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Abstract: We study the singular values of the product of two coupled rectangular ran-
dom matrices as a determinantal point process. Each of the two factors is given by a
parameter dependent linear combination of two independent, complex Gaussian random
matrices, which is equivalent to a coupling of the two factors via an Itzykson-Zuber term.
We prove that the squared singular values of such a product form a biorthogonal ensem-
ble and establish its exact solvability. The parameter dependence allows us to interpolate
between the singular value statistics of the Laguerre ensemble and that of the product of
two independent complex Ginibre ensembles which are both known. We give exact for-
mulae for the correlation kernel in terms of a complex double contour integral, suitable
for the subsequent asymptotic analysis. In particular, we derive a Christoffel–Darboux
type formula for the correlation kernel, based on a five term recurrence relation for our
biorthogonal functions. It enables us to find its scaling limit at the origin representing
a hard edge. The resulting limiting kernel coincides with the universal Meijer G-kernel
found by several authors in different ensembles. We show that the central limit theo-
rem holds for the linear statistics of the singular values and give the limiting variance
explicitly.

1. Introduction

A remarkable feature of products of independent complex Gaussian matrices, i.e. inde-
pendent matrices with i.i.d. standard complex Gaussian entries, is the exact solvability
of the statistical properties of their eigenvalues and singular values. Indeed, it was shown
in [2] that the eigenvalues of such products form a determinantal point processes in C.
The behaviour of singular values for such products was studied in [4,6], where it was
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observed that its (squared) singular values also form a determinantal point process in
R≥0. The correlation kernels of these two different determinantal point processes can be
written explicitly in terms of Meijer G-functions, with suitable choices of parameters.

These results have opened the possibility to investigate products of independent
complex Gaussian matrices on the same level as the well-known classical ensembles of
random matrix theory, such as the Ginibre ensemble and the Laguerre ensemble. We
refer the reader to the books by Anderson, Guionnet and Zeitouni [9], and by Forrester
[20] for an introduction to random matrix theory, as well as to [1] for a compilation of
its most recent applications.

The study of products of random matrices goes back to Furstenberg and Kesten [25]
who were interested in its Lyapunov exponents that characterise dynamical systems.
Many statistical mechanics applications have been summarised in the book by Crisanti,
Paladin, and Vulpiani [17], and most recent examples for applications include telecom-
munications [42] and combinatorics [46]. A very particular case of the product of two
coupled matrices was applied to quantum chromodynamics (QCD) with chemical po-
tential in [45], where the complex eigenvalue spectrum was determined. This example
will be important for our paper, due to the coupling of the matrices.

The recent rapid development on products of matrices is summarised in the review
[3], to which we refer for details and references. While at the soft edge and in the bulk
of the spectrum the respective universal Airy- and Sine-kernel known from classical
ensembles were recovered by Liu, Wang and Zhang [40], in the work by Kuijlaars
and Zhang [38] a new class of so-called Meijer G-kernels was found near the origin,
representing a hard edge. The name alludes to the appearance of the Meijer G-function.
This kernel generalises the Bessel kernel and overlaps with the kernel of Borodin [13]
for special parameter values, as pointed out by Kuijlaars and Stivigny [37]. It is universal
as it remains unchanged when multiplying by additional independent inverse complex
Gaussianmatrices as shownbyForrester [21] or by an additional truncated unitarymatrix
as shown by Kuijlaars and Stivigny [37]. Furthermore, it appears in the Cauchy two-
matrixmodel [11] and its multi-matrix extension [12] of Bertola and coworkers. Because
the Cauchy two-matrix model was used recently to solve the (Laplace transform) of a
matrix model with Bures measure by Forrester and Kieburg [22], this kernel enjoys
applications to quantum density matrices. And we will also find this limiting Meijer G-
kernel for two independent matrices, starting from two coupled random matrices. It was
shown inKuijlaars andZhang [38] that the class of kernels is integrable in the sense of Its,
Isergin, Korepin, and Slavnov [32]. This enabled the description of the squared singular
values byHamiltonian equations [48]. For a survey on integrable operators seeDeift [18].
Furthermore, contact wasmade to questions fromGaussian analytic functions in [5,7] by
studying the asymptotics of gap and overcrowding probabilities. For very recent results
on determinantal point processes related to products of independent complex Gaussian
matrices we refer the reader to Kuijlaars [36], Forrester and Wang [24], and Forrester
and Liu [23].

Two questions arise naturally: What happens when the assumption of a Gaussian
distribution of matrix elements is dropped? When the matrices in the product are inde-
pendent, but not necessarily Gaussian, a number of results for the statistics of eigen-
values and of singular values in the global asymptotic regime are available. The paper
by O‘Rourke and Soshnikov [47] gives an analogue of the circular law for the product
of a finite number of non-Hermitian random matrices, generalising the result by Burda,
Janik, and Waclaw [16]. For a description of the statistics of singular values of products
of independent matrices, and, in particular, for the central limit theorem for the squared
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singular values we refer the reader to the papers by Götze, Tikhomirov and their co-
workers [8,26,27]. Results on the local statistics for products of independent matrices
with non-Gaussian entries are still not available to the best of our knowledge. This is no
doubt due to the lack of integrability in the non-Gaussian case.

The second question is whether some of the above results can be extended to those
of coupled random matrices. Here we consider a product of two dependent matrices,
and concentrate on the statistics of the squared singular values. Such random matrices
appeared first in the work by Osborn [45] in the context of QCD with a baryon chemical
potential μ as follows:

D =
(

0 i A + μB
i A∗ + μB∗ 0

)
. (1.1)

Here A and B are rectangular independentmatriceswith i.i.d. standard complexGaussian
entries, and μ ∈ [0, 1] is a dimensionless parameter. The motivation to consider (1.1)
comes from the observation that the QCD Dirac operator D has this off-diagonal block
form in the so-called chiral basis. For the random matrix application to QCD we refer to
the review byVerbaarschot andWettig [50], see also chapter 32 in [1] byVerbaarschot. In
[45] the correlations of complex eigenvalues of D were determined, which is equivalent
to determining the eigenvalues of the product matrix Y = X1X2, with X1 = (i A + μB)

and X2 = (i A∗ + μB∗). The change of variables from matrices A, B to X1, X2 reveals
that the latter are coupled by an Itzykson–Zuber term, in addition to their Gaussian
weight. Very recently it has been suggested in [34,35] to study the singular values of
the Dirac operator in QCD and QCD-like theories instead, in order to better understand
the high-density regime. This is one of the motivations for us to study the (squared)
singular values of the product matrix Y . Apart from this physical interpretation the
parameterμ allows one to interpolate between the classical Laguerre ensemble atμ = 0
solved by orthogonal Laguerre polynomials and the recent solution of the product of
two independent Gaussian random matrices at μ = 1 given in terms of biorthogonal
functions.

This paper is organised as follows. In Sect. 2 we define the notion of μ-dependent
Gaussian complex randommatrices, making this notion of interpolation and of its limits
more precise. We state our main results in Sect. 3. In particular we demonstrate the exact
solvability of the statistical properties of the singular values of the product matrix Y
for arbitrary parameter values μ: the joint probability density function of the squared
singular values is a determinantal process on R≥0 and can be computed explicitly in
terms of modified Bessel functions of first and second kind. This determinantal point
process is a biorthogonal ensemble in the sense of Borodin [13]. For this parameter
dependent ensemble we derive different formulae for the correlation kernel including a
Christoffel–Darboux type formula and a double complex contour integral representation.
Wecompute the hard edge scaling limit at the origin, andweobtain a central limit theorem
for fluctuations of linear statistics. Sections 4–11 and Appendix A contain the proofs of
our statements.

2. Parameter Dependent Gaussian Complex Matrices

Before we present our results we will define a family of parameter dependent coupled
Gaussian random variables, and the corresponding notion for random matrices. By this
we mean the following.
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Definition 2.1. Let μ ∈ (0, 1), α(μ) = 1+μ
2μ , and δ(μ) = 1−μ

2μ . We will refer to two
complex random variables, z and ξ as to μ-dependent Gaussian complex variables if
the joint density of these variables is given by

ρ(z, ξ) = 1

π2μ
exp

[−α(μ)(zz̄ + ξ ξ̄ ) + δ(μ)(zξ + z̄ξ̄ )
]
.

Definition 2.2. Let

X1 =

⎛
⎜⎜⎝

X (1)
1,1 . . . X (1)

1,M
...

X (1)
N ,1 . . . X (1)

N ,M

⎞
⎟⎟⎠ , X2 =

⎛
⎜⎜⎝

X (2)
1,1 . . . X (2)

1,N
...

X (2)
M,1 . . . X (2)

M,N

⎞
⎟⎟⎠

be two matrices whose complex random entries are defined by the following conditions

• X (1)
i, j , 1 ≤ i ≤ N , 1 ≤ j ≤ M are independent;

• X (2)
i, j , 1 ≤ i ≤ M , 1 ≤ j ≤ N are independent;

• For each 1 ≤ i ≤ N , and for each 1 ≤ j ≤ M the pair (X (1)
i, j , X

(2)
j,i ) is a pair of

μ-dependent Gaussian complex random variables.

We will refer to such random matrices X1 and X2 as to μ-dependent Gaussian complex
random matrices.

Alternatively, we can define μ-dependent Gaussian complex random matrices as
follows. Let Mat(C, N × M) denote the space of N × M complex matrices X1, and
Mat(C, M × N ) denote the space of M × N complex random matrices X2. We con-
sider the probability distribution PN ,M (X1, X2)dX1dX2 on the Cartesian product of
Mat(C, N × M) and Mat(C, M × N )

PN ,M (X1, X2)dX1dX2 = c · exp [−α(μ)Tr
(
X1X

∗
1 + X∗

2X2
)
+ δ(μ)Tr

(
X1X2 + X∗

2X
∗
1

)]

×
N∏
i=1

M∏
j=1

dX (1)
i, j

R
dX (1)

i, j

I
M∏
i=1

N∏
j=1

dX (2)
i, j

R
dX (2)

i, j

I
, (2.1)

where X (1)
i, j = X (1)

i, j

R
+ i X (1)

i, j

I
, X (2)

i, j = X (2)
i, j

R
+ i X (2)

i, j

I
denote the sums of the real and

imaginary parts of the matrix entries X (1)
i, j and X (2)

i, j , and c is a normalising constant. The
second term in the exponent proportional to δ(μ) is nothing else than the Itzykson–Zuber
term (for non-hermitian matrices) coupling the two matrices.1 We have

Tr(X1X
∗
1) =

N∑
i=1

M∑
j=1

X (1)
i, j X

(1)
i, j , Tr(X∗

2X2) =
N∑
i=1

M∑
j=1

X (2)
j,i X

(2)
j,i ,

and

Tr(X1X2) =
N∑
i=1

M∑
j=1

X (1)
i, j X

(2)
j,i , Tr(X∗

2X
∗
1) =

N∑
i=1

M∑
j=1

X (1)
i, j X (2)

j,i .

1 However, because we will be interested in the singular values of the product matrix X1X2, we will not
use their integration formula [30,33] for this term.
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Therefore the formula for PN ,M (X1, X2)dX1dX2 can be rewritten as

PN ,M (X1, X2)dX1dX2 = c ·
N∏
i=1

M∏
j=1

e
−α(μ)

(
X (1)
i, j X

(1)
i, j +X

(2)
j,i X

(2)
j,i

)
+δ(μ)

(
X (1)
i, j X

(2)
j,i +X

(1)
i, j X (2)

j,i

)

×dX (1)
i, j

R
dX (1)

i, j

I
d X (2)

j,i

R
dX (2)

j,i

I
. (2.2)

It is clear from the formula justwritten above that PN ,M (X1, X2) is indeed the probability
distribution of theμ-dependent Gaussian complex matrices X1 and X2. In addition, note
that the normalising constant c is equal to

c = 1(
π2μ

)NM
.

Proposition 2.3. Let A, B be two independentmatrices of size N×M with i.i.d. standard
complex Gaussian entries. Define the random matrices X1 and X2 as

X1 = 1√
2

(
A − i

√
μB

)
, X2 = 1√

2

(
A∗ − i

√
μB∗) . (2.3)

Then the matrices X1 and X2 are μ-dependent Gaussian complex random matrices.

Proof. This can be checked by direct calculation. ��

3. Statement of Results

3.1. The joint probability density function. Our first result is an explicit formula for the
joint probability density function for the squared singular values of the random matrix
X1X2. Recall that the modified Bessel function of the first kind Iκ(z) is defined by

Iκ(z) =
∞∑

m=0

1

m!�(κ + m + 1)

( z
2

)2m+κ

, (3.1)

and the modified Bessel function of the second kind Kκ(z) can be defined by the integral
formula

Kκ(z) = �
(
κ + 1

2

)
(2z)κ√

π

∞∫
0

cos(t)dt

(t2 + z2)κ+
1
2

, (3.2)

see, for example, Gradshteyn and Ryzhik [28].

Theorem 3.1. Let X1 ∈ Mat (C, N × M) and X2 ∈ Mat (C, M × N ) be two
μ-dependent Gaussian complex matrices. Assume that M ≥ N, and set

ν = M − N .
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Then the joint probability density function for the squared singular values y1, . . ., yN of
the matrix Y = X1X2 is given by

P(y1, . . . , yN ) = 1

ZN
det

[
y

j−1
2

i I j−1
(
2δ(μ)

√
yi
)]N

i, j=1

× det

[
y

j+ν−1
2

i K j+ν−1
(
2α(μ)

√
yi
)]N

i, j=1
, (3.3)

where

ZN = N ! α(μ)Nν+ N (N−1)
2 δ(μ)

N (N−1)
2

2N
(
α(μ)2 − δ(μ)2

)Nν+N2

N∏
j=1

�( j)�( j + ν). (3.4)

Let us regard μ as a deformation parameter, and consider two interesting limits of
the joint probability density function P(y1, . . . , yN ). In the first limiting case the two
Gaussian matrices become independent, corresponding to μ → 1, with δ(μ) → 0 and
α(μ) → 1. This fact is obvious from the very definition of two μ-dependent Gaussian
complex matrices. It can also be seen directly from the explicit formula for the joint
probability density function P(y1, . . . , yN ), Eq. (3.3), as shown in Appendix A:

lim
μ→1

P(y1, . . . , yN ) =
det

[
y j−1
i

]N
i, j=1

N !
N∏
j=1

�( j)2�( j + ν)

det

[
G2,0

0,2

( −
0, j + ν − 1

∣∣∣∣yi
)]N

i, j=1
.

(3.5)
Here we have introduced the Meijer G-function (see e.g. Luke [41])

Gm,n
p,q

(
a1, a2, . . . , ap
b1, b2, . . . , bq

∣∣∣∣z
)

= 1

2π i

∫
C

∏m
j=1 �(b j − s)

∏n
j=1 �(1 − a j + s)∏q

j=m+1 �(1 − b j + s)
∏p

j=n+1 �(a j − s)
zsds.

(3.6)
An empty product is interpreted as unity, for the indices m ≥ q, n ≥ p. The contour
of integration C depends on the location of the poles of the Gamma functions, and we
refer to the NIST handbook [44] for details on the different possibilities. In particular
the following formula holds, see 9.34.3 in [28],

G2,0
0,2

( −
0, l

∣∣∣∣y
)

= 2y
l
2 Kl(2

√
y). (3.7)

The right-hand side of Eq. (3.5) agrees with the joint probability density function of
squared singular values of two independent rectangular complex Ginibre matrices, see
Akemann et al. [4], formulae (18) and (21). Here we only consider the special case that
the matrix Y = X1X2 is square, with ν = ν1 and ν2 = 0 compared to there. We will
need Y to be square for the group integrals that we encounter in the derivation for general
μ ∈ (0, 1).

The second interesting limit is that of μ → 0. In this limit δ(μ) and α(μ) diverge,
and we obtain the joint density equivalent to the classical Laguerre ensemble. To find
the limit of the joint probability density function as μ → 0 we use formula (3.3), and
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replace the modified Bessel functions inside the determinants by their large argument
asymptotic expressions. A short calculation in Appendix A yields

lim
μ→0

P(y1, . . . , yN ) = 2N (M−1)

N !
N∏
j=1

�( j)�( j + ν)

(
det

[
y

j−1
2

i

]N
i, j=1

)2 N∏
i=1

y
ν−1
2

i exp

[
−2y

1
2
i

]
.

(3.8)
Changing variables in Eq. (3.8),

yi �→ vi = 2y
1
2
i , (3.9)

we obtain the joint probability density function of the classical Laguerre ensemble

1

N !
N∏
j=1

�( j)�( j + ν)

(
det

[
v
j−1
i

]N
i, j=1

)2 N∏
i=1

vν
i e

−vi ,

see Forrester [20], Chapter 7. The change of variables is necessary because we started
from the singular values of Y = X1X∗

1 in this limit, rather than of X1 which is the single
matrix with Gaussian distribution left in this limit.

We conclude that the product X1X2 of two μ-dependent Gaussian complex matrices
represents an interpolating biorthogonal ensemble. It interpolates between the ensemble
of two independent complex Gaussian matrices, and the Laguerre ensemble of a single
complex Gaussian matrix.

3.2. Exact formulae for the correlation kernel. Theorem 3.1 implies that the squared
singular values y1, . . ., yN of the product X1X2 of two μ-dependent Gaussian complex
matrices form a determinantal point process,

P(y1, . . . , yN ) = det
[
KN (yi , y j )

]N
i, j=1 . (3.10)

Here we present exact formulae for the correlation kernel of this process.

Theorem 3.2. The correlation kernel KN (x, y)of the determinantal point process formed
by the squared singular values of X1X2 is given by

KN (x, y) =
N−1∑
n=0

Pn(x)Qn(y), (3.11)

where the functions P0(x), P1(x), . . . are defined by

Pn(x) = (−1)n(ν+n)!n!
n∑

k=0

(
α(μ)2 − δ(μ)2

)k+ 1
2

δ(μ)k

(−n)k

(ν + k)!k! x
k
2 Ik(2δ(μ)

√
x), (3.12)

and the functions Q0(y), Q1(y), . . . are defined by

Qn(y) = (−1)n
2

(n!)2
n∑

l=0

(
α(μ)2 − δ(μ)2

)l+ν+ 1
2

α(μ)l+ν

(−n)l

(ν + l)!l! y
l+ν
2 Kl+ν(2α(μ)

√
y).

(3.13)
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Using explicit formulae for the functions Pn(x) and Qn(x) (Eqs. (3.12) and (3.13)) we
derive the following formula for the correlation kernel KN (x, y).

Theorem 3.3. The correlation kernel KN (x, y) can be written as

KN (x, y) = 2
N−1∑
k,l=0

l∑
i=0

(−1)i+k(ν + N + i)!
(N − 1 − k)!(ν + k)!i !(l − i)!k!(ν + i)!(ν + k + i + 1)

×
(
α(μ)2 − δ(μ)2

)k+l+ν+1

α(μ)ν+lδ(μ)k
x

k
2 y

l+ν
2 Ik(2δ(μ)

√
x)Kl+ν(2α(μ)

√
y). (3.14)

Theorem 3.3 enables us to compare our biorthogonal ensemble with the family of the
Laguerre-typebiorthogonal ensembles introduced and studied inBorodin [13], Section4.
Also, Theorem 3.3 can be used to investigate the transition of our biorthogonal ensemble
to a Laguerre-type ensemble asμ approaches zero. Consider the Laguerre-type ensemble
defined by the right-hand side of Eq. (3.8). Using the same argument as in Borodin [13],
Section 4, Theorem 4.1 we can write the correlation kernel KLag

N (x, y) of the ensemble
from [13] with θ = 1 as

KLag
N (x, y) = e−x

1
2 −y

1
2

x
1
4 y

1
4

N−1∑
k,l=0

l∑
i=0

(−1)i+k(ν + N + i)!2k+l+ν

(N − 1 − k)!(ν + k)!i !(l − i)!k!(ν + i)!
x

k
2 y

l+ν
2

(ν + k + i + 1)
.

(3.15)
It is not hard to check using the asymptotic expressions for the modified Bessel functions
of large arguments (see Eq. (A.1)) that the kernel KN (x, y) turns into a kernel equivalent
to KLag

N (x, y) as μ → 0.2

The subsequent asymptotic analysis requires a detailed investigation of the proper-
ties of the functions Pn(x) and Qn(y) determining the correlation kernel KN (x, y). In
particular, we show that these functions satisfy the following biorthogonality condition.

Proposition 3.4. The functions Pn(x), Qn(x) defined by Eqs. (3.12) and (3.13) corre-
spondingly satisfy the biorthogonality condition:

∞∫
0

Pn(x)Qm(x)dx = δn,m, n,m = 0, 1, 2, . . .

Moreover, both Pn(x) and Qn(y) satisfy five term recurrence relations, and can be
represented as contour integrals. Namely, the following proposition holds true.

Proposition 3.5. (a) For the functions Pn(x) we have the following five term recurrence
relation

x Pn(x) = a2,n Pn+2(x) + a1,n Pn+1(x) + a0,n Pn(x) + a−1,n Pn−1(x) + a−2,n Pn−2(x),
(3.16)

2 Two kernels K (x, y) and K ′(x, y) are called equivalent if det
[
K (xi , x j ]

)m
i, j=1 = det

[
K ′(xi , x j )

]m
i, j=1,

for any m = 1, 2, . . ., for example K ′(x, y) = ( f (x)/ f (y))K (x, y). Thus two equivalent kernels define the
same correlation functions.
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where the coefficients a2,n, a1,n, a0,n, a−1,n, and a−2,n are given explicitly by

a2,n = 1

(n + 2)(n + 1)

δ(μ)2(
α(μ)2 − δ(μ)2

)2 , (3.17)

a1,n = 1

α(μ)2 − δ(μ)2
+
2(2n + ν + 2)

(n + 1)

δ(μ)2(
α(μ)2 − δ(μ)2

)2 , (3.18)

a0,n = 3n2 + 2νn + 3n + ν + 1

α(μ)2 − δ(μ)2
+ (6n2 + 6nν + ν2 + 6n + 3ν + 2)

× δ(μ)2(
α(μ)2 − δ(μ)2

)2 , (3.19)

a−1,n = n2(n + ν)(3n + ν)

α(μ)2 − δ(μ)2
+ 2n2(ν + n)(2n + ν)

δ(μ)2(
α(μ)2 − δ(μ)2

)2 , (3.20)

a−2,n = (ν + n)(ν + n − 1)n2(n − 1)2
α(μ)2(

α(μ)2 − δ(μ)2
)2 . (3.21)

(b) For the functions Qn(y) we have the following five term recurrence relation

yQn(y) = b2,nQn+2(y) + b1,nQn+1(y) + b0,nQn(y) + b−1,nQn−1(y) + b−2,nQn−2(y),
(3.22)

where the coefficients b2,n, b1,n, b0,n, b−1,n, and b−2,n are given explicitly by

b2,n = (ν + n + 2)(ν + n + 1)(n + 2)2(n + 1)2
α(μ)2(

α(μ)2 − δ(μ)2
)2 , (3.23)

b1,n = − (n + 1)2(n + ν + 1)2

α(μ)2 − δ(μ)2
+ 2(2n + ν + 2)(n + ν + 1)(n + 1)2

× α(μ)2(
α(μ)2 − δ(μ)2

)2 , (3.24)

b0,n = − (n + ν)2 + 2(n + 1)(n + ν) + n + 1

α(μ)2 − δ(μ)2

+ ((n + ν)(5n + ν + 3) + n(n + 3) + 2)
α(μ)2(

α(μ)2 − δ(μ)2
)2 , (3.25)

b−1,n = − (3n + 2ν)

n

1

α(μ)2 − δ(μ)2
+
2(2n + ν)

n

α(μ)2(
α(μ)2 − δ(μ)2

)2 , (3.26)

b−2,n = 1

n(n − 1)

δ(μ)2(
α(μ)2 − δ(μ)2

)2 . (3.27)

Note that the recurrence coefficients are related as

a2,n = b−2,n+2, a1,n = b−1,n+1, a0,n = b0,n, a−1,n = b1,n−1, a−2,n = b2,n−2.

(3.28)



110 G. Akemann, E. Strahov

This follows from the biorthogonality of the functions Pn(x) and Qn(y), see Proposition
3.4. Equation (3.28) can be checked directly as well using the formulas in Proposition
3.5 for the recurrence coefficients.

Using the recurrence relations stated in Proposition 3.5 we derive the following
Christoffel–Darboux type formula for the correlation kernel KN (x, y).

Theorem 3.6. TheChristoffel–Darboux type formula for the correlation kernel KN (x, y)
valid for N ≥ 2 and x = y is given by

KN (x, y) = −a−2,N PN−2(x)QN (y) + a−2,N+1PN−1(x)QN+1(y) + a−1,N PN−1(x)QN (y)

x − y

+
a1,N−1PN (x)QN−1(y) + a2,N−2PN (x)QN−2(y) + a2,N−1PN+1(x)QN−1(y)

x − y
,

(3.29)

where the coefficients a−2,N , a−1,N , a1,N and a2,N are given by Proposition 3.5.

The next Proposition gives contour integral representations for the functions Pn(x)
and Qn(y).

Proposition 3.7. (a) The following contour integral representation for the function Pn(x)
holds:

Pn(x) = 1

2π i
(ν + n)!(n!)2

(
α(μ)2 − δ(μ)2

) 1
2

×
∮
�

�(t − n)
(
α(μ)2 − δ(μ)2

)t
x t

(�(t + 1))2 �(t + ν + 1)
0F1

( −
t + 1

∣∣∣∣δ(μ)2x

)
dt, (3.30)

where � is a closed contour that encircles 0, 1, . . ., n once in positive direction, n =
0, 1, . . ., and x > 0.

(b) The following contour integral representation for the function Qn(y) is true:

Qn(y) = 1

2π i(n!)2(n + ν)!
(
1 − δ(μ)2

α(μ)2

)ν (
α(μ)2 − δ(μ)2

) 1
2

×
c+i∞∫

c−i∞

�2(s)�(s + ν)

�(s − n)
2F1

(−n, ν + s
s − n

∣∣∣∣ δ(μ)2

α(μ)2

)(
α(μ)2y

)−s
ds,(3.31)

where c > 0, n = 0, 1, . . ., and y > 0.

Finally, we state that as a consequence the correlation kernel KN (x, y) admits a double
contour integral representation.

Theorem 3.8. The correlation kernel, KN (x, y), can be written as

KN (x, y) =
N−1∑
k=0

K (k)
N (x, y)

(
δ(μ)

α(μ)

)2k

, (3.32)
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where

K (k)
N (x, y) =

k∑
m=0

(−1)m

(2π i)2

(
N
m

)∮
�

dt

c+i∞∫
c−i∞

ds
�2(s)�(s + ν + k)�(s − t + m − 1)�(t − N + 1)

�2(t + 1)�(t + ν + 1)�(s − N + m)�(s − t + k)

×
(
1 − δ(μ)2

α(μ)2

)ν (
α(μ)2 − δ(μ)2

)t+1
xt 0F1

( −
t + 1

∣∣∣∣δ(μ)2x

)(
α(μ)2y

)−s
.

(3.33)

The contour � is chosen in the same way as in Proposition 3.7, and c > 0.

In Eqs. (3.30) and (3.33) the hypergeometric function can also be expressed through

themodifiedBessel function of the first kind, 0F1

( −
ν + 1

∣∣( z
2

)2) = �(ν+1)
( z
2

)−ν
Iν(z).

Asμ → 1, the biorthogonal ensemble defined by Eq. (3.3) turns into that for the squared
singular values of the product of two matrices with independent complex Gaussian
entries, see Eq. (3.5). The biorthogonal ensemble for the squared singular values of
products of M matrices with independent complex Gaussian entries was studied in
[4,6]. As μ → 1, the functions Pn(x) and Qn(y) defined by Eqs. (3.12) and (3.13)
turn into the biorthogonal polynomials and their normalised dual functions there, see
equations (43) and (47) in [4], respectively. Furthermore, our Propositions 3.5 and 3.7
are extensions of the results obtained by Kuijlaars and Zhang, see their Proposition 3.2
and formula (3.6), and the recurrence relations in Section 4 of Kuijlaars and Zhang [38].
As μ → 1, the formulae for the correlation kernel KN (x, y) given in Theorem 3.8 turn
into the double integral formula of Proposition 5.1 in Kuijlaars and Zhang [38].

3.3. The hard edge scaling limit of the correlation kernel. We use the Christoffel–
Darboux type formula for the correlation kernel KN (x, y) given by Theorem 3.6, and
the contour integral representations for the functions Pn(x) and Qn(y) of Proposition
3.7 to find the scaling limit of KN (x, y) near the origin (hard edge).

Theorem 3.9. Let ν and μ be fixed. For x and y in a compact subset of the positive real
axis,

Kν(x, y) = lim
N→∞

{
1

N
(
α(μ)2 − δ(μ)2

)KN

(
x

N
(
α(μ)2 − δ(μ)2

) , y

N
(
α(μ)2 − δ(μ)2

)
)}

,

where the limiting Meijer G-kernel Kν(x, y) is given by

Kν(x, y) =
1∫

0

G1,0
0,3

( −
0, −ν, 0

∣∣∣∣ux
)
G2,0

0,3

( −
ν, 0, 0

∣∣∣∣uy
)
du.

Here G1,0
0,3

( −
0, −ν, 0

∣∣∣∣ux
)
and G2,0

0,3

( −
ν, 0, 0

∣∣∣∣uy
)
are Meijer G-functions with a suit-

able choice of parameters.
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The resulting limiting kernel Kν(x, y) coincides with the scaling limit found by Bertola,
Gekhtman, and Szmigielski in the Cauchy–Laguerre two-matrix model [11], with the
scaling limit for the product of two independent complex Gaussian matrices found by
Kuijlaars and Zhang [38], andwith the limiting kernel for the product of two independent
complex Gaussian matrices times a fixed arbitrary number of inverses of such matrices
found by Forrester [21]. This confirms that the family of new limiting so-called Meijer
G-kernels obtained in Kuijlaars and Zhang [38] in the context of products of independent
matrices represents a new universality class.

Remark 3.10. In this paper we do not consider the local scaling limit of the correlation
kernel in the bulk and at the soft edge. First, both in the classical Laguerre ensemble (cf.
[20]) and for the product of two (or more) independent matrices [40] the same respective
universal Sine- and Airy-kernel are found. Therefore it can be expected, that in our
interpolating ensemble once again the same limiting kernels are found. Our focus here
is on the universality of the new behaviour at the origin described by theMeijer G-kernel.
Second, on a technical level the double contour integral of our interpolating kernel from
Theorem 3.8 is considerably more involved than the corresponding representation for
two independent matrices from [38]. Moreover, the proof for the Sine- and Airy-kernel
presented in [40] explicitly relies on the known representation of the corresponding
global density [43] which is not available in our case, cf. Remark 3.12.2. below.

3.4. The central limit theorem. Proposition 3.5 gives explicitly the recurrence coef-
ficients for the functions Pn(x) and Qn(y) determining the correlation kernel of the
biorthogonal ensemble defined by Eq. (3.3). This enables us to derive a Central Limit
Theorem for the linear statistics of singular values of X1X2, and to give the limiting
variance explicitly.

Here, instead of the probability distribution PN ,M (X1, X2)dX1dX2 (defined by Eq.
(2.1)) we consider the probability distribution P̃N ,M (X1, X2)dX1dX2 on the Cartesian
product of Mat(C, N × M) and Mat(C, M × N ) defined by

P̃N ,M (X1, X2)dX1dX2 = c · exp [−Nα(μ)Tr(X1X
∗
1 + X∗

2X2) + Nδ(μ)Tr(X1X2 + X∗
2X

∗
1)
]

×
N∏
i=1

M∏
j=1

dX (1)
i, j

R
dX (1)

i, j

I
M∏
i=1

N∏
j=1

dX (2)
i, j

R
dX (2)

i, j

I
, (3.34)

where X (1)
i, j = X (1)

i, j

R
+ i X (1)

i, j

I
and X (2)

i, j = X (2)
i, j

R
+ i X (2)

i, j

I
denote the sums of the real

and imaginary parts of the matrix entries X (1)
i, j and X (2)

i, j , and c is a normalising constant.
Equation (3.34) is obtained from Eq. (2.1) by a simple rescaling of the matrix elements
by

√
N .

Let y1, . . ., yN be the squared singular values of the matrix X1X2, and define the
linear statistics of y1, . . ., yN by the formula

Y (N )
f =

N∑
i=1

f (yi ).
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Theorem 3.11. Let f be a polynomial with real coefficients. Then we have

Y (N )
f − EY (N )

f → N
(
0,

∞∑
k=1

k f̂k f̂−k

)

in distribution, where

f̂k = 1

2π i

∮
|w|=1

f (s(w;μ)) wk dw

w
,

s(w;μ) = 1

4w2 (w + 1)3
(
w(1 − μ)2 + (1 + μ)2

)
. (3.35)

Remark 3.12. 1. Since f is a polynomial with real coefficients, f̂k is real. Furthermore,
the Central Limit Theorems for the limiting cases μ → 0 and μ → 1 can be im-
mediately read off by taking the limits on the Laurent polynomial s(w;μ). For the
product of two independent complex Gaussian matrices we obtain limμ→1 s(w;μ) =
(w + 1)3/w2. This agrees with the results following from the recursion coefficients by
Kuijlaars and Zhang, by specifying to two matrices there. In the opposite limit we obtain
limμ→0 s(w;μ) = (w + 1)4/(4w2). It is not difficult using Laguerre polynomials of
square root arguments to directly show that this is the correct limit for the ensemble in
Eq. (3.8)—which is not the standard Laguerre ensemble due to the change of variables
in Eq. (3.9).
2.Although it is an interesting open questionwe do not consider the global density here as
it goes beyond the scope of this paper. For the combinatorial approach to a much simpler
problemwe refer the reader to [9], see Section 2, Exercise 2.1.18. There the independence
of the matrix elements plays a crucial role, so it is not clear whether this approach can be
extended to our case. A second approach uses moments to reconstruct the global density.
In our case these are given in terms of sums over special functions and the analysis will
bemuchmore involved than in the case of Fuss–Catalan numbers relevant for the product
of independent matrices [46]. In [29] explicit formulae for moment generating functions
were derived, starting from an explicit formula for the relevant correlation kernel. In
particular, in Section 6 they compute a moment generating function for the Laguerre
ensemble, and obtain the Marchenko–Pastur law. In principle, their approach should be
applicable to products of random matrices as well, but the calculations will be much
more involved. Despite the fact that the Central Limit Theorem stated above deals with
the global regime the density does not follow from it in a straightforward manner.

The proof of Theorem 3.11 uses the results for biorthogonal ensembles obtained in
Breuer and Duits [14]. They showed that whenever the asymptotic of recurrence coef-
ficients is available, a Central Limit Theorem for the linear statistics can be derived. In
our case, Proposition 3.5 gives the recurrence coefficients explicitly. Considering the
rescaled probability distribution P̃N ,M (X1, X2)dX1dX2 we obtain recurrence coeffi-
cients that have finite limits as N → ∞, which gives Theorem 3.11.

4. Proof of Theorem 3.1

First we show that the computation of the joint probability density function of (squared)
singular values for products of rectangular matrices can be reduced to that for products
of square matrices of the same size. Namely, the following Lemma holds true.
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Lemma 4.1. Let X ∈ Mat(C, M × N ) and G ∈ Mat(C, N × M) be two μ-dependent
Gaussian complex matrices. Assume that M ≥ N. Then the squared singular values
of the matrix GX are distributed in the same way as the squared singular values of
the matrix G0X0, where G0 ∈ Mat(C, N × N ), X0 ∈ Mat(C, N × N ), and the joint
distribution of G0, X0 is given by

P(N ,M)(G0, X0)dG0dX0 = const · det (X∗
0X0

)M−N

× e−α(μ)Tr(G0G∗
0+X

∗
0 X0)+δ(μ)Tr(G0X0+X∗

0G
∗
0)dG0dX0.

(4.1)

Here and below the computation of the μ-dependent constants is suppressed until the
last part of the proof of Theorem 3.1.

Proof. If M = N , then the statement of the Lemma follows immediately. Consider the
case when M > N . Recall that the matrices G, X are distributed in accordance with

P(N ,M)(G, X)dGdX = const ·e−α(μ)Tr(GG∗+X∗X)+δ(μ)Tr(GX+X∗G∗)dGdX.

Consider the following decomposition of the matrix X

X = U

(
X0

OM−N ,N

)
,

where U is an M × M unitary matrix, X0 is an N × N complex matrix, and OM−N ,N
is a complex matrix of size (M − N ) × N with zero entries.3 We have

P(N ,M)(G, X)dGdX = const · det (X∗
0X0

)M−N
e−α(μ)Tr(GG∗+X∗

0 X0)

× exp

[
δ(μ)

{
Tr

(
GU

(
X0

OM−N ,N

))
+ Tr

((
X∗
0 ON ,M−N

)
U∗G∗)}] dGdUdX0,

where we have used the results of Section 2 in Fischmann et al. [19] (see also the
discussion in Ipsen andKieburg [31], Section III, A). Here dU denotes theHaarmeasure.
If Ĝ = GU , then the equation above can be rewritten as

P(N ,M)(G, X)dGdX = const · det (X∗
0X0

)M−N
e−α(μ)Tr(ĜĜ∗+X∗

0 X0)

× exp

[
δ(μ)

{
Tr

(
Ĝ

(
X0

OM−N ,N

))
+ Tr

((
X∗
0 ON ,M−N

)
Ĝ∗)}] dĜdUdX0,

(4.2)

where we have used the invariance of the corresponding Lebesgue measure dG under
unitary transformations. Now, set

Ĝ = (
G0 ĜN ,M−N

)
. (4.3)

This is a block decomposition of the rectangular matrix Ĝ of size N × M (M > N )

such that G0 is the square matrix of size N × N whose entries are those of the first N

3 For a proof of the existence of such a decomposition see Fischmann et al. [19], Section 2.
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columns of Ĝ, and ĜN ,M−N is the remaining rectangular matrix of size N × (M − N ).
Inserting (4.3) into Eq. (4.2), we obtain

P(N ,M)(G, X)dGdX

= const · det (X∗
0X0

)M−N
e
−α(μ)

(
Tr(G0G∗

0)+Tr
(
ĜN ,M−N Ĝ∗

N ,M−N

)
+Tr(X∗

0 X0)
)

× eδ(μ)Tr(G0X0+X∗
0G

∗
0)dĜ0dĜN ,M−NdUdX0.

The formula just written above implies that the joint distribution of G0, X0 is given by
Eq. (4.1). Moreover, by construction the squared singular values of GX coincide with
those of G0X0. ��

Let us turn to the proof of Theorem 3.1. We use Lemma 4.1, and assume that both
matrices X1, X2 are taken from Mat (C, N × N ), and that the joint distribution of X1,
X2 is given by

P(N ,M)(X1, X2)dX1dX2 = const · det (X∗
2X2

)M−N

× e−α(μ)Tr(X1X∗
1+X

∗
2 X2)+δ(μ)Tr(X1X2+X∗

2 X
∗
1 )dX1dX2,

(4.4)

where M ≥ N . In fact we need that X1, X2 ∈ Gl(N ,C). Because the set of invertible
matrices is dense inMat (C, N × N ) this will not change the joint distribution. Consider
the change of variables

X1 �→ Y2 = X1X2, X2 �→ Y1 = X2.

It is known that this transformation has a Jacobian det
(
Y ∗
1 Y1

)−N . Therefore we can
write

P(N ,M)(X1, X2)dX1dX2 = const · det (Y ∗
1 Y1

)M−2N

× e
−α(μ)

(
Tr
(
Y ∗
2 Y2Y

−1
1 (Y ∗

1 )
−1
)
+Tr(Y ∗

1 Y1)
)
+δ(μ)Tr(Y2+Y ∗

2 )
dY2dY1.

(4.5)

Next we use the singular value decomposition for both Y2 and Y1

Y1 = V1�1U1, �1 =
⎛
⎜⎝

λ
(1)
1 0

. . .

0 λ
(1)
N

⎞
⎟⎠ ,

Y2 = V2�2U2, �2 =
⎛
⎜⎝

λ
(2)
1 0

. . .

0 λ
(2)
N

⎞
⎟⎠ ,
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where �1, �2 are diagonal matrices with the singular values along the diagonals, and
V1, V2, U1 and U2 are unitary N × N matrices. It is known that

dY1 = const ·�
(
�2

1

)2⎛⎝ N∏
j=1

λ
(1)
j dλ

(1)
j

⎞
⎠ dU1dV1,

dY2 = const ·�
(
�2

2

)2⎛⎝ N∏
j=1

λ
(2)
j dλ

(2)
j

⎞
⎠ dU2dV2,

where we have introduced the Vandermonde determinant

�
(
�2

1

)
=

∏
N≥ j>k≥1

((
λ

(1)
j

)2 −
(
λ

(1)
k

)2)
,

�
(
�2

2

)
=

∏
N≥ j>k≥1

((
λ

(2)
j

)2 −
(
λ

(2)
k

)2)
,

and where dU1, dV1, dU2, and dV2 are the corresponding Haar measures on the unitary
group U (N ). Combining these formulae we obtain a probability measure

P(N ,M)(X1, X2)dX1dX2

= const ·e−α(μ)
(
Tr(�2

1)+Tr
(
U1U∗

2 �2
2U2U∗

1 �−2
1

))
+δ(μ)

(
Tr(V2�2U2)+Tr

(
U∗
2 �2V ∗

2

))

× �
(
�2
1

)2 �
(
�2
2

)2
detM−2N

[
�2
1

]⎛⎝ N∏
j=1

λ
(1)
j dλ

(1)
j

⎞
⎠
⎛
⎝ N∏

j=1

λ
(2)
j dλ

(2)
j

⎞
⎠ dU1dU2dV1dV2.

Using the invariance of the Haar measures under the subsequent shifts

U1 �→ U1U2, and U2 �→ U2V
∗
2 ,

and integrating over V1 and V2 we obtain

P(N ,M)(X1, X2)dX1dX2

= const ·e−α(μ)
(
Tr(�2

1)+Tr
(
U1�

2
2U

∗
1 �−2

1

))
+δ(μ)(Tr(�2U2)+Tr(U∗

2 �2))

× �
(
�2

1

)2 �
(
�2

2

)2
detM−2N

[
�2

1

]⎛⎝ N∏
j=1

λ
(1)
j dλ

(1)
j

⎞
⎠
⎛
⎝ N∏

j=1

λ
(2)
j dλ

(2)
j

⎞
⎠ dU1dU2.

(4.6)

The integration over U1 can be performed using the Harish–Chandra–Itzykson–Zuber
integration formula [30,33]

∫
U (N )

e
−Tr

(
U1�

2
2U

∗
1 �−2

1

)
dU1 = const ·

det

[
exp

[
−
(
λ

(2)
j

)2 (
λ

(1)
i

)−2
]]N

i, j=1

�(�2
2)�(�−2

1 )
, (4.7)

where the constant does not depend on �1 and �2, and we have used the transformation

�1 �→ α(μ)
1
2 �1. In addition, we apply the fact that the Vandermonde determinant of
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inverse powers is proportional to the Vandermonde determinant with positive powers,
namely

�
(
�−2

1

)
= const · �(�2

1)

detN−1
[
�2

1

] . (4.8)

As a result of the application of formulae (4.7) and (4.8) to probability measure (4.6)
we have

P(N ,M)(X1, X2)dX1dX2 = const ·e−α(μ)2 Tr(�2
1)+δ(μ)(Tr(�2U2)+Tr(U∗

2 �2))�
(
�2

1

)

×�
(
�2

2

)
det

[
exp

[
−
(
λ

(2)
j

)2 (
λ

(1)
i

)−2
]]N

i, j=1
detM−N−1

(
�2

1

)

×
⎛
⎝ N∏

j=1

λ
(1)
j dλ

(1)
j

⎞
⎠
⎛
⎝ N∏

j=1

λ
(2)
j dλ

(2)
j

⎞
⎠ dU2. (4.9)

Now our task is to perform the integration over U2. This can be done exploiting the
following Leutwyler–Smilga integral formula [39] first derived in [15], see e.g. [10] for
a derivation based on group characters,

∫
U (N )

eδ(μ)Tr(�2(U2+U∗
2 ))dU2 = const ·

det

[(
λ

(2)
j

)i−1
Ii−1

(
2δ(μ)λ

(2)
j

)]N
i, j=1

�(�2
2)

.

(4.10)
Here Ik(x) denotes the modified Bessel function of the first kind. After the integration
over U2 we obtain the following probability distribution

P(N ,M)(X1, X2)dX1dX2 = const ·e−α2(μ)Tr(�2
1)�

(
�2

1

)

× det

[(
λ

(2)
j

)i−1
Ii−1

(
2δ(μ)λ

(2)
j

)]N
i, j=1

det

[
exp

[
−
(
λ

(2)
j

)2 (
λ

(1)
i

)−2
]]N

i, j=1

×detM−N−1
[
�2

1

]⎛⎝ N∏
j=1

λ
(1)
j dλ

(1)
j

⎞
⎠
⎛
⎝ N∏

j=1

λ
(2)
j dλ

(2)
j

⎞
⎠ . (4.11)

To get the induced probability distribution of the singular values λ
(2)
1 ,. . .,λ(2)

N of the
matrix Y2 = X1X2 we only need to integrate the probability distribution (4.11) over the
variables λ

(1)
1 ,. . .,λ(1)

N . The integral over these variables is

I =
∫

det

[(
λ

(1)
i

)2( j−1)
]N
i, j=1

det

[
exp

[
−
(
λ

(2)
j

)2 (
λ

(1)
i

)−2
]]N

i, j=1

×
N∏
j=1

e
−α(μ)2

(
λ

(1)
j

)2 (
λ

(1)
j

)2ν−1
dλ

(1)
j . (4.12)
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Applying the Andréief integral identity valid for a set of integrable functions,

∫
det

[
ϕi (x j )

]N
i, j=1 det

[
ψi (x j )

]N
i, j=1

N∏
j=1

dμ(x j ) = N ! det
[∫

ϕi (x)ψ j (x)dμ(x)

]N
i, j=1

,

(4.13)

to ϕi (x) = x2(i−1), ψi (x) = e
−
(
λ

(2)
i

)2
x−2

, and dμ(x) = e−α(μ)2x2x2ν−1dx on R+, we
obtain that integral (4.12) is equal

I = N ! det
⎡
⎣

∞∫
0

e
−α(μ)2x2−

(
λ

(2)
j

)2
x−2

x2(i+ν)−3dx

⎤
⎦

N

i, j=1

.

To compute the integral inside the determinant above we use the formula [28] 8.432.6

∞∫
0

xν−1 exp

[
−x − ρ2

4x

]
dx = 2

(ρ

2

)ν

K−ν(ρ),

where K−ν(ρ) = K+ν(ρ) is the modified Bessel function of the second kind. The result
is that integral (4.12) is proportional to

I = const · det
[(

λ
(2)
j

)i+ν−1
Ki+ν−1

(
2α(μ)λ

(2)
j

)]N
i, j=1

.

We conclude that the joint density of the singular values of the matrix X1X2 with
ν = M − N is given by

P(N ,M)(X1, X2)dX1dX2 = const · det
[(

λ
(2)
i

) j−1
I j−1

(
2δ(μ)λ

(2)
i

)]N
i, j=1

× det

[(
λ

(2)
i

) j+ν−1
Ki+ν−1

(
2α(μ)λ

(2)
i

)]N
i, j=1

N∏
j=1

λ
(2)
j dλ

(2)
j .

(4.14)

Changing to squared singular values,
(
λ

(2)
i

)2 = yi , we obtain Eq. (3.3) up to a normal-

isation constant const = 1/ZN .
In order to compute this constant we can apply again the Andréief identity Eq. (4.13),

interpreting the left-hand side as a probability measure, with the following choice of
functions for the squared singular values y j of X1X2:

ψ j (x) = x
j
2 I j

(
2δ(μ)

√
x
)
, (4.15)

and

ϕ j (x) = x
j+ν
2 K j+ν

(
2α(μ)

√
x
)
. (4.16)
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After applying the integral identity the requirement that this probability measure is
normalised reads as follows,

1 = Z−1
N N ! det

⎡
⎣

∞∫
0

y
i+ j+ν

2 Ii
(
2δ(μ)

√
y
)
K j+ν

(
2α(μ)

√
y
)
dy

⎤
⎦

N−1

i, j=0

.

The integral inside the determinant above can be computed explicitly. Namely, we have
from [28] 6.576.7

∞∫
0

y
i+ j+ν

2 Ii
(
2δ(μ)

√
y
)
K j+ν

(
2α(μ)

√
y
)
dy

= 1

2
α(μ) j+νδ(μ)i

(
α(μ)2 − δ(μ)2

)− j−ν−i−1
�(i + j + ν + 1). (4.17)

Taking into account the formula known from the normalisation of theLaguerre ensemble,

det [�(i + j + ν + 1)]N−1
i, j=0 =

N∏
j=1

�( j)�( j + ν),

weobtain the normalising constant (3.4) in the formula for P(y1, . . . , yN ). The statement
of Theorem 3.1 follows immediately. ��

5. Proof of Theorem 3.2

To derive an explicit formula for the correlation kernel of the biorthogonal ensemble
under consideration we need the following Proposition.

Proposition 5.1. Let ψ j (x), ϕ j (x) be defined by Eqs. (4.15) and (4.16), where j =
0, 1, . . . , N − 1. The correlation kernel KN (x, y) of the biorthogonal ensemble defined
by equation (3.10) can be written as

KN (x, y) =
N−1∑
k,l=0

ck,lψk(x)ϕl(y), (5.1)

where the matrix C = (
ck,l

)N−1
k,l=0 is defined by

C = G−1, G = (
gk,l

)N−1
k,l=0 , gk,l =

∞∫
0

ψl(x)ϕk(x)dx . (5.2)

Proof. See Borodin [13], Section 2. ��
The matrix entries of G can be computed explicitly. Using Eq. (4.17) the result is

gk,l = 1

2
α(μ)k+νδ(μ)l

(
α(μ)2 − δ(μ)2

)−k−ν−l−1
(k + l + ν)!. (5.3)
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This yields

ck,l = 2
(
α(μ)2 − δ(μ)2

)k+l+ν+1

α(μ)ν+lδ(μ)k
ak,l , (5.4)

where
(
ak,l

)N−1
k,l=0 is the inverse of the Hankel matrix

HN−1 = (hk+l)
N−1
k,l=0 , hk = (k + ν)!. (5.5)

Thus the problem of the computation of the correlation kernel is reduced to that of
finding the inverse of the Hankel matrix HN−1 defined by Eq. (5.5). A general method
to find the inverse of a Hankel matrix can be described as follows.

Assume that there exists a probability measure dμ(x) on R such that all moments
exist:

hk =
∫

xkdμ(x), k = 0, 1, . . . .

Construct the corresponding system {Pk} of orthonormal polynomials,∫
Pk(x)Pl(x)dμ(x) = δk,l , k, l ≥ 0.

Consider the following auxiliary Christoffel–Darboux kernel κn(x, y) needed for the
inversion of the Hankel matrix,

κn(x, y) =
n∑

k=0

Pk(x)Pk(y).

It is not to be confused with our correlation kernel KN introduced in Theorem 3.2.
Rewrite this kernel in the form

κn(x, y) =
n∑

i=0

n∑
j=0

q(n)
i, j x

i y j ,

and set

Qn =
(
q(n)
i, j

)n
i, j=0

.

Proposition 5.2. We have

HnQn = In,

where Hn = (
hi+ j

)n
i, j=0, and In is the unit matrix of order n + 1.

Proof. Using the reproducing property of the Christoffel–Darboux kernels we obtain∫
xkκn(x, y)dμ(x) = yk, 0 ≤ k ≤ n.

This can be rewritten as

∫
xk

⎛
⎝ n∑

i=0

n∑
j=0

q(n)
i, j x

i y j

⎞
⎠ dμ(x) =

n∑
i=0

n∑
j=0

q(n)
i, j hk+i y

j .
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Therefore,

n∑
i=0

n∑
j=0

q(n)
i, j hk+i y

j = yk, 0 ≤ k ≤ n.

The equation just written above implies

n∑
i=0

hk+i q
(n)
i, j = δk, j ,

and the statement of the Proposition follows. ��
Proposition 5.3. We have

ak,l =
N−1∑
p=0

(ν + p)!(−p)k(−p)l
p!(ν + k)!k!(ν + l)!l! . (5.6)

Proof. Use Proposition 5.2, and observe that the relevant family of orthogonal polyno-
mials is that of the classical Laguerre polynomials {L(ν+k)

n (x)}. Then use the explicit
formulae for {L(ν+k)

n (x)} (see, for example, [28] 8.970.1). ��
After splitting factors accordingly among the functions Pn(x) and Qn(x), including

a factor of unity (−1)n+n , formulae (5.1), (5.4), and (5.6) give us the expression for the
correlation kernel stated in Theorem 3.2. Here we have also used that (−n)k = 0 for
k > n > 0. ��

6. Proof of Theorem 3.3

In this Section we derive the formula for the correlation kernel KN (x, y) stated in
Theorem 3.3 (Eq. 3.14). To obtain Eq. (3.14) from Eqs. (3.11)–(3.13) of Theorem 3.2
we use the following combinatorial fact.

Proposition 6.1. Define S(α; k, r, N ) by

S(α; k, r, N ) =
N−1∑
n=0

n!
(n − k)!(n − r)!�(α + n + 1), (6.1)

where N = 1, 2, . . . ; k, r are two integers such that 0 ≤ k, r ≤ N − 1, and α > −1.
We have

S(α; k, r, N ) = (−1)r�(α + r + 1)r !
(N − 1 − k)!

r∑
i=0

�(N + i + α + 1)

�(i + α + 1)

(−1)i

i !(r − i)!(α + k + i + 1)
.

(6.2)
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Proof. We will prove the equivalence of expressions (6.1) and (6.2) by induction with
respect to r . Namely, we will check that the equivalence of expressions (6.1) and (6.2)
takes place for r = 0, then we will assume that Eq. (6.2) is valid for an arbitrary r , and
then we will show that this identity remains to be valid when we replace r by r + 1.

From the definition (6.1) we have at r = 0

S(α; k, r = 0, N ) =
N−1∑
n=0

�(α + n + 1)

�(n − k + 1)
=

N−k−1∑
n=0

�(α + k + n + 1)

�(n + 1)
.

Using the formula

�(a + s)

�(s)
− �(a + s + 1)

�(s + 1)
= −a

�(a + s)

�(1 + s)
,

it is not hard to see that for a > 0
L∑

n=0

�(a + n)

�(1 + n)
= �(a + L + 1)

a�(L + 1)
.

Replacing L by N − k − 1, and a by α + k + 1 > 0, we obtain

S(α; k, r = 0, N ) = �(N + α + 1)

(α + k + 1)�(N − k)
.

On the other hand, if r = 0, then the right-hand side of Eq. (6.2) can be rewritten as

�(α + 1)

(N − 1 − k)!
�(N + α + 1)

�(α + 1)(α + k + 1)
= �(N + α + 1)

(α + k + 1)�(N − k)
.

So the Proposition is proved for r = 0.
Using formula (6.1) we can obtain a recurrence relation for S(α; k, r, N ), namely

S(α; k, r + 1, N ) = S(α + 1; k, r, N ) − (α + r + 1)S(α; k, r, N ). (6.3)

Now assume that formula (6.2) holds true for a certain r ∈ N. In order to see that it
remains to be valid for r + 1 it is enough to show that the right-hand side of equation
(6.2) satisfies Eq. (6.3). To see this, note that the right-hand side of Eq. (6.3) (with
S(α; k, r, N ) given by Eq. (6.2)) can be explicitly rewritten as

(−1)r�(α + r + 2)r !
(N − 1 − k)!

r∑
i=0

�(N + i + α + 2)

�(i + α + 2)

(−1)i

i !(r − i)!(α + k + i + 2)

− (−1)r�(α + r + 2)r !
(N − 1 − k)!

r∑
i=0

�(N + i + α + 1)

�(i + α + 1)

(−1)i

i !(r − i)!(α + k + i + 1)
. (6.4)

Changing the index of summation in the first sum by one, i �→ j = i +1, we can rewrite
expression (6.4) as

(−1)r+1�(α + r + 2)r !
(N − 1 − k)!

r+1∑
j=1

�(N + j + α + 1)

�( j + α + 1)

(−1) j j

j !(r + 1 − j)!(α + k + j + 1)

+
(−1)r+1�(α + r + 2)r !

(N − 1 − k)!
r∑
j=0

�(N + j + α + 1)

�( j + α + 1)

(−1) j (r + 1 − j)

j !(r + 1 − j)!(α + k + j + 1)
.
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Clearly, the sum of the two terms just written above can be represented as

(−1)r+1�(α + r + 2)(r + 1)!
(N − 1 − k)!

r+1∑
j=0

�(N + j + α + 1)

�( j + α + 1)

(−1) j

j !(r + 1 − j)!(α + k + j + 1)
,

which is S(α; k, r + 1, N ) as given by Eq. (6.2). Thus we have seen that the right-hand
side of Eq. (6.2) satisfies equation (6.3). The Proposition is proved. ��

Setting α = M − N and r = l in Proposition 6.1 and multiplying with (−1)k+l we
obtain the following corollary.

Corollary 6.2. The following identity holds true

N−1∑
p=0

(M − N + p)!
p! (−p)k(−p)l

= (M − N + l)!l!
(N − 1 − k)!

l∑
i=0

(i + M)!
(M − N + i)!

(−1)i+k

i !(l − i)!(M − N + k + i + 1)
, (6.5)

where M ≥ N.

To get equation (3.14) for the correlation kernel KN (x, y) use formula (6.5), and equa-
tions (3.11)–(3.13) of Theorem 3.2. ��

7. Proof of Proposition 3.4

In this Section we begin to investigate the properties of the functions Pn(x) and Qn(x)
defined by Eqs. (3.12) and (3.13). In particular, we show that Pn(x) and Qn(x) are
biorthogonal functions. To see this define two matrices, V = (

vk,p
)N−1
k,p=0 and W =(

wp,l
)N−1
p,l=0, by the formulae

vk,p = (−1)p
(ν + p)!p!(−p)k

(ν + k)!k!
(
α(μ)2 − δ(μ)2

)k+ 1
2

δ(μ)k
, (7.1)

and

wp,l = (−1)p
2(−p)l

(p!)2(ν + l)!l!
(
α(μ)2 − δ(μ)2

)l+ν+ 1
2

α(μ)l+ν
. (7.2)

In addition, introduce two column vectors, �(x), and �(y),

�(x) =

⎛
⎜⎜⎝

ψ0(x)
ψ1(x)

...

ψN−1(x)

⎞
⎟⎟⎠ , �(y) =

⎛
⎜⎜⎝

ϕ0(y)
ϕ1(y)

...

ϕN−1(y)

⎞
⎟⎟⎠ ,

where ψ j (x) and ϕ j (y) are defined by Eqs. (4.15) and (4.16). Set

P(x) = V T�(x), Q(y) = W�(y). (7.3)
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By elementary Linear Algebra calculations, the correlation kernel KN (x, y) Eq. (3.11)
can be written as

KN (x, y) = PT (x)Q(y). (7.4)

Observe that the matrix G (defined by Eq. (5.2)) can be written as

G =
∞∫
0

�(x)�T (x)dx .

The notation above means that we integrate each matrix element of the N × N matrix
�(x)�T (x) from 0 to ∞.

The matrixC = (
ck,l

)N−1
k,l=0 (whose matrix elements are given explicitly by Eqs. (5.4)

and (5.6)) is the inverse of the matrix G. Therefore we can write

C−1 =
∞∫
0

�(x)�T (x)dx .

The key observation is that

C = VW,

as it follows from Eqs. (5.4), (5.6), (7.1), and (7.2). Since C is invertible, both matrices
V , W are invertible, and we have

(VW )−1 =
∞∫
0

�(x)�T (x)dx,

or

I =
⎛
⎝

∞∫
0

�(x)�T (x)dx

⎞
⎠ VW.

Multiplying both sides of the equation just written above by W from the left, and using
the definitions of the vectors P(x), Q(y) (see Eq. (7.3) solved for �(x) and �T (x)) we
obtain

W =
⎛
⎝

∞∫
0

Q(x)PT (x)dx

⎞
⎠W.

Since the matrix W is invertible, we conclude that

∞∫
0

Q(x)PT (x)dx = I.

In other words, Pn(x) and Qn(x) are biorthogonal functions. Proposition 3.4 is
proved. ��



The Product of Two Dependent Random Matrices 125

8. Proof of Proposition 3.5 and Theorem 3.6

In this Section we derive the recurrence relations for the functions Pn(x) and Qn(y)
stated in Proposition 3.5. Using these recurrence relations we derive the Christoffel–
Darboux type formula for the correlation kernel KN (x, y), and prove Theorem 3.6.
First, let us obtain Eqs. (3.16)–(3.21). Setting

Îk(x) = k!x k
2

δ(μ)k
Ik(2δ(μ)

√
x), k = 0, 1, . . . , (8.1)

the following recurrence relation holds true:

x Îk(x) = Îk+1(x) +
δ(μ)2

(k + 1)(k + 2)
Îk+2(x), k = 0, 1, . . . (8.2)

To see this, use the recurrence relation for the Bessel functions, namely

z Iν(z) = 2(ν + 1)Iν+1(z) + z Iν+2(z).

Introduce the vectors

Î(x) =
⎛
⎜⎝

Î0(x)
Î1(x)

...

⎞
⎟⎠ , P(x) =

⎛
⎜⎝

P0(x)
P1(x)

...

⎞
⎟⎠ .

The recurrence relations for the functions Îk (Eq. (8.2)) can be rewritten as

x̂I(x) = E Î(x), (8.3)

where the matrix E is defined by the formula

Ek,m = δk+1,m +
δ(μ)2

(k + 1)(k + 2)
δk+2,m , k,m = 0, 1, . . . (8.4)

Moreover, set

Vp,k = (−1)p
(ν + p)!p!(−p)k

(ν + k)!(k!)2
(
α(μ)2 − δ(μ)2

)k+ 1
2
, p, k = 0, 1, . . . . (8.5)

Then we have
P(x) = V Î(x), (8.6)

where V = (Vp,k
)
0≤p,k≤∞. From Eqs. (8.3) and (8.6) we immediately obtain

xP(x) = VE Î(x). (8.7)

Introduce the matrix RP by the formula

xP(x) = RPP(x). (8.8)

The matrix RP is defining the recurrence relation for the functions P0(x), P1(x), . . .

From Eqs. (8.3)–(8.8) we find
RP = VEV−1. (8.9)

In the explicit calculations of thematrix RP below (and in the derivation of the recurrence
relations) we will exploit the following lemma.
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Lemma 8.1. For any non-negative integers i , j the following formulae hold true:

∞∑
m=0

(−1)m+i

�(i − m + 1)�(m − j + 1)
= δi, j , (8.10)

∞∑
m=0

(−1)m+i (ν + m + 1)(m + 1)2

�(i − m + 1)�(m + 2 − j)
= (ν + i + 1)(i + 1)2δi+1, j

+
(
i2 + 2i(ν + i) + ν + 3i + 1

)
δi, j + (ν + 3i)δi−1, j + δi−2, j , (8.11)

∞∑
m=0

(−1)m+i (ν + m + 1)2(m + 1)

�(i − m + 1)�(m + 2 − j)
= (i + 1)(i + ν + 1)2δi+1, j

+
(
(ν + i)2 + 2(i + 1)(i + ν) + i + 1

)
δi, j + (2ν + 3i)δi−1, j + δi−2, j , (8.12)

∞∑
m=0

(−1)m+i (m + 1)(m + 2)(ν + m + 1)(m + 2)

�(i − m + 1)�(m + 3 − j)
= (ν + i + 2)(ν + i + 1)(i + 2)(i + 1)δi+2, j

+ 2(i + 1)(ν + 2i + 2)(ν + i + 1)δi+1, j + ((ν + i)(ν + 5i + 3) + i(i + 3) + 2) δi, j

+ 2(ν + 2i)δi−1, j + δi−2, j .

(8.13)

Proof. The left-hand side of the first statement (8.10) reduces to

i∑
m= j

(−1)m+i

�(i − m + 1)�(m − j + 1)
.

For i < j the sum is void and thus Eq. (8.10) is true for i < j . For i ≥ j we can further
rewrite the sum as

i− j∑
n=0

(−1)n+i+ j

(i − j − n)! n! = 1

(i − j)!
i− j∑
n=0

(
i − j

n

)
1i− j (−1)n−i− j

= (1 + (−1))i− j

(i − j)! = δi, j .

This proves Eq. (8.10) for i ≥ j . The remaining Eqs. (8.11)–(8.13) can be derived
recursively from Eq. (8.10) by straightforward calculations, inserting powers ofm in the
numerator and using properties of the Gamma-function. From Eq. (8.10) we obtain

∞∑
m=0

(−1)m+im

�(i − m + 1)�(m − j + 1)

=
∞∑

m=0

(−1)m+i

�(i − m + 1)�(m − j)
+

∞∑
m=0

(−1)m+i j

�(i − m + 1)�(m − j + 1)

= δi, j+1 + jδi, j .
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Continuing the iteration leads to

∞∑
m=0

(−1)m+im2

�(i − m + 1)�(m − j + 1)

=
∞∑

m=0

(−1)m+im

�(i − m + 1)�(m − j)
+

∞∑
m=0

(−1)m+im j

�(i − m + 1)�(m − j + 1)

= δi, j+2 + (2 j + 1)δi, j+1 + j2δi, j ,

∞∑
m=0

(−1)m+im3

�(i − m + 1)�(m − j + 1)

=
∞∑

m=0

(−1)m+im2

�(i − m + 1)�(m − j)
+

∞∑
m=0

(−1)m+im2 j

�(i − m + 1)�(m − j + 1)

= δi, j+3 + (3 j + 3)δi, j+2 + (3 j2 + 3 j + 1)δi, j+1 + j3δi, j , and

∞∑
m=0

(−1)m+im4

�(i − m + 1)�(m − j + 1)

=
∞∑

m=0

(−1)m+im3

�(i − m + 1)�(m − j)
+

∞∑
m=0

(−1)m+im3 j

�(i − m + 1)�(m − j + 1)

= δi, j+4 + (4 j + 6)δi, j+3 + (3( j + 1)2 + 3 j + 4 + 3 j ( j + 1))δi, j+2

+ (( j + 1)3 + 3 j2( j + 1) + j)δi, j+1 + j4δi, j .

Linear combinations of these formulae then imply Eqs. (8.11)–(8.13). ��
Proposition 8.2. The matrix V is invertible, and its inverse is given by

(
V−1

)
k,l

= (k!)2(ν + k)!
(k − l)!(l!)2(ν + l)!

1

(α(μ)2 − δ(μ)2)k+
1
2

k, l = 0, 1, . . . (8.14)

Proof. This can be checked by direct calculations using formula (8.10). ��
Equation (8.8) says that it is enough to compute the matrix RP explicitly to obtain

the recurrence for P0(x), P1(x), . . . (Eqs. (3.16)–(3.21)). This can be done exploiting
formula (8.9), the formula for the matrix elements of V (Eq. (8.5)), and that for the
matrix elements of E (Eq. (8.4)). In the computations we use formulae (8.11), (8.13) to
express the sums involved in terms of the Kronecker symbols.

Now we turn to derivation of the recurrence relation for Q0(y), Q1(y), . . . (Eqs.
(3.22)–(3.27)). Set

K̂l(y) = (l + ν)!y l+ν
2

α(μ)l+ν
Kl+ν(2α(μ)

√
y).

We have

yK̂l(y) = −K̂l+1(y) +
α(μ)2

(l + ν + 2)(l + ν + 1)
K̂l+2(y). (8.15)
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To see that Eq. (8.15) holds true use the recurrence relations

zKν(z) = −2(ν + 1)Kν+1(z) + zKν+2(z).

Introduce the vectors

K̂(y) =
⎛
⎜⎝

K̂0(y)
K̂1(y)

...

⎞
⎟⎠ , Q(y) =

⎛
⎜⎝

Q0(y)
Q1(y)

...

⎞
⎟⎠ .

Then the recurrence relation for the functions K̂k(y) (Eq. (8.15)) can be rewritten as

yK̂(y) = ẼK̂(y), (8.16)

where the matrix Ẽ is defined by the formula

Ẽk,m = −δk+1,m +
α(μ)2

(k + ν + 1)(k + ν + 2)
δk+2,m , k,m = 0, 1, . . . (8.17)

Moreover, set

Wp,k = 2(−1)p(−p)k
(p!)2k!((ν + k)!)2

(
α(μ)2 − δ(μ)2

)ν+k+ 1
2

, p, k = 0, 1, . . .

We have

Q(y) = WK̂(y).

By the same argument as in the derivation of the recurrence relation for the functions
P̂p(x) we find that the recurrence matrix RQ for the functions Qp(y) is given by

RQ = W ẼW−1.

Proposition 8.3. We have

(
W−1

)
k,l

= ((ν + k)!)2l!k!
2(k − l)!

1(
α(μ)2 − δ(μ)2

)k+ν+ 1
2

.

Proof. The formula for
(W−1

)
k,l can be obtained by direct calculations using formula

(8.10). ��
The subsequent computation leading to the recurrence relation for the functions

Q0(y), Q1(y), . . . is very similar to that leading to the recurrence relation for the func-
tions P0(x), P1(x), . . ., where in the evaluation of the matrix RQ we use Eqs. (8.12) and
(8.13). Proposition 3.5 is proved. ��

Now let us prove Theorem 3.6. Setting P−n(x) = 0 = Q−n(x) for n = 1, 2 we can
apply the recurrence from Proposition 3.5 as follows:

(x − y)Pn(x)Qn(y) = a−2,n Pn−2(x)Qn(y) − a−2,n+2Pn(x)Qn+2(y)

+ a−1,n Pn−1(x)Qn(y) − a−1,n+1Pn(x)Qn+1(y)

+ a1,n Pn+1(x)Qn(y) − a1,n−1Pn(x)Qn−1(y)

+ a2,n Pn+2(x)Qn(y) − a2,n−2Pn(x)Qn−2(y) , for n = 0, 1, . . .
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Here we have already used the relation between the coefficients ak,n and bk,n in Eq.
(3.28). Summing up the right-hand side and the left-hand side of the equation above
from n = 0 to N − 1 we obtain

(x − y)KN (x, y) =
N−1∑
n=0

(a2,n Pn+2(x) + a1,n Pn+1(x))Qn(y) +
N−2∑
n=0

a−1,n+1Pn(x)Qn+1(y)

+
N−3∑
n=0

a−2,n+2Pn(x)Qn+2(y) −
N−3∑
n=0

a2,n Pn+2(x)Qn(y)

−
N−2∑
n=0

a1,n Pn+1(x)Qn(y)

−
N−1∑
n=0

Pn(x)(a−1,n+1Qn+1(y) + a−2,n+2Qn+2(y)), (8.18)

after shifting several summation indices.Cancelling all terms anddividing by (x−y) = 0
we obtain formula (3.29) for the correlation kernel KN (x, y). ��

9. Proof of Proposition 3.7 and Theorem 3.8

Let us first obtain the contour integral representation for the functions P0(x), P1(x), . . .
as given in Eq. (3.30). Recall that Pn(x) is given explicitly by Eq. (3.12). We express
the Bessel function in Eq. (3.12) as an infinite sum,

Ik
(
2δ(μ)x

1
2

)
=

∞∑
l=0

1

l!(k + l)!
(
δ(μ)x

1
2

)k+2l
.

Next we rewrite the formula for Pn(x) as

Pn(x) = (−1)n
(ν + n)!n!

ν!
(
α(μ)2 − δ(μ)2

) 1
2

∞∑
l=0

xlδ(μ)2l

l!

(
n∑

k=0

(−n)k
(
α(μ)2 − δ(μ)2

)k
(ν + 1)kk!(k + l)! xk

)
.

The expression in the bracket on the right-hand side of the equation for Pn(x) above can
be written as a generalised hypergeometric series, so we have

Pn(x) = (−1)n
(ν + n)!n!

ν!
(
α(μ)2 − δ(μ)2

) 1
2

×
∞∑
l=0

xlδ(μ)2l

(l!)2 1F2

( −n
ν + 1, l + 1

∣∣∣∣
(
α(μ)2 − δ(μ)2

)
x

)
. (9.1)

The following contour integral representation can be obtained from residue calculus

1FM

( −n
1 + ν1, . . . , 1 + νM

∣∣∣∣x
)

= (−1)n
∏M

j=1 �(ν j + 1)n!
2π i

∮
�

�(t − n)

�(t + 1)
∏M

j=1 �(t + ν j + 1)
xt dt,
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where � is a closed contour that encircles 0, 1, . . . , n once in the positive direction. In
particular,

1F2

( −n
ν + 1, l + 1

∣∣∣∣
(
α(μ)2 − δ(μ)2

)
x

)

= (−1)n�(ν + 1)�(l + 1)n!
2π i

∮
�

�(t − n)
((

α(μ)2 − δ(μ)2
)
x
)t

�(t + 1)�(t + ν + 1)�(t + l + 1)
dt.

Inserting the above formula into Eq. (9.1), we obtain the desired expression for Pn(x),
Eq. (3.30), after writing the remaining sum as another hypergeometric function.

Now we derive the contour integral representation for the functions Q0(y), Q1(y),
. . . (Eq. (3.31)). We start from the formula (3.13), and use the relation (3.7). This enables
us to rewrite Eq. (3.13) as

Qn(y) = (−1)n

(n!)2ν!
(
α(μ)2 − δ(μ)2

) 1
2

×
n∑

l=0

(
α(μ)2 − δ(μ)2

α(μ)2

)l+ν
(−n)l

(ν + 1)l l!G
2,0
0,2

( −
0, l + ν

∣∣∣∣α(μ)2y

)
.

(9.2)

Following the definition (3.6) a contour integral representation for theMeijer G-function
in the formula above holds:

G2,0
0,2

( −
0, l + ν

∣∣∣∣α(μ)2y

)
= 1

2π i

∫ c+i∞

c−i∞
�(s + l + ν)�(s)

(
α(μ)2y

)−s
ds, (9.3)

with c > 0. Formulae (9.2) and (9.3) result in the following expression for the function
Qn(y)

Qn(y) = (−1)n

(n!)2ν!
(
1 − δ(μ)2

α(μ)2

)ν (
α(μ)2 − δ(μ)2

) 1
2

× 1

2π i

c+i∞∫
c−i∞

�(s)�(s + ν)2F1

(−n, ν + s
1 + ν

∣∣∣∣1 − δ(μ)2

α(μ)2

)
(α(μ)2y)−sds.

(9.4)

The (Gauss) hypergeometric function inside the integral above can be written as follows
using [28] 9.131.2 for n ∈ N

2F1

(−n, ν + s
1 + ν

∣∣∣∣1 − δ(μ)2

α(μ)2

)
= �(1 + ν)�(1 − s + n)

�(1 + ν + n)�(1 − s)
2F1

(−n, ν + s
s − n

∣∣∣∣ δ(μ)2

α(μ)2

)
.

(9.5)

Applying this formula, and the fact that

�(1 − s + n)

�(1 − s)
= (−1)n

�(s)

�(s − n)
, (9.6)

which can be shown using [28] 8.334.3, we obtain Eq. (3.31). Proposition 3.7 is
proved. ��

To obtain the contour integral representation for the correlation kernel KN (x, y)
given in Theorem 3.8 we need the following Lemma.
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Lemma 9.1. We have

N−1∑
n=0

�(t − n)

�(s − n)

(−n)k

(s − n)k
=k!�(t − N + 1)

�(s − t + k)

k∑
m=0

(−1)m
(
N
m

)
�(s − t + m − 1)

�(s + m − N )

− �(t + 1)�(s − t − 1)k!
�(s)�(s − t + k)

,

(9.7)

where k = 0, 1, . . . , N − 1.

Proof. Denote by SN (t, s; k) the sum on the left-hand side of Eq. (9.7),

SN (t, s; k) =
N−1∑
n=0

�(t − n)

�(s − n)

(−n)k

(s − n)k
.

Also, set

S̃N (t, s; k) =
N−1∑
n=0

�(t − n)

�(s − n)

n!
(n − k)! .

These sums are related to each other according to the formula

SN (t, s; k) = (−1)k S̃N (t, s + k; k). (9.8)

Thus it is enough to find a closed formula for S̃N (t, s; k). Using the elementary property
x�(x) = �(x + 1) it is easy to check that the following identity holds true

�(t − n − 1)

�(s − n − 1)

(n + 1)!
(n + 1 − k)! − �(t − n)

�(s − n)

n!
(n − k)!

= k
�(t − n − 1)

�(s − n − 1)

n!
(n − k + 1)! − (t − s)

�(t − n − 1)

�(s − n)

n!
(n − k)! .

(9.9)

This identity implies the following recurrence relation

(s − t − 1)S̃N (t, s; k) + k S̃N (t, s − 1; k − 1) = �(t − N + 1)

�(s − N )

N !
(N − k)! ,

starting from k = 1, . . . , N − 1. The recurrence relation above can be solved, and a
formula for S̃N (t, s; k) can be obtained. Namely, beginning with k = 0,

S̃N (t, s; k = 0) =
N−1∑
n=0

�(t − n)

�(s − n)
= �(t − N + 1)

(s − t − 1)�(s − N )
− �(t + 1)

(s − t − 1)�(s)
,

which can be easily seen by induction in N we find

S̃N (t, s; k) =
k∑

l=0

�(t − N + 1)(−k)l
(s − t − 1)(s − t − 2) . . . (s − t − l − 1)�(s − N − l)

N !
(N − k + l)!

+
(−1)k−1�(t + 1)k!

(s − t − 1)(s − t − 2) . . . (s − t − 1 − k)�(s − k)
. (9.10)
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Formulae (9.8) and (9.10) imply

SN (t, s; k) =
k∑

l=0

(−1)k−l�(t − N + 1)�(s − t + k − l − 1)k!
�(s − t + k)(k − l)!�(s + k − l − N )

N !
(N − k + l)!

− �(t + 1)k!�(s − t − 1)

�(s − t + k)�(s)
.

Then, after setting m = k − l we get formula (9.7). ��
Recall that the correlation kernel KN (x, y) can be represented as the sum of the

biorthogonal functions Pn(x) and Qn(y), see Eq. (3.11). We insert the integral repre-
sentations for the functions Pn(x) and Qn(y) (see Proposition 3.7) into Eq. (3.11). We
write the hypergeometric function 2F1 as a finite sum up to N −1. Then we interchange
the finite sum and the double contour integral, use the combinatorial identity (9.7), and
observe that the second term on the right-hand side of Eq. (9.7) does not contribute to the
double contour integral. The result of these calculations is the formula for the correlation
kernel in the statement of Theorem 3.8. ��

10. Proof of Theorem 3.9

We use the contour integral representations for the functions Pn(x) and Qn(y) obtained
in Proposition 3.7 together with the Christoffel–Darboux type formula for the correlation
kernel KN (x, y), see Theorem 3.6. Namely, we insert the contour integrals representing
Pn(x) and Qn(y) into formula (3.29). In the numerator of the right-hand side ofEq. (3.29)
we obtain a double contour integral. Let us write this contour integral representation of
the correlation kernel explicitly. We have for N ≥ 2

KN (x, y) = α(μ)2 − δ(μ)2

(2π i)2(x − y)

(
1 − δ(μ)2

α(μ)2

)ν

×
c+i∞∫

c−i∞
ds
∮
�

dt

�2(s)�(s + ν)(α(μ)2 − δ(μ)2)t x t 0F1

( −
t + 1

∣∣∣∣δ(μ)2x

)

(�(t + 1))2 �(t + ν + 1)
(α(μ)2y)−s

×
{
− α(μ)2(

α(μ)2 − δ(μ)2
)2 �(t − N + 2)

�(s − N )
2F1

(−N , ν + s
s − N

∣∣∣∣ δ(μ)2

α(μ)2

)

− α(μ)2(
α(μ)2 − δ(μ)2

)2 �(t − N + 1)

�(s − N − 1)
2F1

(−N − 1, ν + s
s − N − 1

∣∣∣∣ δ(μ)2

α(μ)2

)

−
[

3N + ν

α(μ)2 − δ(μ)2
+

2(2N + ν)δ(μ)2(
α(μ)2 − δ(μ)2

)2
]

�(t − N + 1)

�(s − N )
2F1

(−N , ν + s
s − N

∣∣∣∣ δ(μ)2

α(μ)2

)

+

[
N 2(N + ν)

α(μ)2 − δ(μ)2
+
2N (N + ν)(2N + ν)δ(μ)2(

α(μ)2 − δ(μ)2
)2

]
�(t − N )

�(s − N + 1)
2F1

(−N + 1, ν + s
s − N + 1

∣∣∣∣ δ(μ)2

α(μ)2

)

+
N (N − 1)(N + ν)(N + ν − 1)δ(μ)2(

α(μ)2 − δ(μ)2
)2 �(t − N )

�(s − N + 2)
2F1

(−N + 2, ν + s
s − N + 2

∣∣∣∣ δ(μ)2

α(μ)2

)

+
N (N + 1)(N + ν)(N + ν + 1)δ(μ)2(

α(μ)2 − δ(μ)2
)2 �(t − N − 1)

�(s − N + 1)
2F1

(−N + 1, ν + s
s − N + 1

∣∣∣∣ δ(μ)2

α(μ)2

)}
. (10.1)
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We note that as N → ∞, we have the following ratio asymptotic of Gamma functions

�(t − N )

�(s − N )
= sin(πs)

sin(π t)

�(1 − s + N )

�(1 − t + N )
= sin(πs)

sin(π t)
Nt−s

(
1 + O(N−1)

)
,

upon using Eq. (9.6), �(1− x)�(x) = π/ sin(πx), and the standard asymptotic expan-
sion of the Gamma-function. Moreover, we have [49]

2F1

(−N , ν + s
s − N

∣∣∣∣ δ(μ)2

α(μ)2

)
= 1(

1 − δ(μ)2

α(μ)2

)ν+s

(
1 + O(N−1)

)
,

as N → ∞. Using the asymptotic formulae just written above, we find

1

N
(
α(μ)2 − δ(μ)2

)KN

(
x

N
(
α(μ)2 − δ(μ)2

) , y

N
(
α(μ)2 − δ(μ)2

)
)

= 1

(2π i)2(x − y)

c+i∞∫
c−i∞

ds
∮
�

dt

[
�2(s)�(s + ν)

(�(t + 1))2 �(t + ν + 1)

sin πs

sin π t

x t

ys

×
(
A(s, t; N ) +

δ(μ)2

α(μ)2 − δ(μ)2
B(s, t; N )

)
(1 + O(N−1))

]
, (10.2)

where we used that the hypergeometric function 0F1 of rescaled argument tends to unity.
The functions A(s, t; N ) and B(s, t; N ) are given by

A(s, t; N ) = N 2(N + ν)

s − N
− (t − N )(s + t + N + ν),

B(s, t; N ) = N (N + 1)(N + ν)(N + ν + 1)

(t − N − 1)(s − N )
+
N (N − 1)(N + ν)(N + ν − 1)

(s − N + 1)(s − N )

+
2N (N + ν)(2N + ν)

s − N
− (t − N )(t + s + 2N + 2ν).

Note that the additional factor in front of the kernel compensates the rescaling of the
arguments of the factor 1/(x − y). Computations show that

lim
N→∞A(s, t; N ) = −s(s + ν) − t (t + ν) − st,

and

lim
N→∞B(s, t; N ) = 0.

Now we take the limit N → ∞ from both sides of Eq. (10.2), and interchange the
limit and integrals in the right-hand side. The fact that we are allowed to take the limit
inside the integrals can be justified as in the proof of Theorem 5.3 in Kuijlaars and Zhang
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[38] using the dominated convergence theorem and the asymptotic properties of Gamma
functions. Thus we obtain the limiting relation

lim
N→∞

{
1

N
(
α(μ)2 − δ(μ)2

)KN

(
x

N
(
α(μ)2 − δ(μ)2

) , y

N
(
α(μ)2 − δ(μ)2

)
)}

= −1

(2π i)2(x − y)

c+i∞∫
c−i∞

ds
∮
�

dt

[
�2(s)�(s + ν)

(�(t + 1))2 �(t + ν + 1)

sin πs

sin π t

xt

ys
(s(s + ν) + t (t + ν) + st)

]
.

(10.3)

Since
�(s) sin πs

�(t + 1) sin π t
= − �(−t)

�(1 − s)
,

we can rewrite the equation above as

lim
N→∞

{
1

N
(
α(μ)2 − δ(μ)2

)KN

(
x

N
(
α(μ)2 − δ(μ)2

) , y

N
(
α(μ)2 − δ(μ)2

)
)}

= 1

(2π i)2(x − y)

c+i∞∫
c−i∞

ds
∮
�

dt

[
�(−t)�(s)�(s + ν)

�(t + 1)�(t + ν + 1)�(1 − s)

xt

ys
(s(s + ν) + t (t + ν) + st)

]
.

(10.4)

It follows from the definition (3.6) that

1

2π i

∮
�

dt
�(−t)

�(t + 1)�(t + ν + 1)
xt = −G1,0

0,3

( −
0, −ν, 0

∣∣∣∣x
)

,

and that

1

2π i

c+i∞∫
c−i∞

ds
�(s)�(s + ν)

�(1 − s)
y−s = G2,0

0,3

( −
ν, 0, 0

∣∣∣∣y
)

.

Now we can rewrite the right-hand side of Eq. (10.4) as

f (x)

(
νy d

dy g(y) −
(
y d
dy

)2
g(y)

)

x − y
+
x d
dx f (x)

(
−νg(y) + y d

dy g(y)
)

x − y
− (x d

dx )2 f (x)g(y)

x − y
,

(10.5)

where

f (x) = G1,0
0,3

( −
0, −ν, 0

∣∣∣∣x
)

, g(y) = G2,0
0,3

( −
ν, 0, 0

∣∣∣∣y
)

. (10.6)

Expression (10.5) (with the functions f (x), g(y) defined byEq. (10.6)) gives the limiting
kernel for the product of two matrices with independent complex Gaussian entries, see
Proposition 5.4 in Kuijlaars and Zhang [38]. As it is shown in Kuijlaars and Zhang [38]
(see the proof of Theorem 5.3) such limiting kernel can be also written as

1∫
0

G1,0
0,3

( −
0, −ν, 0

∣∣∣∣ux
)
G2,0

0,3

( −
ν, 0, 0

∣∣∣∣uy
)
du.

Theorem 3.9 is proved. ��
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11. Proof of Theorem 3.11

We use the following result for biorthogonal ensembles obtained by Breuer and Duits
[14]. Assume we are given a biorthogonal ensemble on R≥0 defined by the joint proba-
bility density function P(x1, . . . , xN ). Assume further that the correlation kernel of this
ensemble, KN (x, y), is given by

KN (x, y) =
N−1∑
p=0

ψ(N )
p (x)φ(N )

p (y),

where the functions ψ
(N )
p , φ(N )

k are orthonormal,

∞∫
0

ψ(N )
p (x)φ(N )

k (x)dx = δp,k .

Suppose we know that the functions ψ
(N )
p satisfy a 2m + 1 term recurrence relation

xψ(N )
n (x) =

m∑
j=−m

a(N )
j,n ψ

(N )
n+ j (x),

where n = 0, 1, . . ., and m is independent of N . Here we define that ψ(N )
−m (x) = 0, . . .,

ψ
(N )
−1 (x) = 0. In other words, there exists a banded matrix J (N ) such that

x

⎛
⎜⎜⎜⎜⎝

ψ
(N )
0 (x)

ψ
(N )
1 (x)

ψ
(N )
2 (x)

...

⎞
⎟⎟⎟⎟⎠ = J (N )

⎛
⎜⎜⎜⎜⎝

ψ
(N )
0 (x)

ψ
(N )
1 (x)

ψ
(N )
2 (x)

...

⎞
⎟⎟⎟⎟⎠ .

Let us consider the situation when the recurrence coefficients a(N )
m,N , a

(N )
m−1,N , . . ., a

(N )
−m,N

have limits as N → ∞, namely

lim
N→∞a(N )

m,N = αm, lim
N→∞a(N )

m−1,N = αm−1, . . . , lim
N→∞a(N )

−m,N = α−m .

In this situation we associate with J (N ) a Laurent polynomial s(w) defined by

s(w) =
m∑

j=−m

α jw
j .

Proposition 11.1. Let f be a polynomial with real coefficients, and define the linear
statistics of the biorthogonal ensemble by the formula

X (N )
f =

N∑
i=1

f (xi ),
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where x1, . . ., xN are the points of the biorthogonal ensemble under considerations.
Then

X (N )
f − EX (N )

f → N
(
0,

∞∑
k=1

k f̂k f̂−k

)

in distribution, where

f̂k = 1

2π i

∮
|w|=1

f (s(w))wk dw

w
.

Proof. This statement is a corollary of a more general result for biorthogonal ensembles
obtained by Breuer and Duits [14], see Theorem 2.1 and Corollary 2.2 therein. ��

Note that since f is a polynomial with real coefficients, f̂k is real.
Now, let us consider the N -dependent probability distribution P̃N ,M (X1, X2) on the

Cartesian product of Mat(C, N × M) and Mat(C, M × N ) defined by Eq. (3.34). Let
y1, . . ., yN be the squared singular values of the random matrix X1X2, with its linear
statistics given by

Y (N )
f =

N∑
i=1

f (yi ).

By Theorem 3.1 the squared singular values y1, . . ., yN of the randommatrix X1X2 form
a biorthogonal ensemble on R≥0. The correlation kernel of this ensemble, K̃N (x, y),
can be written as

K̃N (x, y) =
N−1∑
n=0

P ′
n(x)Q

′
n(y).

The new functions, P ′
n(x) and Q′

n(y), are defined in terms of Pn(x) and Qn(y) as

P ′
n(x) = 1

n!(n + ν)! Pn(x), Q′
n(y) = n!(n + ν)!Qn(y),

where Pn(x) and Qn(y) are defined as previously by Eqs. (3.12), (3.13), with α(μ)

replaced by Nα(μ), and δ(μ) replaced by Nδ(μ). Clearly, the functions P ′
p(x) and

Q′
m(x) are orthonormal,

∞∫
0

P ′
p(x)Q

′
q(x)dx = δp,q .

Moreover, the 5 term recurrence relation (m = 2 here) for the functions P ′
n(x) can be

written as

x P ′
n(x) = a′

2,n P
′
n+2(x) + a′

1,n P
′
n+1(x) + a′

0,n P
′
n(x) + a′−1,n P

′
n−1(x) + a′−2,n P

′
n−2(x).

(11.1)
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The coefficients a′
2,n , a

′
1,n , a

′
0,n , a

′−1,n , and a
′−2,n easily follow from Proposition 3.5 and

are given explicitly by

a′
2,n = δ(μ)2(

α(μ)2 − δ(μ)2
)2 (n + ν + 1)(n + ν + 2)

N 2 , (11.2)

a′
1,n = 1

α(μ)2 − δ(μ)2

(n + 1)(n + ν + 1)

N 2

+
δ(μ)2(

α(μ)2 − δ(μ)2
)2 2(2n + ν + 2)(n + ν + 1)

N 2 , (11.3)

a′
0,n = 1

α(μ)2 − δ(μ)2

3n2 + 2νn + 3n + ν + 1

N 2

+
δ(μ)2(

α(μ)2 − δ(μ)2
)2 6n

2 + 6nν + ν2 + 6n + 3ν + 2

N 2 , (11.4)

a′−1,n = 1

α(μ)2 − δ(μ)2

n(3n + ν)

N 2 +
δ(μ)2(

α(μ)2 − δ(μ)2
)2 2n(ν + 2n)

N 2 , (11.5)

a′−2,n = 1

α(μ)2 − δ(μ)2

n(n − 1)

N 2 +
δ(μ)2(

α(μ)2 − δ(μ)2
)2 n(n − 1)

N 2 . (11.6)

Noting that

1

α(μ)2 − δ(μ)2
= μ,

δ(μ)2(
α(μ)2 − δ(μ)2

)2 = (1 − μ)2

4
,

we obtain

lim
N→∞a′

2,N = α2 = (1 − μ)2

4
, lim

N→∞a′
1,N = α1 = μ + (1 − μ)2,

lim
N→∞a′

0,N = α0 = 3μ +
3

2
(1 − μ)2, lim

N→∞a′−1,N = α−1 = 3μ + (1 − μ)2,

lim
N→∞a′−2,N = α−2 = μ +

(1 − μ)2

4
.

Thus, Proposition 11.1 can be applied, and the relevant Laurent polynomial can be
computed explicitly. The result follows. ��
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Appendix A. Limits of the joint probability density function

In this appendix we derive the two limits μ → 1 and μ → 0 of the joint probability
density function P(y1, . . . , yN ) Eq. (3.3), as given in Eqs. (3.5) and (3.8), respectively.
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For the first limit μ → 1 leading to two independent Gaussian complex matrices we
have δ(μ) → 0, α(μ) → 1. From the series representation of the function Iκ(z), Eq.
(3.1), it is not hard to obtain the following limiting relation

lim
μ→1

⎛
⎜⎜⎜⎜⎝
det

[
y

j−1
2

i I j−1(2δ(μ)
√
yi )

]N
i, j=1

δ(μ)
N (N−1)

2

⎞
⎟⎟⎟⎟⎠ =

det
[
y j−1
i

]N
i, j=1

N∏
j=1

�( j)

.

The limit of the remainder of the pre-factor ZN and of the modified Bessel function
of the second kind Kκ(2α(μ)

√
y) is trivial, and after expressing the latter in terms

of the Meijer G-function from Eq. (3.7) the limiting joint probability density function
limμ→1 P(y1, . . . , yN ) in Eq. (3.5) follows.

In the second limit μ → 0 both δ(μ) and α(μ) diverge. Hence in Eq. (3.3) we have
to replace the modified Bessel functions inside the determinants by their large argument
asymptotic expressions. Namely, we use the formulae

Iκ(z) � ez√
2π z

, Kκ(z) �
√

π

2z
e−z, (A.1)

see Gradshteyn and Ryzhik [28], Section 8.45. This gives asymptotically

det

[
y

j+ν−1
2

i K j+ν−1
(
2α(μ)

√
yi
)]N

i, j=1
� π

N
2

2Nα(μ)
N
2

N∏
i=1

y
ν
2− 1

4
i exp

[
−2α(μ)y

1
2
i

]

× det

[
y

j−1
2

i

]N
i, j=1

,

and

det

[
y

j−1
2

i I j−1
(
2δ(μ)

√
yi
)]N

i, j=1
� π

N
2

2N δ(μ)
N
2

N∏
i=1

y
− 1

4
i exp

[
2δ(μ)y

1
2
i

]
det

[
y

j−1
2

i

]N
i, j=1

.

Noting that

α(μ) − δ(μ) = 1 + μ

2μ
− 1 − μ

2μ
= 1,

and that asymptotically

α(μ)δ(μ) = (1 + μ)

2μ

(1 − μ)

2μ
� 1

4μ2 ,

we obtain that the product of the two determinants in Eq. (3.3) turns into

μN

2N

(
det

[
y

j−1
2

i

]N
i, j=1

)2 N∏
i=1

y
− 1

2
i exp

[
−2y

1
2
i

]
.
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Moreover, as μ → 0, the normalising constant ZN in Eq. (3.3) becomes asymptotically
equal to

ZN � 2NM

N !μN
N∏
j=1

�( j)�( j + ν)

.

Putting all these results together we obtain Eq. (3.8).
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