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Abstract: The Racah problem for the quantum superalgebra ospq(1|2) is considered.
The intermediate Casimir operators are shown to realize a q-deformation of the Bannai–
Ito algebra. The Racah coefficients of ospq(1|2) are calculated explicitly in terms of
basic orthogonal polynomials that q-generalize the Bannai–Ito polynomials. The rela-
tion between these q-deformed Bannai–Ito polynomials and the q-Racah/Askey–Wilson
polynomials is discussed.

1. Introduction

The goal of this paper is to examine the Racah problem for the quantum superalgebra
ospq(1|2) and to present a q-extension of the Bannai–Ito polynomials.

The Bannai–Ito (BI) polynomials were first introduced by Bannai and Ito in their
complete classification of the orthogonal polynomials possessing the Leonard duality
property [1]. The BI polynomials, denoted by Bn(x), depend on four real parameters
ρ1, ρ2, r1, r2 and can be defined by the three-term recurrence relation

x Bn(x) = Bn+1(x) + (ρ1 − An − Cn) Bn(x) + An−1Cn Bn−1(x), (1.1)

with B−1(x) = 0, B0(x) = 1 and where the recurrence coefficients read

An =
⎧
⎨

⎩

(n+2ρ1−2r1+1)(n+2ρ1−2r2+1)
4(n+κ+1/2) n even

(n+2κ)(n+2ρ1+2ρ2+1)
4(n+κ+1/2) n odd,

Cn =
⎧
⎨

⎩

− n(n−2r1−2r2)
4(n+κ−1/2) n even

− (n+2ρ2−2r1)(n+2ρ2−2r2)
4(n+κ−1/2) n odd,

(1.2)

with κ = ρ1 + ρ2 − r1 − r2 + 1/2. The polynomials Bn(x) can be obtained as q → −1
limits of the q-Racah [1] or of the Askey–Wilson [21] polynomials, which sit at the top
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of the Askey scheme of hypergeometric orthogonal polynomials [13]. The Bannai–Ito
polynomials are eigenfunctions of the most general self-adjoint first-order shift operator
with reflections preserving the space of polynomials of a given degree [21]. Up to affine
transformations, this operator has the expression

L = D(x)(1 − R) + E(x)(T +R − 1) + κ, (1.3)

with D(x) and E(x) given by

D(x) = (x − ρ1)(x − ρ2)

x
, E(x) = (x − r1 + 1/2)(x − r2 + 1/2)

x + 1/2
,

and where T + f (x) = f (x +1) is the shift operator and R f (x) = f (−x) is the reflection
operator. The BI polynomials satisfy the eigenvalue equation [21]

L Bn(x) = (−1)n(n + κ) Bn(x), n = 0, 1, 2, . . . (1.4)

There is an algebraic structure associated to the BI polynomials that is called the
Bannai–Ito algebra [21]. It is defined as the associative algebra over C with generators
A1, A2, A3 obeying the relations

{A3, A1} = A2 + ω2, {A1, A2} = A3 + ω3, {A2, A3} = A1 + ω1, (1.5)

where {x, y} = xy + yx is the anticommutator and where ω1, ω2, ω3 are complex
structure constants. It is clear that in (1.5) only two of the generators are genuinely inde-
pendent. The relation between the algebra (1.5) and the polynomials Bn(x) is established
by noting that the operators

A1 = L, A2 = 2x + 1/2,

realize the relations (1.5) with values of the structure constants depending on the parame-
ters ρ1, ρ1, r1, r2. Hence the Bannai–Ito algebra (1.5) encodes, inter alia, the bispectral
properties (1.1) and (1.4) of the Bannai–Ito polynomials. Let us mention that since its
introduction, the BI algebra has appeared in several instances, notably in connectionwith
generalizations of harmonic [10] and Clifford [5] analysis involving Dunkl operators,
and also as a symmetry algebra of superintegrable systems [8]; see [4] for an overview.

It was recently determined that the Bannai–Ito polynomials serve as Racah coef-
ficients in the direct product of three unitary irreducible representations (UIRs) of the
algebra sl−1(2) [9]. This algebra, introduced in [20], is closely related to osp(1|2) and its
UIRs are associated to the one-dimensional para-Bose oscillator [18]. The identification
of the Bannai–Ito polynomials as Racah coefficients in [9] followed from the observation
that the intermediate Casimir operators entering the Racah problem for sl−1(2) realize
the Bannai–Ito algebra.

In this paper we consider the quantum superalgebra ospq(1|2); the Racah coefficients
arising in the tensor product of three of its UIRs are calculated explicitly in terms of basic
orthogonal polynomials that tend to the Bannai–Ito polynomials in the limit q → 1. We
give some of the properties of these q-deformed Bannai–Ito polynomials and discuss
their relationshipwith the q-Racah andAskey–Wilson polynomials. The paper is divided
as follows.

In Sect. 2, the definition of the ospq(1|2) algebra is recalled and its extension by
the grade involution is defined. UIRs of this extended ospq(1|2) and their Bargmann
realizations are presented. In Sect. 3, the coproduct for ospq(1|2) is used to posit the
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Racah problem and the intermediate Casimir operators are introduced. It is shown that
these operators realize a q-analog of the BI algebra. The finite-dimensional irreducible
representations of this q-version of the BI algebra are constructed. These lead to an ex-
plicit expression of the Racah coefficients of ospq(1|2) in terms of p-Racah polynomials
with base p = −q which tend to the BI polynomials in the q → 1 limit. In Sect. 4,
the q-analogs of the BI polynomials are defined independently from the Racah problem
and their bispectral properties (recurrence relation and eigenvalue equation) are given
explicitly; their relation with the Askey–Wilson polynomials is also detailed. In Sect. 5,
the q → 1 limit of the results is discussed. We conclude with an outlook.

2. The Quantum Superalgebra ospq(1|2)
In this section, the definition of the quantum superalgebra ospq(1|2) is recalled and
its extension by the grade involution is presented. The Hopf structure of this extended
ospq(1|2) is described. UIRs of this algebra are constructed and their Bargmann real-
izations are provided.

2.1. Definition and Casimir operator. Let q be a real number with 0 < q < 1. The
quantum superalgebra ospq(1|2) is the algebra presented in terms of one even generator
A0 and two odd generators A± obeying the commutation relations [15]

[A0, A±] = ±A±, {A+, A−} = [2A0]q1/2 , (2.1)

where [x, y] = xy − yx is the commutator and where [n] is the q-number

[n]q = qn − q−n

q − q−1 .

The abstract Z2-grading of the algebra (2.1) can be concretely realized by appending
the grade involution P to the set of generators and declaring that the even and odd
generators respectively commute and anticommute with P . The quantum superalgebra
ospq(1|2) can hence be introduced as the algebra with generators A0, A± and involution
P satisfying the commutation relations

[A0, P] = 0, {A±, P} = 0, [A0, A±] = ±A±, {A+, A−} = [2A0]q1/2 , (2.2a)

with P2 = 1. It is convenient to define the operators

K = q A0/2, K−1 = q−A0/2.

In terms of these operators, the relations (2.2a) read

K A+K
−1 = q1/2A+, K A−K−1 = q−1/2A−, KK−1 = 1,

[K , P] = 0, [K−1, P] = 0, {A±, P} = 0, {A+, A−} = K 2 − K−2

q1/2 − q−1/2 . (2.2b)

We shall use both (2.2a) and (2.2b). The Casimir operator of ospq(1|2) reads

Q =
[

A+A− − q−1/2K 2 − q1/2K−2

q − q−1

]

P. (2.3)

It is easily verified that Q commutes with all generators of (2.2). In (2.3), the expression
in the square bracket corresponds to the so-called sCasimir operator of ospq(1|2), which
commutes with A0 and anticommutes with A± [16].
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2.2. Hopf algebraic structure. The algebra (2.2) can be endowed with a Hopf structure.
Define the coproduct � : ospq(1|2) → ospq(1|2) ⊗ ospq(1|2) as

�(A±) = A± ⊗ K P + K−1 ⊗ A± �(K ) = K ⊗ K , �(P) = P ⊗ P, (2.4)

the counit ε : ospq(1|2) → C as

ε(P) = 1, ε(K ) = 1, ε(A±) = 0, (2.5)

and the coinverse σ : ospq(1|2) → ospq(1|2) by

σ(P) = P, σ (K ) = K−1, σ (A±) = q±1/2PA±. (2.6)

It is straightforward to verify that with (2.4), (2.5) and (2.6), Eq. (2.2) indeed has a Hopf
algebraic structure. The conditions on�, ε and σ are well known; they can be found, for
example, in Chap. 4 of [22]. The coproduct given in (2.4) is not cocommutative since
σ� �= �, where σ(a ⊗ b) = b ⊗ a is the flip automorphism. The alternative coproduct
�̃ = σ� and coinverse S̃ = S−1 can be used to define another Hopf algebraic structure
for (2.2); we shall not consider it here.

Remark 1. The coproduct (2.4) appears different from the one presented in [15], as it
explicitly involves the grade involution P . The two coproducts are however equivalent.
For elements in ospq(1|2)⊗ospq(1|2) a graded product law of the form (a⊗b)(c⊗d) =
(−1)p(b)(−1)p(c)(ac⊗ bd), where p(x) gives the parity of x , was used in [15] whereas
the standard product rule (a ⊗ b)(c ⊗ d) = ac ⊗ bd is used here.

2.3. Unitary irreducible ospq(1|2)-modules. Let ε, μ be real numbers such that μ > 0,
ε = ±1 and let W (ε,μ) denote the infinite-dimensional vector space spanned by the
orthonormal basis vectors |ε, μ; n〉 where n is a non-negative integer. The basis vectors
satisfy

〈ε, μ; n′|ε, μ; n〉 = δnn′,

where δ is the Kronecker delta. Consider the ospq(1|2) actions
A0 |ε, μ; n〉 = (n + μ + 1/2) |ε, μ; n〉, P |ε, μ; n〉 = ε (−1)n |ε, μ; n〉,
A+|ε, μ; n〉 = √

σn+1 |ε, μ; n + 1〉, A− |ε, μ; n〉 = √
σn |ε, μ; n − 1〉, (2.7)

where σn is of the form

σn = [n + μ]q − (−1)n[μ]q , n = 0, 1, 2, . . .

The vector space W (ε,μ) endowed with the actions (2.7) forms a unitary irreducible
ospq(1|2)-module. Indeed, it is verified that the actions (2.7) comply with (2.2). The
irreducibility follows from the fact that σn > 0 for n � 1. The moduleW (ε,μ) is unitary,
as it is realizes the 	-conditions

A†
0 = A0, P† = P, A†

± = A∓. (2.8)
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The representation space W (ε,μ) can be identified with the state space of the one-
dimensional q-deformed parabosonic oscillator [7]. On W (ε,μ), the Casimir operator
(2.3) has the action

Q |ε, μ; n〉 = −ε [μ]q |ε, μ; n〉. (2.9)

The modules W (ε,μ) have a Bargmann realization on functions of argument z. In this
realization, the basis vectors |ε, μ; n〉 ≡ e(ε,μ)

n (z) have the expression

e(ε,μ)
n (z) = zn√

σ1σ2 · · · σn , n = 0, 1, 2, . . . ,

and the ospq(1|2) generators take the form
A0(z) = z∂z + μ + 1/2, K (z) = q(μ+1/2)/2T 1/2

q ,

P(z) = εRz, A+(z) = z,

A−(z) = qμ (Tq − Rz)

(q − q−1)z
− q−μ

(T−1
q − Rz)

(q − q−1)z
, (2.10)

where T h
q f (z) = f (qhz) and Rz f (z) = f (−z).

3. The Racah Problem

In this section, the Racah problem for ospq(1|2) is considered. The intermediate Casimir
operators are defined and are seen to generate a q-analog of the Bannai–Ito algebra. The
eigenvalues of the intermediate Casimirs are derived and the corresponding representa-
tions of the q-extended Bannai–Ito algebra are constructed. The explicit expression of
the Racah coefficients for ospq(1|2) in terms of orthogonal polynomials is given.

3.1. Outline the problem. The coproduct of ospq(1|2) allows to construct tensor product
representations. Consider the ospq(1|2)-module defined by

W = W (ε1,μ1) ⊗ W (ε2,μ2) ⊗ W (ε3,μ3). (3.1)

The action of any generator X on W is prescribed by (1 ⊗ �)�(X) or equivalently by
(� ⊗ 1)�(X) since the coproduct is coassociative. When considering threefold tensor
product representations, three types of Casimir operators arise. There are three initial
Casimir operators Q(1), Q(2), Q(3) defined by

Q(1) = Q ⊗ 1 ⊗ 1, Q(2) = 1 ⊗ Q ⊗ 1, Q(3) = 1 ⊗ 1 ⊗ Q, (3.2)

which are associated to each components of the tensor product (3.1). OnW , each initial
Casimir operator Q(i) acts as a multiple of the identity. In view of (2.9), this multiple
denoted by τi is given by

τi = −εi [μi ]q , i = 1, 2, 3. (3.3)

There are two intermediate Casimir operators Q(12), Q(23) defined by

Q(12) = �(Q) ⊗ 1, Q(23) = 1 ⊗ �(Q), (3.4)
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which are associated to W (ε1,μ1) ⊗ W (ε2,μ2) and W (ε2,μ2) ⊗ W (ε3,μ3), respectively. A
direct calculation using (2.3) and (2.4) shows that �(Q) has the expression

�(Q) = q1/2
(
A−K−1P ⊗ A+K

)
− q−1/2

(
A+K

−1P ⊗ A−K
)

−[1/2]q K−2P ⊗ K 2P + Q ⊗ K 2P + K−2P ⊗ Q.

Finally, there is the total Casimir operator Q defined by

Q = (1 ⊗ �)�(Q) = (� ⊗ 1)�(Q),

which is associated to the whole module W . The total Casimir operator reads

Q = q1/2
(
A−K−1P ⊗ 1 ⊗ A+K

)
− q−1/2

(
A+K

−1P ⊗ 1 ⊗ A−K
)

− K−2P ⊗ Q ⊗ K 2P + �(Q) ⊗ K 2P + K−2P ⊗ �(Q). (3.5)

The operators Q(12) and Q(23) both commute with Q, but they do not commute with
one another. Moreover, the operators Q(12), Q(23) and Q all commute by construction
with the operator E which reads

E = (1 ⊗ �)�(A0) = A0 ⊗ 1 ⊗ 1 + 1 ⊗ A0 ⊗ 1 + 1 ⊗ 1 ⊗ A0.

Each of {Q(12),Q, E} and {Q(23),Q, E} forms a complete set of self-adjoint commuting
operators with respect to W .

We introduce two distinct bases for W associated to the two complete sets of com-
muting operators exhibited above. The first one consists of the orthonormal basis vectors
|m; τ12; τ 〉 defined by the eigenvalue equations

Q(12)|m; τ12; τ 〉 = τ12|m; τ12; τ 〉, Q|m; τ12; τ 〉 = τ |m; τ12; τ 〉,
E |m; τ12; τ 〉 = m|m; τ12; τ 〉. (3.6)

The second one consists of the orthonormal basis vectors |m; τ23; τ 〉 defined by the
eigenvalue equations

Q(23)|m; τ23; τ 〉 = τ23|m; τ23; τ 〉, Q|m; τ23; τ 〉 = τ |m; τ23; τ 〉,
E |m; τ23; τ 〉 = m|m; τ23; τ 〉. (3.7)

The Racah problem consist in the determination of the Racah coefficients, which are the
transition coefficients between these two orthonormal bases. Such coefficients are easily
shown to be independent of m [23]. We hence write

[
τ1 τ2 τ3
τ12 τ23 τ

]

= 〈m; τ12; τ |m; τ23; τ 〉, (3.8)

and refer to the left-hand side of (3.8) as the Racah coefficients for ospq(1|2). For more
details on the Racah problem for sl(2) and slq(2), one can consult [12,24].
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3.2. Main observation: q-deformation of the Bannai–Ito algebra. The properties of the
Racah coefficients are encoded in the algebraic interplay between the intermediate and
total Casimir operators. A fruitful approach is therefore to investigate the commutation
relations that these operators satisfy [9,11]. Introduce the operators I3 and I1 defined as

I1 = −Q(23), I3 = −Q(12). (3.9)

Let {A, B}q denote the “q-anticommutator”

{A, B}q = q1/2AB + q−1/2BA,

and introduce the operator I2 through the relation

{I3, I1}q ≡ I2 + (q1/2 + q−1/2)
[
Q(3)Q(1) + Q(2)Q

]
.

An involved but direct calculation shows that these operators satisfy the relations

{Ii , I j }q = Ik + (q1/2 + q−1/2)
[
Q(i)Q( j) + Q(k)Q

]
,

where (i jk) is an even permutation of {1, 2, 3}. It follows that the bases (3.6) and (3.7)
that enter the Racah problem support representations of the algebra

{Ii , I j }q = Ik + ιk, ιk = (q1/2 + q−1/2)(ττk + τiτ j ), (3.10)

where (i jk) is an even permutation of {1, 2, 3} and where τi is given by (3.3); the values
of τ that can occur remain to be evaluated. Since I3 and I1 are proportional to Q(12)

and Q(23), the Racah coefficients (3.8) coincide with the transition coefficients between
the eigenbases of I3 and I1 in the appropriate representations of (3.10), which will be
studied below. The operator

C = (q−1/2 − q3/2)I1 I2 I3 + q I 21 + q−1 I 22 + q I 23
− (1 − q) ι1 I1 − (1 − q−1) ι2 I2 − (1 − q) ι3 I3, (3.11)

can be seen to commute with I1, I2 and I3. After considerable algebra, one finds that on
the bases (3.6) and (3.7), the operator C takes the value

C = −(q − q−1)2τ1τ2τ3τ + τ 21 + τ 22 + τ 23 + τ 2 − q/(1 + q)2. (3.12)

The algebra (3.10) stands as a q-deformation of the Bannai–Ito algebra with C as its
Casimir operator.

Let us note that the algebra (3.10) can be presented in terms of only two generators.
Eliminating I2 from (3.10), one finds that I1 and I3 satisfy

I 21 I3 + (q + q−1)I1 I3 I1 + I3 I
2
1 = I3 + (q1/2 + q−1/2) ι2 I1 + ι3, (3.13a)

I 23 I1 + (q + q−1)I3 I1 I3 + I1 I
2
3 = I1 + (q1/2 + q−1/2) ι2 I3 + ι1. (3.13b)

Remark 2. The algebra (3.10) can be obtained from the Zhedanov algebra [26] by the
formal substitution q → −q and scaling of the generators. The Zhedanov algebra was
also studied by Koornwinder [14] and Terwilliger and Vidunas [19].
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3.3. Spectra of the Casimir operators. To investigate the Racah problem, we need to
identifywhich representations of (3.10) arise; this is done by determining the eigenvalues
of the intermediate and total Casimir operators of ospq(1|2).

The eigenvalues of the intermediate Casimir operator Q(12), and hence those of
I3, are associated to the decomposition of the twofold tensor product module W̃ =
W (ε1,μ1) ⊗W (ε2,μ2) in irreducible components. As a vector space, W̃ has the direct sum
decomposition

W̃ =
∞⊕

n=0

Un,

where eachUn is an eigenspace of �(A0) with eigenvalue n +μ1 +μ2 + 1. It is seen that
Un is (N + 1)-dimensional, as it is spanned by vectors |ε1, μ1; n1〉⊗|ε2, μ2; n2〉 such
that n1 + n2 = n. Since �(A0) and �(Q) commute, Un is stabilized by �(Q).

Lemma 1. The eigenvalues of �(Q) on Un have the expression

ϑk = (−1)k+1ε1ε2 [k + μ1 + μ2 + 1/2]q , k = 0, 1, . . . , n. (3.14)

Proof. By induction on n. The case n = 0 is verified directly by applying �(Q) on
the single basis vector |ε1, μ1; 0〉⊗|ε2, μ2; 0〉 of U0. Suppose that (3.14) holds at level
n − 1 and let vk ∈ Un−1 for k = 1, . . . , n − 1 denote the eigenvectors of �(Q) with
eigenvalues (3.14). It is directly seen from the relations (2.2) that the vectors �(A+)vk
are in Un and that they are eigenvectors of �(Q) with the same eigenvalues. Consider
the vector w ∈ Un such that �(A−)w = 0; such a vector is easily constructed in the
direct product basis by solving a two-term recurrence relation. It follows from (2.4) that
w is an eigenvector of �(P) with eigenvalue (−1)nε1ε2. A calculation shows that w is
an eigenvector of �(Q) with eigenvalue ϑn . Hence the eigenvalues of �(Q) on Un are
{ϑ0, ϑ1, . . . , ϑn−1} ∪ {ϑn}. ��
It follows from the above lemma that one has the direct sum decomposition

W (εi ,μi ) ⊗ W (ε j ,μ j ) =
∞⊕

k=0

W (εi j (k), μi j (k)), (3.15)

where

εi j (k) = (−1)kε1ε2, μi j (k) = k + μ1 + μ2 + 1/2. (3.16)

Upon using the decomposition (3.15) twice, one finds that the decomposition of the
ospq(1|2)-module W in irreducible components has the form

W =
∞⊕

N=0

mN W (εN ,μN ),

where the multiplicity is mN = N + 1 and where

εN = (−1)N ε1ε2ε3, μN = N + μ1 + μ2 + μ3 + 1. (3.17)
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It follows from the above discussion that the eigenvalues τ of the total Casimir
operator Q are parametrized by the non-negative integer N and read

τ → τN = −εN [μN ]q , N = 0, 1, . . . (3.18)

where εN and μN are given by (3.17). The eigenvalues τ12 and τ23 of the intermedi-
ate Casimir operators Q(12), Q(23) are respectively parametrized by the non-negative
integers n, s and read

τ12 → τ12(n) = −ε12(n) [μ12(n)]q , n = 0, 1, . . . , N ,

τ23 → τ23(s) = −ε23(s) [μ23(s)]q , s = 0, 1, . . . , N ,
(3.19)

where εi j (k) and μi j (k) are given by (3.16). We can thus write the Racah coefficients
for ospq(1|2) as

[
τ1 τ2 τ3

τ12(n) τ23(s) τN

]

, n, s ∈ {0, 1, . . . , N }, N = 0, 1, 2, . . . (3.20)

These coefficients coincide with the interbasis expansion coefficients between the eigen-
bases of I1 and I3 in the (N + 1)-dimensional representations of the algebra (3.10) with
Casimir value (3.12).

3.4. Representations. We construct the matrix elements of I1 in the eigenbasis of I3. In
view of (3.9), (3.16) and (3.19), the eigenvectors of I3 denoted by |N ; n〉 satisfy

I3|N ; n〉 = λn |N ; n〉, n = 0, 1, . . . , N , (3.21)

where λn = −τ12(n). The action of the operator I1 on this basis can be written as

I1|N ; n〉 =
N∑

k=0

Akn|N ; k〉, (3.22)

where Akn are the matrix elements of I1. In view of (3.21), (3.22) and since the basis
vectors are linearly independent, the relation (3.13b) is equivalent to

Akn

[
λ2n + (q + q−1)λnλk + λ2k − 1

]
= δkn[(q1/2 + q−1/2)ι2 + ι1]. (3.23)

For k �= n, the left-hand side of (3.23) must vanish. It is seen from the expression of the
eigenvalues λn that Akn can be non-zero only when k = n ± 1 or k = n. As a result, the
matrix representing I1 in the I3 eigenbasis is tridiagonal, i.e.

I1|N ; n〉 = Un+1|N ; n + 1〉 + Vn|N ; n〉 +Un−1|N ; n − 1〉, (3.24)

where by definition U0 = 0, UN+1 = 0 and where we have used the fact that I1 is
self-adjoint. When n = k, Eq. (3.23) gives the following expression for Vn :

Vn = ι1 + (q1/2 + q−1/2)ι2λn

λ2n(2 + q + q−1) − 1
. (3.25)
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If one acts with the relation (3.13a) on |N ; n〉 and gathers all terms proportional to
|N ; n〉, one finds that U 2

n satisfies the two-term recurrence relation

(2λn + (q + q−1)λn+1)U
2
n+1 + (2λn + (q + q−1)λn)V

2
n

+ (2λn + (q + q−1)λn−1)U
2
n = λn + (q1/2 + q−1/2)ι2Vn + ι3. (3.26)

The solution to (3.26) can be presented as follows. Let a, b, c and d be defined as

a = ε2ε3 q
μ2+μ3+1/2, b = −ε1εN qμ1−μN+1/2,

c = −ε1εN qμ1+μN+1/2, d = ε2ε3 q
μ2−μ3+1/2,

(3.27)

and let p = −q. Up to an inessential phase factor, one has

Un = (q − q−1)−1
√
An−1Cn, (3.28)

where An and Cn read

An = − (1 + abpn)(1 − acpn)(1 − adpn)(1 − abcdpn−1)

a(1 − abcdp2n−1)(1 − abcdp2n)
,

Cn = a(1 − pn)(1 − bcpn−1)(1 − bdpn−1)(1 + cdpn−1)

(1 − abcdp2n−2)(1 − abcdp2n−1)
.

(3.29)

The coefficients Vn given in (3.25) can be written as

Vn = (q − q−1)−1
[
a − a−1 − An − Cn

]
. (3.30)

With Un and Vn as in (3.28) and (3.30), the actions (3.21) and (3.24) define (N + 1)-
dimensional representations of (3.13) with value (3.12) of the Casimir operator (3.11).
Since Un �= 0 for 1 � n � N , these representations are irreducible.

Thematrix elements of the generators I1, I3 in the eigenbasis of I1 are easily obtained.
One observes that the relations (3.10) and Casimir value (3.12) are all invariant under
simultaneous cyclic permutations of the generators Ii and representation parameters μi
and εi . As a result, the matrix elements of I1, I3 in the eigenbasis {|N ; s〉}Ns=0 of I1 are
of the form

I1|N ; s〉 = λ̃s |N ; s〉, s = 0, 1, . . . , N ,

I3|N ; s〉 = Ũs+1|N ; s + 1〉 + Ṽs |N ; s〉 + Ũs |N ; s − 1〉, (3.31)

where λ̃s , Ũs and Ṽs are obtained from (3.21), (3.28) and (3.30) by applying the permu-
tations (μ1, μ2, μ3) → (μ2, μ3, μ1) and (ε1, ε2, ε3) → (ε2, ε3, ε1).

3.5. The Racah coefficients of ospq(1|2) as basic orthogonal polynomials. As explained
in Subsection 3.3, the Racah coefficients (3.20) of ospq(1|2) coincide with the overlap
coefficients 〈N ; s|N ; n〉. These coefficients can be cast in the form

〈N ; s|N ; n〉 = ωs Gn(s), where ωs = 〈N ; s|N ; 0〉 and G0(s) ≡ 1. (3.32)
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Upon considering 〈N ; s| I1 |N ; n〉 together with (3.24) and (3.31), one finds that Gn(s)
satisfies the three-term recurrence relation

(−1)s (aqs − a−1q−s)Gn(s)

= √
AnCn+1Gn+1(s) + [a − a−1 − An − Cn]Gn(s) +

√
An−1CnGn−1(s), (3.33)

where An , Cn are given by (3.29) with the parameterization (3.27).
If one takes

Ĝn(s) = (−1)nan
√
A0 . . . An−1 C1 . . .Cn Gn(s),

one finds that Ĝn(s) satisfies the normalized recurrence relation

(p−s + q2μ2+2μ3 ps) Ĝn(s)

= Ĝn+1(s) + [1 + q2μ2+2μ3 p − Ǎn − Čn]Ĝn(s) + Ǎn−1ČnĜn−1(s), (3.34)

where p = −q and where

Ǎn = −a An, Čn = −a Cn .

The recurrence relation (3.34) coincides with the normalized recurrence relation for
the p-Racah polynomials Rn(μ(s);α, β, γ, δ | p) of degree n in the variable μ(s) =
p−s + γ δps+1 [13]. In consequence, the functions Gn(s) appearing in the coefficients
(3.32) are proportional to the p-Racah polynomials

Rn(μ(s);α, β, γ, δ | p) = 4ϕ3

(
p−n, αβpn+1, p−s, γ δps+1

αp, βδp, γ p
; p, p

)

, (3.35)

where rϕs is the generalized basic hypergeometric series [13]

rϕs

(
a1, . . . , ar
b1, . . . , bs

; q, z

)

=
∞∑

k=0

(a1, · · · ar ; q)k

(b1, · · · , bs; q)k
(−1)(1+s−r)kq(1+s−r)(k2)

zk

(q; q)k
.

and where have used the standard notation:

(a1, a2, . . . , ak; q)s =
k∏

i=1

(ai ; q)s, (a; q)s =
s∏

k=1

(1 − qk−1a).

Recall that p = −q. The relation between the parameters α, β, γ, δ of the p-Racah
polynomials and those appearing in (3.34) is

α = −(−1)Nqμ1+μ2+μ3−μN , γ = −q2μ2 ,

β = −(−1)Nqμ1+μ2−μ3+μN , δ = −q2μ3 .
(3.36)

Using the expression (3.17) for μN , it is seen that one has α p = p−N , which is one of
the admissible truncation condition for the p-Racah polynomials.

The vectors |N ; n〉 being orthonormal, one has the orthogonality relation

N∑

s=0

〈N ; n′|N ; s〉〈N ; s|N ; n〉 =
N∑

s=0

ω2
s Gn(s)Gn′(s) = δnn′ . (3.37)
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Since the orthogonality weight for the p-Racah polynomials is unique, one concludes
that ωs in (3.32) is the square root of the p-Racah weight function with parameters
(3.36). The weight function �s of the p-Racah polynomials reads [13]

�s(α, β, γ, δ; p) = (αp, βδp, γ p, γ δp; p)s
(p, α−1γ δp, β−1γ p, δp; p)s

1 − γ δp2s+1

(αβp)s(1 − γ δp)
,

and the normalization coefficients hn are

hn(α, β, γ, δ; p) = (β−1, γ δp2; p)N
(β−1γ p, δp; p)N

(1 − βp−N )(γ δp)n

(1 − βp2n−N )

× (p, βp, βγ −1 p−N , δ−1 p−N ; p)n
(βp−N , βδp, γ p, p−N ; p)n .

The complete and explicit expression for the Racah coefficients of ospq(1|2) arising in
the tensor product of three irreducible modules W (εi ,μi ) is thus

[
τ1 τ2 τ3

τ12(n) τ23(s) τN

]

= (−1)n
√

�s(α, β, γ, δ; p)
hn(α, β, γ, δ; p) Rn(μ(s);α, β, γ, δ; p),

with the parametrization (3.36) and p = −q. Let us remark that these Racah coefficients
do not depend on the representation parameters ε1, ε2, ε3.

Remark 3. The Racah, or 6 j , coefficients of ospq(1|2)were also studied in [17]. The au-
thors considered different representations than the ones considered here. They focused in
particular on finite-dimensional representations. The connection with orthogonal poly-
nomials and the algebraic structure (3.10) were not discussed.

Remark 4. The Clebsch–Gordan (CG) problem for ospq(1|2) arising in the tensor prod-
uct of two irreducible representations was considered in [2] and basic orthogonal poly-
nomials with base p = −q were seen to arise as CG coefficients.

4. q-Analogs of the Bannai–Ito Polynomials and Askey–Wilson Polynomials with
Base p = −q

In this section, the basic polynomialswith basis p = −q encountered above are presented
independently from the Racah problem of ospq(1|2). Their relation with the Askey–
Wilson polynomials with base p = −q is discussed.

Consider the recurrence relation (3.33), the recurrence coefficients (3.29) and the
parametrization (3.27). Defining z = a ps , one is naturally led to introduce the polyno-
mials Qn(x; a, b, c, d; q) ≡ Qn(x) defined by the recurrence relation

(z − z−1)Qn(x) = AnQn+1(x) + [a − a−1 − An − Cn]Qn(x) + CnQn−1(x), (4.1)

where x = z − z−1 and where the recurrence coefficients read

An = − (1 + abpn)(1 − acpn)(1 − adpn)(1 − abcdpn−1)

a(1 − abcdp2n−1)(1 − abcdp2n)
,

Cn = a(1 − pn)(1 − bcpn−1)(1 − bdpn−1)(1 + cdpn−1)

(1 − abcdp2n−2)(1 − abcdp2n−1)
,
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with p = −q. Upon comparing the recurrence relation (4.1) with that of the Askey–
Wilson polynomials [13]

pn(y; a, b, c, d|q) = 4ϕ3

(
q−n, abcdqn−1, aeiθ , ae−iθ

ab, ac, ad
; q, q

)

, y = cos θ,

it is seen that the polynomials Qn(y; a, b, c, d|q) can obtained from the Askey–Wilson
polynomials by the formal substitutions

eiθ → i z, a → ia, b → ib, c → −ic, d → −id, q → −q,

where i is the imaginary number. The polynomials Qn(x; a, b, c, d|q) of degree n in x
thus have the hypergeometric expression

Qn(x; a, b, c, d|q) = 4ϕ3

(
p−n, abcdpn−1,−az, az−1

−ab, ac, ad
; p, p

)

, (4.2)

where x = z − z−1 and where p = −q.
The polynomials Qn(x; a, b, c, d|q) satisfy a difference equation. Introduce the in-

volution Iz defined by the action

Iz f (z) = f (z−1),

and let Dz be the divided-difference operator

Dz = B(z) (TqIz − 1) + B(−z−1) (T−1
q Iz − 1), (4.3)

where B(z) reads

B(z) = (1 + az)(1 + bz)(1 − cz)(1 − dz)

(1 + z2)(1 − qz2)
.

The operator (4.3) is very close to the Askey–Wilson operator, the main difference
being the presence of the involution Iz . A direct calculation using (4.2) shows that the
polynomials Qn(x; a, b, c, d|q) satisfy the eigenvalue equation

Dz Qn(x; a, b, c, d|q) =
[
p−n(1 − pn)(1 − abcdpn−1)

]
Qn(x; a, b, c, d|q).

The operatorDz can be embedded in a realization of the q-deformed Bannai–Ito algebra
(3.13). If of takes

J1 =
(

q1/2

(q − q−1)
√
abcd

)

Dz +

(
q1/2(q − abcd)√
abcd(q2 − 1)

)

,

J2 = z − z−1

q − q−1 ,

(4.4)

it can be verified that one has

J 2
2 J1 + (q + q−1)J2J1J2 + J1J 2

2 = J1 + (q1/2 + q−1/2) ω3 J2 + ω1,

J 2
1 J2 + (q + q−1)J1J2J1 + J2J 2

1 = J2 + (q1/2 + q−1/2) ω3 J1 + ω2,
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where the structure constants read

ω1 = −q−1/2(abcdq + abq2 − acq2 − bcq2 − adq2 − bdq2 + cdq2 + q3)

(1 + q)(q − 1)2
√
abcd

,

ω2 = (a2bcdq + ab2cdq − abc2dq − abcd2q − abcq2 − abdq2 + acdq2 + bcdq2)

(1 + q)(q − 1)2abcd
,

ω3 = −abcq − abdq + acdq + bcdq + aq2 + bq2 − cq2 − dq2

(1 + q)(q − 1)2
√
abcd

.

In the realization (4.4), the Casimir operator (3.11) takes a definite value which is a
complicated expression in the parameters a, b, c and d.

5. The q → 1 Limit

5.1. The q → 1 limit of the Racah problem. Consider the defining relations (2.2a) of
the ospq(1|2) algebra. In the q → 1 limit, they take the form

[ Ã0, P̃] = 0, { Ã±, P̃} = 0, [ Ã0, Ã±] = ± Ã±, { Ã+, Ã−} = 2 Ã0. (5.1)

The relations (5.1) define the Lie superalgebra algebra osp(1|2) extended by its grade
involution, which is also referred to sl−1(2) [20]. In the same limit, the Casimir operator
(2.3) reads

Q̃ = [ Ã+ Ã− − ( Ã0 − 1/2)]P̃, (5.2)

where the expressionbetween the square brackets corresponds to the sCasimir ofosp(1|2)
[16]. The q → 1 limit of the Hopf structure gives the coproduct

�( Ã0) = Ã0 ⊗ 1 + 1 ⊗ Ã0,

�( Ã±) = Ã± ⊗ P̃ + 1 ⊗ Ã±, �(P̃) = P̃ ⊗ P̃, (5.3)

as well as the counit and coinverse

ε(P̃) = 1, ε( Ã0) = 0, ε( Ã±) = 0,

σ (P̃) = P̃, σ ( Ã0) = − Ã0, σ ( Ã±) = P̃ Ã±, (5.4)

as found in [3]. The unitary ospq(1|2)-modules W (ε,μ) also have a well-defined q → 1
limit to unitary osp(1|2)-modules V (ε,μ). The actions (2.7) become

Ã0 |ε, μ; n〉 = (n + μ + 1/2) |ε, μ; n〉, P̃ |ε, μ; n〉 = ε (−1)n |ε, μ; n〉,
Ã+|ε, μ; n〉 = √

σ̃n+1 |ε, μ; n + 1〉, Ã− |ε, μ; n〉 = √
σ̃n |ε, μ; n − 1〉, (5.5)

where σ̃n = n+μ(1−(−1)n). Themodules V (ε,μ) associated to the actions (5.5)were the
osp(1|2)-modules considered for the Racah problem in [9]. The representations V (ε,μ)

also have Bargmann realization on functions of argument z defined by

Ã0(z) = z∂z + μ + 1/2, P̃(z) = εRz, Ã+(z) = z,

Ã−(z) = ∂z +
μ

z
(1 − Rz).
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It is seen that in this realization Ã−(z) coincides with the one-dimensional Dunkl deriv-
ative [6]. The initial (3.2), intermediate (3.4) and total (3.5) all have well defined limits
when q → 1. In this limit, the operators Ĩ1 = −Q̃(23) and Ĩ3 = −Q̃(12) satisfy the
Bannai–Ito algebra relations

{ Ĩi , Ĩ j } = Ĩk + ωk, ωk = 2(μiμ j + μkμ), (5.6)

where (i jk) is an even permutation of {1, 2, 3}. The Casimir (3.11) reduces to

C̃ = Ĩ 21 + Ĩ 22 + Ĩ 23 , (5.7)

and takes the value

C̃ = μ2
1 + μ2

2 + μ2
3 + μ2 − 1/4. (5.8)

These results are in accordance with those obtained in [9,10]. Adopting the same ap-
proach as the one used in this paper, one can obtain the spectra of the intermediate
Casimir operators and construct the corresponding representations of (5.6) to find the
three-term recurrence relation satisfied by theRacah coefficients of osp(1|2) and identify
it with that of the Bannai–Ito polynomials.

5.2. q → 1 limit of the q-analogs of the Bannai–Ito polynomials. Consider the poly-
nomials defined by the recurrence relation (4.1). Upon taking

a = q2ρ1+1/2, b = −q−2r2+1/2, c = −q2ρ2+1/2, d = q−2r1+1/2, z = qx ,

dividing (4.1) by (q − q−1) and taking the q → 1 limit, one finds that the recurrence
relation (4.1) becomes, in its normalized form,

x Q̃n(x) = Q̃n+1(x) + (2ρ1 + 1/2 − Ãn − C̃n)Q̃n(x) + Ãn−1C̃n Q̃n−1(x), (5.9)

where the coefficients read

Ãn =
⎧
⎨

⎩

(n+2ρ1−2r1+1)(n+2ρ1−2r2+1)
2(n+ρ1+ρ2−r1−r2+1)

n even

(n+2ρ1+2ρ2+1)(n+2ρ1+2ρ2−2r1−2r2+1)
2(n+ρ1+ρ2−r1−r2+1)

n odd,

C̃n =
⎧
⎨

⎩

− n(n−2r1−2r2)
2(n+ρ1+ρ2−r1−r2)

n even

− (n+2ρ2−2r1)(n+2ρ2−2r2)
2(n+ρ1+ρ2−r1−r2)

n odd.

Comparing with the recurrence relation (1.1) satisfied by the Bannai–Ito polynomi-
als, one sees from (5.9) that Q̃n(x) = 2n Bn(

x−1/2
2 ). In consequence, the polynomials

Qn(x; a, b, c, d|q) defined by the recurrence relation (4.1) are q-analogs of the Bannai–
Ito polynomials. Similarly, upon taking the limit when q → 1 of the divided-difference
operator (4.3) with parametrization (5.9), one finds

lim
q→1

Dz

q − q−1 =
(

(x − 2ρ1 − 1/2)(x − 2ρ2 − 1/2)

2x − 1

)

(T−R − 1)

−
(

(x − 2r1 + 1/2)(x − 2r2 + 1/2)

2x + 1

)
(
T +R − 1

)
,

which corresponds to (1.3), up to an affine transformation and a change of variable.
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6. Conclusion

In this paper, the Racah problem for the quantum superalgebra ospq(1|2)was considered
and a family of basic orthogonal polynomials that generalize the Bannai–Ito polynomials
was proposed.While these q-analogs of the Bannai–Ito polynomials are formally related
to the Askey–Wilson polynomials, the two families of (truncated) polynomials exhibit
different algebraic properties, the former arising in theRacah coefficients for the quantum
superalgebra ospq(1|2) and the latter arising in the Racah coefficients for the quantum
algebra slq(2).

The results presented here and those of [20] suggest a connection between quantum
superalgebras and quantum algebras when q → −q; see also [25]. Also of interest is
the investigation of the transformation q → −q and its consequences for other families
of polynomials of the Askey scheme. We plan to report on this in the near future.
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