(M)(‖G − M‖2M + 2‖G − M‖M).

Set ε(M, r) := (1 − 4ν(M)(1 + 1
2r))r . Obviously, ε(M, r) < r , and moreover

since 4ν(M) < 1, one has ε(M, r) ≥ 2ν(M)r2 > 0. Thus,

if |F in− − M(0)|M(0) ≤ ε(M, r) and if ‖G − M‖M ≤ r,

then

‖E(G) − M‖M ≤ ε(M, r) + 2ν(M)(r2 + 2r) = r.

Moreover, if F,G ∈ B(M, r) ⊂ XM, then

‖E(F) − E(G)‖M ≤ ‖C(F, F) − C(G,G)‖M ≤ 2ν(M)‖F + G‖M‖F − G‖M
≤ 4ν(M)(‖ 1

2 (F + G) − M‖M + ‖M‖M)‖F − G‖M
= 4ν(M)(r + 1)‖F − G‖M.

Since 4ν(M)(r +1) < 1, the map E is a strict contraction from the closed ball B(M, r)
of the Banach space XM into itself, and therefore has a unique fixed point in that ball.
In other words, the Boltzmann equation with initial data F in has a unique mild solution
which belongs to the ball B(M, r) ⊂ XM.

The map r �→ ε(M, r) is increasing on (0, 1
4ν(M)

− 1) and

sup
0<4ν(M)(r+1)<1

ε(M, r) = (1 − 4ν(M))2

8ν(M)
.

Thus, for each F in ∈ YM(0) such that |F in − M(0)|M(0) <
(1−4ν(M))2

8ν(M)
, there exists a

unique r ∈ [0, 1
4ν(M)

− 1) such that ε(M, r) = |F in −M(0)|M(0), which is given by

r =
(

1

4ν(M)
− 1

) ⎛
⎝1 −

√
1 − 8ν(M)|F in − M(0)|M(0)

(1 − 4ν(M))2

⎞
⎠ .

This proves statement (a).
If 1

2 ≤ 4ν(M) < 1, then r ≤ 1
4v(M)

− 1 ≤ 1, while if 0 < 4ν(M) < 1
2 and

r ∈ [0, 1
4ν(M)

− 1], then ε(M, r) ≤ ε(M, 1) = 1 − 6ν(M) if and only if 0 ≤ r ≤ 1,

so that ‖F − M‖M ≤ 1 if |F in − M(0)|M(0) ≤ 1 − 6ν(M). This proves statement
(b). ��
Proof of Theorem 2.2. One has

(F1 − F2)(v, x, t) = (F in
1 − F in

2 )(v, x − tv, t) + (C(F1, F1) − C(F2, F2))(v, x, t)

so that

‖F1 − F2‖M ≤ ‖(F in
1 − F in

2 )/M(0)‖L∞(RD×RD) + ‖C(F1, F1) − C(F2, F2)‖M
≤ |F in

1 − F in
2 |YM(0) + 2ν(M)‖F1 + F2‖M‖F1 − F2‖M

≤ |F in
1 − F in

2 |YM(0) + 4ν(M)(1 + r)‖F1 − F2‖M,
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assuming that ‖Fj − M‖M ≤ r for j = 1, 2. Therefore

‖F1 − F2‖M ≤ |F in
1 − F in

2 |YM(0)

1 − 4ν(M)(r + 1)
.

Inserting the expression of r in terms of |F in −M(0)|M(0) obtained in Theorem 2.1(a)
in the right hand side of this inequality leads to the inequality of Theorem 2.2. ��
Proof of Theorem 2.3. Since Fj is a mild solution on R

D× R
D× R of the Boltzmann

equation for j = 1, 2, one has

etAFj (t) = Fj (0) +
∫ t

0
esAB(Fj (s), Fj (s)) ds

for each t ∈ R. The inequalities (2.6) and (2.7) and the bound on Fj assumed in the
statement of Theorem 2.5 imply that

|B(F1(s), F1(s)) − B(F2(s), F2(s))| ≤ 1
2 |B(F1(s) + F2(s), F1(s) − F2(s))|
+ 1

2 |B(F1(s) − F2(s), F1(s) + F2(s))|
≤ 4|F1(s) − F2(s)|M(s)A(M(s))M(s),

(4.1)

so that

|F1(t) − F2(t)|M(t) = |etA(F1(t) − F2(t))|M(0)

≤ |F1(0) − F2(0)|M(0) +
∫ t

0
|esA(B(F1, F1)(s) − B(F2, F2)(s))|M(0) ds

= |F1(0) − F2(0)|M(0) +
∫ t

0
|B(F1, F1)(s) − B(F2, F2)(s)|M(s) ds

≤ |F1(0) − F2(0)|M(0) + 4
∫ t

0
|F1(s) − F2(s)|M(s)‖A(M(s))‖L∞(RD×RD) ds.

Using Lemma 2.1 and applying Gronwall’s inequality shows that

|F1(t) − F2(t)|M(t) ≤ |F1(0) − F2(0)|M(0) exp

(
4

∣∣∣∣
∫ t

0
‖A(M(s))‖L∞(RD×RD)ds

∣∣∣∣
)

,

from which the announced conclusion immediately follows. ��

5. Large Time Behavior: Proofs of Theorems 2.4 and 2.5

Proof of Theorem 2.4. Observe first that
∫
RD

A(M)M(v, x, t)dv = Caθ(t)
β
2 ρ(x, t)2,

where

Ca =
∫∫

RD×RD
|w − w∗|βM[1, 0, 1](w)M[1, 0, 1](w∗)dwdw∗ < ∞
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since β ∈ (1 − D, 2]. On the other hand
∫
RD

ρ(x, t)2 dx = m2θ(t)D det( Q
2π )

∫
RD

exp(−θ(t)xT Qx))dx = m2
√
det( Q

4π )θ(t)
D
2

so that∫∫∫
RD×RD×R

A(M)M(v, x, t)dvdxdt = Cam
2
√
det( Q

4π )

∫
R

θ(t)
D+β
2 dt < ∞

since θ(t) = O(1/t2) as t → ±∞ (as implied by (2.2)) and D+β
2 > 1

2 .
Thus, if F is a mild solution of the Boltzmann equation on RD× R

D × I (where I is
some interval of R) satisfying the bound in Theorem 2.4, one has

|B(F, F)| ≤ B+(|F |, |F |) + B−(|F |, |F |)
≤ B+(M,M) + B−(M,M) = 2A(M)M, (5.1)

and therefore∫∫∫
RD×RD × I

|B(F, F)(v, x, t)|dvdxdt ≤ 2
∫∫∫

RD×RD×R

A(M)M(v, x, t)dvdxdt

< ∞.

If I = [t0,+∞), then

e(t−t0)AF(t) = F(t0) +
∫ t

t0
e(s−t0)AB(F(s), F(s))ds,

and since∫ +∞

t0
‖e(s−t0)AB(F(s), F(s))‖L1(RD×RD)ds=

∫ +∞

t0
‖B(F(s), F(s))‖L1(RD×RD)ds<∞,

we conclude that e(t−t0)AF(t) converges to a limit in L1(RD× R
D) as t → +∞. The

case where I = (−∞, t0] is handled similarly. ��
Proof of Theorem 2.5. Since Fj is a mild solution onRD× R

D × [t0,+∞) of the Boltz-
mann equation for j = 1, 2, one has

e(t ′−t0)AFj (t
′) = e(t−t0)AFj (t) +

∫ t ′

t
e(s−t0)AB(Fj (s), Fj (s)) ds

for each t ′ > t > t0. Letting t ′ → +∞ and using the assumption on the large time
behavior of F1 and F2 shows that

e(t−t0)A(F1(t) − F2(t))

= F+∞
1 − F+∞

2 −
∫ +∞

t
e(s−t0)A(B(F1(s), F1(s)) − B(F2(s), F2(s))) ds.

The inequality (4.1) and the bound on Fj assumed in the statement of Theorem 2.5 imply
that

|B(F1(s), F1(s)) − B(F2(s), F2(s))| ≤ 4|F1(s) − F2(s)|M(s)A(M(s))M(s)),



Boltzmann Equation Near Global Maxwellians 459

so that

|F1(t) − F2(t)|M(t) = |e(t−t0)A(F1(t) − F2(t))|M(t0)

≤ |F+∞
1 − F+∞

2 |M(t0)

+ 4
∫ +∞

t
|F1(s) − F2(s)|M(s)‖A(M(s))‖L∞(RD×RD)ds

in view of the obvious identity e(s−t0)AM(s) = M(t0). The conclusion follows from
Lemma 2.1 and Gronwall’s Lemma (treating t = +∞ as the origin of times). ��

6. The Operators T ±: Proofs of Theorems 2.6 and 2.7

Going back to the proof of Theorem 2.4 shows that T +F in
+ = F+∞ if and only if there

exists a unique mild solution F of the Boltzmann equation such that

F+∞ = etAF(t) +
∫ +∞

t
esAB(F(s), F(s)) ds = 0, for all t ∈ R,

or equivalently

f (t) = F+∞ −
∫ +∞

t
esAB(e−sA f (s), e−sA f (s)) ds = 0, for all t ∈ R,

with f (t) := etAF(t). This is an equation for the unknown f , which is put in the form

f = F+∞ − F+( f ),

with

F+( f )(v, x, t) :=
∫ +∞

t
esAB(e−sA f, e−sA f )(v, x, s) ds. (6.1)

Proof of Theorem 2.6. Proceeding as in the proof of Lemma 4.1, we see that, for each
f, g ∈ XM, one has

‖F+( f ) − F+(g)‖M ≤ 2ν(M)‖ f + g‖M‖ f − g‖M, (6.2)

and
‖F+( f )‖M ≤ 2ν(M)(2 + ‖ f − M‖M)‖ f − M‖M. (6.3)

Thus

‖F+∞ − F+( f ) − M‖M ≤ |F+∞ − M|M(0) + ‖F+( f )‖M
≤ ε(M, r) + 2ν(M)(2 + r)r = r

if |F+∞ − M|M(0) ≤ ε(M, r) := (1 − 4ν(M)(1 + 1
2r))r and ‖ f − M‖M ≤ r . In

other words the map f �→ F+∞ − F+( f ) sends the closed ball BXM(M, r) into itself
provided that |F+∞ − M|M(0) ≤ ε(M, r).

On the other hand, if f, g ∈ BXM(M, r)

‖F+( f )−F+(g)‖M ≤ 2ν(M)‖ f +g‖M‖ f −g‖M ≤ 4ν(M)(1+r)‖ f −g‖M, (6.4)
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so that themap f �→ F+∞−F+( f ) is a strict contraction on the closed ball BXM(M, r)
provided that 4ν(M)(1 + r) < 1. By the Banach fixed point theorem, we conclude that
the map f �→ F+∞ − F+( f ) has a unique fixed point f ∈ BXM(M, r).

Thus F(t) = e−tA f (t) is a mild solution of the Boltzmann equation onRD× R
D× R

such that etAF(t) → F+∞ in L1(RD× R
D) as t → +∞. Setting F in

+ := F(0), one has
T +F in

+ = F+∞.
Arguing as in the proof of Theorem 2.1,

|F+∞ − M(0)|M(0) <
(1−4ν(M))2

8ν(M)
⇒ ‖ f − M‖M = ‖F − M‖M ≤ r,

where r is the unique element of [0, 1
4ν(M)

−1) such that ε(M, r) = |F+∞−M(0)|M(0),
i.e.

r =
(

1

4ν(M)
− 1

) (
1 −

√
1 − 8ν(M)|F+∞ − M(0)|M(0)

(1 − 4ν(M))2

)
.

In particular |F in
+ − M(0)|M(0) ≤ ‖F − M‖M ≤ r .

By looking instead for a fixed point of the map f �→ F−∞ + F−( f ), where

F−( f )(v, x, t) :=
∫ t

−∞
esAB(e−sA f, e−sA f )(v, x, s) ds,

one obtains F in− such that T −F in− = F−∞ in the same way. Since F− satisfies the same
estimates (6.2) and (6.3) as F+, i.e.

‖F−( f ) − F−(g)‖M ≤ 2ν(M)‖ f + g‖M‖ f − g‖M, (6.5)

and
‖F−( f )‖M ≤ 2ν(M)(2 + ‖ f − M‖M)‖ f − M‖M, (6.6)

one obtains the existence and uniqueness of F in− satisfying

|F in− − M(0)|M(0) ≤ r,

provided that

|F−∞ − M(0)|M(0) <
(1 − 4ν(M))2

8ν(M)
. ��

The proof of Theorem 2.7(a) is based on Theorem 2.2, while Theorem 2.7(b) follows
from the classical argument proving the continuous dependence of the fixed point on the
initial data.

Proof of Theorem 2.7. Since ν(M) < 1
4 and F in

1 , F in
2 ∈ BYM(0) (M(0), ε) with ε sat-

isfying the bounds 0 ≤ ε <
(1−4ν(M))2

8ν(M)
, applying Theorem 2.2 shows that

|etAF1(t) − etAF2(t)|M(0) ≤ ‖F1 − F2‖M ≤ |F in
1 − F in

2 |M(0)√
(1 − 4ν(M))2 − 8ν(M)ε



Boltzmann Equation Near Global Maxwellians 461

for each t ∈ R, where Fj (t) = St F in
j for j = 1, 2. Observing that etAFj (t) → T ±F in

j

in L1(RD× R
D) as t → ±∞, we conclude that

|T ±F in
1 − T ±F in

2 |M(0) ≤ |F in
1 − F in

2 |M(0)√
(1 − 4ν(M))2 − 8ν(M)ε

,

which is statement (a).

If F+∞
1 , F+∞

2 ∈ BYM(0) (M(0), ε) with 0 ≤ ε <
(1−4ν(M))2

8ν(M)
, applying Theorem 2.6

shows that F+∞
j = T +F in

j for j = 1, 2, where F in
j = f j (0) and f j satisfies

f j = F+∞
j − F+( f j ), and ‖ f j − M‖M ≤ r, j = 1, 2

where F+ is defined in (6.1). Because of (6.2)

‖ f1 − f2‖M ≤ |F+∞
1 − F+∞

2 |M(0) + ‖F+( f1) − F+( f2)‖M
≤ |F+∞

1 − F+∞
2 |M(0) + 4ν(M)(1 + r)‖ f1 − f2‖M,

so that

|F in
1 − F in

2 |M(0) ≤ ‖ f1 − f2‖M ≤ |F+∞
1 − F+∞

2 |M(0)

1 − 4ν(M)(1 + r)
.

Inserting the expression of r in terms of |F+∞ −M(0)|M(0) given in Theorem 2.6 in the
right hand side of this inequality leads to the estimate in statement (b) for the operator
(T +)−1. The analogous estimate for (T −)−1 is obtained by the same argument involving
F− defined in (6.4) instead of F+. ��

7. The Scattering Operator S: Proof of Theorem 2.8

If F is a mild solution of the Boltzmann equation on R
D× R

D× R,

et
′AF(t ′) = etAF(t) +

∫ t ′

t
esAB(F(s), F(s)) ds

for each t, t ′ ∈ R. In terms of f (t) = etAF(t), the equality above is recast as

f (t ′) = f (t) +
∫ t ′

t
esAB(e−sA f (s), e−sA f (s)) ds.

According to Definition 2.3, one has F+∞ = SF−∞ if the function

s �→ esAB(e−sA f (s), e−sA f (s))

is integrable on R a.e. on R
D× R

D and

F+∞ = F−∞ +
∫
R

esAB(e−sA f (s), e−sA f (s)) ds.
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Proof of Theorem 2.8. Since the functional F− defined in (6.4) satisfies (6.5) and (6.6),
arguing as in the proof of Theorem 2.1 shows that the map f �→ F−∞ + F−( f ) sends
the closed ball BX (M, r) into itself provided that |F−∞ −M|M(0) ≤ ε(M, r), where
we recall that ε(M, r) = (1 − 4ε(M)(1 + 1

2r))r . Since 4ν(M)(1 + r) < 1, one has
ε(M, r) > 0. Moreover

‖F−( f ) − F−(g)‖M ≤ 4ν(M)(1 + r)‖ f − g‖M for all f, g ∈ BX (M, r)

by (6.5). By the Banach fixed point theorem, the map f �→ F−∞ +F−( f ) has a unique
fixed point in BX (M, r). The distribution function F(t) := e−tA f (t) is therefore a mild
solution of the Boltzmann equation on RD× R

D× R and satisfies ‖F −M‖M ≤ r , so
that |F(v, x, t)| ≤ (1+ r)M(v, x, t) for a.e. (v, x, t) ∈ R

D× R
D× R. By Theorem 2.4,

there exists a unique F+∞ ∈ YM(0) such that f (t) = etAF(t) → F+∞ as t → +∞,
which means that SF−∞ = F+∞. Besides

|F+∞ − M(0)|M(0) ≤ ‖F − M‖M ≤ r.

This defines the scattering map S on the closed ball BYM(0) (M, ε(M, r)) and shows

that S(BYM(0) (M, ε(M, r))) ⊂ BYM(0) (M, r) provided that 4ν(M)(1 + r) < 1.
Arguing as in the proof of Theorem 2.1, we conclude that S is defined on the open

ball BYM(0) (M,
(1−4ν(M))2

8ν(M)
) and that |SF−∞ − M|M(0) ≤ r where

r =
(

1

4ν(M)
− 1

) (
1 −

√
1 − 8ν(M)|F+∞ − M(0)|M(0)

(1 − 4ν(M))2

)
.

i.e. r is the unique element of [0, 1
4ν(M)

−1) such that ε(M, r) = |F−∞ −M(0)|M(0).
This proves statement (a).

Statement (b) is obtained in exactly the same manner, by seeking a fixed point of the
map f �→ F+∞ − F+( f ), where F+ is the map defined in (6.1).

If F−∞
1 , F−∞

2 ∈ BYM(0) (M(0), ε) with 0 ≤ ε <
(1−4ν(M))2

8ν(M)
, there exists unique

elements f1, f2 of XM such that

f j = F−∞
j + F−( f j ), and ‖ f j − M‖M ≤ r, j = 1, 2.

Because of (6.5)

‖ f1 − f2‖M ≤ |F−∞
1 − F−∞

2 |M(0) + ‖F−( f1) − F−( f2)‖M
≤ |F−∞

1 − F−∞
2 |M(0) + 4ν(M)(1 + r)‖ f1 − f2‖M,

so that

|SF−∞
1 − SF−∞

2 |M(0) ≤ ‖ f1 − f2‖M ≤ |F−∞
1 − F−∞

2 |M(0)

1 − 4ν(M)(1 + r)
.

The analogous local Lipschitz continuity estimate for the map S−1 is obtained by the
same arguments involving F+ instead of F−. This proves statement (c).
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Let a, c, l,m ∈ R and b, p, q ∈ R
D. For each F−∞ ∈ BYM(0) (M(0), (1−4ν(M))2

8ν(M)
),

let f be the unique fixed point of the map f �→ F−∞ + F−( f ) in the closed ball
BXM(0, r) where

r =
(

1

4ν(M)
− 1

) (
1 −

√
1 − 8ν(M)|F+∞ − M(0)|M(0)

(1 − 4ν(M))2

)
.

Thus F(t) = e−tA f (t) is a mild solution of the Boltzmann equation. By Theorem B
(b), the distribution function F satisfies the global conservation law

d

dt

∫∫
RD×RD

(a + b · v + c|v|2 + p · (x ∧ v) + q · (x−tv)

+ l(x−tv) · v + m|x−tv|2)F(v, x, t) dvdx = 0.

Equivalently, f (t) = etAF(t) satisfies

d

dt

∫∫
RD×RD

(a+b · v + c|v|2 + p · (x ∧ v) + q · x + lx · v + m|x |2) f (v, x, t) dvdx = 0.

Since f (t) → F−∞ in L1(RD× R
D) as t → −∞ and f (t) → SF−∞ in L1(RD× R

D)

as t → +∞ and ‖ f ‖M ≤ 1 + r , one has∫∫
RD×RD

(a + b · v + c|v|2 + p · (x ∧ v) + q · x + lx · v + m|x |2)SF−∞(v, x) dvdx

=
∫∫

RD×RD
(a+b · v+c|v|2 + p · (x ∧ v) + q · x + lx · v + m|x |2)F−∞(v, x) dvdx,

which is obviously equivalent to statement (d).
Let F be the mild solution of the Boltzmann equation on R

D× R
D× R such that

‖etAF(t) − F±∞‖L1(RD×RD) → 0 as t → ±∞ (7.1)

with F+∞ = SF−∞, while ‖F − M‖M ≤ r with r given by the formula in statement
(a). If 1

2 < 4ν(M) < 1 or if 0 < 4ν(M) ≤ 1
2 and ‖F−∞ −M‖M < 1− 6ν(M), then

r given by the expression in statement (a) satisfies 0 ≤ r < 1 so that

0 ≤ (1 − r)M(t) ≤ F(t) ≤ (1 + r)M(t) a.e. on RD× R
D, for all t ∈ R.

By Boltzmann’s H Theorem (c), the function t �→ H [F(t)] is nonincreasing on R and
one has

H [F(t)] − H [F(−t)] =
∫ t

−t

∫∫
RD×RD

B(F(s), F(s)) ln F(s) ds, for all t ≥ 0.

On the other hand H [F(t)] = H [etAF(t)], and since

(1 − r)M(0) ≤ etAF(t) ≤ (1 + r)M(0)

a.e. on R
D× R

D for all t ∈ R, one has

(1 − r)M(0) ln((1 − r)M(0)) ≤ etAF(t) ≤ (1 + r)M(0) ln((1 + r)M(0))

a.e. on R
D× R

D.
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Since M(0) and M(0) lnM(0) ∈ L1(RD× R
D), we conclude by dominated conver-

gence that

H [F(t)] → H [F−∞] as t → −∞, H [F(t)] → H [SF−∞] as t → +∞,

and

H [SF−∞] − H [F−∞] =
∫ +∞

−∞

∫∫
RD×RD

B(F(s), F(s)) ln F(s) dvdxds ≤ 0,

with equality if and only if∫
RD

B(F, F)(v, x, s) dv = 0 for a.e. (x, s) ∈ R
D× R.

By Boltzmann’s H Theorem (b), this implies that F is a.e. equal to a local Maxwellian,
i.e. that F(v, x, t) = M[ρ(x, t), u(x, t), θ(x, t)](v) for a.e. (v, x, t) ∈ R

D× R
D× R.

Since F is also a mild solution of the Boltzmann equation, this local Maxwellian must
be a global Maxwellian M̃. Hence

F−∞ = lim
t→−∞ etAF(t) = lim

t→−∞ etAM̃(t) = M̃(0).

This establishes statement (e).
As for statement (f), observe that statement (d) implies that

∫∫
RD×RD

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
v

|v|2
x−tv

|x−tv|2
(x−tv) · v

x ∧ v

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
MF−∞(v, x, t) dvdx=

∫∫
RD×RD

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
v

|v|2
x

|x |2
x · v

x ∧ v

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
SF−∞(v, x) dvdx .

The variational characterization of MSF−∞ (see the remark following Theorem 1.1
in [15]) implies that MSF−∞ = MF−∞ , so that H [SF−∞] ≥ H [MF−∞], with
equality if and only if SF−∞ = MF−∞(0). Since β ≤ 0, applying Theorem 2.5
shows that the only mild solution F of the Boltzmann equation on R

D× R
D× R such

that |F | ≤ M a.e. on R
D× R

D× R for some global Maxwellian M and such that
‖F(t) − e−tAMF−∞(0)‖L1(RD×RD) → 0 as t → +∞ isMF−∞ . Hence

F−∞ = lim
t→−∞ etAF(t) = lim

t→−∞ etAMF−∞(t) = MF−∞(0).

��

8. Conclusion and Perspectives

The main results in this paper bear on the large time behavior of solutions of the Boltz-
mann equation set in the Euclidean spaceRD in the vicinity of global Maxwellians. The
fact that both operators T + and T − in Definition 2.2 are locally one-to-one and onto is
a major difference between the dynamics of the Boltzmann equation in the Euclidean
space R

D and in the torus TD, or in any bounded domain with specular reflection of
the gas molecules at the boundary. The reason for this difference is that the dispersion
effect induced by the streaming operator v · ∇x in the Euclidean space R

D quenches
the dissipation effect of the Boltzmann collision integral in the large time limit. The
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present paper uses the Banach fixed point theorem and provides a complete discussion
of the large time limit in the case of solutions of the Cauchy problem for the Boltzmann
equation that are sufficiently close to a global MaxwellianM, which is in turn assumed
“small” enough, in the sense that ν(M) < 1

4 . Whether the same asymptotic behavior of
the dynamics defined by the Boltzmann equation—especially the fact that the operators
T + and T − are onto—can be established in a more general setting remains an open
problem at the time of this writing. Notice however that T + and T − are already known
to be one-to-one wherever they are defined without smallness assumption on the initial
data (Theorem 2.5), at least in the case of cutoff collision kernels corresponding to soft
potentials.
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Appendix A: Properties of Mild Solutions of the Boltzmann Equation: Proofs of
Theorems B(b) and of H Theorem(c)

Proof of Theorem B(b). Let

φ(v, x, t) := (a + b · v + c|v|2 + p · (x ∧ v) + q · (x−tv) + l(x−tv) · v + m|x−tv|2)
where a, c, l,m ∈ R and p, q ∈ R

D. Obviously

φ(v, x + tv, t) = φ(v, x, 0) for each (v, x, t) ∈ R
D× R

D× R.

Therefore

et2A(φF)(v, x, t2) − et1A(φF)(v, x, t1) +
∫ t2

t1
esA(φB(F, F))(v, x, s) ds

for a.e. (v, x) ∈ R
D× R

D and t1, t2 ∈ I . Since 0 ≤ F ≤ M a.e. on R
D× R

D × I , one
has φF ∈ L1(RD× R

D × I ), and |B(F, F)| ≤ A(M)M a.e. on RD× R
D × I by (5.1).

Using (2.4), (2.5), (2.1) and (2.2), we conclude that φB(F, F) ∈ L1(RD× R
D × I ).

Therefore∫∫
RD×RD

et2A(φF)(v, x, t2) dvdx =
∫∫

RD×RD
et1A(φF)(v, x, t1) dvdx

+
∫ t2

t1

∫∫
RD×RD

esA(φB(F, F))(v, x, s) dvdxds,

or equivalently∫∫
RD×RD

(φF)(v, x, t2) dvdx =
∫∫

RD×RD
(φF)(v, x, t1) dvdx

+
∫ t2

t1

∫∫
RD×RD

(φB(F, F))(v, x, s) dvdxds,

since∫∫
RD×RD

etAg(v, x) dvdx =
∫∫

RD×RD
g(v, x + tv) dvdx =

∫∫
RD×RD

g(v, y) dvdy



466 C. Bardos, I. M. Gamba, F. Golse, C. D. Levermore

for each g ∈ L1(RD× R
D) and each t ∈ R. Finally

∫
RD

(φB(F, F))(v, x, s) dv = 0 for a.e. (x, s) ∈ R
D × I

because v �→ φ(v, x, s) is a linear combination of 1, v1, . . . , vD, |v|2 (see statement (a)
in Theorem B). Hence∫∫

RD×RD
(φF)(v, x, t2) dvdx =

∫∫
RD×RD

(φF)(v, x, t1) dvdx

for all t1, t2 ∈ R. ��
Proof of H Theorem (c). By definition, if F is amild solution of the Boltzmann equation
on R

D× R
D × I , for a.e. (v, x) ∈ R

D× R
D, the function t �→ F(v, x, t) is absolutely

continuous on I . Assuming that αM ≤ F ≤ M a.e. on R
D× R

D × I implies in
particular that F > 0 a.e., so that the chain rule applies (see for instance Corollary
VIII.10 in [5]) and

d

dt
F ln F(v, x + tv, t) = B(F, F)(ln F + 1)(v, x + tv, t),

for a.e. (v, x, t) ∈ R
D× R

D × I.

Besides, one has

ln α + lnM ≤ ln F ≤ lnM, a.e. on R
D× R

D × I.

Since |B(F, F)| ≤ A(M)M a.e. on RD× R
D × I by (5.1) and lnM = O(|x |2 + |v|2)

as |x | + |v| → ∞, we conclude that B(F, F)(ln F + 1) ∈ L1(RD× R
D × I ), so that

d

dt
H [F](t) = d

dt

∫∫
RD×RD

F ln F(v, x + tv, t) dvdx

=
∫∫

RD×RD
B(F, F)(ln F + 1)(v, x + tv, t) dvdx

=
∫∫

RD×RD
B(F, F) ln F(v, y, t) dvdy ≤ 0

for a.e. t ∈ I . The last equality follows from the first conservation law in Theorem B(a),
and the last inequality from statement (a) in Boltzmann’s H Theorem. ��

References

1. Alonso, R., Gamba, I.M.: Distributional and classical solutions to the Cauchy Boltzmann problem for
soft potentials with integrable angular cross section. J. Stat. Phys. 137, 1147–1165 (2009)

2. Arsenio, D.: On the global existence of mild solutions to the Boltzmann equation for small data in
LD . Commun. Math. Phys. 302, 453–476 (2011)

3. Bony, J.-M.: Existence globale et diffusion pour les modèles discrets de la cinétique des gaz. First
European Congress of Mathematics, Vol. I (Paris, 1992), pp. 391–410. Progress in Mathematics, vol.
119. Birkhäuser, Basel (1994)

4. Bouchut, F., Golse, F., Pulvirenti, M.: Kinetic Equations and Asymptotic Theory. Editions scientifiques
et médicales Elsevier, Paris (2000)

5. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New
York (2011)



Boltzmann Equation Near Global Maxwellians 467

6. Cercignani, C.: Theory and Applications of the Boltzmann Equation. Scottish Academic Press, Edin-
burgh (1975)

7. Desvillettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous kinetic
systems: the Boltzmann equation. Invent. Math. 159, 245–316 (2005)

8. Golse, F.: The Boltzmann equation and its hydrodynamic limits. In: Dafermos, C., Feireisl, E. Handbook
of Differential Equations. Evolutionary Equations, vol. 2, Elsevier B.V., Amsterdam (2006)

9. Goudon, T.: Generalized invariant sets for the Boltzmann equation. Math. Models Methods Appl.
Sci. 7, 457–476 (1997)

10. Hamdache, K.: Existence in the large and asymptotic behaviour for the Boltzmann equation. Jpn. J. Appl.
Math. 2, 1–15 (1985)

11. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1934)
12. Illner, R., Shinbrot, M.: The Boltzmann equation: global existence for a rare gas in an infinite vac-

uum. Commun. Math. Phys. 95, 217–226 (1984)
13. Kaniel, S., Shinbrot, M.: The Boltzmann equation: uniqueness and local existence. Commun. Math.

Phys. 58, 65–84 (1978)
14. Lax, P.D., Phillips, R.S.: Scattering theory, revised edn. Academic Press, San Diego (1989)
15. Levermore, C.D.: GlobalMaxwellians over all space and their relation to conserved quantities of classical

kinetic equations. (preprint)
16. Lu, X.: Spatial decay of solutions of the Boltzmann equation: converse properties of long time limiting

behavior. SIAM J. Math. Anal. 30, 1151–1174 (1999)
17. Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. 147, 49–88 (1867)
18. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. III: Scattering Theory. Academic

Press, San Diego (1979)
19. Tartar, L.: From Hyperbolic Systems to Kinetic Theory. Springer, Berlin (2008)
20. Toscani, G.: Global solution of the initial value problem for the Boltzmann equation near a local

Maxwellian. Arch. Ration. Mech. Anal. 102, 231–241 (1988)

Communicated by C. Mouhot


	Global Solutions of the Boltzmann Equation Over mathbbRD Near Global Maxwellians with Small Mass
	Abstract:
	1 Introduction
	2 Main Results
	2.1 Background on global Maxwellians
	2.2 Assumptions on the collision kernel
	2.3 Mild solutions of the Boltzmann equation and their fundamental properties
	2.4 Dispersion vs. dissipation
	2.5 Existence, uniqueness and stability for the Cauchy problem
	2.6 Large time behavior
	2.7 Scattering theory for the Boltzmann equation

	3 Proofs of Lemmas 2.1 and 2.2
	4 Existence, Uniqueness and Stability for the Cauchy Problem
	5 Large Time Behavior: Proofs of Theorems 2.4 and 2.5
	6 The Operators mathcalTpm: Proofs of Theorems 2.6 and 2.7
	7 The Scattering Operator mathcalS: Proof of Theorem 2.8
	8 Conclusion and Perspectives
	Acknowledgements.
	Appendix A: Properties of Mild Solutions of the Boltzmann Equation: Proofs of Theorems B(b) and of H Theorem(c)
	References




